WO2015141386A1 - アンテナ装置及びその製造方法 - Google Patents

アンテナ装置及びその製造方法 Download PDF

Info

Publication number
WO2015141386A1
WO2015141386A1 PCT/JP2015/054795 JP2015054795W WO2015141386A1 WO 2015141386 A1 WO2015141386 A1 WO 2015141386A1 JP 2015054795 W JP2015054795 W JP 2015054795W WO 2015141386 A1 WO2015141386 A1 WO 2015141386A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
surface portion
band
antenna device
area
Prior art date
Application number
PCT/JP2015/054795
Other languages
English (en)
French (fr)
Inventor
柳沢 和介
水野 浩年
恭 白方
芳雄 青木
Original Assignee
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨコオ filed Critical 株式会社ヨコオ
Priority to CN201580013949.8A priority Critical patent/CN106104922B/zh
Priority to US15/126,068 priority patent/US10211542B2/en
Publication of WO2015141386A1 publication Critical patent/WO2015141386A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • H01Q9/38Vertical arrangement of element with counterpoise

Definitions

  • the present invention relates to a low-profile antenna device that can be attached to a vehicle body, for example, and a method for manufacturing the same.
  • the antenna device disclosed in Patent Document 1 includes an antenna base and an antenna element configured by two types of helical antenna units in a shark fin-shaped antenna case.
  • the antenna element has a first helical part on the side close to the antenna base and a second helical part on the side far from the antenna base.
  • the first helical part is composed of a line-like pattern or a plate-like conductive member.
  • the second helical part has a larger surface area per unit length than the first helical part, and a linear, solid pattern, a solid pattern and a wire, or a plate-like conductive member is bent into a substantially U-shape. It is composed of things (horizontally long spiral elements).
  • the antenna element is composed of a helical antenna element and a plate-like element.
  • the antenna element is wound around a virtual axis from the antenna base toward the top of the vehicle antenna device.
  • the plate-like element is a conductive plate, and is arranged on the open end side of the spiral antenna element so as to cover the top portion in an electrically connected state and to have a positional relationship perpendicular to or obliquely intersecting the virtual axis.
  • the antenna device disclosed in Patent Document 1 is intended to efficiently function the entire antenna element as an antenna within a limited space.
  • two types of helical portions are provided in the height direction at regular intervals.
  • the surface portion is a so-called vertical structure in which the surface portion is erected with respect to the antenna base. For this reason, there is a limit to the reduction in height, and it can only be realized up to a height of about 70 [mm].
  • the antenna device disclosed in Patent Document 2 can ensure a substantially constant antenna gain over a wide band while being low-profile due to the effect of the plate-like element attached to the tip of the antenna element.
  • this antenna device is composed of a single antenna element and a plate-like element, there is a limit to increasing the antenna gain.
  • a height of 50 [mm] or more is required.
  • the present invention provides an antenna device having a structure capable of maintaining antenna gain and other antenna performance equivalent to those of a conventional antenna device even when the height is lowered to the height or less. It is to be an issue. Another object of the present invention is to provide a method for manufacturing the antenna device.
  • the antenna device is arranged on the antenna base having a surface portion that becomes a ground potential during operation and the antenna base so as to exhibit omnidirectionality on a surface parallel to the surface portion, and simultaneously receives or transmits the same signal.
  • n (n is a natural number of 2 or more) antenna elements.
  • Each of the n antenna elements has a linear conductor whose both end portions are arranged in a direction away from the surface portion, and one end portion of the linear conductor at a position where the one end portion of the linear conductor is substantially farthest from the surface portion. And the other end of the linear conductor is electrically separated from the other end of the linear conductor of the other antenna element.
  • the area of the surface portion on which the antenna element is installed is divided into k based on the relationship between the height of the antenna element and the antenna gain secured by the area (k is a natural number of 2 or more).
  • k planar conductors each having a divided area, and one end portion thereof being electrically connected to the planar conductor at a portion that is substantially farthest from the surface portion, and the other end portion being the
  • the linear conductor that is electrically connected to any one of the k amplifier circuits is non-directional on a plane parallel to the surface part at a portion substantially closest to the surface part. And arranging a plurality of antenna elements that receive or transmit the same signal on the surface portion.
