JP4419203B2 - COATING APPARATUS, COATING METHOD, AND METHOD FOR PRODUCING PLASMA DISPLAY MEMBER AND APPARATUS - Google Patents

COATING APPARATUS, COATING METHOD, AND METHOD FOR PRODUCING PLASMA DISPLAY MEMBER AND APPARATUS Download PDF

Info

Publication number
JP4419203B2
JP4419203B2 JP00384599A JP384599A JP4419203B2 JP 4419203 B2 JP4419203 B2 JP 4419203B2 JP 00384599 A JP00384599 A JP 00384599A JP 384599 A JP384599 A JP 384599A JP 4419203 B2 JP4419203 B2 JP 4419203B2
Authority
JP
Japan
Prior art keywords
coating
substrate
die
thickness
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00384599A
Other languages
Japanese (ja)
Other versions
JP2000197844A (en
Inventor
義之 北村
義則 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP00384599A priority Critical patent/JP4419203B2/en
Publication of JP2000197844A publication Critical patent/JP2000197844A/en
Application granted granted Critical
Publication of JP4419203B2 publication Critical patent/JP4419203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、例えばプラズマディスプレイ、カラー液晶ディスプレイ用カラーフィルタ、光学フィルタ、プリント基板、集積回路、半導体等の製造分野に使用されるものであり、詳しくはガラス基板などの被塗布部材表面に非接触で塗布液を吐出しながら塗膜を形成する塗布装置および塗布方法、並びにこれら装置および方法を使用したプラズマディスプレイ用部材の製造装置および製造方法の改良に関するものである。
【0002】
【従来の技術】
近年、ディスプレイはその方式において次第に多様化してきているが、現在注目されているものの一つが、従来のブラウン管よりも大型で薄型軽量化が可能なプラズマディスプレイである。これは、一定ピッチでストライプ状に一方向にのびる溝をもつ隔壁をガラス基板上に構成し、さらにこの隔壁の溝にR、G、Bの蛍光体を充填し、任意の部位を紫外線により発光させ、所定のカラーパターンを写し出すものである。通常隔壁のある方が背面板、発行させる部位を決める電極がある方が前面板と呼ばれており、両者を貼りあわせてプラズマディスプレイとして構成される。
【0003】
ここで重要な背面板上の隔壁パターンの形成方法としては、隔壁ペーストを均一に塗布し、乾燥して均一膜厚のものを成型してから、所定ピッチのストライプ状の溝を、サンドブラスト法やフォトリソグラフィー法等の後加工によって彫り込み、焼成するのが主流である。隔壁の塗膜の厚さは焼成後でも100〜200μmと厚く、この膜厚に隔壁ペーストを均一に塗布する手段としては、数千〜数万cpsというペースト粘度にあわせて、スクリーン印刷法で何度も塗布する方法が一般的に用いられている。しかしこの方法では塗布回数が10〜20回にも及ぶため、コスト削減や品質向上を狙って、塗布を1回で完了できるロール法やダイコート法等の導入が、近年盛んに取り組み始められている。
【0004】
この中でも、ダイを用いたダイコート法は、塗布回数を1回で行えることの他、(1)アプリケータであるダイがガラス基板と非接触であるので、塗布面にスクリーンむらが残らず品質を向上できる、(2)スクリーンのような消耗品がないので、その費用を皆無にできる、等のメリットがある。
【0005】
このようなダイコート法において、
(a)基板を一方向に流すと基板移載装置も含めてコータの占有面積が大きくなるという問題がある。それに加えて、特開平8−182953号公報および特開平9−150102号公報に示されるように、基板を塗布装置に搬入する移載装置(ローダ)と、搬出する移載装置(アンローダ)の形で、同じ機能を持つ機器を2台も設置するのは設備的にむだであり、できるだけ構成機器数を少なくしてコストを低減することが望まれる。
【0006】
(b)ダイ〜基板間のクリアランスを一定とするために、特開平10−421号公報等では、基板厚さを予め測定しておいて、その厚さに基づいてダイの上下方向位置を変化させる技術が示されている。その精度をあげるためには塗布を行うダイコータテーブル上で基板厚みを全塗布領域で予め測定する必要があるが、これを効率的に行ってタクトを短くすることが望まれる。
【0007】
(c)塗布を連続して多量に行う時には、最初に塗布厚さ分布を測定して塗布条件の確認をするが、通常は乾燥させて塗布厚さ分布を測定するために、乾燥終了まで1時間程度待たねばならない。したがって、生産性を向上させるには、塗布直後のウェット状態で塗布厚さ分布を測定できるようにして、むだな時間を大幅に削減させすることが望まれる。
【0008】
【発明が解決しようとする課題】
この発明は、上述の事情に基づいて行ったもので、その目的とするところは、1)基板移載装置も含めた塗布設備として、構成機器数を減らすと共に、装置占有面積も減じて設備コストを削減すること、
2)コータテーブル上で精度よく基板厚みを全塗布領域で予め測定して、それに基づいてクリアランスを精度よく一定に保って均一に塗布するのを効率的に行うこと、
3)塗布直後のウェット状態での膜厚測定を可能とし、大量塗布前の塗布条件確認のための膜厚分布チェック時間に要する時間を大幅に削減し、生産性を向上させるとともに、多品種少量生産時にも生産効率を上げられるようにすること、
が可能な塗布装置および塗布方法、並びにこれらの塗布方法および装置を用いたプラズマディスプレイ用部材の製造方法および製造装置を提供することにある。
【0009】
【課題を解決するための手段】
上記本発明の目的は、以下に述べる手段によって達成される。
【0012】
)塗布液を供給する塗布液供給手段と、前記塗布液供給手段から供給された塗布液を吐出する吐出口を有する塗布器と、被塗布部材を載置する載置台と、前記塗布器および載置台のうちの少なくとも一方を相対的に移動させて前記被塗布部材上に塗膜を形成するための移動手段とを備えた塗布装置において、載置台上の塗布前の該被塗布部材の高さ分布および塗布後の塗膜表面の高さ分布を検知する高さ検知器と、同じ高さ検知器で検知した該塗布後の塗膜表面の高さ分布と該塗布前の被塗布部材の高さ分布の差から塗布厚み分布を算出する演算手段をさらに有することを特徴とする塗布装置。
【0013】
)前記(1)に記載の塗布装置を使用してプラズマディスプレイ用部材を製造することを特徴とするプラズマディスプレイ用部材の製造装置。
【0018】
)塗布器の一方向に延びる吐出口から塗布液を載置台上に固定した被塗布部材に吐出しながら、前記塗布器および載置台の少なくとも一方を相対的に移動させて前記被塗布部材に塗膜を形成する塗布方法において、載置台上の塗布前の該被塗布部材の高さ分布および塗布後の塗膜表面の高さ分布を同じ高さ検知器を用いて検知して、これらの差から塗布厚み分布を算出することを特徴とする塗布方法。
【0019】
)前記()に記載の塗布方法を用いてプラズマディスプレイ用部材の製造を行うことを特徴とするプラズマディスプレイ用部材の製造方法。
【0020】
【発明の実施の形態】
以下、この発明の好ましい実施形態を、図面を参照しながら説明する。
【0021】
図1は、この発明の塗布装置をダイコータに適用したときの概略斜視図である。
【0022】
図1において、ダイコータ1は、塗布液吐出手段であるダイ21、テーブル110、ダイ昇降部120、塗布液供給部130、移載機10から構成される。
【0023】
テーブル110は、基台23上にある一対のガイド溝レール111に沿って、これに案内されるスライド脚112上の吸着盤24で構成され、矢印A、Bで示す方向に、往復運動する。この吸着盤24は、基板載置台であり、表面に設けられた図示しない吸着孔によって、基板が吸着盤24上に、吸着、保持される。
【0024】
さらに、ケーシング115内には一対のガイド溝レール111があり、この間では、ボールねじ113にスライド脚112がナット状のコネクタ114を介して連結されている。一方、ボールねじ113の一端は、基台23の端部に配されたACサーボモータ116に、回転自在に連結されており、これによってテーブル110の往復運動が、自在に制御される。
【0025】
次に、ダイ昇降部120は、逆L字型の支柱25と、これに固定されて吸着盤24上でダイ21を昇降させる昇降装置30と、ダイ21と昇降装置30を連結するダイ保持材26とから構成され、ダイ21を上下方向に自在に昇降することができる。また、ダイ保持材26はダイ21の長手方向の中央部で昇降装置30と回転自在に連結されているので、リニアアクチュエータ27A、27Bとダイ保持材26との当接量によって、ダイ21の長手方向両端部の上下方向位置を自在に調節でき、ダイ21の下面と吸着盤24を平行に配置することができる。
