WO2015141456A1 - Gap-maintaining method, gap-maintaining device, and coating device - Google Patents

Gap-maintaining method, gap-maintaining device, and coating device Download PDF

Info

Publication number
WO2015141456A1
WO2015141456A1 PCT/JP2015/056171 JP2015056171W WO2015141456A1 WO 2015141456 A1 WO2015141456 A1 WO 2015141456A1 JP 2015056171 W JP2015056171 W JP 2015056171W WO 2015141456 A1 WO2015141456 A1 WO 2015141456A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
coated
discharge port
applicator
coating
Prior art date
Application number
PCT/JP2015/056171
Other languages
French (fr)
Japanese (ja)
Inventor
阿部 哲也
和幸 獅野
北村 義之
諭 圓崎
Original Assignee
東レエンジニアリング株式会社
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社, 東レ株式会社 filed Critical 東レエンジニアリング株式会社
Publication of WO2015141456A1 publication Critical patent/WO2015141456A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • B05B15/68Arrangements for adjusting the position of spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1015Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to a conditions of ambient medium or target, e.g. humidity, temperature ; responsive to position or movement of the coating head relative to the target
    • B05C11/1018Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to a conditions of ambient medium or target, e.g. humidity, temperature ; responsive to position or movement of the coating head relative to the target responsive to distance of target

Definitions

  • the present invention is used in the field of manufacturing optical filters, printed circuit boards, integrated circuits, semiconductors, etc., in addition to the field of manufacturing display members such as color filters for color liquid crystal displays, organic EL, and plasma displays.
  • display members such as color filters for color liquid crystal displays, organic EL, and plasma displays.
  • the present invention relates to a gap maintaining method, a gap maintaining apparatus, and a coating apparatus provided with the gap maintaining apparatus for maintaining a predetermined constant value with high accuracy.
  • the color liquid crystal display is composed of a color filter, a TFT array substrate, and the like.
  • Manufacturing of color filter and TFT array substrates includes many manufacturing processes in which a low-viscosity liquid material (coating solution) is applied on a glass substrate and dried to form a coating film.
  • a black photoresist material coating film is formed on a glass substrate, and the coating film is processed into a lattice pattern by a photolithographic method, and then red, blue, and green photoresist materials are formed between the lattices. Are sequentially formed.
  • a coating apparatus as shown in Patent Document 1 is used as an apparatus for forming such a coating film.
  • This applicator has a slit nozzle as an applicator, and it moves the coated member such as a glass substrate in one direction while discharging the coating liquid from the slit-like long discharge channel provided in this slit nozzle. By making it, a coating film can be formed in this to-be-coated member.
  • a discharge port surface in which the discharge flow path of the applicator is open The gap (also referred to as clearance or gap) formed between the coating member and the coating surface (surface) of the coating member is reduced, and the coating member and the applicator are moved relative to each other on the coating member. Since a thin film is formed, it is necessary to keep the gap constant during the relative movement.
  • Patent Document 2 discloses a means for performing coating while keeping the gap small.
  • Value (gap value) is measured.
  • a drive shaft for moving the applicator in the vertical direction is provided, and based on the gap value obtained by measurement, the gap between the discharge port surface and the portion of the surface to be coated facing this is constant.
  • the vertical position of the applicator is controlled, that is, the drive shaft is controlled.
  • controlling the position of the applicator so as to make the gap constant according to the gap formed between the application surface and the surface to be applied is referred to as “copying control”. .
  • an object of the present invention is to provide a gap maintaining method and a gap maintaining apparatus for preventing occurrence of a control delay and enabling strict scanning control, and a coating apparatus including the gap maintaining apparatus. To do.
  • a gap formed between a coating liquid discharge port of the applicator and a portion of a coating surface of a coating member to which the coating liquid is applied facing the discharge port is provided.
  • a gap maintaining method that maintains constant according to the relative movement for application with the applicator, the reference surface of the measurement body provided on the front side of the application in the relative movement direction than the discharge port, The gap formed between the coated surface of the coated member facing the reference surface of the measuring body is measured, and the portion of the coated surface facing the reference surface of the measuring body is the The applicator is moved in a direction perpendicular to the coated surface based on the measured gap in accordance with the relative movement to reach the position facing the discharge port. It is characterized in that a gap formed between the portions is kept constant.
  • the reference surface of the measurement body is provided on the front side of the application in the relative movement direction with respect to the discharge port, and the reference surface of the measurement body and the portion of the coated surface of the coated member facing the reference surface Is measured to move the applicator in a direction perpendicular to the surface to be coated until the portion of the surface to be coated reaches a position facing the discharge port by the relative movement.
  • Preparation time can be secured.
  • the applicator is moved in a direction perpendicular to the application surface in accordance with the timing at which the portion of the application surface to be measured reaches the position facing the discharge port.
  • the gap formed between the outlet and the portion to be coated can be kept constant. As a result, it is possible to perform the above-described scanning control that was impossible in the past.
  • the pre-application side in the direction of relative movement from the discharge port means that the coating liquid is not yet applied to the member to be coated on the basis of the discharge port that discharges the coating liquid. It is the area side (uncoated area side) to be coated.
  • the following processing is performed during the preparation time. That is, the applicator is placed on the basis of the measured gap until the portion of the surface to be coated facing the reference surface of the measuring body reaches the position facing the discharge port by the relative movement. Preferably, a control signal for moving in the vertical direction is generated.
  • the gap is measured by capturing a real image of the end of the reference surface of the measurement body and a reflection image of the end of the reference surface of the measurement body on the surface to be coated of the member to be coated.
  • the calculation is performed based on the length between the real image of the end portion and the reflected image of the end portion.
  • the gap maintaining device of the present invention includes a measuring body having a reference surface substantially parallel to a discharge port surface including a coating liquid discharge port of a coating device, and a portion of a coated surface of a coated member facing the reference surface. And measuring means for measuring a gap formed between the reference surface and the relative movement for application between the member to be applied and the applicator, and the application based on the measurement value by the measurement means
  • a gap maintaining means for maintaining a constant gap between the discharge port surface and the portion of the coated surface by moving a container in a direction perpendicular to the coated surface, and the measuring body comprises: It is provided on the front side of the application in the relative movement direction with respect to the discharge port surface.
  • the reference surface of the measurement body is provided on the front side of application in the relative movement direction with respect to the discharge port surface, and the reference surface of the measurement body and the application surface of the application member facing the reference surface are provided.
  • the applicator is moved in a direction perpendicular to the application surface until the portion of the application surface reaches the position facing the discharge port by the relative movement.
  • the preparation time can be secured.
  • the applicator is moved in a direction perpendicular to the application surface in accordance with the timing at which the portion of the application surface to be measured reaches the position facing the discharge port.
  • the gap formed between the exit surface and the portion to be coated can be kept constant. As a result, it is possible to perform the above-described scanning control that was impossible in the past.
  • the gap maintaining means includes an elevating mechanism for moving the applicator in the vertical direction and a portion of the coated surface facing the reference surface of the measuring body to the discharge port by the relative movement. It is preferable to have a controller that generates a control signal for moving the applicator in the vertical direction based on the measurement value obtained by the measurement means until the opposite position is reached.
  • the control signal is generated until the portion of the coated surface that is the object of measurement reaches the position facing the discharge port by the relative movement. Then, when the portion of the surface to be coated reaches the position facing the discharge port by the relative movement, the movement of the applicator can be completed, and the occurrence of a delay in the control operation can be prevented.
  • the measurement body including the reference surface may be integrated with the applicator.
  • the measurement unit is an imaging unit that captures a real image of an end portion of the reference surface of the measurement body and a reflection image of an end portion of the reference surface of the measurement body on the coated surface of the coated member; It is preferable that the image processing apparatus further includes calculation means for calculating the gap based on a length between the captured real image of the end portion and the reflected image of the end portion.
  • the coating apparatus of the present invention includes an applicator having a discharge port for discharging a coating liquid to a member to be coated, a coating liquid supply means for supplying the coating liquid to the coating device, A moving mechanism that relatively moves the coating member in a direction parallel to the coated surface of the coated member, and the gap maintaining device are provided.
  • the portion of the coated surface that is the object of measurement is discharged.
  • the gap formed between the discharge port and the portion of the surface to be coated is made constant. Since it can be maintained, it is possible to perform the strict scanning control that was impossible in the past.
  • FIG. 1 It is a schematic diagram explaining schematic structure of a coating device. It is explanatory drawing which looked at the coating apparatus shown in FIG. 1 from the side. It is explanatory drawing of a gap maintenance apparatus. It is a perspective view which shows an applicator, a protection block, a reference
  • FIG. 6 is a perspective view showing a state where the protection block is raised by a predetermined amount from the state shown in FIG. 5. It is explanatory drawing of the image which the imaging means imaged. It is explanatory drawing of a space
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of the coating apparatus 1.
  • FIG. 2 is an explanatory view of the coating apparatus 1 shown in FIG. 1 as viewed from the side (X direction).
  • the coating apparatus 1 is an apparatus that applies a coating liquid to the surface of a substrate W that is a member to be coated, and a coating film is formed on the substrate W by the coating liquid.
  • the coating apparatus 1 includes a base 2, a gantry 4 mounted on the base 2, and an applicator (nozzle) having a discharge port 7 a that discharges a coating liquid onto a surface to be coated K that is the surface of the substrate W. 5.
  • Coating liquid supply means 10 for supplying the coating liquid to the coating device 5, a moving mechanism 8 for relatively moving the coating device 5 and the substrate W in a direction parallel to the surface to be coated K, and moving the coating device 5 in the vertical direction.
  • a lifting mechanism 9 is provided, and a control device 11 including a computer is provided.
  • the control device 11 has a program for causing the applicator 5 to apply the coating liquid and a gap formed between the discharge port surface 18 of the applicator 5 and the application surface K to be kept constant.
  • the program is stored.
  • the control device 11 executes these programs to generate a control signal for controlling the operation of each mechanism included in the coating device 1, and based on the control signal, the ejection port surface 18, the coating surface K, and the like.
  • the coating liquid is applied to the substrate W while keeping the gap of the substrate constant.
  • the discharge port surface 18 is a surface of the lower surface of the applicator 5 where the discharge port 7a is opened.
  • a single wafer-like substrate W is placed on a stage 3 to be described later.
  • the upper surface of the stage 3 forms a horizontal plane.
  • substrate W and the applicator 5 is a horizontal direction
  • this relative movement direction is set to X direction
  • the horizontal direction orthogonal to this X direction is set to Y direction.
  • a direction perpendicular to the X direction and the Y direction is taken as a Z direction.
  • the Y direction is the width direction of the substrate W and coincides with the longitudinal direction of the applicator 5.
  • the Z direction is the height direction and coincides with the moving direction of the applicator 5 by the lifting mechanism 9.
  • the gantry 4 is installed on the base 2 so as to be movable in the X direction, and the applicator 5 is mounted on the gantry 4.
  • the applicator 5 (see FIG. 1) has a manifold 6 and a discharge flow path 7 connected to the manifold 6 therein.
  • the manifold 6 is composed of an enlarged space for storing the coating liquid supplied from the coating liquid supply means 10 and then sending it to the discharge flow path 7.
  • the discharge flow path 7 is for discharging the coating liquid to the substrate W. It is a flow path.
  • the end of the discharge flow path 7 opposite to the manifold 6 side (the lower end in the present embodiment) is a coating liquid discharge port 7a, and the coating liquid is discharged from the discharge port 7a.
  • the discharge channel 7 is a slit-shaped channel, and a planar coating film is formed on the substrate W.
  • the moving mechanism 8 includes a stage 3 for fixing the substrate W by suction or the like, a linear motor 8a whose operation is controlled by the control device 11, and a guide member 8b for guiding the stage 3 in the X direction.
  • the moving mechanism 8 of the present embodiment is configured to move the stage 3 on which the substrate W is placed in a direction parallel to the surface to be coated K with respect to the applicator 5 when coating the substrate W.
  • the moving direction of the stage 3 (substrate W) for coating is indicated by an arrow X1.
  • the moving mechanism 8 causes the coating liquid supplied from the coating liquid supply means 10 to be discharged from the discharge port 7a of the applicator 5 while moving the stage 3 on which the substrate W is placed on the applicator 5 in the X1 direction.
  • a coating film can be formed on the substrate W.
  • the moving mechanism 8 may be configured to move at least one of the applicator 5 and the substrate W (stage 3) for coating, and the gantry 4 is movable in the X direction with respect to the base 2. Therefore, the gantry 4 may function as the moving mechanism 8 for application. That is, the applicator 5 mounted on the gantry 4 may be configured to move in a direction parallel to the application surface K with respect to the substrate W (stage 3).
  • the elevating mechanism 9 is installed in the gantry 4, and a servo motor 9a whose operation is controlled by the control device 11, a screw shaft 9b whose axial direction is the Z direction rotated by the servo motor 9a, and the screw shaft 9b And a nut unit 9c that is screwed onto the nut.
  • the applicator 5 is attached to the nut unit 9c via the elevating bar 13 and the reference base member 14.
  • a protective block (measuring body) 16 that is a separate body from the applicator 5 is also fixed to the reference base member 14.
  • the nut unit 9c moves up and down along the screw shaft 9b by forward and reverse rotation of the screw shaft 9b, and moves the applicator 5 and the protection block 16 (measurement body) up and down as a unit.
  • the elevating mechanism 9 the height position of the discharge port 7a (discharge port surface 18) with respect to the substrate W (application surface K) can be adjusted, and the discharge port 7a (discharge port surface 18) and the substrate W can be adjusted. It is possible to adjust a gap (also referred to as a clearance or a gap) formed between the (coated surface K).
  • the lifting mechanisms 9 are provided at both ends in the Y direction, and can operate independently. For this reason, when the coated surface K of the substrate W on the stage 3 is inclined along the Y direction, the heights on both sides in the Y direction of the applicator 5 can be adjusted in accordance with the inclination. It is possible to make the gap constant along the Y direction.
  • the coating liquid supply means 10 includes a flow path 24 connected to the manifold 6 of the applicator 5, a pump 22 as a liquid feeder for sending the coating liquid to the applicator 5 through the flow path 24, and a coating liquid. And a tank 23 for storing.
  • the pump 22 is a constant capacity pump that sends the coating liquid to the applicator 5 at a constant flow rate, and the pump 22 of the present embodiment is a syringe pump.
  • the applicator 5 is fixed to the reference base member 14, and a protective block 16 that is separate from the applicator 5 is also fixed to the reference base member 14.
  • the protection block 16 has the same width dimension (dimension in the Y direction) as the discharge port surface 18 of the applicator 5 and, as shown in FIG. 1, the coating front side (left side in the case of FIG. 1) from the discharge port 7a. Is provided.
  • the lower surface end of the protective block 16 (reference surface 17 described later) is closer to the substrate W than the discharge port surface 18 including the discharge port 7 a of the applicator 5. The position is set.
  • the said lower surface edge part of this protection block 16 becomes the reference surface 17 for the measurement means 21 mentioned later to perform a measurement.
  • the reference surface 17 is a surface different from the discharge port surface 18 and is formed as a surface substantially parallel to the discharge port surface 18 on the lower surface of the protection block 16.
  • the protective block 16 since the protective block 16 is provided on the rear side in the movement direction of the substrate W with respect to the discharge port 7a, the reference surface 17 is also on the front side of the application with respect to the discharge port 7a (discharge port surface 18). It becomes the composition provided in.
  • the protection block 16 functions as a member that prevents a foreign object from colliding with the discharge port 7 a and also functions as a measurement body having the reference surface 17.
  • FIG. 17 a measuring body different from the applicator 5 and the protection block 16 is disposed on the front side of the application from the discharge port 7a (discharge port surface 18). It may be provided separately, and the lower surface end of the measurement body may be used as the reference surface 17. Or you may provide the reference surface 17 in the X direction edge part of the lower surface of the applicator 5, ie, the end part before application
  • the coating device 1 includes a gap maintaining device 20, and this gap maintaining device 20, when performing coating, discharges the discharge port 7 a (discharge port surface 18) of the applicator 5 and the discharge port.
  • a gap (gap value Cn) formed between a part of the coated surface K of the substrate W to which the coating liquid is applied facing the outlet 7a is moved in the direction of arrow X1 of the substrate W with respect to the applicator 5.
  • the gap maintaining device 20 includes a protection block 16 having the reference surface 17, a measuring unit 21, and a gap maintaining unit 25.
  • the measuring means 21 measures the value of the gap (gap value C) formed between the reference surface 17 and the portion p of the coated surface of the substrate W facing the reference surface 17.
  • the portion of the coated surface facing the reference surface 17 becomes “the portion of the coated surface located directly below the reference surface 17”.
  • the discharge port 7a is opened downward, “the portion of the coated surface facing the discharge port surface 18 including the discharge port 7a” is “a surface located immediately below the discharge port surface 18”.
  • the measuring means 21 of the present embodiment includes, for example, an imaging means 21a composed of a camera mounted on the gantry 4, a monitor means 21c for displaying an image taken by the imaging means 21a, and an image taken by the imaging means 21a. And calculating means 21b for calculating the gap value C.
  • FIG. 4 is a perspective view showing the applicator 5, the protection block 16, the reference base member 14, the lifting unit including the lifting bar 13, the substrate W, and the like.
  • the imaging means 21 a is provided at both ends in the Y direction, and images a part of each of the protection block 16 and both ends in the Y direction of the substrate W.
  • the imaging means 21a includes an imaging element, a lens for imaging an imaging target with a predetermined size, and illumination for imaging with a predetermined brightness. It is preferable to use a CCD (Charge Coupled Device) that is widely used for image processing as the imaging device.
  • the size of a semiconductor element, which is one pixel of a CCD, is about several ⁇ m, and the pixels are arranged in units of several hundred to several thousands in the vertical and horizontal directions.
  • the calculation means 21b has an image processing function, processes the image acquired by the imaging means 21a, and obtains the gap value C by calculation.
  • the calculation means 21b of this embodiment consists of a part of function with which the said control apparatus 11 which is a computer is equipped.
  • the gap value C calculated by the calculation means 21b is transmitted to the controller 12 described later.
  • the controller 12 also includes a part of functions provided in the control device 11 that is a computer.
  • the elevating mechanism 9 can elevate and lower the applicator 5 in the Z direction (a direction perpendicular to the application surface K), thereby adjusting the height position of the discharge port surface 18.
  • the coating apparatus 1 includes the controller 12 that generates a control signal for moving the applicator 5 up and down in the Z direction by the lifting mechanism 9 and controls the operation of the lifting mechanism 9 and the moving mechanism 8. ing.
  • the gap maintaining means 25 is constituted by the lifting mechanism 9 and the controller 12. Based on the measured value by the measuring means 21, that is, the measured value (gap value C) of the gap formed between the reference surface 17 and the portion p of the coated surface located immediately below the reference surface 17, the controller 12 generates a control signal for raising and lowering the applicator 5 in the Z direction by the elevating mechanism 9 until the portion p of the coated surface reaches just below the discharge port 7a due to the movement of the substrate W. Further, the lifting mechanism 9 moves the applicator 5 in the Z direction based on the control signal generated by the controller 12 in accordance with the timing at which the portion p of the coated surface reaches just below the discharge port 7a by the movement of the substrate W. Move up and down. The generation of the control signal and the raising / lowering of the applicator 5 in the Z direction by the raising / lowering mechanism 9 are continuously performed as the substrate W is moved.
  • the applicator 5 is moved based on the measured value (gap value C) by the measuring means 21 in accordance with the movement of the substrate W in the direction of the arrow X1 relative to the applicator 5 for coating.
  • the gap (gap value Cn) formed between the discharge port surface 18 and the portion of the coated surface located immediately below the discharge port surface 18 can be maintained constant by moving up and down in the Z direction.
  • a thin film having a constant film thickness can be formed with high accuracy on the substrate W that continuously moves at a constant speed.
  • the coated surface K of the substrate W has “swells” in the X1 direction.
  • the waviness is shown larger than the actual one for ease of explanation (for the sake of easy understanding).
  • the coating apparatus 1 has a substrate height detector 15, and this substrate height detector 15 is a surface of the substrate W on the stage 3 (surface to be coated K).
  • a height H (hereinafter referred to as a substrate height H) is measured with reference to the upper surface of the stage 3.
  • the substrate height detector 15 is a non-contact type sensor, and this sensor is attached to an arm or the like extending from the gantry 4.
  • Gap measurement principle and measurement method A specific gap measuring principle and measuring method by the measuring means 21 will be described with reference to FIGS.
  • the execution subject of the various processes described below is the calculation unit 21b included in the measurement unit 21 unless otherwise described.
  • the imaging means 21a is not in contact with the substrate W, and is installed so as to image the end of the reference surface 17 and the like from an oblique direction.
  • FIG. 5 is a perspective view showing a situation where the imaging means 21a is capturing a real image of the reference surface 17 and a reflection image of the reference surface 17 on the substrate W.
  • FIG. 6 is an explanatory diagram of an image captured by the imaging means 21a. This image can be displayed on the monitor means 21c as a video.
  • subjected i to the end shows that it is a reflected image reflected on the to-be-coated surface K
  • subjected d to the end represents the dimension measured in an image.
  • the dimension of the gap formed between the reference surface 17 and the portion p of the coated surface located immediately below the reference surface 17 is the “gap value C”.
  • the optical axis M of the imaging means 21a is inclined from the surface to be coated K of the substrate W by an angle ⁇ .
  • the reflection image 17ji picked up by the image pickup means 21a is such that the end 17j is reflected on the coated surface K by the incident angle ⁇ . Therefore, the imaging means 21a captures the end portion 17j of the reference surface 17 that is a real image and the reflected image 17ji on the coated surface K of the end portion 17j of the reference surface 17.
  • the edge part 17j (real image of the edge part 17j) and the reflected image 17ji imaged by the imaging means 21a can be acquired as an image as shown in FIG. This image is displayed on the monitor means 21c.
  • the total enlargement magnification n is a known value and is a value set in the calculation means 21b.
  • L is the distance from the end portion 17j to the reflection image 17ji of the end portion 17j on the coated surface K.
  • the distance Dd can be obtained by image processing based on the real image of the end portion 17j and the reflected image 17ji of the end portion 17j appearing on the acquired image (monitor means 21c).
  • image processing There are various specific image processing methods. For example, by using the fact that the color and shade of the image change greatly, the positions of the real image of the end portion 17j and the reflected image 17ji of the end portion 17j are determined. The distance Dd between the position of the real image of the end portion 17j and the position of the reflected image 17ji can be easily obtained.
  • the specific method is demonstrated using FIG.5, FIG.6, FIG.7 and FIG.
  • FIG. 7 is a perspective view showing a state in which the protection block 16 is raised by a predetermined amount E from the state shown in FIG.
  • the protection block 16 and its reflection image 17ji before rising are indicated by a two-dot chain line.
  • the imaging means 21a captures the real image of the end portion 17j and the reflected image 17ji of the end portion 17j.
  • the captured image is shown in FIG.
  • the solid line in FIG. 8 is an image acquired in the state after the rise shown in FIG. In FIG. 8, the positions of the end portion 17j of the reference surface 17 and the reflection image 17ji of the end portion 17j before the protection block 16 is raised by the predetermined amount E are indicated by a two-dot chain line.
  • the end portion 17j and the reflected image 17ji indicated by the two-dot chain line are not actually displayed on the monitor means 21c, but the distance Dd between them is (before the protection block 16 is raised) ) Is stored in the calculation means 21b (internal memory of the control device 11).
  • the distance (shortest distance) between the end portion 17j after the protection block 16 has been raised by a predetermined amount E and the reflected image 17ji of this end portion 17j is the distance between the end portion 17j and the end portion 17j after being raised.
  • the actual distance D1 between the reflected images 17ji is indicated.
  • E1d (D1d ⁇ Dd) / 2 Can be sought.
  • the angle ⁇ is a constant value. Therefore, in the preparation step before the actual gap value C is measured, the angle ⁇ is obtained by the above method. It is preferable to leave.
  • the imaging unit 21a images another protective block 16 provided adjacent to the applicator 5 that discharges the coating liquid.
  • the gap value C can always be measured even during coating without being affected by the coating liquid.
  • the image pickup means 21a is provided at two locations on both ends in the Y direction, and the gap value C at each end in the Y direction is obtained from images acquired by each of the image pickup means 21a. Is calculated.
  • the imaging means 21a may take an image with the longitudinal direction (Y direction) of the protection block 16 as the optical axis direction, or may refract the optical axis using a mirror.
  • This coating method includes a process 1: a coating preparation process, a process 2: a gap measurement preparation process, a process 3: a substrate carry-in / gap confirmation process, and a process 4: a coating / substrate carry-out process.
  • FIG. 12 is a flowchart of the coating method, showing the gap measurement preparation process to the coating start.
  • FIG. 13 is a flowchart of the coating method, showing the operation during coating.
  • Step 1 Application Preparation Step
  • the coating liquid is passed from the tank 23 (see FIG. 1) to the applicator 5 at the origin position (uppermost point), and the air contained in the flow path is removed.
  • a coating liquid is filled in a pump 22 composed of a syringe pump, and the pump 22 and the applicator 5 are in communication with each other. By starting the pump 22, the coating liquid can be discharged from the applicator 5 (discharge port 7a), and the coating preparation process is completed.
  • Step 2 Gap measurement preparation step (St1 in FIG. 12)
  • the substrate W carried into the coating apparatus 1 is sucked and held on the stage 3 at the origin position.
  • FIG. 9A which is an explanatory diagram of the gap measurement preparation step, a part p (measurement target portion p) of the coated surface K of the substrate W reaches just below the substrate height detector 15. Until then, the stage 3 is moved and stopped, and the substrate height detector 15 measures the substrate height H.
  • Cc is a gap value (set value) between the substrate W and the reference surface 17 and is a value stored in the control device 11.
  • the stage 3 is moved in the direction of the arrow X ⁇ b> 1, and a part p (the measurement target portion p) of the substrate W measured for the substrate height H is the reference surface 17. Stop at the position where it reaches directly below.
  • the lifting mechanism 9 is driven, and the reference surface 17 is lowered to a position corresponding to the calculated measurement preparation height coordinate Zc to be stationary.
  • the imaging means 21a captures the real image of the end portion 17j of the reference surface 17 and the reflected image 17ji of the end portion 17j, and acquires the image shown in FIG. A distance Dd, which is the distance from the edge portion 17j of the image to the reflection image 17ji of the edge portion 17j, is obtained by image processing and is stored in the control device 11.
  • the protection block 16 is raised by a predetermined amount E in the Z direction according to a command from the controller 12.
  • the imaging unit 21a captures the end portion 17j and the reflection image 17ji of the end portion 17j again, and acquires the image shown in FIG.
  • a distance D1d which is the distance from the edge portion 17j of the image to the reflected image 17ji of the edge portion 17j, is obtained by image processing and is stored in the control device 11.
  • the lifting unit including the protection block 16 and the applicator 5 and the stage 3 are returned to the origin position, and the substrate W is removed from the stage 3.
  • Step 3 Substrate Loading / Gap Confirmation Step
  • step 3 after loading the substrate W onto the stage 3 at the origin, whether or not the gap between the substrate W and the discharge port surface 18 of the applicator 5 is within the allowable range. Check and correct if the tolerance is exceeded.
  • the substrate W is placed on the stage 3 by a substrate transport means (not shown), and the substrate W is sucked and held on the stage 3 by suction.
  • FIG. 10A which is an explanatory diagram of the substrate carry-in / gap confirmation process
  • the stage 3 is moved and stopped until the coating start portion p0 of the substrate W reaches directly below the substrate height detector 15. Thereafter, the height H of the substrate W is measured by the substrate height detector 15.
  • Z0 is the Z-axis coordinate indicating the position of the reference surface 17 in the height direction
  • Z0 0 in the present embodiment.
  • Cs is a set gap value between the substrate W and the discharge port surface 18 (discharge port 7a), and is input and stored in the control device 11 in advance.
  • Fs is a dimensional difference in the Z direction between the reference surface 17 and the discharge port surface 18 (Fs> 0).
  • the lifting mechanism 9 is driven by a command from the controller 12. Then, the applicator 5 is lowered, and the height position of the discharge port surface 18 is set to a position corresponding to the calculated application height start coordinate Zs, and the applicator 5 is stopped at that position (St2 in FIG. 12).
  • the imaging means 21a captures the end portion 17j of the reference surface 17 and the reflected image 17ji of the end portion 17j (St3 in FIG. 12), and acquires the image shown in FIG. Based on this image, the calculating means 21b performs image processing to obtain a distance Dd that is the length from the end portion 17j of the reference surface 17 to the reflected image 17ji of the end portion 17j.
  • the difference between the calculated gap value C and the sum (C + Fs) of the Z-direction dimensional difference Fs between the reference surface 17 and the discharge port surface 18 and the set gap value Cs is equal to or less than the allowable value b, that is,
  • Step 4 Application / Substrate Unloading Step
  • the substrate W on which the application start portion p0 is located immediately below the reference surface 17 is moved at a constant speed in the direction of the arrow X1, and this application is performed as shown in FIG.
  • the coating liquid is supplied to the applicator 5 by the coating liquid supply means 10 and the discharge of the coating liquid onto the substrate W is started at the timing when the start part p0 reaches just below the discharge port 7a.
  • the supply flow rate of the coating liquid from the pump 22 is determined according to a preset film thickness and coating speed.
  • the gap value between the coating start portion p0 and the discharge port 7a (discharge port surface 18) is Cn0 at the timing when the coating start portion p0 reaches just below the discharge port 7a.
  • the gap value Cn0 is a set gap value. Same as Cs.
  • the substrate W continuously moves in the direction of the arrow X1 at a constant speed.
  • the imaging means 21a and the calculation means 21b function, and the reference surface 17 and the substrate W positioned immediately below the reference surface 17
  • the correction value Chi is set in association with the position Xpi, and the set correction value Chi is transferred to the controller 12 one after another.
  • FIG. 11 is an explanatory diagram for explaining a specific example of the copying control. In FIG. 11, the stage 3 is omitted.
  • the state of FIG. 11A is a state in which the coating start part p0 located immediately below the reference surface 17 has reached directly below the discharge port 7a as the substrate W moves at a constant speed in the direction of the arrow X1.
  • the gap value between the coating start part p0 and the discharge port 7a is Cn0.
  • the portion p1 of the surface to be coated is higher than the coating start portion p0.
  • the correction value Ch1 is information associated with the position Xp1.
  • the application surface portion p1 at this position Xp1 is matched with the timing when it reaches directly below the discharge port 7a. (State of FIG. 10B), the lifting mechanism 9 is driven to raise the applicator 5 and adjust the position of the discharge port 7a. Specifically, the discharge port 7a is raised with respect to the correction value Ch1 in accordance with the timing (St14 in FIG. 13).
  • the controller 12 is based on the information including the correction value Ch1 until the portion p1 of the coated surface at the position Xp1 that has reached directly below the reference surface 17 reaches just below the discharge port 7a. Then, a control signal for raising and lowering the applicator 5 with respect to the correction value Ch1 is generated, and on the basis of this control signal, the raising and lowering mechanism 9 performs the timing at which the portion p1 of the coated surface reaches just below the discharge port 7a. The raising of the applicator 5 is completed.
  • the gap value Cn1 between the ejection port surface 18 and the portion p1 of the coated surface at the position Xp1 is the same as the set gap value Cs, and coating is performed on the portion p1 of the coated surface.
  • the elevating mechanism 9 is driven to lower the applicator 5 to discharge.
  • the controller 12 is based on the information including the correction value Ch2 until the portion p2 of the coated surface at the position Xp2 that has reached directly below the reference surface 17 reaches just below the discharge port 7a. Then, a control signal for raising and lowering the applicator 5 with respect to the correction value Ch2 is generated, and on the basis of this control signal, the raising and lowering mechanism 9 performs the timing at which the portion p2 of the coated surface reaches just below the discharge port 7a. The raising of the applicator 5 is completed.
  • the gap value Cn2 between the portion p2 of the coated surface and the discharge port surface 18 at the timing when the portion p2 of the coated surface reaches just below the discharge port 7a is a value obtained by adding the correction value Ch2 to the gap value Cn1.
  • Cn2 Cn1 + Ch2: where Ch2 ⁇ 0).
  • the gap value Cn2 between the discharge port surface 18 and the portion p2 of the coated surface at the position Xp2 is the same as the set gap value Cs, and the coating is performed on the portion p2 of the coated surface.
  • the reference surface 17 of the protection block 16 is provided on the front side of the substrate W with respect to the discharge port 7 a, and in the coating / substrate unloading process executed by the coating apparatus 1, coating is performed. Therefore, in accordance with the movement of the substrate W relative to the applicator 5, the discharge port 7a and the portion pi of the surface to be coated of the substrate W to which the coating liquid is applied just below the discharge port 7a The coating operation by the applicator 5 is performed while executing a gap maintaining method for maintaining the gap Cni formed between the two at a constant value (set gap value Cs).
  • the gap value Ci formed between the reference surface 17 of the protection block 16 and the portion pi of the coated surface of the substrate W located immediately below the reference surface 17 is measured.
  • the applicator 5 is based on the measured gap value Ci as the portion pi of the coated surface reaches just below the discharge port 7a by the movement of the substrate W. Is moved up and down in the Z direction so that the gap (gap value Cni) formed between the discharge port 7a and the portion pi of the coated surface is kept constant (set gap value Cs).
  • the portion pi of the surface to be coated becomes The preparation time for moving the applicator 5 up and down in the Z direction can be ensured before reaching the position facing the discharge port 7a by the movement of the substrate W. For this reason, the applicator 5 is moved up and down in the Z direction in accordance with the timing at which the portion pi of the surface to be coated, which is the object of measurement, reaches the position facing the discharge port 7a.
  • the gap value Cni with the coating surface portion pi can be kept constant (set gap value Cs).
  • the portion pi of the coated surface at the position Xpi is discharged.
  • the movement of the applicator 5 up and down with respect to the correction value Chi is completed, so that the control operation of the applicator 5 is not delayed.
  • the coating apparatus 1 performs a coating operation (coating method) including a gap maintaining method that satisfies the following condition (the following formula: Xa / V> t1 + t2 + t3). Executed.
  • Time t1 Sum of the image acquisition time by the imaging means 21a and the time (image processing time) for obtaining the gap value Ci (C1) and the correction value Chi (Ch1).
  • Time t2 the correction value Chi (Ch1).
  • the sum of the control signal generation processing time based on this and the communication time until the lifting mechanism 9 is operated by this control signal.
  • Time t3 lifting and lowering after the applicator 5 starts lifting and lowering by the lifting mechanism 9 based on the control signal. Time until Completion As described above, in the present embodiment, measurement is performed while the portion pi of the coated surface that is located immediately below the reference surface 17 reaches immediately below the discharge port 7a due to the movement of the substrate W.
  • a control signal for raising and lowering the applicator 5 in the Z direction is generated on the basis of the gap value Ci measured by the means 21, and a portion pi of the surface to be coated that is located immediately below the reference surface 17 is a substrate. W's In accordance with the timing to reach immediately below the discharge port 7a by moving, on the basis of the generated said control signal, the lifting movement of the applicator 5 according to the lifting mechanism 9 is carried out.
  • the application liquid supply by the coating liquid supply means 10 is stopped and the applicator 5 is raised to a predetermined position. Exit. The stage 3 continues to move even after the application is completed, and then stops.
  • the suction of the substrate W on the stopped stage 3 is released, and the substrate W is unloaded from the stage 3 to a subsequent process by a substrate unloading means such as a robot (not shown). Thereafter, the stage 3 moves to the initial position, and the applicator 5 Moves to the top point.
  • the coating apparatus 1 and the gap maintaining method of the present invention are not limited to the illustrated forms, and may be other forms within the scope of the present invention.
  • the substrate W member to be coated
  • the substrate W is not limited to a glass substrate, and any member can be used as long as it can capture a reflected image of the discharge port 7a (discharge port surface 18) by the imaging unit 21a.
  • the protection block 16 (reference surface 17) may be provided on the front side of application in the relative movement direction with respect to the discharge port 7a (discharge port surface 18).
  • the “front side of application in the relative movement direction with respect to the discharge port 7 a” means that the coating liquid is not yet applied to the substrate W on the basis of the discharge port 7 a that discharges the coating liquid. It is the area side to be painted (uncoated area side).

