JP4597263B1 - 電解水製造装置及びこれを用いる電解水の製造方法 - Google Patents

電解水製造装置及びこれを用いる電解水の製造方法 Download PDF

Info

Publication number
JP4597263B1
JP4597263B1 JP2010106670A JP2010106670A JP4597263B1 JP 4597263 B1 JP4597263 B1 JP 4597263B1 JP 2010106670 A JP2010106670 A JP 2010106670A JP 2010106670 A JP2010106670 A JP 2010106670A JP 4597263 B1 JP4597263 B1 JP 4597263B1
Authority
JP
Japan
Prior art keywords
water
electrolyzed
electrolyzed water
electrolysis
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010106670A
Other languages
English (en)
Other versions
JP2011235208A (ja
Inventor
孝吉 花岡
良雄 中田
Original Assignee
株式会社ハッピー・パスポート
孝吉 花岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハッピー・パスポート, 孝吉 花岡 filed Critical 株式会社ハッピー・パスポート
Priority to JP2010106670A priority Critical patent/JP4597263B1/ja
Application granted granted Critical
Publication of JP4597263B1 publication Critical patent/JP4597263B1/ja
Publication of JP2011235208A publication Critical patent/JP2011235208A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】
電解水の製造にあたって、高い電解エネルギーで電解原水を電解しつつも、pH調整剤を用いることなくpHを任意の値に調整することを可能とする電解水製造装置を提供する。
【解決手段】
無隔膜電解槽で電解原水の一部を電解して混合電解水を得、この混合電解水を隔膜式電解槽の一方の電解室で電解して陽極水又は陰極水とし、この一部乃至全部を、電解原水と共に前記隔膜式電解槽の他方の電解室に供給して更に電解する。この方法は、電解時に高い電解エネルギーを用いることができ、かつ、再供給する陽極水又は陰極水が中和剤として働くため、再供給する陽極水又は陰極水の量を調整することにより、容易にpHを調整することが出来る。
【選択図】 図1

