JP2009072778A - 電解水の製造装置、電解水の製造方法および電解水 - Google Patents

電解水の製造装置、電解水の製造方法および電解水 Download PDF

Info

Publication number
JP2009072778A
JP2009072778A JP2008264683A JP2008264683A JP2009072778A JP 2009072778 A JP2009072778 A JP 2009072778A JP 2008264683 A JP2008264683 A JP 2008264683A JP 2008264683 A JP2008264683 A JP 2008264683A JP 2009072778 A JP2009072778 A JP 2009072778A
Authority
JP
Japan
Prior art keywords
chamber
electrolyzed water
cathode
water
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008264683A
Other languages
English (en)
Inventor
Masaaki Arai
優章 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008264683A priority Critical patent/JP2009072778A/ja
Publication of JP2009072778A publication Critical patent/JP2009072778A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/463Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • B01D2313/083Bypass routes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/18Specific valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46119Cleaning the electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • C02F2201/46185Recycling the cathodic or anodic feed

Abstract

【課題】 弱酸性ないし弱アルカリ性の電解水を効率よく生成させることができ、その電解水を大量生産することができる電解水の製造装置、電解水の製造方法および電解水を提供する。
【解決手段】 電解水の製造装置10は、陽極電極22が設けられた陽極室20と、陰極電極32が設けられた陰極室30と、陽極室20と陰極室30との間に設けられ、電解質水溶液を収容する中間室40と、陽極室20と中間室40とを隔てる陰イオン交換膜24と、陰極室30と中間室40とを隔てる陽イオン交換膜34とを含む。陽極室20と陰極室30とは隔壁50に設けられた連通孔52により連通している。
【選択図】 図1