  • the antenna device of the present invention includes a planar conductor facing the plane portion that is at ground potential during operation, and by securing a ground capacity with the planar conductor, a wide band and an improvement in antenna gain are achieved, and In order to further improve the antenna gain by arranging a plurality of antenna elements having such planar conductors on the antenna base so as to exhibit omnidirectionality in a plane parallel to the plane portion, the antenna height from the ground plane Even if it is lowered, it is possible to compensate for a decrease in antenna gain and the like.
  • FIG. 1 is an external perspective view of an antenna device according to a first embodiment.
  • (A) is a front view of the antenna main-body part in the antenna device of 1st Embodiment
  • (b) and (c) are side views.
  • FIG. 1 It is a graph which shows the directivity of the antenna apparatus of 1st Embodiment, (a) represents FM band, (b) represents the thing of AM band.
  • (A) is a front view of the antenna main-body part in the antenna device of 2nd Embodiment, (b) and (c) are side views.
  • (A) is a front view of the antenna main-body part in the antenna device of 3rd Embodiment, (b) and (c) are side views.
  • the present invention is a low-profile antenna device that can be used in the FM band (76 [MHz] to 108 [MHz]) and the AM band (0.520 [MHz] to 1.710 [MHz]).
  • This antenna device is used by being mounted on a vehicle roof, for example, and exhibits omnidirectionality on a horizontal plane.
  • FIG. 1 is an external perspective view showing a structural example of the antenna device according to the present embodiment.
  • FIG. 2 is an exploded perspective view thereof.
  • the antenna device 1 has an antenna base 10 made of a metal member such as aluminum die cast.
  • the antenna base 10 is a component that is attached to the vehicle roof, and has a top surface (a direction opposite to the bottom surface facing the vehicle roof; hereinafter the same), a surface portion that is electrically connected to the vehicle roof during operation and serves as a ground potential. (“Ana mounting surface”) and a cover joint for watertightly joining the cover 50 are formed.
  • the antenna mounting surface portion has a thickness of about 0.5 [mm]
  • the cover joint portion has a thickness of about 1.0 [mm].
  • a mounting hole 10a for inserting a mounting mechanism (not shown) for mounting on the vehicle roof is formed in a substantially central portion of the antenna mounting surface.
  • a circuit board 20 is disposed on the antenna mounting surface. The thickness of the circuit board 20 is about 0.5 [mm].
  • the circuit board 20 is an electronic circuit mounted on a single resin board. Specifically, the substrate surface is divided into six sections, and an amplifier circuit including an antenna feeding terminal and an amplifier electrically connected via a wiring pattern is formed for each section. That is, six systems of amplifier circuits are formed. A circuit board 20 is also formed with a synthesis circuit that synthesizes output signals (amplified signals) of each system and an output terminal for transmitting the output of the synthesis circuit to an external device.
  • the element supports 301 to 306 are arranged in parallel. “Parallel arrangement” means that they are arranged in the same plane without overlapping each other.
  • the element supports 301 to 306 are composed of dielectric blocks or the like, and respectively support corresponding antenna elements 401 to 406 (referred to as the antenna element 40 when it is not necessary to distinguish them).
  • each element support 30 includes a zenith that faces the antenna base 10 in parallel, and a frame that extends downward (in the direction of the circuit board 20; the same applies hereinafter) from the periphery of the zenith. It will be included.
  • the zenith part may be an opening surface, and the frame may be constituted by a combination of a plurality of pillars.
  • the portion surrounded by the frame of each element support 30 is a hollow space. Circuit components protruding from the circuit board 20 are accommodated in this hollow space. Thereby, the size of the entire antenna device can be saved. Grooves are formed in a helical shape at a predetermined pitch on the outer surface of the frame.
  • the antenna elements 40 each include a linear conductor and a planar conductor for securing ground capacity.
  • the planar conductor has, for example, a mesh shape or a rectangular flat plate shape having an area substantially the same as the zenith portion of the element support 30 (the area surrounded by the outer periphery of the zenith portion) and a thickness of 0.2 [mm].