Description

本発明は、電解水製造装置及びこの装置を用いる電解水の製造方法に関する。より詳細には、得られる電解水のpHを自在にコントロール出来る電解水製造装置及びこの装置を用いる電解水の製造方法に関する。
一般に、電解水製造装置には、隔膜を隔てて一対の電極が配される隔膜式電解槽を備えるものと、隔膜のない無隔膜式電解槽を備えるものとがあり、それぞれ目的に応じて利用されている。電解槽の陽極側では酸性の電解水が、陰極側ではアルカリ性の電解水がそれぞれ生成する(以下、それぞれ「陽極水」、「陰極水」ともいう)。隔膜式電解槽を用いる電解水製造装置では、通常、陽極水と陰極水とは別々に採取される。
陽極水には、電極反応生成物である塩酸、次亜塩素酸、溶存酸素や、ヒドロキシルラジカルのような活性酸素が含まれる。次亜塩素酸は、強力な塩素化作用と酸化作用を示すことから、陽極水は殺菌等に利用されている。
一方、陰極水は飲用のアルカリイオン水として広く知られている。陰極水製造装置(例えば、特許文献1〜3)は医療器具等として市販され、広く普及している。
これらの電解水は、いくつかの指標によりその性質を表すことが出来る。指標としては、pH、酸化還元電位、溶存酸素濃度、溶存水素濃度、次亜塩素酸濃度等が採用されている。これら指標の値は、電解原水に含まれる溶質の種類や濃度、電解水に付与された電解エネルギーの大きさ等により決定される。陰極水を飲用に供する場合、飲用に適したpHに調整することが極めて重要である。
高い電解エネルギーを用いて製造される電解水は、上記指標を大きく変化させることが出来る。しかし、電解エネルギーが高いと、陽極水のpHは強酸性側に、陰極水のpHは強アルカリ側に傾くため、生体にとって危険であり、飲用には適さなくなる。飲用の電解水のpHは弱アルカリ〜弱酸性領域に調整される。そのため、通常は、電解時にはあまり高い電解エネルギーは使用出来ない。
電解時に高い電解エネルギーを付与しつつも、得られる電解水のpHを所定範囲内に保つため、従来様々な方法が用いられている。例えば、無隔膜電解槽を用いて電解することにより、又は隔膜式電解槽で電解した陽極水と陰極水とを混合することにより、混合電解水を得た後、次亜塩素酸等の有害物質を除去する方法(特許文献5)や、隔膜式電解槽を用いて電解を行う前又は後にpH調整剤を添加して陰極水のpHをコントロールする方法(特許文献4)等が知られている。
これらの方法は予め定めたpHに調整することは出来るものの、任意の時に任意のpHに変化させることは出来ない。即ち、一端設定した条件の下で同じpHの電解水を作り続けることは出来るが、pHを連続して自在にコントロールすることは出来ない。
特開2002−18439号公報 特開2000−33377号公報 特開平11−169856号公報 特開2000−79391号公報 特開2007−275778号公報
本発明の目的は、電解水の製造にあたって、電解水に高い電解エネルギーを付与しつつも、電解水のpHをpH調整剤を用いずに任意に調整することを可能とする電解水製造装置を提供することにある。
本発明者らは上記課題を解決するため鋭意検討した結果、電解原水に高い電解エネルギーを付与するために、先ず無隔膜電解槽で電解原水の一部乃至全部を電解して混合電解水を得ることに想到した。次に、この混合電解水を隔膜式電解槽の一方の電解室で電解して陽極水又は陰極水とし、この一部乃至全部を、電解原水と共に前記隔膜式電解槽の他方の電解室に再供給して更に電解する電解水の製造方法に想到した。この製造方法は、電解時に高い電解エネルギーを用いることができ、かつ、再供給することにより、陽極水と陰極水が互いに混合されて互いに中和剤として働く。そして、再供給する陽極水又は陰極水の量を調整することにより、容易にpHを調整することが出来ることを見出した。本発明者らは、これらの知見を組合わせて本発明を完成するに至った。
上記課題を解決する本発明は以下に記載するものである。
〔1〕
内部に一対の電極を備え、該電極間に張設される隔膜により第1電解室及び第2電解室が形成され、電解によりそれぞれ第1電解水及び第2電解水を生成する隔膜式電解槽と、
一端から電解原水を供給し、他端が第1電解室の流入口に接続される第1電解原水供給管と、
一端から電解原水を供給し、他端が第2電解室の流入口に接続される第2電解原水供給管と、
第1電解原水供給管の流路に介装されてなり、内部に一対の電極を備え電解により混合電解水を生成する無隔膜電解槽と、
一端が第1電解室の流出口に接続され、他端が第2電解原水供給管に接続される還流管と、
一端が前記還流管に接続され、他端から第1電解水を取り出す第1電解水排出管と、
第1電解水排出管に介装され、第1電解水排出管から取り出す第1電解水の流通量を調整する流量調整バルブと、
一端が第2電解室の流出口に接続され、他端から第2電解水を取り出す第2電解水取出管と、
を有することを特徴とする電解水製造装置。
上記発明は下記の〔2〕〜〔4〕に記載の発明を含む。
〔2〕
第1電解水の流出口と第2電解室の流入口との流路間、又は第2電解水取出管の少なくとも1箇所に遊離塩素除去フィルタが介装される〔1〕に記載の電解水製造装置。
〔3〕
前記隔膜式電解槽の一対の電極の極性を変更する手段を設けた〔1〕に記載の電解水製造装置。
〔4〕
第2電解原水供給管と還流管との接続部よりも上流側の第2電解原水供給管に水圧調整器を介装してなる〔1〕に記載の電解水製造装置。
〔5〕
電解原水を無隔膜電解槽に連続的に送り電解して得られる混合電解水を、隔膜式電解槽の一方の電解室に連続的に送り電解し、得られる電解水の一部乃至全部を電解原水と共に、隔膜式電解槽の他方の電解室に連続的に送り電解することを特徴とする電解水の製造方法。