Description

本発明は、電解質水溶液を収容する中間室を有する電解水の製造装置、その電解水の製造装置を利用した電解水の製造方法およびその電解水の製造方法により得られた電解水に関する。
一般的な電解水の生成装置としては、1槽式と2槽(室)式の生成装置がある。1槽式の生成装置は、例えば、食塩水などの電解質水溶液を槽内に注入して陽極板と陰極板とを配設し、これら陽極板と陰極板とに通電して電解工程を経ると塩化ナトリウムを含むアルカリ電解水が生成される。また、電解工程において、有害なトリハロメタンが発生すると共に、塩化ナトリウムがそのまま残存している。
また、2槽(室)式の生成装置としては、例えば、特開2005−329375号公報(文献1)に開示された構成のものが公知になっている。この2室式の生成装置は、1つの槽の中間部をイオン透過性隔膜で仕切って対向する2つの電解室を形成し、各電解室に原水供給手段と電解水取出手段とを設けると共に、一方の電解式に陽極用の電極と塩化物水溶液(食塩水)供給手段を配設し他方の電解室に陰極用の電極を配設したものである。そして、各電極に所要の電圧を印加して電解工程を経ることにより、陽極側の電解式では塩素ガスと塩化ナトリウムを含む酸性電解水が得られ、陰極側の電解室では水素ガスとアルカリ電解水が得られる。
塩化ナトリウムを含まない電解水を生産する装置としては、例えば、特開2000−246249号公報(文献2)に開示された3槽式の電解装置が公知になっている。この3槽式の電解装置は、中間室の両側にイオン交換膜と電極板とを介して両側に陽極室と陰極室とを備えた構造を有するものである。中間室には高濃度の電解質水溶液、例えば、10%濃度の塩化カリウムや塩化ナトリウム水溶液を充填される。また、陽極室と陰極室には、例えば水道水を通水し、両電極板に通電して電解工程を経ることで、塩化ナトリウムを含まない電解水、即ち陽極室ではpH2.0〜3.0程度の酸性電解水が生成される。一方、陰極室ではpH10.0〜12.0程度のアルカリ性電解水が生成される。
特開2005−329375号公報 特開2000−246249号公報
しかしながら、前記文献1に開示されている電解水の生成においては、電解の効率を高めるために一方の電解室(陽極側)に食塩水を供給して電解を行うようにしている。その陽極側の電解室で生成された酸性電解水は、次亜塩素酸のみならず、塩化ナトリウム分を含んでいることによって、平衡移動による塩素ガスの気化等が生じてしまう。したがって、次亜塩素酸などは短時間で気化してしまうため、酸性電解水において必要とする殺菌力を長期間担保することがし難く、その用途が制限されてしまうという問題点を有する。
また、前記文献2に開示されている電解水の生成方法は、電解室を3槽式にし、中央部の電解室に食塩水などの電解質水溶液を収納し、両側の陽極と陰極の電解室に水道水または浄水器を介した浄水を収容して電解する。中央部の電解室に電解質水溶液を収納して電解工程を行うことで、電圧・電流・時間が少なくても効率よく塩化ナトリウムを含まない酸性電解水およびアルカリ性電解水を生成できる点で優れている。しかしながら、3槽式の電解室はいずれも回分式であることから、量産性に乏しいばかりでなく、酸性電解水とアルカリ性電解水とを混合または配合して、弱酸性、中性または弱アルカリ性にpH調整した次亜塩素酸を含む電解水を製造するという思想は全くないのである。
ところで、前記公知技術に係る二室型または三室型電解槽を使用した電解法で酸性とアルカリ性の電解水を生成することが行われているが、その生成された電解水の有効塩素濃度を所定の範囲に保ちつつ、かつ、pH値を弱酸性ないし弱アルカリ性に調整することは困難である。また、二室型または三室型電解槽を使用した電解法では、実質的に次亜塩素酸ナトリウムの製造は行われていなかった。
本発明の目的は、弱酸性ないし弱アルカリ性の電解水を効率よく生成させることができる電解水の製造装置、電解水の製造方法および電解水を提供することにある。
1.電解水の製造装置
本発明に係る電解水の製造装置は、
陽極電極が設けられた陽極室と、
陰極電極が設けられた陰極室と、
前記陽極室と前記陰極室との間に設けられ、電解質水溶液を収容する中間室と、
前記陽極室と前記中間室とを隔てる陰イオン交換膜からなる第1の隔膜と、
前記陰極室と前記中間室とを隔てる陽イオン交換膜からなる第2の隔膜と、を含み、
前記陽極室と前記陰極室とが連通され、
前記陽極室と前記陰極室との間で水が双方向に移動可能に構成されている。
本願発明者は、電解水の製造において、陽極室で生成される酸性水が陰極室に混入されることで、陰極室の陰極にスケールが付着しないことを見出した。したがって、本発明によれば、陽極室と陰極室とが連通しているため、陰極室の陰極にスケールが付着せず、スケールを洗浄する工程をなくすか、または回数を減らすことができるため、長い時間の連続運転が可能となる。
本発明においては、前記陽極室と前記陰極室とが隔壁により隔てられ、前記隔壁に、前記陽極室と前記陰極室とを連通する連通孔が設けられていることができる。これにより、別途、連通路を形成しなくても済むため、コンパクトな電解水の製造装置を実現することができる。
本発明において、前記陽極室に流れる水量と前記陰極室に流れる水量との分配割合を決める分配割合調整バルブが設けることができる。この分配割合調整バルブを有することで、陽極室と陰極室との導入量の割合を調整することができ、pH調整が容易となる。
本発明においては、前記陽極室の液を吐出する吐出量を調整する第1の吐出バルブと、前記陰極室の液を吐出する吐出量を調整する第2の吐出バルブとを含むことができる。これにより、第1の吐出バルブと第2の吐出バルブとの開閉量を調整することで、陽極室で生成された酸性水が陰極室に混入される量を調整することができる。
本発明においては、前記陽極室に給液するための第1の給液口と、前記陰極室に給液するための第2の給液口と、前記陽極室の液を吐出する第1の吐出口と、前記陰極室の液を吐出する第2の吐出口と、を含み、前記第1の給液口は、前記陽極室の上部に設けられ、前記第2の給液口は、前記陰極室の上部に設けられ、前記第1の吐出口は、前記陽極室の下部に設けられ、前記第2の吐出口は、前記陰極室の下部に設けられていることができる。
これによれば、陽極室に導入される液は上から下に向かい、陽極室で発生する気体と導入された液との接触時間が増し、確実に気液反応を起こすことができる。
本発明においては、前記陽極室は、前記陽極と直交する方向の前記陽極室の幅よりも、前記陽極室の高さの方が大きいようにすることができる。その陽極室の幅に対する陽極室の高さの比(高さ/幅)は、たとえば、1.5以上、好ましくは1.5〜5.0とすることができる。これによれば、陽極室の高さが大きいほど陽極室で発生した気体は上に向かうため、陽極室に導入された液との気液反応の時間を長くすることができる。
本発明においては、前記電解質水溶液は、塩化物イオンを含み、前記電解水の製造装置は、次亜塩素酸を含む電解水を製造するものに特に有用である。
本発明において、前記陰イオン交換膜は、前記電解質水溶液を通過させるための微細孔が設けられていることができる。これによれば、陰イオン交換膜の微細孔を通じて、電解質水溶液のプラスイオンも移動してくる。特に、次亜塩素酸と次亜塩素酸ナトリウムとの混合水を生成するのに有用である。
本発明において、前記微細孔の径は、30〜80μmとすることができる。
前記陰極は、水に対して透過性のあるシート体で覆われていることができる。陰極を水に対して透過性のあるシート体で覆うことで、電解される水を陰極の付近に滞留することとなる。このため、陰極32の付近に滞留する水に対するチャージ量が増すことになる。水に対するチャージ量が増した分だけ、陽イオンに基づくスケールが付着することがさらに減ることになる。
本発明において、陽極室と陰極室とを結ぶ連通路が設けられていることができる。連通路によると、陽極室と陰極室との間を行き来する水の量を把握しやすいという利点がある。また、前記連通路には、開閉量調整バルブが設けられていてもよい。この開閉量調整バルブにより、陽極室と陰極室との間を行き来する水の量を調整することができる。なお、開閉量調整バルブは、単なる開閉バルブも含む概念である。
