WO2013080841A1 - Dispenser for liquid crystal display panel and dispensing method - Google Patents

Dispenser for liquid crystal display panel and dispensing method Download PDF

Info

Publication number
WO2013080841A1
WO2013080841A1 PCT/JP2012/080075 JP2012080075W WO2013080841A1 WO 2013080841 A1 WO2013080841 A1 WO 2013080841A1 JP 2012080075 W JP2012080075 W JP 2012080075W WO 2013080841 A1 WO2013080841 A1 WO 2013080841A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
gap
substrate
liquid crystal
seal
Prior art date
Application number
PCT/JP2012/080075
Other languages
French (fr)
Japanese (ja)
Inventor
泰典 渡邉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013080841A1 publication Critical patent/WO2013080841A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a dispenser for manufacturing a liquid crystal display panel and a dispensing method using the dispenser.
  • the present invention relates to a seal dispenser for drawing a seal pattern accurately corresponding to a gap between a substrate and a nozzle, and a dispensing method using the same.
  • a liquid crystal display device displays a desired image by individually supplying a data signal related to image information to each liquid crystal cell arranged in a matrix and adjusting the light transmittance of each liquid crystal cell.
  • the liquid crystal display device includes a liquid crystal display panel in which liquid crystal cells in pixel units are arranged in a matrix, and a driver integrated circuit (IC) that drives the liquid crystal cells.
  • IC driver integrated circuit
  • the liquid crystal display panel is composed of a color filter substrate and a thin film transistor substrate (array substrate) facing each other, and a liquid crystal layer filled in a distance between the color filter substrate and the thin film transistor array substrate.
  • a thin film transistor array substrate and a color filter substrate are individually manufactured.
  • the thin film transistor array substrate and the color filter substrate are aligned so as to maintain a uniform cell gap, and then cut into individual liquid crystal display panel units.
  • a seal dispensing method has been proposed for forming this seal pattern (for example, Patent Document 1).
  • a predetermined pressure is applied to the syringe filled with the sealant while moving the table on which the substrate (thin film transistor array substrate or color filter substrate) constituting the liquid crystal display panel is placed in the front-rear and left-right directions.
  • a seal pattern can be formed along the edge of the image display portion of the substrate.
  • FIG. 8 is a conceptual diagram showing a configuration of a seal dispenser used in a conventional seal dispensing method.
  • the user manually operates the micro gauge 406 to drive the vertical drive servo motor 405, whereby the main body 404.
  • the syringe 403 attached to is lowered.
  • the user detects whether or not the nozzle 402 provided at one end of the syringe 403 and the substrate 401 loaded on the table 400 are in contact with each other through monitoring of the value measured by the first sensor 407. To do.
  • the user When contact between the substrate 401 and the nozzle 402 is detected by the first sensor 407, the user manually operates the micro gauge 406 again to drive the vertical drive servo motor 405, whereby the syringe 403 attached to the main body 404. To raise. At this time, the user detects whether the gap between the substrate 401 and the nozzle 402 has reached a preset value through monitoring of the value measured by the second sensor 408, thereby operating the micro gauge 406. Interrupt. In this way, the gap between the substrate 401 and the nozzle 406 is controlled by a manual operation method.
  • FIG. 9 is a conceptual diagram showing a configuration of a seal dispenser used in another conventional seal dispensing method.
  • the main body 504 to which the syringe 503 is attached is lowered by the vertical drive stepping motor 505 to determine whether the nozzle 502 of the syringe 503 and the substrate 501 are in contact with each other.
  • the main body 504 is raised.
  • the gap between the nozzle 502 and the substrate 501 is detected, and the vertical drive stepping motor 505 is controlled so that the nozzle 502 and the substrate 501 have a desired gap. In this way, the gap between the substrate 501 and the nozzle 502 is controlled.
  • the gap measuring device that is the second sensor 408 that detects the gap between the substrate 401 and the nozzle 402 is a fixed type, so when drawing a desired seal pattern, There is a case where the gap measuring device is located behind the nozzle 402 in the drawing direction D400. In such a case, the control of the gap of the nozzle 402 located behind the gap measuring device cannot catch up at a location where the substrate deflection changes sharply. As a result, since drawing is performed with a gap having a narrower interval than a gap having a desired interval, there is a problem in that an unstable seal having a cut shape or a narrow shape is formed.
  • this problem has become prominent due to the influence of thinning of the substrate due to the recent increase in size and cost of the substrate. Further, in the configuration in which the opening portion exists in the stage of the seal dispenser, the influence of the deflection of the thinned substrate is large.
  • the gap measuring device that is a sensor 508 for detecting the gap between the substrate 501 and the nozzle 502 is a fixed type, and this fixed type gap measuring device is located immediately below the nozzle 502. A gap with the substrate 501 is measured.
  • the gap control of the nozzle 502 corresponding to the substrate deflection cannot catch up at the location where the substrate deflection changes sharply.
  • the present invention has been made in view of such a point, and a main object thereof is to provide a seal dispenser and a seal dispensing method capable of drawing a seal pattern accurately following a gap between a substrate and a nozzle.
  • a dispenser according to the present invention is a dispenser for producing a liquid crystal display panel, a syringe having a nozzle at one end thereof, a vertical drive unit for driving the nozzle in the vertical direction along a vertical axis, the nozzle and the substrate.
  • a gap measuring device for measuring a gap value of the nozzle, a rotary driving unit for rotating the gap measuring device, and the vertical driving unit so as to correspond to the gap value measured by the gap measuring device.
  • a control unit that rotates the gap measuring device so as to be positioned in front of the nozzle drawing direction by the rotation driving unit.
  • a syringe having a nozzle at one end, a vertical drive unit that drives the nozzle in the vertical direction along the vertical axis, and a gap between the nozzle and the substrate at the front position provided in front of the drawing direction of the nozzle
  • the nozzle is driven in the vertical direction so as to follow the gap measured by the gap measuring device by the gap measuring device that measures the gap, the rotation driving unit that rotates the gap measuring device, and the vertical driving unit.
  • a control unit that rotates the gap measuring device so as to be positioned in front of the drawing direction of the nozzle by the rotation driving unit.
  • the syringe is filled with a sealing material, and a sealing pattern surrounding an outline of an image display unit of the liquid crystal display panel is formed by the sealing material discharged from the nozzle of the syringe.
  • the rotation driving unit rotates the gap measuring device at a corner portion of the seal pattern.
  • the seal pattern has a curved shape at the corner portion, and the control unit executes control to rotate the gap measuring device so as to correspond to the curved shape.
  • the gap measuring device includes a light emitting unit that irradiates the surface of the substrate with a laser, and a light receiving unit that receives the laser reflected from the substrate.
  • the substrate is a mother glass substrate in which a plurality of regions defining a liquid crystal display panel are arranged, and the mother glass substrate has a bending portion.
  • the syringe is filled with one selected from the group consisting of a liquid crystal material, an alignment film material, and a conductive material.
  • a dispensing method for a liquid crystal display panel is a dispensing method for a liquid crystal display panel using a dispenser of the liquid crystal display panel, and a step of measuring a gap between the nozzle of the dispenser and a substrate at a front position in the drawing direction (a And (b) rotating the gap measuring device for measuring the gap so that the nozzle is driven in the vertical direction so as to follow the measured gap and is positioned in front of the drawing direction. including.
  • the nozzle discharges a sealing material, and a sealing pattern of the liquid crystal display panel is formed by the sealing material.
  • the substrate is a mother glass substrate in which a plurality of regions defining a liquid crystal display panel are arranged, and the plurality of seal patterns are simultaneously formed by the seal material discharged from the plurality of nozzles. Is done.
  • one selected from the group consisting of a liquid crystal material, an alignment film material, and a conductive material is discharged from the nozzle.
  • the nozzle is driven in the vertical direction so as to correspond to the gap value measured by the gap measuring device, and is positioned in front of the nozzle drawing direction by the rotation driving unit that rotates the gap measuring device. Rotate the gap meter as follows. Therefore, pattern drawing can be performed in a form that accurately corresponds to the gap value between the substrate and the nozzle.
  • 4 is a flowchart for explaining a seal dispensing method using a seal dispenser of a liquid crystal display panel according to an embodiment of the present invention. It is a top view which shows the structure of the board
  • FIG. 1 is a cross-sectional view showing a configuration of a seal dispenser 100 of a liquid crystal display panel according to an embodiment of the present invention.
  • a seal dispenser 100 shown in FIG. 1 has a nozzle 10 at one end, and includes a syringe 12 that is filled with a sealing material 50 and a vertical drive unit 40 that drives the nozzle 10 in the vertical direction along a vertical axis. .
  • the seal dispenser 100 of the present embodiment includes a gap measuring device 20 that measures the value of the gap G1 between the nozzle 10 and the substrate 70.
  • the gap measuring device 20 of the present embodiment is provided in front of the drawing direction D1 (the drawing direction of the sealing material 50 of the seal dispenser 100) in the nozzle 10, and the nozzle 10 and the substrate 70 at a position in front of the drawing direction D1. The value of the gap G1 is measured.
  • the seal dispenser 100 includes a rotation drive unit 30 such as a rotation motor that rotates the gap measuring device 20.
  • the seal dispenser 100 includes a control unit 35 that controls the operations of the vertical drive unit 40 and the rotation drive unit 30.
  • the control unit 35 of the present embodiment drives the nozzle in the vertical direction N1 by the vertical driving unit 40 so as to correspond to the value of the gap G1 measured by the gap measuring device 20, and uses the rotary driving unit 30 to drive the nozzle 10.
  • Control is performed to rotate the gap measuring device 20 so as to be positioned in front of the drawing direction D1. That is, in the seal dispenser 100 of the present embodiment, the height of the nozzle 10 can be automatically adjusted to an appropriate position following the gap G1 that changes for each position of the substrate 70, and the value of the gap G1. Can use what is located ahead of the drawing direction D1 of the nozzle 10.
  • the gap measuring device 20 in the present embodiment includes a light emitting unit 20A that irradiates the surface of the substrate 70 with a laser 21 and a light receiving unit 20B that receives the laser 21 reflected from the substrate 70.
  • the light emitting unit 20A is, for example, a semiconductor laser
  • the light receiving unit 20B is, for example, a photodiode.
  • the substrate 70 shown in FIG. 1 is a glass substrate (glass substrate for a liquid crystal display panel) constituting the liquid crystal display panel.