〔6〕
〔1〕に記載の電解水製造装置を用いて、
電解原水を流量0.5〜10L/minで連続的に無隔膜電解槽に供給し、電解電流0.5〜10A/Lで連続的に電解する工程と、
前記工程により得られた電解水を連続的に隔膜式電解槽の第1電解室に供給して電解電流0.5〜10A/Lで連続的に電解する工程と、
第1電解室で電解された電解水の一部乃至全部を電解原水と共に連続的に隔膜式電解槽の第2電解室に供給して電解電流0.5〜10A/Lで連続的に電解する工程と、
を有することを特徴とする電解水の製造方法。
本発明の電解水製造装置(以下、「本装置」ともいう)は、隔膜式電解槽の第1電解室で得られる第1電解水の一部乃至全部を電解原水と共に隔膜式電解槽の第2電解室に再供給する。この再供給する第1電解水の量を調整することによって、第2電解水のpHを任意に調整することが出来る。
本装置を用いて製造される電解水は、その製造過程で高い電解エネルギーが付与されても、電解水のpHを中性付近に保つことが出来る。
本装置を用いる電解水の製造では、電解原水の一部乃至全部の電解回数を3回とすることが出来る。そのため、電解回数が1回である従来の電解水製造装置に比べて高い電解エネルギーが付与された電解水を製造出来る。
陰極水を製造する場合の本装置の一構成例を示す概略構成図である。 図1に示す装置において、流量調整バルブを全閉とした場合の流路を示す説明図である。 図1に示す装置において、流量調整バルブを全開とした場合の流路を示す説明図である。 陽極水を製造する場合の本装置の一構成例を示す概略構成図である。図1の電解水製造装置とは電極の極性が逆である。 陰極水と陽極水の双方を製造する場合の本装置の構成例を示す概略構成図である。
先ず、本装置の構成について説明する。図1は、本装置の一構成例を示す概略構成図である。
図1中、1000は電解水製造装置で、100は隔膜式電解槽である。内部が中空の箱状の電解槽100の内部には、一対の対向側壁15、16に沿って一対の電極11、13が配設されている。図1においては、電極11が陽極で、電極13が陰極である。
電極11、13間には、電極11、13と平行に隔膜14が張設されている。電解槽100の内部空間は隔膜14により二分され、電解槽100内に第1電解室10と第2電解室12とが形成されている。図1においては、第1電解室10は陽極室であり、第2電解室12は陰極室である。
図1中、17、18は、電極11、13に対して垂直な電解槽100の側壁を示している。第1電解室10の側壁18には第1電解室供給口22が、第2電解室12の側壁17には第2電解室供給口20がそれぞれ形成されている。
24は電解原水供給管である。電解原水供給管24には、その分岐部24aにおいて第1電解原水供給管24bの一端が接続され、その他端は第1電解室供給口22に取り付けられている。第1電解原水供給管24bには無隔膜電解槽200が介装されている(後述)。第2電解室供給口20には、電解原水供給管24が分岐部24aで分岐して成る第2電解原水供給管24cが接続されている。第2電解原水供給管24cには水圧調整器としての弁25が介装され、弁25の入口側と出口側とで圧力差を生じるようにされている。
第1電解室10の側壁17には第1電解水取出口23が、第2電解室12の側壁18には第2電解水取出口21がそれぞれ形成されている。第2電解水取出口21には第2電解水取出管35の一端が接続されている。本装置1000で生成する第2電解水は、第2電解水取出管35の他端から本装置1000の外部に取り出される。
第1電解水取出口23には、還流管31の一端が接続されている。還流管31の他端は、第2電解原水供給管24cの流路に形成される合流部24dで、第2電解原水供給管24cと接続される。 還流管31の流路には分流部31aが形成されている。分流部31aには第1電解水排出管33の一端が接続されている。第1電解水排出管33には流量調整バルブ34が介装されている。本装置1000で生成する第1電解水は、第1電解水排出管33の他端から本装置1000の外部に排出される。
前述した通り、第1電解原水供給管24bには無隔膜電解槽200が介装されている。箱形の電解槽200の内部には、一対の対向側壁40、42に沿って一対の電極41及び43が配設され、混合電解室44が形成されている。図1においては、電極41が陽極で、電極43が陰極である。
図1中、47、48は、電極41、43に対して垂直な電解槽200の側壁を示している。混合電解室44の側壁47には混合電解室供給口45が形成されている。混合電解室44の側壁48には混合電解水取出口46が形成されている。
次に、この電解水製造装置1000を用いて電解水を製造する際の各部の動作について説明する。図中の矢印は、装置内における水の流れ方向を示す。
電解原水供給管24の一端から供給される電解原水は、分岐部24aで第1電解原水供給管24bと第2電解原水供給管24cとに分流される。第1電解原水供給管24bと第2電解原水供給管24cとに分流する電解原水の比率は、弁25によって制御される。
第1電解原水供給管24bに送られた電解原水は、無隔膜電解槽200へと送られ、混合電解室供給口45から混合電解室44内に供給される。混合電解室44内に供給された電解原水は、電極41、43に印加される直流電圧電流により電解される。電解により、電極41、43側でそれぞれ生じた電解水は、混合されて混合電解水となる。混合電解室44内で生成した混合電解水は、混合電解水取出口46を通じて無隔膜電解槽200の外に排出され、隔膜式電解槽100に送られる。