【0026】
さらに基台23の移載機10と対面する側面には、基板厚さ計50が備えられている。基板厚さ計50は、センサー51とそれを任意の位置で保持する架台52よりなる。基板厚さはセンサー51の測定面を基板下面側にむけることによって測定する。センサー51としては、レーザ方式、静電容量方式、超音波式等様々なものが用いられるが、レーザフォーカス式のものが、非接触で、しかも対象が通常のガラス基板でも、あらかじめ片面に塗膜がつけられている基板でも、ガラス基板面側から基板表面と裏面位置を検知すれば精確に基板厚さを測定できるので、特に好ましい。レーザフォーカス式は測定対象物でのレーザ反射位置をレーザ焦点位置によって求めて、センサーと対象物との距離を測定する原理のものである。
【0027】
塗布液供給部130は、塗布液を供給するタンク135、塗布液を定容量送るシリンジポンプ131の他、タンク135とシリンジポンプ131との間を連結する吸引ホース133、シリンジポンプ131とダイ21との間を連結する供給ホース132により構成され、さらに、各供給ホース132、吸引ホース133の途中には、開閉弁134A、134Bが設けられている。このシリンジポンプ131と各々の開閉弁134A、134Bの動作によって、タンク135内の塗布液を定容量、ダイ21に供給することができる。
【0028】
なお、塗布液供給部130として、シリンジポンプを用いた構成の他に、ギアポンプ、ダイヤフラムポンプ、チューブポンプの他、エアー圧送による構成が用いられても良い。なお、タンク135は密閉容器で一定圧力のエアーや、N2 等の不活性ガスで加圧されていることが好ましい。加圧力は好ましくは0.02〜1MPa、より好ましくは0.1〜0.5MPaである。
【0029】
また、ダイコータ20の基板搬送方向上流側に配置された移載機10は、多関節アーム型のロボット11とハンド12から構成されて、図示しない上流側装置から、基板40をハンド12上に受け取って、ダイコータ1まで把持搬送する。ロボット11は、多関節アーム型の他、円筒座標型などいかなるタイプのものでも良い。
【0030】
次に、この発明の塗布装置を使った塗布方法について説明する。
【0031】
まず、図示しないシーケンサからの信号により、予めプログラムされたとおりにロボット11を駆動し、ハンド12により図示しない上流側装置にある基板40を把持して取り出す。そして、基板40を把持したハンド12に、回転、直進を組み合わせた動作を行なわせて、基板40を厚さ計50の真上に移動させて基板40の厚さを測定する。この時測定する基板40厚さは一点でもよいし、複数点測定してで基板厚さプロファイルを求めてもよい。さらに基板厚さプロファイルは複数セット測定してもよい。基板厚さを複数点測定する方向は基板長手方向が通常だが、基板幅方向に測定してもよい。さて、基板厚さの測定が終了したら、基板40を把持しているハンド112を原点位置にある吸着盤24(テーブル110)の近傍位置に停止させてから、吸着盤24の表面上に予め上昇させているリフトピン29上に、基板40を移載する。ハンド12を後退させて、原点位置にもどったら、リフトピン29を下降させて基板40を吸着盤24上に載置し、図示しない位置決め装置によって吸着盤24上での位置決めをする。その状態で、真空ポンプ等の吸引源がを作動させて、基板40を吸着盤24に吸着保持する。次に吸着盤24(テーブル110)を、塗布開始位置まで図1のA方向に高速で移動させ、これと平行して、基板厚さ計50により計測された基板厚さとあらかじめ与えられていたダイ21〜基板40間のクリアランスの値をもとに、基板40とダイ21との間が所定のクリアランスになるまで、ダイ21を下降させる。
【0032】
上記の動作まで、塗布液供給部130では、開閉弁134Aを閉じ、134Bを開けた状態で、シリンジポンプ131を作動させ、タンク135からシリンジポンプ側に所定量の塗布液を吸引供給する。シリンジポンプへの塗布液の充填が完了すれば、開閉弁134Aを開き、134Bを閉じる。
【0033】
次に、吸着盤24(テーブル110)が、塗布開始位置からA方向に、所定の塗布速度で移動を開始する。これとほぼ同時に、シリンジポンプ131を作動させ、シリンジポンプ側から塗布液が、ダイ21側に、所定の速度で送られ、ダイ21の吐出口から塗布液が吐出する。この時、吸着盤24(テーブル110)の移動とともに、基板40上に塗膜が形成される。ここでダイ21の下端面と吸着盤24との間のクリアランスが常に一定に保持されるように、基板厚さ計50で測定した基板長手方向の基板厚さプロファイルの値に基づいてダイ21を昇降制御(ならい制御)してもよい。ならい制御を行なうと、クリアランスが常に一定となるために、さらに高速で塗布することが可能となる。
【0034】
次に、基板40の塗布終了部が、ダイ21の吐出口の真下に来ると、シリンジポンプ131を停止して塗布液の吐出を停止させ、これとほぼ同時にダイ21を上昇させて塗布が終了する。その後、吸着盤24(テーブル110)が、終了位置まで、高速で移動する。吸着盤24が停止すると、図1のB方向に、ダイ21の下方を通過させて、原点位置まで高速で移動させる。吸着盤24(テーブル110)が原点位置で停止すると、基板40の吸着を解除し、リフトピン29を上昇させて、基板40を持ち上げ移載機10のハンド12によって塗膜が形成された基板40を取り出して、次工程に搬送する。
【0035】
図1に示す本実施例では、一台の移載機10によって、基板を投入する側からコータ1へ基板40の投入と取り出しも行なうことができる。この配置によって装置の占有面積を小さくしてコンパクトにまとめることができる。
【0036】
図2は本発明を適用できる装置構成を示す平面図であるが、移載機10を中心としてカセット210、コータ1、乾燥機200を配置しているので、基板投入→塗布→乾燥→カセット収納まで、一貫した作業をコンパクトに行わせることが可能となる。乾燥機200としては、熱風、ホットプレート、赤外線を加熱源として利用したものから、大気圧より減圧した雰囲気で加熱乾燥する真空乾燥機など、いかなるものを使用してもよい。
【0037】
図3は本発明にかかる別の実施例を図1のコータ1に適用した例を示す正面図、図4はその平面図である。ここで基板表面高さ測定器300はコータ1の支柱25に取り付けられており、基板40との距離を測定するレーザ式の変位計302、変位計302が取り付けられて自在に昇降できるブラケット308、ブラケット308と変位計302をガイドレール306に沿って基板幅方向(紙面に垂直方向)に移動させる可動体304よりなる。可動体304は図示しないボールネジ、モータよりなる駆動部分と連結されており、基板幅方向に自在に往復動できる。支柱25の逆側にはダイ21がダイ保持材26を介して昇降装置30に取り付けられている。昇降装置30は図示しないモータとボールネジによってダイ21を上下方向に自在に移動させる。
【0038】
本実施例の示す塗布装置を用いた塗布方法について説明する。まず塗布すべき基板40を移載機10から原点位置にある吸着盤24に移載して吸着固定する。吸着盤24を図3のA方向に移動させ、基板幅方向の中央に位置している変位計302と基板40表面との距離から、基板走行方向の基板40の高さ分布S1を測定する。この前に、予め吸着盤24表面と変位計302との距離から吸着盤24表面の基板走行方向の高さ分布S0を測定しているので、S1とS20の基板走行方向の距離分布の差をとれば、基板の厚さ分布(プロファイル)S2を知ることができる。測定を完了したら吸着盤24は終点位置まで移動して停止する。測定した基板40の走行方向の厚さ分布S2、あるいは基板走行方向の基板40の高さ分布S1から、ダイ21下端面と基板40との間隔(クリアランス)が一定になるようにダイ21の下降位置を昇降装置30で定める。次に、吸着盤24を基板厚さの測定とは逆方向となる図3のB方向に移動させて、基板40の塗布開始位置がダイ21の吐出口の直下に達したら、塗布液をダイ21より吐出して塗布を行う。塗布を行っている最中にも、ダイ21の吐出口面と基板40との間隔(クリアランス)が一定になるように、測定した基板40の走行方向の厚さ分布S2、あるいは基板走行方向の基板40の高さ分布S1から、ダイ21の位置を上下方向に移動させてもよい。基板40の塗布終了位置がダイ21の吐出口の直下にきたら、塗布液の吐出を停止し、ほぼ同時にダイ21も上昇させて塗布を完了する。塗布が完了しても吸着盤24は始原点位置まで移動して停止し、基板40の吸着を解除し、リフトピン29を上昇させて、基板40を持ち上げ、移載機10のハンド12によって塗膜が形成された基板40を取り出して、次工程に搬送する。本実施例では変位計302は1台しかないが、複数台設けて、たとえば基板40の幅方向の両端部の高さや、厚みを測定して、そのプロファイルにあわせてダイ21の吐出口面の長手方向(基板幅方向)両端部位置の高さを制御して、基板40とダイ40の吐出口面間のクリアランスを基板幅方向にわたっても一定になるようにしてもよい。さらに、変位計302は基板40上であれば、どこに配してもよい。本実施例の基板表面高さ測定器300によれば、吸着盤24上の基板表面高さを、塗膜の有無にかかわらず精確に測定できるので、基板厚さを測定する場合に比べて、より精確にダイ21の吐出口面〜基板表面間のクリアランスを設定できる。
【0039】