  • the substrate 70 is a mother glass substrate before being cut out to the dimensions of the liquid crystal display panel, and the substrate 70 has a bending portion 70A.
  • the thickness of the substrate 70 is, for example, 0.7 mm or less, and the flexible portion 70A is likely to occur due to its thinness.
  • the dimension of the mother glass substrate 70 shown in the figure is 1 meter or more on one side. Specifically, when the substrate 70 is a 10th generation mother glass, the dimension is 2880 mm (W) ⁇ 3130 mm (L).
  • the substrate 70 is not limited to the mother glass substrate before being cut out to the dimensions of the liquid crystal display panel, but may be glass having the size of the liquid crystal display panel after being cut out. Further, the substrate 70 may be an array substrate on which a thin film transistor (TFT) is manufactured (or a product in the middle of manufacturing), or a CF substrate on which a color filter (CF) is formed (or a device in the middle of manufacturing thereof). It may be.
  • TFT thin film transistor
  • CF color filter
  • the syringe 12 of the seal dispenser 100 of this embodiment is filled with the seal material 50, and the seal material 50 is discharged from the nozzle 10 located at the tip of the syringe 12.
  • the discharged seal material 50 forms a seal pattern that surrounds the outline of the image display portion of the liquid crystal display panel.
  • the image display unit of the liquid crystal display panel is an area for displaying an image in the liquid crystal display panel. In the case of the configuration of the present embodiment, each color of red (R), green (G), and blue (B) is displayed.
  • the pixel area is arranged and an image is displayed by the plurality of pixel areas.
  • a seal pattern made of the seal material 50 is formed between the array substrate and the CF substrate so as to surround the outer shell of the image display portion.
  • FIG. 2 shows a flowchart for executing the seal dispensing method using the seal dispenser 100 of the present embodiment.
  • step S1 the gap measuring device 20 is used to measure the gap G1 between the nozzle 10 and the substrate 70 at the front position of the nozzle 10 in the drawing direction D1.
  • the gap G1 measured by the gap measuring device 20 is, for example, in the range of 0.03 mm to 0.05 mm.
  • step S2 based on the control of the control unit 35, the vertical driving unit 40 moves the nozzle 10 in the vertical direction N1 based on the gap G1 measured in step S1, along the seal pattern forming region. Then, the sealing material 50 is drawn.
  • the nozzle 10 is adjusted so as to have a predetermined interval (for example, 0.035 mm) with respect to the substrate 70.
  • step S3 it is determined whether or not the drawing position of the seal material 50 has arrived at the corner portion of the seal pattern. If the drawing position has arrived at the corner of the seal pattern (Yes in step S3), the process proceeds to step S4. On the other hand, when the drawing position has not arrived at the corner portion of the seal pattern (No in step S3), the process returns to step S2, and the same operation as described above is repeated.
  • the rotation drive unit 30 performs the gap measurement while continuing the drawing based on the control of the control unit 35 in step S4.
  • the vessel 20 is rotated.
  • step S5 it is determined whether or not the drawing of the seal pattern in the region corresponding to one liquid crystal display panel (that is, one liquid crystal cell) is completed.
  • the process proceeds to step S6.
  • the process returns to step S2, and the same operation as described above is repeated.
  • step S7 it is determined whether or not drawing up to the last liquid crystal cell is completed.
  • the series of steps is completed.
  • the process returns to step S6 to complete the drawing up to the last liquid crystal cell.
  • FIG. 3 is a plan view of the substrate 70 for explaining a seal dispensing method using the seal dispenser 100 of the present embodiment.
  • FIG. 3 shows a configuration in which regions (each liquid crystal cell) 90 corresponding to one liquid crystal display panel are arranged in a matrix on a substrate (mother glass substrate) 70. In the configuration shown in FIG. 3, a plurality of nozzles 10 are arranged.
  • FIG. 4 is a conceptual diagram for explaining the seal dispensing method according to the present embodiment, and shows the drawing of the seal pattern 50P in one liquid crystal cell 90.
  • FIG. 5 shows a drawing of the corner portion R40 of the seal pattern 50P.
  • a substrate 70 for example, a 10th generation mother glass substrate
  • a table provided with a gantry 80.
  • regions (liquid crystal cells) 90 corresponding to one liquid crystal display panel are arranged in a matrix.
  • the seal pattern 50P is drawn so as to surround the outline of the image display unit of the liquid crystal cell 90 in order for each liquid crystal cell 90.
  • the drawing method of the seal pattern 50P in one liquid crystal cell 90 will be described in detail.
  • the drawing of the sealing material 50 is started from the start point ST of the seal pattern 50P, and the drawing is ended at the end point EP of the seal pattern 50.
  • the nozzle 10 of the seal dispenser 100 is set to the start point ST, and is arranged so that the gap measuring device 20 is positioned at the head and the nozzle 10 is positioned behind the head in the drawing direction D1 of the seal pattern 50P. .
  • a gap between the substrate 70 and the nozzle 10 is measured by the gap measuring device 20, and the vertical driving unit 40 moves the nozzle 10 in the up and down direction N1 (see FIG. 1) corresponding to the gap.
  • the vertical drive unit 40 moves the nozzle 10 in the vertical direction N1 (see FIG. 1) based on the control of the control unit 35, and discharges the sealing material 50 from the nozzle 10 while performing the control.
  • the image is drawn in the drawing direction D1 (here, the horizontal direction).
  • the rotation driving unit 30 rotates the gap measuring device 20 leftward by, for example, 90 °. In this way, the gap measuring device 20 can always measure the gap between the substrate 70 and the nozzle 10 in front of the nozzle 20 along the shape of the seal pattern 50P.
  • the nozzle 10 when reaching the corner region R40, the nozzle 10 is moved in the vertical direction X1 and in the width direction Y1. In this way, the drawn seal pattern 50P can be formed in a curved shape as shown in FIG. 5 in the corner region R40.
  • the seal pattern 50P is moved in the drawing direction D1a which is the vertical direction X1.
  • the drawing direction of the seal pattern 50P draws the corner R by moving the nozzle 10 in the vertical direction X1 and simultaneously moving in the width direction Y1.
  • the drawing direction is D1b.
  • the nozzle 10 is moved in the drawing direction D1c, which is the width direction Y1.
  • the seal pattern 50P can be drawn continuously as compared with the case of forming a 90 ° right-angled corner, and as a result, the shape of the seal pattern 50P is stable. It can be made.
  • the rotation driving unit 30 further controls the gap measuring device 20 based on the control of the control unit 35 as described above. Turn 90 ° counterclockwise.
  • the seal pattern 50P in the region of the corner portion 40R can be formed in a curved shape by moving the nozzle 10 in the width direction Y1 and in the vertical direction X1.
  • drawing for one liquid crystal cell is completed when the drawing of the seal pattern 50P reaches the end point EP.
  • drawing for one liquid crystal cell for 90 minutes can be executed continuously.
  • the head of the nozzle 10 is lifted up once, moved to the next liquid crystal cell 90, and drawing for the liquid crystal cell 90 is performed in the same manner as described above, and finally drawing for all the liquid crystal cells 90 is performed. Complete.
  • the position where the gap measuring instrument 20 is rotated is preferably registered as a pattern recipe in the control unit 35 in advance by specifying the XY coordinates and the movement amount as position information. That is, when the position registered as the pattern recipe is reached, the gap measuring device 20 is rotated based on the position information.
  • the nozzle 10 is driven in the vertical direction N1 so as to correspond to the value of the gap G1 measured by the gap measuring device 20, and the rotation for rotating the gap measuring device 20 is performed.
  • the gap measuring device 20 is rotated by the drive unit 30 so as to be positioned in front of the drawing direction D1 of the nozzle 10. Therefore, it is possible to perform pattern drawing that accurately follows the gap between the substrate 70 and the nozzle 10 regardless of the position of the nozzle 10 in the seal pattern 50P. That is, since the gap measuring device 20 is always located in front of the drawing direction of the nozzle 10, the gap G1 between the nozzle 10 and the substrate 70 in the front position of the nozzle 10 is always measured regardless of the shape of the drawing pattern. can do. As a result, by moving the nozzle 10 in the vertical direction according to the measured gap G1, drawing can be realized in a form that accurately corresponds to the gap G1 between the nozzle 10 and the substrate 70.
  • the substrate 70 is likely to have a bending portion 70A.
  • the embodiment of the present invention The technical significance of is great. That is, even when the bending portion 70A of the substrate 70 exists and there is a steep change there, according to the technique of the present embodiment, the accurate seal pattern 50P can be formed stably.
  • Modification example 6 and 7 are cross-sectional views for explaining a modified example of the dispenser 100 and the dispensing method using the dispenser 100 according to the embodiment of the present invention.
  • the dispenser 100 is used for forming the seal pattern 50P.
  • the dispenser 100 according to the embodiment of the present invention is not limited thereto, and can be used for other applications.
  • a liquid crystal material is applied on the substrate using the dispenser 100.
  • the liquid crystal dropping nozzle 10 filled with the liquid crystal material 150 is used as shown in FIG. Apply to.
  • the gap measuring device 20 positioned in front of the application direction in front of the nozzle 10 will be described.
  • the interval between the nozzle 10 and the substrate 70 can be made appropriate. That is, by rotating the gap measuring device 20 in accordance with the application direction, the application process is executed while adjusting the distance between the nozzle 10 and the substrate 70 even if the bending portion 70A exists on the substrate 70. Can do.
  • the alignment film material dropping nozzle 10 is used instead of the liquid crystal dropping nozzle 10 filled with the liquid crystal material 150 instead of the nozzle 10 filled with the alignment film material. It is also possible to apply the alignment film material onto the substrate 70.
  • a conductive layer is formed on the substrate 70 using the nozzle 10 filled with a conductive material 160 (for example, silver particles) as shown in FIG. It can also be applied to forming.
  • a conductive material 160 for example, silver particles
  • the bending portion 70A is applied to the substrate 70 using the technique of the embodiment of the present invention. Even in the case where there is, there is great technical significance in that a stable and accurate application process can be executed by making the interval between the nozzles 10 constant.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a dispenser that can draw a sealing pattern so as to accurately keep a gap between a substrate and a nozzle. A dispenser (100) is provided with: a syringe (12) having a nozzle (10) at one end; a vertical drive unit (40) that drives the nozzle (10) in a vertical direction (N1); a gap measuring device (20) that measures a gap between the nozzle (10) and a substrate (70); a rotational drive unit (30) that rotates the gap measuring device (20); and a control unit (35) that drives the nozzle (10) in the vertical direction (N1) so as to keep a gap that corresponds to a gap value measured by the gap measuring device (20), and rotates the gap measuring device (20) in correspondence with the drawing position so as to be positioned forward in the drawing direction (D1) of the nozzle (10).