この混合電解水は、隔膜式電解槽100に形成される第1電解室供給口22から第1電解室10内に供給される。第1電解室10内に供給された混合電解水は、電極11、13に印加される直流電圧電流により電解される。電解により、第1電解室10内に第1電解水が生成する。本装置1000においては、電極11は陽極であるため、第1電解水は酸性を示す。
第1電解室10内で生成した第1電解水は、取出口23を通じて還流管31に送られる。還流管31に送られた第1電解水は分流部31aにおいて、流量調整バルブ34の開き具合に応じ、合流部24d側の還流管31と第1電解水排出管33とに分流される。なお、32は弁で、前記弁25と同様の水圧調整器であり、機能も同様である。
図2は、本装置1000の流量調整バルブ34が全閉である場合を示している。流量調整バルブ34が全閉である場合、第1電解水の第1電解水排出管33への流通は妨げられるため、全量の第1電解水が合流部24d側の還流管31に送られる。
図3は、本装置1000の流量調整バルブ34が全開である場合を示している。流量調整バルブ34が全開である場合、全量の第1電解水が第1電解水排出管33に送られる。
流量調整バルブ34が半開である場合(図1の場合)、その開き具合に応じて、第1電解水は合流部24d側の還流管31と第1電解水排出管33との双方に送られる。
第1電解水取出し管33に送られた第1電解水は、第1電解水取出し管33の他端から本装置1000外に排出される。この第1電解水は、酸性電解水として各種用途に利用出来る。
合流部24d側の還流管31に送られた第1電解水は、合流部24dにおいて第2電解原水供給管24cを流れる電解原水と混合される。この電解原水と第1電解水との混合水は、遊離塩素除去フィルタ26を経て隔膜式電解槽100の第2電解室12に送られる。電解原水と第1電解水との混合水は、第2電解室供給口20から第2電解室12内に供給される。第2電解室12内に供給された電解原水と第1電解水との混合水は、電極11、13に印加される直流電圧電流により電解される。電解により、第2電解室12内に第2電解水が生成する。本装置1000においては、電極13は陰極であるため、第2電解水はアルカリ性側に傾く。
第2電解室12内で生成した第2電解水は、取出口21を通じて第2電解水取出管35に送られる。第2電解水取出管35に送られた第2電解水は、第2電解水取出し管35の他端から本装置1000外に取り出される。この第2電解水はアルカリ性〜中性の電解水として各種用途に利用出来る。
次に本装置1000を用いて製造する電解水のpHの調整法について説明する。本説明における「強酸性」、「強アルカリ性」、「弱酸性」、「弱アルカリ性」という用語は説明の簡明化のために用いる用語で、酸解離度で定義される厳密なものではない。相対的な酸性、アルカリ性の強弱を示すものである。
前述の通り、本装置1000においては、電極11が陽極であり、電極13が陰極である。また、電解原水供給管24の一端から供給される電解原水は中性であることを前提として以下説明する。
先ず、無隔膜電解槽200は、電極41、43間に隔膜がないため、陽極側及び陰極側で得られる電解水は混合されて完全に中和される。よって、この混合電解水は中性のままである。
この混合電解水が、隔膜式電解槽100の第1電解室10内(陽極側)で電解されて得られる第1電解水は酸性を示す。一方、電解原水が、隔膜式電解槽100の第2電解室(陰極側)で電解して得られる電解水はアルカリ性を示す。
流量調整バルブ34を全開(図3)にして、第1電解水を全て第1電解水排出管33から排出するとき、第1電解水は強酸性である。このとき、第2電解原水取出管35から本装置1000外に取り出される第2電解水は強アルカリ性である。
流量調整バルブ34を全閉(図2)にして、第1電解室で得られる第1電解水(強酸性)の全量を第2電解室に送る場合、第2電解室12で電解して得られる第2電解水は、第1電解水の混合により中和されて中性に近づく。
流量調整バルブ34を半開として、第1電解水の一部を第1電解水排出管33から排出するとき、第1電解水は強酸性である。第1電解水の残部は第2電解室に送られ、第2電解水のpH上昇を抑制する(中和剤として働く)。そのため、第2電解水取出管35から本装置1000外に取り出される第2電解水は、前述の流量調整バルブ34の全閉時と比べてpHは上昇し(アルカリ性側に傾く)、全開時と比べてpHは下降する(酸性側に傾く)。
流量調整バルブ34の開き具合を調整することにより、第2電解室に供給される第1電解水の量を調整することが出来る。本装置1000は、流量調整バルブ34の開き具合を調整することにより、第1電解水排出管33を通じて排出する第1電解水の量を調整する。その結果、第2電解水取出管35から得られる第2電解水のpHを任意に調整することが出来る。
従来法によれば、pH調整剤を添加したり、電解電流を調整したりすることによりpHの調整を行っている。かかる方法は、一端設定した条件の下で同一pHの電解水を作り続けることは出来るが、pHを任意の時に任意の値に調整することは出来ない。本装置1000によれば、単に流量調整バルブ34の開き具合を調整するだけで、pHを連続的に調整することが出来る。
本装置1000では、電解原水の一部乃至全部が、無隔膜電解槽200で1回電解され、隔膜式電解槽100の第1電解室10及び第2電解室12でそれぞれ1回ずつ電解される。即ち、本装置1000による電解水の製造では、電解原水の一部乃至全部が合計3回電解される。一方、従来の電解水製造装置は、電解原水を隔膜式電解槽の一方の電解室に1回通じるのみである。そのため、本装置1000を用いて製造される電解水は、従来の装置を用いて製造される電解水に比べて、電解水に付与される電解エネルギーを高くすることが出来る。これらの電解により得られる電解水は、高い電解エネルギーが付与されているため、前述の指標が大きく変化する。