次に、塗布厚さの測定方法について図3を用いて説明する。塗布を行うまでは上記に記載の通りである。塗布完了後、吸着盤24は原点位置まで移動して停止する。ついで、塗膜を形成した基板40を吸着盤24にそのまま吸着した状態で、再び図3のA方向に移動を開始し、基板40上にある塗膜表面と変位計302との基板走行方向の距離から、基板走行方向の基板40上の塗膜表面(塗布液面)の高さ分布S3を測定する。測定が完了したら吸着盤24は終点位置まで移動して停止する。そして基板走行方向の基板40上の塗膜表面)の高さ分布S3と、塗布前の基板走行方向の基板40の高さ分布S1との差をとって、基板40上に塗布された塗膜(塗布液)の基板走行方向の厚み分布、すなわち塗布厚み分布S4を得ることができる。さらに、基板幅方向の塗布厚み分布を求める場合は、まず塗布を行なう前の基板40上の測定すべき位置P1が変位計302の直下にくるまで、吸着盤24を移動させて停止する。ついで、変位計302を基板40幅方向(ダイ21の長手方向)に基板の両端を含む範囲で移動させて、基板40表面と変位計302との距離から、基板幅方向の基板40の高さ分布W1を測定する。次に上述した方法によって基板40に塗布を行った後、再び吸着盤24を移動させて、基板40上の測定すべき位置P1が変位計302の直下になるようにしてから、変位計302を基板幅方向に基板の両端を含む範囲で移動させて、基板40上の塗布液表面(塗膜面)と変位計302との距離から、基板幅方向の基板40の高さ分布W2を測定する。そしてW2とW1の差をとって塗布液面(塗膜面)の基板幅方向の厚さ分布、すなわち塗布厚み分布W3を得る。
【0040】
なお塗布厚さを測定する時、基板走行方向に変位計302で測定する場合の変位計302位置は中央部に限らず、基板幅方向の測定したい位置におけばよい。さらに基板幅方向の複数の場所で測定するようにしてもよい。
【0041】
また基板幅方向に変位計で測定する場合、測定箇所は複数の任意の場所を選んでもでもよい。
【0042】
さらに基板走行方向と幅方向の測定を逐次行ってもよいし、その順番もどちらを先に行ってもよい。
【0043】
塗布厚さを測定する変位計としては、測定できるものならいかなるものでもよいが、上述のレーザフォーカス式のものが測定位置表面状態の影響をうけにくく、精度の高い測定ができるので望ましい。その他、レーザを用いたもので、拡散反射や正反射を利用したものを用いてもよい。レーザだけではなく、静電容量を利用したもの、エアーマイクロ等の非接触式のものを用いればよい。
【0044】
なお本発明が適用できる塗布液としては粘度が1cps〜100000cps、望ましくは10cps〜50000cpsであり、ニュートニアンが塗布性から好ましいが、チキソ性を有する塗布液にも適用できる。基板としてはガラスの他にアルミ等の金属板、セラミック板、シリコンウェハー等はもちろんのこと、前工程にて何らかの塗膜を形成した基板を用いてもよい。さらに使用する塗布状態としては、クリアランスが40〜500μm、より好ましくは80〜300μm、塗布速度が0.1m/分〜10m/分、より好ましくは0.5m/分〜6m/分、ダイのリップ間隙は50〜1000μm、より好ましくは100〜600μm、塗布厚さが5〜400μm、より好ましくは20〜250μmである。
【0045】
【実施例】
幅340mm×440mm×厚さ2.8mmのソーダガラス基板上の全面に感光性銀ペーストを5μmの厚みにスクリーン印刷した後で、フォトマスクを用いて露光し、現像および焼成の各工程を経て、ピッチ220μmのストライプ状の1920本の銀電極を形成した。その電極上にガラスとバインダーからなるガラスペーストをスクリーン印刷した後に、焼成して10μm厚の誘電体層を形成した。次に図1のダイコータに吐出幅430mm、リップ間隙(シム厚さ)500μmのダイを取付け、タンク135〜ダイ21までの塗布液供給ラインに、ガラス粉末と感光性有機成分からなる粘度20000cpsの感光性ガラスペーストを充満させた。そして、誘電体層まで形成した基板を移載機10でダイコータに投入して基板厚さを測定し、それと誘電体層の厚み10μmを考慮して、ダイ21〜誘電体層の間のクリアランスが350μmになるようにダイ21を下降させた後に、塗布厚さ300μm、塗布速度1m/分で上記の感光性ガラスペーストを塗布した。塗布した基板を、基板を投入した同じ位置で移載機10で取り出して、輻射ヒータを用いた乾燥炉に投入し、100℃で20分間乾燥した。乾燥後の塗布厚み分布を基板全面にわたって測定したところ、140μm±3μmの範囲に収まった。次いで隣あった電極間に隔壁が形成されるように設計されたフォトマスクを用いて露光し、現像と焼成を行って隔壁を形成した。隔壁の形状はピッチ220μm、線幅30μm、高さ130μmであり、隔壁本数は1921本であった。この後、R、G、Bの蛍光体ペーストを順次スクリーン印刷によって塗布して、80℃15分で乾燥後、最後に460℃15分で焼成し、欠陥のないプラズマディスプレイの背面板を作製できた。
【0046】
【発明の効果】
1)基板移載装置を基板投入/取り出し兼用の一台とし、コータの一方側から基板の投入、取り出しを行うようにしたので、構成機器数を減らすと共に、装置占有面積も減じて設備コストを削減し、その結果製造コストを低減させることができたる。
【0047】
2)基板を一方向に往動させるときに全塗布領域での基板厚みを測定後、逆方向に復動するときに塗布を行うようにしたので、基板厚さの測定と、それに合わせてクリアランスを一定に保って行なう塗布を効率的に実施することができ、生産性を高めることができたる。
【0048】
3)塗布前に吸着盤(テーブル)上での基板高さ分布を塗布領域で測定してから塗布を行い、直ちに同じ基板位置での塗布液(塗膜)の高さを測定して、両者の高さの差から塗布厚さ分布を算出するようにしたので、塗布直後のウェット状態での膜厚測定が可能となり、大量塗布前の塗布条件確認のための膜厚分布チェック時間に要する時間を大幅に削減し、生産性を向上させるとともに、多品種少量生産時にも生産効率を上げることができる。
【0049】
以上の優れた効果を有する塗布装置並びに塗布方法を用いたプラズマディプレイ用部材の製造装置並びに製造方法でプラズマディスプレイ用部材を製造するのであるから、高い生産性で高い品質の背面板等のプラズマディスプレイ用部材を製造することができる。
【図面の簡単な説明】
【図1】本発明に係る基板移載装置とダイコータの一例を示す全体斜視図である。
【図2】本発明に係る基板移載装置、ダイコータを含む全体配置の一例を示す概略平面図である。
【図3】本発明に係る塗布装置の一実施例を示す正面図である。
【図4】図3に示す塗布装置の平面図である。
【符号の説明】
1:コータ
10:移載機
11:ロボット
12:ハンド
20:ダイコータ
21:ダイ
23:基台
24:吸着盤
A、B:吸着盤走行方向
25:支柱
26:ダイ保持材
27A、27B:リニアアクチュエータ
29:リフトピン
30:昇降装置
35:水平バー
40:基板
110:テーブル
111:ガイド溝レール
112:スライド脚
113:ボールねじ
114:コネクタ
115:ケーシング
116:ACサーボモータ
120:ダイ昇降部
130:塗布液供給部
131:シリンジポンプ
132:供給ホース
133:吸引ホース
134A、134B:開閉バルブ
135:タンク
200:乾燥機
210:カセット
300:基板表面高さ測定器
302:変位計
306:ガイドレール
304:可動体
[0001]
BACKGROUND OF THE INVENTION
The present invention is used in the manufacturing field of, for example, a plasma display, a color filter for a color liquid crystal display, an optical filter, a printed circuit board, an integrated circuit, a semiconductor, and the like. The present invention relates to a coating apparatus and a coating method for forming a coating film while discharging a coating solution, and an improvement in a manufacturing apparatus and a manufacturing method for a member for a plasma display using these apparatuses and methods.
[0002]
[Prior art]
In recent years, displays have gradually become diversified in their systems, and one of the current attention is a plasma display that is larger than a conventional cathode ray tube and can be reduced in thickness and weight. This is because a partition having grooves extending in one direction in a striped pattern at a constant pitch is formed on a glass substrate, and further, phosphors of R, G, and B are filled in the grooves of the partition, and an arbitrary portion is emitted by ultraviolet rays. And a predetermined color pattern is projected. Usually, the side with the partition is called the back plate, and the side with the electrode that determines the part to be issued is called the front plate.
[0003]
Here, as an important method of forming a partition pattern on the back plate, a partition paste is uniformly applied, dried and molded with a uniform film thickness, and then striped grooves with a predetermined pitch are formed by a sandblast method or the like. The mainstream is engraving and baking by post-processing such as photolithography. The thickness of the partition wall coating film is as thick as 100 to 200 μm even after firing. As a means for uniformly applying the partition wall paste to this film thickness, a screen printing method can be used according to the paste viscosity of thousands to tens of thousands cps. In general, a method of coating is also used. However, with this method, the number of coatings reaches 10 to 20 times, and in recent years, the introduction of a roll method and a die coating method that can complete the coating in one time has been started actively in order to reduce costs and improve quality. .
[0004]
Among these, the die coating method using a die can be applied only once, and (1) since the die as an applicator is not in contact with the glass substrate, there is no screen unevenness on the coated surface and the quality is improved. (2) Since there are no consumables such as screens, there is an advantage that the cost can be eliminated.
[0005]
In such a die coating method,
(A) When the substrate is flowed in one direction, there is a problem that the area occupied by the coater including the substrate transfer device increases. In addition, as shown in Japanese Patent Application Laid-Open Nos. 8-182953 and 9-150102, shapes of a transfer device (loader) for loading a substrate into a coating apparatus and a transfer device (unloader) for carrying it out are provided. Therefore, installing two devices having the same function is wasteful in terms of equipment, and it is desirable to reduce the number of components as much as possible to reduce the cost.
[0006]
(B) In order to make the clearance between the die and the substrate constant, in JP-A-10-421, etc., the substrate thickness is measured in advance, and the vertical position of the die is changed based on the thickness. The technology to be shown is shown. In order to increase the accuracy, it is necessary to measure the substrate thickness in advance in the entire coating area on the die coater table on which coating is performed. However, it is desired to efficiently perform this to shorten the tact.
[0007]
(C) When a large amount of coating is performed continuously, the coating thickness distribution is first measured to confirm the coating conditions. Usually, the coating thickness distribution is measured by drying until the end of drying. I have to wait about hours. Therefore, in order to improve productivity, it is desired that the coating thickness distribution can be measured in a wet state immediately after coating, and the dead time is greatly reduced.
[0008]
[Problems to be solved by the invention]
The present invention has been made based on the above-mentioned circumstances. The object of the present invention is as follows. 1) As a coating facility including a substrate transfer device, the number of components is reduced and the area occupied by the device is also reduced. Reducing,
2) The substrate thickness is measured in advance on the coater table with high accuracy in the entire application area, and based on this, the clearance is kept constant accurately and uniformly applied,
3) Enables film thickness measurement in the wet state immediately after application, greatly reduces the time required for film thickness distribution check time for application condition confirmation before mass application, improves productivity, and reduces the variety of products To be able to increase production efficiency even during production,
It is an object of the present invention to provide a coating apparatus and a coating method capable of performing the above, and a plasma display member manufacturing method and manufacturing apparatus using these coating methods and apparatuses.
[0009]
[Means for Solving the Problems]
The object of the present invention is achieved by the means described below.
[0012]
( 1 ) Application liquid supply means for supplying an application liquid, an applicator having a discharge port for discharging the application liquid supplied from the application liquid supply means, a mounting table for mounting a member to be applied, and the applicator And a moving means for relatively moving at least one of the mounting tables to form a coating film on the coated member, the coating member before coating on the mounting table . Height detector for detecting height distribution and height distribution of coating film surface after coating, height distribution of coating film surface after coating detected by same height detector, and coated member before coating A coating apparatus, further comprising a calculation means for calculating a coating thickness distribution from a difference in height distribution .
[0013]
( 2 ) A plasma display member manufacturing apparatus that manufactures a plasma display member using the coating apparatus according to (1 ) .
[0018]
( 3 ) The member to be coated is moved by relatively moving at least one of the applicator and the mounting table while discharging a coating liquid from a discharge port extending in one direction of the coating device to the member to be coated. in the coating method of forming a coating film, by detecting the height distribution of the height distribution and the coating film surface after coating of該被applying member before application on the table with the same height detectors, these A coating method characterized in that a coating thickness distribution is calculated from the difference between the two .
[0019]
( 4 ) A method for producing a member for a plasma display, wherein the member for a plasma display is produced using the coating method according to the above ( 3 ).
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0021]
FIG. 1 is a schematic perspective view when the coating apparatus of the present invention is applied to a die coater.
[0022]
In FIG. 1, the die coater 1 includes a die 21 that is a coating liquid discharge unit, a table 110, a die lifting / lowering unit 120, a coating liquid supply unit 130, and a transfer machine 10.
[0023]
The table 110 is constituted by a suction plate 24 on a slide leg 112 guided by a pair of guide groove rails 111 on the base 23 and reciprocates in directions indicated by arrows A and B. The suction plate 24 is a substrate mounting table, and a substrate is sucked and held on the suction plate 24 by suction holes (not shown) provided on the surface.
[0024]
Further, a pair of guide groove rails 111 are provided in the casing 115, and a slide leg 112 is connected to the ball screw 113 via a nut-shaped connector 114 in the meantime. On the other hand, one end of the ball screw 113 is rotatably connected to an AC servo motor 116 disposed at the end of the base 23, whereby the reciprocating motion of the table 110 is freely controlled.
[0025]
Next, the die lifting / lowering unit 120 includes an inverted L-shaped support column 25, a lifting / lowering device 30 that is fixed thereto and lifts the die 21 on the suction plate 24, and a die holding member that connects the die 21 and the lifting / lowering device 30. 26, and the die 21 can be moved up and down freely in the vertical direction. Further, since the die holding member 26 is rotatably connected to the lifting device 30 at the longitudinal center of the die 21, the length of the die 21 depends on the amount of contact between the linear actuators 27 </ b> A and 27 </ b> B and the die holding member 26. The vertical position of both ends of the direction can be freely adjusted, and the lower surface of the die 21 and the suction disk 24 can be arranged in parallel.
[0026]
Further, a substrate thickness meter 50 is provided on the side surface of the base 23 facing the transfer machine 10. The substrate thickness meter 50 includes a sensor 51 and a gantry 52 that holds the sensor 51 at an arbitrary position. The substrate thickness is measured by turning the measurement surface of the sensor 51 to the lower surface side of the substrate. As the sensor 51, various types such as a laser method, a capacitance method, an ultrasonic method, and the like are used, but a laser focus type is a non-contact and even if a target is a normal glass substrate, a coating film is previously applied on one side. Even if a substrate is attached, it is particularly preferable because the substrate thickness can be accurately measured by detecting the substrate front and back positions from the glass substrate surface side. The laser focus method is based on the principle of measuring the distance between the sensor and the object by obtaining the laser reflection position on the object to be measured based on the laser focus position.
[0027]
The coating liquid supply unit 130 includes a tank 135 that supplies the coating liquid, a syringe pump 131 that sends the coating liquid at a constant volume, a suction hose 133 that connects the tank 135 and the syringe pump 131, a syringe pump 131 and the die 21. In addition, open / close valves 134A and 134B are provided in the middle of each supply hose 132 and suction hose 133. By the operation of the syringe pump 131 and the on-off valves 134A and 134B, the coating liquid in the tank 135 can be supplied to the die 21 with a constant volume.
[0028]
In addition to the configuration using a syringe pump, the coating liquid supply unit 130 may be configured by air pressure feeding in addition to a gear pump, a diaphragm pump, and a tube pump. The tank 135 is a sealed container and is preferably pressurized with a constant pressure of air or an inert gas such as N2. The applied pressure is preferably 0.02 to 1 MPa, more preferably 0.1 to 0.5 MPa.
[0029]
The transfer machine 10 disposed upstream of the die coater 20 in the substrate transport direction includes an articulated arm type robot 11 and a hand 12, and receives the substrate 40 from the upstream device (not shown) onto the hand 12. Then, it is gripped and conveyed to the die coater 1. The robot 11 may be of any type such as a multi-joint arm type or a cylindrical coordinate type.
[0030]
Next, a coating method using the coating apparatus of the present invention will be described.
[0031]
First, the robot 11 is driven in accordance with a signal from a sequencer (not shown) as programmed in advance, and the substrate 40 in the upstream device (not shown) is gripped and taken out by the hand 12. Then, the hand 12 holding the substrate 40 is caused to perform a combined operation of rotation and rectilinear movement, and the substrate 40 is moved directly above the thickness gauge 50 to measure the thickness of the substrate 40. At this time, the thickness of the substrate 40 to be measured may be one point, or the substrate thickness profile may be obtained by measuring a plurality of points. Further, a plurality of substrate thickness profiles may be measured. The direction in which a plurality of substrate thicknesses are measured is usually the substrate longitudinal direction, but may be measured in the substrate width direction. Now, when the measurement of the substrate thickness is completed, the hand 112 holding the substrate 40 is stopped at a position near the suction plate 24 (table 110) at the origin position, and then raised on the surface of the suction plate 24 in advance. The substrate 40 is transferred onto the lift pins 29 that are being moved. When the hand 12 is retracted to return to the origin position, the lift pin 29 is lowered and the substrate 40 is placed on the suction plate 24, and positioning on the suction plate 24 is performed by a positioning device (not shown). In this state, a suction source such as a vacuum pump is operated to suck and hold the substrate 40 on the suction disk 24. Next, the suction plate 24 (table 110) is moved at a high speed in the direction A in FIG. 1 to the coating start position, and in parallel with this, the substrate thickness measured by the substrate thickness meter 50 and the previously given die are used. Based on the value of the clearance between the 21 and the substrate 40, the die 21 is lowered until a predetermined clearance is obtained between the substrate 40 and the die 21.
[0032]
Until the above operation, the coating liquid supply unit 130 operates the syringe pump 131 with the on-off valve 134A closed and 134B opened, and sucks and supplies a predetermined amount of coating liquid from the tank 135 to the syringe pump side. When the filling of the syringe pump with the coating liquid is completed, the on-off valve 134A is opened and 134B is closed.
[0033]
Next, the suction plate 24 (table 110) starts to move from the application start position in the A direction at a predetermined application speed. At substantially the same time, the syringe pump 131 is operated, the coating liquid is sent from the syringe pump side to the die 21 side at a predetermined speed, and the coating liquid is discharged from the discharge port of the die 21. At this time, a coating film is formed on the substrate 40 as the suction plate 24 (table 110) moves. Here, the die 21 is adjusted based on the value of the substrate thickness profile in the substrate longitudinal direction measured by the substrate thickness meter 50 so that the clearance between the lower end surface of the die 21 and the suction plate 24 is always kept constant. Elevation control (following control) may be performed. When the profile control is performed, the clearance is always constant, so that the coating can be performed at a higher speed.
[0034]
Next, when the coating end portion of the substrate 40 comes directly below the discharge port of the die 21, the syringe pump 131 is stopped to stop the discharge of the coating liquid, and at the same time, the die 21 is raised to complete the coating. To do. Thereafter, the suction plate 24 (table 110) moves at high speed to the end position. When the suction disk 24 stops, it passes under the die 21 in the direction B of FIG. 1 and moves to the origin position at a high speed. When the suction plate 24 (table 110) stops at the origin position, the suction of the substrate 40 is released, the lift pins 29 are raised, the substrate 40 is lifted, and the substrate 40 on which the coating film is formed by the hand 12 of the transfer machine 10 is removed. Take it out and transport it to the next process.
[0035]
In the present embodiment shown in FIG. 1, the substrate 40 can be loaded into and removed from the coater 1 from the substrate loading side by a single transfer machine 10. With this arrangement, the area occupied by the apparatus can be reduced and the apparatus can be made compact.
[0036]
FIG. 2 is a plan view showing an apparatus configuration to which the present invention can be applied. However, since the cassette 210, the coater 1 and the dryer 200 are arranged around the transfer machine 10, substrate loading → coating → drying → cassette storage It is possible to perform consistent work in a compact manner. As the dryer 200, any device may be used, such as a hot dryer, a hot plate, or a device using infrared rays as a heating source, or a vacuum dryer that performs heating and drying in an atmosphere reduced from atmospheric pressure.
[0037]
3 is a front view showing an example in which another embodiment of the present invention is applied to the coater 1 of FIG. 1, and FIG. 4 is a plan view thereof. Here, the substrate surface height measuring device 300 is attached to the support column 25 of the coater 1, and a laser displacement meter 302 for measuring the distance from the substrate 40, a bracket 308 to which the displacement meter 302 can be attached and moved up and down freely, It comprises a movable body 304 that moves the bracket 308 and the displacement meter 302 along the guide rail 306 in the substrate width direction (perpendicular to the paper surface). The movable body 304 is connected to a drive portion including a ball screw and a motor (not shown) and can freely reciprocate in the substrate width direction. On the opposite side of the column 25, the die 21 is attached to the lifting device 30 via a die holding member 26. The lifting device 30 moves the die 21 freely in the vertical direction by a motor and a ball screw (not shown).
[0038]
A coating method using the coating apparatus shown in this embodiment will be described. First, the substrate 40 to be coated is transferred from the transfer machine 10 to the suction disk 24 at the origin position and fixed by suction. The suction disk 24 is moved in the direction A in FIG. 3, and the height distribution S <b> 1 of the substrate 40 in the substrate traveling direction is measured from the distance between the displacement meter 302 located at the center in the substrate width direction and the surface of the substrate 40. Before this, since the height distribution S0 in the substrate running direction on the surface of the suction plate 24 is measured in advance from the distance between the surface of the suction plate 24 and the displacement meter 302, the difference in the distance distribution in the substrate running direction between S1 and S20 is calculated. Then, the thickness distribution (profile) S2 of the substrate can be known. When the measurement is completed, the suction plate 24 moves to the end point position and stops. From the measured thickness distribution S2 of the substrate 40 in the traveling direction or the height distribution S1 of the substrate 40 in the substrate traveling direction, the die 21 is lowered so that the distance (clearance) between the lower end surface of the die 21 and the substrate 40 is constant. The position is determined by the lifting device 30. Next, the suction plate 24 is moved in the direction B in FIG. 3 which is the opposite direction to the measurement of the substrate thickness. When the application start position of the substrate 40 reaches directly below the discharge port of the die 21, the application liquid is added to the die. Application is carried out by discharging from 21. During the application, the measured thickness distribution S2 of the traveling direction of the substrate 40 or the substrate traveling direction so that the distance (clearance) between the discharge port surface of the die 21 and the substrate 40 is constant. The position of the die 21 may be moved in the vertical direction from the height distribution S1 of the substrate 40. When the application end position of the substrate 40 comes directly under the discharge port of the die 21, the discharge of the application liquid is stopped, and the die 21 is also raised almost simultaneously to complete the application. Even if the application is completed, the suction plate 24 moves to the starting origin position and stops, releases the suction of the substrate 40, raises the lift pins 29, lifts the substrate 40, and coats the coating film with the hand 12 of the transfer machine 10. The substrate 40 on which is formed is taken out and transported to the next step. In this embodiment, there is only one displacement meter 302, but a plurality of displacement meters 302 are provided, for example, the height and thickness of both ends in the width direction of the substrate 40 are measured, and the discharge port surface of the die 21 is adjusted according to the profile. By controlling the height of both end positions in the longitudinal direction (substrate width direction), the clearance between the substrate 40 and the discharge port surface of the die 40 may be constant over the substrate width direction. Further, the displacement meter 302 may be disposed anywhere on the substrate 40. According to the substrate surface height measuring instrument 300 of the present embodiment, the substrate surface height on the suction plate 24 can be accurately measured regardless of the presence or absence of the coating film, so compared with the case of measuring the substrate thickness, The clearance between the discharge port surface of the die 21 and the substrate surface can be set more accurately.
[0039]
Next, a method for measuring the coating thickness will be described with reference to FIG. The process is as described above until application. After the application is completed, the suction plate 24 moves to the origin position and stops. Next, in a state where the substrate 40 on which the coating film is formed is adsorbed to the adsorption plate 24 as it is, the movement in the direction A of FIG. 3 is started again, and the surface of the coating film on the substrate 40 and the displacement meter 302 in the substrate running direction. From the distance, the height distribution S3 of the coating film surface (coating liquid surface) on the substrate 40 in the substrate running direction is measured. When the measurement is completed, the suction plate 24 moves to the end point position and stops. Then, the difference between the height distribution S3 of the coating film surface on the substrate 40 in the substrate running direction and the height distribution S1 of the substrate 40 in the substrate running direction before application is taken to obtain a coating film applied on the substrate 40. A thickness distribution of the (coating liquid) in the substrate running direction, that is, a coating thickness distribution S4 can be obtained. Further, when obtaining the coating thickness distribution in the substrate width direction, the suction plate 24 is first moved and stopped until the position P1 to be measured on the substrate 40 before coating is directly below the displacement meter 302. Next, the displacement meter 302 is moved in the width direction of the substrate 40 (longitudinal direction of the die 21) in a range including both ends of the substrate, and the height of the substrate 40 in the substrate width direction is determined from the distance between the surface of the substrate 40 and the displacement meter 302. The distribution W1 is measured. Next, after applying to the substrate 40 by the method described above, the suction disk 24 is moved again so that the position P1 to be measured on the substrate 40 is directly below the displacement meter 302, and then the displacement meter 302 is moved. The height distribution W2 of the substrate 40 in the substrate width direction is measured from the distance between the coating liquid surface (coating film surface) on the substrate 40 and the displacement meter 302 by moving the substrate in the range including both ends of the substrate in the substrate width direction. . The difference between W2 and W1 is taken to obtain the thickness distribution in the substrate width direction of the coating liquid surface (coating surface), that is, the coating thickness distribution W3.
[0040]
When measuring the coating thickness, the position of the displacement meter 302 when measured with the displacement meter 302 in the substrate running direction is not limited to the central portion, but may be a position where measurement is desired in the substrate width direction. Further, measurement may be performed at a plurality of locations in the substrate width direction.
[0041]
When measuring with a displacement meter in the substrate width direction, a plurality of arbitrary locations may be selected as the measurement location.
[0042]
Further, measurement in the substrate running direction and width direction may be performed sequentially, and either order may be performed first.
[0043]
Any displacement meter that can measure the coating thickness may be used as long as it can be measured. However, the above-described laser focus type is preferable because it is not easily affected by the surface state of the measurement position and can be measured with high accuracy. In addition, a laser that uses diffuse reflection or regular reflection may be used. What is necessary is just to use not only a laser but the thing using an electrostatic capacitance, and non-contact type things, such as an air micro.
[0044]
The coating liquid to which the present invention can be applied has a viscosity of 1 cps to 100,000 cps, desirably 10 cps to 50,000 cps, and Newtonian is preferable from the viewpoint of coating properties, but it can also be applied to a coating liquid having thixotropy. As a substrate, in addition to glass, a metal plate such as aluminum, a ceramic plate, a silicon wafer, and the like, as well as a substrate on which some coating film is formed in the previous step, may be used. Further, as a coating state to be used, the clearance is 40 to 500 μm, more preferably 80 to 300 μm, the coating speed is 0.1 m / min to 10 m / min, more preferably 0.5 m / min to 6 m / min, the die lip The gap is 50 to 1000 μm, more preferably 100 to 600 μm, and the coating thickness is 5 to 400 μm, more preferably 20 to 250 μm.
[0045]
【Example】
After the photosensitive silver paste is screen-printed to a thickness of 5 μm on the entire surface of a soda glass substrate having a width of 340 mm × 440 mm × thickness of 2.8 mm, it is exposed using a photomask, and undergoes development and baking processes, Striped 1920 silver electrodes with a pitch of 220 μm were formed. A glass paste made of glass and a binder was screen-printed on the electrode and then fired to form a dielectric layer having a thickness of 10 μm. Next, a die having a discharge width of 430 mm and a lip gap (shim thickness) of 500 μm is attached to the die coater shown in FIG. 1, and a photosensitive solution having a viscosity of 20000 cps composed of glass powder and a photosensitive organic component is applied to the coating solution supply line from the tanks 135 to 21. The glass paste was filled. Then, the substrate formed up to the dielectric layer is put into a die coater by the transfer machine 10 and the thickness of the substrate is measured, and the clearance between the die 21 and the dielectric layer is considered in consideration of the thickness of the dielectric layer and 10 μm. After lowering the die 21 to 350 μm, the above photosensitive glass paste was applied at a coating thickness of 300 μm and a coating speed of 1 m / min. The coated substrate was taken out by the transfer machine 10 at the same position where the substrate was put, put into a drying furnace using a radiation heater, and dried at 100 ° C. for 20 minutes. When the coating thickness distribution after drying was measured over the entire surface of the substrate, it was within the range of 140 μm ± 3 μm. Next, exposure was performed using a photomask designed to form a partition between adjacent electrodes, and development and firing were performed to form a partition. The shape of the partition walls was a pitch of 220 μm, a line width of 30 μm, a height of 130 μm, and the number of partition walls was 1921. After that, phosphor pastes of R, G, B are sequentially applied by screen printing, dried at 80 ° C. for 15 minutes, and finally baked at 460 ° C. for 15 minutes to produce a defect-free plasma display back plate. It was.
[0046]
【The invention's effect】
1) Since the substrate transfer device is used as a substrate loading / unloading unit and the substrate is loaded and unloaded from one side of the coater, the number of components is reduced and the area occupied by the device is also reduced. And as a result, the manufacturing cost can be reduced.
[0047]
2) After measuring the substrate thickness in the entire coating area when moving the substrate in one direction, coating was performed when returning in the opposite direction, so the measurement of the substrate thickness and the clearance accordingly Thus, it is possible to efficiently carry out the coating while keeping the temperature constant, and to improve the productivity.
[0048]
3) Before coating, measure the substrate height distribution on the suction table (table) in the coating area and then apply, and immediately measure the height of the coating solution (coating film) at the same substrate position. Since the coating thickness distribution is calculated from the difference in height, it is possible to measure the film thickness in the wet state immediately after coating, and the time required for the film thickness distribution check time to check the coating conditions before mass coating Can be greatly reduced, productivity can be improved, and production efficiency can be improved even in the case of high-mix low-volume production.
[0049]
Since the plasma display member is manufactured by the manufacturing apparatus and the manufacturing method of the member for plasma display using the coating apparatus and the coating method having the above excellent effects, the plasma such as the back plate having high productivity and high quality. A display member can be manufactured.
[Brief description of the drawings]
FIG. 1 is an overall perspective view showing an example of a substrate transfer apparatus and a die coater according to the present invention.
FIG. 2 is a schematic plan view showing an example of an overall arrangement including a substrate transfer apparatus and a die coater according to the present invention.
FIG. 3 is a front view showing an embodiment of a coating apparatus according to the present invention.
4 is a plan view of the coating apparatus shown in FIG. 3. FIG.
[Explanation of symbols]
1: Coater 10: Transfer machine 11: Robot 12: Hand 20: Die coater 21: Die 23: Base 24: Suction board A, B: Suction board traveling direction 25: Support column 26: Die holding material 27A, 27B: Linear actuator 29: Lift pin 30: Lifting device 35: Horizontal bar 40: Substrate 110: Table 111: Guide groove rail 112: Slide leg 113: Ball screw 114: Connector 115: Casing 116: AC servo motor 120: Die lifting unit 130: Coating liquid Supply section 131: Syringe pump 132: Supply hose 133: Suction hose 134A, 134B: Open / close valve 135: Tank 200: Dryer 210: Cassette 300: Substrate surface height measuring instrument 302: Displacement meter 306: Guide rail 304: Movable body

Claims (4)

塗布液を供給する塗布液供給手段と、前記塗布液供給手段から供給された塗布液を吐出する吐出口を有する塗布器と、被塗布部材を載置する載置台と、前記塗布器および載置台のうちの少なくとも一方を相対的に移動させて前記被塗布部材上に塗膜を形成するための移動手段とを備えた塗布装置において、載置台上の塗布前の該被塗布部材の高さ分布および塗布後の塗膜表面の高さ分布を検知する高さ検知器と、同じ高さ検知器で検知した該塗布後の塗膜表面の高さ分布と該塗布前の被塗布部材の高さ分布の差から塗布厚み分布を算出する演算手段をさらに有することを特徴とする塗布装置。Application liquid supply means for supplying an application liquid, an applicator having a discharge port for discharging the application liquid supplied from the application liquid supply means, a mounting table on which a member to be applied is mounted, and the applicator and mounting table In a coating apparatus comprising a moving means for forming a coating film on the coated member by relatively moving at least one of the coated member, the height distribution of the coated member on the mounting table before coating And a height detector for detecting the height distribution of the coating film surface after coating, the height distribution of the coating film surface after coating detected by the same height detector, and the height of the coated member before coating A coating apparatus, further comprising a calculation means for calculating a coating thickness distribution from the distribution difference . 請求項1に記載の塗布装置を使用してプラズマディスプレイ用部材を製造することを特徴とするプラズマディスプレイ用部材の製造装置。An apparatus for manufacturing a plasma display member, wherein the apparatus for manufacturing a plasma display is manufactured using the coating apparatus according to claim 1 . 塗布器の一方向に延びる吐出口から塗布液を載置台上に固定した被塗布部材に吐出しながら、前記塗布器および載置台の少なくとも一方を相対的に移動させて前記被塗布部材に塗膜を形成する塗布方法において、載置台上の塗布前の該被塗布部材の高さ分布および塗布後の塗膜表面の高さ分布を同じ高さ検知器を用いて検知して、これらの差から塗布厚み分布を算出することを特徴とする塗布方法。While discharging a coating liquid from a discharge port extending in one direction of the applicator to a member to be coated fixed on the mounting table, at least one of the applicator and the mounting table is relatively moved to coat the coating member. In the coating method for forming the coating material, the height distribution of the coated member before coating on the mounting table and the height distribution of the coating film surface after coating are detected using the same height detector, and from these differences A coating method characterized by calculating a coating thickness distribution . 請求項に記載の塗布方法を用いてプラズマディスプレイ用部材の製造を行うことを特徴とするプラズマディスプレイ用部材の製造方法。A method for producing a member for a plasma display, comprising producing a member for a plasma display using the coating method according to claim 3 .
JP00384599A 1999-01-11 1999-01-11 COATING APPARATUS, COATING METHOD, AND METHOD FOR PRODUCING PLASMA DISPLAY MEMBER AND APPARATUS Expired - Lifetime JP4419203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00384599A JP4419203B2 (en) 1999-01-11 1999-01-11 COATING APPARATUS, COATING METHOD, AND METHOD FOR PRODUCING PLASMA DISPLAY MEMBER AND APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00384599A JP4419203B2 (en) 1999-01-11 1999-01-11 COATING APPARATUS, COATING METHOD, AND METHOD FOR PRODUCING PLASMA DISPLAY MEMBER AND APPARATUS

Publications (2)

Publication Number Publication Date
JP2000197844A JP2000197844A (en) 2000-07-18
JP4419203B2 true JP4419203B2 (en) 2010-02-24

Family

ID=11568533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00384599A Expired - Lifetime JP4419203B2 (en) 1999-01-11 1999-01-11 COATING APPARATUS, COATING METHOD, AND METHOD FOR PRODUCING PLASMA DISPLAY MEMBER AND APPARATUS

Country Status (1)

Country Link
JP (1) JP4419203B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086044A (en) * 2000-09-19 2002-03-26 Toray Ind Inc Coating method and coating tool, and manufacturing method and equipment for display member and plasma display
JP2005199197A (en) * 2004-01-16 2005-07-28 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus and substrate transport method
JP2005310396A (en) * 2004-04-16 2005-11-04 Ntn Corp Pattern correction device and pattern correction method
JP4730771B2 (en) * 2005-08-23 2011-07-20 東京応化工業株式会社 Processing liquid supply nozzle and substrate processing apparatus
KR100781536B1 (en) 2006-09-15 2007-12-03 주식회사 에스에프에이 Apparatus and method for dispensing
EP2392895B1 (en) * 2010-06-01 2013-03-06 Tenaris Connections Ltd. Method for measurement of geometrical parameters of coated threaded joints
CN107159519A (en) * 2017-07-04 2017-09-15 无锡市红光标牌有限公司 Glue spreader for washing machine cover lid plate
CN109453947A (en) * 2018-11-30 2019-03-12 江门市博大新能源材料有限公司 A kind of double-station glue-injection machine
JP2021003676A (en) * 2019-06-26 2021-01-14 住友化学株式会社 Application device, method of manufacturing thin film and method of fabricating organic electronic device
KR102113084B1 (en) * 2020-02-04 2020-05-20 (주)케이엔디시스템 Front and back type small adhesive automatic application device for panel installation inside LNG ship
CN113333229B (en) * 2021-06-02 2022-08-12 深圳天华机器设备有限公司 Special tinning equipment for circuit board
CN113351427A (en) * 2021-06-15 2021-09-07 红云红河烟草(集团)有限责任公司 Manual package cigarette dispensing equipment
CN113731755B (en) * 2021-07-30 2022-08-05 安徽三朋建材集团有限公司 Glue applying mounting rack for molding polystyrene board

Also Published As

Publication number Publication date
JP2000197844A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
JP4419203B2 (en) COATING APPARATUS, COATING METHOD, AND METHOD FOR PRODUCING PLASMA DISPLAY MEMBER AND APPARATUS
TW201012557A (en) Coating apparatus and coating method
JP4366757B2 (en) Coating apparatus, coating method, and method for manufacturing plasma display or display member
JP5933920B2 (en) Coating apparatus and coating method
JP2002086044A (en) Coating method and coating tool, and manufacturing method and equipment for display member and plasma display
JP4422006B2 (en) Processing apparatus, processing liquid supply method, and processing liquid supply program
JP3199239B2 (en) Manufacturing method and apparatus for plasma display member
JP4324998B2 (en) Coating apparatus and coating method, and plasma display manufacturing method and manufacturing apparatus
JP3912635B2 (en) APPARATUS AND METHOD FOR APPLYING COATING LIQUID ON CONCRETE SUBSTRATE AND APPARATUS AND METHOD FOR PRODUCING PLASMA DISPLAY
WO2015141456A1 (en) Gap-maintaining method, gap-maintaining device, and coating device
JP4403592B2 (en) Coating apparatus, substrate manufacturing method, and color filter manufacturing apparatus and manufacturing method using the same
JP2001062371A (en) Application apparatus and method and production apparatus and method for plasma display and member for display
JP4158482B2 (en) Coating method, coating apparatus, and method for manufacturing plasma display member
JP2000102759A (en) Coating method and coating device as well as production of plasma display and member for display and apparatus for production thereof
JPH11239750A (en) Method and apparatus for applying coating liquid on uneven substrate, method and apparatus for producing plasma display
JP4530224B2 (en) Coating apparatus and coating method
JPH11300257A (en) Coating device for applying coating liquid to uneven base material and manufacturing equipment of plasma display
JP2010058097A (en) Coating method and device, and method and device for manufacturing member of plasma display
JP2001000907A (en) Method and apparatus for application, plasma display, and method and apparatus for producing member for display
JP2009101345A (en) Coating method and coating machine, method for manufacturing plasma display member and manufacturing equipment therefor
JP2010247067A (en) Coating method and coating device
JP2004303549A (en) Manufacturing method and manufacturing device of substrate for plasma display
JP2000157905A (en) Coating device and coating method and manufacture of plasma display member and method thereof
JP4006799B2 (en) Coating apparatus, coating method, and color filter manufacturing method and manufacturing apparatus
JP2001000904A (en) Method and apparatus for application, plasma display, and method and apparatus for producing member for display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term