  • a plate-like conductor hereinafter referred to as “zenith capacity plate”).
  • each FM band antenna elements 401 to 404 and two AM band antenna elements 405 and 406 are arranged in parallel.
  • Each antenna element 40 is arranged with a gap of 5 to 10 [mm] between adjacent antenna elements. That is, as a whole, the six antenna elements 40 are arranged in parallel on the antenna installation surface portion of 22,500 [mm 2 ]. The reason for this area will be described later.
  • One end of a linear conductor having both ends is electrically connected to the zenith capacity plate at a position that is substantially farthest from the antenna base 10.
  • the “substantially farthest part” means a part having a height that can secure the most ground capacity.
  • the other end of the linear conductor is connected to an antenna feeding terminal (not shown) formed on the circuit board 20.
  • the wire conductor for the FM band is, for example, a copper wire having a wire diameter of 0.4 [mm] wound around a groove on the outer periphery of the frame portion of the element support 30 several times. That is, it is a helical coil wound at a predetermined interval (pitch). Since the copper wire is fitted into the groove of the frame portion, the helical diameter becomes substantially the same as the outer diameter of the zenith capacity plate by setting the depth of the groove to the diameter of the copper wire. The helical diameter and pitch are adjusted to resonate at the FM band frequency.
  • the linear conductor is a helical coil, the winding directions of the adjacent copper wires (helical coils) are preferably reversed. By doing in this way, the electric current which flows into a copper wire becomes in-phase, compared with the case where it is not so, the coupling
  • the AM band linear conductor only needs to secure a certain inductance component, it is not necessarily a helical coil. However, when the helical coil is used, it is desirable that the winding directions are reversed.
  • Fig. 3 shows the appearance of the assembled antenna device with the cover 50 removed.
  • 3A is a top view
  • FIGS. 3B and 3C are side views thereof.
  • the zenith capacity plates of the antenna element 40 are substantially rectangular flat plates, and are formed in the same shape and size as the zenith portion of the element support 30 projecting from the antenna base 10. .
  • the zenith capacity plate faces the antenna mounting surface portion of the antenna base 10 in parallel, and ensures a ground capacity during operation.
  • the zenith capacity plate is a rectangular flat plate in the illustrated example, but it is not necessarily a rectangular flat plate from the viewpoint of securing necessary electrical performance, and is circular, polygonal, annular, mesh, ring and lattice Or a flat plate of other shapes.
  • the shape of the zenith portion of the element support 30 is also adapted to the shape of the zenith capacity plate.
  • the cover 50 covers the antenna base 10, the circuit board 20, and the antenna element 40, and is attached to the cover joint at the periphery of the antenna base 10 in a watertight manner.
  • the cover portion 50 is made of, for example, a radio wave transmissive synthetic resin and is formed in a box shape, but may be one that matches the color of the vehicle body (in FIG. 1, for the sake of convenience of explanation, the transparent resin). Is composed of). Moreover, it can also be set as the cover part of a double structure instead of a single cover part.
  • FIG. 4 is a diagram illustrating a configuration example of an electronic circuit mounted on the circuit board 20.
  • the signals received by the FM band antenna elements 401 to 404 are respectively input to the FM amplifiers 201 to 204 corresponding to the individual antenna elements 401 to 404 and amplified.
  • the outputs of the FM amplifier 201 and the FM amplifier 202 are synthesized by the synthesis circuit 211.
  • the outputs of the FM amplifier 203 and the FM amplifier 204 are combined by the combining circuit 212.
  • the outputs of the two synthesis circuits 211 and 212 are further synthesized by the synthesis circuit 221.
  • Signals received by the AM band antenna elements 405 and 406 are also input to the AM amplifiers 205 and 206 respectively paired with the individual antenna elements 405 and 406 and amplified.
  • the outputs of the AM amplifiers 205 and 206 are synthesized by the synthesis circuit 213.
  • the outputs of the synthesis circuits 221 and 213 are output to the output terminal 231. Note that a band pass filter, an AGC (Automatic Gain Control) device, and the like are appropriately added to the electronic circuit.
  • the FM amplifiers 201 to 204 will be described in detail.