Abstract

A coating device (1) comprising a coating apparatus (5) that coats a substrate (W) with a coating liquid, wherein a gap between the substrate (W) and a discharge port (7a) of the coating apparatus (5) can be kept uniform with high precision and coating can be performed while preventing the occurrence of control operation delays. This gap-maintaining method involves measuring a gap that is formed between: an end part of a reference surface (17) of a protective block (16) provided further towards a pre-coating side of the substrate (W) than the discharge port (7a); and a section, which opposes the end part, of a surface (K) to be coated of the substrate (W). Subsequently, as the section, which was opposing the end part, of the surface (K) to be coated reaches a position opposing the discharge port (7a) as a result of the substrate (W) moving, a gap formed between the discharge port (7a) and the section of the surface (K) to be coated maintains uniformity due to the coating apparatus (5) being moved in the direction orthogonal to the surface (K) to be coated and on the basis of the measured gap.

Description

間隙維持方法、間隙維持装置及び塗布装置Gap maintenance method, gap maintenance device and coating device
 本発明は、例えばカラー液晶ディスプレイ用カラーフィルタ、有機EL、プラズマディスプレイ等のディスプレイ用部材を製造する分野に加えて、光学フィルタ、プリント基板、集積回路、半導体等の製造分野にも使用されるものであり、詳しくは、ガラス基板等の枚葉状である被塗布部材に対して塗液を吐出して薄い塗膜を形成するために、この被塗布部材と塗液を吐出する塗布器との間隙を高い精度で所定の一定値に維持するための間隙維持方法、間隙維持装置及びこの間隙維持装置を備えている塗布装置に関する。 The present invention is used in the field of manufacturing optical filters, printed circuit boards, integrated circuits, semiconductors, etc., in addition to the field of manufacturing display members such as color filters for color liquid crystal displays, organic EL, and plasma displays. In detail, in order to form a thin coating film by discharging the coating liquid onto a sheet-shaped coated member such as a glass substrate, a gap between the coated member and a coating device that discharges the coating liquid. The present invention relates to a gap maintaining method, a gap maintaining apparatus, and a coating apparatus provided with the gap maintaining apparatus for maintaining a predetermined constant value with high accuracy.
 カラー液晶用ディスプレイは、カラーフィルタ、TFT用アレイ基板等により構成されている。カラーフィルタ、TFT用アレイ基板の製造には、ガラス基板上に、低粘度の液体材料(塗液)を塗布して乾燥させ、塗膜を形成する製造工程が多く含まれている。 The color liquid crystal display is composed of a color filter, a TFT array substrate, and the like. Manufacturing of color filter and TFT array substrates includes many manufacturing processes in which a low-viscosity liquid material (coating solution) is applied on a glass substrate and dried to form a coating film.
 例えば、カラーフィルタの製造工程では、ガラス基板上に黒色のフォトレジスト材の塗膜を形成し、フォトリソ法により塗膜を格子状に加工した後に、格子間に赤色、青色、緑色のフォトレジスト材の塗膜を順次形成する。このような塗膜形成のための装置として、例えば特許文献1に示すような塗布装置が使用されている。 For example, in a color filter manufacturing process, a black photoresist material coating film is formed on a glass substrate, and the coating film is processed into a lattice pattern by a photolithographic method, and then red, blue, and green photoresist materials are formed between the lattices. Are sequentially formed. As an apparatus for forming such a coating film, for example, a coating apparatus as shown in Patent Document 1 is used.
 この塗布装置は塗布器としてスリットノズルを有しており、このスリットノズルに設けられているスリット状の細長い吐出流路から塗液を吐出しながら、ガラス基板等の被塗布部材を一方向に移動させることで、この被塗布部材に塗膜を形成することができる。 This applicator has a slit nozzle as an applicator, and it moves the coated member such as a glass substrate in one direction while discharging the coating liquid from the slit-like long discharge channel provided in this slit nozzle. By making it, a coating film can be formed in this to-be-coated member.
 このような被塗布部材に、面状の塗膜を均一厚さの薄膜(例えば、ウェット膜厚で10μm以下)として形成するためには、塗布器の吐出流路が開口している吐出口面と被塗布部材の被塗布面(表面)との間に形成される間隙(クリアランス又はギャップともいう)を小さくし、しかも、被塗布部材と塗布器とを相対移動させながら被塗布部材上に前記薄膜を形成することから、前記相対移動の間、前記間隙を一定に維持することが必要となる。 In order to form a planar coating film on such a coated member as a thin film having a uniform thickness (for example, a wet film thickness of 10 μm or less), a discharge port surface in which the discharge flow path of the applicator is open The gap (also referred to as clearance or gap) formed between the coating member and the coating surface (surface) of the coating member is reduced, and the coating member and the applicator are moved relative to each other on the coating member. Since a thin film is formed, it is necessary to keep the gap constant during the relative movement.
 そこで、前記間隙を小さく維持して塗布を行うための手段として、特許文献2に示すものがある。この特許文献2では、被塗布部材と塗布器とを相対移動させながら、塗布器の吐出口面とこの吐出口面に対向する被塗布部材の被塗布面の部分との間に形成される間隙の値(間隙値)を測定している。そして、塗布器を上下方向に移動させるための駆動軸が設けられており、測定して得た前記間隙値に基づいて、吐出口面とこれに対向する被塗布面の部分との間隙が一定となるように塗布器の上下方向の位置を制御、つまり、前記駆動軸を制御している。なお、このように、被塗布面との間に形成される間隙(被塗布面の表面形状)に応じて、前記間隙を一定とすべく塗布器の位置を制御することを「倣い制御」という。 Therefore, Patent Document 2 discloses a means for performing coating while keeping the gap small. In this Patent Document 2, a gap formed between a discharge port surface of a coating device and a portion of a coating surface of a coating member facing the discharge port surface while relatively moving the coated member and the coating device. Value (gap value) is measured. A drive shaft for moving the applicator in the vertical direction is provided, and based on the gap value obtained by measurement, the gap between the discharge port surface and the portion of the surface to be coated facing this is constant. Thus, the vertical position of the applicator is controlled, that is, the drive shaft is controlled. In addition, controlling the position of the applicator so as to make the gap constant according to the gap formed between the application surface and the surface to be applied (surface shape of the application surface) is referred to as “copying control”. .
特開平6-339656号公報JP-A-6-339656 特開2013-148408号公報JP 2013-148408 A
 特許文献2の場合、間隙の測定位置が、塗液を吐出する吐出流路の開口(吐出口)の位置と一致しているため、間隙の測定結果を瞬時に処理して前記駆動軸の制御(フィードバック制御)を行っても、遅れが発生してしまい、厳密な倣い制御は不可能であると考えられる。 In the case of Patent Document 2, since the measurement position of the gap coincides with the position of the opening (discharge port) of the discharge flow channel for discharging the coating liquid, the measurement result of the gap is processed instantaneously to control the drive shaft. Even if (feedback control) is performed, a delay occurs, and it is considered impossible to perform exact scanning control.
 そこで、本発明は、制御の遅れの発生を防ぎ厳密な倣い制御を可能とさせるための間隙維持方法及び間隙維持装置、並びに、この間隙維持装置を備えている塗布装置を提供することを目的とする。 Accordingly, an object of the present invention is to provide a gap maintaining method and a gap maintaining apparatus for preventing occurrence of a control delay and enabling strict scanning control, and a coating apparatus including the gap maintaining apparatus. To do.
 本発明は、塗布器の塗液の吐出口と、当該吐出口に対向して塗液が塗布される被塗布部材の被塗布面の部分との間に形成される間隙を、前記被塗布部材と前記塗布器との塗布のための相対移動にあわせて一定に維持する間隙維持方法であって、前記吐出口よりも前記相対移動方向の塗布前側に設けられている測定体の参照面と、当該測定体の参照面に対向する前記被塗布部材の被塗布面の部分との間に形成される間隙を測定し、前記測定体の参照面に対向していた前記被塗布面の部分が前記相対移動により前記吐出口に対向する位置に達するのにあわせて、測定した前記間隙に基づき前記塗布器を前記被塗布面に対して垂直な方向に移動させて前記吐出口と前記被塗布面の部分との間に形成される間隙を一定に維持することを特徴とする。 According to the present invention, there is provided a gap formed between a coating liquid discharge port of the applicator and a portion of a coating surface of a coating member to which the coating liquid is applied facing the discharge port. And a gap maintaining method that maintains constant according to the relative movement for application with the applicator, the reference surface of the measurement body provided on the front side of the application in the relative movement direction than the discharge port, The gap formed between the coated surface of the coated member facing the reference surface of the measuring body is measured, and the portion of the coated surface facing the reference surface of the measuring body is the The applicator is moved in a direction perpendicular to the coated surface based on the measured gap in accordance with the relative movement to reach the position facing the discharge port. It is characterized in that a gap formed between the portions is kept constant.
 本発明によれば、測定体の参照面が吐出口よりも前記相対移動方向の塗布前側に設けられており、測定体の参照面とこの参照面に対向する被塗布部材の被塗布面の部分との間隙が測定されると、この被塗布面の部分が前記相対移動により吐出口に対向する位置に達するまでの間に、塗布器を被塗布面に対して垂直な方向に移動させるための準備時間を確保することができる。このため、前記測定の対象となった被塗布面の部分が、吐出口に対向する位置に到達するタイミングにあわせて、塗布器を被塗布面に対して垂直な方向に移動させることで、吐出口と被塗布面の部分との間に形成される間隙を一定に維持することができる。この結果、従来では不可能であった、厳密な前記倣い制御が可能となる。 According to the present invention, the reference surface of the measurement body is provided on the front side of the application in the relative movement direction with respect to the discharge port, and the reference surface of the measurement body and the portion of the coated surface of the coated member facing the reference surface Is measured to move the applicator in a direction perpendicular to the surface to be coated until the portion of the surface to be coated reaches a position facing the discharge port by the relative movement. Preparation time can be secured. For this reason, the applicator is moved in a direction perpendicular to the application surface in accordance with the timing at which the portion of the application surface to be measured reaches the position facing the discharge port. The gap formed between the outlet and the portion to be coated can be kept constant. As a result, it is possible to perform the above-described scanning control that was impossible in the past.
 なお、本発明において、「吐出口よりも相対移動方向の塗布前側」とは、塗液を吐出する吐出口を基準として、被塗布部材に対して未だ塗液が塗られておらず相対移動によりこれから塗られる領域側(未塗布領域側)である。 In the present invention, “the pre-application side in the direction of relative movement from the discharge port” means that the coating liquid is not yet applied to the member to be coated on the basis of the discharge port that discharges the coating liquid. It is the area side (uncoated area side) to be coated.
 前記準備時間には、次のような処理が行われる。すなわち、前記測定体の参照面に対向していた前記被塗布面の部分が、前記相対移動によって前記吐出口に対向する位置に達するまでの間に、測定した前記間隙に基づき前記塗布器を前記垂直な方向に移動させるための制御信号が生成されるのが好ましい。 The following processing is performed during the preparation time. That is, the applicator is placed on the basis of the measured gap until the portion of the surface to be coated facing the reference surface of the measuring body reaches the position facing the discharge port by the relative movement. Preferably, a control signal for moving in the vertical direction is generated.
 この場合、間隙の測定の対象となった被塗布面の部分が前記相対移動により吐出口に対向する位置に到達したときに、塗布器の移動を完了させることが可能となり、制御動作の遅れの発生を防ぐことができる。 In this case, it becomes possible to complete the movement of the applicator when the portion of the surface to be coated that has been subjected to the measurement of the gap has reached the position facing the discharge port due to the relative movement, and the control operation is delayed. Occurrence can be prevented.
 また、前記間隙の測定は、前記測定体の参照面の端部の実像と、前記被塗布部材の被塗布面上における前記測定体の参照面の端部の反射像とを撮像し、撮像した前記端部の実像と前記端部の反射像との間の長さを基に、算出して行うのが好ましい。 The gap is measured by capturing a real image of the end of the reference surface of the measurement body and a reflection image of the end of the reference surface of the measurement body on the surface to be coated of the member to be coated. Preferably, the calculation is performed based on the length between the real image of the end portion and the reflected image of the end portion.
 これにより、測定体の参照面と、この参照面に対向する被塗布面の部分との間の間隙を精度よく測定することが可能となる。 This makes it possible to accurately measure the gap between the reference surface of the measurement body and the portion of the coated surface facing the reference surface.
 また、本発明の間隙維持装置は、塗布器の塗液の吐出口を含む吐出口面と略平行な参照面を有する測定体と、前記参照面に対向する被塗布部材の被塗布面の部分と、当該参照面との間に形成される間隙を測定する測定手段と、前記被塗布部材と前記塗布器との塗布のための相対移動にあわせて、前記測定手段による測定値に基づき前記塗布器を前記被塗布面に対して垂直な方向に移動させることにより、前記吐出口面と前記被塗布面の部分との間隙を一定に維持する間隙維持手段と、を備え、前記測定体は、前記吐出口面よりも前記相対移動方向の塗布前側に設けられていることを特徴とする。 Further, the gap maintaining device of the present invention includes a measuring body having a reference surface substantially parallel to a discharge port surface including a coating liquid discharge port of a coating device, and a portion of a coated surface of a coated member facing the reference surface. And measuring means for measuring a gap formed between the reference surface and the relative movement for application between the member to be applied and the applicator, and the application based on the measurement value by the measurement means A gap maintaining means for maintaining a constant gap between the discharge port surface and the portion of the coated surface by moving a container in a direction perpendicular to the coated surface, and the measuring body comprises: It is provided on the front side of the application in the relative movement direction with respect to the discharge port surface.
 本発明によれば、測定体の参照面が吐出口面よりも前記相対移動方向の塗布前側に設けられており、測定体の参照面とこの参照面に対向する被塗布部材の被塗布面の部分との間隙が測定されると、この被塗布面の部分が前記相対移動により吐出口に対向する位置に達するまでの間に、塗布器を被塗布面に対して垂直な方向に移動させるための準備時間を確保することができる。このため、前記測定の対象となった被塗布面の部分が、吐出口に対向する位置に到達するタイミングにあわせて、塗布器を被塗布面に対して垂直な方向に移動させることで、吐出口面と被塗布面の部分との間に形成される間隙を一定に維持することができる。この結果、従来では不可能であった、厳密な前記倣い制御が可能となる。 According to the present invention, the reference surface of the measurement body is provided on the front side of application in the relative movement direction with respect to the discharge port surface, and the reference surface of the measurement body and the application surface of the application member facing the reference surface are provided. When the gap with the portion is measured, the applicator is moved in a direction perpendicular to the application surface until the portion of the application surface reaches the position facing the discharge port by the relative movement. The preparation time can be secured. For this reason, the applicator is moved in a direction perpendicular to the application surface in accordance with the timing at which the portion of the application surface to be measured reaches the position facing the discharge port. The gap formed between the exit surface and the portion to be coated can be kept constant. As a result, it is possible to perform the above-described scanning control that was impossible in the past.
 また、前記間隙維持手段は、前記塗布器を前記垂直な方向に移動させる昇降機構と、前記測定体の参照面に対向していた前記被塗布面の部分が、前記相対移動によって前記吐出口に対向する位置に達するまでの間に、前記測定手段による前記測定値に基づき前記塗布器を前記垂直な方向に移動させるための制御信号を生成するコントローラと、を有しているのが好ましい。 Further, the gap maintaining means includes an elevating mechanism for moving the applicator in the vertical direction and a portion of the coated surface facing the reference surface of the measuring body to the discharge port by the relative movement. It is preferable to have a controller that generates a control signal for moving the applicator in the vertical direction based on the measurement value obtained by the measurement means until the opposite position is reached.
 これにより、前記測定手段により前記間隙が測定されると、この測定の対象となった被塗布面の部分が前記相対移動により吐出口に対向する位置に達するまでの間に、前記制御信号が生成され、当該被塗布面の部分が前記相対移動により吐出口に対向する位置に到達したときに、塗布器の移動を完了させることが可能となり、制御動作の遅れの発生を防ぐことができる。 As a result, when the gap is measured by the measuring means, the control signal is generated until the portion of the coated surface that is the object of measurement reaches the position facing the discharge port by the relative movement. Then, when the portion of the surface to be coated reaches the position facing the discharge port by the relative movement, the movement of the applicator can be completed, and the occurrence of a delay in the control operation can be prevented.
 また、前記参照面を備える前記測定体は、前記塗布器と一体であってもよい。 Further, the measurement body including the reference surface may be integrated with the applicator.
 また、前記測定手段は、前記測定体の参照面の端部の実像と、前記被塗布部材の被塗布面上における前記測定体の参照面の端部の反射像とを撮像する撮像手段と、撮像された前記端部の実像と前記端部の反射像との間の長さを基に、前記間隙を算出する算出手段と、を更に備えているのが好ましい。 In addition, the measurement unit is an imaging unit that captures a real image of an end portion of the reference surface of the measurement body and a reflection image of an end portion of the reference surface of the measurement body on the coated surface of the coated member; It is preferable that the image processing apparatus further includes calculation means for calculating the gap based on a length between the captured real image of the end portion and the reflected image of the end portion.
 これにより、参照面と被塗布面との間の間隙を精度よく測定することが可能となる。 This makes it possible to accurately measure the gap between the reference surface and the surface to be coated.
 また、本発明の塗布装置は、塗液を被塗布部材に吐出する吐出口を有する塗布器、前記塗布器に塗液を供給する塗液供給手段、塗布のために、前記塗布器と前記被塗布部材とを前記被塗布部材の被塗布面と平行な方向に相対移動させる移動機構、及び前記間隙維持装置を備えることを特徴とする。 In addition, the coating apparatus of the present invention includes an applicator having a discharge port for discharging a coating liquid to a member to be coated, a coating liquid supply means for supplying the coating liquid to the coating device, A moving mechanism that relatively moves the coating member in a direction parallel to the coated surface of the coated member, and the gap maintaining device are provided.
 本発明によれば、従来では不可能であった、厳密な前記倣い制御を伴う塗布が可能となる。 According to the present invention, it is possible to perform application with strict scanning control, which was impossible in the past.
 本発明によれば、測定体の参照面とこの参照面に対向する被塗布部材の被塗布面の部分との間隙が測定されると、この測定の対象となった被塗布面の部分が吐出口に対向する位置に到達するタイミングにあわせて、塗布器を被塗布面に対して垂直な方向に移動させることで、吐出口と被塗布面の部分との間に形成される間隙を一定に維持することができるため、従来では不可能であった、厳密な前記倣い制御が可能となる。 According to the present invention, when the gap between the reference surface of the measuring body and the portion of the coated surface of the coated member facing the reference surface is measured, the portion of the coated surface that is the object of measurement is discharged. By moving the applicator in a direction perpendicular to the surface to be coated in accordance with the timing of reaching the position facing the outlet, the gap formed between the discharge port and the portion of the surface to be coated is made constant. Since it can be maintained, it is possible to perform the strict scanning control that was impossible in the past.
