WO2015141858A1 - 電解水の生成装置 - Google Patents

電解水の生成装置 Download PDF

Info

Publication number
WO2015141858A1
WO2015141858A1 PCT/JP2015/058637 JP2015058637W WO2015141858A1 WO 2015141858 A1 WO2015141858 A1 WO 2015141858A1 JP 2015058637 W JP2015058637 W JP 2015058637W WO 2015141858 A1 WO2015141858 A1 WO 2015141858A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
anode
cathode
electrolyzed water
water
Prior art date
Application number
PCT/JP2015/058637
Other languages
English (en)
French (fr)
Inventor
優章 荒井
Original Assignee
優章 荒井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 優章 荒井 filed Critical 優章 荒井
Publication of WO2015141858A1 publication Critical patent/WO2015141858A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/463Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4522Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through porous bodies, e.g. flat plates, blocks or cylinders, which obstruct the whole diameter of the tube
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes

Definitions

  • the present invention relates to an electrolyzed water generator, and in particular, ensures an environment in which chlorine gas and acidic water are easily in gas-liquid contact in an anode chamber, and efficiently generates high purity and high concentration hypochlorous acid water.
  • the present invention also relates to an electrolyzed water generator that can be stored for a long time.
  • the diaphragm / two-chamber electrolyzed water generating apparatus includes an anode chamber and a cathode chamber that are arranged to face each other through an anion permeable membrane.
  • the anode chamber is supplied with raw water mixed with saline, and is supplied to the cathode chamber. Only electrolytic raw water is supplied.
  • the diaphragm / three-chamber type electrolyzed water generating device includes an intermediate chamber in which an aqueous electrolyte solution is stored, a cathode chamber in which a cathode is disposed on one side of the intermediate chamber with a cation permeable membrane as a partition, and an opposite side across the intermediate chamber. It comprises an anode chamber in which an anode is disposed with an anion permeable membrane as a partition.
  • This chloride ion immediately draws an electron to the anode and becomes a chlorine atom.
  • the chlorine atoms instantly combine with each other to form chlorine gas (Cl 2) bubbles in order to fill the vacancies of the atoms.
  • This chlorine gas bubble has a property of being easily dissolved in water, and is discharged from the electrode surface into the anode chamber.
  • the electrolyzed raw water supplied from the liquid supply port to the anode chamber is discharged from the anode chamber to the outside at a high speed within 0.02 seconds. In that short time, the water molecules in the electrolyzed water extract electrons to the anode, float as hydrogen and oxygen atoms, and exist as acidic water. Therefore, the above-mentioned chlorine gas bubbles are combined with oxygen and hydrogen or hydroxide ions contained in acidic water (in gas-liquid contact), and dissolved in acidic water to synthesize acidic hypochlorous acid water.
  • an electrolyzed water generator has the following problems. Electrolyzed raw water instantaneously passes through the anode chamber, and as a result, chlorine gas generated in the anode chamber is also instantaneously undissolved and discharged from the anode chamber. There is a problem to be solved that reduces the efficiency of synthesis. In addition, since the raw electrolytic water passes through the anode chamber at a high speed, the efficiency of chloride ions passing from the electrolyte to the anode on the surface layer on both sides of the electrode is reduced, impeding the production of high-purity and high-concentration hypochlorous acid water. There is a problem to be solved.
  • hypochlorous acid is discharged from the equipment due to the high-speed flow that hinders the gas-liquid contact between chlorine gas and acidic water, and the chlorine gas present in the generated acidic water floats on the surface of the acidic water.
  • a problem to be solved such as volatilization and vaporization, and the room filled with chlorine gas.
  • hypochlorous acid is vaporized in a short time, and it is difficult to secure the functions of sterilizing power and deodorizing power required for acidic hypochlorous acid for a long time.
  • the use is limited.
  • the present invention ensures an environment in which chlorine gas and acidic water are easily in gas-liquid contact in the anode chamber, efficiently generates high-purity and high-concentration hypochlorous acid water, and is stored for a long period of time. It is another object of the present invention to provide an electrolyzed water generating device that can also be used.
  • the present invention provides an anode chamber in which an anode is disposed, a cathode chamber in which a cathode is disposed, an anion exchange membrane provided between the anode chamber and the cathode chamber, A fixing plate for holding and fixing an anion exchange membrane, an ion retaining body provided on both surfaces of the anode for retaining chloride ions around the anode, and an electrolyte containing an aqueous electrolyte solution supplied to the cathode chamber A device for generating electrolyzed water comprising an aqueous solution storage tank, wherein the anode and / or the cathode is a laminate of a plurality of nets having different line thicknesses and / or different meshes.
  • the present invention provides an anode chamber in which an anode is disposed, a cathode chamber in which a cathode is disposed, and an anion exchange membrane provided between the anode chamber and the cathode chamber.
  • the present invention proposes an electrolyzed water generator characterized in that a gas-liquid stirrer that stirs water is provided.
  • the present invention provides an anode chamber in which an anode is disposed, a cathode chamber in which a cathode is disposed, and an electrolyte ion provided between the anode chamber and the cathode chamber.
  • a device for generating electrolyzed water characterized in that the anode and / or the cathode is a laminate of a plurality of nets having different line thicknesses and / or different meshes.
  • the present invention provides an anode chamber in which an anode is disposed, a cathode chamber in which a cathode is disposed, and an electrolyte ion provided between the anode chamber and the cathode chamber.
  • the anode chamber is provided with a gas-liquid stirring body for stirring the acidic water produced in the anode chamber and the chlorine gas generated on the anode surface and floating in the acidic water.
  • Proposing an electrolyzed water generator characterized by It is.
  • the anode and / or the cathode is formed by laminating at least two kinds of nets of a fine net having a line thickness of 0.2 mm or less and a coarse net having a thickness of 0.3 mm or more.
  • the anode and / or the cathode is formed by processing a wire having titanium and stainless steel as a base material into a mesh shape or laminating a wire mesh and press-welding.
  • the anode and / or the cathode is a porous porous body produced by sintering titanium particles and stainless metal particles.
  • the anode is characterized in that the base material is titanium and the surface is plated with platinum or iridium.
  • the gas-liquid stirring body is a nylon nonwoven fabric or a sponge-like porous body.
  • the gas-liquid stirrer is disposed throughout the anode chamber.
  • the gas-liquid stirrer is provided in a discharge pipe of the anode chamber.
  • the anode chamber is provided with a guide channel for guiding the raw electrolytic water.
  • the guide channel groove is a wall formed alternately with a gap in the width direction of the anode chamber.
  • the electrolyzed water generator further includes an adjustment valve that adjusts the flow rate of the raw electrolyzed water supplied to the anode chamber and / or the cathode chamber.
  • the anode chamber has a volume equal to or more than that of the cathode chamber and within 3 times.
  • the apparatus for producing electrolyzed water uses a rectifier capable of adjusting current and voltage.
  • the electrolysis apparatus is configured as described above, increasing the efficiency with which chlorine gas generated in the anode chamber is dissolved in the acidic water, and the chlorine water not dissolved in the acidic water is contained in the electrolytic water. Extremely reducing discharge to the outside, reducing evaporation of undissolved chlorine gas from the generated hypochlorous acid aqueous solution, and generating high purity and high concentration hypochlorous acid water with low power consumption be able to.