  • the first stage amplifying elements of the FM amplifiers 201 to 204 are preferably elements that have low noise in a wide frequency range such as 76 [MHz] to 108 [MHz].
  • an element having a minimum noise figure Fmin of 0.2 [dB] or less and an equivalent noise resistance Rn of 4 [ ⁇ ] or less in the reception frequency band is preferable.
  • an element there is, for example, a HEMT (High Electron Mobility Transistor) made of a compound semiconductor such as GaAs, InP, GaN, or SiGe.
  • the HEMT is an FET (Field-Effect-Transistor) using a high mobility two-dimensional electron gas induced in a semiconductor heterojunction as a channel, and is generally an element used in a high-frequency band exceeding the FM band. .
  • FET Field-Effect-Transistor
  • NF noise figure
  • the AM amplifiers 205 and 206 take into account 1 / f noise, that is, noise whose intensity attenuates at 3 [dB] / octave, which is low frequency band noise, and is not a HEMT but a general FET or bipolar transistor. Is used.
  • the antenna performance of the antenna device 1 of the present embodiment will be described in detail.
  • the frequency range of matching between the electronic circuit connected to the antenna element and the antenna element is often narrowed. It is known.
  • the antenna gain is proportional to the square of the height.
  • the matching frequency range which is narrowed as the antenna element is reduced in height, is widened by increasing the area of the zenith capacity plate and securing the ground capacity.
  • the same signal is received by multiple antenna elements (those with a larger area of the zenith capacity plate as described above), and the received signal is amplified and synthesized. compensate. It may be amplified after synthesis. Thereby, even if the height is lowered, practical antenna performance can be obtained. The reason will be described below.
  • FIG. 5 is a characteristic diagram showing the relationship between the area of the zenith capacity plate and the antenna gain when the height is changed to 10 [mm], 20 [mm], and 30 [mm] in the antenna element 40 having the above structure. It is.
  • “height” refers to the distance from the antenna installation surface portion, which is the ground potential, to the zenith capacity plate.
  • FIG. 5A shows an example of the FM band
  • FIG. 5B shows an example of the AM band.
  • the horizontal axis represents the zenith capacity plate area [mm 2 ]
  • the vertical axis represents the antenna gain [dB].
  • the antenna gain [dB] represents an in-band average gain.
  • This characteristic diagram is calculated using “HFSS” which is a three-dimensional electromagnetic field simulator of ANSYS.
  • HFSS is a three-dimensional electromagnetic field simulator of ANSYS.
  • the height of the ground potential from the plane is 60 [mm]
  • the antenna gain of the shared antenna device was set as a reference (0 [dB]).
  • Such an antenna device is referred to as a “reference antenna” for convenience.
  • the antenna gain is correspondingly reduced.
  • the antenna gain is about 1/36, that is, ⁇ 15 [dB] in both the FM band and the AM band. It becomes.
  • the antenna gain can be improved by widening the matching frequency range at any height.
  • the antenna gain is improved as the area of the zenith capacity plate is increased.
  • the degree of improvement in the antenna gain is reduced from the area of the zenith capacity plate around 3500 [mm 2 ]. This means that, under the condition that the space for accommodating the antenna element is limited as in an antenna device mounted on a vehicle, it is not possible to ensure a sufficient antenna gain as a whole simply by increasing the area more than necessary. Means no.
  • the antenna element is not shared between the FM band and the AM band, but is independent.
  • 3500 [mm 2 ] as the area of the zenith capacity plate of the antenna elements 401 to 404 for the FM band
  • a zenith capacity plate having a long side of 70 [mm] and a short side of 50 [mm] did.
  • the antenna gain can be improved by 6 [dB]. That is, even if the height from the antenna installation surface is reduced to 10 [mm], the antenna gain difference from the reference antenna having a height of 60 [mm] can be reduced to about ⁇ 9 [dB]. It was. However, even if the area is about 90% (3000 [mm 2 ]), the antenna gain difference is about ⁇ 9.5 [dB], and a zenith capacity plate having such a size can also be used.
  • the height from the antenna installation surface portion is 10 [mm].