Description

液晶表示パネル用ディスペンサおよびディスペンス方法Dispenser for liquid crystal display panel and dispensing method
 本発明は、液晶表示パネルを作製するためのディスペンサおよびそれを用いたディスペンス方法に関する。特に、基板とノズルとのギャップに正確に対応してシールパターンを描画するためのシールディスペンサおよびこれを用いたディスペンス方法に関する。
 なお、本出願は2011年11月28日に出願された日本国特許出願2011-258533号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a dispenser for manufacturing a liquid crystal display panel and a dispensing method using the dispenser. In particular, the present invention relates to a seal dispenser for drawing a seal pattern accurately corresponding to a gap between a substrate and a nozzle, and a dispensing method using the same.
This application claims priority based on Japanese Patent Application No. 2011-258533 filed on November 28, 2011, the entire contents of which are incorporated herein by reference. .
 一般に、液晶表示装置は、マトリックス状に配列された各液晶セルに画像情報に係るデータ信号を個別的に供給し、それら各液晶セルの光透過率を調節することにより、所望の画像を表示し得るようにした表示装置である。したがって、液晶表示装置は、画素単位の各液晶セルがマトリックス状に配列される液晶表示パネルと、それら各液晶セルを駆動するドライバ集積回路(IC)とを備えている。 In general, a liquid crystal display device displays a desired image by individually supplying a data signal related to image information to each liquid crystal cell arranged in a matrix and adjusting the light transmittance of each liquid crystal cell. This is a display device obtained. Therefore, the liquid crystal display device includes a liquid crystal display panel in which liquid crystal cells in pixel units are arranged in a matrix, and a driver integrated circuit (IC) that drives the liquid crystal cells.
 液晶表示パネルは、相互に対向するカラーフィルタ基板および薄膜トランジスタ基板(アレイ基板)と、それらカラーフィルタ基板と薄膜トランジスタアレイ基板との離隔間隔に充填された液晶層とから構成されている。このような液晶表示パネルを製作するためには、まず、薄膜トランジスタアレイ基板およびカラーフィルタ基板を個別的に作製する。次いで、薄膜トランジスタアレイ基板およびカラーフィルタ基板を均一なセルギャップが維持されるように合わせた後、個々の液晶表示パネルの単位に切断される。特に、薄膜トランジスタ基板とカラーフィルタ基板とを合わせるために、各液晶表示パネルの画像表示部の外郭にシールパターンを形成する必要がある。 The liquid crystal display panel is composed of a color filter substrate and a thin film transistor substrate (array substrate) facing each other, and a liquid crystal layer filled in a distance between the color filter substrate and the thin film transistor array substrate. In order to manufacture such a liquid crystal display panel, first, a thin film transistor array substrate and a color filter substrate are individually manufactured. Next, the thin film transistor array substrate and the color filter substrate are aligned so as to maintain a uniform cell gap, and then cut into individual liquid crystal display panel units. In particular, in order to match the thin film transistor substrate and the color filter substrate, it is necessary to form a seal pattern on the outer periphery of the image display portion of each liquid crystal display panel.
 このシールパターンを形成する上で、シールディスペンス方法が提案されている(例えば、特許文献1)。この方法によれば、液晶表示パネルを構成する基板(薄膜トランジスタアレイ基板、または、カラーフィルタ基板)が載置されたテーブルを前後左右方向に移動しながら、シーラントが充填されたシリンジに所定の圧力を印加することにより、当該基板の画像表示部の縁部に沿ってシールパターンを形成することができる。このようにしてシールパターンを形成する場合、基板とシリンジとのギャップを精密に制御することが求められる。 A seal dispensing method has been proposed for forming this seal pattern (for example, Patent Document 1). According to this method, a predetermined pressure is applied to the syringe filled with the sealant while moving the table on which the substrate (thin film transistor array substrate or color filter substrate) constituting the liquid crystal display panel is placed in the front-rear and left-right directions. By applying, a seal pattern can be formed along the edge of the image display portion of the substrate. When forming a seal pattern in this way, it is required to precisely control the gap between the substrate and the syringe.
 図8は、従来のシールディスペンス方法に用いるシールディスペンサの構成を示す概念図である。図8に示したシールディスペンサを用いたシールディスペンス方法では、基板401をテーブル400に載置した後、使用者がマイクロゲージ406を手動操作して垂直駆動サーボモータ405を駆動することによって、本体404に装着されたシリンジ403を下降させる。このとき、使用者は、第1センサ407により測定される値のモニタリングを通して、シリンジ403の一端部に具備されたノズル402とテーブル400にローディングされた基板401とが接触しているか否かを検出する。 FIG. 8 is a conceptual diagram showing a configuration of a seal dispenser used in a conventional seal dispensing method. In the seal dispensing method using the seal dispenser shown in FIG. 8, after the substrate 401 is placed on the table 400, the user manually operates the micro gauge 406 to drive the vertical drive servo motor 405, whereby the main body 404. The syringe 403 attached to is lowered. At this time, the user detects whether or not the nozzle 402 provided at one end of the syringe 403 and the substrate 401 loaded on the table 400 are in contact with each other through monitoring of the value measured by the first sensor 407. To do.
 第1センサ407によって基板401とノズル402との接触が検出されると、使用者が再びマイクロゲージ406を手動操作して垂直駆動サーボモータ405を駆動することによって、本体404に装着されたシリンジ403を上昇させる。このとき、使用者は、第2センサ408によって測定される値のモニタリングを通して、基板401とノズル402とのギャップが予め設定された値に到達しているかを検出し、それによってマイクロゲージ406の操作を中断する。このようにして、手動操作方式により、基板401とノズル406とのギャップを制御している。 When contact between the substrate 401 and the nozzle 402 is detected by the first sensor 407, the user manually operates the micro gauge 406 again to drive the vertical drive servo motor 405, whereby the syringe 403 attached to the main body 404. To raise. At this time, the user detects whether the gap between the substrate 401 and the nozzle 402 has reached a preset value through monitoring of the value measured by the second sensor 408, thereby operating the micro gauge 406. Interrupt. In this way, the gap between the substrate 401 and the nozzle 406 is controlled by a manual operation method.
 また、上記手動操作方式のシールディスペンス方法を用いた場合における液晶表示パネルの不良発生率の増大や生産性の低下という問題を克服するため、別の従来のシールディスペンス方法も提案されている。図9は、別の従来のシールディスペンス方法に用いるシールディスペンサの構成を示す概念図である。 Also, another conventional seal dispensing method has been proposed in order to overcome the problems of an increase in the defect occurrence rate of the liquid crystal display panel and a decrease in productivity when the above-described manual operation type seal dispensing method is used. FIG. 9 is a conceptual diagram showing a configuration of a seal dispenser used in another conventional seal dispensing method.
 図9に示したシールディスペンサを用いたシールディスペンス方法では、垂直駆動ステッピングモータ505によってシリンジ503が装着された本体504を下降させ、シリンジ503のノズル502と基板501とが接触しているか否かを検出する。そして、ノズル502と基板501との接触が検出されると、本体504を上昇させる。次いで、ノズル502と基板501とのギャップを検出し、ノズル502と基板501とが所望のギャップを有するように垂直駆動ステッピングモータ505を制御する。このようにして、基板501とノズル502とのギャップを制御している。 In the seal dispensing method using the seal dispenser shown in FIG. 9, the main body 504 to which the syringe 503 is attached is lowered by the vertical drive stepping motor 505 to determine whether the nozzle 502 of the syringe 503 and the substrate 501 are in contact with each other. To detect. When contact between the nozzle 502 and the substrate 501 is detected, the main body 504 is raised. Next, the gap between the nozzle 502 and the substrate 501 is detected, and the vertical drive stepping motor 505 is controlled so that the nozzle 502 and the substrate 501 have a desired gap. In this way, the gap between the substrate 501 and the nozzle 502 is controlled.
特開2004-199076号公報Japanese Patent Laid-Open No. 2004-199076
 しかしながら、図8に示したシールディスペンサの構成では、基板401とノズル402とのギャップを検出する第2センサ408であるギャップ測定器が固定式であるため、所望のシールパターンを描画する際に、ギャップ測定器が描画方向D400においてノズル402の後方に位置する場合が発生する。このような場合には、基板たわみが急峻に変化する箇所では、ギャップ測定器の後方に位置するノズル402のギャップの制御が追いつかない。その結果、所望の間隔のギャップよりも狭い間隔のギャップで描画するため、シール切れまたは幅の狭い形状の不安定なシールが形成されるという問題がある。特に、近年の基板の大型化やコスト削減に起因する基板の薄型化の影響により、この問題は顕著になっている。さらに、シールディスペンサにおけるステージに開口部が存在する構成では、薄型化された基板のたわみの影響が大きい。 However, in the configuration of the seal dispenser shown in FIG. 8, the gap measuring device that is the second sensor 408 that detects the gap between the substrate 401 and the nozzle 402 is a fixed type, so when drawing a desired seal pattern, There is a case where the gap measuring device is located behind the nozzle 402 in the drawing direction D400. In such a case, the control of the gap of the nozzle 402 located behind the gap measuring device cannot catch up at a location where the substrate deflection changes sharply. As a result, since drawing is performed with a gap having a narrower interval than a gap having a desired interval, there is a problem in that an unstable seal having a cut shape or a narrow shape is formed. In particular, this problem has become prominent due to the influence of thinning of the substrate due to the recent increase in size and cost of the substrate. Further, in the configuration in which the opening portion exists in the stage of the seal dispenser, the influence of the deflection of the thinned substrate is large.
 また、図9に示したシールディスペンサの構成においても、基板501とノズル502とのギャップを検出するセンサ508であるギャップ測定器は固定式であり、この固定式のギャップ測定器がノズル502直下の基板501とのギャップを測定している。しかしながら、この場合も同様に、基板たわみが急峻に変化する箇所では、基板たわみに応じたノズル502のギャップ制御が追いつかない。その結果、同様に、シール切れや幅の狭い、形状の不安定なシールが形成されるという問題が生じ得る。 In the configuration of the seal dispenser shown in FIG. 9 as well, the gap measuring device that is a sensor 508 for detecting the gap between the substrate 501 and the nozzle 502 is a fixed type, and this fixed type gap measuring device is located immediately below the nozzle 502. A gap with the substrate 501 is measured. However, in this case as well, the gap control of the nozzle 502 corresponding to the substrate deflection cannot catch up at the location where the substrate deflection changes sharply. As a result, similarly, there may be a problem that the seal is broken or a narrow and unstable seal is formed.
 本発明はかかる点に鑑みてなされたものであり、その主な目的は、基板とノズルとのギャップに正確に追従してシールパターンを描画できるシールディスペンサおよびシールディスペンス方法を提供することにある。 The present invention has been made in view of such a point, and a main object thereof is to provide a seal dispenser and a seal dispensing method capable of drawing a seal pattern accurately following a gap between a substrate and a nozzle.
 本発明に係るディスペンサは、液晶表示パネルを作製するためのディスペンサであり、一端部にノズルを有するシリンジと、前記ノズルを垂直軸に沿って上下方向に駆動する垂直駆動部と、前記ノズルと基板とのギャップの値を測定するギャップ測定器と、前記ギャップ測定器を回転させる回転駆動部と、前記垂直駆動部によって、前記ギャップ測定器で測定された前記ギャップの値に対応するように前記ノズルを上下方向に駆動させると共に、前記回転駆動部によって、前記ノズルの描画方向の前方に位置するように前記ギャップ測定器を回転させる制御部とを備えている。一端部にノズルを有するシリンジと、前記ノズルを垂直軸に沿って上下方向に駆動する垂直駆動部と、前記ノズルの描画方向の前方に設けられ、当該前方の位置における前記ノズルと基板とのギャップを測定するギャップ測定器と、前記ギャップ測定器を回転させる回転駆動部と、前記垂直駆動部によって、前記ギャップ測定器で測定された前記ギャップに追従するように前記ノズルを上下方向に駆動させると共に、前記回転駆動部によって、前記ノズルの描画方向の前方に位置するように前記ギャップ測定器を回転させる制御部とを備えている。 A dispenser according to the present invention is a dispenser for producing a liquid crystal display panel, a syringe having a nozzle at one end thereof, a vertical drive unit for driving the nozzle in the vertical direction along a vertical axis, the nozzle and the substrate. A gap measuring device for measuring a gap value of the nozzle, a rotary driving unit for rotating the gap measuring device, and the vertical driving unit so as to correspond to the gap value measured by the gap measuring device. And a control unit that rotates the gap measuring device so as to be positioned in front of the nozzle drawing direction by the rotation driving unit. A syringe having a nozzle at one end, a vertical drive unit that drives the nozzle in the vertical direction along the vertical axis, and a gap between the nozzle and the substrate at the front position provided in front of the drawing direction of the nozzle The nozzle is driven in the vertical direction so as to follow the gap measured by the gap measuring device by the gap measuring device that measures the gap, the rotation driving unit that rotates the gap measuring device, and the vertical driving unit. And a control unit that rotates the gap measuring device so as to be positioned in front of the drawing direction of the nozzle by the rotation driving unit.
 ある好適な実施形態において、前記シリンジには、シール材料が充填され、前記シリンジの前記ノズルから吐出される前記シール材料によって、前記液晶表示パネルの画像表示部の外郭を取り囲むシールパターンが形成される。 In a preferred embodiment, the syringe is filled with a sealing material, and a sealing pattern surrounding an outline of an image display unit of the liquid crystal display panel is formed by the sealing material discharged from the nozzle of the syringe. .
 ある好適な実施形態において、前記回転駆動部は、前記シールパターンのコーナー部において前記ギャップ測定器を回転させる。 In a preferred embodiment, the rotation driving unit rotates the gap measuring device at a corner portion of the seal pattern.
 ある好適な実施形態において、前記シールパターンは、前記コーナー部においてカーブ形状を有しており、前記制御部は、前記カーブ形状に対応するように前記ギャップ測定器を回転させる制御を実行する。 In a preferred embodiment, the seal pattern has a curved shape at the corner portion, and the control unit executes control to rotate the gap measuring device so as to correspond to the curved shape.
 ある好適な実施形態において、前記ギャップ測定器は、レーザを前記基板の表面に照射する発光部と、前記基板から反射されたレーザを受光する受光部とを含んでいる。 In a preferred embodiment, the gap measuring device includes a light emitting unit that irradiates the surface of the substrate with a laser, and a light receiving unit that receives the laser reflected from the substrate.
 ある好適な実施形態において、前記基板は、液晶表示パネルを規定する領域が複数配列されたマザーガラス基板であり、前記マザーガラス基板には、たわみ部位が存在する。 In a preferred embodiment, the substrate is a mother glass substrate in which a plurality of regions defining a liquid crystal display panel are arranged, and the mother glass substrate has a bending portion.
 ある好適な実施形態において、前記シリンジには、液晶材料、配向膜材料および導電材料からなる群から選択される一つが充填される。 In a preferred embodiment, the syringe is filled with one selected from the group consisting of a liquid crystal material, an alignment film material, and a conductive material.
 本発明に係る液晶表示パネルのディスペンス方法は、液晶表示パネルのディスペンサを用いた液晶表示パネルのディスペンス方法であり、描画方向の前方位置における前記ディスペンサのノズルと基板とのギャップを測定する工程(a)と、測定された前記ギャップに追従するように前記ノズルを上下方向に駆動させると共に、前記描画方向の前方に位置するように、前記ギャップを測定するギャップ測定器を回転させる工程(b)とを含む。 A dispensing method for a liquid crystal display panel according to the present invention is a dispensing method for a liquid crystal display panel using a dispenser of the liquid crystal display panel, and a step of measuring a gap between the nozzle of the dispenser and a substrate at a front position in the drawing direction (a And (b) rotating the gap measuring device for measuring the gap so that the nozzle is driven in the vertical direction so as to follow the measured gap and is positioned in front of the drawing direction. including.
 ある好適な実施形態において、前記ノズルは、シール材料を吐出し、前記シール材料によって、前記液晶表示パネルのシールパターンが形成される。 In a preferred embodiment, the nozzle discharges a sealing material, and a sealing pattern of the liquid crystal display panel is formed by the sealing material.
 ある好適な実施形態において、前記基板は、液晶表示パネルを規定する領域が複数配列されたマザーガラス基板であり、複数の前記ノズルから吐出される前記シール材料によって、複数の前記シールパターンが同時に形成される。 In a preferred embodiment, the substrate is a mother glass substrate in which a plurality of regions defining a liquid crystal display panel are arranged, and the plurality of seal patterns are simultaneously formed by the seal material discharged from the plurality of nozzles. Is done.
 ある好適な実施形態において、前記ノズルからは、液晶材料、配向膜材料および導電材料からなる群から選択される一つが吐出される。 In a preferred embodiment, one selected from the group consisting of a liquid crystal material, an alignment film material, and a conductive material is discharged from the nozzle.
 本発明によれば、ギャップ測定器で測定されたギャップの値に対応するようにノズルを上下方向に駆動させると共に、ギャップ測定器を回転させる回転駆動部によって、ノズルの描画方向の前方に位置するようにギャップ測定器を回転させる。したがって、基板とノズルとのギャップの値に正確に対応した形態でパターン描画を行うことが可能となる。 According to the present invention, the nozzle is driven in the vertical direction so as to correspond to the gap value measured by the gap measuring device, and is positioned in front of the nozzle drawing direction by the rotation driving unit that rotates the gap measuring device. Rotate the gap meter as follows. Therefore, pattern drawing can be performed in a form that accurately corresponds to the gap value between the substrate and the nozzle.
本発明の一実施形態に係る液晶表示パネルのシールディスペンサの構成を示す概念図である。It is a conceptual diagram which shows the structure of the seal dispenser of the liquid crystal display panel which concerns on one Embodiment of this invention. 本発明の一実施形態に係る液晶表示パネルのシールディスペンサを用いたシールディスペンス方法を説明するためのフローチャートである。4 is a flowchart for explaining a seal dispensing method using a seal dispenser of a liquid crystal display panel according to an embodiment of the present invention. 本発明の一実施形態に係る液晶表示パネルのシールディスペンサを用いたシールディスペンス方法を説明するための基板(マザーガラス)70の構成を示す平面図である。It is a top view which shows the structure of the board | substrate (mother glass) 70 for demonstrating the seal | sticker dispensing method using the seal | sticker dispenser of the liquid crystal display panel which concerns on one Embodiment of this invention. 本発明の一実施形態に係るシールディスペンス方法を説明するためのシールパターンの描画を示す概念図である。It is a conceptual diagram which shows drawing of the seal pattern for demonstrating the seal dispensing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係るシールディスペンス方法を説明するためのシールパターンのコーナー部の描画を示す概念図である。It is a conceptual diagram which shows drawing of the corner part of the seal pattern for demonstrating the seal | sticker dispensing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る液晶表示パネルのディスペンサを用いたディスペンス方法の改変例を説明するための概念図である。It is a conceptual diagram for demonstrating the modification of the dispensing method using the dispenser of the liquid crystal display panel which concerns on one Embodiment of this invention. 本発明の一実施形態に係る液晶表示パネルのディスペンサを用いたディスペンス方法の改変例を説明するための概念図である。It is a conceptual diagram for demonstrating the modification of the dispensing method using the dispenser of the liquid crystal display panel which concerns on one Embodiment of this invention. 従来の液晶表示パネルのシールディスペンサの構成を示す図である。It is a figure which shows the structure of the seal dispenser of the conventional liquid crystal display panel. 従来の液晶表示パネルのシールディスペンサの構成を示す図である。It is a figure which shows the structure of the seal dispenser of the conventional liquid crystal display panel.
 図面を参照しながら、本発明の好適ないくつかの実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、液晶パネルの構成や構築方法)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Several preferred embodiments of the present invention will be described with reference to the drawings. Note that matters other than those specifically mentioned in the present specification and necessary for the implementation of the present invention (for example, the configuration and construction method of the liquid crystal panel) are designed by those skilled in the art based on the prior art in the field. It can be grasped as a matter. The present invention can be carried out based on the contents disclosed in the present specification and common general technical knowledge in the field.
 以下、図1から図5を参照しながら、本発明の好ましい一実施形態について説明する。なお、以下の図面において、同じ作用を奏する部材、部位には同じ符号を付し、重複する説明は省略又は簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は、必ずしも実際の寸法関係を正確に反映するものではない。また、図中のハッチングは、構成要素の把握のし易さを主な目的として付しており、必ずしも材料の要素を表現するものではない。また、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS. In addition, in the following drawings, the same code | symbol is attached | subjected to the member and site | part which show the same effect | action, and the overlapping description may be abbreviate | omitted or simplified. In addition, the dimensional relationship (length, width, thickness, etc.) in each drawing does not necessarily accurately reflect the actual dimensional relationship. In addition, hatching in the drawing is given mainly for the purpose of easy understanding of the constituent elements, and does not necessarily represent the elements of the material. The present invention is not limited to the following embodiment.
 図1は、本発明の実施形態に係る液晶表示パネルのシールディスペンサ100の構成を示す断面図である。図1に示すシールディスペンサ100は、一端部にノズル10を有し、シール材料50を充填するシリンジ12と、ノズル10を垂直軸に沿って上下方向に駆動する垂直駆動部40とを備えている。 FIG. 1 is a cross-sectional view showing a configuration of a seal dispenser 100 of a liquid crystal display panel according to an embodiment of the present invention. A seal dispenser 100 shown in FIG. 1 has a nozzle 10 at one end, and includes a syringe 12 that is filled with a sealing material 50 and a vertical drive unit 40 that drives the nozzle 10 in the vertical direction along a vertical axis. .
 また、本実施形態のシールディスペンサ100は、ノズル10と基板70とのギャップG1の値を測定するギャップ測定器20を備えている。本実施形態のギャップ測定器20は、ノズル10における描画方向D1(シールディスペンサ100のシール材料50の描画方向)の前方に設けられており、描画方向D1の前方の位置におけるノズル10と基板70とのギャップG1の値を測定する。 Also, the seal dispenser 100 of the present embodiment includes a gap measuring device 20 that measures the value of the gap G1 between the nozzle 10 and the substrate 70. The gap measuring device 20 of the present embodiment is provided in front of the drawing direction D1 (the drawing direction of the sealing material 50 of the seal dispenser 100) in the nozzle 10, and the nozzle 10 and the substrate 70 at a position in front of the drawing direction D1. The value of the gap G1 is measured.
 さらに、シールディスペンサ100は、ギャップ測定器20を回転させる例えば回転モータなどの回転駆動部30を備えている。加えて、シールディスペンサ100は、垂直駆動部40および回転駆動部30の動作を制御する制御部35を備えている。本実施形態の制御部35は、垂直駆動部40によって、ギャップ測定器20で測定されたギャップG1の値に対応するようにノズルを上下方向N1に駆動させると共に、回転駆動部30によって、ノズル10の描画方向D1の前方に位置するようにギャップ測定器20を回転させる制御を実行する。すなわち、本実施形態のシールディスペンサ100では、基板70の位置ごとに変化するギャップG1に追随してノズル10の高さを適切な位置に自動的に調整することができるとともに、そのギャップG1の値は、ノズル10の描画方向D1の前方に位置するものを使用することができる。 Furthermore, the seal dispenser 100 includes a rotation drive unit 30 such as a rotation motor that rotates the gap measuring device 20. In addition, the seal dispenser 100 includes a control unit 35 that controls the operations of the vertical drive unit 40 and the rotation drive unit 30. The control unit 35 of the present embodiment drives the nozzle in the vertical direction N1 by the vertical driving unit 40 so as to correspond to the value of the gap G1 measured by the gap measuring device 20, and uses the rotary driving unit 30 to drive the nozzle 10. Control is performed to rotate the gap measuring device 20 so as to be positioned in front of the drawing direction D1. That is, in the seal dispenser 100 of the present embodiment, the height of the nozzle 10 can be automatically adjusted to an appropriate position following the gap G1 that changes for each position of the substrate 70, and the value of the gap G1. Can use what is located ahead of the drawing direction D1 of the nozzle 10.
 本実施形態におけるギャップ測定器20は、レーザ21を基板70の表面に照射する発光部20Aと、基板70から反射されたレーザ21を受光する受光部20Bとから構成されている。発光部20Aは、例えば半導体レーザであり、受光部20Bは、例えばフォトダイオードである。 The gap measuring device 20 in the present embodiment includes a light emitting unit 20A that irradiates the surface of the substrate 70 with a laser 21 and a light receiving unit 20B that receives the laser 21 reflected from the substrate 70. The light emitting unit 20A is, for example, a semiconductor laser, and the light receiving unit 20B is, for example, a photodiode.
 また、図1に示した基板70は、液晶表示パネルを構成するガラス基板(液晶表示パネル用のガラス基板)である。図示した例では、基板70は、液晶表示パネルの寸法に切り出す前のマザーガラス基板であり、この基板70には、たわみ部位70Aが存在している。基板70の厚さは、例えば、0.7mm以下であり、その薄さゆえにたわみ部位70Aが生じやすい。 Further, the substrate 70 shown in FIG. 1 is a glass substrate (glass substrate for a liquid crystal display panel) constituting the liquid crystal display panel. In the illustrated example, the substrate 70 is a mother glass substrate before being cut out to the dimensions of the liquid crystal display panel, and the substrate 70 has a bending portion 70A. The thickness of the substrate 70 is, for example, 0.7 mm or less, and the flexible portion 70A is likely to occur due to its thinness.
 図示したマザーガラス基板70の寸法は1辺が1メートル以上あり、具体的には、基板70が第10世代のマザーガラスの場合、その寸法は2880mm(W)×3130mm(L)である。なお、基板70は、液晶表示パネルの寸法に切り出す前のマザーガラス基板に限らず、切り出した後の液晶表示パネルのサイズのガラスであってもよい。さらに、基板70は、薄膜トランジスタ(TFT)が作製されるアレイ基板(またはその作製途中のもの)であってもよいし、カラーフィルタ(CF)が形成されるCF基板(またはその作製途中のもの)であってもよい。 The dimension of the mother glass substrate 70 shown in the figure is 1 meter or more on one side. Specifically, when the substrate 70 is a 10th generation mother glass, the dimension is 2880 mm (W) × 3130 mm (L). The substrate 70 is not limited to the mother glass substrate before being cut out to the dimensions of the liquid crystal display panel, but may be glass having the size of the liquid crystal display panel after being cut out. Further, the substrate 70 may be an array substrate on which a thin film transistor (TFT) is manufactured (or a product in the middle of manufacturing), or a CF substrate on which a color filter (CF) is formed (or a device in the middle of manufacturing thereof). It may be.
 本実施形態のシールディスペンサ100のシリンジ12には、シール材料50が充填され、シリンジ12の先端に位置するノズル10からは、シール材料50が吐出される。この吐出されたシール材料50によって、液晶表示パネルの画像表示部の外郭を取り囲むシールパターンが形成されることになる。液晶表示パネルの画像表示部は、液晶表示パネルのうちの画像を表示する領域であり、本実施形態の構成の場合、赤(R)・緑(G)・青(B)の各色を表示する画素領域が配列されて、その複数の画素領域によって画像を表示する部位である。シール材料50からなるシールパターンは、その画像表示部の外殻を取り囲むように、アレイ基板とCF基板との間に介在して形成される。 The syringe 12 of the seal dispenser 100 of this embodiment is filled with the seal material 50, and the seal material 50 is discharged from the nozzle 10 located at the tip of the syringe 12. The discharged seal material 50 forms a seal pattern that surrounds the outline of the image display portion of the liquid crystal display panel. The image display unit of the liquid crystal display panel is an area for displaying an image in the liquid crystal display panel. In the case of the configuration of the present embodiment, each color of red (R), green (G), and blue (B) is displayed. The pixel area is arranged and an image is displayed by the plurality of pixel areas. A seal pattern made of the seal material 50 is formed between the array substrate and the CF substrate so as to surround the outer shell of the image display portion.
 図2は、本実施形態のシールディスペンサ100を用いてシールディスペンス方法を実行するフローチャートを示している。 FIG. 2 shows a flowchart for executing the seal dispensing method using the seal dispenser 100 of the present embodiment.
 図2に示すように、まず、ステップS1において、ギャップ測定器20を用いて、ノズル10と基板70とのギャップG1をノズル10における描画方向D1の前方位置で測定する。ギャップ測定器20によって測定されるギャップG1は、例えば、0.03mm~0.05mmの範囲である。 As shown in FIG. 2, first, in step S1, the gap measuring device 20 is used to measure the gap G1 between the nozzle 10 and the substrate 70 at the front position of the nozzle 10 in the drawing direction D1. The gap G1 measured by the gap measuring device 20 is, for example, in the range of 0.03 mm to 0.05 mm.
 次に、ステップS2において、制御部35の制御に基づいて、ステップS1で測定されたギャップG1に基づいて垂直駆動部40がノズル10を上下方向N1に移動させながら、シールパターンの形成領域に沿ってシール材料50を描画する。ここで、ノズル10は、基板70に対して所定の間隔(例えば、0.035mm)になるように調整される。 Next, in step S2, based on the control of the control unit 35, the vertical driving unit 40 moves the nozzle 10 in the vertical direction N1 based on the gap G1 measured in step S1, along the seal pattern forming region. Then, the sealing material 50 is drawn. Here, the nozzle 10 is adjusted so as to have a predetermined interval (for example, 0.035 mm) with respect to the substrate 70.
 次に、ステップS3において、シール材料50の描画位置がシールパターンのコーナー部に到着しているか否かを判定する。そして、その描画位置がシールパターンのコーナー部に到着している場合には(ステップS3でYes)、ステップS4に進む。一方で、その描画位置がシールパターンのコーナー部に到着していない場合には(ステップS3でNo)、ステップS2に戻り、上述と同様の動作を繰り返す。 Next, in step S3, it is determined whether or not the drawing position of the seal material 50 has arrived at the corner portion of the seal pattern. If the drawing position has arrived at the corner of the seal pattern (Yes in step S3), the process proceeds to step S4. On the other hand, when the drawing position has not arrived at the corner portion of the seal pattern (No in step S3), the process returns to step S2, and the same operation as described above is repeated.
 次に、シール材料50の描画位置がシールパターンのコーナー部に到着したと判定された場合、ステップS4において、制御部35の制御に基づいて、その描画を継続しながら回転駆動部30がギャップ測定器20を回転させる。 Next, when it is determined that the drawing position of the seal material 50 has arrived at the corner portion of the seal pattern, the rotation drive unit 30 performs the gap measurement while continuing the drawing based on the control of the control unit 35 in step S4. The vessel 20 is rotated.
 次に、ステップS5において、1枚の液晶表示パネルに対応する領域(すなわち、1液晶セル分)のシールパターンの描画が完了したか否かを判定する。そして、1液晶セル分のシールパターンの描画が完了していると判定したときは、ステップS6に進む。一方で、それが完了していないと判定したときは、ステップS2に戻り、上述と同様の動作を繰り返す。 Next, in step S5, it is determined whether or not the drawing of the seal pattern in the region corresponding to one liquid crystal display panel (that is, one liquid crystal cell) is completed. When it is determined that the drawing of the seal pattern for one liquid crystal cell is completed, the process proceeds to step S6. On the other hand, when it is determined that it has not been completed, the process returns to step S2, and the same operation as described above is repeated.
 次に、1液晶セル分のシールパターンの描画が完了していると判定された場合、ステップS6において、次の液晶セルに移動して、ステップS1~S5を繰り返す。その後、ステップS7において、最後の液晶セル分までの描画が完了したか否かを判定する。そして、最後の液晶セル分までの描画が完了している場合には(ステップS7でYes)、一連の工程を終了する。一方、最後の液晶セル分までの描画が完了していない場合には(ステップS7でNo)、ステップS6に戻って、最後の液晶セル分までの描画を完了させる。 Next, when it is determined that the drawing of the seal pattern for one liquid crystal cell has been completed, the process moves to the next liquid crystal cell in step S6, and steps S1 to S5 are repeated. Thereafter, in step S7, it is determined whether or not drawing up to the last liquid crystal cell is completed. When the drawing up to the last liquid crystal cell has been completed (Yes in step S7), the series of steps is completed. On the other hand, if the drawing up to the last liquid crystal cell has not been completed (No in step S7), the process returns to step S6 to complete the drawing up to the last liquid crystal cell.
 さらに、図3から図5も参照しながら、本実施形態のシールディスペンス方法について説明する。 Further, the seal dispensing method of the present embodiment will be described with reference to FIGS.
 図3は、本実施形態のシールディスペンサ100を用いたシールディスペンス方法を説明するための基板70の平面図である。図3では、一枚の液晶表示パネルに対応する領域(各液晶セル)90が基板(マザーガラス基板)70上にマトリックス状に配置された構成を示している。そして、図3に示した構成では、複数のノズル10が配列されている。 FIG. 3 is a plan view of the substrate 70 for explaining a seal dispensing method using the seal dispenser 100 of the present embodiment. FIG. 3 shows a configuration in which regions (each liquid crystal cell) 90 corresponding to one liquid crystal display panel are arranged in a matrix on a substrate (mother glass substrate) 70. In the configuration shown in FIG. 3, a plurality of nozzles 10 are arranged.
 また、図4は、本実施形態に係るシールディスペンス方法を説明するための概念図であり、一液晶セル90におけるシールパターン50Pの描画を示している。そして、図5は、シールパターン50Pのコーナー部R40の描画を示している。 FIG. 4 is a conceptual diagram for explaining the seal dispensing method according to the present embodiment, and shows the drawing of the seal pattern 50P in one liquid crystal cell 90. FIG. 5 shows a drawing of the corner portion R40 of the seal pattern 50P.
 図3に示すように、本実施形態に係るシールディスペンサ100を用いたシールディスペンス方法では、ガントリー80を備えたテーブル(ガントリーテーブル)に基板70(例えば、第10世代マザーガラス基板)が保持されている。基板70には、1枚の液晶表示パネルに対応する領域(液晶セル)90がマトリックス状に配列されている。そして、1液晶セル90毎に順に、液晶セル90の画像表示部の外郭を取り囲むようにシールパターン50Pを描画する。 As shown in FIG. 3, in the seal dispensing method using the seal dispenser 100 according to the present embodiment, a substrate 70 (for example, a 10th generation mother glass substrate) is held on a table (gantry table) provided with a gantry 80. Yes. On the substrate 70, regions (liquid crystal cells) 90 corresponding to one liquid crystal display panel are arranged in a matrix. Then, the seal pattern 50P is drawn so as to surround the outline of the image display unit of the liquid crystal cell 90 in order for each liquid crystal cell 90.
 ここで、一つの液晶セル90におけるシールパターン50Pの描画方法について詳述する。図4に示すように、シールパターン50Pの始点STからシール材料50の描画を開始し、シールパターン50の終点EPにおいてその描画を終了する。具体的には、最初に、シールディスペンサ100のノズル10を始点STに設定し、シールパターン50Pの描画方向D1に向かって先頭にギャップ測定器20、その後方にノズル10が位置するように配置する。 Here, the drawing method of the seal pattern 50P in one liquid crystal cell 90 will be described in detail. As shown in FIG. 4, the drawing of the sealing material 50 is started from the start point ST of the seal pattern 50P, and the drawing is ended at the end point EP of the seal pattern 50. Specifically, first, the nozzle 10 of the seal dispenser 100 is set to the start point ST, and is arranged so that the gap measuring device 20 is positioned at the head and the nozzle 10 is positioned behind the head in the drawing direction D1 of the seal pattern 50P. .
 次いで、ギャップ測定器20によって基板70とノズル10とのギャップを測定し、そのギャップに対応させて垂直駆動部40がノズル10を上下方向N1(図1参照)に移動させる。具体的には、制御部35の制御に基づいて垂直駆動部40がノズル10を上下方向N1(図1参照)に移動させ、そしてその制御を行いながら、シール材料50をノズル10から吐出して、描画方向D1(ここでは、水平方向)に向かって描画する。 Next, a gap between the substrate 70 and the nozzle 10 is measured by the gap measuring device 20, and the vertical driving unit 40 moves the nozzle 10 in the up and down direction N1 (see FIG. 1) corresponding to the gap. Specifically, the vertical drive unit 40 moves the nozzle 10 in the vertical direction N1 (see FIG. 1) based on the control of the control unit 35, and discharges the sealing material 50 from the nozzle 10 while performing the control. Then, the image is drawn in the drawing direction D1 (here, the horizontal direction).
 次に、シール材料50の描画位置が液晶セル90のコーナー部の領域R40に到達するまで、ガントリー80を水平方向(縦方向)X1(図3参照)に移動させながら水平方向の描画を継続させる。コーナー部の領域R40に到達すると、制御部35の制御に基づいて、回転駆動部30がギャップ測定器20を例えば90°左回転させる。このようにすると、ギャップ測定器20はシールパターン50Pの形状に沿って、常時、ノズル20の前方で基板70とノズル10とのギャップを測定することができる。 Next, horizontal drawing is continued while moving the gantry 80 in the horizontal direction (vertical direction) X1 (see FIG. 3) until the drawing position of the sealing material 50 reaches the region R40 at the corner of the liquid crystal cell 90. . When the corner region R40 is reached, based on the control of the control unit 35, the rotation driving unit 30 rotates the gap measuring device 20 leftward by, for example, 90 °. In this way, the gap measuring device 20 can always measure the gap between the substrate 70 and the nozzle 10 in front of the nozzle 20 along the shape of the seal pattern 50P.
 また、コーナー部の領域R40に到達した際には、ノズル10を縦方向X1に移動させると共に幅方向Y1に移動させる。このようにすると、描画されるシールパターン50Pを、コーナー部の領域R40において、図5に示すようにカーブ形状にすることができる。 Also, when reaching the corner region R40, the nozzle 10 is moved in the vertical direction X1 and in the width direction Y1. In this way, the drawn seal pattern 50P can be formed in a curved shape as shown in FIG. 5 in the corner region R40.
 つまり、シールパターン50Pの描画位置がコーナー部の領域R40に入るまでは、縦方向X1である描画方向D1aに移動させる。そして、シールパターン50Pの描画位置がコーナー部の領域R40内に入ると、ノズル10を縦方向X1に移動させると同時に幅方向Y1に移動させることで、シールパターン50Pの描画方向はコーナーRを描く描画方向D1bとなる。そして、シールパターン50Pの描画位置がコーナー部の領域R40を出ると、ノズル10を幅方向Y1である描画方向D1cに移動させる。このようにコーナー部の領域R40をカーブ形状にすることによって、90°の直角コーナー部にする場合と比較して、シールパターン50Pを連続的に描画でき、その結果、シールパターン50Pの形状を安定化させることができる。 That is, until the drawing position of the seal pattern 50P enters the corner area R40, the seal pattern 50P is moved in the drawing direction D1a which is the vertical direction X1. When the drawing position of the seal pattern 50P enters the corner region R40, the drawing direction of the seal pattern 50P draws the corner R by moving the nozzle 10 in the vertical direction X1 and simultaneously moving in the width direction Y1. The drawing direction is D1b. When the drawing position of the seal pattern 50P exits the corner region R40, the nozzle 10 is moved in the drawing direction D1c, which is the width direction Y1. By making the corner region R40 into a curved shape in this way, the seal pattern 50P can be drawn continuously as compared with the case of forming a 90 ° right-angled corner, and as a result, the shape of the seal pattern 50P is stable. It can be made.
 そして、描画方向D1cに移動するノズル10の描画位置が次のコーナー部の領域に入ると、上述と同様に、制御部35の制御に基づいて、回転駆動部30がギャップ測定器20をさらに例えば90°左回転させる。また、この際、ノズル10を幅方向Y1に移動させるとともに縦方向X1に移動させることで、コーナー部40Rの領域におけるシールパターン50Pをカーブ形状にすることができる。 Then, when the drawing position of the nozzle 10 moving in the drawing direction D1c enters the next corner area, the rotation driving unit 30 further controls the gap measuring device 20 based on the control of the control unit 35 as described above. Turn 90 ° counterclockwise. At this time, the seal pattern 50P in the region of the corner portion 40R can be formed in a curved shape by moving the nozzle 10 in the width direction Y1 and in the vertical direction X1.
 このような動作を繰り返すことで、シールパターン50Pの描画が終点EPに到達した時点で、1液晶セル分の描画が完了する。このように、1液晶セル90分の描画は連続的に実行することができる。この後、ノズル10のヘッドを一端上昇し、次の液晶セル90に移動して、その液晶セル90分の描画を上述と同様にして行い、最終的には全ての液晶セル90分の描画を完了させる。 By repeating such an operation, the drawing for one liquid crystal cell is completed when the drawing of the seal pattern 50P reaches the end point EP. In this way, drawing for one liquid crystal cell for 90 minutes can be executed continuously. Thereafter, the head of the nozzle 10 is lifted up once, moved to the next liquid crystal cell 90, and drawing for the liquid crystal cell 90 is performed in the same manner as described above, and finally drawing for all the liquid crystal cells 90 is performed. Complete.
 なお、ギャップ測定器20を回転させる位置は、予め、位置情報として、XY座標と移動量を指定して制御部35内にパターンレシピとして登録しておくことが好ましい。すなわち、パターンレシピとして登録された位置に到達すると、その位置情報に基づいて、ギャップ測定器20の回転を実行する。 It should be noted that the position where the gap measuring instrument 20 is rotated is preferably registered as a pattern recipe in the control unit 35 in advance by specifying the XY coordinates and the movement amount as position information. That is, when the position registered as the pattern recipe is reached, the gap measuring device 20 is rotated based on the position information.
 以上のように、本実施形態のディスペンサ100によると、ギャップ測定器20で測定されたギャップG1の値に対応するようにノズル10を上下方向N1に駆動させると共に、ギャップ測定器20を回転させる回転駆動部30によって、ノズル10の描画方向D1の前方に位置するようにギャップ測定器20を回転させる。したがって、ノズル10がシールパターン50Pのどの位置であっても、基板70とノズル10とのギャップに正確に追従したパターン描画を行うことが可能となる。すなわち、ノズル10の描画方向の前方にギャップ測定器20が常に位置しているので、描画パターンの形状に左右されずに、ノズル10の前方位置におけるノズル10と基板70とのギャップG1を常時測定することができる。その結果、測定されたギャップG1に応じてノズル10の上下方向の移動を行うことにより、ノズル10と基板70とのギャップG1に正確に対応した形態で描画を実現することができる。 As described above, according to the dispenser 100 of this embodiment, the nozzle 10 is driven in the vertical direction N1 so as to correspond to the value of the gap G1 measured by the gap measuring device 20, and the rotation for rotating the gap measuring device 20 is performed. The gap measuring device 20 is rotated by the drive unit 30 so as to be positioned in front of the drawing direction D1 of the nozzle 10. Therefore, it is possible to perform pattern drawing that accurately follows the gap between the substrate 70 and the nozzle 10 regardless of the position of the nozzle 10 in the seal pattern 50P. That is, since the gap measuring device 20 is always located in front of the drawing direction of the nozzle 10, the gap G1 between the nozzle 10 and the substrate 70 in the front position of the nozzle 10 is always measured regardless of the shape of the drawing pattern. can do. As a result, by moving the nozzle 10 in the vertical direction according to the measured gap G1, drawing can be realized in a form that accurately corresponds to the gap G1 between the nozzle 10 and the substrate 70.
 特に、近年の基板70の大型化および/またはコスト削減に起因する基板70の薄型化などの影響により、基板70にたわみ部位70Aが生じやすくなっており、そういう状況下において、本発明の実施形態における技術的な意義は大きいものである。すなわち、基板70のたわみ部位70Aが存在しており、そこで急峻な変化がある場合においても、本実施形態の技術によれば、安定して、正確なシールパターン50Pを形成することができる。 In particular, due to the recent increase in the size of the substrate 70 and / or the reduction in the thickness of the substrate 70 resulting from cost reduction, the substrate 70 is likely to have a bending portion 70A. Under such circumstances, the embodiment of the present invention. The technical significance of is great. That is, even when the bending portion 70A of the substrate 70 exists and there is a steep change there, according to the technique of the present embodiment, the accurate seal pattern 50P can be formed stably.
(改変例)
 図6および図7は、本発明の一実施形態に係るディスペンサ100およびそれを用いたディスペンス方法の改変例を説明するための断面図である。上述の実施形態では、ディスペンサ100をシールパターン50Pの形成のために使用したが、本発明の実施形態のディスペンサ100はそれに限らず他の用途にも使用することができる。
(Modification example)
6 and 7 are cross-sectional views for explaining a modified example of the dispenser 100 and the dispensing method using the dispenser 100 according to the embodiment of the present invention. In the above-described embodiment, the dispenser 100 is used for forming the seal pattern 50P. However, the dispenser 100 according to the embodiment of the present invention is not limited thereto, and can be used for other applications.
 本実施形態の改変例では、ディスペンサ100を用いて液晶材料を基板上に塗布する。具体的には、上述したシール材料50を充填するノズル10の代わりに、図6に示すように、液晶材料150を充填した液晶滴下用のノズル10を用いて、液晶材料150を基板70の上に塗布する。この改変例においても、基板70にたわみ部位70Aが存在し、ノズル10と基板70とのギャップが急峻に変動したとしても、ノズル10に先行して塗布方向の前方に位置するギャップ測定器20の測定により、ノズル10と基板70との間隔を適切なものにすることができる。すなわち、ギャップ測定器20を塗布方向に対応させて回転させることにより、基板70にたわみ部位70Aが存在していたとしても、ノズル10と基板70との間隔を調整しながら塗布工程を実行することができる。 In a modified example of the present embodiment, a liquid crystal material is applied on the substrate using the dispenser 100. Specifically, instead of the nozzle 10 filled with the sealing material 50 described above, the liquid crystal dropping nozzle 10 filled with the liquid crystal material 150 is used as shown in FIG. Apply to. Also in this modified example, even if the deflection portion 70A exists in the substrate 70 and the gap between the nozzle 10 and the substrate 70 changes steeply, the gap measuring device 20 positioned in front of the application direction in front of the nozzle 10 will be described. By the measurement, the interval between the nozzle 10 and the substrate 70 can be made appropriate. That is, by rotating the gap measuring device 20 in accordance with the application direction, the application process is executed while adjusting the distance between the nozzle 10 and the substrate 70 even if the bending portion 70A exists on the substrate 70. Can do.
 さらには、この図6に示した構成において、液晶材料150を充填した液晶滴下用のノズル10ではなく、配向膜材料を充填したノズル10に代えて、その配向膜材料滴下用のノズル10を用いて、配向膜材料を基板70の上に塗布することも可能である。 Further, in the configuration shown in FIG. 6, the alignment film material dropping nozzle 10 is used instead of the liquid crystal dropping nozzle 10 filled with the liquid crystal material 150 instead of the nozzle 10 filled with the alignment film material. It is also possible to apply the alignment film material onto the substrate 70.
 加えて、上述したシール材50を充填するノズル10の代わりに、図7に示すように、導電材料160(例えば、銀粒子など)を充填したノズル10を用いて、基板70上に導電層を形成することにも適用することができる。導電材料160によって導電層を形成する場合は、当該導電層の厚さ・幅などの制御はより一層精密さが求められるので、本発明の実施形態の技術を用いて、基板70にたわみ部位70Aが存在している場合でも、ノズル10の間隔を一定にすることで、安定して正確な塗布工程を実行できる技術的な意義は大きい。 In addition, instead of the nozzle 10 filled with the sealing material 50 described above, a conductive layer is formed on the substrate 70 using the nozzle 10 filled with a conductive material 160 (for example, silver particles) as shown in FIG. It can also be applied to forming. When the conductive layer is formed of the conductive material 160, since the control of the thickness and width of the conductive layer is required to be more precise, the bending portion 70A is applied to the substrate 70 using the technique of the embodiment of the present invention. Even in the case where there is, there is great technical significance in that a stable and accurate application process can be executed by making the interval between the nozzles 10 constant.
 以上、本発明の具体例を、図面を参照しながら説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。例えば、上述した実施形態の各要素を相互に適用することも可能である。 As mentioned above, although the specific example of this invention was demonstrated referring drawings, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. For example, the elements of the above-described embodiments can be applied to each other.
 本発明によると、基板とノズルとのギャップに正確に追従してシールパターンを描画できるシールディスペンサおよびシールディスペンス方法を提供することができる。 According to the present invention, it is possible to provide a seal dispenser and a seal dispensing method capable of drawing a seal pattern accurately following the gap between the substrate and the nozzle.
10   ノズル
12   シリンジ
20   ギャップ測定器
20A  発光部
20B  受光部
21   レーザ
30   回転駆動部
35   制御部
40   垂直駆動部
50   シール材料
50P  シールパターン
70   基板(マザーガラス基板)
70A  たわみ部位
80   ガントリー
90   液晶セル
100  シールディスペンサ
150  液晶材料
160  導電材料
DESCRIPTION OF SYMBOLS 10 Nozzle 12 Syringe 20 Gap measuring device 20A Light emission part 20B Light reception part 21 Laser 30 Rotation drive part 35 Control part 40 Vertical drive part 50 Seal material 50P Seal pattern 70 Substrate (mother glass substrate)
70A Deflection site 80 Gantry 90 Liquid crystal cell 100 Seal dispenser 150 Liquid crystal material 160 Conductive material

Claims (11)

  1.  液晶表示パネルを作製するためのディスペンサであって、
     一端部にノズルを有するシリンジと、
     前記ノズルを垂直軸に沿って上下方向に駆動する垂直駆動部と、
     前記ノズルと基板とのギャップの値を測定するギャップ測定器と、
     前記ギャップ測定器を回転させる回転駆動部と、
     前記垂直駆動部によって、前記ギャップ測定器で測定された前記ギャップの値に対応するように前記ノズルを上下方向に駆動させると共に、前記回転駆動部によって、前記ノズルの描画方向の前方に位置するように前記ギャップ測定器を回転させる制御部と
     を備えている、ディスペンサ。
    A dispenser for producing a liquid crystal display panel,
    A syringe having a nozzle at one end;
    A vertical drive unit for driving the nozzle in the vertical direction along the vertical axis;
    A gap measuring device for measuring a value of a gap between the nozzle and the substrate;
    A rotation drive for rotating the gap measuring device;
    The vertical driving unit drives the nozzle in the vertical direction so as to correspond to the gap value measured by the gap measuring device, and the rotational driving unit positions the nozzle in front of the drawing direction of the nozzle. And a controller for rotating the gap measuring device.
  2.  前記シリンジには、シール材料が充填され、
     前記シリンジの前記ノズルから吐出される前記シール材料によって、前記液晶表示パネルの画像表示部の外郭を取り囲むシールパターンが形成される、請求項1に記載のディスペンサ。
    The syringe is filled with a sealing material,
    2. The dispenser according to claim 1, wherein a seal pattern surrounding an outline of an image display unit of the liquid crystal display panel is formed by the seal material discharged from the nozzle of the syringe.
  3.  前記回転駆動部は、前記シールパターンのコーナー部において前記ギャップ測定器を回転させることを特徴とする、請求項2に記載のディスペンサ。 The dispenser according to claim 2, wherein the rotation driving unit rotates the gap measuring device at a corner portion of the seal pattern.
  4.  前記シールパターンは、前記コーナー部においてカーブ形状を有しており、
     前記制御部は、前記カーブ形状に対応するように前記ギャップ測定器を回転させる制御を実行する、請求項3に記載のディスペンサ。
    The seal pattern has a curved shape at the corner portion,
    The dispenser according to claim 3, wherein the control unit executes control to rotate the gap measuring device so as to correspond to the curve shape.
  5.  前記ギャップ測定器は、
           レーザを前記基板の表面に照射する発光部と、
           前記基板から反射されたレーザを受光する受光部と
     を含んでいる、請求項1から4の何れか1つに記載のディスペンサ。
    The gap measuring device
    A light emitting unit for irradiating the surface of the substrate with a laser;
    The dispenser according to any one of claims 1 to 4, further comprising: a light receiving unit that receives the laser reflected from the substrate.
  6.  前記基板は、液晶表示パネルを規定する領域が複数配列されたマザーガラス基板であり、
     前記マザーガラス基板には、たわみ部位が存在する、請求項1から5の何れか1つに記載のディスペンサ。
    The substrate is a mother glass substrate in which a plurality of regions defining a liquid crystal display panel are arranged,
    The dispenser according to any one of claims 1 to 5, wherein the mother glass substrate has a deflection portion.
  7.  前記シリンジには、液晶材料、配向膜材料および導電材料からなる群から選択される一つが充填される、請求項1、5または6に記載のディスペンサ。 The dispenser according to claim 1, 5 or 6, wherein the syringe is filled with one selected from the group consisting of a liquid crystal material, an alignment film material and a conductive material.
  8.  液晶表示パネルを作製するためのディスペンサを用いたディスペンス方法であって、
     描画方向の前方位置における前記ディスペンサのノズルと基板とのギャップの値を測定する工程(a)と、
     測定された前記ギャップの値に対応するように前記ノズルを上下方向に駆動させると共に、前記描画方向の前方に位置するように、前記ギャップを測定するギャップ測定器を回転させる工程(b)と
     を含む、ディスペンス方法。
    A dispensing method using a dispenser for producing a liquid crystal display panel,
    A step (a) of measuring a value of a gap between the nozzle of the dispenser and the substrate at a front position in a drawing direction;
    (B) rotating the gap measuring instrument for measuring the gap so that the nozzle is driven in the vertical direction so as to correspond to the measured value of the gap and is positioned in front of the drawing direction; Dispensing method including.
  9.  前記ノズルは、シール材料を吐出し、
     前記シール材料によって、前記液晶表示パネルのシールパターンが形成される、請求項8に記載のディスペンス方法。
    The nozzle discharges a sealing material;
    The dispensing method according to claim 8, wherein a seal pattern of the liquid crystal display panel is formed by the seal material.
  10.  前記基板は、液晶表示パネルを規定する領域が複数配列されたマザーガラス基板であり、
     複数の前記ノズルから吐出される前記シール材料によって、複数の前記シールパターンが同時に形成される、請求項9に記載のディスペンス方法。
    The substrate is a mother glass substrate in which a plurality of regions defining a liquid crystal display panel are arranged,
    The dispensing method according to claim 9, wherein a plurality of the seal patterns are simultaneously formed by the seal material discharged from the plurality of nozzles.
  11.  前記ノズルからは、液晶材料、配向膜材料および導電材料からなる群から選択される一つが吐出される、請求項9に記載のディスペンス方法。 10. The dispensing method according to claim 9, wherein one selected from the group consisting of a liquid crystal material, an alignment film material, and a conductive material is discharged from the nozzle.
PCT/JP2012/080075 2011-11-28 2012-11-20 Dispenser for liquid crystal display panel and dispensing method WO2013080841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011258533 2011-11-28
JP2011-258533 2011-11-28

Publications (1)

Publication Number Publication Date
WO2013080841A1 true WO2013080841A1 (en) 2013-06-06

Family

ID=48535303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080075 WO2013080841A1 (en) 2011-11-28 2012-11-20 Dispenser for liquid crystal display panel and dispensing method

Country Status (1)

Country Link
WO (1) WO2013080841A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141456A1 (en) * 2014-03-20 2015-09-24 東レエンジニアリング株式会社 Gap-maintaining method, gap-maintaining device, and coating device
WO2017138082A1 (en) * 2016-02-08 2017-08-17 堺ディスプレイプロダクト株式会社 Seal pattern forming device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298697A (en) * 2003-03-28 2004-10-28 Dainippon Printing Co Ltd Coating method and coating apparatus
JP2005169397A (en) * 2003-12-05 2005-06-30 Seiko Epson Corp Laser irradiation device, droplet discharge device, laser irradiation method, droplet discharge method, and position controller
JP2007125552A (en) * 2005-10-31 2007-05-24 Top Engineering Co Ltd Head unit for paste dispenser
JP2007152261A (en) * 2005-12-06 2007-06-21 Shibaura Mechatronics Corp Paste application apparatus, paste application method, and manufacturing method of display panel using it
JP2012196665A (en) * 2011-03-07 2012-10-18 Shibaura Mechatronics Corp Paste coating apparatus and method of coating paste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298697A (en) * 2003-03-28 2004-10-28 Dainippon Printing Co Ltd Coating method and coating apparatus
JP2005169397A (en) * 2003-12-05 2005-06-30 Seiko Epson Corp Laser irradiation device, droplet discharge device, laser irradiation method, droplet discharge method, and position controller
JP2007125552A (en) * 2005-10-31 2007-05-24 Top Engineering Co Ltd Head unit for paste dispenser
JP2007152261A (en) * 2005-12-06 2007-06-21 Shibaura Mechatronics Corp Paste application apparatus, paste application method, and manufacturing method of display panel using it
JP2012196665A (en) * 2011-03-07 2012-10-18 Shibaura Mechatronics Corp Paste coating apparatus and method of coating paste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141456A1 (en) * 2014-03-20 2015-09-24 東レエンジニアリング株式会社 Gap-maintaining method, gap-maintaining device, and coating device
WO2017138082A1 (en) * 2016-02-08 2017-08-17 堺ディスプレイプロダクト株式会社 Seal pattern forming device

Similar Documents

Publication Publication Date Title
JP4224701B2 (en) Dispenser for liquid crystal display panel and method for controlling gap between nozzle and substrate using the same
JP4384293B2 (en) Liquid crystal display panel, display device, identification mark detection device, detection display system, TFT array repair device, and identification mark detection method
JP4313159B2 (en) Seal dispenser for liquid crystal display panel and seal pattern disconnection detection method using the same
JP2010044037A (en) Position detection apparatus and method for detecting position of nozzle orifice and optical point of laser displacement sensor of paste dispenser
JPH11119232A (en) Applicator for coating sealant
WO2013080841A1 (en) Dispenser for liquid crystal display panel and dispensing method
CN104035244B (en) Liquid crystal panel and manufacture method
TWI297618B (en) Liquid ejection method, liquid ejection apparatus, and method for manufacturing electro-optic panel
US20040131757A1 (en) Apparatus for aligning dispenser and aligning method thereof
US20060141131A1 (en) Sealant drawing method, sealant drawing apparatus, and method and apparatus for manufacturing liquid crystal device
JP2004160455A (en) Dispenser in liquid crystal display panel and detection method for residual volume of dispensing material in liquid crystal display panel
JP3874286B2 (en) Liquid crystal display panel manufacturing method and liquid crystal display panel member
TWI287163B (en) Dispenser for fabricating liquid crystal display panel and method for controlling gap between substrate and nozzle using the same
KR100786542B1 (en) Apparatus for dispensing sealant of liquid crystal display device and method for dispensing sealant using the same
JP5403586B2 (en) Liquid crystal display device and manufacturing method thereof
KR101279674B1 (en) Glass scriber
US20110236578A1 (en) Paste applicator and paste applying method
TW201109777A (en) Method of repairing paste pattern and substrate having paste pattern repaired by using the method
KR20110068202A (en) Seal pattern formed substrate and forming method of seal pattern and manufacturing method of liquid crystal display device using the same
KR101096710B1 (en) A method for forming a sealant using a sealant device for a liquid crystal device
JP2007033589A (en) Manufacturing method for display device, and coating apparatus
JP2006327877A (en) Apparatus for and method of breaking substrate, and semiconductor device
JP5779219B2 (en) Liquid crystal display device and manufacturing method thereof
KR100983583B1 (en) dispensing equipment of liquid crystal display panel and method for forming seal pattern using the same
JP4427605B1 (en) Adhesive dripping control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP