JP2013148408A - Clearance measuring method, clearance device, application method, and application device - Google Patents

Clearance measuring method, clearance device, application method, and application device Download PDF

Info

Publication number
JP2013148408A
JP2013148408A JP2012007757A JP2012007757A JP2013148408A JP 2013148408 A JP2013148408 A JP 2013148408A JP 2012007757 A JP2012007757 A JP 2012007757A JP 2012007757 A JP2012007757 A JP 2012007757A JP 2013148408 A JP2013148408 A JP 2013148408A
Authority
JP
Japan
Prior art keywords
coated
discharge port
gap
coating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012007757A
Other languages
Japanese (ja)
Other versions
JP5953759B2 (en
Inventor
Koji Ogawa
耕司 小川
Yoshiyuki Kitamura
義之 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012007757A priority Critical patent/JP5953759B2/en
Publication of JP2013148408A publication Critical patent/JP2013148408A/en
Application granted granted Critical
Publication of JP5953759B2 publication Critical patent/JP5953759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an application device and an application method capable of obtaining a uniform and high-quality application film having no unevenness by applying liquid while accurately adjusting a clearance on the basis of a clearance value measured during the application.SOLUTION: In a clearance measuring method for measuring a clearance C between a discharge port surface 2g including an application liquid discharge port of an application unit 2s and a surface 9a to be applied of a member 9 to be applied arranged oppositely to the discharge port, a real image of an end part of the discharge port surface 2g and a reflection image 2ji of an end part 2j of the discharge port surface 2g on the surface 9a to be applied of the member 9 to be applied are captured, and the clearance C between the discharge port surface 2g of the application unit 2s and the surface 9a to be applied of the member 9 to be applied is calculated on the basis of a length between the captured real image of the end part 2j of the discharge port surface 2g and the reflection image of the end part 2j of the discharge port surface 2g.

Description

本発明は、塗布器と被塗布部材との間隙を高い精度で所定の一定値に保ちながら塗布するダイコータなどでの、塗布器と被塗布部材との間隙測定方法および間隙測定装置、およびその間隙測定結果に基づいて塗布する方法および塗布装置に関する。     The present invention relates to a gap measuring method and a gap measuring device between a coating device and a member to be coated, such as a die coater that coats while maintaining a gap between the coating device and a member to be coated at a predetermined constant value with high accuracy, and a gap therebetween. The present invention relates to a coating method and a coating apparatus based on a measurement result.

塗布器と被塗布部材との間隙を高精度に制御しながら塗布する工程が必要な一例としてプラズマディスプレイ(以下、PDという)の製造工程がある。PDは、ブラウン管にくらべて大型化、薄型化、軽量化が可能であることから、これを用いたテレビ受像機が普及している。一般的なPDは、隔壁によりストライプ状に形成された赤色用、緑色用、青色用の蛍光体層を有するガラス基板(背面板パネル)と、走査電極を形成してなるガラス基板(前面板パネル)とを貼り合わせてなるプラズマディスプレイパネル(以下、PDPという)で構成されている。     One example of the necessity of a coating process while controlling the gap between the coating device and the member to be coated with high accuracy is a manufacturing process of a plasma display (hereinafter referred to as PD). Since PDs can be made larger, thinner, and lighter than CRTs, television receivers using these are widely used. A typical PD includes a glass substrate (back plate panel) having phosphor layers for red, green, and blue formed in stripes by partition walls, and a glass substrate (front plate panel) formed with scanning electrodes. ) And a plasma display panel (hereinafter referred to as PDP).

そのようなPDPの背面板パネルの隔壁を形成する方法として、枚葉のガラス基板に隔壁用ペーストを塗布して塗布膜を形成し、乾燥後、サンドブラスト法やフォトリソグラフィー法等の方法を用いて所定のピッチのストライプ状または格子状のパターンに形成して、焼成するものがある。塗布膜の厚さは焼成後で100〜200μm程度と比較的厚いが、厚さの均一性はPDPの画像特性を左右するので、隔壁ペーストを均一に塗布することが重要になる。この塗布方法には各種あるが、その一つにダイコータを用いるダイコート法がある(例えば特許文献1)。このダイコート法では、塗布器に相当するダイと被塗布部材に相当するガラス基板との間隙を所定の一定値に保ちつつダイとガラス基板とを相対的に移動させながら、ダイから隔壁ペーストを吐出してガラス基板に塗布する。     As a method for forming the partition walls of the back panel of such a PDP, a coating film is formed by applying a partition paste to a single glass substrate, and after drying, a method such as sandblasting or photolithography is used. Some are formed in a stripe or lattice pattern with a predetermined pitch and fired. Although the thickness of the coating film is relatively thick after baking, about 100 to 200 μm, the uniformity of the thickness affects the image characteristics of the PDP, so it is important to uniformly apply the barrier rib paste. There are various coating methods, and one of them is a die coating method using a die coater (for example, Patent Document 1). In this die coating method, the partition paste is discharged from the die while relatively moving the die and the glass substrate while keeping the gap between the die corresponding to the applicator and the glass substrate corresponding to the member to be coated at a predetermined constant value. And apply to a glass substrate.

ダイコート法では安定した均一な塗布膜を得るためにはダイとガラス基板との間隙を高い精度で所定の一定値に保つことが重要である。したがって実際に塗布する位置でダイとガラス基板との間隙を精度良く測定して、所定の一定値でかつ均一な分布であることを確認することが必要となる。     In the die coating method, in order to obtain a stable and uniform coating film, it is important to maintain the gap between the die and the glass substrate at a predetermined constant value with high accuracy. Therefore, it is necessary to accurately measure the gap between the die and the glass substrate at a position where the coating is actually performed to confirm that the distribution is a predetermined constant value and a uniform distribution.

そのために、基板表面に斜めから光を入射させ、基板とダイに相当する吐出ノズルの先端部間で入反射を繰り返した後に、光を受光する位置と光の入射角から、基板と吐出ノズル間の間隙を直接測定する方法がある。(例えば特許文献2)
しかし、この方法では吐出ノズルの先端にあるスリットや孔に光が当たると、光がノズルの内部に入って反射光が得られなかったり、乱反射したりして、正確に間隙を測定することは困難である。
For this purpose, light is incident obliquely on the substrate surface, and after repeated incidence and reflection between the tip of the discharge nozzle corresponding to the substrate and the die, the position between the substrate and the discharge nozzle is determined from the light receiving position and the light incident angle. There is a method of directly measuring the gap. (For example, Patent Document 2)
However, with this method, when light hits the slit or hole at the tip of the discharge nozzle, the light enters the inside of the nozzle and the reflected light cannot be obtained or diffusely reflected, and it is not possible to accurately measure the gap. Have difficulty.

また、別の方法として、基板の表面と塗布器との間隙に直交してレーザ光を照射し、通過するレーザ光の受光量より基板表面と塗布器間の間隙を測定する方法がある(例えば特許文献3)。     As another method, there is a method of irradiating a laser beam perpendicular to the gap between the surface of the substrate and the applicator and measuring the gap between the substrate surface and the applicator based on the amount of received laser light (for example, Patent Document 3).

しかし、この方法では間隙を通過するレーザ光の回折により、正確に間隙を測定することが困難である。     However, with this method, it is difficult to accurately measure the gap due to diffraction of laser light passing through the gap.

以上、実際に塗布する位置でダイとガラス基板間の間隙を精度よく測定する手段については、有効な公知の手段がないのが実状である。     As described above, as for the means for accurately measuring the gap between the die and the glass substrate at the actual application position, there is actually no effective known means.

特開平6−339656号公報(第5欄18行目〜第7欄25行目、図1、図2、図3)JP-A-6-339656 (5th column 18th line to 7th column 25th line, FIG. 1, FIG. 2, FIG. 3) 特開平09−17393(請求項1、図1)JP 09-17393 (Claim 1, FIG. 1) 特開2004−139814(請求項3,第5欄42行目〜第6欄21行目、図2)JP-A-2004-139814 (Claim 3, fifth column, 42nd line to sixth column, 21st line, FIG. 2)

本発明の目的とするところは、塗布器の塗液の吐出口を含む吐出口面と、被塗布部材の被塗布面との間の間隙を実際に塗布する位置で精度よく測定でき、さらには塗布中でも測定が可能な間隙測定方法および間隙測定装置を具現化するとともに、これらの間隙測定方法および間隙測定装置で、塗布中に測定した間隙値に基づいて正確な間隙になるように調整して塗布することによって、ムラの無い均一で高品質の塗布膜を得る塗布装置および塗布方法を提供することにある。     The object of the present invention is to be able to accurately measure the gap between the discharge port surface including the discharge port of the coating liquid of the applicator and the coated surface of the coated member at the actual coating position, A gap measuring method and a gap measuring device capable of measuring even during coating are realized, and these gap measuring method and gap measuring device are adjusted so as to obtain an accurate gap based on a gap value measured during coating. An object of the present invention is to provide a coating apparatus and a coating method for obtaining a uniform and high-quality coating film without unevenness by coating.

上記本発明の目的は、以下に述べる手段によって達成される。   The object of the present invention is achieved by the means described below.

(1)本発明の間隙測定方法は、塗布器の塗液の吐出口を含む吐出口面と、前記吐出口に相対して配置される被塗布部材の被塗布面との間の間隙を測定する間隙測定方法であって、前記吐出口面の端部の実像と、被塗布部材の被塗布面上における前記吐出口面の端部の反射像とを撮像し、撮像された前記吐出口面の端部の実像と、前記吐出口面の端部の反射像の間の長さを基に、前記布器の吐出口面と前記被塗布部材の被塗布面との間の間隙を算出することを特徴とする。   (1) The gap measuring method of the present invention measures the gap between the discharge port surface including the discharge port of the coating liquid of the applicator and the coated surface of the coated member disposed relative to the discharge port. A method for measuring a gap, wherein a real image of an end portion of the discharge port surface and a reflection image of an end portion of the discharge port surface on a surface to be coated of a member to be coated are captured and the discharge port surface captured Based on the length between the real image at the end of the nozzle and the reflected image at the end of the discharge port surface, the gap between the discharge port surface of the cloth device and the coated surface of the coated member is calculated. It is characterized by that.

(2)本発明の塗布方法は、前記塗布器および保持手段に保持された前記被塗布部材の少なくとも一方を相対的に前記被塗布部材の被塗布面と平行な方向に移動させながら、前記塗布器の吐出口から塗液を吐出して被塗布部材の被塗布面に塗液を塗布する塗布方法であって、塗布前および/または塗布中に、前記間隙測定方法を用いて前記塗布器の吐出口面と前記被塗布部材の被塗布面との間の間隙を算出し、得られた間隙値に基づき前記塗布器を前記被塗布部材の被塗布面と垂直な方向に移動させて前記塗布器の吐出口面と前記被塗布部材の被塗布面との間の間隙を制御することを特徴とする。   (2) In the coating method of the present invention, the coating is performed while relatively moving at least one of the coated members held by the coating device and the holding unit in a direction parallel to the coated surface of the coated member. A coating method in which a coating liquid is discharged from a discharge port of a container to apply a coating liquid on a surface to be coated of a member to be coated, and before and / or during coating, The gap between the discharge port surface and the coated surface of the coated member is calculated, and the coating device is moved in a direction perpendicular to the coated surface of the coated member based on the obtained gap value. A gap between the discharge port surface of the container and the surface to be coated of the member to be coated is controlled.

(3)本発明の間隙測定装置は、塗布器の塗液の吐出口を含む吐出口面の端部の実像と、前記吐出口に相対して配置される被塗布部材の被塗布面上における前記吐出口面の端部の反射像とを撮像する撮像手段と、撮像された前記吐出口面の端部の実像と前記吐出口面の端部の反射像の間の長さを基に、前記塗布器の吐出口面と前記被塗布部材の被塗布面との間の間隙を算出する間隙算出手段と、を有することを特徴とする。   (3) The gap measuring device according to the present invention has a real image of the end of the discharge port surface including the discharge port of the coating liquid of the applicator, and on the coated surface of the coated member disposed relative to the discharge port. Based on the imaging unit that captures the reflection image of the end of the discharge port surface, and the length between the captured real image of the end of the discharge port surface and the reflection image of the end of the discharge port surface, And a gap calculating means for calculating a gap between the discharge port surface of the applicator and the application surface of the application member.

(4)本発明の塗布装置は、塗液を供給する塗液供給手段、前記塗液供給手段から供給された塗液を吐出する吐出口を有する塗布器、被塗布部材を保持する載置台、前記載置台上に保持された被塗布部材の高さを測定する高さ測定手段、前記塗布器および前記載置台の少なくとも一方を相対的に前記被塗布部材の被塗布面と平行な方向に移動させる移動手段、ならびに前記間隙測定装置を有することを特徴とする。   (4) A coating apparatus according to the present invention includes a coating liquid supply means for supplying a coating liquid, an applicator having a discharge port for discharging the coating liquid supplied from the coating liquid supply means, a mounting table for holding a member to be coated, A height measuring means for measuring the height of the member to be coated held on the mounting table, the applicator, and at least one of the mounting table are relatively moved in a direction parallel to the coating surface of the coating member. And a gap measuring device.

さらに前記塗布器を前記被塗布部材の被塗布面と垂直な方向に移動させる塗布器間隙調節手段を有することも好ましい。     Furthermore, it is also preferable to have an applicator gap adjusting means for moving the applicator in a direction perpendicular to the application surface of the application member.

本発明の間隙測定方法よび測定装置によれば、塗布器の吐出口面の端部の実像と、被塗布部材の被塗布面上に映る前記吐出口面の端部の反射像とを撮像し、撮像された前記吐出口面の端部の実像と、吐出口面の端部の反射像の間の長さを基に、塗布器の吐出口面と被塗布部材の被塗布面との間の間隙を算出して求めるようにしたので、実際に塗布する位置で、前記吐出口面と被塗布面との間の間隙を精度よく測定することができる。     According to the gap measuring method and the measuring apparatus of the present invention, a real image of the end portion of the discharge port surface of the applicator and a reflection image of the end portion of the discharge port surface reflected on the coated surface of the coated member are captured. Based on the length between the captured real image of the end of the discharge port surface and the reflected image of the end of the discharge port surface, the distance between the discharge port surface of the applicator and the coated surface of the coated member The gap between the discharge port surface and the surface to be coated can be accurately measured at the actual application position.

また、上記のすぐれた間隙測定方法および間隙測定装置を適用した塗布方法および塗布装置で、正確に測定した間隙値に基づいて塗布中の間隙が一定となるように塗布器の高さを調整して被塗布部材に塗布するのであるから、ムラの無い均一な塗布膜を容易に得ることができる。     In addition, the height of the applicator is adjusted so that the gap during coating is constant based on the accurately measured gap value using the above-described excellent gap measurement method and gap measurement device. Thus, a uniform coating film without unevenness can be easily obtained.

本発明の間隙測定手段4を有する塗布装置であるダイコータ1の概略正面図である。It is a schematic front view of the die coater 1 which is a coating device which has the gap | interval measuring means 4 of this invention. 図1の撮像手段4aと、スリットダイ2sおよびその周辺を拡大して示した斜視図である。It is the perspective view which expanded and showed the imaging means 4a of FIG. 1, the slit die 2s, and its periphery. 撮像手段4aでスリットダイ2sの実像と、基板9上の反射像を撮像している状況を示す斜視図である。It is a perspective view which shows the condition where the real image of the slit die 2s and the reflected image on the board | substrate 9 are imaged by the imaging means 4a. 図3の状態で撮像手段4aで撮像した映像のモニタ手段4cでの表示図である。It is a display figure in the monitor means 4c of the image | video imaged with the imaging means 4a in the state of FIG. 図3の状態からスリットダイ2sを所定量Eだけ上昇後の状態を示した斜視図である。FIG. 4 is a perspective view showing a state after the slit die 2s is raised by a predetermined amount E from the state of FIG. 図5の状態で撮像手段4aで撮像した映像のモニタ手段4cでの表示図である。It is a display figure in the monitor means 4c of the image | video imaged with the imaging means 4a in the state of FIG. 間隙測定手段4を設置した別の一例を示した斜視図である。It is the perspective view which showed another example in which the gap | interval measuring means 4 was installed. 間隙測定手段4を設置したさらに別の一例を示した概略正面図である。It is the schematic front view which showed another example which installed the clearance measurement means 4. FIG.

図1は本発明の一実施形態に係る間隙測定手段4を有する塗布装置であるダイコータ1の概略正面図である。     FIG. 1 is a schematic front view of a die coater 1 which is a coating apparatus having a gap measuring means 4 according to an embodiment of the present invention.

図1に示すようにダイコータ1は、被塗布部材である基板9を図示しない吸着手段で吸着保持する保持手段である載置台11、塗布器に相当するスリットダイ2sを含む塗布手段2、載置台11をスリットダイ2sに対して相対移動させる相対移動手段3、間隙測定手段4、高さ分布測定手段5、コントローラ7および塗液供給手段8を有している。     As shown in FIG. 1, the die coater 1 includes a mounting table 11 that is a holding unit that holds and holds a substrate 9 that is a member to be coated by a suction unit (not shown), a coating unit 2 that includes a slit die 2s corresponding to a coating device, and a mounting table. 11 has a relative moving means 3 for moving the relative position 11 relative to the slit die 2s, a gap measuring means 4, a height distribution measuring means 5, a controller 7 and a coating liquid supplying means 8.

ここで、相対移動手段3は、架台3a、ナット3b、ボールねじ3c、サーボモータ3dおよびガイド3eを有する。載置台11は、ガイド3eによって被塗布部材の被塗布面と平行な方向、本装置においては水平方向、すなわちX方向に案内されていると共にナット3bを介してボールねじ3cに螺合されており、サーボモータ3dを駆動して2点鎖線で示す位置P0と位置P2との間を往復動することができる。この載置台11の往復動は、コントローラ7によって制御される。     Here, the relative moving means 3 includes a gantry 3a, a nut 3b, a ball screw 3c, a servo motor 3d, and a guide 3e. The mounting table 11 is guided by a guide 3e in a direction parallel to the surface to be coated of the member to be coated, in the horizontal direction in this apparatus, that is, in the X direction, and is screwed to the ball screw 3c via a nut 3b. The servo motor 3d can be driven to reciprocate between a position P0 and a position P2 indicated by a two-dot chain line. The reciprocation of the mounting table 11 is controlled by the controller 7.

塗液供給手段8は、塗液タンク8aと、塗液タンク8a内の塗液を送出する塗液ポンプ8bと、これら塗液タンク8aと塗液ポンプ8bとを接続する配管8cと、塗液ポンプ8bと塗布手段2を接続する配管8dとを備えている。塗液タンク8aは、好ましくは密閉型のタンクであり、内部は空気や不活性ガス(たとえば、窒素ガス)によって0.02〜1MPa程度に加圧されていることが好ましい。また、塗液ポンプ8bは、図示しているようにピストン8gでシリンジ8f内の液を押し出す方式のシリンジポンプであることが好ましい。塗液タンク8aから塗液を塗液ポンプ8bのシリンジ8f内に充填するときは、3方バルブ8eを塗液タンク8aとシリンジ8fとが連通するように開いて、ピストン8gを下方に移動させる。スリットダイ2sにシリンジ8f内の塗液を送りだすときは、3方バルブ8eをスリットダイ2sとシリンジ8fとが連通するように開いて、ピストン8gを上方に移動させる。     The coating liquid supply means 8 includes a coating liquid tank 8a, a coating liquid pump 8b that sends out the coating liquid in the coating liquid tank 8a, a pipe 8c that connects the coating liquid tank 8a and the coating liquid pump 8b, and a coating liquid. A pump 8b and a pipe 8d for connecting the coating means 2 are provided. The coating liquid tank 8a is preferably a sealed tank, and the inside is preferably pressurized to about 0.02 to 1 MPa by air or an inert gas (for example, nitrogen gas). Moreover, it is preferable that the coating liquid pump 8b is a syringe pump of the type which extrudes the liquid in the syringe 8f with the piston 8g as shown. When filling the coating liquid from the coating liquid tank 8a into the syringe 8f of the coating liquid pump 8b, the three-way valve 8e is opened so that the coating liquid tank 8a and the syringe 8f communicate with each other, and the piston 8g is moved downward. . When the coating liquid in the syringe 8f is sent to the slit die 2s, the three-way valve 8e is opened so that the slit die 2s and the syringe 8f communicate with each other, and the piston 8g is moved upward.

塗液ポンプ8bはダイアフラムポンプ等の間欠型の定容量ポンプであってもよいが、空気圧で送液してもよい。以上の塗液ポンプ8bおよび3方バルブ8eは、コントローラ7からの信号に基づいて作動する。     The coating liquid pump 8b may be an intermittent constant capacity pump such as a diaphragm pump or the like, but may be fed by air pressure. The coating liquid pump 8b and the three-way valve 8e described above operate based on a signal from the controller 7.

塗布手段2は、相対移動手段3の架台3aに取り付けられた支柱2aと、支柱2aに取り付けられたガイド2bと、ガイド2bに案内されるホルダ2cと、ホルダ2cに装着された塗布器であるスリットダイ2sとを有する。塗液供給手段8の配管8dに接続されているスリットダイ2sは、配管8dと図示しない流路を介してスリット2hに連通しており、塗液タンク8aの塗液をスリット2hから吐出することができる。ここで、吐出口であるスリット2hを含む吐出口面2gが、スリットダイ2sの下面となり、基板9の被塗布面9aに対向して配置されている。なお、被塗布面9aは基板9の上面であり、スリットダイ2sから吐出される塗液が塗布される面である。     The applicator 2 is a column 2a attached to the gantry 3a of the relative moving unit 3, a guide 2b attached to the column 2a, a holder 2c guided by the guide 2b, and an applicator attached to the holder 2c. A slit die 2s. The slit die 2s connected to the pipe 8d of the coating liquid supply means 8 communicates with the slit 2h via a pipe 8d and a flow path (not shown), and discharges the coating liquid in the coating liquid tank 8a from the slit 2h. Can do. Here, the discharge port surface 2g including the slit 2h, which is a discharge port, becomes the lower surface of the slit die 2s and is disposed to face the coated surface 9a of the substrate 9. The coated surface 9a is the upper surface of the substrate 9, and is a surface to which the coating liquid discharged from the slit die 2s is applied.

ホルダ2cには、サーボモータ2eによって駆動されるボールねじ2fが螺合されており、コントローラ7からの信号に基づいてサーボモータ2eが正逆転すると、ホルダ2cがガイド2bに案内されて上限方向に昇降し、それに伴ってスリットダイ2sが上下方向すなわちZ方向に昇降するようになっている。このスリットダイ2sの昇降によって、スリットダイ2sと基板9との間隙を任意に変えることができる。スリットダイ2sのZ方向の位置は図示しないリニアスケールで示されるZ軸座標を用いて表される。     A ball screw 2f driven by a servo motor 2e is screwed to the holder 2c, and when the servo motor 2e is rotated forward and backward based on a signal from the controller 7, the holder 2c is guided by the guide 2b in the upper limit direction. The slit die 2s is moved up and down in the vertical direction, that is, in the Z direction. By raising and lowering the slit die 2s, the gap between the slit die 2s and the substrate 9 can be arbitrarily changed. The position of the slit die 2s in the Z direction is expressed using Z-axis coordinates indicated by a linear scale (not shown).

支柱2aには、高さ分布測定手段5を構成する基板高さ検出器5aが基板高さ検出器取り付け支柱5bを介して取り付けられている。基板高さ検出器5aは載置台11の基板吸着保持面11aを基準とした基板9の高さHを測定するためのものである。     A substrate height detector 5a constituting the height distribution measuring means 5 is attached to the support 2a via a substrate height detector mounting support 5b. The substrate height detector 5a is for measuring the height H of the substrate 9 with respect to the substrate suction holding surface 11a of the mounting table 11.

基板高さ検出器5aはレーザフォーカス式のレーザ測長器であることが好ましいが、三角測距方式のレーザ測長器などであってもよい。基板高さ検出器5aは載置台11上の基板9の被塗布面9aにレーザ光を照射し、被塗布面9aからの反射光を受光することによって基板9の高さHを測定するものである。基板高さ検出器5aは基板の幅方向の中央部に1個設置してもよいし、基板の幅方向の両端部に1個ずつ設置してもよい。     The substrate height detector 5a is preferably a laser focus type laser length measuring device, but may be a triangular distance measuring type laser length measuring device or the like. The substrate height detector 5a measures the height H of the substrate 9 by irradiating the coated surface 9a of the substrate 9 on the mounting table 11 with laser light and receiving the reflected light from the coated surface 9a. is there. One substrate height detector 5a may be installed at the center in the width direction of the substrate, or one at each end in the width direction of the substrate.

次に、間隙測定手段4は、撮像手段4aと、撮像された間隙状態をモニタするモニタ手段4cと、モニタ手段4c上の撮像された画像から間隙を算出する間隙算出手段4bと、撮像手段4aを支柱2aに固定する撮像手段取り付け支柱4d、とから構成されている。間隙算出手段4bで算出された間隙値はコントローラ7に伝送される。また、コントローラ7からは撮像手段4aに撮像指令が、間隙算出手段4bに間隙算出指令が伝送される。     Next, the gap measuring means 4 includes an image pickup means 4a, a monitor means 4c for monitoring the picked-up gap state, a gap calculation means 4b for calculating a gap from the picked-up image on the monitor means 4c, and an image pickup means 4a. And an imaging means mounting column 4d for fixing the frame to the column 2a. The gap value calculated by the gap calculation means 4 b is transmitted to the controller 7. Further, an imaging command is transmitted from the controller 7 to the imaging means 4a, and a gap calculation command is transmitted to the gap calculation means 4b.

撮像手段4aは具体的には撮像素子と、所定の大きさに撮像するためのレンズと、所定の明るさで撮像するための照明とから構成される。     Specifically, the imaging unit 4a includes an imaging element, a lens for imaging at a predetermined size, and illumination for imaging at a predetermined brightness.

撮像素子には画像処理に広く利用されているCCD(電荷結合素子:Charge Coupled Device)を用いることが好ましい。     It is preferable to use a CCD (Charge Coupled Device) widely used for image processing as the imaging device.

CCDの1つの画素である半導体素子の大きさは数μ程度であり、この画素が格子状に縦横数百〜数千個単位に配置されている。     The size of a semiconductor element, which is one pixel of a CCD, is about several μm, and the pixels are arranged in units of several hundred to several thousand in length and breadth in a lattice shape.

また、レンズには一般にテレセントリック光学系と呼ばれる主光線がレンズの光軸に対して平行で、撮像した画像の中心部と周辺部に歪がなく、かつ高い撮影倍率での接写撮像に好適なテレセントリックマクロレンズを用いることが好ましい。またこのレンズはレンズから対象物までの距離が変化しても撮像した像の大きさは変化しないので、形状計測にも好適である。     In addition, the lens generally has a principal ray called a telecentric optical system that is parallel to the optical axis of the lens, has no distortion at the center and periphery of the captured image, and is suitable for close-up imaging at high magnification. It is preferable to use a macro lens. This lens is also suitable for shape measurement because the size of the captured image does not change even if the distance from the lens to the object changes.

また、撮像するときの照明には明るさの調整が可能なメタルハライドランプを適用し、これをレンズと同軸系に取り付けることが好ましい。     Further, it is preferable to apply a metal halide lamp capable of adjusting the brightness to the illumination when taking an image, and attach this to the lens and the coaxial system.

次に間隙測定手段4による具体的な間隙測定原理と測定方法について図2〜図4を用いて説明する。     Next, a specific gap measuring principle and measuring method by the gap measuring means 4 will be described with reference to FIGS.

図2は図1の撮像手段4aと、スリットダイ2sおよびその周辺を拡大して示した斜視図であり、スリットダイ2s〜基板9間の間隙を測定する状況を表している。撮像手段4aは基板9に接触しないように、斜めから間隙を撮像するように取り付けることが好ましい。     FIG. 2 is an enlarged perspective view showing the imaging means 4a of FIG. 1, the slit die 2s, and the periphery thereof, and shows a situation in which the gap between the slit die 2s and the substrate 9 is measured. The imaging means 4a is preferably attached so as to image the gap from an angle so as not to contact the substrate 9.

図3は撮像手段4aでスリットダイ2sの実像と、基板9上の反射像を撮像している状況を示す斜視図である。     FIG. 3 is a perspective view showing a situation where a real image of the slit die 2s and a reflected image on the substrate 9 are being picked up by the image pickup means 4a.

図4は撮像手段4aで撮像した映像のモニタ手段4c上での表示図である。
なお図中、末尾にiを付した符号は被塗布面9a上に映る反射像であることを示し、末尾にdを付した符号はモニタ手段4c上で測定される寸法を表している。
FIG. 4 is a display diagram on the monitor means 4c of the video imaged by the imaging means 4a.
In the figure, the symbol with i at the end indicates a reflected image reflected on the coated surface 9a, and the symbol with d at the end indicates a dimension measured on the monitor means 4c.

図3を見ると、スリットダイ2sの吐出口面2gと基板9の被塗布面9aとの間隙が間隙値Cの時に、撮像手段4aの光軸Lを被塗布面9aから角度θだけ傾けている状態が示されている。この時、撮像手段4aは実像である吐出口面2gの端部2jと、端部2jの被塗布面9a上の反射像2jiを撮像している。     Referring to FIG. 3, when the gap between the ejection port surface 2g of the slit die 2s and the coated surface 9a of the substrate 9 is a gap value C, the optical axis L of the imaging means 4a is tilted from the coated surface 9a by an angle θ. The state is shown. At this time, the image pickup unit 4a picks up an end 2j of the discharge port surface 2g, which is a real image, and a reflected image 2ji on the coated surface 9a of the end 2j.

ここで、直接撮像手段4aで撮像される反射像2jiは、端部2jが被塗布面9a上で入射角θにて反射されるものとなる。このようにして撮像手段4aで撮像された端部2jと反射像2jiはモニタ手段4cに図4に示すように表示される。     Here, the reflected image 2ji directly picked up by the image pickup means 4a is such that the end 2j is reflected at the incident angle θ on the coated surface 9a. The end 2j and the reflected image 2ji imaged by the imaging means 4a in this way are displayed on the monitor means 4c as shown in FIG.

この時のモニタ手段4c上での端部2jと端部2jの反射像2ji間の距離である距離Ddは、図3で示した端部2jと反射像2ji間の実距離Dに、撮像手段4aとモニタ手段4cでのトータルの拡大倍率nを乗じたn・Dと等しくなる。     At this time, the distance Dd, which is the distance between the end 2j and the reflected image 2ji of the end 2j on the monitor 4c, is equal to the actual distance D between the end 2j and the reflected image 2ji shown in FIG. It becomes equal to n · D obtained by multiplying the total enlargement magnification n by 4a and the monitor means 4c.

図3において、スリットダイ2sと基板9間の間隙である吐出口面2gと被塗布面9a間の間隙値Cは、C=l・Sinθと、D=l・Cosφ=l・Cos(π/2−2θ)=2l・Sinθ・Cosθより、C=D/2Cosθで算出される。ここでlは端部2jから端部2jの反射像2jiまでの距離である。     In FIG. 3, the gap value C between the discharge port surface 2g and the coated surface 9a, which is the gap between the slit die 2s and the substrate 9, is C = 1 / Sinθ, and D = 1 / Cosφ = 1 / Cos (π / 2-2θ) = 2l · Sinθ · Cosθ is calculated as C = D / 2Cosθ. Here, l is the distance from the end 2j to the reflected image 2ji of the end 2j.

以上より、モニタ手段4c上で距離Ddを測定するとともに角度θを測定すれば、間隙値CがC=Dd/(2・n・Cosθ)より算出できる。     As described above, when the distance Dd is measured and the angle θ is measured on the monitor unit 4c, the gap value C can be calculated from C = Dd / (2 · n · Cos θ).

つぎに、具体的な距離Ddと角度θの測定方法について説明する。     Next, a specific method for measuring the distance Dd and the angle θ will be described.

まず、距離Ddについてはモニタ手段4c上に現れる端部2jと端部2jの反射像2jiの位置の間の距離を間隙算出手段4bで画像処理して求める。     First, for the distance Dd, the distance between the end 2j appearing on the monitor means 4c and the position of the reflection image 2ji of the end 2j is obtained by image processing by the gap calculating means 4b.

具体的な画像処理方法にはいくつか方法があるが、例えば、画像の色や濃淡が大きく変化することを利用して端部2jと端部2jの反射像2jiの位置をしっかりと定めれば、端部2jの位置と反射像2jiの位置の間の距離である距離Ddを容易に求められる。     There are several specific image processing methods. For example, if the positions of the edge 2j and the reflected image 2ji of the edge 2j are firmly determined by using the fact that the color and shade of the image change greatly, for example. The distance Dd that is the distance between the position of the end 2j and the position of the reflected image 2ji can be easily obtained.

角度θについては、図2に示すダイコータ1に取り付けられた撮像手段4aの光軸Lの角度を測定すればよいが、精度よく実測することは困難である。     As for the angle θ, it is only necessary to measure the angle of the optical axis L of the image pickup means 4a attached to the die coater 1 shown in FIG. 2, but it is difficult to accurately measure the angle θ.

そこで、間隙値C=Dd/(2・n・Cosθ)の関係から間接的にθを求める。その具体的な方法を図3、図4、図5、図6を用いて説明する。     Therefore, θ is indirectly obtained from the relationship of the gap value C = Dd / (2 · n · Cos θ). The specific method is demonstrated using FIG.3, FIG.4, FIG.5 and FIG.

先ず、図3の状態からスリットダイ2sを所定量Eだけ上昇させた時の状態を示したのが図5である。図5では、上昇前のスリットダイ2sや反射像2jiが一点鎖線で示されている。さらに図5の状態での端部2jと端部2jの反射像2jiを撮像手段4aで撮像し、モニタ手段4cに実線で表示したのが図6となる。図6にはスリットダイ2sがEだけ上昇する前の吐出口面2gの端部2jと端部2jの反射像2jiの位置が一点鎖線で示されている。一点鎖線で示されている端部2jと反射像2jiはモニタ手段4cには実際には表示されないが、それらの間の距離である距離Ddはスリットダイ2sが上昇する前に間隙算出手段4bに記憶されている。     First, FIG. 5 shows a state when the slit die 2s is raised by a predetermined amount E from the state of FIG. In FIG. 5, the slit die 2 s and the reflection image 2 ji before rising are indicated by a one-dot chain line. Further, FIG. 6 shows the end 2j in the state of FIG. 5 and the reflected image 2ji of the end 2j taken by the image pickup means 4a and displayed on the monitor means 4c by a solid line. In FIG. 6, the positions of the end 2j of the discharge port surface 2g and the reflected image 2ji of the end 2j before the slit die 2s rises by E are indicated by a one-dot chain line. The end portion 2j and the reflected image 2ji indicated by the alternate long and short dash line are not actually displayed on the monitor means 4c, but the distance Dd between them is given to the gap calculating means 4b before the slit die 2s rises. It is remembered.

一方図5では、スリットダイ2sが所定量Eだけ上昇した後の端部2jと端部2jの反射像2ji間の実距離(最短距離)が、上昇後の端部2jと端部2jの反射像2ji間の実距離D1と示されている。距離D1は図6に示すようにモニタ手段4c上ではD1dとなり、D1d=n・D1である。     On the other hand, in FIG. 5, the actual distance (shortest distance) between the end 2j after the slit die 2s is raised by a predetermined amount E and the reflected image 2ji of the end 2j is the reflection of the end 2j and the end 2j after the rise. The actual distance D1 between the images 2ji is indicated. As shown in FIG. 6, the distance D1 is D1d on the monitor means 4c, and D1d = n · D1.

ところでC=Dd/(2・n・Cosθ)と、図5においてC+E=D1d/(2・n・Cosθ)であり、上昇前後の端部2jと反射像2jiそれぞれの移動量E1はE1=E・Cosθで表され、図6のモニタ手段4c上の端部2jと反射像2jiそれぞれの移動量E1dはE1d=n・E1で表されることから、E1d=(D1d―Dd)/2で求めることができる。すなわち、スリットダイ2sを所定量Eだけ上昇させた時にモニタ手段4cに示される端部2jと端部2jの反射像2ji間の距離D1dと、間隙算出手段4bに記憶されている距離Ddを使って、Cosθ=E1/E=(D1d−Dd)/(2・n・E)より角度θが算出される。     By the way, C = Dd / (2 · n · Cos θ) and C + E = D1d / (2 · n · Cos θ) in FIG. 5, and the movement amounts E1 of the end 2j before and after the ascent and the reflected image 2ji are E1 = E. Since the movement amount E1d of each of the end 2j and the reflected image 2ji on the monitor means 4c in FIG. 6 is represented by E1d = n · E1, it is obtained by E1d = (D1d−Dd) / 2. be able to. That is, when the slit die 2s is raised by a predetermined amount E, the distance D1d between the end 2j and the reflected image 2ji of the end 2j shown on the monitor means 4c and the distance Dd stored in the gap calculating means 4b are used. Thus, the angle θ is calculated from Cos θ = E1 / E = (D1d−Dd) / (2 · n · E).

なお、撮像手段4aを一旦ダイコータ1に取り付けてからは、角度θはいつも一定の値であるので、実際の間隙を測定する前の準備工程で、上記の方法で求めておくことが好ましい。     Since the angle θ is always a constant value after the imaging means 4a is once attached to the die coater 1, it is preferable to obtain it by the above method in a preparation step before measuring the actual gap.

この場合、間隙値C=Dd/(2・n・Cosθ)=a・Ddとして、a=1/(2・n・Cosθ)=E/(D1d−Dd)のようにし、直接θを求めるのではなく、変換係数aを求めるのが便利で好ましい。     In this case, the gap value C = Dd / (2.multidot.Cos.theta.) = A.multidot.Dd and a = 1 / (2.multidot.Cos.theta.) = E / (D1d-Dd) to directly obtain .theta. Instead, it is convenient and preferable to obtain the conversion coefficient a.

なお、実際の間隙値Cの測定にあたっては、撮像手段4aを図1、図2に示すようにスリットダイ2sより塗布方向の上流に設置すると、スリットダイ2sより吐出する塗液の影響を受けることなく、塗布中も間隙値Cの測定が常時可能となる。     In the actual measurement of the gap value C, if the imaging means 4a is installed upstream of the slit die 2s in the application direction as shown in FIGS. 1 and 2, it is affected by the coating liquid discharged from the slit die 2s. In addition, the gap value C can always be measured even during application.

撮像手段4aは、図2に示すようにスリットダイ2sの長手方向の中央1箇所に固定してもよいし、撮像手段取り付け支柱4d上をスリットダイ2sの長手方向に移動させてスリットダイ2sの長手方向の任意の箇所の間隙を測定するようにしてもよい。また、撮像手段取り付け支柱4dにスリットダイ2sの長手方向に複数個の撮像手段4aを取り付けて、スリットダイ2sの長手方向の任意の複数箇所の間隙を同時に測定するようにしてもよい。     The imaging means 4a may be fixed at one central position in the longitudinal direction of the slit die 2s as shown in FIG. 2, or the imaging means 4a is moved on the imaging means mounting column 4d in the longitudinal direction of the slit die 2s. You may make it measure the clearance gap of the arbitrary places of a longitudinal direction. Further, a plurality of imaging means 4a may be attached to the imaging means attaching column 4d in the longitudinal direction of the slit die 2s, and the gaps at arbitrary plural locations in the longitudinal direction of the slit die 2s may be measured simultaneously.

複数個の撮像手段4aを取り付ける場合、スリットダイ2sの両端の間隙を同時に測定できるように、2個の撮像手段4aをスリットダイ2sの長手方向の両端位置に配置することが好ましい。さらにこれにスリットダイ2sの長手方向中央の間隙を測定できるように、中央部に1個の撮像手段4aを追加して、合計3個の撮像手段4aを設けるようにしてもよい。     When a plurality of image pickup means 4a are attached, it is preferable to arrange the two image pickup means 4a at both end positions in the longitudinal direction of the slit die 2s so that the gaps at both ends of the slit die 2s can be measured simultaneously. Further, a single imaging means 4a may be added to the central portion so that a total of three imaging means 4a may be provided so that a gap in the longitudinal center of the slit die 2s can be measured.

また、図7、図8は撮像手段4aを別な場所に設置した例を示した図である。図7に略示するように、スリットダイ2sの長手方向から撮像手段4aで撮像する構成にして間隙値Cを測定してもよいし、図8に略示するように、スリットダイ2sの長手方向の任意の位置で、鏡4eを利用して光軸を屈折させて撮像手段4aで間隙値Cを測定するようにしてもよい。     FIGS. 7 and 8 are views showing an example in which the imaging means 4a is installed in another place. As shown schematically in FIG. 7, the gap value C may be measured by taking an image with the imaging means 4a from the longitudinal direction of the slit die 2s, or as shown schematically in FIG. The gap value C may be measured by the image pickup means 4a by refracting the optical axis using the mirror 4e at an arbitrary position in the direction.

なお、図1に示すダイコータ1においては、X方向に移動しない塗布手段2に対して基板9を保持する載置台11をX方向に移動することにより両者を相対移動させているが、静止した載置台11に対して塗布手段2を撮像手段4aと共にX方向に移動することによって両者を相対移動させても良い。また、載置台11と塗布手段2の双方をX方向に移動しても良い。     In the die coater 1 shown in FIG. 1, the mounting table 11 that holds the substrate 9 is moved in the X direction relative to the coating means 2 that does not move in the X direction. The application unit 2 may be moved relative to the table 11 in the X direction together with the imaging unit 4a to move both of them relative to each other. Further, both the mounting table 11 and the coating means 2 may be moved in the X direction.

さて、上述した本発明の間隙測定装置ならびに間隙測定方法を用いた第1の塗布方法について、工程1:塗布準備工程、工程2:間隙測定準備工程、工程3:基板搬入・間隙確認工程、工程4:塗布・基板搬出工程、のフローにて図1〜図6を参照しながら説明する。     Now, with respect to the first coating method using the gap measuring device and the gap measuring method of the present invention described above, step 1: coating preparation step, step 2: gap measurement preparation step, step 3: substrate carry-in / gap confirmation step, step 4: Description will be made with reference to FIGS. 1 to 6 in the flow of coating / substrate unloading step.

工程1:塗布準備工程
まず、塗液を塗液タンク8aから原点位置(最上点)にあるスリットダイ2sまで通してエアを排除した状態にする。つづいて塗液ポンプ8bの3方バルブ8eで、シリンジ8fと塗液タンク8aを連通させ、ピストン8gを最下点の位置に移動させて塗液をシリンジ8fに充填する。この後、3方バルブ8eをシリンジ8fとスリットダイ2sが連通するように切り替える。これによってピストン8gの始動によって塗液がいつでもスリットダイ2sから吐出できる状態になり、塗布準備工程は完了する。
Step 1: Application Preparation Step First, the coating liquid is passed from the coating liquid tank 8a to the slit die 2s at the origin position (the uppermost point) so that air is excluded. Subsequently, the syringe 8f and the coating liquid tank 8a are communicated with each other by the three-way valve 8e of the coating liquid pump 8b, and the piston 8g is moved to the lowest position to fill the syringe 8f with the coating liquid. Thereafter, the three-way valve 8e is switched so that the syringe 8f and the slit die 2s communicate with each other. As a result, when the piston 8g is started, the coating liquid can be discharged from the slit die 2s at any time, and the coating preparation process is completed.

工程2:間隙測定準備工程
本工程では変換係数a=E/(D1d−Dd)を求める。
Step 2: Gap Measurement Preparation Step In this step, a conversion coefficient a = E / (D1d−Dd) is obtained.

先ず基板9を搬入して載置台11に吸着保持する。つづいて基板9の間隙測定部が基板高さ検出器5aの直下に来るまで、載置台11を原点位置(位置P0)から移動させて静止させ、基板高さ検出器5aで基板高さHを測定する。そして、測定した基板高さHを用いて、スリットダイ2sの測定準備座標ZcをZc=Z0+H+Ccより算出してコントローラ7に記憶させておく。     First, the substrate 9 is loaded and sucked and held on the mounting table 11. Subsequently, until the gap measurement part of the substrate 9 comes directly below the substrate height detector 5a, the mounting table 11 is moved from the origin position (position P0) to be stationary, and the substrate height detector 5a sets the substrate height H. taking measurement. Then, using the measured substrate height H, the measurement preparation coordinate Zc of the slit die 2s is calculated from Zc = Z0 + H + Cc and stored in the controller 7.

ここでZ0は、基板吸着保持面11aとスリットダイ2sの吐出口面2gとが接した時、すなわち基板吸着保持面11aと吐出口面2gとが同一高さの時のスリットダイ2sのZ方向の位置を表すZ軸座標である。また、Ccは測定準備工程で設定する間隙値であり、コントローラ7に記憶されている。     Here, Z0 is the Z direction of the slit die 2s when the substrate suction holding surface 11a and the discharge port surface 2g of the slit die 2s are in contact, that is, when the substrate suction holding surface 11a and the discharge port surface 2g are at the same height. This is a Z-axis coordinate representing the position of. Cc is a gap value set in the measurement preparation step, and is stored in the controller 7.

次に、基板9の高さHを測定した部分(間隙測定部分)が、スリットダイ2sの直下に来る位置まで載置台11を移動させて停止させる。つづいてコントローラ7からの指令により、サーボモータ2eを駆動させ、スリットダイ2sを最上点から、算出した測定準備座標Zcの位置に下降させて静止させる。     Next, the mounting table 11 is moved to a position where the portion (gap measuring portion) where the height H of the substrate 9 has been measured is located immediately below the slit die 2s and stopped. Subsequently, in accordance with a command from the controller 7, the servo motor 2e is driven, and the slit die 2s is lowered from the highest point to the position of the calculated measurement preparation coordinate Zc to be stationary.

その状態で、撮像手段4aで吐出口面2gの端部2jと端部2jの反射像2jiを撮像し、モニタ手段4cに図4に示すように表示する。そして端部2jから端部2jの反射像2jiまでの距離である距離Ddを間隙算出手段4bで画像処理して求め、記憶しておく。     In this state, the imaging unit 4a captures the end 2j of the discharge port surface 2g and the reflection image 2ji of the end 2j, and displays them on the monitor unit 4c as shown in FIG. The distance Dd, which is the distance from the end 2j to the reflected image 2ji of the end 2j, is obtained by image processing by the gap calculating means 4b and stored.

次に、コントローラ7からの指令でスリットダイ2sをZ方向に高さEだけ上昇させる。上昇後、再度端部2jと端部2jの反射像2jiを撮像手段4aで撮像し、モニタ手段4c上に図6に示すように表示し、その時の端部2jから端部2jの反射像2jiまでの距離である距離D1dを間隙算出手段4bで画像処理して求める。つづいてa=E/(D1d−Dd)より変換係数aを算出し、間隙算出手段4bに記憶させておく。このようにして間隙値Cを算出するのに必要な変換係数aを得ることによって間隙測定手段4の測定準備は完了する。     Next, the slit die 2 s is raised by the height E in the Z direction in response to a command from the controller 7. After rising, the end 2j and the reflection image 2ji of the end 2j are picked up by the image pickup means 4a and displayed on the monitor means 4c as shown in FIG. 6, and the reflection image 2ji from the end 2j to the end 2j at that time is displayed. The distance D1d, which is a distance up to, is obtained by image processing by the gap calculation means 4b. Subsequently, the conversion coefficient a is calculated from a = E / (D1d−Dd), and stored in the gap calculation means 4b. Thus, the measurement preparation of the gap measuring means 4 is completed by obtaining the conversion coefficient a necessary for calculating the gap value C.

完了後、スリットダイ2sと載置台11は原点位置に戻して基板9を取り外す。     After completion, the slit die 2s and the mounting table 11 are returned to the origin position and the substrate 9 is removed.

工程3:基板搬入・間隙確認工程
本工程では、基板9を搬入後、基板9とスリットダイ2sとの間隙が許容値範囲内かどうか確認し、許容値を超えている場合は補正する。
Step 3: Substrate Loading / Gap Confirmation Step In this step, after loading the substrate 9, it is confirmed whether the gap between the substrate 9 and the slit die 2s is within the allowable range, and if it exceeds the allowable value, it is corrected.

まず、載置台11が原点位置である位置P0にある状態で、図示しない基板搬送手段で基板9を載置台11に載置し、図示しない吸着孔から吸引して基板9を載置台11に吸着保持させる。つづいて基板9の塗布開始部が基板高さ検出器5aの直下に来るまで載置台11を移動させ、停止後に基板高さ検出器5aで基板9の基板高さHを測定する。     First, in a state where the mounting table 11 is at the position P0 which is the origin position, the substrate 9 is mounted on the mounting table 11 by a substrate transport unit (not shown), and is sucked from the suction hole (not shown) to suck the substrate 9 to the mounting table 11. Hold. Subsequently, the mounting table 11 is moved until the coating start portion of the substrate 9 comes directly under the substrate height detector 5a, and after the stop, the substrate height H of the substrate 9 is measured by the substrate height detector 5a.

測定した基板高さHを用いて、スリットダイ2sの塗布高さ開始座標ZsをZs=Z0+H+Csより算出してコントローラ7に記憶させておく。ここでCsは設定塗布間隙値であり、あらかじめコントローラ7に入力して記憶されている。     Using the measured substrate height H, the coating height start coordinate Zs of the slit die 2s is calculated from Zs = Z0 + H + Cs and stored in the controller 7. Here, Cs is a set application gap value, which is input to the controller 7 and stored in advance.

次に、基板9の塗布開始部がスリットダイ2sの直下にくる位置まで載置台11を移動させて停止させた後、コントローラ7からの指令により、サーボモータ2eを駆動してスリットダイ2sを最上点から、算出した塗布高さ開始座標Zsの位置に下降させて静止させる。     Next, after the mounting table 11 is moved to a position where the coating start portion of the substrate 9 is directly below the slit die 2s and stopped, the servo motor 2e is driven by the command from the controller 7 so that the slit die 2s is moved to the uppermost position. From the point, it is lowered to the position of the calculated application height start coordinate Zs to be stationary.

この時に、撮像手段4aで吐出口面2gの端部2jと端部2jの反射像2jiを撮像し、モニタ手段4c上に図4に示すように表示し、端部2jから端部2jの反射像2jiまでの長さである距離Ddを間隙算出手段4bで画像処理して求める。     At this time, the imaging unit 4a captures the end 2j of the discharge port surface 2g and the reflection image 2ji of the end 2j, displays them on the monitor unit 4c as shown in FIG. 4, and reflects from the end 2j to the end 2j. A distance Dd, which is the length to the image 2ji, is obtained by image processing by the gap calculating means 4b.

距離Ddと測定準備工程で求めておいた変換係数aを用いて、現在の間隙値CをC=a・Ddより算出する。     The current gap value C is calculated from C = a · Dd using the distance Dd and the conversion coefficient a obtained in the measurement preparation step.

得られた間隙値Cと設定塗布間隙値Csの差が許容値b以下、すなわち|Cs−C|≦bとなっていれば、次の塗布の工程に移行する。|Cs−C|>bである場合は、補正量hをh=Cs−Cより求めて、コントローラ7からの指令によりサーボモータ2eを駆動してスリットダイ2sを補正量hだけ昇降させる。この時、hが正ならスリットダイ2sを上昇させ、負ならば下降させる。そして前述と同様にして再度、現在の間隙値Cを測定し、|Cs−C|≦bになっていることを確認する。確認完了後、補正した塗布高さ開始座標Zs、すなわちZs=Z0+H+Cs+hをコントローラ7に記憶させた後、次の塗布の工程に移行する。     If the difference between the obtained gap value C and the set application gap value Cs is equal to or smaller than the allowable value b, that is, | Cs−C | ≦ b, the process proceeds to the next application step. If | Cs−C |> b, the correction amount h is obtained from h = Cs−C, and the servo motor 2e is driven by the command from the controller 7 to raise and lower the slit die 2s by the correction amount h. At this time, if h is positive, the slit die 2s is raised, and if h is negative, it is lowered. Then, the current gap value C is measured again in the same manner as described above, and it is confirmed that | Cs−C | ≦ b. After the confirmation is completed, the corrected application height start coordinate Zs, that is, Zs = Z0 + H + Cs + h is stored in the controller 7, and then the process proceeds to the next application process.

工程4:塗布・基板搬出工程
その塗布開始部がスリットダイ2sの直下にある基板9を移動開始させるとともに、塗液を塗布手段2よりスリットダイ2sに供給して基板9上に吐出を開始することによって、基板9上に塗液の塗布を行う。
Step 4: Application / Substrate Unloading Step The application start portion starts to move the substrate 9 immediately below the slit die 2s, and the coating liquid is supplied from the coating means 2 to the slit die 2s to start discharging onto the substrate 9. As a result, the coating liquid is applied onto the substrate 9.

具体的には、基板9を載置した載置台11を図1の位置P2に向かって一定速度で移動させながら、塗液供給手段8の塗液ポンプ8bを駆動して塗液をスリットダイ2sへ供給する。塗液ポンプ8bからの塗液の供給流量は、あらかじめ設定された膜厚と塗布速度に応じて定められる。     Specifically, while moving the mounting table 11 on which the substrate 9 is mounted toward the position P2 in FIG. 1 at a constant speed, the coating liquid pump 8b of the coating liquid supply means 8 is driven to remove the coating liquid from the slit die 2s. To supply. The supply flow rate of the coating liquid from the coating liquid pump 8b is determined according to a preset film thickness and coating speed.

ここで、塗布している最中にも間隙測定手段4で常に吐出口面2gと被塗布面9aとの間隙を測定しておき、現在の間隙値Cと設定塗布間隙値Csとの差が許容値を超えると異常警報を発して塗布を停止させるなど、不良品の流出を防止するようにしてもよい。     Here, during the application, the gap measuring means 4 always measures the gap between the discharge port surface 2g and the surface 9a to be applied, and the difference between the current gap value C and the set application gap value Cs is determined. If the allowable value is exceeded, an abnormal alarm may be issued to stop the application, and the outflow of defective products may be prevented.

そして、基板9の塗布終了部がスリットダイ2sの吐出口面2gの直下に到達すると、塗液ポンプ8bを停止させて、スリットダイ2sからの塗液の吐出を停止するとともに、スリットダイ2sを所定位置まで上昇させることによって塗布を終了する。載置台11は、塗布が終了しても移動しつづけ、位置P2で停止する。     When the coating end portion of the substrate 9 reaches just below the discharge port surface 2g of the slit die 2s, the coating liquid pump 8b is stopped to stop the discharge of the coating liquid from the slit die 2s, and the slit die 2s is The application is finished by raising it to a predetermined position. The mounting table 11 continues to move even after the application is completed, and stops at the position P2.

そして位置P2で停止している載置台11の基板9の吸着を解除し、図示しないロボットなどの基板搬出手段で基板9を載置台11より下流工程へ搬出してから、載置台11は位置P0へ、スリットダイ2sは最上点へ移動する。     Then, the suction of the substrate 9 of the mounting table 11 stopped at the position P2 is released, and the substrate 9 is transported to the downstream process from the mounting table 11 by a substrate unloading means such as a robot (not shown). The slit die 2s moves to the uppermost point.

基板9の搬出と並行して、3方バルブ8eと、ピストン8gを操作し、シリンジ8fに塗液を充填し、完了したらバルブ8eをシリンジ8fがスリットダイ2sに連通する側に切り替える。   In parallel with the unloading of the substrate 9, the three-way valve 8e and the piston 8g are operated to fill the syringe 8f with the coating liquid, and when completed, the valve 8e is switched to the side where the syringe 8f communicates with the slit die 2s.

以降、連続して塗布を行う場合は、工程3と工程4を繰り返して実行する。     Thereafter, when coating is performed continuously, Step 3 and Step 4 are repeated.

つぎに、本発明の間隙測定方法を用いた第2の塗布方法について説明する。第2の塗布方法では、基板9の高さが塗布する位置で変化しても、その変化に合わせてスリットダイ2sを昇降させて、基板9との間隙を常に一定に維持しながら塗布を行わせる。     Next, a second coating method using the gap measuring method of the present invention will be described. In the second application method, even if the height of the substrate 9 changes at the application position, the slit die 2s is moved up and down in accordance with the change, and the application is performed while the gap between the substrate 9 is always kept constant. Make it.

第2の塗布方法は、工程1:塗布準備工程、工程2:間隙測定準備工程、工程3:基板搬入・間隙確認工程までは第1の塗布方法と全く同様にして行う。     The second coating method is performed in exactly the same manner as the first coating method up to step 1: coating preparation step, step 2: gap measurement preparation step, and step 3: substrate carry-in / gap confirmation step.

そして、工程4:塗布・基板搬出工程において、基板9を載置した載置台11を図1の位置P2に向かって一定速度で移動させながら、塗液供給手段8の塗液ポンプ8bを駆動し、あらかじめ設定された膜厚に基づく塗液流量をスリットダイ2sへ供給する。     Step 4: In the coating / substrate unloading step, the coating liquid pump 8b of the coating liquid supply means 8 is driven while moving the mounting table 11 on which the substrate 9 is mounted toward the position P2 in FIG. The coating liquid flow rate based on the preset film thickness is supplied to the slit die 2s.

そして、基板9を移動させている最中に、基板9上の塗布開始部を基点とした塗布方向の位置Xsi(i=1〜n)が基板高さ検出器5aの直下を通過するとき、基板9の基板高さHxiを測定する。さらに測定した基板高さHxiごとにスリットダイ2sの塗布高さ座標Zxi=Z0+Hxi+Cs+hをコントローラ7で算出して、記憶させる。そして、基板9上の位置Xsiがスリットダイ2sの吐出口面2gの直下に来た時に、スリットダイ2sを塗布高さ座標Zxiの位置に移動させる。このようにすれば基板9の基板高さが刻々と変動しても、その変動量に応じてスリットダイ2sの位置を昇降して調整することができるので、スリットダイ2sと基板9の間の間隙を常に一定の間隙値Cに保持して安定した塗布が行える。     And, while the substrate 9 is being moved, when the position Xsi (i = 1 to n) in the application direction with the application start portion on the substrate 9 as a base point passes directly under the substrate height detector 5a, The substrate height Hxi of the substrate 9 is measured. Further, for each measured substrate height Hxi, the coating height coordinate Zxi = Z0 + Hxi + Cs + h of the slit die 2s is calculated by the controller 7 and stored. When the position Xsi on the substrate 9 comes directly below the discharge port surface 2g of the slit die 2s, the slit die 2s is moved to the position of the coating height coordinate Zxi. In this way, even if the substrate height of the substrate 9 fluctuates every moment, the position of the slit die 2s can be adjusted by raising and lowering according to the fluctuation amount, so that the gap between the slit die 2s and the substrate 9 can be adjusted. Stable coating can be performed with the gap always kept at a constant gap value C.

ここで、塗布している最中にも第1の塗布方法と同様に、間隙測定手段4で吐出口面2gと被塗布面9aとの間隙を測定しておき、現在の間隙値Cと設定塗布間隙値Csとの差が許容値を超えると異常警報を発し、塗布を停止させるなど不良品の流出を防止するように処置してもよい。     Here, during the application, as in the first application method, the gap between the discharge port surface 2g and the application surface 9a is measured by the gap measuring means 4, and the current gap value C is set. If the difference from the application gap value Cs exceeds the allowable value, an abnormality alarm may be issued and the application may be stopped to prevent the outflow of defective products.

そして、基板9の塗布終了部がスリットダイ2sの吐出口面2gの直下に到達すると、塗液ポンプ8bを停止させて、スリットダイ2sからの塗液の吐出を停止するとともにスリットダイ2sを原点位置(最上点)まで上昇させることによって塗布を終了する。載置台11は、塗布が終了しても移動しつづけ、位置P2で停止する。     When the coating end portion of the substrate 9 reaches just below the discharge port surface 2g of the slit die 2s, the coating liquid pump 8b is stopped to stop the discharge of the coating liquid from the slit die 2s, and the slit die 2s is set to the origin. The application is terminated by raising the position (uppermost point). The mounting table 11 continues to move even after the application is completed, and stops at the position P2.

そして、第1の塗布方法と同様にして基板9を搬出した後に、載置台11を原点位置に復帰させるとともにシリンジ8fに塗液を充填させて、以降の塗布に備えて工程を完了する。   And after carrying out the board | substrate 9 similarly to the 1st application | coating method, the mounting base 11 is returned to an origin position, and the coating liquid is filled with the syringe 8f, and a process is completed in preparation for subsequent application | coating.

第1の塗布方法および第2の塗布方法ともに、基板高さHの測定は載置台11を停止させて行うのではなく、載置台11を位置P0から位置P2へ移動させる途中で、基板9の塗布開始部など基板高さ測定位置が基板高さ検出器5aの直下を通過するときに行っても良い。     In both the first coating method and the second coating method, the measurement of the substrate height H is not performed by stopping the mounting table 11, but during the movement of the mounting table 11 from the position P 0 to the position P 2, It may be performed when the substrate height measurement position such as the coating start portion passes directly under the substrate height detector 5a.

以上説明した間隙測定手段4はガラス基板など枚葉の被塗布部材に塗布するダイコータ1に組み込んだ例であるが、連続の被塗布部材に塗布するダイコータでの常時の間隙測定にも適用することもできる。     The gap measuring means 4 described above is an example incorporated in a die coater 1 that is applied to a sheet-to-be-coated member such as a glass substrate, but it is also applicable to regular gap measurement with a die coater that is applied to a continuous member to be coated. You can also.

また、塗布器はスリットダイに限らず、一定ピッチで配置された複数の吐出孔から塗液を吐出するノズルであっても、該ノズルと被塗布部材との間隙を本発明の間隙測定方法で測定することもできる。     In addition, the applicator is not limited to a slit die, and even if the applicator is a nozzle that discharges coating liquid from a plurality of discharge holes arranged at a constant pitch, the gap between the nozzle and the member to be applied is determined by the gap measuring method of the present invention. It can also be measured.

さらに、被塗布部材はガラスに限らず、吐出口の反射像が撮像できる部材であれば如何なるものでもよい。     Furthermore, the member to be coated is not limited to glass, and any member can be used as long as it can capture a reflected image of the discharge port.

また、図3に示すように、吐出口面2gの端部2jから撮像手段4aまでの距離と、端部2jの反射像2jiから撮像手段4aまでの距離が異なるため、例えば、端部2jに焦点が合っている状態で、端部2jと端部2jの反射像2jiを同時に撮像すると、レンズの性能によっては反射像2jiがボヤけた状態で撮像されることもある。そのような場合には、端部2jに焦点を合わせた状態で端部2jを撮像した後、反射像2jiに焦点が合うように撮像手段4aの位置を移動させた後、反射像2jiを撮像する。そして、モニタ手段4c上で2つの画像を合成して、端部2jから反射像2jiまでの距離Ddを間隙算出手段4bで求めてもよい。     Further, as shown in FIG. 3, since the distance from the end 2j of the discharge port surface 2g to the imaging unit 4a is different from the distance from the reflected image 2ji of the end 2j to the imaging unit 4a, for example, the end 2j When the end portion 2j and the reflection image 2ji of the end portion 2j are simultaneously imaged in a focused state, the reflection image 2ji may be imaged in a blurred state depending on the performance of the lens. In such a case, after imaging the end 2j in a state where the end 2j is focused, the position of the imaging means 4a is moved so that the reflected image 2ji is in focus, and then the reflected image 2ji is captured. To do. Then, the distance calculation unit 4b may obtain the distance Dd from the end 2j to the reflected image 2ji by combining the two images on the monitor unit 4c.

さらに吐出口面2gの端部2jと端部2jの反射像2jiの位置を撮像手段4aで明瞭に撮像するためには、端部2jは線状のエッジでR=0.5mm以下であることが好ましい。     Further, in order to clearly capture the position of the end 2j of the discharge port surface 2g and the reflected image 2ji of the end 2j with the imaging means 4a, the end 2j is a linear edge and R = 0.5 mm or less. Is preferred.

図1は、撮像手段4aを塗布の上流側で塗布方向に撮像するように取り付けた例を示しているが、塗布下流側のみ、あるいは塗布の上流側と下流側の両方に取り付けても良い。塗布の上下流にそれぞれ撮像手段4aがあると、吐出口面2gの塗布上流側/塗布下流側のそれぞれの間隙値C1/C2を測定することができ、それぞれの平均間隙値や、小さい方の間隙値を基準として制御することが可能となる。     FIG. 1 shows an example in which the imaging means 4a is attached so as to image in the application direction on the upstream side of application, but it may be attached only on the downstream side of application or on both the upstream and downstream sides of application. If there are imaging means 4a on the upstream and downstream sides of the coating, the gap values C1 / C2 on the upstream side / downstream side of the discharge port surface 2g can be measured, and the average gap value or the smaller one can be measured. It is possible to control the gap value as a reference.

また撮像手段4aを、図2のように設置した状態でスリットダイ2sの長手方向、すなわち塗布と直交する方向に片側の端部から反対側の端部まで移動させて、連続して間隙値Cを測定し、長手方向の間隙値Cの分布を求めるようにしてもよい。     Further, the image pickup means 4a is moved as shown in FIG. 2 from the one end to the opposite end in the longitudinal direction of the slit die 2s, that is, in the direction orthogonal to the coating, and continuously has a gap value C. And the distribution of the gap value C in the longitudinal direction may be obtained.

(実施例1)
ダイコータ1で設定した間隙を間隙測定手段4で測定した。
Example 1
The gap set by the die coater 1 was measured by the gap measuring means 4.

図1のダイコータ1において、載置台11には幅(基板幅方向)600mm、長さ(塗布方向)1000mmの大きさの吸着面を有するものを用い、基板9には幅(基板幅方向)570mm、長さ(塗布方向)970mm、厚さ2mmの透明なソーダガラス基板を用い、塗布手段2のスリットダイ2sには、塗液の吐出口であるスリット2hの基板幅方向の長さ(吐出幅)550mm、塗布方向の幅(スリット間隙)は300μmのものを用いた。   In the die coater 1 shown in FIG. 1, the mounting table 11 has a suction surface with a width (substrate width direction) of 600 mm and a length (application direction) of 1000 mm, and the substrate 9 has a width (substrate width direction) of 570 mm. A transparent soda glass substrate having a length (application direction) of 970 mm and a thickness of 2 mm is used, and the slit die 2s of the application means 2 has a length in the substrate width direction (discharge width) of the slit 2h which is a discharge port for the coating liquid. ) A width of 550 mm and a width in the coating direction (slit gap) of 300 μm were used.

撮像手段4aは、3μm角サイズの画素を水平方向に2448個、垂直方向に2044個配列した500万画素タイプのCCDと、同軸照明付きの拡大倍率6倍のテレセントリックマクロレンズを、組み合わせた構成とした。     The imaging means 4a is a combination of a 5 million pixel type CCD in which 2448 pixels of 3 μm square size are arranged in the horizontal direction and 2044 in the vertical direction, and a telecentric macro lens with coaxial illumination and a magnification of 6 times. did.

この撮像手段4aは、水平方向の視野が1.224mm、垂直方向の視野が1.022mm、水平方向の撮像分解能は0.5μm、垂直方向の撮像分解能は0.5μmで、これを塗布幅方向(基板幅方向、スリットダイ2sの長手方向)の中央に1個配置した。     The imaging means 4a has a horizontal field of view of 1.224 mm, a vertical field of view of 1.022 mm, a horizontal imaging resolution of 0.5 μm, and a vertical imaging resolution of 0.5 μm. One was placed in the center of the substrate width direction (longitudinal direction of the slit die 2s).

このダイコータ1において、外部の基板搬送ロボットによって基板9を載置台11の上に置き、吸着保持させた。     In this die coater 1, the substrate 9 was placed on the mounting table 11 by an external substrate transfer robot, and held by suction.

次に、移動手段3により載置台11を移動させ、移動先頭側の基板端部から3mm内側の部分が基板高さ検出器5aの直下に来るようにして静止させた。この状態で基板高さ検出器5aで基板9の高さHを測定し、H=2000μmを得て、その値をコントローラ7に記憶させた。     Next, the mounting table 11 was moved by the moving means 3 and stopped so that the portion 3 mm inside from the substrate end on the moving head side was directly below the substrate height detector 5a. In this state, the height H of the substrate 9 was measured by the substrate height detector 5a to obtain H = 2000 μm, and the value was stored in the controller 7.