電解水製造の際には、電極11、13間及び41、43間に直流電圧電流を印加する。
隔膜式電解槽100において電極11、13間に印加する電流は、毎分1Lの流速を有する電解原水に対して0.5A〜10Aが好ましく、1A〜5Aが特に好ましい。0.5A未満の場合は、電解水中の溶存酸素量及び溶存水素量を電解原水よりも高くすることが出来ない。10Aを超える場合、大電流が流れるため、電極の疲労が高まり極端に電解効率が落ちる傾向がある。
無隔膜式電解槽200において41、43間に印加する電流は、隔膜式電解槽100の場合と同じである。
電極11、13、41、43は電気化学的に不活性な金属材料で形成されている。電極材料としては、白金、白金合金等が好ましい。電極11、13の間隔、及び電極41、43の間隔は3〜1mmであり、2〜1mmが好ましい。
隔膜14としては、イオン交換膜や、無電荷膜等、電解隔膜として従来使用されているものが適宜使用出来る。
電解槽100に供給される電解原水の流量は0.5〜10L/minが好ましく、1〜5L/minが特に好ましい。
電解原水の水溶性無機塩等のイオン強度は、各水溶性無機電解質の合計で0.1mM以上とすることが好ましく、0.1〜0.5mMとすることが特に好ましい。電解原水には、通常の水道水や、塩化ナトリウム等の電解質が添加されている水が使用され、Cl、HCl、Cl2,、OCl等の形態で塩素が含まれる。この塩素は、隔膜式電解槽100の陽極側の電解室(図1においては第1電解室10)において下記式に示すように次亜塩素酸を生成する。
Figure 0004597263
次亜塩素酸は殺菌作用を有する。この電解水を殺菌目的で使用する場合には、遊離塩素除去フィルタを通さずに装置外に取り出すことが好ましい。一方、電解水を飲用目的で使用する場合、次亜塩素酸は除去される必要がある。
図1の装置1000においては、第1電解室10で生成した次亜塩素酸や次亜塩素酸塩を含む第1電解水は、還流管31を通って、電解原水と共に遊離塩素除去フィルタ26に送られる。ここで第1電解水中の次亜塩素酸や次亜塩素酸塩は除去される。そのため、第2電解室12で得られる第2電解水は、次亜塩素酸や次亜塩素酸塩を含まず、飲用に適する。
遊離塩素除去フィルタ26は、隔膜式電解槽の陽極側の電解室の下流側であればどこに設置しても良い。図1において、第2電解水(アルカリ性水)を飲用する場合には、還流管31や、合流部24dと第2電解室供給口20との流路間、第2電解水取出管35に介装することが出来る。図1において、第1電解水(酸性水)を飲用する場合には、第1電解水取出口23と分流部31aとの流路間、第1電解水排出管33に介装することが出来る。
遊離塩素除去フィルタ26は、活性炭やゼオライト等を吸着剤とする公知のフィルタを用いることが出来る。なお、電解水を飲用目的としない場合には、遊離塩素除去フィルタ26は介装しなくても良い。
流量調整バルブ34は、図1においてはボールバルブを使用したが、これに限られず、ダイアフラム弁やフロート式弁等の流量を自在に調整出来るものであればあらゆるものを用いることが出来る。
弁25、32はその入口側と出口側とで圧力差を生じさせることが出来れば、弁を用いなくても良い。例えば、入口側と出口側とで配管径を変更することによって圧力差を生じさせても良い。
本装置1000における電解原水の供給は、電解原水供給管24の一端を水道の蛇口に接続することにより行うことが出来る。この場合、本装置内における電解原水、電解水の移送は、水道水の水圧により行うことが出来る。電解原水供給管24の一端を水道に接続しない場合、本装置内における電解原水、電解水の移送は、送液ポンプ等を用いて行うことが出来る。
次に、陽極水を製造する本装置について説明する。図4は、陽極水を製造する本装置の一構成例を示す概略構成図である。図4の電解水製造装置2000においては、電極の極性が逆である以外は図1と同じ構成であるので、同じ部分には同じ符号を付してその説明を省略する。
図4においては、電極11が陰極であり、電極13が陽極である。また、電解原水供給管24の一端から供給される電解原水は中性であることを前提として以下説明する。
図1の装置1000と同様に得られた混合電解水が、隔膜式電解槽100の第1電解室10内(陰極室)で電解されて得られる第1電解水はアルカリ性を示す。一方、電解原水が、隔膜式電解槽100の第2電解室(陽極室)で電解して得られる電解水は酸性を示す。
流量調整バルブ34を全開にして、第1電解水を全て第1電解水排出管33から排出するとき、第1電解水は強アルカリ性である。このとき、第2電解原水取出管35から本装置2000外に取り出される第2電解水は強酸性である。
流量調整バルブ34を全閉して、第1電解室で得られる第1電解水(強アルカリ性)の全量を第2電解室に送る場合、第2電解室12で電解して得られる第2電解水は、第1電解水の混合により中和されて中性に近づく。
流量調整バルブ34を半開として、第1電解水の一部を第1電解水排出管33から排出するとき、第1電解水は強アルカリ性である。第1電解水の残部は第2電解室に送られ、第2電解水のpH低下を抑制する(中和作用を有する)。そのため、第2電解水取出管35から本装置2000外に取り出される第2電解水は、流量調整バルブ34の全閉時と比べてpHは下降し(酸性側に傾く)、全開時と比べてpHは上昇する(アルカリ性側に傾く)。
図5は、本発明の電解水製造装置の他の例を示す概略構成図である。
図3中、3000は電解水製造装置である。隔膜式電解槽100等の構成は、図1に示す電解槽の構成と同様であるので、同じ部分には同じ符号を付してその説明を省略する。隔膜式電解槽100内の電極11、13は制御装置30によって極性を切り替えることが出来る。これにより、1台の装置を用いて陽極水及び陰極水の双方が製造出来る。
〔実施例1〕
図1に示す電解水製造装置を構成した。電解槽100の内部空間は15cmx10cmx0.2cmの直方体である。電解槽100内には、140mmx100mmの板状に形成した白金電極2枚を2mm間隔に挿入して陽極11と陰極13とした。隔膜14にはポリテトラフルオロエチレンを材料とする非電荷膜(日本ゴアテックス社製のゴアテックスSGT−010−135−1(商品名))を用いた。電解槽200の内部空間は15cmx10cmx0.2cmの直方体である。電解槽200内に140mmx100mmの板状に形成した白金電極2枚を2mm間隔に挿入して、陽極41と陰極43とした。
この装置を用い、水道水(合計塩素濃度1.5mg/L)を電解原水として、陰極水を製造した。電解原水は3L/minの流量で本装置1000に供給した。第2電解水(陰極水)を、第2電解水取出管35から3L/minの流量で取り出せるように流量調整バルブ34を調整した。隔膜式電解槽100の電極間に流れる電流は、第2電解室12(陰極室)内に流れる水の流速1L/minに対して1.5Aに設定した。無隔膜式電解槽200の電極間に流れる電流は、電解室44内に流れる水の流速1L/minに対して1.5Aに設定した。
〔実施例2〕
実施例1と同じ装置を用いて、以下の点を変更して陰極水を製造した。
陰極水を第2電解室12(陰極室)から2L/minの流量で取り出せるように流量調整バルブ34を調整した。無隔膜式電解槽200の電極間に流れる電流は、電解室44内に流れる水の流速1L/minに対して0.5Aに設定した。
〔比較例1〕
第1電解原水供給管24bに無隔膜電解槽200が介装されていない以外は、実施例1と同じ構成の装置を用いて、以下の通り陰極水を製造した。
流量調整バルブ34を全開にして、第1電解室10(陽極室)から出た水を第1電解水排出管33から全て排出するようにして陰極水を製造した。第1電解室10(陽極室)と第2電解室12(陰極室)とを通過する水の流量比は1:1とした。
〔比較例2〕
比較例1と同じ装置を用いて、以下の点を変更して陰極水を製造した。
流量調整バルブ34を全閉にして、第1電解室10(陽極室)から出た水を第2電解室12に全て送液するようにして、陰極水を製造した。
実施例1、2と比較例1、2で得られた陰極水のpH、酸化還元電位(ORP)、溶存酸素(DO)、溶存水素(DH)、電気伝導度(EC)を測定した結果を表1に示す。
Figure 0004597263
実施例1においては、単位時間当たりの流量に対する電気量が比較例1及び2よりも大きいにも係わらず、陰極水のpHは比較例1及び2よりも低くなっている。また、ORPについては比較例2と同じように電解原水に還流しているにも係わらず、無隔膜電解装置によって溶存水素量が増加するために低くなっている。表1の溶存酸素量と溶存水素量から考慮すると、溶存酸素と溶存水素がより多く共存しているものと推測出来る。
実施例2においては、単位時間当たりの流量に対する電気量は実施例1と同じであるが、無隔膜電解槽における電解電流を0.5A/min・LにすることでpH及びORPは高く、溶存酸素量、溶存水素量、電気伝導度は低くなった。各々の電解槽の単位体積当りの電気量をそれぞれ変えることにより電解水のpH、ORP、DO、DH、ECなどの物性を任意に変えることが出来る。
隔膜式電解槽や無隔膜電解槽の流量や電気量を変化させることで、pHが同じでORPやDO、DHが異なる電解水や、ORPが同じでpHやDO、DHが異なる電解水を任意に製造することが出来る。
〔実施例3〕
実施例1で用いた電解水製造装置の電極の極性を変えて図4に示す電解水製造装置を構成した。電解槽及び電極は、実施例1、2及び比較例1、2と同様のものを使用した。この電解水製造装置を用い、0.2質量%の塩化ナトリウム水溶液を電解原水として陽極水を製造した。第1電解室(陰極室)から電解原水に還流させ、実施例1の条件に準じて陽極水を製造した。
〔比較例3〕
実施例3と同じ装置を用いて、以下の点を変更して陽極水を製造した。
電解槽に塩化ナトリウム水溶液を3L/minの流量で供給し、電極間を流れる電流は第1電解室(陽極室)を流れる水の流速1L/minに対して3Aに設定した。
実施例3及び比較例3で得られた陽極水のpH、ORP、DO、遊離塩素濃度を表2に示した。
Figure 0004597263
実施例3においては、陰極水を電解原水に混合して陽極側の電解室に導入することにより、陰極水を廃棄することがなく陽極水として再利用することが出来る。
1000、2000、3000・・・電解水製造装置
100・・・隔膜式電解槽
200・・・無隔膜電解槽
10・・・第1電解室
12・・・第2電解室
11、13・・・電極
14・・・隔膜
15、16、17、18・・・側壁
20・・・第2電解室供給口
21・・・第2電解水取出口
22・・・第1電解室供給口
23・・・第1電解水取出口
24・・・電解原水供給管
24a・・・分岐部
24b・・・第1電解原水供給管
24c・・・第2電解原水供給管
24d・・・合流部
25、32・・・弁
26・・・遊離塩素除去フィルタ
30・・・極性制御装置
31・・・還流管
31a・・・分流部
33・・・第1電解水排出管
34・・・流量調整バルブ
35・・・第2電解水取出管
40、42、47、48・・・側壁
41、43・・・電極
44・・・混合電解室
45・・・混合電解室供給口
46・・・混合電解水取出口

Claims (6)

  1. 内部に一対の電極を備え、該電極間に張設される隔膜により第1電解室及び第2電解室が形成され、電解によりそれぞれ第1電解水及び第2電解水を生成する隔膜式電解槽と、
    一端が水道の蛇口に接続され水道水を供給し、他端が第1電解室の流入口に接続される第1電解原水供給管と、
    一端から水道水を供給し、他端が第2電解室の流入口に接続される第2電解原水供給管と、
    第1電解原水供給管の流路に介装されてなり、内部に一対の電極を備え電解により混合電解水を生成する無隔膜電解槽と、
    一端が第1電解室の流出口に接続され、他端が第2電解原水供給管に接続される還流管と、
    一端が前記還流管に接続され、他端から第1電解水を取り出す第1電解水排出管と、
    第1電解水排出管に介装され、第1電解水排出管から取り出す第1電解水の流通量を調整する流量調整バルブと、
    一端が第2電解室の流出口に接続され、他端から第2電解水を取り出す第2電解水取出管と、
    を有することを特徴とする電解水製造装置。
  2. 第1電解水の流出口と第2電解室の流入口との流路間、又は第2電解水取出管の少なくとも1箇所に遊離塩素除去フィルタが介装される請求項1に記載の電解水製造装置。
  3. 前記隔膜式電解槽の一対の電極の極性を変更する手段を設けた請求項1に記載の電解水製造装置。
  4. 第2電解原水供給管と還流管との接続部よりも上流側の第2電解原水供給管に水圧調整器を介装してなる請求項1に記載の電解水製造装置。
  5. 水道水を無隔膜電解槽に連続的に送り電解して得られる混合電解水を、隔膜式電解槽の一方の電解室に連続的に送り電解し、得られる電解水の一部乃至全部を電解原水と共に、隔膜式電解槽の他方の電解室に連続的に送り電解することにより前記他方の電解室で製造される電解水のpHを調整する電解水の製造方法。
  6. 請求項1に記載の電解水製造装置を用いて、
    水道水を流量0.5〜10L/minで連続的に無隔膜電解槽に供給し、電解電流0.5〜10A/Lで連続的に電解する工程と、
    前記工程により得られた電解水を連続的に隔膜式電解槽の第1電解室に供給して電解電流0.5〜10A/Lで連続的に電解する工程と、
    第1電解室で電解された電解水の一部乃至全部を水道水と共に連続的に隔膜式電解槽の第2電解室に供給して電解電流0.5〜10A/Lで連続的に電解する工程と、
    を有することを特徴とする電解水の製造方法。
JP2010106670A 2010-05-06 2010-05-06 電解水製造装置及びこれを用いる電解水の製造方法 Expired - Fee Related JP4597263B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106670A JP4597263B1 (ja) 2010-05-06 2010-05-06 電解水製造装置及びこれを用いる電解水の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106670A JP4597263B1 (ja) 2010-05-06 2010-05-06 電解水製造装置及びこれを用いる電解水の製造方法

Publications (2)

Publication Number Publication Date
JP4597263B1 true JP4597263B1 (ja) 2010-12-15
JP2011235208A JP2011235208A (ja) 2011-11-24

Family

ID=43425736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106670A Expired - Fee Related JP4597263B1 (ja) 2010-05-06 2010-05-06 電解水製造装置及びこれを用いる電解水の製造方法

Country Status (1)

Country Link
JP (1) JP4597263B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018183739A (ja) * 2017-04-26 2018-11-22 株式会社日本トリム 電解水生成装置
CN110697949A (zh) * 2019-09-24 2020-01-17 无锡迅朗联大机能水技术研究院有限公司 降低无隔膜电解水中氯离子残留量的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6171047B1 (ja) * 2016-04-26 2017-07-26 株式会社バイオレドックス研究所 電解水製造装置及びその運転方法
KR102068268B1 (ko) * 2018-08-31 2020-01-20 수소탑스 주식회사 미세먼지와 미생물을 제거 및 수소발생을 통한 항산화 가습기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317454A (ja) * 1999-05-11 2000-11-21 Vta Kk 電解水生成装置の洗浄方法
JP2001246381A (ja) * 2000-03-03 2001-09-11 Living Technology Kk アルカリイオン水の製造方法及び装置
JP2007167829A (ja) * 2005-12-26 2007-07-05 Innovative Design & Technology Inc 飲用電解水及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966392A (ja) * 1982-10-04 1984-04-14 Tdk Corp 殺菌イオン水の製造方法および装置
JPH06328078A (ja) * 1993-05-21 1994-11-29 Asahi Glass Eng Kk アルカリ性水生成方法
JP3205527B2 (ja) * 1996-08-27 2001-09-04 ホシザキ電機株式会社 弱酸性殺菌水及び弱アルカリ性水の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317454A (ja) * 1999-05-11 2000-11-21 Vta Kk 電解水生成装置の洗浄方法
JP2001246381A (ja) * 2000-03-03 2001-09-11 Living Technology Kk アルカリイオン水の製造方法及び装置
JP2007167829A (ja) * 2005-12-26 2007-07-05 Innovative Design & Technology Inc 飲用電解水及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018183739A (ja) * 2017-04-26 2018-11-22 株式会社日本トリム 電解水生成装置
CN110697949A (zh) * 2019-09-24 2020-01-17 无锡迅朗联大机能水技术研究院有限公司 降低无隔膜电解水中氯离子残留量的方法
CN110697949B (zh) * 2019-09-24 2021-12-17 无锡迅朗联大机能水技术研究院有限公司 降低无隔膜电解水中氯离子残留量的方法

Also Published As

Publication number Publication date
JP2011235208A (ja) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5640266B1 (ja) 電解水製造装置及びこれを用いる電解水の製造方法
JP3349710B2 (ja) 電解槽および電解水生成装置
WO2017006837A1 (ja) 電解装置及び電解オゾン水製造装置
WO2008130016A1 (ja) 電解水の製造装置、電解水の製造方法および電解水
TW201812104A (zh) 氫水的生成方法
JP4090665B2 (ja) 電解水製造方法
JP4929430B2 (ja) 電解水製造装置及び電解水の製造方法
KR20130040492A (ko) 전해 환원수 장치 및 그 제어 방법
JP4751994B1 (ja) 有隔膜電解槽及び無隔膜電解槽を有する電解水製造装置
JP2000246249A (ja) 電解水製造法
JP4904367B2 (ja) 4つのチャンバを有する膜電解反応器システム
JP4597263B1 (ja) 電解水製造装置及びこれを用いる電解水の製造方法
WO1998050309A1 (en) Apparatus for electrochemical treatment of water and/or water solutions
KR20120019317A (ko) 세퍼레이터를 포함한 무격막 전해조 및 이를 포함하는 전해수 시스템
JP2007307502A (ja) 電解水の生成方法および電解水の生成器
JP6171047B1 (ja) 電解水製造装置及びその運転方法
JP2012007220A (ja) 電解生成水の製造装置及びその製造方法
JP2014015646A (ja) 電解処理水生成装置および電解処理水生成方法
JP2008264746A (ja) 電解水の製造装置、電解水の製造方法および電解水
JP6650586B2 (ja) 電解水生成装置
JP2009006287A (ja) 電解水の製造装置、電解水の製造方法および電解水
JPH06312189A (ja) 電解殺菌水製造装置
JP6847477B1 (ja) 電解水製造装置及びこれを用いる電解水の製造方法
JP7212978B1 (ja) 電解装置
CN108473344A (zh) 电解水生成装置和使用其的透析液制备用水的制造装置及电解水生成方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

R150 Certificate of patent or registration of utility model

Ref document number: 4597263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees