WO2015141567A1 - 水処理用分散剤及び水処理方法 - Google Patents

水処理用分散剤及び水処理方法 Download PDF

Info

Publication number
WO2015141567A1
WO2015141567A1 PCT/JP2015/057420 JP2015057420W WO2015141567A1 WO 2015141567 A1 WO2015141567 A1 WO 2015141567A1 JP 2015057420 W JP2015057420 W JP 2015057420W WO 2015141567 A1 WO2015141567 A1 WO 2015141567A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
dispersant
treated
membrane
water treatment
Prior art date
Application number
PCT/JP2015/057420
Other languages
English (en)
French (fr)
Inventor
藤井 昭宏
孝博 川勝
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to US15/127,254 priority Critical patent/US20170107126A1/en
Priority to CN201580014454.7A priority patent/CN106132878A/zh
Publication of WO2015141567A1 publication Critical patent/WO2015141567A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5272Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using specific organic precipitants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0233Polyamines derived from (poly)oxazolines, (poly)oxazines or having pendant acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/167Use of scale inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment

Definitions

  • the present invention relates to a water treatment dispersant and a water treatment method.
  • Polyphenols exist as humic substances contained in soil, and are also used as raw materials for foods and beverages in food and beverage manufacturing factories. Therefore, surface water and groundwater containing humic substances, and wastewater in food and beverage manufacturing plants derived from raw materials may contain organic compounds having phenolic hydroxy groups such as polyphenols.
  • Patent Document 1 a water treatment in which a coagulation treatment step of adding a coagulant made of an alkali solution of a phenol resin having a melting point of 130 to 220 ° C. to the water to be treated is performed in the coagulation treatment step before the membrane separation treatment step.
  • a method has been proposed, and an organic compound having a phenolic hydroxy group is also contained in the agglomerated water in which such a flocculant remains.
  • Patent Document 2 includes a polymer having a predetermined adsorption capacity for polyphenols, which includes a polysulfone-based polymer and polyvinylpyrrolidone. Techniques relating to porous hollow fiber membranes are disclosed.
  • the present invention relates to a water treatment dispersant, which is used for water to be treated containing an organic compound having a phenolic hydroxy group, and includes a polymer compound having a carbonyl group and having a structure in which a carbonyl carbon and a nitrogen atom are bonded. I will provide a. Moreover, this invention provides the water treatment method which adds the dispersing agent for water treatment which concerns on this invention to the to-be-processed water containing the organic compound which has a phenolic hydroxyl group.
  • FIG. 1A is a schematic diagram showing the polarization of PVP.
  • FIG. 1B is a schematic diagram showing the interaction when PVP and polyphenol are hydrogen bonded.
  • FIG. 2A is a schematic diagram for explaining the action mechanism of a water treatment dispersant when an organic compound having a phenolic hydroxy group is dissolved or dispersed alone in the water to be treated.
  • FIG. 2B shows the action mechanism of a water treatment dispersant when an organic compound having a phenolic hydroxy group is dispersed in a state of an aggregate combined with other organic substances or metals contained in the water to be treated. It is a schematic diagram for demonstrating.
  • FIG. 1A is a schematic diagram showing the polarization of PVP.
  • FIG. 1B is a schematic diagram showing the interaction when PVP and polyphenol are hydrogen bonded.
  • FIG. 2A is a schematic diagram for explaining the action mechanism of a water treatment dispersant when an organic compound having a phenolic hydroxy group is dissolved or dispersed alone in
  • FIG. 2C is a schematic diagram for explaining the mechanism of action when the dispersant for water treatment is combined with an organic compound having a phenolic hydroxy group.
  • FIG. 3 is a flowchart in the case of adding a water treatment dispersant to the front stage of the reverse osmosis membrane device.
  • FIG. 4 is a drawing-substituting photograph for confirming the effect of the water treatment dispersant on the novolak-type phenol resin flocculant in Experimental Example 1.
  • FIG. 5 is a drawing-substituting photograph for confirming the effect of the water treatment dispersant on humic acid in Experimental Example 2.
  • FIG. 3 is a flowchart in the case of adding a water treatment dispersant to the front stage of the reverse osmosis membrane device.
  • FIG. 4 is a drawing-substituting photograph for confirming the effect of the water treatment dispersant on the novolak-type phenol resin flocculant in Experimental Example 1.
  • FIG. 5 is a drawing-
  • FIG. 6 is a flow diagram of a water treatment system provided with a coagulation / solid-liquid separation device, a microfiltration membrane device, and a reverse osmosis membrane device assumed in Experimental Example 3.
  • FIG. 7 is a graph showing the relationship between the PVP addition amount and the filtration time obtained in Experimental Example 3.
  • FIG. 8 is a graph showing the relationship between the PVP addition amount and the absorbance obtained in Experimental Example 3.
  • FIG. 9 is a schematic diagram showing the configuration of the flat membrane test apparatus used in Experimental Example 4.
  • FIG. 10 is a graph showing the relationship between the flux ratio measured in Experimental Example 4 and the water passage time.
  • the dispersant for water treatment according to the embodiment for carrying out the present invention includes, as the polymer compound, at least one of polymer compounds represented by any one of the following general formulas (1) to (3). May be included.
  • X 1 and X 2 represent a single bond or an optionally substituted alkyl group having 1 to 2 carbon atoms.
  • R 1 to R 5 are hydrogen atoms. Represents an alkyl group having 1 to 3 carbon atoms which may have an atom or a substituent, and R 1 and R 2 , and R 3 and R 4 may be the same or different from each other, A 7-membered cyclic amide structure may be formed.
  • polyvinylpyrrolidone and / or polyacrylamide may be included as the polymer compound.
  • polymer compound those having a mass average molecular weight of 7,000 to 2,000,000 may be used.
  • the water treatment dispersant may further contain a scale inhibitor.
  • the dispersant for water treatment according to the embodiment for carrying out the present invention can be used in membrane separation treatment. Moreover, you may apply the water treatment method which concerns on the form for implementing this invention to the feed water of a membrane separation process as said to-be-processed water.
  • the humic substance contained in the soil is a polyphenol having a carboxy group, and when treating water to be treated containing an organic compound having a phenolic hydroxy group such as polyphenol with a separation membrane such as a microfiltration membrane, membrane fau May cause a ring.
  • a separation membrane such as a microfiltration membrane
  • polyphenols and polysaccharides contained in fermentation broth such as wine are mutually By acting, there is a possibility of causing fouling of the separation membrane.
  • the present invention is a permeation due to the organic compound adhering to the surface of the separation membrane when the water to be treated containing the organic compound having a phenolic hydroxy group is subjected to membrane separation treatment.
  • the main object is to provide a water treatment dispersant that does not easily cause a decrease in the amount of water.
  • the amount of permeated water is reduced due to the organic compound adhering to the surface of the separation membrane. It is possible to provide a water treatment dispersant that is difficult to cause.
  • the dispersant for water treatment according to the embodiment of the present invention (hereinafter sometimes simply referred to as “dispersant”) is a polymer compound having a carbonyl group and a structure in which a carbonyl carbon and a nitrogen atom are bonded. Is included. This dispersant is used for water to be treated containing an organic compound having a phenolic hydroxy group.
  • the organic compound having a phenolic hydroxy group will be described later, but a typical example is polyphenol.
  • the humic substances contained in the soil are polyphenols having carboxy groups, such as microfiltration membranes (MF membranes), ultrafiltration membranes (UF membranes), nanofiltration membranes (NF membranes), and reverse osmosis membranes (RO membranes). It is considered that fouling is caused to the separation membrane. Fouling is a phenomenon in which a substance to be separated existing in membrane supply water such as raw water adheres to and accumulates on the membrane surface and pores.
  • the fouling includes deposition of suspended particles on the membrane surface, formation of a layer by adsorption to the membrane, gelation of the soluble polymer substance on the membrane surface, adsorption inside the membrane pores, precipitation, clogging, and bubbles. This includes blocking (clogging) of pores due to, as well as blockage of the flow path in the module.
  • humic substances can be removed by performing aggregation / adsorption treatment before the membrane separation treatment.
  • the aggregation treatment has a low effect of removing organic compounds having a relatively low molecular weight phenolic hydroxy group such as fulvic acid, and the adsorption treatment requires periodic replacement of the adsorbent.
  • the filtration membrane is provided with a polyphenol adsorption capability, and the polyphenol is adsorbed and removed.
  • the polyphenol is intended for use in beverage production, and part of the polyphenol contained in the water to be treated passes.
  • polyphenol is made to adsorb
  • a novolac type phenol resin is used as a flocculant for the purpose of aggregating and solid-liquid separating a high molecular organic substance derived from a biological metabolite in biologically treated water or seawater.
  • the phenol resin remains in the agglomerated treated water and adheres to the subsequent RO membrane, thereby causing a decrease in the amount of permeated water.
  • water to be treated containing humic substance is passed through an ion exchange resin column, it may cause regeneration failure due to adhesion of humic substance, and the contamination property of such humic substance becomes a problem.
  • an organic compound having a phenolic hydroxy group such as polyphenol derived from humic substances and food / beverage raw materials contained in the water to be treated and a novolac type phenolic resin adheres to the separation membrane during the membrane separation treatment
  • a dispersant can be used in order to suppress the reduction in the amount of permeated water.
  • the dispersant according to this embodiment is used for water to be treated containing an organic compound having a phenolic hydroxy group, the dispersant is phenolic hydroxy due to the interaction between the dispersant and the organic compound having a phenolic hydroxy group. It is thought that it couple
  • the dispersant is preferably added to the water to be treated before the membrane separation treatment.
  • the water to be treated in which the dispersant of the present embodiment is used is not particularly limited as long as it contains an organic compound having a phenolic hydroxy group.
  • “Phenolic hydroxy group” means a hydroxy group bonded to an aromatic ring, and examples of organic compounds having it include humic acid, fulvic acid, ellagic acid, phenolic acid, tannin, catechin, rutin, anthocyanin , And synthesized phenol resins.
  • the organic compound having a phenolic hydroxy group preferably has a molecular weight in the case of a low molecular weight or a mass average molecular weight in the case of a high molecular weight of 500 to 1,000,000, more preferably 1,000 to 500,000. More preferably, it is ⁇ 100,000.
  • the molecular weight or mass average molecular weight of the organic compound having a phenolic hydroxy group is about 500 to 1,000,000 (more preferably 1,000 to 100,000), it can be efficiently dispersed with a dispersant.
  • the mass average molecular weight is a value in pullulan conversion measured by a GPC method and calculated using a calibration curve by standard pullulan. is there.
  • suitable treated water in which the dispersant of the present embodiment is used include surface water and groundwater containing humic substances containing polyphenols having a carboxy group, and food and beverage products containing polyphenols derived from raw materials. Examples include factory wastewater.
  • Patent Document 1 it has been proposed to use an alkaline solution of a phenol resin as a flocculant in the agglomeration process before the membrane separation process in water treatment, and this phenol resin (flocculant).
  • the agglomerated treated water in which water remains is also suitable as the treated water.
  • the dispersant of the present embodiment is preferably used when the treated water is subjected to water treatment by membrane separation treatment, ion exchange resin treatment, or the like, more preferably treated water before the membrane separation treatment, or ion exchange resin. Used for water to be treated before treatment. This dispersant is more preferably used for water to be treated (feed water) before passing through the MF membrane, UF membrane, NF membrane, RO membrane and the like.
  • the pH of the water to be treated is not particularly limited, but is preferably 3.5 to 8.5, more preferably 4.0 to 7.5, and still more preferably 5.0 to 7 .0. If necessary, it is desirable to add an acid agent and / or an alkali agent to adjust the pH range.
  • the dispersant according to this embodiment includes a polymer compound having a carbonyl group and a structure in which a carbonyl carbon and a nitrogen atom are bonded.
  • This dispersant may be substantially composed of only the polymer compound as an active ingredient capable of suppressing a decrease in the amount of permeated water, and may contain other components as long as the object of the present invention is not impaired. Good.
  • the polymer compound can be used as a water treatment dispersant containing the polymer compound as an active ingredient.
  • polymer compound used for the dispersant one having a binding ability to an organic compound having a phenolic hydroxy group can be used. Furthermore, it is preferable that the polymer compound itself has a property such as hydrophilicity that does not contaminate the separation membrane in the membrane separation treatment.
  • polyvinyl pyrrolidone (PVP) is a preferred example. It is considered that PVP binds to polyphenol because the carbonyl group of PVP interacts with the phenolic hydroxy group of polyphenol through a hydrogen bond.
  • FIG. 1A shows a schematic diagram showing that PVP is polarized
  • FIG. 1B shows a schematic diagram showing an interaction when PVP is polarized to hydrogen bond with polyphenol.
  • the polymer compound preferably has a structure in which the carbonyl carbon and the nitrogen atom are bonded to the main chain or the side chain.
  • polymer compounds having a structure in which a carbonyl carbon and a nitrogen atom are bonded to each other will be described with reference to general formulas (1) to (3).
  • a polymer compound represented by the following general formula (1) is preferable as the polymer compound having a structure in which a carbonyl carbon and a nitrogen atom are bonded in the side chain.
  • X 1 represents a single bond or an alkyl group having 1 to 2 carbon atoms which may have a substituent.
  • R 1 and R 2 each represent a hydrogen atom or an optionally substituted alkyl group having 1 to 3 carbon atoms, which may be the same or different.
  • a 5- to 7-membered cyclic amide structure in which R 1 and R 2 are bonded to each other may be formed.
  • n is an integer representing a repeating unit, for example, an integer of 10 or more.
  • the alkyl group having 1 to 3 carbon atoms of R 1 and R 2 may be linear, branched or cyclic, but is preferably a linear or branched alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • the “substituent” of “may have a substituent” is not particularly limited.
  • the substituent include a halogen atom (eg, F, Cl, Br, etc.), a hydroxy group, an oxo group, a carboxy group, a sulfo group, a phosphoric acid group, an amino group, a cyano group, and a nitro group.
  • the fact that it may have a substituent includes that it may have one or a plurality of substituents.
  • X 1 is preferably a single bond.
  • R 1 and R 2 are preferably each independently a hydrogen atom or a methyl group, and those in which R 1 and R 2 form a 5- to 7-membered cyclic amide structure bonded to each other are also preferred.
  • suitable polymer compounds represented by the general formula (1) include polyvinyl pyrrolidone, polyvinyl piperidone, polyvinyl caprolactam, polyvinyl formamide, and polyvinyl acetamide. 1 type may be used from these high molecular compounds, and 2 or more types may be used together. As the polymer compound represented by the general formula (1), polyvinyl pyrrolidone is more preferable.
  • a polymer compound represented by the following general formula (2) is also preferable as the polymer compound having a structure in which a carbonyl carbon and a nitrogen atom are bonded in the side chain.
  • X 2 represents a single bond or an alkyl group having 1 to 2 carbon atoms which may have a substituent.
  • R 3 and R 4 each represent a hydrogen atom or an optionally substituted alkyl group having 1 to 3 carbon atoms, which may be the same or different. Further, it may contain a 5- to 7-membered cyclic amide structure in which R 3 and R 4 are bonded to each other.
  • n is an integer representing a repeating unit, for example, an integer of 10 or more.
  • the alkyl group having 1 to 3 carbon atoms of R 3 and R 4 may be linear, branched or cyclic, but is preferably a linear or branched alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • X 2 is preferably a single bond. More preferably, R 3 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Those in which R 3 and R 4 form a 5- to 7-membered cyclic amide structure bonded to each other are also preferred.
  • Examples of suitable polymer compounds represented by the general formula (2) include polyacrylamide, polymethacrylamide, polyacryloylmorpholine, polyisopropylacrylamide, and polydiethylacrylamide. 1 type may be used from these high molecular compounds, and 2 or more types may be used together. As the polymer compound represented by the general formula (2), polyacrylamide is more preferable.
  • a polymer compound represented by the following general formula (3) is also preferable.
  • R 5 represents an optionally substituted alkyl group having 1 to 3 carbon atoms
  • n is an integer representing a repeating unit, for example, an integer of 10 or more.
  • the alkyl group having 1 to 3 carbon atoms of R 5 may be linear, branched or cyclic, but is preferably a linear or branched alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • polymer compounds represented by the general formula (3) examples include poly (2-alkyl-2) such as poly (2-ethyl-2-oxazoline) and poly (2-propyl-2-oxazoline). -Oxazoline) and the like. 1 type may be used from these high molecular compounds, and 2 or more types may be used together.
  • the polymer compound represented by the general formula (3) is more preferably poly (2-ethyl-2-oxazoline).
  • Each of the above polymer compounds may be used alone or in combination of two or more. It is more preferable to use polyvinyl pyrrolidone and / or polyacrylamide as the polymer compound.
  • the production method and polymerization method of the polymer compound are not particularly limited.
  • the polymer compound represented by any one of the above general formulas (1) to (3) is used as the polymer compound
  • the monomer that provides the structural units of the above general formulas (1) to (3) It can be obtained by polymerization using a predetermined amount of components.
  • N-vinyl-2-pyrrolidone can be polymerized to obtain polyvinylpyrrolidone
  • acrylamide can be polymerized to obtain polyacrylamide.
  • the said high molecular compound can also use a commercial item.
  • the high molecular compound used for to-be-processed water according to the magnitude
  • the mass average molecular weight of the polymer compound contained in the dispersant is a relatively low molecular weight of about 2500. Things can be used.
  • the mass average molecular weight of the polymer compound is usually preferably 2,000 to 2,000,000, more preferably 7,000 to 2,000,000, and further preferably 7,000 to 1500,000.
  • the lower limit of the mass average molecular weight of the polymer compound is preferably 2500, more preferably 5000, and still more preferably 10,000.
  • the upper limit of the mass average molecular weight of the polymer compound is preferably 1000000, more preferably 500000, and even more preferably 100000. If a polymer compound having a mass average molecular weight of 2,000 to 2,000,000 is used as a dispersant, the dispersant can be easily bonded to an organic compound having a phenolic hydroxy group contained in the water to be treated, and the dispersion effect can be enhanced.
  • the mass average molecular weight of the polymer compound is a pullulan-converted value measured by a GPC method and calculated using a calibration curve based on a standard pullulan.
  • the dispersant for water treatment according to the present embodiment may contain other components such as a scale inhibitor, a solvent or dispersion medium such as water, a slime control agent, and the like in addition to the polymer compound described above.
  • the dispersant may be, for example, a single-agent type containing the above-described polymer compound and other components, or the multi-component type (for example, kit type) using the above-described polymer compound and other components as separate agents. Also good.
  • the one-drug type is easy to handle during use, and the multi-drug type can be added separately, so the usage (addition time, addition amount, etc.) can be easily adjusted according to the quality of the water to be treated.
  • the form of the dispersant is not particularly limited, and may be any of liquid, solid, and semi-solid.
  • the polymer compound used for the dispersant and other components such as a scale inhibitor described later may be used in the form of a solid or a solution or dispersion in a solvent such as water.
  • the form of the dispersant is more preferably liquid.
  • the content ratio of the polymer compound in the dispersant is not particularly limited, but is preferably 5 to 60% by mass, and more preferably 15 to 45% by mass. If the polymer compound is contained in the dispersant within such a range, it is preferable in that the volume of the dispersant is reduced and a highly viscous solution that is difficult to handle is not obtained.
  • the dispersant according to the present embodiment preferably further includes a scale inhibitor, and preferably includes the polymer compound and the scale inhibitor.
  • a scale inhibitor in the dispersant, the scale inhibitor is thought to act so as to disrupt the cross-linked structure of the organic compound having a phenolic hydroxy group contained in the water to be treated. It is thought that it can be enhanced.
  • a metal ion that crosslinks an organic compound having a phenolic hydroxy group (for example, metal ions such as Ca and Al) is captured. It is preferable that at least one of a phosphoric acid scale inhibitor and a phosphonic acid scale inhibitor is used.
  • low molecular scale inhibitor examples include sodium tripolyphosphate, sodium hexametaphosphate, 2-phosphono-1,2,4-tricarboxybutane, 1-hydroxyethylidene-1,1-diphosphonic acid, and aminotrimethylene phosphone.
  • An acid etc. are mentioned.
  • polymer scale inhibitors include phosphinocarboxylic acid copolymers, acrylic acid / 3-allyloxy-2-hydroxypropanesulfonic acid copolymers, acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymers.
  • Examples include polymers, acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid / t-butylacrylamide copolymer, and maleic acid / alkyl acrylate / vinyl acetate copolymer. These scale inhibitors may be used individually by 1 type, and may use 2 or more types together.
  • 1-hydroxyethylidene-1,1-diphosphonic acid other name: 1-hydroxyethane-1,1-diylbisphosphonic acid, HEDP
  • 2-phosphonobutane-1,2,4-tricarboxylic acid PBTC
  • trade name “Kuriverter (registered trademark) N-500” manufactured by Kurita Kogyo Co., Ltd. can be used.
  • the content ratio of the scale inhibitor in the water treatment dispersant according to this embodiment is not particularly limited, but is preferably 5 to 40% by mass, and more preferably 15 to 30% by mass. If the scale inhibitor is contained in the water treatment dispersant in such a range, the synergistic effect of the polymer compound and the scale inhibitor can be remarkably enhanced.
  • the water treatment dispersant of this embodiment described in detail above or each component used in the water treatment dispersant is effectively applied in the water treatment water system at the same time or at different times.
  • the organic compound which has a phenolic hydroxy group contained in to-be-processed water can be processed.
  • the water treatment dispersant of this embodiment or each component used in the water treatment dispersant has a phenolic hydroxy group contained in the water to be treated. It is possible to suppress a decrease in the amount of permeated water due to the organic compound adhering to the separation membrane surface.
  • FIG. 2A when the organic compound (A) having a phenolic hydroxy group alone is dissolved or dispersed in the water to be treated, the organic compounds (A) contained in the water to be treated are combined, May cause coarsening.
  • the hydrophilic dispersant (B) according to the present embodiment is bonded to the organic compound (A) (see C1 in FIG. 2A), the organic compound (A) and the dispersant (B) It is considered that the combined product (C1) becomes hydrophilic and aggregation and coarsening of the organic compound (A) due to hydrophobic interaction are suppressed (see FIG. 2A).
  • the organic compound (A) in the treated water is in the state of an aggregate (E1) combined with another organic substance (D) (or metal) contained in the treated water, or Is dispersed in the state of coarse aggregates (E2), the hydrophilic dispersant (B) according to this embodiment covers the aggregates (E1, E2) (in FIG. 2B). It is considered that further aggregation and coarsening are suppressed (see FIG. 2B). Then, as shown in FIG.
  • the dispersing agent (B) binds to the organic compound (A) in the water to be treated, and the aggregation and coarsening of the organic compound (A) are suppressed, whereby the separation membrane module (F ) Is suppressed, and the adhesion of the organic compound (A) to the surface of the separation membrane (F) can be reduced.
  • the dispersing agent (B) covers the aggregates (E1, E2) in the water to be treated, and further aggregation and coarsening of the organic compound (A) are suppressed, whereby the flow path of the separation membrane module (F). It is considered that clogging is suppressed and adhesion of the organic compound (A) to the surface of the separation membrane (F) can be reduced.
  • a water treatment dispersant containing the above-described polymer compound is added to the above-described water to be treated.
  • the above-described water treatment dispersant or each component used in the water treatment dispersant can be added to the water to be treated at the same time or at different times.
  • the polymer compound and other components such as the scale inhibitor may be added separately to the water to be treated at the same time or at different times. If the water treatment dispersant does not contain the scale inhibitor, in addition to the water treatment dispersant containing the polymer compound, a scale inhibitor separate from the water treatment dispersant is added to the water to be treated. May be.
  • the process or place where the water treatment dispersant, or each component used in the water treatment dispersant is added to the water to be treated is particularly treated water containing an organic compound having a phenolic hydroxy group. It is not limited. By adding the water treatment dispersant or the polymer compound used in the water treatment dispersant to the water to be treated, the polymer compound is bonded to the organic compound having a phenolic hydroxy group in the water to be treated.
  • the treated water can be treated.
  • the addition of the water treatment dispersant is preferably performed in a step of water treatment of the water to be treated by membrane separation treatment, ion exchange resin treatment or the like, and more preferably performed before the membrane separation treatment.
  • the dispersant binds to the organic compound having a phenolic hydroxy group contained in the water to be treated, and the organic compound adheres to the separation membrane. Can be suppressed. And it becomes possible to prevent the fall of the permeated water amount by the adhesion of the organic compound to the separation membrane.
  • the membrane separation treatment examples include microfiltration membrane (MF membrane) treatment, ultrafiltration membrane (UF membrane) treatment, nanofiltration membrane (NF membrane) treatment, reverse osmosis membrane (RO membrane) treatment, and the like. It is more preferable to add the dispersant to the water to be treated before passing through the MF membrane, UF membrane, NF membrane, RO membrane, etc. used in the membrane separation treatment (water supplied to these separation membranes). Suppressing membrane fouling by an organic compound having a phenolic hydroxy group by adding a dispersant to the feed water such as MF membrane, UF membrane, NF membrane and RO membrane, more preferably before the membrane separation treatment Is possible.
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • NF membrane nanofiltration membrane
  • RO membrane reverse osmosis membrane
  • FIG. 3 shows a typical flow chart when a dispersant is added to the RO membrane separation apparatus.
  • a flocculation process step in which a flocculant is added to the raw water supplied to the in-line mixer (or reaction tank) 31 and a solid-liquid separation process step in which the flocculated water is processed in the solid-liquid separator 32.
  • the flow which performs a separation membrane process by adding a dispersing agent in front of the RO membrane apparatus 34 which prepared and passed through the pre-filter 33 is illustrated.
  • the organic compound having a phenolic hydroxy group bonded to the dispersant does not adhere to the RO membrane surface or the RO membrane separation device (module). Treated as organic matter contained in brine water.
  • the amount of the polymer compound added to the water to be treated is not particularly limited, and is appropriately determined according to the concentration and type of the organic compound having a phenolic hydroxy group contained in the water to be treated.
  • the amount of the polymer compound added is preferably 0.25 to 20 times, preferably 0.5 to 10 times the mass of the organic compound having a phenolic hydroxy group contained in the water to be treated. More preferably, it is 1 to 10 times, more preferably 1 to 5 times.
  • the amount of the polymer compound added is preferably 0.25 to 20 mg / L, preferably 0.5 to 10 mg.
  • / L is more preferable, 1 to 10 mg / L is further preferable, and 1 to 5 mg / L is still more preferable.
  • the amount of the scale inhibitor added to the water to be treated is not particularly limited.
  • the amount of the scale inhibitor added to the water to be treated is appropriately determined according to the concentration and type of the organic compound having a phenolic hydroxy group contained in the water to be treated and the concentration and type of the scale component contained in the water to be treated. It is done.
  • the addition amount of the scale inhibitor is preferably 0.25 to 20 times, more preferably 0.5 to 15 times the mass of the organic compound having a phenolic hydroxy group contained in the water to be treated. Preferably, it is 1 to 10 times.
  • the amount of the scale inhibitor added is preferably 0.1 to 20 times, preferably 0.2 to 10 times the mass of the scale components such as calcium and magnesium contained in the water to be treated. More preferred is 0.3 to 5 times.
  • each mass (concentration) of the organic compound which has a phenolic hydroxyl group in a to-be-processed water, and a scale component is the actual thing just before adding a dispersing agent. It is not restricted to the case where it is the mass (concentration) in to-be-processed water.
  • each mass of the organic compound and the scale component in the water to be treated may be based on the mass of the raw water (see FIG. 3), and the mass of the organic compound in the water to be treated is aggregated in the aggregation treatment step.
  • the mass of the organic compound added as an agent may be used as a reference.
  • an organic compound having a phenolic hydroxy group in the water to be treated with respect to the water to be treated before adding the dispersant containing the polymer compound It is preferable to measure the content (concentration) of the compound. It is more preferable to monitor the measured value. Thereby, it becomes possible to determine the addition amount of a dispersing agent according to content of the said organic compound in to-be-processed water.
  • an organic compound having a phenolic hydroxy group in the water to be treated with respect to the water to be treated before the addition of the scale inhibitor in order to add the scale inhibitor in an appropriate amount to be added to the water to be treated.
  • the water treatment method of the present embodiment may include a flocculation process step of adding a known polymer flocculant and / or an inorganic flocculant to the water to be treated as necessary. Moreover, you may provide the process of carrying out solid-liquid separation of the coagulation process water of an aggregation process process. Examples of the solid-liquid separation treatment step include precipitation treatment, processing levitation treatment, membrane separation treatment, and centrifugal separation treatment.
  • a dispersant that binds to an organic compound having a phenolic hydroxy group is used, as a polymer flocculant in a step before adding the dispersant, for example, in the aggregation treatment step,
  • a flocculant made of an alkaline solution of a phenol resin as proposed in Document 1 can be preferably used. Even if the flocculant remains in the flocculant treated water using the flocculant, in the flocculant by adding a dispersant to the flocculant treated water (treated water) in the subsequent membrane separation treatment step It becomes possible to bond to an organic compound having a phenolic hydroxy group and prevent membrane fouling.
  • a polymer flocculant For example, a cationic polymer flocculent, an amphoteric polymer flocculant, a nonionic polymer flocculant, an anionic polymer flocculant, etc. are mentioned, These are individual or 2 A combination of two or more species may be used. These may be commercial products.
  • inorganic flocculants include, but are not limited to, aluminum salt flocculants such as aluminum sulfate and polyaluminum chloride, and ferrous sulfate, ferric chloride, polyferric sulfate, and iron-silica inorganic polymers.
  • Iron salt-based flocculants for example, ferrous salt, ferric salt, polysilica iron, etc. One or more of these may be selected and used.
  • the water treatment method of the present embodiment preferably includes a pH adjustment step for adjusting the pH of the water to be treated to 3.5 to 8.5.
  • the pH of the water to be treated is adjusted to 4.0 to 7.5, more preferably 5.0 to 7.0.
  • the pH of the water to be treated can be adjusted by a conventional method using an acid agent and / or an alkali agent.
  • the acid agent and alkali agent to be used are not particularly limited. Examples of the acid agent include sulfuric acid, hydrochloric acid, carbon dioxide, and the like. Examples of the alkaline agent include sodium hydroxide, sodium carbonate, calcium oxide, calcium hydroxide, and calcium carbonate.
  • water to be treated containing an organic compound having a phenolic hydroxy group, the water treatment dispersant according to the present embodiment, or each of the water treatment dispersants used. Add ingredients. Thereby, it becomes possible to suppress the organic compound having a phenolic hydroxy group contained in the water to be treated from adhering to the surface of the separation membrane. Therefore, it is possible to suppress a decrease in the amount of permeated water due to the organic compound adhering to the separation membrane surface.
  • the water treatment method of the present embodiment can suppress the adhesion of organic compounds contained in the water to be treated to the surface of the separation membrane in the description of the water treatment dispersant described above with reference to FIGS. 2A to 2C. This is probably due to the mechanism of action described.
  • the water treatment method according to the present embodiment can be realized by a control unit including a CPU or the like in an apparatus (for example, a personal computer or the like) for managing the water quality of the water to be treated.
  • the water treatment method according to the present embodiment can be stored as a program in a hardware resource including a recording medium (nonvolatile memory (USB memory, etc.), HDD, CD, etc.) and the like, and can be realized by the control unit. It is. It is also possible to provide a water treatment system that controls the dispersant to be added to the water to be treated by the control unit.
  • a dispersant for water treatment which is used for water to be treated containing an organic compound having a phenolic hydroxy group, and contains a polymer compound having a carbonyl group and a structure in which a carbonyl carbon and a nitrogen atom are bonded.
  • X 1 and X 2 represent a single bond or an optionally substituted alkyl group having 1 to 2 carbon atoms.
  • R 1 to R 5 are hydrogen atoms.
  • [5] The dispersant for water treatment according to any one of [1] to [4], further including a scale inhibitor.
  • [7] A water treatment method in which the water treatment dispersant according to any one of [1] to [6] is added to water to be treated containing an organic compound having a phenolic hydroxy group.
  • [8] The water treatment method according to [7], wherein the water to be treated is supplied water for membrane separation treatment (more preferably, RO membrane treatment).
  • a scale inhibitor is further added to the water to be treated.
  • the water treatment method according to [9] or [10], wherein the water to be treated is supply water for membrane separation treatment (more preferably, RO membrane treatment), and is performed in the step of membrane separation treatment.
  • Example 1 The reagents used in Experimental Example 1 below are as follows.
  • (Inorganic flocculant) A 3.8% by mass aqueous solution of ferric chloride (FeCl 3 ) was used as the inorganic flocculant.
  • (Phenolic resin flocculant) As described in Patent Document 1, the phenol resin flocculant was obtained by adding formaldehyde to an alkali solution of a novolak type phenol resin and performing a resol type secondary reaction in the presence of an alkali catalyst. An alkaline solution of phenol resin was used. The phenol resin in this flocculant had a polystyrene equivalent mass average molecular weight of 12,000 and a melting point of 170 ° C.
  • Example 1-1 Add 30 mL of pure water at 25 ° C. to a sample bottle and add the concentration of the active ingredient of the phenol resin flocculant to 180 mg / L and polyvinylpyrrolidone (PVP, mass average molecular weight 40000, manufactured by Kishida Chemical Co., Ltd.) to 600 mg / L. After that, an inorganic flocculant was added so that FeCl 3 was 180 mg / L, and the pH was adjusted to 5.5 using an aqueous sodium hydroxide solution. In this way, a mixed solution of Experimental Example 1-1 was prepared.
  • PVP polyvinylpyrrolidone
  • Example 1-2 a mixed solution was used in the same manner as in Experimental Example 1-1 except that PVP (manufactured by Kishida Chemical Co., Ltd.) having a mass average molecular weight of 10,000 was used instead of PVP used in Experimental Example 1-1. Was prepared.
  • PVP manufactured by Kishida Chemical Co., Ltd.
  • Example 1-3 In Experimental Example 1-3, a mixed solution was used in the same manner as in Experimental Example 1-1 except that PVP (manufactured by Polysciences, Inc.) having a weight average molecular weight of 2500 was used instead of PVP used in Experimental Example 1-1. Was prepared.
  • PVP manufactured by Polysciences, Inc.
  • Example 1-4 In Experimental Example 1-4, a mixed solution was used in the same manner as in Experimental Example 1-1 except that PVP (manufactured by Sigma-Aldrich) was used instead of PVP used in Experimental Example 1-1. Was prepared.
  • PVP manufactured by Sigma-Aldrich
  • Experimental Example 1-5 was the same as Experimental Example 1-1 except that polyacrylamide (PAAm, manufactured by Sigma-Aldrich) having a weight average molecular weight of 40,000 was used instead of PVP used in Experimental Example 1-1. A mixed solution was prepared.
  • PAAm polyacrylamide
  • Example 1-6 In Experimental Example 1-6, instead of PVP used in Experimental Example 1-1, poly (2-ethyl-2-oxazoline) (manufactured by Polysciences, Inc.) having a mass average molecular weight of 50000 was used. A mixed solution was prepared in the same manner as in 1-1.
  • Example 1-7 a mixed solution was prepared in the same manner as in Experimental Example 1-1 except that the same amount of pure water was added instead of adding the PVP used in Experimental Example 1-1.
  • Experimental Example 1-8 instead of adding the PVP used in Experimental Example 1-1, the same amount of a polyethylene glycol aqueous solution (mass average molecular weight 20000, manufactured by Wako Pure Chemical Industries, Ltd.) was added. A mixed solution was prepared in the same manner as in 1-1.
  • FIG. 4 shows a drawing-substituting photograph in which the mixed solutions of Experimental Examples 1-1 and 1-3 and Experimental Examples 1-7 and 1-8 were photographed.
  • Experimental Example 1-7 the phenol resin flocculant and FeCl 3 reacted to form a precipitate.
  • Example 1-1 in which PVP having a mass average molecular weight of 40,000 was added to the water to be treated, almost no aggregation was observed, indicating that a dispersion effect was achieved. This dispersion effect was the same in Experimental Examples 1-2 and 1-4.
  • a dispersion effect was also observed in Experimental Example 1-5 in which PAAm having a weight average molecular weight of 40,000 was added to the water to be treated.
  • Example 2 In Experimental Example 2, the inorganic flocculant used in Experimental Example 1 and the humic acid solution were used.
  • this humic acid solution a 180 mg / L humic acid solution prepared by dissolving humic acid (manufactured by Wako Pure Chemical Industries, Ltd.) in a 10 mM NaOH aqueous solution was used.
  • Example 2-1 Add 30 mL of humic acid solution at 25 ° C. to a sample bottle, add PVP having a mass average molecular weight of 40,000 to 600 mg / L, add FeCl 3 to 180 mg / L, and use sodium hydroxide solution to adjust the pH. was adjusted to 6.0. In this way, a mixed solution of Experimental Example 2-1 was prepared.
  • Example 2-2 a mixed solution was prepared in the same manner as in Experimental Example 2-1, except that PAAm having a weight average molecular weight of 40000 was used instead of PVP having a weight average molecular weight of 40000 used in Experimental Example 2-1. did.
  • FIG. 5 shows a drawing-substituting photograph in which the mixed liquid of Experimental Example 2-1 and Experimental Example 2-3 was photographed.
  • Experimental Example 2-3 humic acid and FeCl 3 reacted to form a precipitate, but when PVP was added to the water to be treated as in Experimental Example 2-1, almost no aggregation was observed, indicating a dispersion effect. It was. Even when PAAm of Experimental Example 2-2 was added, the dispersion effect was similarly shown.
  • Example 3 In Experimental Example 3 below, the following test water (treated water) and the phenol resin flocculant used in Experimental Example 1 were used. (Treated water) As the water to be treated, the brine water of the RO membrane device using the biologically treated water of the waste water in the test laboratory as the feed water was used. In Experimental Example 3, as shown in FIG.
  • a coagulation treatment apparatus (aggregation treatment process) 61, a solid-liquid separation apparatus (solid-liquid separation treatment process) 62, an MF membrane apparatus (MF membrane treatment process) 63, an RO membrane apparatus ( (RO membrane treatment process)
  • a dispersant PVP
  • the phenol resin used as the flocculant in the coagulation treatment step 61 remains at 2 mg / L after the coagulation treatment step 61 and the solid-liquid separation treatment step 62, which may contaminate the MF membrane.
  • an experiment for confirming the dispersion effect of PVP was performed.
  • Example 3-1 While adding 500 mL of water to be treated at 25 ° C. to the beaker and stirring at 150 rpm for 5 minutes, after adding the concentration of the active ingredient of the phenol resin flocculant to 2 mg / L, the mass average molecular weight is 10,000. PVP was added to 0.5 mg / L, and the pH was adjusted to 5.5 using hydrochloric acid. Further, the PVP in the water to be treated was reacted with the phenol resin by stirring at 50 rpm for 10 minutes. After the reaction, 250 mL of water was weighed, and the time required for suction filtration at a vacuum degree of 67 kPa was measured using a cellulose MF membrane having a pore diameter of 0.45 ⁇ m.
  • the water after reaction was filtered with a syringe filter made of hydrophilic polytetrafluoroethylene (PTFE) having a pore diameter of 0.45 ⁇ m to perform solid-liquid separation.
  • PTFE hydrophilic polytetrafluoroethylene
  • Experimental Example 3-2 was the same as Experimental Example 3-1, except that the amount of PVP added in Experimental Example 3-1 was changed to 1.0 mg / L.
  • Experimental Example 3-3 was the same as Experimental Example 3-1, except that the amount of PVP added in Experimental Example 3-1 was changed to 2.0 mg / L.
  • Experimental Example 3-4 was the same as Experimental Example 3-1, except that the amount of PVP added in Experimental Example 3-1 was changed to 4.0 mg / L.
  • Test water (treated water), reagents, and test conditions used in Experimental Example 4 below are as follows.
  • fulvic acid aqueous solution a solution prepared by dissolving Canadian fulvo in pure water so that the Ca concentration was 1 mg / L and the Ca concentration was 10 mg / L was used (pH 6.5 ⁇ 0.5).
  • As a calcium-based scale inhibitor Kuriverter (registered trademark) N-500, a product manufactured by Kurita Kogyo Co., Ltd., was used.
  • RO membrane an ultra-low pressure reverse osmosis membrane ES20, which is a product manufactured by Nitto Denko Corporation, was used.
  • RO flat membrane evaluation apparatus an RO test apparatus having a cell capable of installing an RO membrane having a membrane area of 8 cm 2 as shown in FIG. 9 was used.
  • the agglomerated treated water (RO membrane supply water) is set by the high pressure pump 4 from the pipe 11 and the RO membrane of the sealed container 1 having the raw water chamber 1A and the permeate water chamber 1B is set. A fixed amount was supplied to the raw water chamber 1A below the flat membrane cell 2 at 0.7 mL / min.
  • the raw water chamber 1 ⁇ / b> A was stirred by rotating the stirring bar 5 with the stirrer 3.
  • the internal pressure of the sealed container 1 is adjusted to 0.75 MPa by a pressure gauge 6 and a pressure adjusting valve 7 provided in a pipe 13 for taking out concentrated water, and the permeate flow is performed under conditions of a recovery rate of 80% and a water temperature of 25 ⁇ 2 ° C.
  • the bundle was measured.
  • the recovery rate and permeation flow rate were determined by the following equations.
  • Example 4-1 A flat membrane test was conducted using test water in which PVP was added to a fulvic acid aqueous solution (Ca addition) to a concentration of 1 mg / L. During the test, the operating pressure was adjusted by a valve to maintain a recovery rate of 80%, and the permeation flux was recorded after a certain time.
  • Example 4-2 A flat membrane test was conducted using test water in which PVP was added to a fulvic acid aqueous solution (Ca addition) to a concentration of 1 mg / L, and Krivator N-500 was added to a concentration of 10 mg / L. Others were the same as those in Experimental Example 4-1.
  • FIG. 10 shows a graph in which the flux ratio of the permeated water amount in Experimental Examples 4-1 to 4-3 is plotted with respect to the passing time.
  • Experimental Example 4-3 a decrease in flux was confirmed. This is thought to be because when calcium is added to fulvic acid, calcium ions are bound to the carboxy group of fulvic acid and ionic crosslinking occurs, and fulvic acid and calcium are easily deposited on the film surface.
  • Experimental Examples 4-1 and 4-2 by adding PVP to the water to be treated, a decrease in flux is suppressed compared to Experimental Example 4-3, and the dispersant (PVP) is a humic substance. It was found that such a natural product-derived organic compound having a phenolic hydroxy group is also effective. Further, when a calcium-based scale inhibitor was further added in addition to PVP, the dispersion action of PVP became more prominent by disrupting the cross-linked structure of fulvic acid (Experimental Example 4-2).

Abstract

 フェノール性ヒドロキシ基を有する有機化合物を含む被処理水を膜分離処理する場合に、当該有機化合物が分離膜表面に付着することによる透過水量の低下を引き起こし難い水処理用分散剤を提供すること。 フェノール性ヒドロキシ基を有する有機化合物を含む被処理水に用いられ、カルボニル基を有し、カルボニル炭素と窒素原子とが結合した構造を有する高分子化合物を含む、水処理用分散剤;この水処理用分散剤を、フェノール性ヒドロキシ基を有する有機化合物を含む被処理水に添加する水処理方法を提供する。

Description

水処理用分散剤及び水処理方法
 本発明は、水処理用分散剤及び水処理方法に関する。
 ポリフェノールは、土壌に含まれる腐植物質として存在し、また、食品及び飲料製造工場などにおいて、食品や飲料の原料としても用いられている。
 それ故、腐植物質が含まれている表層水及び地下水、並びに原料由来の食品・飲料製造工場における排水等には、ポリフェノール等のフェノール性ヒドロキシ基を有する有機化合物が含まれていることがある。
 また、特許文献1では、膜分離処理工程を行う前段の凝集処理工程において、被処理水に、融点130~220℃のフェノール樹脂のアルカリ溶液よりなる凝集剤を添加する凝集処理工程を行う水処理方法が提案されており、このような凝集剤が残存した凝集処理水にもフェノール性ヒドロキシ基を有する有機化合物が含まれている。
 一方、食品・飲料原料由来のポリフェノールを含有する飲料のろ過処理として、例えば、特許文献2には、ポリスルホン系高分子とポリビニルピロリドンを含んでなり、ポリフェノールに対して所定の吸着能を有する高分子多孔質中空糸膜に関する技術が開示されている。
特開2011-56496号公報 特開2008-284471号公報
 本発明は、フェノール性ヒドロキシ基を有する有機化合物を含む被処理水に用いられ、カルボニル基を有し、カルボニル炭素と窒素原子とが結合した構造を有する高分子化合物を含む、水処理用分散剤を提供する。
 また、本発明は、フェノール性ヒドロキシ基を有する有機化合物を含む被処理水に、本発明に係る水処理用分散剤を添加する水処理方法を提供する。
図1Aは、PVPの分極を表した模式図である。 図1Bは、PVPとポリフェノールとが水素結合する際の相互作用を表した模式図である。 図2Aは、被処理水中でフェノール性ヒドロキシ基を有する有機化合物が単独で溶解又は分散していた場合における水処理用分散剤の作用機構を説明するための模式図である。 図2Bは、被処理水中でフェノール性ヒドロキシ基を有する有機化合物が被処理水中に含まれる他の有機物又は金属と結合した凝集物の状態で分散していた場合における水処理用分散剤の作用機構を説明するための模式図である。 図2Cは、水処理用分散剤がフェノール性ヒドロキシ基を有する有機化合物と結合した場合の作用機構を説明するための模式図である。 図3は、逆浸透膜装置の前段に水処理用分散剤を添加する場合のフロー図である。 図4は、実験例1において、ノボラック型フェノール樹脂凝集剤に対する水処理用分散剤の効果を確認するための図面代用写真である。 図5は、実験例2において、フミン酸に対する水処理用分散剤の効果を確認するための図面代用写真である。 図6は、実験例3で想定した、凝集・固液分離装置、精密ろ過膜装置、逆浸透膜装置を備える水処理システムのフロー図である。 図7は、実験例3で得られた、PVP添加量とろ過時間の関係を示すグラフである。 図8は、実験例3で得られた、PVP添加量と吸光度との関係を示すグラフである。 図9は、実験例4で用いた平膜試験装置の構成を示す模式図である。 図10は、実験例4で測定したフラックス比と通水時間との関係を示すグラフである。
 本発明を実施するための形態に係る水処理用分散剤は、前記高分子化合物として、下記一般式(1)~(3)のいずれかで表される高分子化合物のうちの少なくとも1種を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000002
 (上記一般式(1)~(3)において、X及びXは単結合、又は置換基を有してもよい炭素数1~2のアルキル基を表す。R~Rは、水素原子、又は置換基を有してもよい炭素数1~3のアルキル基を表し、R及びR、並びにR及びRは、互いに同一でも異なってもよく、互いに結合して5~7員環の環状アミド構造を形成してもよい。)
 また、前記高分子化合物として、ポリビニルピロリドン及び/又はポリアクリルアミドを含んでいてもよい。前記高分子化合物として、質量平均分子量が7000~2000000のものを用いてもよい。
 水処理用分散剤には、スケール防止剤をさらに含んでもよい。
 本発明を実施するための形態に係る水処理用分散剤は、膜分離処理において用いることができる。
 また、本発明を実施するための形態に係る水処理方法は、前記被処理水として、膜分離処理の供給水に適用してもよい。
 ところで、従来の技術では、以下の問題点がある。
(1)土壌に含まれる腐植物質はカルボキシ基を有するポリフェノールであり、このポリフェノール等のフェノール性ヒドロキシ基を有する有機化合物を含む被処理水を精密ろ過膜等の分離膜により処理する場合、膜ファウリングを引き起こす可能性がある。
(2)また、食品・飲料原料由来のポリフェノールを含有する被処理水を精密ろ過膜等の分離膜で処理する場合にも、例えば、ワイン等の発酵液中に含まれるポリフェノールと多糖とが相互作用することで、分離膜のファウリングを引き起こす可能性がある。なお、上記の特許文献2で開示された技術では、飲料の製造用途を主としており、被処理水中に含まれるポリフェノールの一部はろ過膜を通過し、また、ポリフェノールをろ過膜に吸着することから、ポリフェノールがろ過膜に付着することで引き起こされる透過水量の低下を抑制することは困難である。
 そこで本発明は、このような問題点を解消するために、フェノール性ヒドロキシ基を有する有機化合物を含む被処理水を膜分離処理する場合に、当該有機化合物が分離膜表面に付着することによる透過水量の低下を引き起こし難い水処理用分散剤を提供することを主目的とする。
 本発明を実施するための形態によれば、フェノール性ヒドロキシ基を有する有機化合物を含む被処理水を膜分離処理する場合に、当該有機化合物が分離膜表面に付着することによる透過水量の低下を引き起こし難い水処理用分散剤を提供することができる。
 以下、本発明を実施するための形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
<水処理用分散剤>
 本発明の実施形態に係る水処理用分散剤(以下、単に「分散剤」ということがある。)は、カルボニル基を有し、カルボニル炭素と窒素原子とが結合した構造を有する高分子化合物を含むものである。この分散剤は、フェノール性ヒドロキシ基を有する有機化合物を含む被処理水に用いられる。
 フェノール性ヒドロキシ基を有する有機化合物の具体例は後述するが、代表的にはポリフェノールが挙げられる。
 土壌に含まれる腐植物質はカルボキシ基を有するポリフェノールであり、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、ナノろ過膜(NF膜)、及び逆浸透膜(RO膜)などの分離膜に対し、ファウリングを引き起こすと考えられる。ファウリングは、原水などの膜供給水中に存在する分離対象物質などが膜表面や細孔内に付着、堆積する現象である。このファウリングには、懸濁粒子の膜面への堆積、膜への吸着による層形成、溶解性高分子物質の膜面でのゲル化、膜細孔内部での吸着、析出、閉塞及び気泡による細孔のブロッキング(目詰まり)、並びにモジュール内での流路閉塞などが含まれる。
 膜分離処理の前段階に凝集・吸着処理を行うことで腐植物質を除去することができると考えられる。しかしながら、凝集処理では、フルボ酸等の比較的低分子量のフェノール性ヒドロキシ基を有する有機化合物の除去効果が低く、また、吸着処理では吸着剤の交換が定期的に必要となる。
 一方、食品・飲料原料由来のポリフェノールを含有する飲料の処理として、ポリビニルピロリドンを精密ろ過中空糸膜に添加することにより、ろ過膜のポリフェノールに対する吸着量を最適化することで、ポリフェノール含有飲料水をろ過し、飲料の風味を整える方法が提案されている(前述の特許文献2参照)。また、ポリビニルピロリドンを架橋させたポリビニルポリピロリドンを精密ろ過膜/限外ろ過膜中のマトリックスに組み込み、ビールやワインなどの液体から濁りを引き起こすポリフェノールを除去する方法が提案されている(特開平7-171359号公報参照)。
 なお、ワインの発酵液中に含まれるポリフェノールが多糖と相互作用することで、精密ろ過膜のファウリングを引き起こすとの報告も存在する。
 上記の特許文献2及び特開平7-171359号公報にて提案された各方法は、ろ過膜にポリフェノール吸着能を持たせ、ポリフェノールの吸着除去を行っている。しかし、飲料の製造用途で用いることを目的としており、被処理水中に含まれるポリフェノールの一部は通過する。また、ポリフェノールをろ過膜に吸着させることからポリフェノールが前記ろ過膜に付着することで引き起こされる透過水量の低下を防ぐことはできない。
 なお、これらの特許文献には、ポリビニルピロリドン(PVP)及びPVPの架橋粒子であるポリビニルポリピロリドンを、膜へのポリフェノールの付着を防ぐための分散剤として利用することは開示されていない。
 上述の腐植物質由来、及び食品・飲料原料由来のポリフェノールを含んだ被処理水を膜分離処理する場合、ポリフェノールが分離膜表面に付着し、透過水量の低下を引き起こしかねない。
 また、前述の特許文献1にて提案されているように、生物処理水中や海水中の生物代謝物由来の高分子有機物を凝集・固液分離処理する目的でノボラック型フェノール樹脂を凝集剤として用いる場合、そのフェノール樹脂が凝集処理水中に残存し、後段のRO膜に付着することで透過水量の低下を引き起こすことも懸念される。
 さらには、腐植物質を含んだ被処理水をイオン交換樹脂カラムに通水する際は、腐植物質の付着による再生不良を引き起こしかねず、このような腐植物質の汚染性が問題となる。
 本発明では、被処理水中に含まれる腐植物質や食品・飲料原料に由来するポリフェノール及びノボラック型フェノール樹脂などのフェノール性ヒドロキシ基を有する有機化合物が、膜分離処理の際、分離膜に付着し、透過水量の低下を引き起こすことを抑制するために、分散剤を使用することができる。
 本実施形態に係る分散剤が、フェノール性ヒドロキシ基を有する有機化合物を含む被処理水に用いられると、分散剤とフェノール性ヒドロキシ基を有する有機化合物との相互作用により、分散剤がフェノール性ヒドロキシ基を有する有機化合物と結合すると考えられる。そして、分散剤がフェノール性ヒドロキシ基を有する有機化合物と結合することにより、当該有機化合物の分離膜への付着を抑制することができると考えられる。当該有機化合物の分離膜への付着を抑制する観点からは、分散剤は、膜分離処理を行う前の被処理水中に添加することが好適である。
 本実施形態の分散剤が用いられる被処理水は、フェノール性ヒドロキシ基を有する有機化合物を含んでいれば特に限定されない。
 「フェノール性ヒドロキシ基」とは、芳香環に結合したヒドロキシ基のことであり、それを有する有機化合物としては、例えば、フミン酸、フルボ酸、エラグ酸、フェノール酸、タンニン、カテキン、ルチン、アントシアニン、及び合成されたフェノール樹脂などが挙げられる。
 フェノール性ヒドロキシ基を有する有機化合物は、それが低分子の場合の分子量、又は高分子の場合の質量平均分子量が、500~1000000であることが好ましく、1000~500000であることがより好ましく、1000~100000であることがさらに好ましい。フェノール性ヒドロキシ基を有する有機化合物の分子量又は質量平均分子量が500~1000000(さらに好ましくは1000~100000)程度であれば、分散剤で効率的に分散させることが可能となる。
 なお、本開示において、フェノール性ヒドロキシ基を有する有機化合物がポリフェノール等の高分子の場合の質量平均分子量は、GPC法で測定し、標準プルランによる検量線を用いて算出した、プルラン換算の値である。
 本実施形態の分散剤が用いられる好適な被処理水の例としては、カルボキシ基を有するポリフェノールを含む腐植物質を含んでいる表層水及び地下水、並びに原料由来のポリフェノールが含まれた食品飲料製品の工場排水などが挙げられる。また、特許文献1に示されているように、水処理における膜分離処理の前段の凝集処理において、フェノール樹脂のアルカリ溶液を凝集剤として用いることが提案されており、このフェノール樹脂(凝集剤)が残存した凝集処理水も、好適な被処理水として挙げられる。
 本実施形態の分散剤は、好ましくは上記被処理水を膜分離処理やイオン交換樹脂処理等で水処理する際に用いられ、より好ましくは膜分離処理の前段の被処理水、又はイオン交換樹脂処理の前段の被処理水に用いられる。この分散剤は、MF膜、UF膜、NF膜、及びRO膜等を通過する前の被処理水(供給水)に用いられることがさらに好ましい。
 また、対象となる被処理水のpHは、特に限定されないが、好ましくは3.5~8.5であり、より好ましくは4.0~7.5であり、さらに好ましくは5.0~7.0である。必要に応じて、酸剤及び/又はアルカリ剤を添加して、このpH範囲になるように調整することが望ましい。
 本実施形態に係る分散剤は、カルボニル基を有し、カルボニル炭素と窒素原子とが結合した構造を有する高分子化合物を含む。この分散剤は、透過水量の低下を抑制し得る有効成分として実質的に当該高分子化合物のみから構成されていてもよく、本発明の目的を阻害しない限りにおいて、他の成分を含有してもよい。
 当該高分子化合物は、当該高分子化合物を含有させて有効成分とする水処理用分散剤として使用することが可能である。
 分散剤に使用される高分子化合物としては、フェノール性ヒドロキシ基を有する有機化合物に対して結合能を有するものを用いることができる。さらに、その高分子化合物そのものが、膜分離処理における分離膜を汚染しない親水性などの性質を有していることが好適である。このような点で、ポリビニルピロリドン(PVP)が好適例として挙げられる。
 PVPがポリフェノールと結合するのは、PVPのカルボニル基が、ポリフェノールのフェノール性ヒドロキシ基と水素結合を介して相互作用するためであると考えられる。図1Aに、PVPが分極することを表した模式図を示し、図1Bに、PVPが分極することでポリフェノールと水素結合する際の相互作用を表した模式図を示す。
 上記高分子化合物は、カルボニル炭素と窒素原子とが結合した構造を主鎖又は側鎖に有することが好ましい。
 以下に、カルボニル炭素と窒素原子とが結合した構造を有する高分子化合物について、本発明の目的上の好適な高分子化合物を、一般式(1)~(3)を用いて述べる。
 カルボニル炭素と窒素原子とが結合した構造を側鎖に有する高分子化合物としては、下記一般式(1)で表される高分子化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)中、Xは単結合、又は置換基を有してもよい炭素数1~2のアルキル基を表す。R及びRはそれぞれ水素原子、又は置換基を有してもよい炭素数1~3のアルキル基を表し、これらは同一でも異なってもよい。また、R及びRが互いに結合した5~7員環の環状アミド構造を形成してもよい。nは繰り返し単位を表す整数であり、例えば10以上の整数である。
 R及びRの炭素数1~3のアルキル基は、直鎖、分岐鎖又は環状の何れでもよいが、直鎖又は分岐鎖のアルキル基が好ましい。当該アルキル基として、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。
 なお、本開示において、「置換基を有してもよい」の「置換基」は、特に限定されない。その置換基としては、例えば、ハロゲン原子(例えばF、Cl、Br等)、ヒドロキシ基、オキソ基、カルボキシ基、スルホ基、リン酸基、アミノ基、シアノ基、ニトロ基等が挙げられる。また、置換基を有してもよいことには、1又は複数個の置換基を有してもよいことが含まれる。
 上記一般式(1)で表される高分子化合物では、Xは単結合であることが好ましい。また、R及びRは、それぞれ独立して水素原子又はメチル基が好ましく、R及びRが互いに結合した5~7員環の環状アミド構造を形成しているものも好ましい。
 上記一般式(1)で表される好適な高分子化合物としては、例えば、ポリビニルピロリドン、ポリビニルピペリドン、ポリビニルカプロラクタム、ポリビニルホルムアミド、ポリビニルアセトアミドなどが挙げられる。これらの高分子化合物から1種を用いてもよく、2種以上を併用してもよい。
 上記一般式(1)で表される高分子化合物としては、ポリビニルピロリドンがより好ましい。
 カルボニル炭素と窒素原子とが結合した構造を側鎖に有する高分子化合物としては、下記一般式(2)で表される高分子化合物も好ましい。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(2)中、Xは単結合、又は置換基を有してもよい炭素数1~2のアルキル基を表す。R及びRはそれぞれ水素原子、又は置換基を有してもよい炭素数1~3のアルキル基を表し、これらは同一でも異なってもよい。また、R及びRが互いに結合した5~7員環の環状アミド構造を含んでいてもよい。nは繰り返し単位を表す整数であり、例えば10以上の整数である。
 R及びRの炭素数1~3のアルキル基は、直鎖、分岐鎖又は環状の何れでもよいが、直鎖又は分岐鎖のアルキル基が好ましい。当該アルキル基として、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。 
 上記一般式(2)で表される高分子化合物では、Xは単結合であることが好ましい。また、R及びRは、それぞれ独立して水素原子、炭素数1~3のアルキル基であることがより好ましい。R及びRが互いに結合した5~7員環の環状アミド構造を形成しているものも好ましい。
 上記一般式(2)で表される好適な高分子化合物としては、例えば、ポリアクリルアミド、ポリメタクリルアミド、ポリアクリロイルモルホリン、ポリイソプロピルアクリルアミド、ポリジエチルアクリルアミドなどが挙げられる。これらの高分子化合物から1種を用いてもよく、2種以上を併用してもよい。
 上記一般式(2)で表される高分子化合物としては、ポリアクリルアミドがより好ましい。
 カルボニル炭素と窒素原子とが結合した構造を主鎖に有する高分子化合物としては、下記一般式(3)で表される高分子化合物も好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(3)中、Rは置換基を有してもよい炭素数1~3のアルキル基を表し、nは繰り返し単位を表す整数であり、例えば10以上の整数である。
 Rの炭素数1~3のアルキル基は、直鎖、分岐鎖又は環状の何れでもよいが、直鎖又は分岐鎖のアルキル基が好ましい。当該アルキル基として、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。
 上記一般式(3)で表される好適な高分子化合物としては、例えば、ポリ(2-エチル-2-オキサゾリン)、ポリ(2-プロピル-2-オキサゾリン)等のポリ(2-アルキル-2-オキサゾリン)などが挙げられる。これらの高分子化合物から1種を用いてもよく、2種以上を併用してもよい。
 上記一般式(3)で表される高分子化合物としては、ポリ(2-エチル-2-オキサゾリン)がより好ましい。
 上記各高分子化合物は1種を単独で用いてもよく、2種以上を併用してもよい。上記高分子化合物として、ポリビニルピロリドン及び/又はポリアクリルアミドを用いることがさらに好ましい。
 上記高分子化合物の製造方法及び重合方法は特に限定されない。例えば、上記高分子化合物として、上記一般式(1)~(3)のいずれかで表される高分子化合物を用いる場合、上記一般式(1)~(3)の構成単位を与える単量体成分を所定量用いて重合することにより得ることができる。一例を挙げると、N-ビニル-2-ピロリドンを重合してポリビニルピロリドンを得ることができ、アクリルアミドを重合してポリアクリルアミドを得ることができる。また、上記高分子化合物は市販品を用いることもできる。
 被処理水に使用する高分子化合物については、処理対象となる被処理水中のフェノール性ヒドロキシ基を有する有機化合物の大きさ及び量などに応じて、適当な質量平均分子量等を有する高分子化合物を用いることが望ましい。例えば、被処理水中のフェノール性ヒドロキシ基を有する有機化合物の大きさが小さく、低分子量のものである場合、分散剤に含まれる高分子化合物の質量平均分子量は、2500程度の比較的低分子量のものを用いることができる。
 上記高分子化合物の質量平均分子量は、通常、2000~2000000であることが好ましく、7000~2000000であることがより好ましく、7000~1500000であることがさらに好ましい。高分子化合物の質量平均分子量の下限は、2500が好ましく、5000がより好ましく、10000がさらに好ましい。高分子化合物の質量平均分子量の上限は、1000000が好ましく、500000がより好ましく、100000がさらに好ましい。
 質量平均分子量2000~2000000の高分子化合物を分散剤に用いれば、分散剤が被処理水中に含まれるフェノール性ヒドロキシ基を有する有機化合物に結合し易くなり、分散効果を高めることができると考えられる。
 なお、本開示において、上記高分子化合物の質量平均分子量は、GPC法で測定し、標準プルランによる検量線を用いて算出した、プルラン換算の値である。
 本実施形態に係る水処理用分散剤には、上記高分子化合物のほか、後述するスケール防止剤、水等の溶媒又は分散媒体、スライムコントロール剤などの他の成分を含有してもよい。
 分散剤は、例えば、上記高分子化合物と、他の成分とを含有する1剤型としてもよく、上記高分子化合物と他の成分とを別々の剤として多剤型(例えば、キット型)としてもよい。1剤型は使用の際の取り扱いが容易であり、多剤型は別々に添加することができるので被処理水の水質に応じて用法(添加時期や添加量等)の調整が容易である。
 分散剤の形態は、特に限定されず、液状、固体状、半固体状の何れでもよい。例えば、分散剤に用いる上記高分子化合物、及び後述するスケール防止剤等の他の成分は、それぞれ固体で、又は水等の溶剤にて溶液若しくは分散液などの形態で用いられてもよい。上記高分子化合物と他の成分とを容易に混合し一剤化でき、被処理水に添加するだけでよいといった取り扱い易さから、分散剤の形態は液状とすることがより好ましい。
 分散剤中の高分子化合物の含有割合は、特に限定されないが、5~60質量%が好ましく、15~45質量%がさらに好ましい。かかる範囲で高分子化合物を分散剤中に含んでいれば、分散剤の容積を小さくし、かつ取り扱いの困難な高粘度溶液とならない点で好適である。
 本実施形態に係る分散剤は、さらにスケール防止剤を含むものが好適であり、上記高分子化合物と、スケール防止剤とを含んで構成されるものが好適である。
 分散剤にスケール防止剤を含むことにより、スケール防止剤が被処理水中に含まれるフェノール性ヒドロキシ基を有する有機化合物の架橋構造を崩すように作用すると考えられ、上記高分子化合物の分散効果をより高められることができると考えられる。
 このような、高分子化合物との相乗効果の観点から、スケール防止剤としては、フェノール性ヒドロキシ基を有する有機化合物を架橋する金属イオン(例えば、Ca及びAl等の金属イオン)を捕捉するものであることが好ましく、リン酸系スケール防止剤及びホスホン酸系スケール防止剤のうちの少なくとも1種を用いることがより好ましい。
 低分子のスケール防止剤としては、例えば、トリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、2-ホスホノ-1,2,4-トリカルボキシブタン、1-ヒドロキシエチリデン-1,1-ジホスホン酸、及びアミノトリメチレンホスホン酸などが挙げられる。
 高分子のスケール防止剤としては、例えば、ホスフィノカルボン酸共重合体、アクリル酸/3-アリルオキシ-2-ヒドロキシプロパンスルホン酸共重合体、アクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸共重合体、アクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸/t-ブチルアクリルアミド共重合体、及びマレイン酸/アクリル酸アルキル/ビニルアセテート共重合体などが挙げられる。
 これらのスケール防止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 スケール防止剤として、1-ヒドロキシエチリデン-1,1-ジホスホン酸(別称:1-ヒドロキシエタン-1,1-ジイルビスホスホン酸、HEDP)、2-ホスホノブタン-1,2,4-トリカルボン酸(PBTC)がさらに好ましい。
 なお、PBTCとしては、例えば栗田工業株式会社製の商品名「クリバーター(登録商標)N-500」を用いることができる。
 本実施形態に係る水処理用分散剤中のスケール防止剤の含有割合は、特に限定されないが、5~40質量%が好ましく、15~30質量%がさらに好ましい。かかる範囲でスケール防止剤を水処理用分散剤中に含んでいれば、高分子化合物とスケール防止剤の相乗効果を飛躍的に高めることができる。
 以上詳述した本実施形態の水処理用分散剤、又は当該水処理用分散剤に使用する各成分を、同時期に又は別々の時期に、水処理水系において有効に適用する。これにより、被処理水に含まれるフェノール性ヒドロキシ基を有する有機化合物を処理することができる。
 被処理水を膜分離処理する際に、本実施形態の水処理用分散剤、又は当該水処理用分散剤に使用する各成分を用いることで、被処理水中に含まれるフェノール性ヒドロキシ基を有する有機化合物が分離膜表面に付着することによる透過水量の低下を抑制することが可能となる。
 図2A~Cを用いて、考えられる水処理用分散剤の作用機構を説明する。
 図2Aに示すように被処理水中でフェノール性ヒドロキシ基を有する有機化合物(A)が単独で溶解又は分散していた場合、被処理水中に含まれる有機化合物(A)どうしが結合し、凝集及び粗大化を引き起こす可能性がある。しかしながら、本実施形態に係る親水性の分散剤(B)が、当該有機化合物(A)に結合することで(図2A中の符号C1参照)、有機化合物(A)と分散剤(B)との結合物(C1)は親水性となり、疎水性相互作用による当該有機化合物(A)の凝集及び粗大化が抑止されると考えられる(図2A参照)。
 また、図2Bに示すように、被処理水中で当該有機化合物(A)が被処理水中に含まれる他の有機物(D)(又は金属)と結合した凝集物(E1)の状態で、若しくはそれが粗大化した凝集物(E2)の状態で分散していた場合、本実施形態に係る親水性の分散剤(B)が、凝集物(E1、E2)を被覆することで(図2B中の符号C2参照)、さらなる凝集及び粗大化が抑止されると考えられる(図2B参照)。
 そして、図2Cに示すように、被処理水中で分散剤(B)が有機化合物(A)に結合し、有機化合物(A)の凝集及び粗大化が抑止されることにより、分離膜モジュール(F)の流路閉塞が抑制され、当該有機化合物(A)の分離膜(F)の表面への付着性を低下させることができると考えられる。また、被処理水中で分散剤(B)が凝集物(E1、E2)を被覆し、有機化合物(A)のさらなる凝集及び粗大化が抑制されることにより、分離膜モジュール(F)の流路閉塞が抑制され、当該有機化合物(A)の分離膜(F)の表面への付着性を低下させることができると考えられる。
 被処理水中にフルボ酸のようなカルボキシ基を有し、かつフェノール性ヒドロキシ基を有する有機化合物が存在する場合、そのようなカルボキシ基及びフェノール性ヒドロキシ基を有する有機化合物に対して、水処理用分散剤に加え、スケール防止剤を添加することで、それらの相乗効果により、当該有機化合物の分離膜表面への付着性をより低減させることができると考えられる。
<水処理方法>
 本発明の実施形態に係る水処理方法は、上述した高分子化合物を含む水処理用分散剤を上述した被処理水に添加するものである。
 本実施形態の水処理方法では、上述した水処理用分散剤、又は当該水処理用分散剤に使用する各成分を、同時期に又は別々の時期に、被処理水に添加することができる。
 例えば、本実施形態の水処理方法では、上記高分子化合物と、上記スケール防止剤等の他の成分とを別個に、被処理水に同時期に又は別々の時期に添加してもよい。また、水処理用分散剤に上記スケール防止剤を含まない場合、上記高分子化合物を含む水処理用分散剤のほか、この水処理用分散剤とは別個のスケール防止剤を被処理水に添加してもよい。
 水処理用分散剤、又は当該水処理用分散剤に使用する各成分を被処理水に対して添加する工程又は場所は、フェノール性ヒドロキシ基を有する有機化合物を含む被処理水であれば、特に限定されない。当該被処理水に、水処理用分散剤又は水処理用分散剤に使用する上記高分子化合物を添加することで、当該高分子化合物が被処理水中のフェノール性ヒドロキシ基を有する有機化合物に結合し、被処理水を処理することができる。
 水処理用分散剤の添加は、被処理水を膜分離処理やイオン交換樹脂処理等で水処理する工程において行うことが好ましく、膜分離処理の前段に行うことがより好ましい。
 膜分離処理を行う前の被処理水中に分散剤を添加することで、分散剤が、被処理水中に含まれるフェノール性ヒドロキシ基を有する有機化合物に結合し、当該有機化合物の分離膜への付着を抑制することが可能となる。そして、当該有機化合物の分離膜への付着による透過水量の低下を防止することが可能となる。
 膜分離処理としては、精密ろ過膜(MF膜)処理、限外ろ過膜(UF膜)処理、ナノろ過膜(NF膜)処理、逆浸透膜(RO膜)処理等が挙げられる。
 分散剤の添加は、膜分離処理で用いるMF膜、UF膜、NF膜、RO膜等を通過する前の被処理水(これら分離膜への供給水)に対して行うことがより好ましい。
 膜分離処理の前段に、より好ましくはMF膜、UF膜、NF膜及びRO膜等の供給水に分散剤を添加することで、フェノール性ヒドロキシ基を有する有機化合物による膜ファウリングを抑制することが可能となる。
 分散剤の添加は、RO膜を通過する前の被処理水に行うことがさらに好ましい。図3にRO膜分離装置へ分散剤を添加する場合の代表的なフロー図を示す。図3では、インラインミキサー(又は反応槽)31に供給された原水に凝集剤が添加される凝集処理工程と、凝集処理水が固液分離装置32にて処理される固液分離処理工程とを備え、プレフィルター33を経たRO膜装置34の前に分散剤を添加して分離膜処理を行うフローを例示している。
 RO膜を通過する前の被処理水に分散剤を添加することで、分散剤と結合したフェノール性ヒドロキシ基を有する有機化合物は、RO膜表面やRO膜分離装置(モジュール)に付着することなく、ブライン水中に含まれる有機物として処理される。
 被処理水に対する上記高分子化合物の添加量は、特に限定されず、被処理水中に含まれるフェノール性ヒドロキシ基を有する有機化合物の濃度及び種類などに応じて適宜決められる。
 上記高分子化合物の添加量は、被処理水中に含まれるフェノール性ヒドロキシ基を有する有機化合物の質量に対し、0.25~20倍とすることが好ましく、0.5~10倍とすることがより好ましく、1~10倍とすることがさらに好ましく、1~5倍とすることがよりさらに好ましい。例えば、被処理水中にフェノール性ヒドロキシ基を有する有機化合物が1mg/L含まれている場合、高分子化合物の添加量は、0.25~20mg/Lとすることが好ましく、0.5~10mg/Lとすることがより好ましく、1~10mg/Lとすることがさらに好ましく、1~5mg/Lとすることがよりさらに好ましい。
 高分子化合物の添加量を上記範囲とすることにより、高分子化合物が被処理水中に含まれるフェノール性ヒドロキシ基を有する有機化合物に結合し易くなり、分散効果が高まると考えられる。
 スケール防止剤を水処理用分散剤に含めて、又は水処理用分散剤とは別個に、被処理水に添加する場合、被処理水に対するスケール防止剤の添加量は特に限定されない。被処理水に対するスケール防止剤の添加量は、被処理水中に含まれるフェノール性ヒドロキシ基を有する有機化合物の濃度及び種類、並びに被処理水中に含まれるスケール成分の濃度及び種類などに応じて適宜決められる。
 スケール防止剤の添加量は、被処理水中に含まれるフェノール性ヒドロキシ基を有する有機化合物の質量に対し、0.25~20倍とすることが好ましく、0.5~15倍とすることがより好ましく、1~10倍とすることがさらに好ましい。
 また、スケール防止剤の添加量は、被処理水中に含まれるカルシウムやマグネシウム等のスケール成分の質量に対し、0.1~20倍とすることが好ましく、0.2~10倍とすることがより好ましく、0.3~5倍とすることがさらに好ましい。
 スケール防止剤の添加量を上記範囲とすることにより、水処理用分散剤とスケール防止剤との併用による相乗効果により、膜分離処理において、有機化合物やスケール成分の分離膜表面への付着性の更なる低減に寄与することができる。
 なお、上記の高分子化合物及びスケール防止剤の各添加量範囲において、被処理水中のフェノール性ヒドロキシ基を有する有機化合物及びスケール成分の各質量(濃度)は、分散剤を添加する直前の現実の被処理水中の質量(濃度)である場合に限られない。例えば、被処理水中の当該有機化合物及びスケール成分の各質量は、原水(図3参照)中のそれらの質量を基準としてもよく、被処理水中の当該有機化合物の質量は、凝集処理工程において凝集剤として添加される当該有機化合物の質量を基準としてもよい。
 被処理水に上記高分子化合物を適度な添加量にて添加するために、高分子化合物を含む分散剤を添加する前の被処理水に対して、被処理水中のフェノール性ヒドロキシ基を有する有機化合物の含有量(濃度)を測定することが好ましい。さらにその測定値をモニタリングすることがより好ましい。これにより、被処理水中の当該有機化合物の含有量に応じて、分散剤の添加量を決めることが可能となる。
 また同様に、被処理水中にスケール防止剤を適度な添加量にて添加するために、スケール防止剤を添加する前の被処理水に対して、被処理水中のフェノール性ヒドロキシ基を有する有機化合物及びスケール成分の含有量(濃度)を測定することが好ましく、その測定値をモニタリングすることがより好ましい。これにより、被処理水中の当該有機化合物及びスケール成分の含有量に応じて、スケール防止剤の添加量を決めることが可能となる。
 本実施形態の水処理方法では、被処理水に対して、必要に応じて、公知の高分子凝集剤及び/又は無機凝集剤を添加する凝集処理工程を備えていてもよい。また、凝集処理工程の凝集処理水を固液分離する工程を備えていてもよい。固液分離処理工程としては、例えば、沈殿処理、加工浮上処理、膜分離処理、遠心分離処理等が挙げられる。
 本実施形態の水処理方法では、フェノール性ヒドロキシ基を有する有機化合物と結合する分散剤を用いることから、分散剤を添加する前の工程、例えば、凝集処理工程において、高分子凝集剤として、特許文献1で提案されているような、フェノール樹脂のアルカリ溶液よりなる凝集剤を好適に用いることができる。当該凝集剤を用い、その凝集剤が凝集処理水に残存していた場合でも、後段の膜分離処理工程において、その凝集処理水(被処理水)に分散剤を添加することで、凝集剤中のフェノール性ヒドロキシ基を有する有機化合物に結合し、膜ファウリングを防止することが可能となる。
 高分子凝集剤として、特に限定されないが、例えば、カチオン性高分子凝集剤、両性高分子凝集剤、ノニオン性高分子凝集剤、アニオン性高分子凝集剤等が挙げられ、これらを単独で又は2種以上組み合わせて使用してもよい。これらは市販品を使用すればよい。
 無機凝集剤として、特に限定されないが、例えば、硫酸アルミニウム及びポリ塩化アルミニウム等のアルミニウム塩系凝集剤、並びに硫酸第一鉄、塩化第二鉄、ポリ硫酸第二鉄及び鉄-シリカ無機高分子等の鉄塩系凝集剤(例えば、第一鉄塩、第二鉄塩、ポリシリカ鉄等)が挙げられる。これらから1種又は2種以上を選択して使用してもよい。
 本実施形態の水処理方法では、被処理水のpHを3.5~8.5に調整するpH調整工程を備えることが好ましい。被処理水のpHは、より好ましくは4.0~7.5、さらに好ましくは5.0~7.0に調整する。
 被処理水のpHの調整は、酸剤及び/又はアルカリ剤を用いた従来から行われている手法により行うことが可能である。用いる酸剤及びアルカリ剤は特に限定されない。酸剤としては、例えば、硫酸、塩酸、及び二酸化炭素等が挙げられる。アルカリ剤としては、例えば、水酸化ナトリウム、炭酸ナトリウム、酸化カルシウム、水酸化カルシウム、及び炭酸カルシウム等が挙げられる。
 以上詳述した本実施形態の水処理方法では、フェノール性ヒドロキシ基を有する有機化合物を含む被処理水に、本実施形態に係る水処理用分散剤、又は当該水処理用分散剤に使用する各成分を添加する。これにより、被処理水中に含まれるフェノール性ヒドロキシ基を有する有機化合物が分離膜表面に付着することを抑止することが可能となる。それ故、当該有機化合物が分離膜表面に付着することによる透過水量の低下を抑制することが可能となる。
 本実施形態の水処理方法により、被処理水中に含まれる有機化合物の分離膜表面への付着を抑えることができるのは、前述の水処理用分散剤の説明において、図2A~Cを用いて説明した作用機構によるものと考えられる。
 なお、本実施形態に係る水処理方法を、処理対象となる被処理水の水質を管理するための装置(例えば、パーソナルコンピュータ等)におけるCPU等を含む制御部によって実現させることも可能である。また、本実施形態に係る水処理方法を、記録媒体(不揮発性メモリ(USBメモリ等)、HDD、CD等)等を備えるハードウェア資源にプログラムとして格納し、前記制御部によって実現させることも可能である。当該制御部によって、被処理水に分散剤を添加するように制御する水処理システムを提供することも可能である。
 以上詳述した本発明は、以下のような構成をとることもできる。
 [1]フェノール性ヒドロキシ基を有する有機化合物を含む被処理水に用いられ、カルボニル基を有し、カルボニル炭素と窒素原子とが結合した構造を有する高分子化合物を含む、水処理用分散剤。
 [2]前記高分子化合物として、下記一般式(1)~(3)のいずれかで表される高分子化合物のうちの少なくとも1種を含む上記[1]に記載の水処理用分散剤。
Figure JPOXMLDOC01-appb-I000006
 (上記一般式(1)~(3)において、X及びXは単結合、又は置換基を有してもよい炭素数1~2のアルキル基を表す。R~Rは、水素原子、又は置換基を有してもよい炭素数1~3のアルキル基を表し、R及びR、並びにR及びRは、互いに同一でも異なってもよく、互いに結合して、5~7員環の環状アミド構造を形成してもよい。)
 [3]前記高分子化合物として、ポリビニルピロリドン及びポリアクリルアミドのうちの何れか一方又は両方を含む上記[1]又は[2]に記載の水処理用分散剤。
 [4]前記高分子化合物の質量平均分子量が2000~2000000(より好ましくは7000~2000000)である上記[1]~[3]のいずれか1つに記載の水処理用分散剤。
 [5]スケール防止剤をさらに含む、上記[1]~[4]のいずれか1つに記載の水処理用分散剤。
 [6]膜分離処理(より好ましくはMF膜処理、UF膜処理、NF膜処理、RO膜処理)において用いられる、上記[1]~[5]のいずれか1つに記載の水処理用分散剤。
 [7]フェノール性ヒドロキシ基を有する有機化合物を含む被処理水に、上記[1]~[6]のいずれか1つに記載の水処理用分散剤を添加する水処理方法。
 [8]前記被処理水が膜分離処理(より好ましくはRO膜処理)の供給水である上記[7]に記載の水処理方法。
 [9]フェノール性ヒドロキシ基を有する有機化合物を含む被処理水に、カルボニル基を有し、カルボニル炭素と窒素原子とが結合した構造を有する高分子化合物を添加する水処理方法。
 [10]前記被処理水にさらにスケール防止剤を添加する上記[9]に記載の水処理方法。
 [11]前記被処理水が膜分離処理(より好ましくは、RO膜処理)の供給水であり、膜分離処理の工程において行われる上記[9]又は[10]に記載の水処理方法。
 [12]前記膜分離処理の工程の前に、フェノール樹脂を含む凝集剤を添加する凝集処理工程を備え、前記被処理水が、当該フェノール樹脂を含む凝集剤が残存した凝集処理水である上記[11]に記載の水処理方法。
 以下に、本発明の効果を具体的な実験例を用いてさらに詳細に説明する。なお、本発明は以下の実験例に限定されるものではない。
<実験例1>
 以下の実験例1で用いた試薬は以下の通りである。
(無機凝集剤)
 無機凝集剤には、塩化第二鉄(FeCl)の3.8質量%水溶液を用いた。
(フェノール樹脂凝集剤)
 フェノール樹脂凝集剤には、特許文献1に記載されているように、ノボラック型フェノール樹脂のアルカリ溶液に、ホルムアルデヒドを添加してアルカリ触媒の存在下にレゾール型の2次反応を行って得られた、フェノール樹脂のアルカリ溶液を使用した。この凝集剤におけるフェノール樹脂は、ポリスチレン換算の質量平均分子量が12000で、その融点が170℃であった。
 [実験例1-1]
 25℃の純水30mLをサンプル瓶に入れ、フェノール樹脂凝集剤の有効成分の濃度を180mg/L、ポリビニルピロリドン(PVP、質量平均分子量40000、キシダ化学株式会社製)を600mg/Lとなるよう添加した後、無機凝集剤をFeClが180mg/Lとなるよう添加し、水酸化ナトリウム水溶液を用いてpHを5.5に調整した。このようにして実験例1-1の混合液を調製した。
 [実験例1-2]
 実験例1-2では、実験例1-1で用いたPVPの代わりに、質量平均分子量10000のPVP(キシダ化学株式会社製)を使用した以外は、実験例1-1と同様に、混合液を調製した。
 [実験例1-3]
 実験例1-3では、実験例1-1で用いたPVPの代わりに、質量平均分子量2500のPVP(Polysciences, Inc.製)を使用した以外は、実験例1-1と同様に、混合液を調製した。
 [実験例1-4]
 実験例1-4では、実験例1-1で用いたPVPの代わりに、質量平均分子量1200000のPVP(Sigma-Aldrich社製)を使用した以外は、実験例1-1と同様に、混合液を調製した。
 [実験例1-5]
 実験例1-5では、実験例1-1で用いたPVPの代わりに、質量平均分子量40000のポリアクリルアミド(PAAm、Sigma-Aldrich社製)を使用した以外は、実験例1-1と同様に、混合液を調製した。
 [実験例1-6]
 実験例1-6では、実験例1-1で用いたPVPの代わりに、質量平均分子量50000のポリ(2-エチル-2-オキサゾリン)(Polysciences, Inc.製)を使用した以外は、実験例1-1と同様に、混合液を調製した。
 以上の実験例1-1~1-6に対して、以下の比較実験(実験例1-7及び1-8)を行った。
 [実験例1-7]
 実験例1-7では、実験例1-1で用いたPVPを添加する代わりに、同量の純水を添加した以外は、実験例1-1と同様に、混合液を調製した。
 [実験例1-8]
 実験例1-8では、実験例1-1で用いたPVPを添加する代わりに、同量のポリエチレングリコール水溶液(質量平均分子量20000、和光純薬工業株式会社製)を添加した以外は、実験例1-1と同様に、混合液を調製した。
 実験例1-1及び1-3、並びに実験例1-7及び1-8の混合液の様子を撮影した図面代用写真を図4に示す。
 実験例1-7では、フェノール樹脂凝集剤とFeClが反応し沈殿物を生じた。これに対して、質量平均分子量40000のPVPを被処理水に添加した場合の実験例1-1では、凝集がほとんど見られず、分散効果を奏することが示された。この分散効果は実験例1-2及び1-4でも同様であった。また、質量平均分子量40000のPAAmを被処理水に添加した実験例1-5においても、分散効果が見られた。実験例1-6の質量平均分子量50000のポリ(2-エチル-2-オキサゾリン)を用いた場合、PVPを用いた場合に比較して、沈殿物の発生がわずかに見られたものの、全てのFeClは反応せず、分散効果がみられた。
 なお、質量平均分子量2500のPVPを用いた実験例1-3や、PVPと同じく親水性高分子として知られるポリエチレングリコールを用いた実験例1-8では、分散効果が示されなかった。この結果から、被処理水中に含まれる処理対象となるフェノールヒドロキシ基を有する有機化合物の分子量、種類及び濃度等に応じて、使用する分散剤に一定以上の分子量が必要であると考えられた。
<実験例2>
 実験例2では、実験例1で用いた無機凝集剤、及びフミン酸溶液を用いた。このフミン酸溶液には、フミン酸(和光純薬工業株式会社製)を10mM NaOH水溶液に溶かして調製した、180mg/Lのフミン酸溶液を用いた。
 [実験例2-1]
 25℃のフミン酸溶液30mLをサンプル瓶に入れ、質量平均分子量40000のPVPを600mg/Lとなるよう添加した後、FeClを180mg/Lとなるよう添加し、水酸化ナトリウム溶液を用いてpHを6.0に調整した。このようにして実験例2-1の混合液を調製した。
 [実験例2-2]
 実験例2-2では、実験例2-1で用いた質量平均分子量40000のPVPの代わりに、質量平均分子量40000のPAAmを使用した以外は、実験例2-1と同様に、混合液を調製した。
 以上の実験例2-1及び2-2に対し、以下の比較実験(実験例2-3及び2-4)を行った。
 [実験例2-3]
 実験例2-3では、実験例2-1で用いたPVPを添加する代わりに同量の純水を添加した以外は、実験例2-1と同様に、混合液を調製した。
 [実験例2-4]
 実験例2-4では、実験例2-1で用いたPVPを添加する代わりに同量のポリエチレングリコール水溶液(質量平均分子量20000)を添加した以外は、実験例2-1と同様に、混合液を調製した。
 実験例2-1と実験例2-3の混合液の様子を撮影した図面代用写真を図5に示す。
 実験例2-3では、フミン酸とFeClが反応し沈殿物を生じたが、実験例2-1のように被処理水にPVPを添加すると凝集がほとんど見られず、分散効果が示された。実験例2-2のPAAmを添加した場合でも、同様に分散効果が示された。
 <実験例3>
 以下の実験例3では、以下の試験水(被処理水)及び実験例1で用いたフェノール樹脂凝集剤を用いた。
(被処理水)
 被処理水には、試験研究所における排水の生物処理水を供給水とした、RO膜装置のブライン水を用いた。
 実験例3では、図6に示すような、凝集処理装置(凝集処理工程)61、固液分離装置(固液分離処理工程)62、MF膜装置(MF膜処理工程)63、RO膜装置(RO膜処理工程)64を備える水処理システムのフローにおいて、分散剤(PVP)を被処理水に添加する水処理方法を想定した実験を行った。
 より具体的には、実験例3では、凝集処理工程61において凝集剤として使用したフェノール樹脂が凝集処理工程61及び固液分離処理工程62の後に、2mg/L残存し、MF膜を汚染するおそれがあるケースを想定して、PVPの分散効果の確認実験を行った。
 [実験例3-1]
 25℃の被処理水500mLをビーカーに入れ、150rpmで5分間撹拌している最中に、フェノール樹脂凝集剤の有効成分の濃度を2mg/Lとなるように添加した後、質量平均分子量10000のPVPを0.5mg/Lになるように添加し、塩酸を用いてpHを5.5に調整した。さらに50rpmで10分間撹拌することで被処理水中のPVPとフェノール樹脂とを反応させた。
 反応後の水を250mL量り取り、孔径0.45μmのセルロース製のMF膜を用いて、真空度67kPaで吸引ろ過する際に必要な時間を測定した。
 また、反応後の水を孔径0.45μmの親水性ポリテトラフルオロエチレン(PTFE)製シリンジフィルターでろ過し、固液分離を行った。このろ過水を、紫外可視分光光度計を用いて、波長282nmの吸光度を測定することでフェノール性ヒドロキシ基を有する有機化合物の存在量を推算した。
 [実験例3-2]
 実験例3-2では、実験例3-1で用いたPVPの添加量を1.0mg/Lに変更した以外は、実験例3-1と同様とした。
 [実験例3-3]
 実験例3-3では、実験例3-1で用いたPVPの添加量を2.0mg/Lに変更した以外は、実験例3-1と同様とした。
 [実験例3-4]
 実験例3-4では、実験例3-1で用いたPVPの添加量を4.0mg/Lに変更した以外は、実験例3-1と同様とした。
 以上の実験例3-1~3-4に対して、以下の比較実験(実験例3-5及び3-6)を行った。
 [実験例3-5]
 実験例3-5では、実験例3-1においてPVPを添加しないこととした以外は、実験例3-1と同様とした。
 [実験例3-6]
 実験例3-6では、実験例3-1においてフェノール樹脂凝集剤とPVPを添加する代わりに、同量の純水を添加した以外は、実験例3-1と同様とした。
 実験例3-1~3-6の結果を表1に示す。
 また、PVP添加濃度に対するろ過時間及び波長282nmの吸光度の関係を図7及び図8にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000007
 実験例3-3(PVP添加量2.0mg/L)及び実験例3-4(PVP添加量4.0mg/L)では、ろ過時間が実験例3-6と同等まで低下し(図7参照)、また、波長282nmの吸光度が高い値を示していた(図8参照)。この結果から、実験例3-3及び3-4では、フェノール樹脂凝集剤がMF膜をほとんど汚染することなく、膜を通過したと推定された。
 以上の実験例3の結果から、PVPを添加することで、フェノール樹脂とPVPとが結合し、ろ過膜の汚染を抑制することが可能であると考えられる。特にフェノール樹脂凝集剤の有効成分量に対して質量比で等量以上のPVPを添加することで、フェノール樹脂凝集剤がMF膜にほとんど付着せず、MF膜のファウリングをより抑制することができると考えられる。
<実験例4>
 以下の実験例4で用いた試験水(被処理水)、試薬、及び試験条件は次の通りである。
 フルボ酸水溶液として、カナディアンフルボを1mg/L、塩化カルシウムをCa濃度が10mg/Lになるよう、それぞれ純水に溶かして調製したものを用いた(pH6.5±0.5)。
 水処理用分散剤として、質量平均分子量10000のPVPの1mg/mL水溶液を用いた。
 カルシウム系スケール防止剤として、栗田工業株式会社製の商品であるクリバーター(登録商標)N-500を用いた。
 RO膜として、日東電工株式会社製の商品である超低圧逆浸透膜ES20を用いた。
 RO平膜評価装置として、図9に示すような、膜面積8cmのRO膜を設置できるセルを備えたRO試験装置を用いた。このRO試験装置を用いた平膜試験では、凝集処理水(RO膜供給水)は、配管11より高圧ポンプ4で、原水室1Aと透過水室1Bを備える密閉容器1のRO膜をセットした平膜セル2の下側の原水室1Aに0.7mL/minで定量供給した。この際、原水室1A内はスターラー3で攪拌子5を回転させて攪拌した。密閉容器1の内部圧力は、濃縮水を取り出す配管13に設けた圧力計6と圧力調整バルブ7により、0.75MPaに調整し、回収率80%、水温25±2℃の条件下で透過流束を計測した。
 なお、回収率及び透過流速は以下の式で求めた。
 回収率[%]=(透過水流量[mL/min]/供給水流量[mL/min])×100
 透過流束[m/(md)]=透過水流量[m/d]/膜面積[m]×温度換算係数
 [実験例4-1]
 フルボ酸水溶液(Ca添加)にPVPを1mg/Lの濃度になるよう添加した試験水を用い、平膜試験を行った。試験中、回収率80%を維持できるよう、バルブにより運転圧力を調節し、一定時間後に透過流束を記録した。
 [実験例4-2]
 フルボ酸水溶液(Ca添加)にPVPを1mg/Lの濃度になるよう添加し、さらにクリバーターN-500を10mg/Lの濃度になるよう添加した試験水を用い、平膜試験を行った。その他は実験例4-1と同様とした。
 以上の実験例4-1及び4-2に対して、以下の比較実験(実験例4-3)を行った。
 [実験例4-3]
 フルボ酸水溶液(Ca添加)にPVP及びクリバーターN-500を添加しないこととした以外は、実験例4-1と同様に平膜試験を行った。
 図10に実験例4-1~4-3における透過水量のフラックス比を通水時間に対してプロットしたグラフを示した。
 実験例4-3では、フラックスの低下が確認された。これは、フルボ酸にカルシウムを添加すると、フルボ酸のカルボキシ基にカルシウムイオンが結合し、イオン架橋が起こると考えられ、フルボ酸やカルシウムが膜面に堆積しやすくなったためと考えられる。
 一方、実験例4-1及び4-2では、被処理水にPVPを添加することで、実験例4-3に比べて、フラックスの低下が抑制され、分散剤(PVP)は、腐植物質のような天然物由来のフェノール性ヒドロキシ基を有する有機化合物にも効果を示すことが分かった。また、PVPに加え、さらにカルシウム系スケール防止剤を添加すると、フルボ酸の架橋構造を崩すことにより、PVPの分散作用はより顕著となった(実験例4-2)。

Claims (8)

  1.  フェノール性ヒドロキシ基を有する有機化合物を含む被処理水に用いられ、
     カルボニル基を有し、カルボニル炭素と窒素原子とが結合した構造を有する高分子化合物を含む、水処理用分散剤。
  2.  前記高分子化合物として、下記一般式(1)~(3)のいずれかで表される高分子化合物のうちの少なくとも1種を含む請求項1記載の水処理用分散剤。
    Figure JPOXMLDOC01-appb-C000001
     (上記一般式(1)~(3)において、X及びXは単結合、又は置換基を有してもよい炭素数1~2のアルキル基を表す。R~Rは、水素原子、又は置換基を有してもよい炭素数1~3のアルキル基を表し、R及びR、並びにR及びRは、互いに同一でも異なってもよく、互いに結合して5~7員環の環状アミド構造を形成してもよい。)
  3.  前記高分子化合物として、ポリビニルピロリドン及び/又はポリアクリルアミドを含む請求項1又は2記載の水処理用分散剤。
  4.  前記高分子化合物の質量平均分子量が7000~2000000である請求項1~3のいずれか1項記載の水処理用分散剤。
  5.  スケール防止剤をさらに含む、請求項1~4のいずれか1項記載の水処理用分散剤。
  6.  膜分離処理において用いられる、請求項1~5のいずれか1項記載の水処理用分散剤。
  7.  フェノール性ヒドロキシ基を有する有機化合物を含む被処理水に、請求項1~6のいずれか1項記載の水処理用分散剤を添加する水処理方法。
  8.  前記被処理水が膜分離処理の供給水である請求項7記載の水処理方法。
PCT/JP2015/057420 2014-03-18 2015-03-13 水処理用分散剤及び水処理方法 WO2015141567A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/127,254 US20170107126A1 (en) 2014-03-18 2015-03-13 Dispersant for water treatment and water treatment method
CN201580014454.7A CN106132878A (zh) 2014-03-18 2015-03-13 水处理用分散剂以及水处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-055253 2014-03-18
JP2014055253A JP5867532B2 (ja) 2014-03-18 2014-03-18 水処理用分散剤及び水処理方法

Publications (1)

Publication Number Publication Date
WO2015141567A1 true WO2015141567A1 (ja) 2015-09-24

Family

ID=54144536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057420 WO2015141567A1 (ja) 2014-03-18 2015-03-13 水処理用分散剤及び水処理方法

Country Status (4)

Country Link
US (1) US20170107126A1 (ja)
JP (1) JP5867532B2 (ja)
CN (1) CN106132878A (ja)
WO (1) WO2015141567A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7200552B2 (ja) 2018-08-31 2023-01-10 栗田工業株式会社 分離膜のファウリング防止剤及びファウリング防止方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6673470B2 (ja) 2017-03-15 2020-03-25 栗田工業株式会社 膜用水処理薬品及び膜処理方法
JP6644014B2 (ja) * 2017-03-23 2020-02-12 栗田工業株式会社 用水処理方法
JP6777130B2 (ja) 2018-10-05 2020-10-28 栗田工業株式会社 膜用水処理薬品及び膜処理方法
CN115448473B (zh) * 2022-08-29 2023-06-20 常熟金陵海虞热电有限公司 一种用于热电厂循环冷却水的阻垢剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137736A (ja) * 1996-11-18 1998-05-26 Kurita Water Ind Ltd 高分子水処理材料
JP2001149963A (ja) * 1999-11-25 2001-06-05 Nippon Shokubai Co Ltd 有機ハロゲン化合物を含有する排水の処理方法
JP2002256032A (ja) * 2001-02-28 2002-09-11 Hymo Corp 両性水溶性高分子分散液
JP2008284469A (ja) * 2007-05-18 2008-11-27 Hitachi Plant Technologies Ltd 逆浸透膜処理の前処理方法
JP2010029757A (ja) * 2008-07-25 2010-02-12 Miura Co Ltd 膜ろ過システム、及び膜ろ過システムの運転方法
JP2012196614A (ja) * 2011-03-18 2012-10-18 Kubota Corp 排水処理方法および排水処理システム
JP2013095886A (ja) * 2011-11-04 2013-05-20 Daicen Membrane Systems Ltd 超重質油層からの油の回収方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159946A (en) * 1974-06-11 1979-07-03 Ciba Geigy (Uk) Limited Treatment of aqueous systems
EP1181537B1 (en) * 1999-05-14 2013-07-10 Waters Technologies Corporation Uses of destructible surfactants in analysis
KR20050119139A (ko) * 2003-03-24 2005-12-20 니폰 가가쿠 고교 가부시키가이샤 긴 직선적 공액계 구조 부분을 갖는 벤젠 유도체, 그의제조 방법 및 액정성 재료
CN1470464A (zh) * 2003-06-24 2004-01-28 淄博纳科水处理技术有限公司 高效节水无膦环保水处理剂
CA2606190A1 (en) * 2005-04-27 2006-11-02 Hw Process Technologies, Inc. Treating produced waters
US7324803B2 (en) * 2005-07-07 2008-01-29 Christine Moyes Emergency settings for cellular telephones
ATE485243T1 (de) * 2006-02-24 2010-11-15 Isp Investments Inc Verwendung von pvpp zur entfernung von schadstoffen aus wasser eines erdöl- oder erdgasbohrloches
JP4963031B2 (ja) * 2006-03-15 2012-06-27 花王株式会社 非水系顔料分散剤
EP2111380B1 (en) * 2007-01-19 2015-10-28 The Purolite Company Reduced fouling of reverse osmosis membranes
CN101746900B (zh) * 2008-12-01 2011-09-14 中国石油化工股份有限公司 一种抑垢剂组合物及其制备方法以及污水处理方法
CN101831177B (zh) * 2010-05-05 2011-10-19 吉林大学 一种水分散聚芳醚砜类乳液的配方及生产工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137736A (ja) * 1996-11-18 1998-05-26 Kurita Water Ind Ltd 高分子水処理材料
JP2001149963A (ja) * 1999-11-25 2001-06-05 Nippon Shokubai Co Ltd 有機ハロゲン化合物を含有する排水の処理方法
JP2002256032A (ja) * 2001-02-28 2002-09-11 Hymo Corp 両性水溶性高分子分散液
JP2008284469A (ja) * 2007-05-18 2008-11-27 Hitachi Plant Technologies Ltd 逆浸透膜処理の前処理方法
JP2010029757A (ja) * 2008-07-25 2010-02-12 Miura Co Ltd 膜ろ過システム、及び膜ろ過システムの運転方法
JP2012196614A (ja) * 2011-03-18 2012-10-18 Kubota Corp 排水処理方法および排水処理システム
JP2013095886A (ja) * 2011-11-04 2013-05-20 Daicen Membrane Systems Ltd 超重質油層からの油の回収方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7200552B2 (ja) 2018-08-31 2023-01-10 栗田工業株式会社 分離膜のファウリング防止剤及びファウリング防止方法

Also Published As

Publication number Publication date
US20170107126A1 (en) 2017-04-20
JP5867532B2 (ja) 2016-02-24
JP2015174082A (ja) 2015-10-05
CN106132878A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
Norberg et al. Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes
WO2015141567A1 (ja) 水処理用分散剤及び水処理方法
JP5218731B2 (ja) 水処理方法及び水処理装置
Xu et al. Impacts of organic coagulant aid on purification performance and membrane fouling of coagulation/ultrafiltration hybrid process with different Al-based coagulants
Ji et al. Enhancement of filterability in MBR achieved by improvement of supernatant and floc characteristics via filter aids addition
TW200846290A (en) Method for the treatment with reverse osmosis membrane
TWI760553B (zh) 水處理方法及水處理裝置
WO2010050325A1 (ja) 膜分離処理方法
JP5282864B2 (ja) 膜分離方法及び膜分離装置
JP5935967B2 (ja) 凝集剤の添加量決定方法、水処理方法及び水処理装置
JP6015811B1 (ja) 水処理方法及び水処理装置
US11077403B2 (en) Water treatment method
JP6673470B2 (ja) 膜用水処理薬品及び膜処理方法
US11958019B2 (en) Water treatment chemical for membranes and membrane treatment method
JP2012187467A (ja) 膜分離方法及び膜分離装置
JP2016093789A (ja) 水処理方法及び水処理システム
JP2019188338A (ja) 水処理方法及び水処理装置
JP2011025143A (ja) ウィルス除去方法
JP6287402B2 (ja) 凝集固液分離方法及び凝集固液分離装置
JP2017131824A (ja) 水処理方法および生物代謝物用吸着剤
Liu et al. Impacts of coagulation pretreatment on MF filtration and a comparative study of different membrane module types

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15127254

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15764276

Country of ref document: EP

Kind code of ref document: A1