本発明において、前記陽極室にて発生したガスを抜くための第1のガス抜き口が設けられていることができる。これにより、陽極室にて発生したガスを排出することができ、ガスによる流量の不安定化を防ぐことができる。
本発明において、前記陰極室にて発生したガスを抜くための第1のガス抜き口が設けられていることができる。これにより、陽極室にて発生したガスを排出することができ、ガスによる流量の不安定化を防ぐことができる。
本発明において、前記電極は、パンチング孔が設けられ、前記パンチング孔の一辺から伸びる爪電極部が設けられていることができる。これにより、パンチング孔を有する電極であっても、電極面積が減らずに、電解効率を高めることができる。前記爪電極部はパンチングの際にパンチングされる部分を切り抜かずに残すことで形成されていることができる。これにより、パンチング孔と爪電極部を有する電極を容易に形成することができる。
本発明において、前記陽極室に対して水を供給するかどうかを決める開閉バルブが設けられていることができる。通常の電解装置では陽極室および陰極室の双方に水を供給しなければ電解ができない。しかし、本発明では陽極室と陰極室とが連通しているため、この開閉バルブを閉じても、陽極室には、陰極室を通じて水が供給されることになり、通常の電解装置ではできない手法での電解が可能となる。たとえば、この開閉バルブを閉じ、陽極室側のみから電解水を吐出した場合には、強い酸性を有する電解水を生成することができる。
本発明において、前記陰極室に対して水を供給するかどうかを決める開閉バルブが設けられていることができる。通常の電解装置では陽極室および陰極室の双方に水を供給しなければ電解ができない。しかし、本発明では陽極室と陰極室とが連通しているため、この開閉バルブを閉じても、陰極室には、陽極室を通じて水が供給されることになり、通常の電解装置ではできない手法での電解が可能となる。たとえば、この開閉バルブを閉じ、陰極室側のみから電解水を吐出した場合には、強いアルカリ性を有する電解水を生成することができる。
本発明において、
前記陽極室が複数設けられ、
前記陰極室が複数設けられ、
前記各陽極室から吐出された電解水は、共通の排出口から排出され、
前記各陰極室から吐出された電解水は、共通の排出口から排出されることができる。
この発明によれば、複数の陽極室がそれぞれ並列に接続され、また、複数の陰極室がそれぞれ並列に接続されているため、水の電解の並列処理が可能となり、電解水の大量生成が行い易くなる。
本発明において、原水が供給される側に設けられた第1の連通孔と、電解水が吐出される側に設けられた第2の連通孔とを含み、前記第1の連通孔は、前記第2の連通孔よりも小さいこととすることができる。
これによれば、電解に生じた物質(たとえば次亜塩素酸)が陰極に移動しても主に吐出される側の連通孔により移動するため、陰極室で二次電解されてしまうのを抑えることができる。
本発明において、前記中間室は、前記陽極および前記陰極が伸びる方向に、複数の区画に分けられ、前記複数の区画の各々において、電解質または電解質水溶液の供給部が設けられていることができる。これによれば、実施の形態の欄の作用効果の項で後述するように、大容量の電解水を生成することができる。
本発明において、前記電解水の製造装置は、前記中間室の複数の区画の各々において、電解質水溶液の排出部が設けられていることができる。これによれば、生成された電解水が吐出口側において、さらに電解されて分解されてしまうのを抑えることができる。
本発明において、前記中間室の複数の区画は、それぞれ隣り合う区画と連通していることができる。
本発明において、前記中間室の複数の区画は、それぞれ仕切部により区画されていてもよい。仕切部により区画することで電解する水が滞留することとなり、より効果的な電解を図ることができる。
本発明において、
前記中間室には、電解質または電解質水溶液の供給部および電解質水溶液の排出部が設けられ、
前記電解質水溶液の供給部と前記電解質水溶液の排出部との間において、少なくとも一つの電解質または電解質水溶液を供給するための副供給部が設けられていることができる。
これによれば、実施の形態の欄の作用効果の項で後述するように、大容量の電解水を生成することができる。
2.電解水の製造方法
本発明の電解水の製造方法は、本発明の電解水の製造装置を利用して電解水を製造する電解水の製造方法であって、前記陽極室で生成された水と、前記陰極室で生成された水とを混合させながら、電気分解する工程を含む。
3.電解水
本発明の電解水は、本発明の電解水の製造方法により得られたものである。
以下、本発明の好適な実施の形態について図面を参照しながら説明する。
1.電解水の製造装置
本実施の形態では、本発明に係る電解水の製造装置を次亜塩素酸水の製造の場合に適用した例を示す。
図1は、電解水の製造装置(以下、「電解装置」という)に係る模式図を示す。図2は、陽極室と陰極室との隔壁および電極を示す図である。
電解装置10は、陽極室20と陰極室30と中間室40とを含む。中間室40は、陽極室20と陰極室30の間に設けられている。陽極室20と陰極室30とを隔てる隔壁50には、連通孔52が設けられている。連通孔52は、中間室40の周囲に設けられている。この連通孔52により、陽極室20と陰極室30との間で水が双方向に移動可能に構成されている。
中間室40には電解質水溶液が充填されている。中間室40に供給された電解室水溶液は、陽イオン(たとえばナトリウムイオン)が陰極室30に供給され、陰イオン(たとえば塩化物イオン)が陽極室20に供給される。中間室40を通過した水溶液を電解質水溶液の供給源80に戻して、電解質水溶液を再利用し循環させてもよいし、または、消費した分だけの電解質を中間室40に追加してもよい。電解質水溶液は、たとえば、塩化物塩水溶液(塩化ナトリウム水溶液や塩化カリウム水溶液)を挙げることができる。電解質水溶液の濃度としては、たとえば、電解質の飽和濃度とすることができる。
中間室40と陽極室20とは、陰イオン交換膜からなる第1の隔膜24により隔てられている。第1の隔膜24が陰イオン交換膜からなることで、中間室40の陽イオンが第1の隔膜24を通過せず、陰イオンのみが選択的に第1の隔膜24を通過することとなる。第1の隔膜24に適用される陰イオン交換膜は、公知のものを適用することができる。
中間室40と陰極室30とは、陽イオン交換膜からなる第2の隔膜34により隔てられている。第2の隔膜34が陽イオン交換膜からなることで、中間室40の陰イオンが第2の隔膜34を通過せず、陽イオンのみが選択的に第2の隔膜34を通過することとなる。第2の隔膜34に適用される陽イオン交換膜は、公知のものを適用することができる。
第1の隔膜24と第2の隔膜34との間に、隔膜固定枠(図示せず)を設けてもよい。
陰極32は直流電源70の−側に接続され、陽極22は直流電源70の+側に接続されている。直流電源70は、その電圧や電流を任意に設定できる構成になっている。直流電源70は、たとえば、電圧は5〜20ボルト程度の範囲で任意に選択でき、電流についても3〜26アンペアの範囲で適宜選択して設定することができるものを挙げることができる。陽極22および陰極32は、網目状の電極や、たとえば1.5mm前後でパンチング穴加工した電極などからなることができる。なお、パンチング加工した電極は、パンチングで取り除いた面積と電極として使用される面積とがたとえば50%程度になるようにすることができる。電極の材質は公知のものを適用することができる。
陽極22と陰極32との大きさを非対称、すなわち、電極面積の大きさを異ならせてもよい。これにより、陽極22の電解量と陰極32の電解量とを変えることができる。また、陽極電極の電極面積と陰極電極の電極面積とを異ならせることで、混合された電解水の酸性度を適宜調整することができる。つまり、陽極22の電極面積は、陰極32の電極面積より大きいことで、酸性電解水の発生量がアルカリ性電解水の発生量よりも多くなるため、酸性度を高めることができる。一方で、陰極32の電極面積を陽極22の電極面積より大きくすることで、アルカリ性電解水の発生量が酸性電解水の発生量よりも多くなるため、アルカリ性の度合いを高めることができる。