次に、基板端部から3mm内側の部分が、スリットダイ2sの吐出口面2gの直下に来る位置まで、載置台11を移動させて静止させた。測定準備間隙値Cc=200μm、吐出口面2gと基板吸着保持面11aとが同一高さの時の座標Z0はZ0=0μm、基板9の高さH=2000μmで、Zc=Z0+H+Ccより、Zc=2200μmの位置にスリットダイ2sを下降させた。     Next, the mounting table 11 was moved to a position where a portion 3 mm inside from the end of the substrate was directly below the discharge port surface 2g of the slit die 2s. When the measurement preparation gap value Cc = 200 μm, the discharge port surface 2g and the substrate suction holding surface 11a have the same height, the coordinate Z0 is Z0 = 0 μm, the height H of the substrate 9 is 2000 μm, and Zc = Z0 + H + Cc. The slit die 2s was lowered to a position of 2200 μm.

この状態で次に、間隙撮像手段4aで端部2jと端部2jの反射像2jiの位置を撮像して、モニタ手段4c上での端部2jから端部2jの反射像2jiまでの距離Ddを間隙測定手段4で求めた結果、Ddに397.5μmが算出された。     Next, in this state, the gap imaging unit 4a images the positions of the end 2j and the reflection image 2ji of the end 2j, and the distance Dd from the end 2j to the reflection image 2ji of the end 2j on the monitor unit 4c. Was obtained by the gap measuring means 4, and as a result, 397.5 μm was calculated for Dd.

次に、スリットダイ2sをE=10μmだけ上昇させた後に、間隙撮像手段4aで再び吐出口面2gの端部2jと端部2jの反射像2jiの位置を撮像して、モニタ手段4c上で端部2jから端部2jの反射像2jiまでの距離D1dを間隙測定手段4で求めた結果、417.0μmと算出された。以上より、変換係数a=E/(D1d−Dd)=0.513と算出された。そして、C=a・Ddより10μm上昇させる前の間隙値Cは203.8μmと算出されモニタ手段4cに表示された。設定した間隙値である測定準備間隙値Cc=200μmに対して、測定した間隙値は203.9μmであり、4μm以内の精度で間隙が設定できたことを間隙測定手段4で確認できた。     Next, after raising the slit die 2s by E = 10 μm, the gap imaging means 4a again images the positions of the end 2j of the discharge port surface 2g and the reflected image 2ji of the end 2j, and on the monitor means 4c. As a result of obtaining the distance D1d from the end 2j to the reflected image 2ji of the end 2j by the gap measuring means 4, it was calculated to be 417.0 μm. From the above, the conversion coefficient a = E / (D1d−Dd) = 0.513 was calculated. The gap value C before being increased by 10 μm from C = a · Dd was calculated to be 203.8 μm and displayed on the monitor means 4c. With respect to the measurement preparation gap value Cc = 200 μm, which was the set gap value, the measured gap value was 203.9 μm, and it was confirmed by the gap measurement means 4 that the gap could be set with an accuracy within 4 μm.

さらに、200μmと205μmのブロックゲージで、設定した200μmの間隙を測定したところ、200μmのブロックゲージは間隙に挿入できたが、205μmのブロックゲージは間隙に挿入することができなかった。これより、別手段でも5μm以内の精度で間隙が設定できていることが検証できた。     Furthermore, when the 200 μm and 205 μm block gauges were used to measure the set 200 μm gap, the 200 μm block gauge could be inserted into the gap, but the 205 μm block gauge could not be inserted into the gap. From this, it was verified that the gap could be set with an accuracy of 5 μm or less by another means.

(実施例2)
本発明の間隙測定方法および間隙測定装置を備えたダイコータ1で、間隙を常に一定になるように制御しながら、ガラス基板にプラズマディスプレイ部材である隔壁形成用ペーストを塗布した。
(Example 2)
With the die coater 1 equipped with the gap measuring method and the gap measuring apparatus of the present invention, a partition wall forming paste as a plasma display member was applied to a glass substrate while controlling the gap to be always constant.

先ず、実施例1と同じ基板9およびダイコータ1を用いて、実施例1と同様にして変換係数aを求める間隙測定準備までを実施し、変換係数a=0.513を得た。     First, using the same substrate 9 and die coater 1 as in Example 1, preparation for gap measurement for obtaining the conversion coefficient a was performed in the same manner as in Example 1 to obtain conversion coefficient a = 0.513.

次に、塗布用に洗浄した基板9を位置P0にある載置台11に吸着保持させた。     Next, the substrate 9 cleaned for coating was sucked and held on the mounting table 11 at the position P0.

つづいて基板9の端部から5mmの位置にある塗布開始部が、スリットダイ2sの直下に来るまで基板9を位置P2に向かって移動させて、この移動の途中で塗布開始部が基板高さ検出器5aの直下を通過する時に、基板高さHx1=1998μmを得た。そしてこの基板高さHx1の値と設定塗布間隙値Cs=250μmとから、塗布高さ開始座標Zs=2248μmを得て、その位置にスリットダイ2sを下降させた。この時、間隙測定手段4で間隙を測定したところ、実際の間隙値Cは264μmであった。これにより、補正値h=Cs−C=−14μmを得た。     Subsequently, the substrate 9 is moved toward the position P2 until the coating start portion located at a position 5 mm from the edge of the substrate 9 is directly below the slit die 2s, and the coating start portion is moved to the height of the substrate during this movement. The substrate height Hx1 = 1998 μm was obtained when passing directly under the detector 5a. Then, from the value of the substrate height Hx1 and the set coating gap value Cs = 250 μm, the coating height start coordinate Zs = 2248 μm was obtained, and the slit die 2s was lowered to that position. At this time, when the gap was measured by the gap measuring means 4, the actual gap value C was 264 μm. As a result, a correction value h = Cs−C = −14 μm was obtained.

そして、塗布高さ開始座標Zs=2248+h=2248−14=2234μmの位置にスリットダイ2sを移動させてから、現在の間隙値Cを測定したところ、250μmとなった。これで補正の有効性を確認できたので、塗布高さ開始座標Zs=Z0+Hx1+Cs+hのh=−14、とコントローラ7に記憶させた。     Then, after the slit die 2s was moved to the position where the coating height start coordinate Zs = 2248 + h = 2248-14 = 2234 μm and the current gap value C was measured, it was 250 μm. Since the effectiveness of the correction could be confirmed with this, the controller 7 stores the coating height start coordinate Zs = Z0 + Hx1 + Cs + h h = −14.

つづいて静止している基板9を位置P2に向かって移動開始するとともに、粘度が20Pa・secで固形分濃度が40%の隔壁形成用ペーストをスリットダイ2sより吐出して、塗布厚さ300μm、塗布速度3m/分の条件で基板9上に塗布を開始した。     Subsequently, the stationary substrate 9 is started to move toward the position P2, and a partition wall forming paste having a viscosity of 20 Pa · sec and a solid content concentration of 40% is discharged from the slit die 2s to obtain a coating thickness of 300 μm, Coating was started on the substrate 9 at a coating speed of 3 m / min.

そして基板9の移動中に、基板9が高さ検出器5aの直下を通過するときに、塗布開始部から10mmピッチの位置ごとに基板高さHxiを測定した。その結果、基板高さHxiは1996μmから2013μmの間で変化し、その都度、塗布高さ座標Zxi=Hxi+250−14を計算してコントローラ7に記憶させた。基板9の基板高さHxiを測定した箇所がスリットダイ2sの直下にきたとき、スリットダイ2sを計算した塗布高さ座標Zxiの位置に移動させた。また、塗布中に間隙値Cを間隙測定手段4で測定し、設定塗布間隙値Csとの差をモニタして、|Cs−C|≧5μmになったら異常停止させるようにしていたが、|Cs−C|は常に5μm未満であった。     Then, during the movement of the substrate 9, the substrate height Hxi was measured for each position of 10 mm pitch from the coating start portion when the substrate 9 passed directly under the height detector 5 a. As a result, the substrate height Hxi changed between 1996 μm and 2013 μm, and the coating height coordinate Zxi = Hxi + 250-14 was calculated and stored in the controller 7 each time. When the location where the substrate height Hxi of the substrate 9 was measured came directly under the slit die 2s, the slit die 2s was moved to the calculated coating height coordinate Zxi. In addition, the gap value C was measured by the gap measuring means 4 during coating, and the difference from the set coating gap value Cs was monitored. When | Cs−C | ≧ 5 μm, the abnormal stop was performed. Cs-C | was always less than 5 μm.

塗布を完了した基板を後工程に搬出した後、輻射ヒータを用いた乾燥炉で、100℃で20分間乾燥した。以上と同様に50枚の基板に同じ塗布を実施して、乾燥後の隔壁塗布膜厚分布を基板の全面にわたって塗布方向に測定したところ、50枚全て120μm±3μmの許容範囲以下であった。     The substrate on which the coating was completed was carried out to a subsequent process, and then dried at 100 ° C. for 20 minutes in a drying furnace using a radiation heater. In the same manner as described above, the same coating was performed on 50 substrates, and the partition wall coating film thickness distribution after drying was measured in the coating direction over the entire surface of the substrate. As a result, all 50 substrates were within the allowable range of 120 μm ± 3 μm.

(比較例)
本発明の間隙測定手段4を用いた間隙値の測定とそれに伴う補正を行わなかった以外には、実施例2と全く同様にしてダイコータ1で50枚の基板に塗布を行った。その結果、塗布膜が途中で途切れるなど塗布不良が続発して、正常な塗布ができなかった。
(Comparative example)
Coating was performed on 50 substrates with the die coater 1 in exactly the same manner as in Example 2 except that the measurement of the gap value using the gap measuring means 4 of the present invention and the correction associated therewith were not performed. As a result, coating failure occurred successively, such as the coating film being interrupted, and normal coating could not be performed.

本発明は、塗布器と被塗布部材との間隙を高い精度で保ちながら塗布するダイコータなどでの、塗布器と被塗布部材との間隙測定方法および間隙測定装置、およびその間隙測定結果に基づいて塗布する方法および塗布装置に、好適に利用可能である。   The present invention is based on a gap measuring method and a gap measuring device between a coating device and a member to be coated, such as a die coater that coats the gap between the coating device and a member to be coated with high accuracy, and a result of the gap measurement. It can be suitably used for a coating method and a coating apparatus.

1:ダイコータ
2:塗布手段
2a:支柱
2b:ガイド
2c:ホルダ
2e:サーボモータ
2f:ボールねじ
2g:吐出口面
2gi:吐出口面2g上の反射像
2h:スリット
2j:吐出口面2gの端部
2ji:吐出口面2gの端部2jの反射像
2s:スリットダイ
3:相対移動手段
3a:架台
3b:ナット
3c:ボールねじ
3d:サーボモータ
3e:ガイド
4:間隙測定手段
4a:撮像手段
4b:間隙算出手段
4c:モニタ手段
4d:撮像手段取り付け支柱
4e:鏡
5:高さ分布測定手段
5a:基板高さ検出器
5b:基板高さ検出器取り付け支柱
7:コントローラ
8:塗液供給手段
8a:塗液タンク
8b:塗液ポンプ
8c:配管
8d:配管
8e:3方バルブ
8f:シリンジ
8g:ピストン
9:基板
9a:被塗布面
11:載置台
11a:基板吸着保持面
H:基板9の高さ
P0,P2:載置台11の位置
C:間隙値
Cc:測定準備間隙値
Cs:設定塗布間隙値
D:端部2jと端部2jの反射像2ji間の実距離
D1:上昇後の端部2jと端部2jの反射像2ji間の実距離
Dd:モニタ手段4c上での吐出口面2gの端部2jと端部2jの反射像2ji間の距離
D1d:上昇後のモニタ手段4c上での吐出口面2gの端部2jと端部2jの反射像2ji間の距離
L:光軸
E:上昇量
E1:上昇前後の端部2jと反射像2jiそれぞれの移動量
E1d:上昇前後のモニタ手段4c上の端部2jと反射像2jiそれぞれの移動量
n:撮像手段4aとモニタ手段4cでのトータル拡大倍率
Zc:測定準備座標
Zs:塗布高さ開始座標
Zxi:塗布高さ座標

1: Die coater 2: Application means 2a: Support column 2b: Guide 2c: Holder 2e: Servo motor 2f: Ball screw 2g: Discharge port surface 2gi: Reflected image on discharge port surface 2g 2h: Slit 2j: End of discharge port surface 2g Portion 2ji: Reflected image of end 2j of discharge port surface 2g 2s: Slit die 3: Relative moving means 3a: Mount 3b: Nut 3c: Ball screw 3d: Servo motor 3e: Guide 4: Gap measuring means 4a: Imaging means 4b : Gap calculation means 4c: Monitor means 4d: Imaging means mounting column 4e: Mirror 5: Height distribution measuring unit 5a: Substrate height detector 5b: Substrate height detector mounting column 7: Controller 8: Coating liquid supply unit 8a : Coating liquid tank 8b: Coating liquid pump 8c: Piping 8d: Piping 8e: 3-way valve 8f: Syringe 8g: Piston 9: Substrate 9a: Surface to be coated 11 Mounting table 11a: Substrate suction holding surface H: Height of substrate 9 P0, P2: Position of mounting table 11 C: Gap value Cc: Measurement preparation gap value Cs: Set application gap value D: Between end 2j and end 2j The actual distance between the reflected images 2ji D1: The actual distance between the raised edge 2j and the reflected image 2ji of the edge 2j Dd: The reflected image of the edge 2j and the edge 2j of the discharge port surface 2g on the monitor means 4c 2j distance D1d: distance between the end 2j of the ejection port surface 2g on the monitor means 4c after ascending and the reflected image 2ji of the end 2j L: optical axis E: ascending amount E1: end 2j before and after ascending E1d: The amount of movement of the end 2j on the monitor means 4c before and after the ascent and the amount of movement of the reflected image 2ji n: Total magnification of the imaging means 4a and the monitor means 4c Zc: Measurement preparation coordinates Zs: Application height start coordinate Zxi: Application height coordinate

Claims (5)

塗布器の塗液の吐出口を含む吐出口面と、前記吐出口に相対して配置される被塗布部材の被塗布面との間の間隙を測定する間隙測定方法であって、前記吐出口面の端部の実像と、被塗布部材の被塗布面上における前記吐出口面の端部の反射像とを撮像し、撮像された前記吐出口面の端部の実像と、前記吐出口面の端部の反射像の間の長さを基に、前記塗布器の吐出口面と前記被塗布部材の被塗布面との間の間隙を算出することを特徴とする間隙測定方法。   A gap measuring method for measuring a gap between a discharge port surface including a discharge port of a coating liquid of an applicator and a coated surface of a coated member disposed relative to the discharge port, the discharge port The real image of the edge part of the surface and the reflection image of the edge part of the discharge port surface on the coated surface of the member to be coated are imaged, and the real image of the edge part of the imaged discharge port surface and the discharge port surface A gap measuring method, comprising: calculating a gap between a discharge port surface of the applicator and a surface to be coated of the member to be coated based on a length between reflection images at the end of the coating member. 前記塗布器および保持手段に保持された前記被塗布部材の少なくとも一方を相対的に前記被塗布部材の被塗布面と平行な方向に移動させながら、前記塗布器の吐出口から塗液を吐出して被塗布部材の被塗布面に塗液を塗布する塗布方法であって、塗布前および/または塗布中に、請求項1に記載の間隙測定方法を用いて前記塗布器の吐出口面と前記被塗布部材の被塗布面との間の間隙を算出し、得られた間隙値に基づき前記塗布器を前記被塗布部材の被塗布面と垂直な方向に移動させて前記塗布器の吐出口面と前記被塗布部材の被塗布面との間の間隙を制御することを特徴とする塗布方法。   The coating liquid is discharged from the discharge port of the applicator while relatively moving at least one of the coated members held by the coating device and the holding means in a direction parallel to the coated surface of the coated member. A coating method in which a coating liquid is applied to a surface to be coated of a member to be coated, and before and / or during coating, using the gap measuring method according to claim 1, The gap between the coated member and the coated surface is calculated, and the applicator is moved in a direction perpendicular to the coated surface of the coated member based on the obtained gap value to discharge the discharge port surface of the coated device. And a coating surface of the coated member to be controlled. 塗布器の塗液の吐出口を含む吐出口面の端部の実像と、前記吐出口に相対して配置される被塗布部材の被塗布面上における前記吐出口面の端部の反射像とを撮像する撮像手段と、撮像された前記吐出口面の端部の実像と前記吐出口面の端部の反射像の間の長さを基に、前記塗布器の吐出口面と前記被塗布部材の被塗布面との間の間隙を算出する間隙算出手段と、を有することを特徴とする間隙測定装置。   A real image of the end portion of the discharge port surface including the discharge port of the coating liquid of the applicator, and a reflection image of the end portion of the discharge port surface on the coated surface of the coated member disposed relative to the discharge port; Based on the length between the imaged image pickup means for picking up the image and the captured real image of the end of the discharge port surface and the reflected image of the end of the discharge port surface, the discharge port surface of the applicator and the coating target And a gap calculating unit that calculates a gap between the member and the surface to be coated. 塗液を供給する塗液供給手段、
前記塗液供給手段から供給された塗液を吐出する吐出口を有する塗布器、
被塗布部材を保持する載置台、
前記載置台上に保持された被塗布部材の高さを測定する高さ測定手段、
前記塗布器および前記載置台の少なくとも一方を相対的に前記被塗布部材の被塗布面と平行な方向に移動させる移動手段、
ならびに請求項3に記載の間隙測定装置を有することを特徴とする塗布装置。
Coating liquid supply means for supplying the coating liquid;
An applicator having a discharge port for discharging the coating liquid supplied from the coating liquid supply means;
A mounting table for holding a member to be coated;
Height measuring means for measuring the height of the member to be coated held on the mounting table,
Moving means for relatively moving at least one of the applicator and the mounting table in a direction parallel to a surface to be coated of the member to be coated;
A coating apparatus comprising the gap measuring device according to claim 3.
さらに前記塗布器を前記被塗布部材の被塗布面と垂直な方向に移動させる塗布器間隙調節手段を有することを特徴とする請求項4に記載の塗布装置。
5. The coating apparatus according to claim 4, further comprising an applicator gap adjusting unit that moves the applicator in a direction perpendicular to a surface to be coated of the member to be coated.
JP2012007757A 2012-01-18 2012-01-18 Gap measuring method, gap device, coating method and coating device. Active JP5953759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007757A JP5953759B2 (en) 2012-01-18 2012-01-18 Gap measuring method, gap device, coating method and coating device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007757A JP5953759B2 (en) 2012-01-18 2012-01-18 Gap measuring method, gap device, coating method and coating device.

Publications (2)

Publication Number Publication Date
JP2013148408A true JP2013148408A (en) 2013-08-01
JP5953759B2 JP5953759B2 (en) 2016-07-20

Family

ID=49046036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007757A Active JP5953759B2 (en) 2012-01-18 2012-01-18 Gap measuring method, gap device, coating method and coating device.

Country Status (1)

Country Link
JP (1) JP5953759B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087169A (en) * 2013-10-29 2015-05-07 エンジニアリングシステム株式会社 Interval detection method of liquid discharge nozzle and liquid discharge device
WO2015141456A1 (en) * 2014-03-20 2015-09-24 東レエンジニアリング株式会社 Gap-maintaining method, gap-maintaining device, and coating device
JP2016030253A (en) * 2014-07-30 2016-03-07 株式会社ヒラノテクシード Coating device
JP2017156354A (en) * 2017-05-19 2017-09-07 エンジニアリングシステム株式会社 Interval detecting method of liquid discharge nozzle and liquid discharge device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136146A (en) * 1990-09-25 1992-05-11 Kawasaki Steel Corp Method for measuring position and shape of running strip and apparatus therefor
JP2009101345A (en) * 2007-10-05 2009-05-14 Toray Ind Inc Coating method and coating machine, method for manufacturing plasma display member and manufacturing equipment therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136146A (en) * 1990-09-25 1992-05-11 Kawasaki Steel Corp Method for measuring position and shape of running strip and apparatus therefor
JP2009101345A (en) * 2007-10-05 2009-05-14 Toray Ind Inc Coating method and coating machine, method for manufacturing plasma display member and manufacturing equipment therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087169A (en) * 2013-10-29 2015-05-07 エンジニアリングシステム株式会社 Interval detection method of liquid discharge nozzle and liquid discharge device
WO2015141456A1 (en) * 2014-03-20 2015-09-24 東レエンジニアリング株式会社 Gap-maintaining method, gap-maintaining device, and coating device
JP2016030253A (en) * 2014-07-30 2016-03-07 株式会社ヒラノテクシード Coating device
JP2017156354A (en) * 2017-05-19 2017-09-07 エンジニアリングシステム株式会社 Interval detecting method of liquid discharge nozzle and liquid discharge device

Also Published As

Publication number Publication date
JP5953759B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
CN108568382B (en) Droplet discharge device, droplet discharge method, program, and computer storage medium
JP5953759B2 (en) Gap measuring method, gap device, coating method and coating device.
JP2021073085A (en) Fast measurement of droplet parameters in industrial printing system
KR101714627B1 (en) Slot die coating apparatus
TW202017759A (en) Method of fabricating thin-film layers of electronic products
KR100795509B1 (en) Inspection method of paste pattern
JP4940806B2 (en) Paste application machine and paste application method
WO2015141456A1 (en) Gap-maintaining method, gap-maintaining device, and coating device
JP2008212921A (en) Coating method, plasma display member manufacturing method and coating machine
JP2009101345A (en) Coating method and coating machine, method for manufacturing plasma display member and manufacturing equipment therefor
JP2000197844A (en) Method and apparatus for coating and method and apparatus for producing member for plasma display
TWI471953B (en) Liquid material filling method and device
JPH11262714A (en) Coating method and apparatus for applying coating liquid to uneven substrate and method and apparatus for manufacturing member for plasma display
JP2007029891A (en) Image processing method and apparatus for liquid coating, and liquid coating apparatus
JP3912635B2 (en) APPARATUS AND METHOD FOR APPLYING COATING LIQUID ON CONCRETE SUBSTRATE AND APPARATUS AND METHOD FOR PRODUCING PLASMA DISPLAY
JP4530224B2 (en) Coating apparatus and coating method
JP5050398B2 (en) Display panel inspection method, inspection apparatus, and manufacturing method
JP5131450B2 (en) Droplet discharge amount adjusting method and pattern forming apparatus
JP2010058097A (en) Coating method and device, and method and device for manufacturing member of plasma display
KR101445745B1 (en) Inspecting unit and dispensing module having the same and maintain method for nozzle using the same
TWI389744B (en) Method of controlling coating apparatus
JP2011255260A (en) Coating method, coating apparatus, production method of member for plasma display, and production apparatus of member for plasma display
KR100696931B1 (en) Paste Dispenser and Controlling method for the same
JP2004303549A (en) Manufacturing method and manufacturing device of substrate for plasma display
JP4342210B2 (en) STAGE DEVICE, PASTE COATING DEVICE USING SAME, AND PASTE COATING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R151 Written notification of patent or utility model registration

Ref document number: 5953759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151