塗布装置の概略構成を説明する模式図である。It is a schematic diagram explaining schematic structure of a coating device. 図1に示す塗布装置を側方から見た説明図である。It is explanatory drawing which looked at the coating apparatus shown in FIG. 1 from the side. 間隙維持装置の説明図である。It is explanatory drawing of a gap maintenance apparatus. 塗布器、保護ブロック、基準ベース部材、昇降バーを含む昇降ユニット、及び基板等を示す斜視図である。It is a perspective view which shows an applicator, a protection block, a reference | standard base member, the raising / lowering unit containing a raising / lowering bar, a board | substrate, etc. FIG. 撮像手段が、測定体の参照面である下面端部の実像と、基板上における前記下面端部の反射像を撮像している状況を示す斜視図である。It is a perspective view which shows the condition where the imaging means is imaging the real image of the lower surface edge part which is a reference surface of a measurement body, and the reflected image of the said lower surface edge part on a board | substrate. 撮像手段が撮像した画像の説明図である。It is explanatory drawing of the image which the imaging means imaged. 図5に示す状態から、保護ブロックを所定量だけ上昇させた状態を示している斜視図である。FIG. 6 is a perspective view showing a state where the protection block is raised by a predetermined amount from the state shown in FIG. 5. 撮像手段が撮像した画像の説明図である。It is explanatory drawing of the image which the imaging means imaged. 間隙測定準備工程の説明図である。It is explanatory drawing of a space | gap measurement preparation process. (A)と(B)は、基板搬入・間隙確認工程の説明図であり、(C)は、塗布・基板搬出工程の説明図である。(A) And (B) is explanatory drawing of a board | substrate carrying-in / gap confirmation process, (C) is explanatory drawing of an application | coating and board | substrate carrying-out process. 倣い制御の具体例を説明する説明図である。It is explanatory drawing explaining the specific example of copying control. 塗布方法のフロー図である。It is a flowchart of the coating method. 塗布方法のフロー図である。It is a flowchart of the coating method.
 以下、本発明の実施の形態を図面に基づいて説明する。
〔塗布装置1について〕
 図1は、塗布装置1の概略構成を説明する模式図である。図2は、図1に示す塗布装置1を側方(X方向)から見た説明図である。この塗布装置1は、被塗布部材である基板Wの表面に塗液を塗布する装置であり、基板W上にはこの塗液による塗膜が形成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[About coating device 1]
FIG. 1 is a schematic diagram illustrating a schematic configuration of the coating apparatus 1. FIG. 2 is an explanatory view of the coating apparatus 1 shown in FIG. 1 as viewed from the side (X direction). The coating apparatus 1 is an apparatus that applies a coating liquid to the surface of a substrate W that is a member to be coated, and a coating film is formed on the substrate W by the coating liquid.
 塗布装置1は、基台2、この基台2上に搭載されているガントリ4、基板Wの表面である被塗布面Kに対して塗液を吐出する吐出口7aを有する塗布器(ノズル)5、この塗布器5に塗液を供給する塗液供給手段10、塗布器5と基板Wとを被塗布面Kと平行な方向に相対移動させる移動機構8、塗布器5を上下方向に移動させる昇降機構9、及びコンピュータからなる制御装置11を備えている。 The coating apparatus 1 includes a base 2, a gantry 4 mounted on the base 2, and an applicator (nozzle) having a discharge port 7 a that discharges a coating liquid onto a surface to be coated K that is the surface of the substrate W. 5. Coating liquid supply means 10 for supplying the coating liquid to the coating device 5, a moving mechanism 8 for relatively moving the coating device 5 and the substrate W in a direction parallel to the surface to be coated K, and moving the coating device 5 in the vertical direction. A lifting mechanism 9 is provided, and a control device 11 including a computer is provided.
 制御装置11には、塗布器5による塗液の塗布を実行させるためのプログラムと、塗布器5の吐出口面18と被塗布面Kとの間に形成される間隙を一定に維持するためのプログラムとが記憶されている。制御装置11は、これらプログラムを実行することで、塗布装置1が備えている各機構の動作制御用の制御信号を生成すると共に、この制御信号に基づいて吐出口面18と被塗布面Kとの間隙を一定に維持しながら基板Wに対する塗液の塗布を行う。吐出口面18は、塗布器5の下面のうち吐出口7aが開口している面である。 The control device 11 has a program for causing the applicator 5 to apply the coating liquid and a gap formed between the discharge port surface 18 of the applicator 5 and the application surface K to be kept constant. The program is stored. The control device 11 executes these programs to generate a control signal for controlling the operation of each mechanism included in the coating device 1, and based on the control signal, the ejection port surface 18, the coating surface K, and the like. The coating liquid is applied to the substrate W while keeping the gap of the substrate constant. The discharge port surface 18 is a surface of the lower surface of the applicator 5 where the discharge port 7a is opened.
 枚葉状である基板Wは、後述のステージ3上に載置される。ステージ3の上面は水平面を成す。そして、この基板Wと塗布器5との相対移動方向は水平方向であり、この相対移動方向をX方向とし、このX方向に直交する水平方向をY方向とする。これらX方向とY方向とに直交する方向をZ方向とする。Y方向は、基板Wの幅方向であり、塗布器5の長手方向と一致する。Z方向は、高さ方向となり、前記昇降機構9による塗布器5の移動方向と一致する。 A single wafer-like substrate W is placed on a stage 3 to be described later. The upper surface of the stage 3 forms a horizontal plane. And the relative movement direction of this board | substrate W and the applicator 5 is a horizontal direction, this relative movement direction is set to X direction, and the horizontal direction orthogonal to this X direction is set to Y direction. A direction perpendicular to the X direction and the Y direction is taken as a Z direction. The Y direction is the width direction of the substrate W and coincides with the longitudinal direction of the applicator 5. The Z direction is the height direction and coincides with the moving direction of the applicator 5 by the lifting mechanism 9.
 ガントリ4は、基台2上にX方向に移動可能として設置され、このガントリ4に塗布器5が搭載されている。塗布器5(図1参照)は、その内部に、マニホールド6と、このマニホールド6と繋がる吐出流路7とを有している。マニホールド6は、塗液供給手段10から供給された塗液を溜めてから吐出流路7へ送るための拡大空間からなり、吐出流路7は、基板Wに対して塗液を吐出するための流路である。吐出流路7のマニホールド6側とは反対側の端部(本実施形態では下端)が塗液の吐出口7aとなり、この吐出口7aから塗液が吐出される。吐出流路7は、スリット状の流路であり、基板W上には面状の塗膜が形成される。 The gantry 4 is installed on the base 2 so as to be movable in the X direction, and the applicator 5 is mounted on the gantry 4. The applicator 5 (see FIG. 1) has a manifold 6 and a discharge flow path 7 connected to the manifold 6 therein. The manifold 6 is composed of an enlarged space for storing the coating liquid supplied from the coating liquid supply means 10 and then sending it to the discharge flow path 7. The discharge flow path 7 is for discharging the coating liquid to the substrate W. It is a flow path. The end of the discharge flow path 7 opposite to the manifold 6 side (the lower end in the present embodiment) is a coating liquid discharge port 7a, and the coating liquid is discharged from the discharge port 7a. The discharge channel 7 is a slit-shaped channel, and a planar coating film is formed on the substrate W.
 移動機構8は、基板Wを吸引等により固定するステージ3、制御装置11によって動作が制御されるリニアモータ8a、及び、ステージ3をX方向に誘導するガイド部材8bを有している。本実施形態の移動機構8は、基板Wに対して塗布を行う際、この基板Wを載せたステージ3を塗布器5に対して被塗布面Kと平行な方向に移動させる構成となる。図1を含む各図において、塗布のためのステージ3(基板W)の移動方向を、矢印X1で示している。 The moving mechanism 8 includes a stage 3 for fixing the substrate W by suction or the like, a linear motor 8a whose operation is controlled by the control device 11, and a guide member 8b for guiding the stage 3 in the X direction. The moving mechanism 8 of the present embodiment is configured to move the stage 3 on which the substrate W is placed in a direction parallel to the surface to be coated K with respect to the applicator 5 when coating the substrate W. In each drawing including FIG. 1, the moving direction of the stage 3 (substrate W) for coating is indicated by an arrow X1.
 この移動機構8により、塗布器5に対して基板Wを載せたステージ3をX1方向に移動させながら、塗液供給手段10から供給された塗液を塗布器5の吐出口7aから吐出させることで、基板W上に塗膜を形成することができる。なお、移動機構8は、塗布のために塗布器5と基板W(ステージ3)との内の少なくとも一方を移動させる構成であればよく、ガントリ4は基台2に対してX方向に移動可能であることから、このガントリ4を塗布のための移動機構8として機能させてもよい。つまり、ガントリ4に搭載の塗布器5を、基板W(ステージ3)に対して被塗布面Kと平行な方向に移動させる構成としてもよい。 The moving mechanism 8 causes the coating liquid supplied from the coating liquid supply means 10 to be discharged from the discharge port 7a of the applicator 5 while moving the stage 3 on which the substrate W is placed on the applicator 5 in the X1 direction. Thus, a coating film can be formed on the substrate W. The moving mechanism 8 may be configured to move at least one of the applicator 5 and the substrate W (stage 3) for coating, and the gantry 4 is movable in the X direction with respect to the base 2. Therefore, the gantry 4 may function as the moving mechanism 8 for application. That is, the applicator 5 mounted on the gantry 4 may be configured to move in a direction parallel to the application surface K with respect to the substrate W (stage 3).
 昇降機構9は、ガントリ4に設置されており、制御装置11によって動作が制御されるサーボモータ9aと、このサーボモータ9aにより回転するZ方向を軸方向とするねじ軸9bと、このねじ軸9bに螺合するナットユニット9cとを有している。ナットユニット9cに昇降バー13及び基準ベース部材14を介して塗布器5が取り付けられている。なお、基準ベース部材14には、塗布器5とは別体である保護ブロック(測定体)16も固定されている。そして、ねじ軸9bの正逆回転により、ナットユニット9cがねじ軸9bに沿って昇降し、塗布器5及び保護ブロック16(測定体)を一体として上下動させる。 The elevating mechanism 9 is installed in the gantry 4, and a servo motor 9a whose operation is controlled by the control device 11, a screw shaft 9b whose axial direction is the Z direction rotated by the servo motor 9a, and the screw shaft 9b And a nut unit 9c that is screwed onto the nut. The applicator 5 is attached to the nut unit 9c via the elevating bar 13 and the reference base member 14. A protective block (measuring body) 16 that is a separate body from the applicator 5 is also fixed to the reference base member 14. The nut unit 9c moves up and down along the screw shaft 9b by forward and reverse rotation of the screw shaft 9b, and moves the applicator 5 and the protection block 16 (measurement body) up and down as a unit.
 この昇降機構9によれば、基板W(被塗布面K)に対する吐出口7a(吐出口面18)の高さ位置を調整することが可能となり、吐出口7a(吐出口面18)と基板W(被塗布面K)との間に形成される間隙(クリアランス又はギャップともいう)の調整が可能となる。また、昇降機構9は、Y方向両端に設けられており、各々独立して動作が可能である。このため、ステージ3上の基板Wの被塗布面KがY方向に沿って傾斜している場合、この傾斜にあわせて塗布器5のY方向両側の高さをそれぞれ調整することができ、前記間隙をY方向に沿って一定とすることが可能となる。 According to the elevating mechanism 9, the height position of the discharge port 7a (discharge port surface 18) with respect to the substrate W (application surface K) can be adjusted, and the discharge port 7a (discharge port surface 18) and the substrate W can be adjusted. It is possible to adjust a gap (also referred to as a clearance or a gap) formed between the (coated surface K). The lifting mechanisms 9 are provided at both ends in the Y direction, and can operate independently. For this reason, when the coated surface K of the substrate W on the stage 3 is inclined along the Y direction, the heights on both sides in the Y direction of the applicator 5 can be adjusted in accordance with the inclination. It is possible to make the gap constant along the Y direction.
 塗液供給手段10は(図1参照)、塗布器5のマニホールド6に繋がる流路24と、この流路24を通じて塗布器5へ塗液を送り出す送液器としてのポンプ22と、塗液を溜めるタンク23とを有している。ポンプ22は、塗布器5へ塗液を一定の流量で送り出す定容量ポンプであり、本実施形態のポンプ22はシリンジポンプである。 The coating liquid supply means 10 (see FIG. 1) includes a flow path 24 connected to the manifold 6 of the applicator 5, a pump 22 as a liquid feeder for sending the coating liquid to the applicator 5 through the flow path 24, and a coating liquid. And a tank 23 for storing. The pump 22 is a constant capacity pump that sends the coating liquid to the applicator 5 at a constant flow rate, and the pump 22 of the present embodiment is a syringe pump.
 塗布器5は、基準ベース部材14に固定されており、また、この基準ベース部材14には、塗布器5とは別体である保護ブロック16も固定されている。保護ブロック16は、塗布器5の吐出口面18と同じ幅寸法(Y方向寸法)を有しており、図1に示すように、吐出口7aよりも塗布前側(図1の場合、左側)に設けられている。保護ブロック16の下面端部(後述の参照面17)は、塗布器5の吐出口7aを含む吐出口面18よりも基板Wに近くなるように、これら下面端部と吐出口面18とは位置設定されている。これにより、基板W上に異物が存在している場合、あるいは、基板Wとステージ3の間に存在する異物により基板Wの被塗布面Kが盛り上がっている場合、基板Wの矢印X1方向の移動により、その異物や被塗布面Kが先に保護ブロック16の下面端部に衝突し(検知し)、これにより、塗布器5の吐出口7a(吐出口面18)にその異物が衝突するのを未然に防止することができる。 The applicator 5 is fixed to the reference base member 14, and a protective block 16 that is separate from the applicator 5 is also fixed to the reference base member 14. The protection block 16 has the same width dimension (dimension in the Y direction) as the discharge port surface 18 of the applicator 5 and, as shown in FIG. 1, the coating front side (left side in the case of FIG. 1) from the discharge port 7a. Is provided. The lower surface end of the protective block 16 (reference surface 17 described later) is closer to the substrate W than the discharge port surface 18 including the discharge port 7 a of the applicator 5. The position is set. Thereby, when the foreign substance exists on the substrate W, or when the coated surface K of the substrate W is raised by the foreign substance existing between the substrate W and the stage 3, the movement of the substrate W in the arrow X1 direction is performed. As a result, the foreign matter and the surface to be coated K first collide (detect) with the lower end of the protective block 16, and the foreign matter collides with the discharge port 7a (discharge port surface 18) of the applicator 5. Can be prevented in advance.
 そして、本実施形態では、この保護ブロック16の前記下面端部が、後述する測定手段21が測定を行うための参照面17となる。参照面17は、吐出口面18と相違する面であり、保護ブロック16の下面において吐出口面18と略平行な面として形成されている。なお、前記のとおり、保護ブロック16は、吐出口7aよりも基板Wの移動方向後方側に設けられていることから、参照面17についても、吐出口7a(吐出口面18)よりも塗布前側に設けられている構成となる。保護ブロック16は、前記のとおり吐出口7aに対する異物の衝突を防止する部材として機能するとともに、参照面17を有する測定体としても機能する。 And in this embodiment, the said lower surface edge part of this protection block 16 becomes the reference surface 17 for the measurement means 21 mentioned later to perform a measurement. The reference surface 17 is a surface different from the discharge port surface 18 and is formed as a surface substantially parallel to the discharge port surface 18 on the lower surface of the protection block 16. As described above, since the protective block 16 is provided on the rear side in the movement direction of the substrate W with respect to the discharge port 7a, the reference surface 17 is also on the front side of the application with respect to the discharge port 7a (discharge port surface 18). It becomes the composition provided in. As described above, the protection block 16 functions as a member that prevents a foreign object from colliding with the discharge port 7 a and also functions as a measurement body having the reference surface 17.
 なお、図示しないが、参照面17を保護ブロック16に設ける以外の構成として、塗布器5及び保護ブロック16とは別の測定体を、吐出口7a(吐出口面18)よりも塗布前側に、別途設け、この測定体の下面端部を参照面17としてもよい。又は、参照面17を、塗布器5の下面のX方向端部、つまり、塗布器5と一体として吐出口面18の塗布前側の端部に設けてもよい。
〔間隙維持装置20について〕
 図3は、間隙維持装置20の説明図であり、撮像手段21aが、保護ブロック16の参照面17と、この参照面17の直下に位置する基板Wの被塗布面の部分pとの間に形成される間隙値Cを測定する状況を表している。図3に示すように、塗布装置1は、間隙維持装置20を備えており、この間隙維持装置20は、塗布を行う際、塗布器5の吐出口7a(吐出口面18)と、この吐出口7aに対向して塗液が塗布される基板Wの被塗布面Kの一部との間に形成される間隙(間隙値Cn)を、塗布器5に対する基板Wの矢印X1方向の移動にあわせて一定値に維持する機能を有している。このために、間隙維持装置20は、前記参照面17を有する保護ブロック16と、測定手段21と、間隙維持手段25とを有している。
Although not shown, as a configuration other than providing the reference surface 17 on the protection block 16, a measuring body different from the applicator 5 and the protection block 16 is disposed on the front side of the application from the discharge port 7a (discharge port surface 18). It may be provided separately, and the lower surface end of the measurement body may be used as the reference surface 17. Or you may provide the reference surface 17 in the X direction edge part of the lower surface of the applicator 5, ie, the end part before application | coating of the discharge port surface 18 integrally with the applicator 5. FIG.
[Gap Maintenance Device 20]
FIG. 3 is an explanatory diagram of the gap maintaining device 20, in which the imaging means 21 a is between the reference surface 17 of the protection block 16 and the portion p of the surface to be coated of the substrate W located immediately below the reference surface 17. This represents a situation where the gap value C to be formed is measured. As shown in FIG. 3, the coating device 1 includes a gap maintaining device 20, and this gap maintaining device 20, when performing coating, discharges the discharge port 7 a (discharge port surface 18) of the applicator 5 and the discharge port. A gap (gap value Cn) formed between a part of the coated surface K of the substrate W to which the coating liquid is applied facing the outlet 7a is moved in the direction of arrow X1 of the substrate W with respect to the applicator 5. In addition, it has a function to maintain a constant value. For this purpose, the gap maintaining device 20 includes a protection block 16 having the reference surface 17, a measuring unit 21, and a gap maintaining unit 25.
 測定手段21は、前記参照面17と、この参照面17に対向する基板Wの被塗布面の部分pとの間に形成される間隙の値(間隙値C)を測定する。ここで、参照面17は下方に向かって臨む面であるため「参照面17に対向する被塗布面の部分」は「参照面17の直下に位置する被塗布面の部分」となる。これと同様に、吐出口7aは下方に向かって開口していることから「吐出口7aを含む吐出口面18に対向する被塗布面の部分」は「吐出口面18の直下に位置する面」となる。 The measuring means 21 measures the value of the gap (gap value C) formed between the reference surface 17 and the portion p of the coated surface of the substrate W facing the reference surface 17. Here, since the reference surface 17 faces downward, “the portion of the coated surface facing the reference surface 17” becomes “the portion of the coated surface located directly below the reference surface 17”. Similarly, since the discharge port 7a is opened downward, “the portion of the coated surface facing the discharge port surface 18 including the discharge port 7a” is “a surface located immediately below the discharge port surface 18”. "
 本実施形態の測定手段21は、例えばガントリ4に搭載されたカメラからなる撮像手段21aと、この撮像手段21aが撮影した画像を表示するモニタ手段21cと、この撮像手段21aが撮影した画像から前記間隙値Cを算出する算出手段21bとを有して構成される。 The measuring means 21 of the present embodiment includes, for example, an imaging means 21a composed of a camera mounted on the gantry 4, a monitor means 21c for displaying an image taken by the imaging means 21a, and an image taken by the imaging means 21a. And calculating means 21b for calculating the gap value C.
 図4は、塗布器5、保護ブロック16、基準ベース部材14、昇降バー13を含む昇降ユニット、及び基板W等を示す斜視図である。撮像手段21aは、図4に示すように、Y方向両端部に設けられており、保護ブロック16と基板WのY方向両端部それぞれの一部を撮像する。 FIG. 4 is a perspective view showing the applicator 5, the protection block 16, the reference base member 14, the lifting unit including the lifting bar 13, the substrate W, and the like. As shown in FIG. 4, the imaging means 21 a is provided at both ends in the Y direction, and images a part of each of the protection block 16 and both ends in the Y direction of the substrate W.
 撮像手段21aは、撮像素子と、撮像対象を所定の大きさとして撮像するためのレンズと、所定の明るさで撮像するための照明とを含む。撮像素子には画像処理に広く利用されているCCD(電荷結合素子:Charge CoupLed Device)を用いるのが好ましい。CCDの1つの画素である半導体素子の大きさは数μ程度であり、この画素が格子状に縦横数百~数千個単位に配置されている。 The imaging means 21a includes an imaging element, a lens for imaging an imaging target with a predetermined size, and illumination for imaging with a predetermined brightness. It is preferable to use a CCD (Charge Coupled Device) that is widely used for image processing as the imaging device. The size of a semiconductor element, which is one pixel of a CCD, is about several μm, and the pixels are arranged in units of several hundred to several thousands in the vertical and horizontal directions.
 前記算出手段21bは、画像処理機能を有しており、撮像手段21aが取得した画像を処理し、前記間隙値Cを演算により求める。本実施形態の算出手段21bは、コンピュータである前記制御装置11が備えている機能の一部からなる。算出手段21bが算出した間隙値Cは、後述するコントローラ12に伝送される。なお、本実施形態では、このコントローラ12も、コンピュータである前記制御装置11が備えている機能の一部からなる。 The calculation means 21b has an image processing function, processes the image acquired by the imaging means 21a, and obtains the gap value C by calculation. The calculation means 21b of this embodiment consists of a part of function with which the said control apparatus 11 which is a computer is equipped. The gap value C calculated by the calculation means 21b is transmitted to the controller 12 described later. In the present embodiment, the controller 12 also includes a part of functions provided in the control device 11 that is a computer.
 昇降機構9は、前記のとおり、塗布器5をZ方向(被塗布面Kに対して垂直な方向)に昇降させることが可能であり、これにより吐出口面18の高さ位置を調整できる。また、塗布装置1は、この昇降機構9により塗布器5をZ方向に昇降させるための制御信号を生成すると共に、この昇降機構9及び前記移動機構8の動作制御を行う前記コントローラ12を有している。 As described above, the elevating mechanism 9 can elevate and lower the applicator 5 in the Z direction (a direction perpendicular to the application surface K), thereby adjusting the height position of the discharge port surface 18. Further, the coating apparatus 1 includes the controller 12 that generates a control signal for moving the applicator 5 up and down in the Z direction by the lifting mechanism 9 and controls the operation of the lifting mechanism 9 and the moving mechanism 8. ing.
 これら昇降機構9及びコントローラ12により前記間隙維持手段25が構成されている。そして、測定手段21による測定値、つまり、参照面17とこの参照面17の直下に位置する被塗布面の部分pとの間に形成される間隙の測定値(間隙値C)に基づき、コントローラ12は、基板Wの移動によりこの被塗布面の部分pが吐出口7aの直下に達するまでの間に、昇降機構9により塗布器5をZ方向に昇降させるための制御信号を生成する。さらに、基板Wの移動によりこの被塗布面の部分pが吐出口7aの直下に達するタイミングに合わせて、コントローラ12が生成した前記制御信号に基づいて、昇降機構9が塗布器5をZ方向に昇降させる。この制御信号の生成と昇降機構9による塗布器5のZ方向の昇降とが、基板Wの移動と共に、刻々と連続して実行される。 The gap maintaining means 25 is constituted by the lifting mechanism 9 and the controller 12. Based on the measured value by the measuring means 21, that is, the measured value (gap value C) of the gap formed between the reference surface 17 and the portion p of the coated surface located immediately below the reference surface 17, the controller 12 generates a control signal for raising and lowering the applicator 5 in the Z direction by the elevating mechanism 9 until the portion p of the coated surface reaches just below the discharge port 7a due to the movement of the substrate W. Further, the lifting mechanism 9 moves the applicator 5 in the Z direction based on the control signal generated by the controller 12 in accordance with the timing at which the portion p of the coated surface reaches just below the discharge port 7a by the movement of the substrate W. Move up and down. The generation of the control signal and the raising / lowering of the applicator 5 in the Z direction by the raising / lowering mechanism 9 are continuously performed as the substrate W is moved.
 これにより、後にも説明するが、塗布のために塗布器5に対して基板Wが矢印X1方向に移動する動作にあわせて、測定手段21による測定値(間隙値C)に基づき塗布器5をZ方向に昇降させ、吐出口面18と、この吐出口面18の直下に位置する被塗布面の部分との間に形成される間隙(間隙値Cn)を一定に維持することができる。この結果、連続して一定速度で移動する基板W上に、膜厚が一定である薄膜を高精度に形成することが可能となる。 Thereby, as will be described later, the applicator 5 is moved based on the measured value (gap value C) by the measuring means 21 in accordance with the movement of the substrate W in the direction of the arrow X1 relative to the applicator 5 for coating. The gap (gap value Cn) formed between the discharge port surface 18 and the portion of the coated surface located immediately below the discharge port surface 18 can be maintained constant by moving up and down in the Z direction. As a result, a thin film having a constant film thickness can be formed with high accuracy on the substrate W that continuously moves at a constant speed.
 図4に示すように基板Wの被塗布面KはX1方向に「うねり」を有している。なお、図4では説明を容易とするために(わかり易くするために)実際よりもうねりを大きく記載している。 As shown in FIG. 4, the coated surface K of the substrate W has “swells” in the X1 direction. In FIG. 4, the waviness is shown larger than the actual one for ease of explanation (for the sake of easy understanding).
 また、図4に示すように、塗布装置1は、基板高さ検出器15を有しており、この基板高さ検出器15は、ステージ3上の基板Wの表面(被塗布面K)の高さH(以下、基板高さHという)を、このステージ3の上面を基準として測定する。基板高さ検出器15は、非接触式のセンサからなり、このセンサはガントリ4から延びるアーム等に取り付けられている。
〔間隙測定原理と測定方法について〕
 前記測定手段21による具体的な間隙測定原理と測定方法について、図3~図6を用いて説明する。なお、以下に説明する各種処理の実行主体は、特に説明していない場合、測定手段21が有する算出手段21bである。
Further, as shown in FIG. 4, the coating apparatus 1 has a substrate height detector 15, and this substrate height detector 15 is a surface of the substrate W on the stage 3 (surface to be coated K). A height H (hereinafter referred to as a substrate height H) is measured with reference to the upper surface of the stage 3. The substrate height detector 15 is a non-contact type sensor, and this sensor is attached to an arm or the like extending from the gantry 4.
[Gap measurement principle and measurement method]
A specific gap measuring principle and measuring method by the measuring means 21 will be described with reference to FIGS. In addition, the execution subject of the various processes described below is the calculation unit 21b included in the measurement unit 21 unless otherwise described.
 図3に示すように、撮像手段21aは、基板Wと非接触であり、斜めから参照面17の端部等を撮像するように設置されている。 As shown in FIG. 3, the imaging means 21a is not in contact with the substrate W, and is installed so as to image the end of the reference surface 17 and the like from an oblique direction.
 図5は撮像手段21aが、参照面17の実像と、基板W上における前記参照面17の反射像を撮像している状況を示す斜視図である。図6は撮像手段21aが撮像した画像の説明図である。なお、この画像を映像としてモニタ手段21cに表示可能である。各図において、末尾にiを付した符号は、被塗布面Kに映る反射像であることを示し、末尾にdを付した符号は、画像中で測定される寸法を表している。 FIG. 5 is a perspective view showing a situation where the imaging means 21a is capturing a real image of the reference surface 17 and a reflection image of the reference surface 17 on the substrate W. FIG. 6 is an explanatory diagram of an image captured by the imaging means 21a. This image can be displayed on the monitor means 21c as a video. In each figure, the code | symbol which attached | subjected i to the end shows that it is a reflected image reflected on the to-be-coated surface K, and the code | symbol which attached | subjected d to the end represents the dimension measured in an image.
 図5に示すように、参照面17と、この参照面17の直下に位置する被塗布面の部分pとの間に形成されている間隙の寸法が前記「間隙値C」である。撮像手段21aの光軸Mは、基板Wの被塗布面Kから角度θだけ傾いた状態にある。 As shown in FIG. 5, the dimension of the gap formed between the reference surface 17 and the portion p of the coated surface located immediately below the reference surface 17 is the “gap value C”. The optical axis M of the imaging means 21a is inclined from the surface to be coated K of the substrate W by an angle θ.
 撮像手段21aが撮像する反射像17jiは、端部17jが被塗布面K上で入射角θにより反射されるものとなる。そこで、撮像手段21aは、実像である参照面17の端部17jと、この参照面17の端部17jの被塗布面K上における反射像17jiとを撮像する。 The reflection image 17ji picked up by the image pickup means 21a is such that the end 17j is reflected on the coated surface K by the incident angle θ. Therefore, the imaging means 21a captures the end portion 17j of the reference surface 17 that is a real image and the reflected image 17ji on the coated surface K of the end portion 17j of the reference surface 17.
 撮像手段21aが撮像した端部17j(端部17jの実像)と反射像17jiとを、図6に示すような画像として取得することができる。この画像は、モニタ手段21cに表示される。 The edge part 17j (real image of the edge part 17j) and the reflected image 17ji imaged by the imaging means 21a can be acquired as an image as shown in FIG. This image is displayed on the monitor means 21c.
 図6において、取得された前記画像(モニタ手段21cに示される画像)上における端部17jの実像と端部17jの反射像17ji間の長さである距離Ddは、図5に示す端部17jと反射像17jiとの間の実距離Dに、撮像手段21a等を含む測定手段21における画像についての合計拡大倍率nを乗じたn・Dと等しくなる(Dd=D・n)。合計拡大倍率nは既知の値であり、算出手段21bに設定されている値である。 In FIG. 6, the distance Dd which is the length between the real image of the end portion 17j and the reflected image 17ji of the end portion 17j on the acquired image (the image shown on the monitor means 21c) is the end portion 17j shown in FIG. Is equal to n · D, which is obtained by multiplying the actual distance D between the image and the reflected image 17ji by the total magnification n for the image in the measuring means 21 including the imaging means 21a and the like (Dd = D · n). The total enlargement magnification n is a known value and is a value set in the calculation means 21b.
 そして、図5において、参照面17と、この参照面17に直下の被塗布面の部分pとの間の間隙値Cは、C=L・Sinθと、D=L・Cosφ=L・Cos(π/2-2θ)=2L・Sinθ・Cosθとの関係式により、C=D/(2・Cosθ)で算出される。ここでLは端部17jから、被塗布面K上における当該端部17jの反射像17jiまでの距離である。 In FIG. 5, the gap value C between the reference surface 17 and the portion p of the coated surface immediately below the reference surface 17 is C = L · Sinθ and D = L · Cosφ = L · Cos ( It is calculated as C = D / (2 · Cosθ) by the relational expression of π / 2-2θ) = 2L · Sinθ · Cosθ. Here, L is the distance from the end portion 17j to the reflection image 17ji of the end portion 17j on the coated surface K.
 以上より、撮像手段21aが取得した画像上において、前記距離Ddを測定するとともに前記角度θを求めることができれば、間隙値Cを、前記式C=Dd/(2・n・Cosθ)より算出することができる。つまり、算出手段21bは、撮像手段21aによって撮像された参照面17の端部17jの実像と、この端部17jの反射像17jiとの間の長さ(距離Dd)、及び、撮像手段21aの光軸Mの角度θを基にして、間隙値Cを算出することができる。
〔前記距離Ddと前記角度θの取得方法〕
 距離Ddについては、取得画像(モニタ手段21c)上に現れる端部17jの実像と端部17jの反射像17jiとを基にして、画像処理により求めることができる。具体的な画像処理方法は様々存在するが、例えば、画像の色や濃淡が大きく変化することを利用して、端部17jの実像と端部17jの反射像17jiとの位置を定めることで、端部17jの実像の位置と反射像17jiの位置との間の距離Ddを、容易に求めることができる。
As described above, if the distance Dd can be measured and the angle θ can be obtained on the image acquired by the imaging means 21a, the gap value C is calculated from the equation C = Dd / (2 · n · Cos θ). be able to. That is, the calculating unit 21b is configured to calculate the length (distance Dd) between the real image of the end 17j of the reference surface 17 captured by the imaging unit 21a and the reflected image 17ji of the end 17j, and the imaging unit 21a. Based on the angle θ of the optical axis M, the gap value C can be calculated.
[Method for obtaining the distance Dd and the angle θ]
The distance Dd can be obtained by image processing based on the real image of the end portion 17j and the reflected image 17ji of the end portion 17j appearing on the acquired image (monitor means 21c). There are various specific image processing methods. For example, by using the fact that the color and shade of the image change greatly, the positions of the real image of the end portion 17j and the reflected image 17ji of the end portion 17j are determined. The distance Dd between the position of the real image of the end portion 17j and the position of the reflected image 17ji can be easily obtained.
 角度θについては、撮像手段21aの光軸Mの角度を実測すればよいが、精度よく実測することは困難である。そこで、本実施形態では、算出手段21bにより、間隙値C=Dd/(2・n・Cosθ)の関係から間接的に角度θを求める。その具体的な方法を、図5、図6、図7、図8を用いて説明する。 As for the angle θ, the angle of the optical axis M of the imaging means 21a may be measured, but it is difficult to measure accurately. Therefore, in the present embodiment, the angle θ is indirectly obtained from the relationship of the gap value C = Dd / (2 · n · Cos θ) by the calculation means 21b. The specific method is demonstrated using FIG.5, FIG.6, FIG.7 and FIG.
 図7は、図5に示す状態から、保護ブロック16を所定量Eだけ上昇させた状態を示している斜視図である。この図7では、上昇前の保護ブロック16やその反射像17jiを二点鎖線で示している。 FIG. 7 is a perspective view showing a state in which the protection block 16 is raised by a predetermined amount E from the state shown in FIG. In FIG. 7, the protection block 16 and its reflection image 17ji before rising are indicated by a two-dot chain line.
 図7に示す上昇後の状態において、撮像手段21aが、端部17jの実像とこの端部17jの反射像17jiとを撮像する。その撮像した画像を図8に示す。図8中の実線が図7に示す上昇後の状態において取得された画像である。なお、図8には、保護ブロック16が所定量Eについて上昇する前の参照面17の端部17jと端部17jの反射像17jiの位置が二点鎖線により示されている。 7, the imaging means 21a captures the real image of the end portion 17j and the reflected image 17ji of the end portion 17j. The captured image is shown in FIG. The solid line in FIG. 8 is an image acquired in the state after the rise shown in FIG. In FIG. 8, the positions of the end portion 17j of the reference surface 17 and the reflection image 17ji of the end portion 17j before the protection block 16 is raised by the predetermined amount E are indicated by a two-dot chain line.
 この二点鎖線で示されている端部17jと反射像17jiは、実際にはモニタ手段21cに表示されないが、これらの間の距離である前記距離Ddは、(保護ブロック16が上昇する前に)算出手段21b(制御装置11の内部メモリ)に記憶されている。 The end portion 17j and the reflected image 17ji indicated by the two-dot chain line are not actually displayed on the monitor means 21c, but the distance Dd between them is (before the protection block 16 is raised) ) Is stored in the calculation means 21b (internal memory of the control device 11).
 図7において、保護ブロック16が所定量Eだけ上昇した後の端部17jとこの端部17jの反射像17jiとの間の距離(最短距離)が、上昇後の端部17jと端部17jの反射像17ji間の実距離D1と示されている。この距離D1は、図8に示すように、取得画像(モニタ手段21c)上においてD1dとなり、D1d=n・D1の関係となる。 In FIG. 7, the distance (shortest distance) between the end portion 17j after the protection block 16 has been raised by a predetermined amount E and the reflected image 17ji of this end portion 17j is the distance between the end portion 17j and the end portion 17j after being raised. The actual distance D1 between the reflected images 17ji is indicated. As shown in FIG. 8, the distance D1 is D1d on the acquired image (monitor unit 21c), and D1d = n · D1.
 ところで、図7から明らかなように、C+E=D1d/(2・n・Cosθ)であり、この式と前記式C=Dd/(2・n・Cosθ)とにより、上昇前後の端部17jと反射像17jiそれぞれの移動量E1はE1=E・Cosθで表される。 As is apparent from FIG. 7, C + E = D1d / (2.multidot.Cos.theta.), And by this formula and the formula C = Dd / (2.multidot.Cos.theta.) The amount of movement E1 of each reflected image 17ji is expressed by E1 = E · Cos θ.
 図8に示す画像(モニタ手段21c)上の端部17jと反射像17jiそれぞれの移動量E1dは、E1d=n・E1で表されることから、E1d=(D1d―Dd)/2の式により求めることができる。 Since the movement amounts E1d of the end portion 17j and the reflected image 17ji on the image (monitor means 21c) shown in FIG. 8 are expressed by E1d = n · E1, the following equation is used: E1d = (D1d−Dd) / 2 Can be sought.
 すなわち、保護ブロック16を所定量Eだけ上昇させた場合に、取得された画像(モニタ手段21cに示される画像)の端部17jとこの端部17jの反射像17jiとの間の距離D1dと、既に記憶されている前記距離Ddとに基づき、Cosθ=E1/E=(D1d-Dd)/(2・n・E)の関係から、算出手段21bは、角度θを算出することができる。 That is, when the protection block 16 is raised by a predetermined amount E, the distance D1d between the end portion 17j of the acquired image (image shown on the monitor means 21c) and the reflected image 17ji of the end portion 17j, Based on the already stored distance Dd, the calculation means 21b can calculate the angle θ from the relationship Cos θ = E1 / E = (D1d−Dd) / (2 · n · E).
 なお、撮像手段21aをガントリ4に取り付けてから後は、角度θが一定値であることから、実際の前記間隙値Cを測定する前の準備工程において、上記の方法により、角度θを求めておくのが好ましい。 After the image pickup means 21a is attached to the gantry 4, the angle θ is a constant value. Therefore, in the preparation step before the actual gap value C is measured, the angle θ is obtained by the above method. It is preferable to leave.
 なお、間隙値C=Dd/(2・n・Cosθ)=a・Dd、ただし、a=1/(2・n・Cosθ)=E/(D1d-Dd)と定義し、直接θを求めるのではなく、変換係数aを求めておくのが便利で好ましい。 Note that the gap value C = Dd / (2 · n · Cos θ) = a · Dd, where a = 1 / (2 · n · Cos θ) = E / (D1d−Dd) and directly obtaining θ. Instead, it is convenient and preferable to obtain the conversion coefficient a.
 このように、測定手段21による前記間隙値Cの測定(算出)にあたっては、塗液を吐出する塗布器5ではなくその隣りに設けられている別の保護ブロック16を、撮像手段21aが撮像することで、塗液の影響を受けることなく塗布中も間隙値Cの測定が常時可能となる。 As described above, when the measurement unit 21 measures (calculates) the gap value C, the imaging unit 21a images another protective block 16 provided adjacent to the applicator 5 that discharges the coating liquid. As a result, the gap value C can always be measured even during coating without being affected by the coating liquid.
 なお、本実施形態では、図4に示すように、撮像手段21aがY方向両端の二箇所に設けられており、これら撮像手段21aそれぞれが取得した画像により、Y方向両端それぞれにおける前記間隙値Cを算出している。 In the present embodiment, as shown in FIG. 4, the image pickup means 21a is provided at two locations on both ends in the Y direction, and the gap value C at each end in the Y direction is obtained from images acquired by each of the image pickup means 21a. Is calculated.
 なお、図示しないが、撮像手段21aは、保護ブロック16の長手方向(Y方向)を光軸方向として撮像してもよく、また、鏡を利用して光軸を屈折させて撮像してもよい。
〔塗布方法について〕
 前記の間隙維持装置20を備えた塗布装置1による塗布方法について説明する。この塗布方法には、工程1:塗布準備工程、工程2:間隙測定準備工程、工程3:基板搬入・間隙確認工程、工程4:塗布・基板搬出工程が含まれている。図12は、塗布方法のフロー図であり、間隙測定準備工程から塗布スタートまでを示している。図13は、塗布方法のフロー図であり、塗布中の動作を示している。
Although not shown, the imaging means 21a may take an image with the longitudinal direction (Y direction) of the protection block 16 as the optical axis direction, or may refract the optical axis using a mirror. .
[Application method]
A coating method using the coating apparatus 1 including the gap maintaining device 20 will be described. This coating method includes a process 1: a coating preparation process, a process 2: a gap measurement preparation process, a process 3: a substrate carry-in / gap confirmation process, and a process 4: a coating / substrate carry-out process. FIG. 12 is a flowchart of the coating method, showing the gap measurement preparation process to the coating start. FIG. 13 is a flowchart of the coating method, showing the operation during coating.
 工程1:塗布準備工程
 タンク23(図1参照)から塗液を原点位置(最上点)にある塗布器5まで通して、流路内に含まれているエアを排除する。シリンジポンプからなるポンプ22に塗液を充填し、このポンプ22と塗布器5とが連通した状態とする。ポンプ22の始動により、塗液が塗布器5(吐出口7a)から吐出できる状態になり、塗布準備工程は完了する。
Step 1: Application Preparation Step The coating liquid is passed from the tank 23 (see FIG. 1) to the applicator 5 at the origin position (uppermost point), and the air contained in the flow path is removed. A coating liquid is filled in a pump 22 composed of a syringe pump, and the pump 22 and the applicator 5 are in communication with each other. By starting the pump 22, the coating liquid can be discharged from the applicator 5 (discharge port 7a), and the coating preparation process is completed.
 工程2:間隙測定準備工程(図12のSt1)
 算出手段21bが、前記変換係数a=E/(D1d-Dd)を求める。まず、塗布装置1に搬入した基板Wを原点位置にあるステージ3に吸着保持させる。つづいて、間隙測定準備工程の説明図である図9(A)に示すように、基板Wの被塗布面Kの一部p(測定対象部p)が基板高さ検出器15の直下に到達するまで、ステージ3を移動させて静止させ、基板高さ検出器15により基板高さHを測定する。
Step 2: Gap measurement preparation step (St1 in FIG. 12)
The calculating means 21b calculates the conversion coefficient a = E / (D1d−Dd). First, the substrate W carried into the coating apparatus 1 is sucked and held on the stage 3 at the origin position. Subsequently, as shown in FIG. 9A, which is an explanatory diagram of the gap measurement preparation step, a part p (measurement target portion p) of the coated surface K of the substrate W reaches just below the substrate height detector 15. Until then, the stage 3 is moved and stopped, and the substrate height detector 15 measures the substrate height H.
 測定した基板高さHを用いて、コントローラ12は、参照面17の測定準備高さ座標Zcを、式Zc=Z0+H+Ccより算出し、制御装置11に記憶させる。Z0は、ステージ3の上面と参照面17とが接した時、すなわちステージ3の上面と参照面17とが同一高さである場合の、当該参照面17の高さ方向の位置を表すZ軸座標である。なお、本実施形態では、Z軸座標の基準(Z方向についての基準面)がステージの上面であることから、Z0=0となる。また、Ccは、基板Wと参照面17との間隙値(設定値)であり、制御装置11に記憶されている値である。 Using the measured substrate height H, the controller 12 calculates the measurement preparation height coordinate Zc of the reference surface 17 from the formula Zc = Z0 + H + Cc, and stores it in the control device 11. Z0 is a Z-axis that represents the position of the reference surface 17 in the height direction when the upper surface of the stage 3 and the reference surface 17 are in contact, that is, when the upper surface of the stage 3 and the reference surface 17 are at the same height. Coordinates. In this embodiment, since the reference of the Z-axis coordinates (reference plane in the Z direction) is the upper surface of the stage, Z0 = 0. Cc is a gap value (set value) between the substrate W and the reference surface 17 and is a value stored in the control device 11.
 次に、図9(B)に示すように、ステージ3を矢印X1方向に移動させて、前記基板高さHを測定した基板Wの一部p(前記測定対象部p)が参照面17の直下に達する位置で停止させる。制御装置11のコントローラ12からの指令により、昇降機構9を駆動させ、参照面17を、算出した前記測定準備高さ座標Zcに相当する位置まで下降させて静止させる。 Next, as shown in FIG. 9B, the stage 3 is moved in the direction of the arrow X <b> 1, and a part p (the measurement target portion p) of the substrate W measured for the substrate height H is the reference surface 17. Stop at the position where it reaches directly below. In response to a command from the controller 12 of the control device 11, the lifting mechanism 9 is driven, and the reference surface 17 is lowered to a position corresponding to the calculated measurement preparation height coordinate Zc to be stationary.
 この状態で、撮像手段21a(図5参照)は、参照面17の端部17jの実像とこの端部17jの反射像17jiとを撮像し、図6に示す画像を取得する。この画像の端部17jから端部17jの反射像17jiまでの距離である距離Ddを、算出手段21bが画像処理して求め、制御装置11に記憶させる。 In this state, the imaging means 21a (see FIG. 5) captures the real image of the end portion 17j of the reference surface 17 and the reflected image 17ji of the end portion 17j, and acquires the image shown in FIG. A distance Dd, which is the distance from the edge portion 17j of the image to the reflection image 17ji of the edge portion 17j, is obtained by image processing and is stored in the control device 11.
 次に、コントローラ12の指令により、図7に示すように、保護ブロック16をZ方向に所定量Eについて上昇させる。上昇後、再度、端部17jとこの端部17jの反射像17jiを撮像手段21aが撮像し、図8に示す画像を取得する。この画像の端部17jから端部17jの反射像17jiまでの距離である距離D1dを、算出手段21bが画像処理して求め、制御装置11に記憶させる。つづいて、算出手段21bにより、式a=E/(D1d-Dd)に基づいて前記変換係数aが算出され、制御装置11に記憶させる。このようにして間隙値Cを算出するために必要となる変換係数aを得ることにより、間隙測定準備工程は完了する。 Next, as shown in FIG. 7, the protection block 16 is raised by a predetermined amount E in the Z direction according to a command from the controller 12. After the rise, the imaging unit 21a captures the end portion 17j and the reflection image 17ji of the end portion 17j again, and acquires the image shown in FIG. A distance D1d, which is the distance from the edge portion 17j of the image to the reflected image 17ji of the edge portion 17j, is obtained by image processing and is stored in the control device 11. Subsequently, the calculation means 21b calculates the conversion coefficient a based on the equation a = E / (D1d−Dd) and stores it in the control device 11. By obtaining the conversion coefficient a necessary for calculating the gap value C in this way, the gap measurement preparation process is completed.
 この工程の完了後、保護ブロック16及び塗布器5を含む昇降ユニットと、ステージ3とは原点位置に戻され、基板Wがステージ3から取り外される。 After completion of this step, the lifting unit including the protection block 16 and the applicator 5 and the stage 3 are returned to the origin position, and the substrate W is removed from the stage 3.
 工程3:基板搬入・間隙確認工程
 工程3では、原点位置にあるステージ3上に基板Wを搬入後、この基板Wと塗布器5の吐出口面18との間隙が、許容値範囲内かどうか確認し、許容値を超えている場合は補正が行われる。
Step 3: Substrate Loading / Gap Confirmation Step In step 3, after loading the substrate W onto the stage 3 at the origin, whether or not the gap between the substrate W and the discharge port surface 18 of the applicator 5 is within the allowable range. Check and correct if the tolerance is exceeded.
 まず、ステージ3が原点位置にある状態で、図示しない基板搬送手段により基板Wをステージ3上に載置し、基板Wを吸引してステージ3に吸着保持させる。つづいて、基板搬入・間隙確認工程の説明図である図10(A)に示すように、基板Wの塗布開始部p0が基板高さ検出器15の直下に達するまでステージ3を移動させ、停止後、基板高さ検出器15により基板Wの高さHを測定する。 First, in a state where the stage 3 is at the origin position, the substrate W is placed on the stage 3 by a substrate transport means (not shown), and the substrate W is sucked and held on the stage 3 by suction. Subsequently, as shown in FIG. 10A which is an explanatory diagram of the substrate carry-in / gap confirmation process, the stage 3 is moved and stopped until the coating start portion p0 of the substrate W reaches directly below the substrate height detector 15. Thereafter, the height H of the substrate W is measured by the substrate height detector 15.
 コントローラ12は、測定した基板高さHを用いて、吐出口面18(ノズル7a)の塗布高さ開始座標Zsを、式Zs=Z0+H+Cs+Fsより算出し、これを制御装置11に記憶させる。ここで、Z0は、前記のとおり、参照面17の高さ方向の位置を表すZ軸座標であり、本実施形態ではZ0=0である。Csは、基板Wと吐出口面18(吐出口7a)との間の設定間隙値であり、あらかじめ制御装置11に入力して記憶されている。Fsは、参照面17と、吐出口面18とのZ方向の寸法差である(Fs>0)。 Using the measured substrate height H, the controller 12 calculates the coating height start coordinate Zs of the discharge port surface 18 (nozzle 7a) from the formula Zs = Z0 + H + Cs + Fs, and stores it in the control device 11. Here, as described above, Z0 is the Z-axis coordinate indicating the position of the reference surface 17 in the height direction, and Z0 = 0 in the present embodiment. Cs is a set gap value between the substrate W and the discharge port surface 18 (discharge port 7a), and is input and stored in the control device 11 in advance. Fs is a dimensional difference in the Z direction between the reference surface 17 and the discharge port surface 18 (Fs> 0).
 図10(B)に示すように、前記塗布開始部p0が参照面17の直下に位置に到達するまでステージ3を移動させて停止させた後、コントローラ12の指令により、昇降機構9を駆動して塗布器5を下降させ、吐出口面18の高さ位置を、算出した前記塗布高さ開始座標Zsに相当する位置とし、その位置で塗布器5を静止させる(図12のSt2)。 As shown in FIG. 10B, after the stage 3 is moved and stopped until the coating start part p0 reaches a position just below the reference surface 17, the lifting mechanism 9 is driven by a command from the controller 12. Then, the applicator 5 is lowered, and the height position of the discharge port surface 18 is set to a position corresponding to the calculated application height start coordinate Zs, and the applicator 5 is stopped at that position (St2 in FIG. 12).
 そして、撮像手段21aが、図5に示すように、参照面17の端部17jとこの端部17jの反射像17jiとを撮像し(図12のSt3)、図6に示す画像を取得する。この画像を基に、算出手段21bが画像処理して、参照面17の端部17jから端部17jの反射像17jiまでの長さである距離Ddを求める。 Then, as shown in FIG. 5, the imaging means 21a captures the end portion 17j of the reference surface 17 and the reflected image 17ji of the end portion 17j (St3 in FIG. 12), and acquires the image shown in FIG. Based on this image, the calculating means 21b performs image processing to obtain a distance Dd that is the length from the end portion 17j of the reference surface 17 to the reflected image 17ji of the end portion 17j.
 求めたこの距離Ddと、前記測定準備工程で既に求めて記憶させた前記変換係数aを用いて、塗布開始部p0と参照面17との間隙値C0を、算出手段21bが式C=a・Ddより算出する(図12のSt4)。 Using this obtained distance Dd and the conversion coefficient a already obtained and stored in the measurement preparation step, the calculation means 21b calculates the gap value C0 between the coating start part p0 and the reference surface 17 by the formula C = a · Calculated from Dd (St4 in FIG. 12).
 算出された間隙値Cと、参照面17と吐出口面18とのZ方向の寸法差Fsとの和(C+Fs)と、設定間隙値Csとの差が、許容値b以下、すなわち|(C+Fs)-Cs|≦bとなっていれば、次の塗布のための工程に移行する。|(C+Fs)-Cs|>bである場合は、補正量hを式h=(C+Fs)-Csより求めて、コントローラ12からの指令により昇降機構9を駆動して保護ブロック16及び塗布器5を含む昇降ユニットを補正量hだけ昇降させる。この時、hが正なら塗布器5を上昇させ、負ならば下降させる。そして再度、前述と同様にして現在の(補正後の)間隙値Cを測定し、|(C+Fs)-Cs|≦bになっていることを確認する。確認完了後、補正した塗布高さ開始座標Zs、すなわちZs=Z0+H+Cs+Fs+hを記憶させる(図12のSt5)。 The difference between the calculated gap value C and the sum (C + Fs) of the Z-direction dimensional difference Fs between the reference surface 17 and the discharge port surface 18 and the set gap value Cs is equal to or less than the allowable value b, that is, | (C + Fs). ) If −Cs | ≦ b, the process proceeds to the next coating step. When | (C + Fs) −Cs |> b, the correction amount h is obtained from the equation h = (C + Fs) −Cs, and the lifting mechanism 9 is driven by a command from the controller 12 to drive the protective block 16 and the applicator 5. Is lifted by a correction amount h. At this time, if h is positive, the applicator 5 is raised, and if h is negative, it is lowered. Then, again, the current (after correction) gap value C is measured in the same manner as described above, and it is confirmed that | (C + Fs) −Cs | ≦ b. After the confirmation is completed, the corrected coating height start coordinate Zs, that is, Zs = Z0 + H + Cs + Fs + h is stored (St5 in FIG. 12).
 なお、前記のとおり、Y方向両端の撮像手段21aそれぞれの画像について前記各処理を行っていることから、例えば基板WがY方向に沿って傾いていることが原因となって、Y方向両端の間隙値Cが異なる場合、補正量及び塗布高さ開始座標ZsをそれぞれY方向両端で相違させる(図12のSt6)。これにより、基板Wと参照面17との間隙がY方向全長にわたって一定となるように、両端の昇降機構9を制御することが可能となる。 As described above, since each process is performed on the respective images of the imaging means 21a at both ends in the Y direction, for example, the substrate W is inclined along the Y direction. When the gap value C is different, the correction amount and the coating height start coordinate Zs are made different at both ends in the Y direction (St6 in FIG. 12). Thereby, it is possible to control the lifting mechanisms 9 at both ends so that the gap between the substrate W and the reference surface 17 is constant over the entire length in the Y direction.
 工程4:塗布・基板搬出工程
 参照面17の直下に塗布開始部p0が位置していた基板Wを、矢印X1方向に一定速度で移動させるとともに、図10(C)に示すように、この塗布開始部p0が吐出口7aの直下に到達するタイミングにあわせて、塗液供給手段10により塗液を塗布器5に供給して基板W上に塗液の吐出を開始する。ポンプ22からの塗液の供給流量は、あらかじめ設定された膜厚と塗布速度に応じて定められている。また、この塗布開始部p0が吐出口7aの直下に到達するタイミングで、塗布開始部p0と吐出口7a(吐出口面18)との間隙値はCn0であり、この間隙値Cn0は設定間隙値Csと同一となる。
Step 4: Application / Substrate Unloading Step The substrate W on which the application start portion p0 is located immediately below the reference surface 17 is moved at a constant speed in the direction of the arrow X1, and this application is performed as shown in FIG. The coating liquid is supplied to the applicator 5 by the coating liquid supply means 10 and the discharge of the coating liquid onto the substrate W is started at the timing when the start part p0 reaches just below the discharge port 7a. The supply flow rate of the coating liquid from the pump 22 is determined according to a preset film thickness and coating speed. The gap value between the coating start portion p0 and the discharge port 7a (discharge port surface 18) is Cn0 at the timing when the coating start portion p0 reaches just below the discharge port 7a. The gap value Cn0 is a set gap value. Same as Cs.
 基板Wは継続して矢印X1方向に一定速度で移動し、この移動の間、撮像手段21a及び算出手段21bがそれぞれ機能し、参照面17と、この参照面17の直下に位置する基板Wの被塗布面の部分piとの間に形成される間隙値Ciが刻々と求められる(i=1~n:サンプリング数)。図10(C)では、塗布開始部p0を基点とし、各被塗布面の部分piのX方向の位置をXpiと表現している(i=1~n)。なお、塗布開始部p0のX方向の位置は、位置Xp0(n=0)であり、また、参照面17と、この参照面17の直下に位置する塗布開始部p0との間隙値はC0である。 The substrate W continuously moves in the direction of the arrow X1 at a constant speed. During this movement, the imaging means 21a and the calculation means 21b function, and the reference surface 17 and the substrate W positioned immediately below the reference surface 17 A gap value Ci formed between the portion pi of the surface to be coated is determined every time (i = 1 to n: number of sampling). In FIG. 10C, the position in the X direction of the portion pi of each surface to be coated is expressed as Xpi (i = 1 to n) with the application start portion p0 as a base point. The position in the X direction of the application start part p0 is a position Xp0 (n = 0), and the gap value between the reference surface 17 and the application start part p0 located immediately below the reference surface 17 is C0. is there.
 算出手段21bは、間隙値Ciを刻々と求めると共に、各位置Xpiそれぞれにおける間隙値Ciの変化量Hiを求め、この変化量Hiを、塗布器5を昇降させる補正値Chiとして設定する(Hi=Chi)。補正値Chiは位置Xpiと対応つけて設定され、設定された補正値Chiは、次々にコントローラ12へ転送される。 The calculating means 21b obtains the gap value Ci every moment, obtains the change amount Hi of the gap value Ci at each position Xpi, and sets this change amount Hi as a correction value Chi for moving the applicator 5 up and down (Hi = Chi). The correction value Chi is set in association with the position Xpi, and the set correction value Chi is transferred to the controller 12 one after another.
 そして、基板Wに対して塗布器5から塗液の吐出を行いながら、各被塗布面の部分piが吐出口7aの直下に到達するタイミングにあわせて、当該部分piを示す位置Xpiと対応付けられている補正値Chiを基に、塗布器5の吐出口面18と被塗布面Kの間隙を維持する倣い制御が実行され、当該部分piと吐出口7a(吐出口面18)との間隙値Cniを一定(設定間隙値Csと同一)とする。この倣い制御の具体例を図11に基づいて以下説明する。図11は、倣い制御の具体例を説明する説明図であり、この図11ではステージ3を省略して記載している。 Then, while discharging the coating liquid from the applicator 5 to the substrate W, it is associated with the position Xpi indicating the portion pi in accordance with the timing at which the portion pi of each coated surface reaches just below the discharge port 7a. On the basis of the correction value Chi, the copying control is performed to maintain the gap between the discharge port surface 18 of the applicator 5 and the surface to be coated K, and the gap between the portion pi and the discharge port 7a (discharge port surface 18). The value Cni is constant (same as the set gap value Cs). A specific example of the copying control will be described below with reference to FIG. FIG. 11 is an explanatory diagram for explaining a specific example of the copying control. In FIG. 11, the stage 3 is omitted.
 図11(A)の状態は、基板Wが矢印X1方向に一定速度で移動することで、参照面17の直下に位置していた前記塗布開始部p0が吐出口7aの直下に到達した状態であり、また、基板Wの位置Xp1(n=1)に相当する被塗布面の部分p1が、参照面17の直下に位置している状態である。この状態では、塗布開始部p0と吐出口7aとの間隙値はCn0となっている。被塗布面の部分p1は塗布開始部p0よりも高くなっている。 The state of FIG. 11A is a state in which the coating start part p0 located immediately below the reference surface 17 has reached directly below the discharge port 7a as the substrate W moves at a constant speed in the direction of the arrow X1. In addition, a portion p1 of the surface to be coated corresponding to the position Xp1 (n = 1) of the substrate W is located immediately below the reference surface 17. In this state, the gap value between the coating start part p0 and the discharge port 7a is Cn0. The portion p1 of the surface to be coated is higher than the coating start portion p0.
 この図11(A)の状態において、算出手段21bにより、参照面17と、この参照面17の直下に達した位置Xp1における被塗布面の部分p1との間隙値C1が求められる(図13のSt11,St12)。この間隙値C1は、前記間隙値C0と比較して、変化量H1(<0)が生じていることから、間隙値C1は、C1=C0+H1となっている。算出手段21bは変化量H1を求め、この変化量H1を、塗布器5を昇降させる補正値Ch1として設定する(H1=Ch1、ただし、Ch1<0)。補正値Ch1は位置Xp1と対応付けられた情報である。 In the state of FIG. 11A, the calculation means 21b obtains the gap value C1 between the reference surface 17 and the portion p1 of the coated surface at the position Xp1 that has reached just below the reference surface 17 (FIG. 13). St11, St12). Since the gap value C1 has a change amount H1 (<0) as compared with the gap value C0, the gap value C1 is C1 = C0 + H1. The calculating means 21b obtains the change amount H1, and sets the change amount H1 as a correction value Ch1 for moving the applicator 5 up and down (H1 = Ch1, where Ch1 <0). The correction value Ch1 is information associated with the position Xp1.
 位置Xp1と対応付けられている補正値Ch1の情報がコントローラ12に転送されると(図13のSt13)、この位置Xp1における被塗布面の部分p1が吐出口7aの直下に到達するタイミングにあわせて(図10(B)の状態)、昇降機構9を駆動して塗布器5を上昇させて吐出口7aの位置を調整する。具体的には、前記タイミングにあわせて、吐出口7aを前記補正値Ch1について上昇させる(図13のSt14)。 When the information of the correction value Ch1 associated with the position Xp1 is transferred to the controller 12 (St13 in FIG. 13), the application surface portion p1 at this position Xp1 is matched with the timing when it reaches directly below the discharge port 7a. (State of FIG. 10B), the lifting mechanism 9 is driven to raise the applicator 5 and adjust the position of the discharge port 7a. Specifically, the discharge port 7a is raised with respect to the correction value Ch1 in accordance with the timing (St14 in FIG. 13).
 このために、参照面17の直下に達した位置Xp1における被塗布面の部分p1が、吐出口7aの直下に到達するまでの間に、コントローラ12は、前記補正値Ch1を含む情報に基づいて、塗布器5を当該補正値Ch1について昇降させるための制御信号を生成し、この制御信号を基に、この被塗布面の部分p1が吐出口7aの直下に到達するタイミングで、昇降機構9による塗布器5の上昇を完了させる。 For this reason, the controller 12 is based on the information including the correction value Ch1 until the portion p1 of the coated surface at the position Xp1 that has reached directly below the reference surface 17 reaches just below the discharge port 7a. Then, a control signal for raising and lowering the applicator 5 with respect to the correction value Ch1 is generated, and on the basis of this control signal, the raising and lowering mechanism 9 performs the timing at which the portion p1 of the coated surface reaches just below the discharge port 7a. The raising of the applicator 5 is completed.
 なお、図11(A)、(B)、(C)の各状態を示す図の下には、塗布器5の高さの変化を示すタイムチャートを記載している。図11(B)の状態の下に記しているように、位置Xp1における被塗布面の部分p1が吐出口7aの直下に到達したときに、塗布器5の移動(補正値Ch1についての上昇)が完了しており、塗布器5の制御動作に遅れが生じないようにしている。 In addition, below the figure which shows each state of FIG. 11 (A), (B), (C), the time chart which shows the change of the height of the applicator 5 is described. As described below in the state of FIG. 11B, when the portion p1 of the coated surface at the position Xp1 reaches directly below the discharge port 7a, the applicator 5 moves (increases with respect to the correction value Ch1). Is completed, and the control operation of the applicator 5 is prevented from being delayed.
 被塗布面の部分p1が吐出口7aの直下に到達したタイミングにおける、この被塗布面の部分p1と吐出口7aとの間隙値Cn1は、前記間隙値Cn0に補正値Ch1を加えた値となる(Cn1=Cn0+Ch1)。これにより、吐出口面18と、位置Xp1における被塗布面の部分p1との間隙値Cn1は、設定間隙値Csと同一となり、この被塗布面の部分p1に対して塗布が行われる。 The gap value Cn1 between the coated surface portion p1 and the discharge port 7a at the timing when the coated surface portion p1 reaches just below the discharge port 7a is a value obtained by adding the correction value Ch1 to the gap value Cn0. (Cn1 = Cn0 + Ch1). As a result, the gap value Cn1 between the ejection port surface 18 and the portion p1 of the coated surface at the position Xp1 is the same as the set gap value Cs, and coating is performed on the portion p1 of the coated surface.
 また、この図11(B)の状態では、位置Xp2(n=2)において基板Wが低くなっている。測定手段21は、参照面17と、この参照面17の直下の位置Xp2における被塗布面の部分p2との間隙値C2を求めている(図13のSt11,St12)。この間隙値C2は、前記間隙値C1と比較して、変化量H2(>0)が生じていることから、間隙値C2は、C2=C1+Ch1+H2となる。なお、この式中のCh1は前の補正値であり、前に塗布器5が上昇していることに基づく。算出手段21bは、位置Xp2と対応付けて変化量H2を求め、この変化量H2を、塗布器5を昇降させる補正値Ch2として設定する(H2=Ch2、ただし、Ch2<0)。位置Xp2と対応付けられた補正値Ch2の情報が、コントローラ12に転送される(図13のSt13)。 In the state of FIG. 11B, the substrate W is low at the position Xp2 (n = 2). The measuring means 21 obtains a gap value C2 between the reference surface 17 and the portion p2 of the coated surface at the position Xp2 immediately below the reference surface 17 (St11, St12 in FIG. 13). Since this gap value C2 has a change amount H2 (> 0) as compared with the gap value C1, the gap value C2 is C2 = C1 + Ch1 + H2. Note that Ch1 in this equation is the previous correction value and is based on the fact that the applicator 5 has been raised before. The calculating unit 21b obtains a change amount H2 in association with the position Xp2, and sets the change amount H2 as a correction value Ch2 for moving the applicator 5 up and down (H2 = Ch2, where Ch2 <0). Information on the correction value Ch2 associated with the position Xp2 is transferred to the controller 12 (St13 in FIG. 13).
 そして、この位置Xp2における被塗布面の部分p2が吐出口7aの直下に到達するタイミングにあわせて(図11(C)の状態)、昇降機構9を駆動して塗布器5を降下させて吐出口7aの高さ位置を調整する。具体的には、前記タイミングにあわせて、吐出口7aを前記補正値Ch2(=変化量H2)について降下させる(図13のSt14)。 Then, in accordance with the timing at which the portion p2 of the coated surface at the position Xp2 reaches directly below the discharge port 7a (the state shown in FIG. 11C), the elevating mechanism 9 is driven to lower the applicator 5 to discharge. The height position of the outlet 7a is adjusted. Specifically, the discharge port 7a is lowered with respect to the correction value Ch2 (= change amount H2) in accordance with the timing (St14 in FIG. 13).
 このために、参照面17の直下に達した位置Xp2における被塗布面の部分p2が、吐出口7aの直下に到達するまでの間に、コントローラ12は、前記補正値Ch2を含む情報に基づいて、塗布器5を当該補正値Ch2について昇降させるための制御信号を生成し、この制御信号を基に、この被塗布面の部分p2が吐出口7aの直下に到達するタイミングで、昇降機構9による塗布器5の上昇を完了させる。 For this reason, the controller 12 is based on the information including the correction value Ch2 until the portion p2 of the coated surface at the position Xp2 that has reached directly below the reference surface 17 reaches just below the discharge port 7a. Then, a control signal for raising and lowering the applicator 5 with respect to the correction value Ch2 is generated, and on the basis of this control signal, the raising and lowering mechanism 9 performs the timing at which the portion p2 of the coated surface reaches just below the discharge port 7a. The raising of the applicator 5 is completed.
 図11(C)の状態の下に記しているように、位置Xp2における被塗布面の部分p2が吐出口7aの直下に到達したときに、塗布器5の移動(補正値Ch2についての上昇)が完了しており、塗布器5の制御動作に遅れが生じないようにしている。 As described below in the state of FIG. 11C, when the portion p2 of the surface to be coated at the position Xp2 reaches just below the discharge port 7a, the applicator 5 moves (increases with respect to the correction value Ch2). Is completed, and the control operation of the applicator 5 is prevented from being delayed.
 被塗布面の部分p2が吐出口7aの直下に到達したタイミングにおける、この被塗布面の部分p2と吐出口面18との間隙値Cn2は、前記間隙値Cn1に補正値Ch2を加えた値となる(Cn2=Cn1+Ch2:ただし、Ch2<0)。これにより、吐出口面18と、位置Xp2における被塗布面の部分p2との間隙値Cn2は、設定間隙値Csと同一となり、この被塗布面の部分p2に対して塗布が行われる。 The gap value Cn2 between the portion p2 of the coated surface and the discharge port surface 18 at the timing when the portion p2 of the coated surface reaches just below the discharge port 7a is a value obtained by adding the correction value Ch2 to the gap value Cn1. (Cn2 = Cn1 + Ch2: where Ch2 <0). As a result, the gap value Cn2 between the discharge port surface 18 and the portion p2 of the coated surface at the position Xp2 is the same as the set gap value Cs, and the coating is performed on the portion p2 of the coated surface.
 以上より、この塗布装置1では、保護ブロック16の参照面17が、吐出口7aよりも基板Wの塗布前側に設けられており、この塗布装置1によって実行される塗布・基板搬出工程では、塗布のために塗布器5に対して基板Wが移動する動作にあわせて、吐出口7aと、この吐出口7aの直下に位置して塗液が塗布される基板Wの被塗布面の部分piとの間に形成される間隙Cniを、一定値(設定間隙値Cs)に維持する間隙維持方法を実行しながら、塗布器5による塗布作業が実行される。 As described above, in the coating apparatus 1, the reference surface 17 of the protection block 16 is provided on the front side of the substrate W with respect to the discharge port 7 a, and in the coating / substrate unloading process executed by the coating apparatus 1, coating is performed. Therefore, in accordance with the movement of the substrate W relative to the applicator 5, the discharge port 7a and the portion pi of the surface to be coated of the substrate W to which the coating liquid is applied just below the discharge port 7a The coating operation by the applicator 5 is performed while executing a gap maintaining method for maintaining the gap Cni formed between the two at a constant value (set gap value Cs).
 そして、この間隙維持方法では、保護ブロック16の参照面17と、この参照面17の直下に位置する基板Wの被塗布面の部分piとの間に形成される間隙値Ciの測定が行われ、そして、間隙値Ciが測定されると、この被塗布面の部分piが基板Wの移動により吐出口7aの直下に到達するのにあわせて、測定した前記間隙値Ciに基づき、塗布器5をZ方向に昇降させて吐出口7aと前記被塗布面の部分piとの間に形成される間隙(間隙値Cni)を一定(設定間隙値Cs)に維持するように行われる。 In this gap maintaining method, the gap value Ci formed between the reference surface 17 of the protection block 16 and the portion pi of the coated surface of the substrate W located immediately below the reference surface 17 is measured. When the gap value Ci is measured, the applicator 5 is based on the measured gap value Ci as the portion pi of the coated surface reaches just below the discharge port 7a by the movement of the substrate W. Is moved up and down in the Z direction so that the gap (gap value Cni) formed between the discharge port 7a and the portion pi of the coated surface is kept constant (set gap value Cs).
 この間隙維持方法によれば、参照面17と、この参照面17の直下に位置する基板Wの被塗布面の部分piとの間隙値Ciが測定されると、この被塗布面の部分piが基板Wの移動により吐出口7aに対向する位置に達するまでの間に、塗布器5をZ方向に昇降させるための準備時間を確保することができる。このため、前記測定の対象となった被塗布面の部分piが、吐出口7aに対向する位置に到達するタイミングにあわせて、塗布器5をZ方向に昇降させることで、吐出口7aと被塗布面の部分piとの間隙値Cniを一定(設定間隙値Cs)に維持することができる。このため、従来では不可能であった、基板Wに対する塗布器5の高精度な倣い制御が可能となり、高精度に間隙を維持できるので、基板W上に形成される塗膜の厚さを均一にすることができる。 According to this gap maintaining method, when the gap value Ci between the reference surface 17 and the portion pi of the surface to be coated of the substrate W located immediately below the reference surface 17 is measured, the portion pi of the surface to be coated becomes The preparation time for moving the applicator 5 up and down in the Z direction can be ensured before reaching the position facing the discharge port 7a by the movement of the substrate W. For this reason, the applicator 5 is moved up and down in the Z direction in accordance with the timing at which the portion pi of the surface to be coated, which is the object of measurement, reaches the position facing the discharge port 7a. The gap value Cni with the coating surface portion pi can be kept constant (set gap value Cs). For this reason, it is possible to perform high-precision scanning control of the applicator 5 with respect to the substrate W, which was impossible in the past, and the gap can be maintained with high accuracy, so that the thickness of the coating film formed on the substrate W is uniform. Can be.
 さらに、本実施形態では、図11(A)、(B)、(C)の各状態を示す図の下に記したタイムチャートに示したように、位置Xpiにおける被塗布面の部分piが吐出口7aの直下に到達したときに、塗布器5の移動(補正値Chiについての昇降)を完了させており、塗布器5の制御動作に遅れが生じないようにしている。 Further, in the present embodiment, as shown in the time chart shown at the bottom of the diagrams showing the states of FIGS. 11A, 11B, and 11C, the portion pi of the coated surface at the position Xpi is discharged. When it reaches directly under the outlet 7a, the movement of the applicator 5 (up and down with respect to the correction value Chi) is completed, so that the control operation of the applicator 5 is not delayed.
 このような制御に遅れが生じないように構成するために、この塗布装置1では、次の条件(下記の式:Xa/V>t1+t2+t3)を満たす間隙維持方法を含む塗布動作(塗布方法)が実行される。 In order to configure such that the control is not delayed, the coating apparatus 1 performs a coating operation (coating method) including a gap maintaining method that satisfies the following condition (the following formula: Xa / V> t1 + t2 + t3). Executed.
 すなわち、基板Wの矢印X1方向の移動速度をV、参照面17の端部17jと吐出口7aとの水平方向の距離をXa(図11(A)参照)とすると、参照面17の直下の被塗布面の部分pi(p1)が、吐出口7aの直下に到達するまでの間に要する時間は、Xa/Vとなり、この時間Xa/Vが、下記に定義する時間t1と時間t2と時間t3との和よりも大きくなるように設定されている(Xa/V>t1+t2+t3)。なお、この時間Xa/Vが、前記準備時間となる。 That is, if the moving speed of the substrate W in the arrow X1 direction is V, and the horizontal distance between the end 17j of the reference surface 17 and the discharge port 7a is Xa (see FIG. 11A), it is directly below the reference surface 17. The time required for the portion pi (p1) of the coated surface to reach just below the discharge port 7a is Xa / V, and this time Xa / V is the time t1, time t2, and time defined below. It is set to be larger than the sum of t3 (Xa / V> t1 + t2 + t3). This time Xa / V is the preparation time.
 ・時間t1:撮像手段21aによる画像の取得時間と、間隙値Ci(C1)及び補正値Chi(Ch1)を求めるため時間(画像処理時間)との和
 ・時間t2:補正値Chi(Ch1)に基づく制御信号の生成処理時間と、この制御信号により昇降機構9を動作させるまでの通信時間との和
 ・時間t3:前記制御信号を基に昇降機構9によって塗布器5が昇降開始してから昇降完了するまでの時間
 このように、本実施形態では、参照面17の直下に位置していた被塗布面の部分piが、基板Wの移動によって吐出口7aの直下に達するまでの間に、測定手段21によって測定された間隙値Ciに基づき塗布器5をZ方向に昇降させるための制御信号が生成され、更に、前記参照面17の直下に位置していた被塗布面の部分piが、基板Wの移動によって吐出口7aの直下に達するタイミングにあわせて、生成された前記制御信号に基づいて、昇降機構9による塗布器5の昇降移動が行われる。
Time t1: Sum of the image acquisition time by the imaging means 21a and the time (image processing time) for obtaining the gap value Ci (C1) and the correction value Chi (Ch1). Time t2: the correction value Chi (Ch1). The sum of the control signal generation processing time based on this and the communication time until the lifting mechanism 9 is operated by this control signal. Time t3: lifting and lowering after the applicator 5 starts lifting and lowering by the lifting mechanism 9 based on the control signal. Time until Completion As described above, in the present embodiment, measurement is performed while the portion pi of the coated surface that is located immediately below the reference surface 17 reaches immediately below the discharge port 7a due to the movement of the substrate W. A control signal for raising and lowering the applicator 5 in the Z direction is generated on the basis of the gap value Ci measured by the means 21, and a portion pi of the surface to be coated that is located immediately below the reference surface 17 is a substrate. W's In accordance with the timing to reach immediately below the discharge port 7a by moving, on the basis of the generated said control signal, the lifting movement of the applicator 5 according to the lifting mechanism 9 is carried out.
 したがって、この被塗布面の部分piが基板Wの移動により吐出口7aの直下に到達したときに、塗布器5の昇降を完了させることが可能となり、塗布器5の制御動作の遅れの発生を防ぐことができる。 Therefore, when the portion pi of the surface to be coated reaches just below the discharge port 7a due to the movement of the substrate W, it is possible to complete the lifting and lowering of the applicator 5, and the control operation of the applicator 5 is delayed. Can be prevented.
 以上のように、本実施形態の塗布装置1及びこの塗布装置1が行う間隙維持方法によれば、基板Wの被塗布面Kにうねりが生じており、塗布器5に対して、移動するこの基板Wの被塗布面Kの高さが変動しても、その変動量に応じて塗布器5を昇降させる倣い制御が行われることで、塗布器5の吐出口面18と基板Wとの間に形成される間隙を、常に高い精度で一定値に維持して安定した塗布が行える。 As described above, according to the coating apparatus 1 of the present embodiment and the gap maintaining method performed by the coating apparatus 1, undulation occurs on the coated surface K of the substrate W, and this moves relative to the applicator 5. Even if the height of the surface to be coated K of the substrate W fluctuates, the scanning control for moving the applicator 5 up and down according to the variation amount is performed, so that the gap between the discharge port surface 18 of the applicator 5 and the substrate W is controlled. In this way, the gap formed can be kept at a constant value with high accuracy and stable coating can be performed.
 そして、基板Wの塗布終了部が塗布器5の吐出口面18の直下に到達すると、塗液供給手段10による塗液の供給を停止させて、塗布器5を所定位置まで上昇させることによって塗布を終了する。ステージ3は、塗布が終了しても移動しつづけ、その後、停止する。 Then, when the coating end portion of the substrate W reaches just below the discharge port surface 18 of the applicator 5, the application liquid supply by the coating liquid supply means 10 is stopped and the applicator 5 is raised to a predetermined position. Exit. The stage 3 continues to move even after the application is completed, and then stops.
 そして停止したステージ3上の基板Wの吸着を解除し、図示しないロボットなどの基板搬出手段で基板Wをステージ3より後工程へ搬出し、その後、ステージ3は初期位置へ移動し、塗布器5は最上点へ移動する。 Then, the suction of the substrate W on the stopped stage 3 is released, and the substrate W is unloaded from the stage 3 to a subsequent process by a substrate unloading means such as a robot (not shown). Thereafter, the stage 3 moves to the initial position, and the applicator 5 Moves to the top point.
 本発明の塗布装置1及び間隙維持方法は、図示する形態に限らず本発明の範囲内において他の形態のものであってもよい。例えば、基板W(被塗布部材)はガラス基板に限らず、吐出口7a(吐出口面18)の反射像を撮像手段21aによって撮像できる部材であれば如何なるものでもよい。 The coating apparatus 1 and the gap maintaining method of the present invention are not limited to the illustrated forms, and may be other forms within the scope of the present invention. For example, the substrate W (member to be coated) is not limited to a glass substrate, and any member can be used as long as it can capture a reflected image of the discharge port 7a (discharge port surface 18) by the imaging unit 21a.
 また、前記実施形態では、塗布のために、塗布器5に対して基板Wが矢印X1方向に移動する場合について説明したが、本発明では、塗布のために基板Wと塗布器5との相対移動が行われればよく、保護ブロック16(参照面17)は、吐出口7a(吐出口面18)よりも前記相対移動方向の塗布前側に設けられていればよい。なお、前記「吐出口7aよりも前記相対移動方向の塗布前側」とは、塗液を吐出する吐出口7aを基準として、基板Wに対して未だ塗液が塗られておらず相対移動によりこれから塗られる領域側(未塗布領域側)である。 In the above embodiment, the case where the substrate W moves in the direction of the arrow X1 with respect to the applicator 5 for application has been described. However, in the present invention, the relative relationship between the substrate W and the applicator 5 is applied. The protection block 16 (reference surface 17) may be provided on the front side of application in the relative movement direction with respect to the discharge port 7a (discharge port surface 18). The “front side of application in the relative movement direction with respect to the discharge port 7 a” means that the coating liquid is not yet applied to the substrate W on the basis of the discharge port 7 a that discharges the coating liquid. It is the area side to be painted (uncoated area side).
 1:塗布装置   2:基台   3:ステージ
 4:ガントリ   5:塗布器   6:マニホールド
 7a:吐出口   7:吐出流路   8:移動機構
 8a:リニアモータ   8b:ガイド部材   9:昇降機構
 9a:サーボモータ   9b:ねじ軸   9c:ナットユニット
 10:塗液供給手段   11:制御装置   12:コントローラ
 13:昇降バー   14:基準ベース部材   15:基板高さ検出器
 16:保護ブロック(測定体)   17:参照面   17j:端部
 17ji:反射像   18:吐出口面   20:間隙維持装置
 21:測定手段   21a:撮像手段   21b:算出手段
 21c:モニタ手段   22:ポンプ   23:タンク
 24:流路   25:間隙維持手段   a:変換係数
 C、Ci:間隙値(参照面)   Cc:間隙値(設定値)   Chi:補正値
 Cn、Cni:間隙値(吐出口面)   Cs:設定間隙値(吐出口面)
 D1、D1d、Dd:距離   E1、E1d:移動量
 Fs:参照面と吐出口面とのZ方向の寸法差   H:基板高さ
 Hi:変化量   K:被塗布面   L:距離
 M:光軸   pi、p:被塗布面の部分   t1、t2、t3:時間
 V:基板の移動速度   W:基板   X1:矢印
 Xa:参照面の端部と吐出口との水平方向の距離   Xpi:位置
 Zc:参照面の測定準備高さ座標   Zs:塗布高さ開始座標   θ:角度
 b:許容値
1: coating device 2: base 3: stage 4: gantry 5: coating device 6: manifold 7a: discharge port 7: discharge flow path 8: moving mechanism 8a: linear motor 8b: guide member 9: lifting mechanism 9a: servo motor 9b: Screw shaft 9c: Nut unit 10: Coating liquid supply means 11: Controller 12: Controller 13: Lift bar 14: Reference base member 15: Substrate height detector 16: Protection block (measuring body) 17: Reference surface 17j : End portion 17ji: Reflected image 18: Discharge port surface 20: Gap maintaining device 21: Measuring means 21a: Imaging means 21b: Calculation means 21c: Monitoring means 22: Pump 23: Tank 24: Flow path 25: Gap maintaining means a: Conversion coefficients C, Ci: Gap value (reference plane) Cc: Gap value (set value) Chi: Correction value Cn, Cn i: Gap value (discharge port surface) Cs: Set gap value (discharge port surface)
D1, D1d, Dd: Distance E1, E1d: Movement amount Fs: Dimensional difference in Z direction between reference surface and discharge port surface H: Substrate height Hi: Change amount K: Surface to be coated L: Distance M: Optical axis pi , P: parts of the coated surface t1, t2, t3: time V: substrate moving speed W: substrate X1: arrow Xa: horizontal distance between the end of the reference surface and the discharge port Xpi: position Zc: reference surface Measurement preparation height coordinate Zs: coating height start coordinate θ: angle b: tolerance

Claims (8)

  1.  塗布器の塗液の吐出口と、当該吐出口に対向して塗液が塗布される被塗布部材の被塗布面の部分との間に形成される間隙を、前記被塗布部材と前記塗布器との塗布のための相対移動にあわせて一定に維持する間隙維持方法であって、
     前記吐出口よりも前記相対移動方向の塗布前側に設けられている測定体の参照面と、当該測定体の参照面に対向する前記被塗布部材の被塗布面の部分との間に形成される間隙を測定し、
     前記測定体の参照面に対向していた前記被塗布面の部分が前記相対移動により前記吐出口に対向する位置に達するのにあわせて、測定した前記間隙に基づき前記塗布器を前記被塗布面に対して垂直な方向に移動させて前記吐出口と前記被塗布面の部分との間に形成される間隙を一定に維持することを特徴とする間隙維持方法。
    A gap formed between the coating liquid discharge port of the applicator and the portion of the coated surface of the coated member to which the coating liquid is applied facing the discharge port is defined as the coating member and the coating device. A gap maintaining method that maintains a constant according to the relative movement for coating with,
    It is formed between the reference surface of the measurement body provided on the front side of application in the relative movement direction with respect to the discharge port and the portion of the application surface of the application member facing the reference surface of the measurement body. Measure the gap,
    As the portion of the coated surface facing the reference surface of the measuring body reaches the position facing the discharge port by the relative movement, the coating device is moved to the coated surface based on the measured gap. The gap maintaining method is characterized in that the gap formed between the discharge port and the portion to be coated is kept constant by moving in a direction perpendicular to the surface.
  2.  前記測定体の参照面に対向していた前記被塗布面の部分が、前記相対移動によって前記吐出口に対向する位置に達するまでの間に、測定した前記間隙に基づき前記塗布器を前記垂直な方向に移動させるための制御信号が生成される請求項1に記載の間隙維持方法。 Until the portion of the surface to be coated facing the reference surface of the measuring body reaches a position facing the discharge port by the relative movement, the applicator is moved to the vertical position based on the measured gap. The gap maintaining method according to claim 1, wherein a control signal for moving in a direction is generated.
  3.  前記間隙の測定は、前記測定体の参照面の端部の実像と、前記被塗布部材の被塗布面上における前記測定体の参照面の端部の反射像とを撮像し、撮像した前記端部の実像と前記端部の反射像との間の長さを基に、算出して行う請求項1又は2に記載の間隙維持方法。 The gap is measured by capturing a real image of an end portion of the reference surface of the measurement body and a reflection image of an end portion of the reference surface of the measurement body on the surface to be coated of the member to be coated. The gap maintaining method according to claim 1, wherein the gap maintaining method is performed based on a length between a real image of a portion and a reflected image of the end portion.
  4.  塗布器の塗液の吐出口を含む吐出口面と略平行な参照面を有する測定体と、
     前記参照面に対向する被塗布部材の被塗布面の部分と、当該参照面との間に形成される間隙を測定する測定手段と、
     前記被塗布部材と前記塗布器との塗布のための相対移動にあわせて、前記測定手段による測定値に基づき前記塗布器を前記被塗布面に対して垂直な方向に移動させることにより、前記吐出口面と前記被塗布面の部分との間隙を一定に維持する間隙維持手段と、を備え、
     前記測定体は、前記吐出口面よりも前記相対移動方向の塗布前側に設けられていること
    を特徴とする間隙維持装置。
    A measuring body having a reference surface substantially parallel to the discharge port surface including the discharge port of the coating liquid of the applicator;
    A measuring means for measuring a gap formed between a portion of the coated surface of the coated member facing the reference surface and the reference surface;
    By moving the applicator in a direction perpendicular to the surface to be applied based on the measurement value by the measurement means in accordance with the relative movement for application between the member to be applied and the applicator. A gap maintaining means for maintaining a constant gap between the exit surface and the portion of the coated surface,
    The gap maintaining device, wherein the measurement body is provided on the front side of the application in the relative movement direction with respect to the discharge port surface.
  5.  前記間隙維持手段は、
      前記塗布器を前記垂直な方向に移動させる昇降機構と、
      前記測定体の参照面に対向していた前記被塗布面の部分が、前記相対移動によって前記吐出口に対向する位置に達するまでの間に、前記測定手段による前記測定値に基づき前記塗布器を前記垂直な方向に移動させるための制御信号を生成するコントローラと、を有している請求項4に記載の間隙維持装置。
    The gap maintaining means includes
    An elevating mechanism for moving the applicator in the vertical direction;
    The applicator is mounted on the basis of the measured value by the measuring means until the portion of the surface to be coated facing the reference surface of the measuring body reaches the position facing the discharge port by the relative movement. The gap maintenance device according to claim 4, further comprising a controller that generates a control signal for moving in the vertical direction.
  6.  前記参照面を備える前記測定体は、前記塗布器と一体である請求項4又は5に記載の間隙維持装置。 The gap maintaining device according to claim 4 or 5, wherein the measuring body including the reference surface is integrated with the applicator.
  7.  前記測定手段は、
      前記測定体の参照面の端部の実像と、前記被塗布部材の被塗布面上における前記測定体の参照面の端部の反射像とを撮像する撮像手段と、
      撮像された前記端部の実像と前記端部の反射像との間の長さを基に、前記間隙を算出する算出手段と、を更に備えている請求項4~6のいずれか一項に記載の間隙維持装置。
    The measuring means includes
    An imaging means for capturing a real image of an end portion of the reference surface of the measurement body and a reflection image of an end portion of the reference surface of the measurement body on the surface to be coated of the member to be coated;
    The calculation means for calculating the gap based on a length between the captured real image of the end portion and the reflected image of the end portion, further comprising: The gap maintaining device as described.
  8.  塗液を被塗布部材に吐出する吐出口を有する塗布器、
     前記塗布器に塗液を供給する塗液供給手段、
     塗布のために、前記塗布器と前記被塗布部材とを前記被塗布部材の被塗布面と平行な方向に相対移動させる移動機構、
     及び請求項4~7のいずれか一項に記載の間隙維持装置、を備えることを特徴とする塗布装置。
    An applicator having a discharge port for discharging a coating liquid onto a member to be coated;
    A coating liquid supply means for supplying a coating liquid to the applicator;
    A moving mechanism for relatively moving the applicator and the member to be coated in a direction parallel to the surface to be coated of the member to be coated for coating;
    And a gap maintaining device according to any one of claims 4 to 7.
PCT/JP2015/056171 2014-03-20 2015-03-03 Gap-maintaining method, gap-maintaining device, and coating device WO2015141456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014058207A JP2015181977A (en) 2014-03-20 2014-03-20 Clearance maintaining method, clearance maintaining device, and coating device
JP2014-058207 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141456A1 true WO2015141456A1 (en) 2015-09-24

Family

ID=54144431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056171 WO2015141456A1 (en) 2014-03-20 2015-03-03 Gap-maintaining method, gap-maintaining device, and coating device

Country Status (2)

Country Link
JP (1) JP2015181977A (en)
WO (1) WO2015141456A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111672707A (en) * 2020-06-17 2020-09-18 张皖龙 Manufacturing process of ecological composite board
CN114653535A (en) * 2022-03-03 2022-06-24 台州市邦盈纸品有限公司 Coating head angle fine-tuning mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186583A1 (en) * 2020-03-17 2021-09-23 東レエンジニアリング株式会社 Application apparatus and application method
KR102652775B1 (en) * 2022-04-20 2024-03-28 한국기술교육대학교 산학협력단 Slot die coater with automatic coating start function

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10421A (en) * 1996-06-18 1998-01-06 Chugai Ro Co Ltd Application method of die coater
JP2004298697A (en) * 2003-03-28 2004-10-28 Dainippon Printing Co Ltd Coating method and coating apparatus
JP2005246274A (en) * 2004-03-05 2005-09-15 Nidek Co Ltd Coating method and coating apparatus
JP2006073872A (en) * 2004-09-03 2006-03-16 Tokyo Electron Ltd Coating apparatus
JP2007105623A (en) * 2005-10-13 2007-04-26 Tokyo Electron Ltd Applying apparatus and applying method
WO2013080841A1 (en) * 2011-11-28 2013-06-06 シャープ株式会社 Dispenser for liquid crystal display panel and dispensing method
JP2013128916A (en) * 2011-12-22 2013-07-04 Seiko Epson Corp Recording apparatus
JP2013148408A (en) * 2012-01-18 2013-08-01 Toray Ind Inc Clearance measuring method, clearance device, application method, and application device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10421A (en) * 1996-06-18 1998-01-06 Chugai Ro Co Ltd Application method of die coater
JP2004298697A (en) * 2003-03-28 2004-10-28 Dainippon Printing Co Ltd Coating method and coating apparatus
JP2005246274A (en) * 2004-03-05 2005-09-15 Nidek Co Ltd Coating method and coating apparatus
JP2006073872A (en) * 2004-09-03 2006-03-16 Tokyo Electron Ltd Coating apparatus
JP2007105623A (en) * 2005-10-13 2007-04-26 Tokyo Electron Ltd Applying apparatus and applying method
WO2013080841A1 (en) * 2011-11-28 2013-06-06 シャープ株式会社 Dispenser for liquid crystal display panel and dispensing method
JP2013128916A (en) * 2011-12-22 2013-07-04 Seiko Epson Corp Recording apparatus
JP2013148408A (en) * 2012-01-18 2013-08-01 Toray Ind Inc Clearance measuring method, clearance device, application method, and application device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111672707A (en) * 2020-06-17 2020-09-18 张皖龙 Manufacturing process of ecological composite board
CN111672707B (en) * 2020-06-17 2021-01-12 广西蓝带木业有限公司 Manufacturing process of ecological composite board
CN114653535A (en) * 2022-03-03 2022-06-24 台州市邦盈纸品有限公司 Coating head angle fine-tuning mechanism

Also Published As

Publication number Publication date
JP2015181977A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
TWI482664B (en) Coating apparatus for substrates
CN108568382B (en) Droplet discharge device, droplet discharge method, program, and computer storage medium
WO2015141456A1 (en) Gap-maintaining method, gap-maintaining device, and coating device
JP4048170B2 (en) Coating apparatus and coating method
JP6078298B2 (en) Work device having position correction function and work method
US10684501B2 (en) Manufacturing system and manufacturing method
KR101257569B1 (en) Manufacturing apparatus of semiconductor equipment
TWI527142B (en) Electrolytic coating apparatus and electric paste coating method and grain bonding device
JP4809699B2 (en) Coating method and coating apparatus
KR101454106B1 (en) Apparatus and Method for forming pattern line by electrohydrodynamics
JP2008023471A (en) Paste applicator and paste application method
JP5933920B2 (en) Coating apparatus and coating method
JP4419203B2 (en) COATING APPARATUS, COATING METHOD, AND METHOD FOR PRODUCING PLASMA DISPLAY MEMBER AND APPARATUS
JP5953759B2 (en) Gap measuring method, gap device, coating method and coating device.
JP6279450B2 (en) Coating device, coating method, display device member manufacturing apparatus, and display device member manufacturing method
JP4530224B2 (en) Coating apparatus and coating method
JP4403802B2 (en) Paste applicator
JP5092649B2 (en) Coating agent deterioration inspection device, deterioration inspection method, and deterioration inspection program
KR102363034B1 (en) Substrate processing apparatus and substrate processing method
JP2009101345A (en) Coating method and coating machine, method for manufacturing plasma display member and manufacturing equipment therefor
TW201731594A (en) Film pattern writing method, coating film base material, and coating device
JP3588837B2 (en) Single-wafer coating method and apparatus
JP3561998B2 (en) Single-wafer coating method and apparatus
KR20090008114A (en) Inspection apparatus and substrate processing system
JP4342210B2 (en) STAGE DEVICE, PASTE COATING DEVICE USING SAME, AND PASTE COATING METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/01/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15764300

Country of ref document: EP

Kind code of ref document: A1