電解装置10は、陽極室20に水を給水するための第1の給水口26と、陰極室30に水を供給するための第2の給水口36とが設けられている。第1の給水口26および第2の給水口36に繋がる流路は、一つの流路が分岐されて構成されている。その流路の分岐したところには、陽極室20および陰極室30へ分配する水量を調整するための分配割合調整バルブ60が設けられている。分配割合調整バルブ60は、電解装置10に水を供給する量を調整する供給量調整機能ももたせてもよい。
また、電解装置10は、陽極室20の液を吐出する第1の吐出口28aと、陰極室30の液を吐出する第2の吐出口38aとが設けられている。さらに、電解装置10は、第1の吐出口28aから吐出される液の量を調整する第1の吐出バルブ28bと、第2の吐出口28aから吐出される液の量を調整する第2の吐出バルブ28bとを有する。
第1の吐出口28aは、陽極室20の下部に設け、第1の給水口26は、陽極室20の上部に設けるとよい。これにより、第1の給水口26から給水された水は、上から下に向かって流れようとする。したがって、陽極22にて発生する気体(電解質水溶液が塩化ナトリウムや塩化カリウムの場合は塩素)からなる気泡が水に押されて上に上がり難くなり、その分だけ、その気体(塩素)が水と気液接触する時間が長くなり、次亜塩素酸への反応をより確実に行うことができる。
陽極室20は、縦長であるとよい。具体的には、陽極22と直交する方向の陽極室20の幅よりも陽極室20の高さの方が大きいとよい。その陽極室の幅に対する陽極室の高さの比(高さ/幅)は、たとえば、1.5以上、好ましくは1.5〜5.0とすることができる。このような縦長であることにより、陽極室20で発生した気体(塩素)が水と接触する時間を長くすることができ、塩素と水との反応を確実に行うことができる。また、陰極30も同様とするとよい。
2.動作
次に、電解装置10の動作を説明する。
まず、分配割合調整バルブ60を調整すると共に、水を陽極室20および陰極室30に供給する。水の水量は、たとえば0.5〜1.5l/分とする。
この水の供給と併せて、陽極22と陰極32の間に電位を印加し、電気分解を行う。たとえば、電気分解時の電圧は、5〜10Vとし、電流を3〜10アンペアとする。特に、陰極室30に供給される水溶液1リットル当たり1500クーロン、好ましくは2000クーロンとなるようにすると、スケールが付き難くなる。陽極22と陰極32との間に電位を印加すると、中間室40の陽イオン(たとえば電解質が塩化ナトリウムの場合にはナトリウムイオン)が第2の隔膜34を通過し陰極室30に移動する一方で、中間室40の陰イオン(たとえば電解質が塩化ナトリウムの場合には塩化物イオン)が第1の隔膜24を通過し陽極室20に移動する。
陽極室20では、陽極22にて塩化物イオンが次式の反応を起こし、塩素が発生する。
2Cl→Cl+2e
この塩素は、さらに、水と反応して次亜塩素酸が生成される。
Cl+HO→HClO+HCl
一方で、陰極室30では、陰極にて次式の反応が起こる。
O+2e→1/2H+OH
この電気分解時において、陽極室20と陰極室30とを隔てる隔壁50に設けられた連通孔52から陽極室20で生成された酸性の電解水が陰極室30に移動すると共に陰極室30で生成されたアルカリ性の電解水は陽極室20に移動する。これにより、陽極室20で生成された酸性水と陰極室30で生成されたアルカリ電解水が混合する。また、陽極室20で生成された酸性水が陰極室30に移動することで、陰極32で発生するスケールが付着するのを防ぐことができる。
また、この電気分解時に、第1の吐出バルブ28bと第2の吐出バルブ38bとを調整し、陽極室20および陰極室30から吐出される電解水の量を制御する。
第1の吐出口28aから吐出された電解水と、第2の吐出口38aから吐出された電解水とを混合することで、本実施の形態に係る弱アルカリ性、中性または弱酸性の次亜塩素酸を含む電解水が生成される。
なお、第1の吐出バルブ28bまたは第2の吐出バルブ38bの一方を完全に閉め、第1の吐出口28aまたは第2の吐出口28bのいずれかのみから吐出してもよい。この場合には、陽極室20または陰極室30の内部で混合水が生成されることになる。
3.作用効果
この実施の形態によれば、次の作用効果を奏することができる。
(1)陰極室20には、一般的に、中間室40から供給された陽イオンが陰極32に付着し、スケールがつく。しかし、本願発明者は、本実施の形態に係る電解装置10によると、陽極室20で生成された酸性水を陰極室30に誘導混合させることで、陰極32にスケールが付着しないことを見出した。このように陰極32にスケールがつかないことで、陰極32に付着したスケールを取り去る工程(逆洗浄)が不要または減らすことができるため、連続運転が可能となる。
また、第2の吐出バルブ38bのみを開き、陰極室30の第2の吐出口38aのみから電解水を吐出すると、陽極室20で生成された酸性水は、陰極室30側に流れ高濃度の次亜塩素酸を含有したアルカリ性の電解水を生成することが可能となると共に、一層陰極32にはスケールの付着は起こらなくなる。
(2)従来は、陽極室20で生成された電解水と陰極室30で生成された電解水とを混合するという発想はなかった。しかし、陽極室20で生成された電解水と陰極室30で生成された電解水とを混合することで、その混合水が弱アルカリ性、中性または弱酸性を示すことを本願発明者は見出した。また、それらの電解水を混合することで、従来は一方の電解水のみを使用し、他方の電解水は廃棄していたが、双方の電解水を使用することができるため、水資源を有効に使用することができる。
(3)分配割合調整バルブ60を調整することで、陰極32に流れる単位水量当たりの水へ流れる電流量を調整することができる。つまり、同じ電流量であれば、水が少なければ単位水量当たりの水へ流れる電流量を大きくすることができる。陰極32に流れる単位水量当たりの電流量が大きければ大きいほど陰極32にスケールが付着し難いという性質がある。したがって、陰極室30への水の供給量を少なくすることで、陰極32にスケールがつくのをより確実に少なくすることができる。
(3)第1および第2の給水口26,36を陽極室20および陰極室30の上部に設け、第1および第2の吐出口28a,28bを陽極室20および陰極室30の下部に設け、水を上から下に流すことで、陽極22で発生した塩素が上に上がり難くなり、塩素が水と接触する時間を長くすることができる。したがって、より確実に次亜塩素酸への反応を実現することができる。
(4)通常であれば、陽極室20側への分配量が低いと、陽極室20で生成した電解水と陰極室30で生成した電解水とを混合した場合には、次亜塩素酸の濃度が大きく低下すると思われる。しかし、本発明者は、本実施の形態により得られた電解水は、次亜塩素酸の濃度(有効塩素濃度)が大きく低下しないことを見出した。したがって、本実施の形態によれば、得られる電解水が高濃度の次亜塩素酸を含有するため、殺菌力が低下しない。
なお、次亜塩素酸は陽極側で生成された酸性電解水中に含まれるものであることが一般的に知られているが、pH値が微酸性、中性もしくは微アルカリ性に調整された次亜塩素酸水を製造しようとする場合は、工業的に製造された次亜塩素酸ナトリウム(ソーダ)に塩酸を加えてpH値を調整するか、または前記文献1により生成された塩化ナトリウムを含む酸性電解水とアルカリ性電解水とを適当量混合して製造することが考えられるが、いずれの場合も有効塩素濃度をあまり変化させずにpH値を単独に調整することは行われていない。
(5)本実施の形態では、陽極室20に供給される水の量と陰極室30に供給される水の量との大小関係、および、第1の吐き出しバルブ28bと第2の吐き出しバルブ38bとの開閉量(絞り量)の大小関係を組み合わせることで、表1に示すように弱酸性から弱アルカリ性の範囲で様々なpH調整が可能となる。
Figure 2009072778

なお、第1の吐出バルブ28bと第2の吐出バルブ38bとを同じ程度開放することで、陽極室20で生成された電解水と陰極室30で生成された電解水との混合比率は下がることになるため、混合比率は特に第1および第2の吐き出しバルブ28b,38bで調整することができる。
(6)従来は、どちらか一方を使用している時は一方を廃棄していたが、この製法により大切な水資源を無駄に捨てないで済むようになった。
(7)従来、三室型電解装置では、次亜塩素酸ナトリウムを生成することはできなかった。つまり、ナトリウムイオンが陽極室に移動することがないこと、および、次亜塩素酸が陰極室に移動することがないことにより、ナトリウムイオンと次亜塩素酸とが反応することがないため、次亜塩素酸ナトリウムが生成されることはなかった。しかし、本実施の形態によれば、連通孔42があるため、次亜塩素酸とナトリウムイオンとが反応することになるため、次亜塩素酸ナトリウムも生成することになり、次亜塩素酸ナトリウムと次亜塩素酸との混合水を生成することができる。これにより、洗浄作用と殺菌作用とを有する混合電解水を実現できる。なお、次亜塩素酸ナトリウムは、本出願時点において厚生労働省指定の食品添加物に指定されている。
比較例として、二室型電解装置で次亜塩素酸ナトリウムを生成することも考えられる。この二室型電解装置とは、陽極室と陰極室とが隔膜で隔てられ、水に塩化ナトリウムなどの電解質を溶解させて電気分解を行う装置である。二室型電解装置により次亜塩素酸ナトリウムを生成する場合には、水に塩化ナトリウムが溶解されているため、塩化ナトリウムの濃度が高くなってしまうという制約がある。
また、電気分解により、アルカリ環境下で塩化物イオンを反応させて次亜塩素酸ナトリウムを生成する方法が考えられるが、この場合には、トリハロメタンが生成してしまうという問題がある。しかし、本実施の形態によれば、酸性下の陽極室で次亜塩素酸を生成させ、その次亜塩素酸とナトリウムイオンとを反応させて次亜塩素酸を生成しているため、トリハロメタンの発生が生じない。
(8)中性付近電解水の生成により排水基準などの適合も未処理で実現するため、環境汚染など環境に負荷を与えないという利点がある。
(9)電解次亜塩素酸は有機物と接触する事で簡単に中和する特長も持ち合わせている。
(10)陽極室と陰極室とが連通していない状態で電解を行った場合に、陰極室から吐出される電解水は、沈殿物(炭酸カルシウム)を含んでしまう。しかし、本発明者は、陽極室20と陰極室30とが連通した状態で電解を行うことで、陰極室30から吐出された電解水は陽極室20から陰極室30に流入した電解水も含むため、その沈殿物が生じないことを見出した。これにより、たとえば次の効果が奏される。
陰極室から吐出された電解水をタンクに貯めて、必要に応じて使用する場合が考えられる。この場合に、電解水に沈殿物が含まれていると、タンクの内壁に沈殿物が付着し、頻繁に洗浄をする必要がある。また、取水口に沈殿物が貯まり通水ができなくなり、故障の要因となる場合がある。しかし、沈殿物が含まない電解水であると、タンクの内壁に沈殿物が付着せず洗浄回数を減らすことができ、取水口に沈殿物が貯まらないため通水を確実に確保することができる。
4.変形例
(1)第1の変形例
陰イオン交換膜からなる第1の隔膜24は、微細孔が設けられることができる。その微細孔の径としては、たとえば、30〜80μmとすることができる。この場合に、第1の隔膜24は不織布で構成してもよい。
これによれば、電解質水溶液のナトリウムイオンなどが陽極室20に移動しやすくなり、次亜塩素酸ナトリウムと次亜塩素酸との混合水がより生成されやすくなる。
(2)第2の変形例
図5〜図9に示すように、陰極32は、水に対して透過性のあるシート体90で覆われていることができる。シート体90としては、たとえば不織布、多層の網状シートを挙げることができる。このように陰極32をシート体で覆うと次の効果が奏される。
陰極32をシート体90で覆うことで、電解される水を陰極32の付近に滞留することとなる。このため、陰極32の付近に滞留する水に対するチャージ量が増すことになる。水に対するチャージ量が増した分だけ、陽イオンに基づくスケールが付着することがさらに減ることになる。その結果、連続運転をよりし易くなると共に、陰極32を逆洗浄が不要になるか又は頻度を減らすことができるため、産業的な用途においてより有利な電解装置を実現することができる。併せて、陰極32にスケールが成長してイオン交換膜54を破損するのを防ぐことができるため、イオン交換膜を保護する役割も果たすことができる。なお、陽極22も陰極32と同様にシート体で覆ってもよい。
図10を用いてより具体的に作用効果を説明する。電解槽に供給された原水は電極板表面を高速で流れて行く。この時、特に陰極側では電極表面にスケール付着するが電極板表面に網状シートを被う事で原水は高速流帯と低速流帯の二流帯になる。伝電極表面の網状覆いをした低速流体には十二分な電流を与える事が出来る。この多くの電流を与える事は簡単な網状シートで被う事により、簡便な方法で陰極側電極板表面に付着するスケールの付着が防止できる。
(3)第3の変形例
上記の実施の形態において、陽極室20と陰極室30とは、隔壁50の連通孔52により連通させているが、図11に示すように、別途設けた連通路54により連通させてもよい。連通路54によると、陽極室20と陰極室30との間を行き来する水の量を把握しやすいという利点がある。その連通路54に開閉量調整バルブ56を設けることができる。この開閉量調整バルブ56により、陽極室20と陰極室30との間を行き来する水の量を容易に調整することができる。
(4)第4の変形例
図12に示すように、陽極室20にて発生したガスを抜くための第1のガス抜き口28cを設けてもよい。これにより、陽極室20にて発生したガスを排出することができ、ガスによる流量の不安定化を防ぐことができる。また、陰極室30にて発生したガスを抜くための第2のガス抜き口38cを設けてもよい。これにより、陰極室30にて発生したガスを排出することができ、ガスによる流量の不安定化を防ぐことができる。第1および第2のガス抜き口28c,38cは、必要に応じて栓をしておくことができる。
(5)第5の変形例
陽極22は、図13に示すように、爪電極部22aを有する電極とすることができる。また、陰極32も同様に爪電極部32aを設けてもよい。爪電極部22a,32aは、パンチングにより形成された孔22b,32bの一辺から伸びるように形成されている。電極22,32をパンチングにより穴を開ける際に、切り抜かずに残すようにパンチングを行うことで、この爪電極部22a,32aを形成することができる。従来、パンチング電極では、パンチングにより開口した部分は廃棄され、その残った電極の面積部分を使うが、この方法では電解に使う面積はパンチングにより開口する前の約50%位となり、電極面に接触する水の量が半減するため、電解効率が落ちてしまう。しかし、このようにパンチング部分の電極を切り抜かずに残すことで、パンチング前の電極をすべて残すことができ(面積をすべて維持することができ)、電解効率が落ちない。また、パンチングで残した羽根部分があることで、電極表裏の水の移動がスムーズとなり、この点からも電解効率の向上につながる。さらに、羽根部分の付け根の切片角では、電極の平面部分よりも気泡が多く発生し、盛んな電解反応が生じていることが確認された。これは、ハーフパンチングにより電極22,32の表裏の水の移動が乱流を起し、電解効率の向上につながったと思われる。つまり、中間室40から各電極22,32側に移動してきたイオン水は、パンチングされた通過口22b,32bから電極22,32の外側の電解槽に移動するが、その時、電極22,32の外側を通過する原水は、電極22,32の爪電極部22a,32aに当たりながら乱流を起し、中間室40から移動してくるイオン水と混合され更には乱流として電極板表面に接触し、電解効率の向上が図られる。
なお、パンチングの方法は、公知の方法を適用することができる。パンチングの穴の形状は、円形であっても角形であってもよい。
(6)第6の変形例
図14に示すように、陽極室に対して水を供給するかどうかを決める第1の開閉バルブ58aが設けられていることができる。通常の電解装置では陽極室および陰極室の双方に水を供給しなければ電解ができない。しかし、この実施の形態によれば、陽極室20と陰極室30とが連通しているため、この開閉バルブ58aを閉じても、陽極室20には、陰極室30を通じて水が供給されることになり、通常の電解装置ではできない手法での電解が可能となる。たとえば、この第1の開閉バルブ58aと閉じ、陽極室20側のみから電解水を吐出した場合には、強い酸性を有する電解水を生成することができる。
また、同様に、陰極室30に対して水を供給するかどうかを決める第2の開閉バルブ58bが設けられていることができる。第2の開閉バルブ58bを閉じても、第1の開閉バルブ58aが開いていれば、陰極室30には、陽極室20を通じて水が供給されることになり、通常の電解装置ではできない手法での電解が可能となる。たとえば、第2の開閉バルブ58bを閉じ、陰極室側のみから電解水を吐出した場合には、強いアルカリ性を有する電解水を生成することができる。
(7)第7の変形例
図15に示すように、複数の電解装置10を並列に接続してもよい。つまり、複数の陽極室20と複数の陰極室30とを用意し、各陽極室20から吐出された電解水は、共通の排出口から排出され、各陰極室30から吐出された電解水は、共通の排出口から排出されるようにしてもよい。この変形例によれば、複数の陽極室がそれぞれ並列に接続され、また、複数の陰極室がそれぞれ並列に接続されているため、水の電解の並列処理が可能となり、電解水の大量生成が行い易くなる。
(8)第8の変形例
図16に示すように、供給口側に設けられた第1の連通孔52aと、吐出口側に設けられた第2の連通孔52bとを含み、第1の連通孔52aを第2の連通孔52bよりも小さくすることができる。第1の連通孔52aと第2の連通孔52bとの開口比は、たとえば、0.5:9.5〜1.5:8.5とすることができる。
陽極室で生成された酸性水が連通孔を通じて陰極室に入った場合に、第1の連通孔52aが小さいため、陰極室にて酸性水に含まれる次亜塩素酸などが二次電解されるのを抑えることができる。つまり、酸性水の二次電解を極力防ぎつつ、その酸性水をアルカリ性水と混合させ、吐出することができる。第1の連通孔52aは、スケールが陰極に防ぐことができる程度の酸性水の量が流れるように設定するとよい。陰極にpH3.0前後の酸性水を陰極室に供給される原水に対して10%以上混合させるとアルカリ水には炭酸カルシウムが生成されないことが実験で確認されている。
また、炭酸カルシウムはアルカリ性水を洗浄等や植物の活性に使用する時に配管の内部に付着したり、送水ポンプの軸に付着してポンプの軸が回転しない等の故障を引き起こしてきた。しかし、この変形例によれば、そのような炭酸カルシウムからなる澱が発生しないという効果がある。
さらに、第2の連通孔52bがあるために、陰極側に所定量の次亜塩素酸を移動させることができる。
(9)第9の変形例
図17〜図19に示すように、中間室40は、陽極22および陰極32が伸びる方向に、複数の区画に分けることができる。中間室の複数の区画は、仕切部42により仕切ることができる。仕切部42により区画を仕切ることで、電解質水溶液の滞留を図ることができ、電解質イオンの移動をより確実に行うことができ、効率的な電解を図ることができる。中間室40の複数の区画は、それぞれ隣り合う区画と連通させることができる。この場合に、供給部44は、複数の区画の各々に設けることができる。また、中間室40の複数の区画の各々において、電解質水溶液の排出部46を設けることができる。供給部44および排出部46は、たとえばパイプを中間室40の側部に連結することで実現することができる。
(a)供給部44は、電解質水溶液を供給するのではなく、電解質を供給するための供給部としてもよい。
(b)中間室40の各区画を仕切部42により完全に仕切ってもよい。この場合には、各区画に電解質水溶液を供給する供給部44と、電解質水溶液を排出する排出部46が必要となる。
(c)中間室40は次の変形が可能である。すなわち、中間室40の一端(陽極22および陰極32が伸びる方向の一方の側)に電解質水溶液の主供給部を設け、中間室40の他端(陽極22および陰極32が伸びる方向の他方の側)に電解質水溶液の主排出部が設けることができる。電解質水溶液の主供給部と電解質水溶液の主排出部との間において、少なくとも一つの電解質水溶液を供給するための副供給部を設けてもよい。
この場合において、陽極室20は、中間室40の区画に対応するように、複数の区画を設けてもよい。この区画は、仕切部20aにより仕切ってもよい。また、陽極室20の各区画は、隣り合う区画と連通していてもよいし、連通していなくてもよい。また、陽極室20の各区画に原水の供給部20bと排出部20cを設けてもよい。なお、陽極室20の各区画が隣り合う区画と連通していない場合には、各区画に原水の供給部20bと排出部20cを設けるとよい。仕切部20aにより区画を仕切ることで、電解質水溶液の滞留を図ることができ、電解質イオンの移動をより確実に行うことができ、効率的な電解を図ることができる。
陽極室20の排出部を最後の区画のみに設けると、高濃度の電解水となり隔膜の損傷がし易くなることから、各区画に排出部20cを設けるとよい。
また、陰極室30は、中間室40の区画に対応するように、複数の区画を設けてもよい。この区画は、仕切部30aにより仕切ってもよい。また、陰極室30の各区画は、隣り合う区画と連通していてもよいし、連通していなくてもよい。また、陰極室30の各区画に原水の供給部30bと排出部30cを設けてもよい。なお、陰極室30の各区画が隣り合う区画と連通していない場合には、各区画に原水の供給部30bと排出部30cを設けるとよい。仕切部30aにより区画を仕切ることで、電解質水溶液の滞留を図ることができ、電解質イオンの移動をより確実に行うことができ、効率的な電解を図ることができる。
陰極室30の排出部を最後の区画のみに設けると、高濃度の電解水となり隔膜の損傷がし易くなることから、各区画に排出部30cを設けるとよい。
この変形例によれば、次の作用効果を奏することができる。
従来、三室型電解装置では、電解水の大量生成を一つの電解槽で行うことは一般的に行われていない。本願発明者は、一つの電解槽で電解水の大量生成ができない課題の原因を次のように見出した。中間室を挟んだ陽極と陰極との間の距離は、電気伝導の関係で極めて重要である。陽極と陰極との間の距離が短ければ短い程、伝導率は向上するが、両電極間には中間室が有るためにどうしても一定の間隔が必要である。そのため、中間室に流れる電解質の流量の限界が有る一方で、電解によるイオンが中間室から陽極室及び陰極室に移動するため、中間室の途中において電解質を消耗し、電解に必要なNaやClなどが不足する。つまり、陽極と陰極との間の中間室の隙間は一般的に3〜6mm程度の狭い空間を電解質水溶液が流れる。電解質水溶液は飽和食塩水が最も効率よく電気を流すが、幅の狭い中間室を流れる電解質液のNa及びClˉはイオン交換膜を通過して両極に移動し、その中間室のイオン濃度は、電解槽を通過するに従って、イオンが消耗されていくことに基づき低下していく。これにより一枚の大きな電解槽では電解質液の入り口付近と出口付近のイオンの濃度差が大きくなってしまう。
中間室の電解イオン濃度が消耗により一定以下の濃度になると強い電圧を必要とする。しかし、消費電力及び電極または隔膜の損傷を防止するには一定の低電圧で電気分解が必要となる。そこで最適効率の電圧を維持するには構造上、その電解面積には自ずと適正値が有る。その結果、本願発明者は、電解水の大量生成に伴う問題の克服ができないのではないかという課題の原因を認識した。
この変形例は、この課題の原因に着目し、なされたものである。つまり、中間室40の途中に電解質または電解質水溶液を供給する供給部44を設けることで、消費された電解質の補充を行うことができる。したがって、中間室40の各区域においての電解質濃度の平準化を図ることができる。このため、各電解部分においての電解効率のむらを抑えることができ、効率的かつ効果的な電解を図ることができる。また、電解質濃度の平準化を図ることができるため、低電圧の駆動ができ、電極やイオン交換膜の損傷を抑えることができる。
5.実験例
以下、実験例について説明する。
(1)各態様における実験結果を示す。
表2に、陽極室と陰極室とが連通している電解装置の各態様における実験結果を示す。電解装置の供給口、連通孔および吐出口の条件の違いによって、電解水の性質がどう変わるかについて実験した。次亜塩素酸の濃度の測定に当たっては、クロール試験紙(10〜50ppm)(商品名:ADVANTEC、(株)東洋製作所製)を用いた。
Figure 2009072778
(2)pH調整
表2から、陽極室と陰極室とが連通している電解装置によれば、pH3〜11までの電解水を生成できることを確認した。具体的な陽極室と陰極室との連通態様、供給口および吐出口の態様を表1に示す。表1に示すように、陽極室と陰極室との連通態様、供給口および吐出口の態様を調整することで、自由なpH調整が可能である。
陽極室から吐出された電解水は、少なくとも、pHは3.2〜9.6、ORPは1,120mV〜20mV、次亜塩素酸の濃度は40ppm〜35ppmの範囲内で調整可能であることを確認した。
陰極室から吐出された電解水は、少なくとも、pHは7.6〜11.2、ORPは800mV〜−780mV、次亜塩素酸の濃度は0ppm〜38ppmの範囲内で調整可能であることを確認した。
(3)陰極へのスケールの付着の有無について
陰極に本来スケールが付着する。しかし、電解装置を50時間使用しても、陰極にスケールの付着を目視できなかった。
(4)浮遊物(おり)について
陽極室と陰極室を連通させた状態で水を電解し、陰極室から電解水を吐出させた。その電解水には、浮遊物(酸化カルシウムなど)が生じないことを確認した。
上記の実施の形態は、本発明の範囲内において、種々の変更が可能である。
電解水の製造装置を模式的に示す図である。 連通孔を説明するための図である。 第1の変形例に係る陰イオン交換膜の模式図を示す。 第1の変形例に係る原理を示す説明図である。 第2の変形例に係る電解水の製造装置を模式的に示す図である。 第2の変形例に係る陰極およびシート体の側面を模式的に示す図である。 第2の変形例に係る陰極およびシート体の平面を模式的に示す図である。 第2の変形例に係るシート体の平面を模式的に示すである。 第2の変形例に係る陰極の平面を模式的に示す図である。 第2の変形例に電解装置の作用効果を説明するための説明図である。 第3の変形例に係る電解装置を模式的に示す図である。 第4の変形例に係る電解装置を模式的に示す図である。 第5の変形例に係る電極を模式的に示す図である。 第6の変形例に係る電解装置を模式的に示す図である。 第7の変形例に係る電解装置を模式的に示す図である。 第8の変形例に係る電解装置を模式的に示す図である。 第9の変形例に係る電解装置を模式的に示す図である。 第9の変形例に係る電解装置を模式的に示す図である。 第9の変形例に係る電解装置を模式的に示す図である。
符号の説明
10 電解装置
20 陽極室
22 陽極
22a 爪電極部
22b パンチング孔
24 第1の隔膜
26 第1の給水口
28a 第1の吐出口
28b 第1の吐出バルブ
28c 第1のガス抜き口
30 陰極室
32 陰極
32a 爪電極部
32b パンチング孔
34 第2の隔膜
36 第2の給水口
38a 第2の吐出口
38b 第2の吐出バルブ
38c 第2のガス抜き口
40 中間室
50 隔壁
52 連通孔
54 連通路
56 開閉量調整バルブ
58a 第1の開閉バルブ
58b 第2の開閉バルブ
60 分配割合調整バルブ
70 直流電源
80 電解質水溶液の供給源
90 シート体

Claims (26)

  1. 陽極電極が設けられた陽極室と、
    陰極電極が設けられた陰極室と、
    前記陽極室と前記陰極室との間に設けられ、電解質水溶液を収容する中間室と、
    前記陽極室と前記中間室とを隔てる陰イオン交換膜からなる第1の隔膜と、
    前記陰極室と前記中間室とを隔てる陽イオン交換膜からなる第2の隔膜と、を含み、
    前記陽極室と前記陰極室とが連通され、
    前記陽極室と前記陰極室との間で水が双方向に移動可能に構成されていることを特徴とする電解水の製造装置。
  2. 請求項1において、
    前記陽極室と前記陰極室とが隔壁により隔てられ、
    前記隔壁に、前記陽極室と前記陰極室とを連通する連通孔が設けられていることを特徴とする電解水の製造装置。
  3. 請求項1または2において、
    前記陽極室に流れる水量と前記陰極室に流れる水量との分配割合を決める分配割合調整バルブが設けられている、電解水の製造装置。
  4. 請求項1〜3のいずれかにおいて、
    前記陽極室の液を吐出する吐出量を調整する第1の吐出バルブと、
    前記陰極室の液を吐出する吐出量を調整する第2の吐出バルブとを含むことを特徴とする電解水の製造装置。
  5. 請求項1〜4のいずれかにおいて、
    前記陽極室に給液するための第1の給液口と、
    前記陰極室に給液するための第2の給液口と、
    前記陽極室の液を吐出する第1の吐出口と、
    前記陰極室の液を吐出する第2の吐出口と、を含み、
    前記第1の給液口は、前記陽極室の上部に設けられ、
    前記第2の給液口は、前記陰極室の上部に設けられ、
    前記第1の吐出口は、前記陽極室の下部に設けられ、
    前記第2の吐出口は、前記陰極室の下部に設けられていることを特徴とする電解水の製造装置。
  6. 請求項1〜5のいずれかにおいて、
    前記陽極室は、前記陽極と直交する方向の前記陽極室の幅よりも、前記陽極室の高さの方が大きいことを特徴とする電解水の製造装置。
  7. 請求項1〜6のいずれかにおいて、
    前記電解質水溶液は、塩化物イオンを含み、
    前記電解水の製造装置は、次亜塩素酸を含む電解水を製造することを特徴とする電解水の製造装置。
  8. 請求項1〜7のいずれかにおいて、
    前記陰イオン交換膜は、前記電解質水溶液を通過させるための微細孔が設けられていることを特徴とする電解水の製造装置。
  9. 請求項1〜8のいずれかにおいて、
    前記陰極は、水に対して透過性のあるシート体で覆われていることを特徴とする電解水の製造装置。
  10. 請求項1〜9のいずれかにおいて、
    陽極室と陰極室とを結ぶ連通路が設けられていることを特徴とする電解水の製造装置。
  11. 請求項10において、
    前記連通路には、開閉量調整バルブが設けられていることを特徴とする電解水の製造装置。
  12. 請求項1〜11のいずれかにおいて、
    前記陽極室にて発生したガスを抜くための第1のガス抜き口が設けられていることを特徴とする電解水の製造装置。
  13. 請求項1〜12のいずれかにおいて、
    前記陰極室にて発生したガスを抜くための第1のガス抜き口が設けられていることを特徴とする電解水の製造装置。
  14. 請求項1〜13のいずれかにおいて、
    前記電極は、パンチング孔が設けられ、前記パンチング孔の一辺から伸びる爪電極部が設けられていることを特徴とする電解水の製造装置。
  15. 請求項14において、
    前記爪電極部はパンチングの際にパンチングされる部分を切り抜かずに残すことで形成されていることを特徴とする電解水の製造装置。
  16. 請求項1〜15のいずれかにおいて、
    前記陽極室に対して水を供給するかどうかを決める開閉バルブが設けられていることを特徴とする電解水の製造装置。
  17. 請求項1〜16のいずれかにおいて、
    前記陰極室に対して水を供給するかどうかを決める開閉バルブが設けられていることを特徴とする電解水の製造装置。
  18. 請求項1〜17のいずれかにおいて、
    前記陽極室が複数設けられ、
    前記陰極室が複数設けられ、
    前記各陽極室から吐出された電解水は、共通の排出口から排出され、
    前記各陰極室から吐出された電解水は、共通の排出口から排出されることを特徴とする電解水の製造装置。
  19. 請求項1〜18のいずれかにおいて、
    原水が供給される側に設けられた第1の連通孔と、電解水が吐出される側に設けられた第2の連通孔とを含み、
    前記第1の連通孔は、前記第2の連通孔よりも小さいことを特徴とする電解水の製造装置。
  20. 請求項1〜19のいずれかにおいて、
    前記中間室は、前記陽極および前記陰極が伸びる方向に、複数の区画に分けられ、前記複数の区画の各々において、電解質または電解質水溶液の供給部が設けられていることを特徴とする電解水の製造装置。
  21. 請求項20において、
    前記電解水の製造装置は、前記中間室の複数の区画の各々において、電解質水溶液の排出部が設けられていることを特徴とする、電解水の電解装置。
  22. 請求項19または20において、
    前記中間室の複数の区画は、それぞれ隣り合う区画と連通していることを特徴とする、電解水の製造装置。
  23. 請求項20〜22のいずれかにおいて、
    前記中間室の複数の区画は、それぞれ仕切部により区画されていることを特徴とする、電解水の製造装置。
  24. 請求項1〜19のいずれかにおいて、
    前記中間室には、電解質または電解質水溶液の供給部および電解質水溶液の排出部が設けられ、
    前記電解質水溶液の供給部と前記電解質水溶液の排出部との間において、少なくとも一つの電解質または電解質水溶液を供給するための副供給部が設けられていることを特徴とする電解水の製造装置。
  25. 請求項1〜24のいずれかに記載の電解水の製造装置を利用して電解水を製造する電解水の製造方法であって、
    前記陽極室で生成された水と、前記陰極室で生成された水とを混合させながら、電気分解する工程を含むことを特徴とする電解水の製造方法。
  26. 請求項25に記載の電解水の製造方法により得られたことを特徴とする電解水。
JP2008264683A 2007-04-13 2008-10-10 電解水の製造装置、電解水の製造方法および電解水 Pending JP2009072778A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264683A JP2009072778A (ja) 2007-04-13 2008-10-10 電解水の製造装置、電解水の製造方法および電解水

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007105751 2007-04-13
JP2007156920 2007-06-13
JP2007175680 2007-07-03
JP2007200159 2007-07-31
JP2007227213 2007-08-31
JP2008264683A JP2009072778A (ja) 2007-04-13 2008-10-10 電解水の製造装置、電解水の製造方法および電解水

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007341587A Division JP4216892B1 (ja) 2007-04-13 2007-12-31 電解水の製造装置、電解水の製造方法および電解水

Publications (1)

Publication Number Publication Date
JP2009072778A true JP2009072778A (ja) 2009-04-09

Family

ID=40361334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264683A Pending JP2009072778A (ja) 2007-04-13 2008-10-10 電解水の製造装置、電解水の製造方法および電解水

Country Status (1)

Country Link
JP (1) JP2009072778A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178710A (ja) * 2007-12-31 2009-08-13 Masaaki Arai 精密機器洗浄装置、空気清浄装置、製氷装置、内視鏡用洗浄装置、洗髪装置、水耕栽培装置および洗車装置
WO2011133835A1 (en) 2010-04-22 2011-10-27 Spraying Systems Co. Electrolyzing system
JP2012110809A (ja) * 2010-11-22 2012-06-14 Masaaki Arai 膜保持構造物、電極、これらを用いた電解水の製造装置及びその製造方法
WO2012132600A1 (ja) * 2011-03-25 2012-10-04 パナソニック株式会社 電解水生成装置
JP2016007603A (ja) * 2014-06-20 2016-01-18 優章 荒井 電解水の生成装置
WO2017056987A1 (ja) * 2015-10-02 2017-04-06 日立マクセル株式会社 電解水素水生成器及び電解水素水のpH低下方法
GB2555516A (en) * 2016-08-02 2018-05-02 Miz Company Ltd Method of generating hydrogen water
CN109401925A (zh) * 2017-08-15 2019-03-01 高节义 电解三室的壳体设置
KR20190091015A (ko) * 2018-01-26 2019-08-05 삼성전자주식회사 집적회로 장치의 제조에 사용되는 화학 용액 필터 구조체 및 이를 포함하는 화학 용액 공급 장치
CN114162910A (zh) * 2021-05-21 2022-03-11 佛山市美的清湖净水设备有限公司 水处理装置和制水设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970582A (ja) * 1995-07-03 1997-03-18 Hoshizaki Electric Co Ltd 電解水生成装置
JPH09108673A (ja) * 1995-10-23 1997-04-28 Hoshizaki Electric Co Ltd 食塩水の電解方法
JP2000246249A (ja) * 1999-03-01 2000-09-12 First Ocean Kk 電解水製造法
JP2003199547A (ja) * 2002-01-08 2003-07-15 Komine Kikai Kk 食品洗浄装置及び食品洗浄方法
JP2004041829A (ja) * 2002-07-08 2004-02-12 Efnic Kk 電解水生成方法又は装置および水
JP2004089975A (ja) * 2002-08-30 2004-03-25 Chemicoat & Co Ltd 強電解水生成装置
JP2005058848A (ja) * 2003-08-08 2005-03-10 Spring:Kk 洗浄・消毒・創傷治癒に用いられる水の製造方法、その製造装置、及び洗浄・消毒・創傷治癒に用いられる水
JP2007190548A (ja) * 2005-12-21 2007-08-02 Midori Anzen Co Ltd 電解水の有効塩素濃度調節方法、電解水のpH調節方法および電解水生成装置。
JP4216892B1 (ja) * 2007-04-13 2009-01-28 優章 荒井 電解水の製造装置、電解水の製造方法および電解水

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970582A (ja) * 1995-07-03 1997-03-18 Hoshizaki Electric Co Ltd 電解水生成装置
JPH09108673A (ja) * 1995-10-23 1997-04-28 Hoshizaki Electric Co Ltd 食塩水の電解方法
JP2000246249A (ja) * 1999-03-01 2000-09-12 First Ocean Kk 電解水製造法
JP2003199547A (ja) * 2002-01-08 2003-07-15 Komine Kikai Kk 食品洗浄装置及び食品洗浄方法
JP2004041829A (ja) * 2002-07-08 2004-02-12 Efnic Kk 電解水生成方法又は装置および水
JP2004089975A (ja) * 2002-08-30 2004-03-25 Chemicoat & Co Ltd 強電解水生成装置
JP2005058848A (ja) * 2003-08-08 2005-03-10 Spring:Kk 洗浄・消毒・創傷治癒に用いられる水の製造方法、その製造装置、及び洗浄・消毒・創傷治癒に用いられる水
JP2007190548A (ja) * 2005-12-21 2007-08-02 Midori Anzen Co Ltd 電解水の有効塩素濃度調節方法、電解水のpH調節方法および電解水生成装置。
JP4216892B1 (ja) * 2007-04-13 2009-01-28 優章 荒井 電解水の製造装置、電解水の製造方法および電解水

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713625B2 (ja) * 2007-12-31 2011-06-29 優章 荒井 精密部品洗浄装置
JP2009178710A (ja) * 2007-12-31 2009-08-13 Masaaki Arai 精密機器洗浄装置、空気清浄装置、製氷装置、内視鏡用洗浄装置、洗髪装置、水耕栽培装置および洗車装置
US9103043B2 (en) 2010-04-22 2015-08-11 Spraying Systems Co. Electrolyzing system
WO2011133835A1 (en) 2010-04-22 2011-10-27 Spraying Systems Co. Electrolyzing system
KR101861864B1 (ko) * 2010-04-22 2018-06-29 스프레잉 시스템즈 컴파니 전기 분해 시스템
EP2561121A1 (en) * 2010-04-22 2013-02-27 Spraying Systems Co. Electrolyzing system
KR20130062933A (ko) * 2010-04-22 2013-06-13 스프레잉 시스템즈 컴파니 전기 분해 시스템
EP2561121A4 (en) * 2010-04-22 2014-10-22 Spraying Systems Co ELECTROLYSIS SYSTEM
JP2012110809A (ja) * 2010-11-22 2012-06-14 Masaaki Arai 膜保持構造物、電極、これらを用いた電解水の製造装置及びその製造方法
WO2012132600A1 (ja) * 2011-03-25 2012-10-04 パナソニック株式会社 電解水生成装置
JP2012200683A (ja) * 2011-03-25 2012-10-22 Panasonic Corp 電解水生成装置
JP2016007603A (ja) * 2014-06-20 2016-01-18 優章 荒井 電解水の生成装置
WO2017056987A1 (ja) * 2015-10-02 2017-04-06 日立マクセル株式会社 電解水素水生成器及び電解水素水のpH低下方法
GB2555516A (en) * 2016-08-02 2018-05-02 Miz Company Ltd Method of generating hydrogen water
CN109401925A (zh) * 2017-08-15 2019-03-01 高节义 电解三室的壳体设置
KR20190091015A (ko) * 2018-01-26 2019-08-05 삼성전자주식회사 집적회로 장치의 제조에 사용되는 화학 용액 필터 구조체 및 이를 포함하는 화학 용액 공급 장치
KR102505854B1 (ko) * 2018-01-26 2023-03-03 삼성전자 주식회사 집적회로 장치의 제조에 사용되는 화학 용액 필터 구조체 및 이를 포함하는 화학 용액 공급 장치
CN114162910A (zh) * 2021-05-21 2022-03-11 佛山市美的清湖净水设备有限公司 水处理装置和制水设备
CN114162910B (zh) * 2021-05-21 2023-07-14 佛山市美的清湖净水设备有限公司 水处理装置和制水设备

Similar Documents

Publication Publication Date Title
JP4216892B1 (ja) 電解水の製造装置、電解水の製造方法および電解水
JP2009072778A (ja) 電解水の製造装置、電解水の製造方法および電解水
JP4705190B1 (ja) 電解生成水の製造装置及びその製造方法
JP4394942B2 (ja) 電解式オゾナイザ
JP7271612B2 (ja) 電解水生成装置および電解水生成方法
KR101427563B1 (ko) 해수 전해 장치
WO2015141858A1 (ja) 電解水の生成装置
KR101312879B1 (ko) 3조 1포트식 전기분해 장치
JP2012110809A (ja) 膜保持構造物、電極、これらを用いた電解水の製造装置及びその製造方法
JP4685838B2 (ja) 電解水の製造装置、電解水の製造方法および電解水
JP4597263B1 (ja) 電解水製造装置及びこれを用いる電解水の製造方法
JP4685830B2 (ja) 電解水の製造装置、電解水の製造方法および電解水
WO2016147439A1 (ja) 電解槽および電解水生成方法
KR20130077099A (ko) 저수탱크 살균 기능을 갖는 정수 및 이온수 제공 장치
JP2009035767A (ja) 電極
JP4620720B2 (ja) 電解水の製造装置、電解水の製造方法および電解水
KR101367779B1 (ko) 염소소독수 생성장치의 염수 공급구조
JP6215419B2 (ja) 電解水生成装置、電極ユニット、および電解水生成方法
JP6675112B2 (ja) 電解原水貯留式電解装置
KR20130062647A (ko) 정수 및 이온수 제공 장치
WO2017138048A1 (ja) 電解水生成装置
WO2022014127A1 (ja) 電解水生成装置
KR102031322B1 (ko) 3실형 전해수 생성장치
RU2309900C1 (ru) Устройство для получения моющих и дезинфицирующих растворов
JP2015178062A (ja) 電解水生成装置及び電解液供給装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100423

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101012

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405