  • FIG. 1 is a schematic diagram of a diaphragm / two-chamber electrolyzed water generating apparatus according to a first embodiment of the present invention.
  • 2A and 2B are diagrams showing an anode and a cathode, wherein FIG. 2A is a diagram showing a mesh electrode knitted with coarse eyes, FIG. 2B is a diagram showing a mesh electrode knitted finely, and FIG. The figure which shows the state which laminated
  • FIG. 3 is a schematic view of a cross section in which the anode, which is the multilayer electrode shown in FIG. 2, is sandwiched between the ion retaining bodies from both sides and the gas-liquid stirring body is combined on the side where the anion permeable membrane faces the electrodes.
  • FIG. 4 is a diagram showing a state in which a wall is provided in the anode chamber to form a channel groove for electrolyzed water.
  • FIG. 5 is a longitudinal sectional view focusing on the wall portion of the anode chamber of FIG.
  • FIG. 6 is a view showing a state in which a porous gas-liquid stirring body is introduced into the discharge port of the acidic water generated in the anode chamber.
  • FIG. 7 is a schematic diagram showing a configuration of Modification 1 of the electrolyzed water generating apparatus according to the embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a configuration of Modification 2 of the electrolyzed water generating apparatus according to the embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a configuration of a modified example 3 of the electrolyzed water generating device according to the embodiment of the present invention, and the gas-liquid shown in the modified example 1 in the diaphragm double chamber type electrolyzed water generating device. It is a schematic diagram which shows the example which provided the stirring chamber.
  • FIG. 1 is a schematic view of a diaphragm / three-chamber electrolyzed water generating apparatus (hereinafter referred to as “electrolytic apparatus”) according to the present embodiment.
  • the electrolysis apparatus 10 includes an anode chamber 20, a cathode chamber 30, and an intermediate chamber 40.
  • the intermediate chamber 40 is provided between the anode chamber 20 and the cathode chamber 30.
  • the intermediate chamber 40 is filled with an aqueous electrolyte solution.
  • the electrolyte used here is preferably sodium chloride (NaCl) or potassium chloride (KCl).
  • electrolytic chamber aqueous solution supplied from the electrolytic aqueous solution storage tank 80 to the intermediate chamber 40 through the electrolytic aqueous solution supply port 50a
  • cations sodium ions and potassium ions
  • anions chloride ions
  • the electrolyte aqueous solution sodium chloride aqueous solution or potassium chloride aqueous solution
  • the electrolyte aqueous solution that has passed through the intermediate chamber 40 is returned to the electrolyte aqueous solution storage tank 80 via the electrolyte aqueous solution outlet 50b.
  • the returned aqueous electrolyte solution may be reused and circulated, or as much electrolyte as consumed may be added to the intermediate chamber 40.
  • the concentration of the aqueous electrolyte solution can be, for example, the saturation concentration of the electrolyte.
  • the intermediate chamber 40 and the anode chamber 20 are separated by an anion exchange membrane 15a. Thereby, the cation in the intermediate chamber 40 does not pass through the anion exchange membrane 15a, and only the anion selectively passes through the anion exchange membrane 15a. A well-known thing can be applied to the anion exchange membrane 15a.
  • the intermediate chamber 40 and the cathode chamber 30 are separated by a cation exchange membrane 15b.
  • the intermediate chamber 40 is provided with a porous fixing frame 45 for fixing the anion exchange membrane 15a and the cation exchange membrane 15b.
  • the cathode 32 is connected to the ⁇ side of the DC power supply 70, and the anode 22 is connected to the + side of the DC power supply 70.
  • the DC power supply 70 is configured to be able to arbitrarily set its voltage and current.
  • a voltage can be arbitrarily selected in the range of about 5 to 20 volts, and a current can be appropriately selected and set in the range of 3 to 26 amperes.
  • the anode 22 and the cathode 32 are reticulated multilayer electrodes in which a plurality of nets having different line thicknesses or different nets are laminated.
  • the mesh-like multilayer electrode has at least two kinds of fine meshes of 0.2 mm or less, preferably in the range of 0.2 to 0.01 mm, and coarse meshes of 0.3 mm or more, preferably in the range of 1 to 3 mm.
  • Two or more meshes of the above may be laminated, a wire made of titanium and stainless steel as a base material may be processed into a mesh shape, or a metal mesh may be laminated and crimp welded. It may be a porous porous body produced by sintering.
  • the anode may be made of titanium as a base material and platinum or iridium plated on the surface. For example, it can also be comprised from the electrode etc. which punched the hole by about 1.5 mm. Note that the punched electrode can have an area removed by punching and an area used as an electrode of, for example, about 50%. A known material can be applied as the material of the electrode.
  • the electrolyzer 10 is provided with a first water supply port 26 for supplying raw electrolytic water from the valve 60 to the anode chamber 20, and a second water supply port 36 for supplying water from the valve 60 to the cathode chamber 30. It has been.
  • the first water supply port 26 and the second water supply port 36 are provided with water amount adjusting valves 26b and 38b for adjusting and supplying the amount of raw electrolytic water to the anode chamber 20 and the cathode chamber 30, respectively.
  • the electrolysis apparatus 10 is provided with a first discharge port 28 a for discharging the liquid in the anode chamber 20 and a second discharge port 38 a for discharging the liquid in the cathode chamber 30.
  • the first discharge port 28 a is provided in the lower part of the anode chamber 20, and the first water supply port 26 is provided in the upper part of the anode chamber 20.
  • the raw electrolytic water supplied from the first water supply port 26 tends to flow from top to bottom. Therefore, bubbles made of gas (chlorine) generated at the anode 22 are pushed upward by the electrolytic raw water, and it is difficult to rise upward, and accordingly, the time for the gas (chlorine) to make gas-liquid contact with the electrolytic raw water becomes longer, Reaction to hypochlorous acid can be performed more reliably.
  • ion retention bodies 24 a and 24 b and 34 a and 34 b having high water content that retain ions (anions and cations) in the electrolytic raw water at room temperature and the aqueous electrolyte solution are anode 22 and cathode 32.
  • the ion retention bodies 24a and 24b and 34a and 34b are porous and water-containing natural or synthetic sponges, water-containing gauze with a soft cloth coarsely woven with cotton, and water-containing materials such as paper towels. It is made of a sheet-like material having a predetermined thickness and having a performance of impregnating and holding a liquid, such as non-woven fabric or water-containing Japanese paper.
  • the electrolytic raw water supplied to the electrode chambers (the anode chamber 20 and the cathode chamber 30) is contained in water.
  • the flow of the electrolyzed raw water can be retained, and by this retention, the electrolytic ionic substance moving from the intermediate chamber 40 can be efficiently supplied to the vicinity of the electrode having a high electrolytic density and electrolyzed in each electrode chamber. Accordingly, it is possible to prevent the electrolytic ionic substance from being discharged without being electrolyzed.
  • the anode chamber 20 is provided with a gas-liquid stirring body 207 made of a porous body in the anode chamber.
  • This gas-liquid stirrer 207 is forcibly bringing the chlorine gas generated on the electrode surface into acid-liquid contact with gas and liquid.
  • the gas-liquid contact dissolves the chlorine gas in acid water, and converts hypochlorous acid. Synthesize and reduce undissolved chlorine gas to ensure dissolution.
  • the gas-liquid stirrer 207 is preferably a nylon nonwoven fabric or a sponge-like porous body, and is preferably disposed throughout the anode chamber 20. Further, this gas-liquid stirring body 207 may be provided in the discharge pipe 203 of the electrolytic acid water as will be described later.
  • 2A and 2B are diagrams showing the anode 22 and the cathode 32, where FIG. 2A is a diagram showing a mesh electrode knitted with coarse eyes, FIG.
  • FIG. 2B is a diagram showing a mesh electrode finely knitted
  • FIG. The figure which shows the state which laminated
  • (d) is the figure which shows the state which laminated
  • a combination of electrodes knitted with thick lines and coarse electrodes, electrodes knitted with thick lines, and fine it is also possible to use a mesh electrode knitted into a mesh or a mesh electrode in which these are laminated in multiple layers.
  • FIG. 3 is a cross-sectional view in which the anode 22 which is the multilayer electrode shown in FIG. 2 is sandwiched between the ion retaining members 24a and 24b from both sides, and the gas-liquid stirring member 207 is combined on the opposite side of the anion permeable membrane 15b across the electrodes.
  • FIG. 3 is a cross-sectional view in which the anode 22 which is the multilayer electrode shown in FIG. 2 is sandwiched between the ion retaining members 24a and 24b from both sides, and the gas-liquid stirring member 207 is combined on the opposite side of the anion permeable membrane 15b across the electrodes.
  • FIG. 4 is a view showing a state in which a wall 205 is provided in the anode chamber 20 to form a flow channel 200 for electrolyzed water. As shown in the drawing, the wall 205 is formed with a gap so that the length of the wall 205 is halfway in the width direction of the anode chamber 20.
  • FIG. 5 is a longitudinal sectional view focusing on the wall 205 portion of the anode chamber 20 of FIG. As shown in the figure, a porous gas-liquid stirring body 207 is provided in the anode chamber 20. Thereby, since the contact time of electrolysis raw water and an electrode is ensured reliably, electrolysis raw water can be electrolyzed more uniformly.
  • FIG. 5 is a longitudinal sectional view focusing on the wall 205 portion of the anode chamber 20 of FIG. As shown in the figure, a porous gas-liquid stirring body 207 is provided in the anode chamber 20.
  • FIG. 6 is a diagram showing a state in which a porous gas-liquid stirring body 207 is placed in the acidic water discharge port 28 a generated in the anode chamber 20.
  • a porous gas-liquid stirring body 207 is placed in the acidic water discharge port 28 a generated in the anode chamber 20.
  • the contact time between the electrolytic raw water and the electrode is further ensured. Therefore, electrolysis raw water can be electrolyzed evenly.
  • the gas-liquid stirring body 207 is provided only at the discharge port 28a.
  • the electrolytic water flow channel is provided from the water supply port to the discharge port, the flow channel groove is forcibly passed, the gas-liquid stirring body made of a porous body is disposed in the flow channel, and chlorine gas is supplied.
  • Many chlorine gas bubbles are dissolved in acidic water in the anode chamber by obstructing the linear flow of the contained acidic water, extending the residence time, turbulent, stirring and mixing, and making intense gas-liquid contact. Synthesize hypochlorous acid.
  • the operation of the electrolysis apparatus 10 will be described. First, the amount of water is adjusted by the water amount adjusting valves 26 b and 38 b and the electrolytic raw water is supplied to the anode chamber 20 and the cathode chamber 30.
  • the amount of raw electrolytic water is, for example, 0.5 to 1.5 l / min.
  • a potential is applied between the anode 22 and the cathode 32 to perform electrolysis.
  • the voltage during electrolysis is 5 to 10 V, and the current is 3 to 10 amperes.
  • cations sodium ions or potassium ions
  • Ions chloride ions
  • chloride ions cause a reaction of the following formula at the anode 22 to generate chlorine. 2Cl ⁇ ⁇ Cl2 + 2e ⁇ This chlorine further reacts with the electrolytic raw water to generate hypochlorous acid.
  • the cathode chamber 30 the following reaction occurs at the cathode. H2O + 2e- ⁇ 1 / 2H2 + OH- Electrolyzed water containing weakly alkaline, neutral or weakly acidic hypochlorous acid by mixing the electrolyzed water discharged from the first discharge port 28a and the electrolyzed water discharged from the second discharge port 38a. Is generated.
  • FIG. 7 is a schematic diagram showing a configuration of Modification 1 of the electrolyzed water generating apparatus according to the embodiment of the present invention. Since the same reference numerals as those in FIG. 1 have the same contents, overlapping description will be omitted. However, in the first modification, the anode chamber 20 is set to be not less than three times the volume of the cathode chamber, and the anode chamber 20 has a separate gas chamber.
  • FIG. 8 is a schematic diagram showing a configuration of Modification 2 of the electrolyzed water generating apparatus according to the embodiment of the present invention. Although the same components as those in FIG.
  • the present invention is applied to a diaphragm / two-chamber type electrolyzed water generator.
  • the basic operation is the same, the supply of the electrolyzed raw water from the water amount adjusting valve 26b starts, and the electrolyte aqueous solution is supplied from the electrolyte aqueous solution storage tank 80 to the cathode chamber 30. Then, the electrolysis is started and the aqueous electrolyte solution is refluxed from the discharge port to the electrolytic aqueous solution storage tank 80 provided with the gas vent plug 401.
  • FIG. 9 is a schematic view showing an example in which the gas-liquid stirring chamber 700 shown in the first modification is provided in the diaphragm / two-chamber electrolyzed water generating apparatus.
  • a gas-liquid stirring chamber 700 containing a gas-liquid stirring body is separately provided in the anode chamber 20 so that the electrolyzed water passing through the water passage port 203 is discharged through the first discharge port 28a. Is. Thereby, since the contact time of electrolysis raw water and an electrode is ensured reliably, electrolysis raw water can be electrolyzed uniformly.
  • the wall 205, the channel groove 200, or the gas-liquid stirring body 207 may be provided in the anode chamber.
  • the cathode chamber of the diaphragm two-chamber type and two-membrane three-chamber electrolyzed water generating device capable of producing liquid hypochlorous acid with high purity and high concentration, the chloride solution as an electrolyte, and the anode chamber Pure water is supplied and current is applied to produce high-purity and high-concentration hypochlorous acid water at high voltage and high current.
  • undissolved chlorine gas is dissolved in electrolytic acid water to synthesize hypochlorous acid.
  • a fine metal mesh and a thick metal net-like laminate capable of strengthening the shape are made into a multilayer, and the fine mesh metal part is ionized.
  • the ions and electrodes contained in the ion retention body improve the transfer of electrons, improve the current density, stir chlorine gas and acidic water, promote gas-liquid contact, and undissolved chlorine gas Can be synthesized into hypochlorous acid to prevent chlorine gas emission.
  • at least two or more types of meshes meshed with lines of thickness and two or more types of meshes made of meshes with at least two types of meshes are laminated into at least two layers to form a fine layer.
  • a porous body that dissolves undissolved chlorine gas in electrolytic acid water is provided in the anode chamber of the diaphragm two-chamber and two-chamber three-chamber electrolyzed water generators that generate high-purity and high-concentration hypochlorous acid water.
  • the problem was solved by connecting a gas-liquid contact agitation tank that was stored and agitated with chlorine gas and acidic water to promote gas-liquid contact and prevent discharge of undissolved chlorine gas.
  • a gas-liquid stirring body is provided inside a part of the pipe connected to the electrolytic water discharge port of the anode chamber, and chlorine gas and Acidic water was stirred and brought into gas-liquid contact.
  • the amount of undissolved chlorine gas is very small, and the chlorine gas is discharged from the produced hypochlorous acid water to an extent that is not perceived by smell.
  • the supply flow rate adjustment valve is disposed in each electrolysis chamber raw water supply section, the amount of generated electrolyzed water, pH, and hypochlorous acid concentration can be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

陽極室内で塩素ガスと酸性水が気液接触しやすい環境を確保し、効率良く、高純度で高濃度の次亜塩素酸水を生成し、長期間の保管も可能とする電解水の生成装置を提供する。そのために、陽極が配設される陽極室と、陰極が配設される陰極室と、陽極室と陰極室との間に設けられ電解質イオンを陽極室及び陰極室に供給するための電解質水溶液が収容される中間室と、陽極室と前間室とを隔てる陰イオン交換膜と、陰極室と中間室とを隔てる陽イオン交換膜と、陽極及び陰極の両面に設けられ電解質イオンを陽極及び陰極の周辺に滞留させるイオン滞留体と、を備えた電解水の生成装置であって、陽極及び/又は陰極を、線の太さが異なった及び/又は網目が異なった網で複数枚積層し、陽極室には、陽極室で生成される酸性水と前記陽極表面で発生し該酸性水中に浮遊する塩素ガスとを攪拌する気液撹拌体を設ける。

Description

電解水の生成装置
 本発明は、電解水の生成装置に関し、詳しくは、陽極室内で塩素ガスと酸性水が気液接触しやすい環境を確保し、効率良く、高純度で高濃度の次亜塩素酸水を生成し、長期間の保管も可能とする電解水の生成装置に関する。
 この種の次亜塩素酸水を生成する電解水生成装置としては、特許文献1および特許文献2に開示されているように、一隔膜二室型のものと二隔膜三室型のものとが知られている。
 一隔膜二室型の電解水生成装置は、陰イオン透過膜を介して対向配置された陽極室と陰極室とを備え、陽極室には、食塩水を混合した原水が供給され、陰極室には電解原水のみが供給される。そして、電極に直流電流を印加することにより、陽極室では、次亜塩素酸を含む酸性電解水が生成され、陰極室では、アルカリ性電解水が生成される。
 二隔膜三室型の電解水生成装置は、電解質水溶液が収容される中間室と、中間室の片側に陽イオン透過膜を隔壁として陰極を配設した陰極室と、中間室を挟んだ反対側に陰イオン透過膜を隔壁として陽極を配設した陽極室からなるものである。2枚の隔膜で仕切ることによって陽極室と中間室と陰極室とを設けた装置であり、陽極室と陰極室には電解原水が供給され、中間室には高濃度の電解質水溶液が充填される。陽極室では、酸性電解水(次亜塩素酸水(HClO))が生成され、陰極室では、アルカリ性電解水が生成される。
 陽極室における電解次亜塩素酸水の生成原理について説明すると、まず、陰イオン透過膜から塩化物イオンが導き出される。この塩化物イオンは、すぐに陽極に電子を引き抜かれて塩素原子となる。この塩素原子は、原子の空席を埋めるために、即座に塩素原子同士が結合して塩素ガス(Cl2)の気泡を生成する。この塩素ガス気泡は、水に溶け易い性質を持っており、電極表面から陽極室内に放出される。
 一方、給液口から陽極室内に給液された電解原水は、0.02秒以内の高速で陽極室内から室外に排出される。その短時間に、電解原水の水分子は電子を陽極に引き抜かれ、水素と酸素原子として浮遊し酸性水として存在する。そこで、前述した塩素ガス気泡は酸性水に含まれる酸素と水素または水酸イオンと結合し(気液接触し)、酸性水に溶け込み、酸性の次亜塩素酸水を合成する。
特開2005−329375号公報 特開2000−246249号公報
 しかしながら、このような電解水の生成装置によれば以下のような課題があった。
 電解原水が陽極室を瞬時に通過し、これに伴い、陽極室内で発生する塩素ガスも瞬時に未溶解のまま陽極室内から排出されてしまうため、塩素ガスが充分に溶解されず次亜塩素酸合成の効率を低下させるという解決すべき課題がある。
 また、電解原水が高速で陽極室を通過するため、塩化物イオンが電極両面の表層に電解質から陽極に電子を引き渡す効率が低下し、高純度で高濃度の次亜塩素酸水の生成を阻害するという解決すべき課題がある。
 また、塩素ガスと酸性水との気液接触を阻害する高速流により、次亜塩素酸を合成できない塩素ガスが装置から排出され、生成される酸性水中に存在する塩素ガスが酸性水表面に浮き出て揮発・気化し、室内に塩素ガスが充満するという解決すべき課題もある。
 更に、塩素ガスが揮発・気化すると、次亜塩素酸は短時間で気化してしまい、酸性次亜塩素酸において必要とする殺菌力や消臭力の機能を長時間担保することが難しく、その用途が制限されてしまうという解決すべき問題もある。
発明の目的
 従って、本発明は、陽極室内で塩素ガスと酸性水が気液接触しやすい環境を確保し、効率良く、高純度で高濃度の次亜塩素酸水を生成し、長期間の保管も可能とする電解水の生成装置を提供することを目的とする。
 本発明は、かかる課題を解決すべく、陽極が配設される陽極室と、陰極が配設される陰極室と、前記陽極室と前記陰極室の間に設けられる陰イオン交換膜と、前記陰イオン交換膜を保持して固定する固定板と、前記陽極の両面に設けられ塩化物イオンを該陽極周辺に滞留させるイオン滞留体と、前記陰極室に供給される電解質の水溶液を収納する電解質水溶液収納槽と、を備えた電解水の生成装置であって、前記陽極及び/又は前記陰極は、線の太さが異なった及び/又は網目が異なった網を複数枚積層したものであることを特徴とする電解水の生成装置を提案するものである。
 また、本発明は、かかる課題を解決すべく、陽極が配設される陽極室と、陰極が配設される陰極室と、前記陽極室と前記陰極室の間に設けられる陰イオン交換膜と、前記陰イオン交換膜を保持して固定する固定板と、前記陽極の両面に設けられ塩化物イオンを該陽極周辺に滞留させるイオン滞留体と、前記陰極室に供給される電解質の水溶液を収納する電解質水溶液収納槽と、を備えた電解水の生成装置であって、前記陽極室には、該陽極室で生成される酸性水と前記陽極表面で発生し該酸性水中に浮遊する塩素ガスとを攪拌する気液撹拌体が設けられていることを特徴とする電解水の生成装置を提案するものである。
 また、本発明は、かかる課題を解決すべく、陽極が配設される陽極室と、陰極が配設される陰極室と、前記陽極室と前記陰極室との間に設けられ電解質イオンを前記陽極室及び前記陰極室に供給するための電解質水溶液が収容される中間室と、前記陽極室と前記中間室とを隔てる陰イオン交換膜からなる第1の隔壁と、前記陰極室と前記中間室とを隔てる陽イオン交換膜からなる第2の隔壁と、前記陽極及び前記陰極の両面に設けられ前記電解質イオンを該陽極及び該陰極の周辺に滞留させるイオン滞留体と、を備えた電解水の生成装置であって、前記陽極及び/又は前記陰極は、線の太さが異なった及び/又は網目が異なった網を複数枚積層したものであることを特徴とする電解水の生成装置を提案するものである。
 また、本発明は、かかる課題を解決すべく、陽極が配設される陽極室と、陰極が配設される陰極室と、前記陽極室と前記陰極室との間に設けられ電解質イオンを前記陽極室及び前記陰極室に供給するための電解質水溶液が収容される中間室と、前記陽極室と前記中間室とを隔てる陰イオン交換膜からなる第1の隔壁と、前記陰極室と前記中間室とを隔てる陽イオン交換膜からなる第2の隔壁と、前記陽極及び前記陰極の両面に設けられ前記電解質イオンを該陽極及び該陰極の周辺に滞留させるイオン滞留体と、を備えた電解水の生成装置であって、前記陽極室には、該陽極室で生成される酸性水と前記陽極表面で発生し該酸性水中に浮遊する塩素ガスとを攪拌する気液撹拌体が設けられていることを特徴とする電解水の生成装置を提案するものである。
 前記陽極及び/又は前記陰極は、線の太さが0.2mm以下の微細な網と0.3mm以上の粗目の網の少なくとも二種類以上の網を二枚以上積層したものであることを特徴とする。
 前記陽極及び/又は前記陰極は、チタン及びステンレスを母材にした線を網目状に加工又は金網を積層して圧着溶接したものであることを特徴とする。
 前記陽極及び/又は前記陰極は、チタン粒子及びステンレスの金属粒子を焼結して製造されたポーラス状の多孔質体であることを特徴とする。
 前記陽極は、母材をチタンとし、表面を白金又はイリジウムメッキしたものであることを特徴とする。
 前記気液撹拌体は、ナイロン製の不織布又はスポンジ状の多孔質体であることを特徴とする。
 前記気液撹拌体は、前記陽極室の室内全体に配設されていることを特徴とする。
 前記気液撹拌体は、前記陽極室の排出管に設けられていることを特徴とする。
 前記陽極室には、前記電解原水を誘導する誘導路溝が設けられていることを特徴とする。
 前記誘導路溝は、前記陽極室の幅方向に隙間を設けて交互に形成された壁であることを特徴とする。
 前記電解水の生成装置は、更に、前記陽極室及び/又は前記陰極室に供給される電解原水の流量を調整する調整バルブを備えたことを特徴とする。
 前記陽極室は、容積が前記陰極室の容積の同等以上で3倍以内であることを特徴とする。
 前記電解水の製造装置は、電流及び電圧を調整可能な整流器を用いることを特徴とする。
 本発明によれば、以上のように構成され、陽極室内で発生した塩素ガスが酸性水に溶解される効率を高め、酸性水に未溶解の塩素ガスが電解水に含まれたまま、電解装置外に排出されることを極端に軽減し、生成された次亜塩素酸水溶液から未溶解の塩素ガスの蒸発を軽減し、少ない消費電力で高純度かつ高濃度の次亜塩素酸水を生成することができる。
 図1は、本発明の第1の実施の形態に係る一隔膜二室型電解水の生成装置の模式図である。
 図2は、陽極および陰極を示す図であり、(a)は粗い目に編んだ網状電極を示す図、(b)は微細に編まれた網状電極を示す図、(c)はこの粗い目の網状電極と微細な網目の網状電極を積層した状態を示す図、(d)はこの粗い目の網状電極と微細な網目の網状電極を多層に積層した状態を示す図である。
 図3は、図2で示した多層電極である陽極を両側からイオン滞留体で挟み、陰イオン透過膜が電極を挟んで対峙する側に気液攪拌体を組み合わせた断面の模式図である。
 図4は、陽極室内に壁を設け、電解水の流路溝とした状態を示す図である。
 図5は、図4の陽極室の壁部分に着目した縦断面図である。
 図6は、陽極室で生成された酸性水の排出口に多孔質の気液攪拌体を取り入れた状態を示す図である。
 図7は、本発明の実施の形態に係る電解水の生成装置の変形例1の構成を示す模式図である。
 図8は、本発明の実施の形態に係る電解水の生成装置の変形例2の構成を示す模式図である。
 図9は、本発明の実施の形態に係る電解水の生成装置の変形例3の構成を示す模式図であり、一隔膜二室型の電解水の生成装置に変形例1で示した気液攪拌室を設けた例を示す模式図である。
 以下、図面を参照しながら本発明の実施の形態に係る電解水の生成装置を説明する。
 図1は、本実施の形態に係る二隔膜三室型の電解水の生成装置(以下、「電解装置」という)の模式図を示す。
 図に示すように、電解装置10は、陽極室20と陰極室30と中間室40とを含む。中間室40は、陽極室20と陰極室30の間に設けられている。
 中間室40には電解質水溶液が充填される。ここで用いられる電解質は、塩化ナトリウム(NaCl)又は塩化カリウム(KCl)が望ましい。電解質水溶液収容槽80から電解質水溶液供給口50aを介して中間室40に供給された電解室水溶液は、陽イオン(ナトリウムイオンやカリウムイオン)が陰極室30に供給され、陰イオン(塩化物イオン)は陽極室20に供給される。
 中間室40を通過した電解質水溶液(塩化ナトリウム水溶液又は塩化カリウム水溶液)は電解質水溶液排出口50bを経由して電解質水溶液収容槽80に戻される。戻された電解質水溶液は再利用し循環させてもよいし、または、消費した分だけの電解質を中間室40に追加してもよい。電解質水溶液の濃度としては、たとえば、電解質の飽和濃度とすることができる。
 中間室40と陽極室20とは、陰イオン交換膜15aにより隔てられている。これにより、中間室40の陽イオンが陰イオン交換膜15aを通過せず、陰イオンのみが選択的に陰イオン交換膜15aを通過することとなる。陰イオン交換膜15aに適用される陰イオン交換膜は、公知のものを適用することができる。
 中間室40と陰極室30とは、陽イオン交換膜15bにより隔てられている。これにより、中間室40の陰イオンが陽イオン交換膜15bを通過せず、陽イオンのみが選択的に陽イオン交換膜15bを通過することとなる。なお、陽イオン交換膜15bに適用される陽イオン交換膜は、陰イオン交換膜と同じく公知のものを適用することができる。
 中間室40には、陰イオン交換膜15aと陽イオン交換膜15bを固定する多孔質の固定枠45が設けられている。
 陰極32は直流電源70の−側に接続され、陽極22は直流電源70の+側に接続されている。直流電源70は、その電圧や電流を任意に設定できる構成になっている。直流電源70は、たとえば、電圧は5~20ボルト程度の範囲で任意に選択でき、電流についても3~26アンペアの範囲で適宜選択して設定することができるものを挙げることができる。
 陽極22および陰極32は、線の太さが異なったり網目が異なったりした網を複数枚積層した網状多層電極とする。特に、電流密度を高めるために、微細な線のメッシュ電極と太めな線の網状の電極を少なくとも二枚以上の積層にした電極を用いるのが望ましい。こうすることにより、電気伝導率を向上させ、低電圧と低電流を可能にし、酸性水に溶解しやすい極微細な塩素ガス気泡の内に微細な線から離れさせ、酸性水に溶解しやすくさせ、次亜塩素酸を合成させ、塩素ガスが未溶解として排出されるのを軽減して、安全な、塩素ガス気泡の少ない高純度で高濃度の次亜塩素酸水、塩素ガスが未溶解として排出されるのを軽減させることができる。
 この網状多層電極は、0.2mm以下、好ましくは0.2~0.01mmの範囲、の微細な網と、0.3mm以上、好ましくは1~3mm範囲、の粗目の網の少なくとも二種類以上の網を二枚以上積層したものであり、チタン及びステンレスを母材にした線を網目状に加工又は金網を積層して圧着溶接したものであっても良く、チタン粒子及びステンレスの金属粒子を焼結して製造されたポーラス状の多孔質体であっても良い。なお、陽極は、母材をチタンとし、表面を白金又はイリジウムメッキしたものであっても良い。
 また、たとえば1.5mm前後でパンチング穴加工した電極などからも構成することができる。なお、パンチング加工した電極は、パンチングで取り除いた面積と電極として使用される面積とがたとえば50%程度になるようにすることができる。電極の材質は公知のものを適用することができる。
 電解装置10には、バルブ60から陽極室20に電解原水を給水するための第1の給水口26と、バルブ60から陰極室30に水を供給するための第2の給水口36とが設けられている。第1の給水口26および第2の給水口36には、陽極室20および陰極室30に電解原水の量を調整して供給する水量調整バルブ26b,38bが設けられている。この水量量調整バルブを配設することにより、電解水の生成量やpHや次亜塩素酸濃度を適宜変更することができる。
 また、電解装置10には、陽極室20の液を吐出する第1の吐出口28aと、陰極室30の液を吐出する第2の吐出口38aとが設けられている。
 第1の吐出口28aは、陽極室20の下部に設け、第1の給水口26は、陽極室20の上部に設ける。これにより、第1の給水口26から給水された電解原水は、上から下に向かって流れようとする。したがって、陽極22にて発生する気体(塩素)からなる気泡が電解原水に押されて上に上がり難くなり、その分だけ、その気体(塩素)が電解原水と気液接触する時間が長くなり、次亜塩素酸への反応をより確実に行うことができる。
 陽極22および陰極32の両面には、常温の電解原水と電解質水溶液中のイオン(陰イオンおよび陽イオン)を滞留させる含水性の高いイオン滞留体24aと24b及び34aと34bが陽極22および陰極32を覆うように設けられている。これにより、電解原水を陽極22および陰極32両面付近に滞留させることができる。
 イオン滞留体24aと24b及び34aと34bは、多孔質で含水性のある天然または合成のスポンジや、コットンで目を粗く織った柔らかい布で含水性のあるガーゼや、ペーパータオル等の含水性のある不織布や、含水性のある和紙等の紙などのように、所定の厚みを有し、液体を含浸して保持する性能を有するシート状の材料から構成されている。
 このイオン滞留体24aと24b及び34aと34bを電極(陽極22及び陰極32)の両面に設置することで、各電極室(陽極室20および陰極室30)に供給される電解原水を含水して、電解原水の流れを滞留させることができ、この滞留により、中間室40から移動してくる電解イオン物質を効率良く電解密度の高い電極近傍に供給し各電極室内で電解することができる。従って、電解イオン物質が未電解のまま排出されることを防止することができる。
 また、陽極室20には、陽極室内に多孔質体からなる気液攪拌体207が設けられている。この気液攪拌体207は、電極表面で発生する塩素ガスと酸性水を半ば強制的に気液接触させるものであり、この気液接触により塩素ガスを酸性水に溶解し、次亜塩素酸を合成し、未溶解塩素ガスを削減し、溶解を確実に確保する。
 この気液撹拌体207は、ナイロン製の不織布又はスポンジ状の多孔質体であることが望ましく、また、陽極室20の室内全体に配設されることが望ましい。また、この気液撹拌体207は、後述するように、電解酸性水の排出管203に設けるようにしても良い。
 図2は、陽極22および陰極32を示す図であり、(a)は粗い目に編んだ網状電極を示す図、(b)は微細に編まれた網状電極を示す図、(c)はこの粗い目の網状電極と微細な網目の網状電極を積層した状態を示す図、(d)はこの粗い目の網状電極と微細な網目の網状電極を多層に積層した状態を示す図である。
 図示していないが、図2(a)および図2(b)の網状電極に加え、例えば、太い線で編まれた電極と粗い目の電極との組み合わせ、太い線で編まれた電極と微細に編まれた網状電極、あるいは、これらを多層に積層した網状電極としても良い。このように構成することで、前述したように、電気伝導率を向上させ、低電圧と低電流を可能にし、酸性水に溶解しやすい極微細な塩素ガス気泡の内に微細な線から離れさせ、酸性水に溶解しやすくさせることが可能となる。
 図3は、図2で示した多層電極である陽極22を両側からイオン滞留体24a,24bで挟み、陰イオン透過膜15bが電極を挟んで対峙する側に気液攪拌体207を組み合わせた断面の模式図である。
 このように、気液攪拌体207を設けることにより、陽極近傍で発生した塩素ガスの微細気泡が陽極室から排出する前に強制的に撹拌させ電解酸性水と十分な気液接触可能な滞留時間で溶解しやすくすることができる。
 図4は、陽極室20内に壁205を設け、電解水の流路溝200とした状態を示す図である。
 図に示すように、壁205の長さは、陽極室20の幅方向の途中までになるように隙間を設けて形成されている。これを交互に形成することにより、電解原水の流路溝206を形成し、電解原水と電極との接触時間を確実に確保し、電解原水が供給口26bから排出口28aに至る間でもムラなく電解できるようにした。
 図5は、図4の陽極室20の壁205部分に着目した縦断面図である。
 図に示すように、陽極室20内には多孔質の気液攪拌体207が設けられている。これにより、電解原水と電極との接触時間が確実に確保されるので、更に、電解原水をムラなく電解することができる。
 図6は、陽極室20で生成された酸性水の排出口28aに多孔質の気液攪拌体207を入れた状態を示す図である。
 陽極室20内には多孔質の気液攪拌体207を設けることに加え、気液攪拌体207を排出口28aに設けることにより、更に、電解原水と電極との接触時間が確実に確保されるので、電解原水をムラなく電解することができる。なお、排出口28aにのみ気液攪拌体207を設けても負い。
 以上のように、給水口から排出口まで電解水流路溝を設け、強制的に流路溝を通過させ、流路溝には多孔質体からなる気液攪拌体を配設し、塩素ガスを含んだ酸性水の直線的流れを阻害し、滞留時間を延伸し、乱流し、撹拌混合され、猛烈な気液接触を行うことで、多くの塩素ガス気泡は陽極室内で酸性水に溶解されて次亜塩素酸を合成する。
 次に、電解装置10の動作を説明する。
 まず、水量調整バルブ26b,38bで水量を調整すると共に、電解原水を陽極室20および陰極室30に供給する。電解原水の水量は、たとえば0.5~1.5l/分とする。
 この電解原水の供給と併せて、陽極22と陰極32の間に電位を印加し、電気分解を行う。たとえば、電気分解時の電圧は、5~10Vとし、電流を3~10アンペアとする。陽極22と陰極32との間に電位を印加すると、中間室40の陽イオン(ナトリウムイオン又はカリウムイオン)が陽イオン透過膜15bを通過し陰極室30に移動する一方で、中間室40の陰イオン(塩化物イオン)が陰イオン透過膜15aを通過し陽極室20に移動する。
 陽極室20では、陽極22にて塩化物イオンが次式の反応を起こし、塩素が発生する。
 2Cl−→Cl2+2e−
 この塩素は、さらに、電解原水と反応して次亜塩素酸が生成される。
 Cl2+H2O→HClO+HCl
 一方で、陰極室30では、陰極にて次式の反応が起こる。
 H2O+2e−→1/2H2+OH−
 第1の吐出口28aから吐出された電解水と、第2の吐出口38aから吐出された電解水とを混合することで、弱アルカリ性、中性または弱酸性の次亜塩素酸を含む電解水が生成される。
実験例
 表1は、多孔質体を陽極室だけに配設又は非配設として実験を行った結果を示す。
 電流及び電圧を調整可能な整流器を用い、HClOの濃度は10倍希釈し、アドバンテック社製よう化カリウム澱粉試験紙を使用した。また、定電流とし、電圧変化で抵抗を確認した。
 この結果から明らかなように、15A・20A・25A・30Aの各定電流により電圧値は多孔質体を陽極室に配設した場合、おおよそ0.1Vの低下が見られた。同様に、pHについては大きな変化が見られ、pH値を余り下げないHClO水の生成を実現し、HClOの濃度分布の高いpH4.5~6.0に近づいている。また、HClOの濃度は各電圧値でも大きな変化が見られ、陽極近傍で発生する塩素ガス(Cl2)が酸性水に溶解され、HClOに合成されていることが顕著である。なお、酸化還元電位(ORP)は大きな変化がなかった。
 結論としては、従来、陽極室内で発生する塩素ガスが、陽極室の原水入口から排出口まで障害物の無い電解室内を僅か0.02秒前後の高速でスムーズに通過し溶解しにくいが、電極近傍で発生した塩素ガスは酸性水と良好な気液接触させる多孔質体が不可欠であると言える大幅な効果が見られた。特に、20A(アンペア)以上では顕著な改善と言える。
Figure JPOXMLDOC01-appb-T000001
変形例1
 図7は、本発明の実施の形態に係る電解水の生成装置の変形例1の構成を示す模式図である。
 図1と同じ符号は同じ内容であるので重複する説明は省略するが、この変形例1では、陽極室20を陰極室の容積の3倍以上とすると共に、陽極室20内に、別途、気液攪拌体を収納した気液攪拌室700を設け、通水口203を通った電解水が第1の吐出口28aを通じて吐出するようにしたものである。陽極室の容積が大きくなり、また、別途、気液攪拌室700を設けるようにしたので、更に、電解原水と電極との接触時間が確実に確保されるので、電解原水をムラなく大量に電解することができる。なお、図示していないが、陽極室には、壁205や流路溝200あるいは気液攪拌体207を設けてよいことは言うまでもない。
変形例2
 図8は、本発明の実施の形態に係る電解水の生成装置の変形例2の構成を示す模式図である。
 図1と同じ構成には同じ符号を付したので省略するが、この変形例2は、一隔膜二室型の電解水の生成装置に本発明を適用したものである。
 一隔膜二室型の電解水の生成装置の場合においても、基本的な動作は同じであり、水量調整バルブ26bから電解原水の供給が始まり、電解質水溶液収容槽80から陰極室30に電解質水溶液が供給されて電解が開始され、電解質水溶液は排出口からガス抜き栓401を備えた電解質水溶液収容槽80に還流する。水量調整バルブ26bから陽極室20に入った電解原水は、陽極22から発生する塩素ガスを含みながら誘導路206を確実に移動しながら陰イオン交換膜15aを透過してきた陰イオンにより導電性が向上し、低電圧と電流で電解され、気液撹拌され、塩素ガスは電解水に溶解され、確実に次亜塩素酸を合成する。
変形例3
 図9は、上記一隔膜二室型の電解水の生成装置に変形例1で示した気液攪拌室700を設けた例を示す模式図である。
 変形例1と同じく、陽極室20内に、別途、気液攪拌体を収納した気液攪拌室700を設け、通水口203を通った電解水が第1の吐出口28aを通じて吐出するようにしたものである。これにより、更に、電解原水と電極との接触時間が確実に確保されるので、電解原水をムラなく電解することができる。なお、図示していないが、陽極室には、壁205や流路溝200あるいは気液攪拌体207を設けてよいことは言うまでもない。
まとめ
 本発明によれば、液体次亜塩素酸を高純度高濃度に生成出来る一隔膜二室式及び二隔膜三室式電解水生成装置の陰極室に、塩化物溶液を電解質とし、陽極室には純水を供給して電流を印加し、高電圧高電流で高純度高濃度の次亜塩素酸水を生成する。本発明では、未溶解塩素ガスを電解酸性水に溶解せしめ次亜塩素酸を合成するが、微細な金属メッシュと形状が強固に出来る太目の金属網状の積層を多層にし、微細メッシュ金属部をイオン透過膜側に配設し、イオン滞留体に包含するイオンと電極が電子の授受改善を図り、電流密度の向上と塩素ガスと酸性水を撹拌し、気液接触を促進し、未溶解塩素ガスを次亜塩素酸に合成し、塩素ガス排出を防ぐことができる。
 本発明によれば、少なくとも二種類以上の太さの線で網状にしたメッシュと、二種類以上の網目の大きさで網状にした金網を少なくても二枚以上に積層を多層にし、微細な線で微細な網目の面をイオン交換膜側に配設し、少なくても概電極と概イオン交換膜の間にイオン帯流体を配設した構造の電解方法の発送は無かったのである。
 本発明では、高純度高濃度次亜塩素酸水を生成する一隔膜二室式及び二隔膜三室式電解水生成装置の陽極室に、未溶解塩素ガスを電解酸性水に溶解せしめる多孔質体を収納して、塩素ガスと酸性水を撹拌し、気液接触を促進し、未溶解塩素ガス排出を防ぐ気液接触攪拌槽を連結することで解決した。
 陽極室から未溶解塩素ガスを含んだ酸性水が排出されるが、本発明では、陽極室の電解水排出口に接続した配管の一部の内部に、気液攪拌体を設けて塩素ガスと酸性水を撹拌させ気液接触させるようにした。
 本発明の装置から生成される次亜塩素酸水には、未溶解の塩素ガスは微量であり、生成の次亜塩素酸水から塩素ガスが排出されるのは臭覚では感じられない程度である。
 本発明によれば、各電解室原水供給部に供給流量調整バルブを配設したので、電解水生成量やpHや次亜塩素酸濃度を変更することができる。

Claims (16)

  1.  陽極が配設される陽極室と、陰極が配設される陰極室と、前記陽極室と前記陰極室の間に設けられる陰イオン交換膜と、前記陰イオン交換膜を保持して固定する固定板と、前記陽極の両面に設けられ塩化物イオンを該陽極周辺に滞留させるイオン滞留体と、前記陰極室に供給される電解質の水溶液を収納する電解質水溶液収納槽と、を備えた電解水の生成装置であって、
     前記陽極及び/又は前記陰極は、線の太さが異なった及び/又は網目が異なった網を複数枚積層したものであることを特徴とする電解水の生成装置。
  2.  陽極が配設される陽極室と、陰極が配設される陰極室と、前記陽極室と前記陰極室の間に設けられる陰イオン交換膜と、前記陰イオン交換膜を保持して固定する固定板と、前記陽極の両面に設けられ塩化物イオンを該陽極周辺に滞留させるイオン滞留体と、前記陰極室に供給される電解質の水溶液を収納する電解質水溶液収納槽と、を備えた電解水の生成装置であって、
     前記陽極室には、該陽極室で生成される酸性水と前記陽極表面で発生し該酸性水中に浮遊する塩素ガスとを攪拌する気液撹拌体が設けられていることを特徴とする電解水の生成装置。
  3.  陽極が配設される陽極室と、陰極が配設される陰極室と、前記陽極室と前記陰極室との間に設けられ電解質イオンを前記陽極室及び前記陰極室に供給するための電解質水溶液が収容される中間室と、前記陽極室と前記中間室とを隔てる陰イオン交換膜からなる第1の隔壁と、前記陰極室と前記中間室とを隔てる陽イオン交換膜からなる第2の隔壁と、前記陽極及び前記陰極の両面に設けられ前記電解質イオンを該陽極及び該陰極の周辺に滞留させるイオン滞留体と、を備えた電解水の生成装置であって、
     前記陽極及び/又は前記陰極は、線の太さが異なった及び/又は網目が異なった網を複数枚積層したものであることを特徴とする電解水の生成装置。
  4.  陽極が配設される陽極室と、陰極が配設される陰極室と、前記陽極室と前記陰極室との間に設けられ電解質イオンを前記陽極室及び前記陰極室に供給するための電解質水溶液が収容される中間室と、前記陽極室と前記中間室とを隔てる陰イオン交換膜からなる第1の隔壁と、前記陰極室と前記中間室とを隔てる陽イオン交換膜からなる第2の隔壁と、前記陽極及び前記陰極の両面に設けられ前記電解質イオンを該陽極及び該陰極の周辺に滞留させるイオン滞留体と、を備えた電解水の生成装置であって、
     前記陽極室には、該陽極室で生成される酸性水と前記陽極表面で発生し該酸性水中に浮遊する塩素ガスとを攪拌する気液撹拌体が設けられていることを特徴とする電解水の生成装置。
  5.  前記陽極及び/又は前記陰極は、線の太さが0.2mm以下の微細な網と0.3mm以上の粗目の網の少なくとも二種類以上の網を二枚以上積層したものであることを特徴とする請求項1又は3に記載の電解水の生成装置。
  6.  前記陽極及び/又は前記陰極は、チタン及びステンレスを母材にした線を網目状に加工又は金網を積層して圧着溶接したものであることを特徴とする請求項1,3又は5のいずれかに記載の電解水の生成装置。
  7.  前記陽極及び/又は前記陰極は、チタン粒子及びステンレスの金属粒子を焼結して製造されたポーラス状の多孔質体であることを特徴とする請求項1,3,5又は6のいずれかに記載の電解水の生成装置電解水生成装置。
  8.  前記陽極は、母材をチタンとし、表面を白金又はイリジウムメッキしたものであることを特徴とする請求項1,3,5,6又は7のいずれかに記載の電解水の生成装置。
  9.  前記気液撹拌体は、ナイロン製の不織布又はスポンジ状の多孔質体であることを特徴とする請求項2又は4に記載の電解水の生成装置。
  10.  前記気液撹拌体は、前記陽極室の室内全体に配設されていることを特徴とする請求項2,4又9に記載の電解水の生成装置。
  11.  前記気液撹拌体は、前記陽極室の排出管に設けられていることを特徴とする請求項2,4,9又は10のいずれかに記載の電解水の製造装置。
  12.  前記陽極室には、前記電解原水を誘導する誘導路溝が設けられていることを特徴とする請求項1~11のいずれかに記載の電解水の生成装置。
  13.  前記誘導路溝は、前記陽極室の幅方向に隙間を設けて交互に形成された壁であることを特徴とする請求項12に記載の電解水の生成装置。
  14.  前記電解水の生成装置は、更に、前記陽極室及び/又は前記陰極室に供給される電解原水の流量を調整する調整バルブを備えたことを特徴とする請求項1~13に記載の電解水の生成装置。
  15.  前記陽極室は、容積が前記陰極室の容積の同等以上で3倍以内であることを特徴とする請求項1~14に記載の電解水の製造装置。
  16.  前記電解水の製造装置は、電流及び電圧を調整可能な整流器を用いることを特徴とする請求項1~15に記載の電解水の製造装置。
PCT/JP2015/058637 2014-03-19 2015-03-16 電解水の生成装置 WO2015141858A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-078175 2014-03-19
JP2014078175A JP5687789B1 (ja) 2014-03-19 2014-03-19 電解水の生成装置

Publications (1)

Publication Number Publication Date
WO2015141858A1 true WO2015141858A1 (ja) 2015-09-24

Family

ID=52822382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058637 WO2015141858A1 (ja) 2014-03-19 2015-03-16 電解水の生成装置

Country Status (2)

Country Link
JP (1) JP5687789B1 (ja)
WO (1) WO2015141858A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013064A (ja) * 2015-03-16 2017-01-19 株式会社東芝 電解水生成装置、電極ユニット、および電解水生成方法
CN106430463A (zh) * 2016-12-21 2017-02-22 新疆融通利和水处理技术有限公司 一种带有中间极板的电渗析水处理装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675112B2 (ja) * 2016-01-21 2020-04-01 優章 荒井 電解原水貯留式電解装置
JP2019120480A (ja) * 2018-01-05 2019-07-22 優章 荒井 製氷装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073177A (ja) * 1999-09-03 2001-03-21 Hoshizaki Electric Co Ltd 電解水生成装置
JP2005536639A (ja) * 2002-08-26 2005-12-02 オロ、アクティーゼルスカプ 電解槽で使用する電極構造体
JP2012183489A (ja) * 2011-03-04 2012-09-27 Masaaki Arai 電解水の製造装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263046A (ja) * 1999-03-16 2000-09-26 Japan Carlit Co Ltd:The 洗浄用電解水の生成装置
JP3793114B2 (ja) * 2002-06-10 2006-07-05 島崎電機株式会社 電解水生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073177A (ja) * 1999-09-03 2001-03-21 Hoshizaki Electric Co Ltd 電解水生成装置
JP2005536639A (ja) * 2002-08-26 2005-12-02 オロ、アクティーゼルスカプ 電解槽で使用する電極構造体
JP2012183489A (ja) * 2011-03-04 2012-09-27 Masaaki Arai 電解水の製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013064A (ja) * 2015-03-16 2017-01-19 株式会社東芝 電解水生成装置、電極ユニット、および電解水生成方法
CN106430463A (zh) * 2016-12-21 2017-02-22 新疆融通利和水处理技术有限公司 一种带有中间极板的电渗析水处理装置及方法

Also Published As

Publication number Publication date
JP5687789B1 (ja) 2015-03-18
JP2015178090A (ja) 2015-10-08

Similar Documents

Publication Publication Date Title
JP4216892B1 (ja) 電解水の製造装置、電解水の製造方法および電解水
EA030556B1 (ru) Способ генерирования электролизованной воды и генератор
WO2015141858A1 (ja) 電解水の生成装置
JP2002336856A (ja) 電解水製造装置、及び電解水の製造方法
JP2009072778A (ja) 電解水の製造装置、電解水の製造方法および電解水
WO2017141284A1 (ja) 電気分解水生成装置
JP5432103B2 (ja) 電解水の製造装置及びその製造方法
JP4394942B2 (ja) 電解式オゾナイザ
JP2008086885A (ja) 電解水生成装置
JP7271612B2 (ja) 電解水生成装置および電解水生成方法
JP4705190B1 (ja) 電解生成水の製造装置及びその製造方法
JP4597263B1 (ja) 電解水製造装置及びこれを用いる電解水の製造方法
JP4685838B2 (ja) 電解水の製造装置、電解水の製造方法および電解水
JP6037238B2 (ja) 電解水の逆流防止機構
JP4685830B2 (ja) 電解水の製造装置、電解水の製造方法および電解水
JP4620720B2 (ja) 電解水の製造装置、電解水の製造方法および電解水
JP6675112B2 (ja) 電解原水貯留式電解装置
JP2012183489A (ja) 電解水の製造装置
JP2008086886A (ja) 電解水生成装置
JP6215419B2 (ja) 電解水生成装置、電極ユニット、および電解水生成方法
JP2009035767A (ja) 電極
WO2016147434A1 (ja) 電解水生成装置、電極ユニット、および電解水生成方法
JP2015178062A (ja) 電解水生成装置及び電解液供給装置
JP2016172884A (ja) ガス生成装置およびそれを用いた装置
KR20220032187A (ko) 순수 차아염소산수를 생성하는 3실형 전해조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC 8 EPO FORM 1205A DATED 27-01-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 15765784

Country of ref document: EP

Kind code of ref document: A1