  • the antenna gain difference with the reference antenna having a height of 60 [mm] can be reduced to -3 [dB] even if the height is reduced to -3 [dB].
  • the antenna gain difference is about ⁇ 4 [dB]
  • a zenith capacity plate having such a size can also be used.
  • the antenna elements 401 to 404 having the zenith capacitance plate having the above area and the amplifiers 201 to 204 are respectively associated one by one, and the amplified signals of the amplifiers 201 to 204 are combined to obtain an output signal, thereby obtaining an FM band.
  • the antenna gain can be improved by a factor of 4 (6 [dB]) in the AM band and twice (3 [dB]) in the AM band.
  • the antenna gain in the FM band could be improved from ⁇ 9 [dB] to ⁇ 3 [dB]. This antenna gain can be increased compared with the case where one antenna element is used in the same area.
  • the area when four antenna elements 401 to 404 having a zenith capacity plate of 70 [mm] ⁇ 50 [mm] are installed in parallel is 14000 [mm 2 ].
  • the antenna gain is ⁇ 7.5 [dB] as is apparent from the graph of height 10 [mm] in FIG. is there. Therefore, even when the area is the same, the gain of 4.5 [dB] is increased when four antennas are used.
  • the area of each zenith capacity plate is made smaller than the above-mentioned size in the area of the limited antenna installation surface portion, and the number of antenna elements is increased. Even if the number of corresponding amplifiers is increased, there is a case where the antenna gain is greatly reduced by reducing the zenith capacity plate, and the loss of the synthesis circuit is increased, so that sufficient antenna performance as a whole cannot be obtained. Therefore, the number of antenna elements has a certain limit. On the other hand, when the height of the antenna element is 20 [mm] or 30 [mm], the number of antenna elements and corresponding amplifiers can be reduced.
  • a conventional low-profile antenna device for FM band and AM band mounted on a vehicle typically has a configuration shown in FIG. 6 because a space for accommodating an antenna element or the like is limited ( The same applies to the reference antenna described above). That is, in the conventional antenna apparatus, the FM band and the AM band are shared by one antenna element 601, and after the received signal is separated into the FM band signal and the AM band signal by the branching circuit 602, the FM band signal is The AM band signal is input to the FM amplifier 603, and the AM band signal is input to the AM amplifier 604. Then, the output of the FM amplifier 603 and the output of the AM amplifier 604 are led to an external electronic device through the output terminal 605.
  • the branching circuit 602 is a combination of a high-pass filter and a low-pass filter that are assembled with lumped constants, it is generally difficult to completely separate the FM band signal and the AM band signal. As a result, a part of the FM band signal flows into the AM amplifier. Similarly, a part of the AM band signal also flows into the FM amplifier. Therefore, a part of the energy of the received signal is lost. As a result, the energy of the signal at the output terminal 605 is not the sum of the output of the FM amplifier 603 and the output of the AM amplifier 604.
  • FM band antenna elements 401 to 404 and AM band antenna elements 405 and 406 are used, and FM band signals are FM amplifiers 201 to 204, AM band signals.
  • FM band signals are FM amplifiers 201 to 204, AM band signals.
  • AM amplifiers 205 and 206 are respectively amplified by the AM amplifiers 205 and 206 and then synthesized by the synthesis circuits 211 to 213 and 221. Therefore, the signal-to-noise ratio (S / N) is improved, which leads to an improvement in antenna gain.
  • So / No GSi / (GNi + Na) (1)
  • So is an output signal
  • No is an output noise
  • Si is an input signal
  • Ni is an input noise
  • Na is an amplifier noise
  • G is an amplification gain.
  • the output signal So is simply the input signal Si multiplied by G, while the output noise No is the input noise Ni multiplied by G and the noise Na generated by the amplifier.
  • the noise Na generated from the amplifier is random and has no correlation with each other. Therefore, it cannot be simply added up and becomes the square root of the sum of the root mean square, that is, ⁇ 2Na.
  • the branching circuit 601 shown in FIG. 6 is reduced, and FM band antenna elements 401 to 404, amplifiers 201 to 204, and AM band antenna elements 405 and 406 are used. It was found that the antenna gain of 3 [dB] can be improved by connecting the amplifiers 205 and 206 in parallel.
  • FIG. 7A is a directional characteristic diagram in the horizontal plane in the FM band and FIG. 7B in the AM band.
  • the antenna element 40 As shown in FIGS. 1 to 3, it is possible to obtain substantially the same reception sensitivity in all directions in both the FM band and the AM band. That is, the antenna device 1 of the present embodiment is omnidirectional in a plane parallel to the antenna installation surface. Therefore, for example, electromagnetic waves from all directions can be received without arranging directional antenna elements in a plurality of directions.
  • the antenna device 1 has an area of the zenith capacity plate of the FM band antenna elements 401 to 404 of about 3150 [mm 2 ] or more, preferably about 3500 [mm 2 ] or more.
  • the antenna gain of 3 [dB] could be improved by arranging four of them on the same plane [6 dB], and further reducing the number of branching circuits. That is, it has been found that the antenna performance equivalent to the reference antenna having a height of 60 [mm] can be maintained even when the height is reduced to 10 [mm].
  • the area of the zenith capacity plate of the antenna elements 405 and 406 for the AM band to 2520 [mm 2 ] or more, preferably 2800 [mm 2 ] or more, they are about 12 [dB], and they are 2 on the same plane. It was possible to improve the antenna gain of 3 [dB] by arranging them, and 3 [dB] by reducing the branching circuit. That is, it has been found that the antenna performance equivalent to or higher than that of the reference antenna having a height of 60 [mm] can be maintained even when the height is reduced to 10 [mm].
  • the basic configuration of the antenna device for the FM band and the AM band is the same as that of the first embodiment, and the height of the antenna element, that is, the distance from the antenna installation surface portion to the zenith capacitance plate is set as the antenna device of the first embodiment.
  • An embodiment in the case of higher than 1 will be described.
  • the names of the components of the antenna device are the same as those in the first embodiment.
  • FIG. 8 is a diagram illustrating an appearance of a portion of the antenna device according to the second embodiment with a cover portion removed.
  • FIG. 8A is a top view
  • FIGS. 8B and 8C are side views thereof.
  • one AM band antenna element 403a is placed between two FM band antenna elements 401a and 402a. It is arranged in parallel on the installation surface.
  • Each FM band antenna element 401a, 402a is connected to the same FM amplifier as described in the first embodiment.
  • the outputs of these FM amplifiers are synthesized by a synthesis circuit.
  • the AM band antenna element 403a is connected to the same AM amplifier as described in the first embodiment.
  • the antenna elements 401a and 402a for the FM band are configured by providing a zenith capacitance plate at the zenith portion of the element supports 301a and 302a each formed of a dielectric block and winding a linear conductor (helical coil) around the frame portion. Is done.
  • the antenna element 403a for the AM band is electrically connected to the zenith capacity plate provided at the zenith portion of the element support 303a, the zenith capacitance plate at one end through the hollow portion of the element support 303a, and the other end to the circuit board. It comprises a connected linear conductor (helical coil).
  • the sizes of the zenith capacity plates of the FM band antenna elements 401a and 402a are 100 [mm] for the long side and 27 [mm] for the short side.
  • the size of the zenith capacity plate of the antenna element 403a for AM band is 100 [mm] for the long side and 42 [mm] for the short side.
  • the antenna gain is obtained with one antenna element. Becomes ⁇ 4.5 [dB].
  • 3 [dB] is compensated by using two antenna elements having a zenith capacitance plate of this area, and 3 [dB] is compensated by not using a demultiplexing circuit, so that a total of 6 [dB] is compensated.
  • the antenna performance is better than the reference antenna.
  • the antenna characteristics can be improved by using a plurality of antenna elements as compared to the case of using one antenna element. That is, in the FM antenna of the antenna device 2 of the present embodiment, the area when two antenna elements 401a and 402a having a zenith capacity plate of 100 [mm] ⁇ 27 [mm] are installed in parallel is 5400 [mm 2 ]. It is. As is clear from FIG.
  • the antenna gain is ⁇ 3.5 [dB] compared to one antenna element having a zenith capacity plate having a height of 20 [mm] and an area of 5400 [mm 2 ]. Therefore, compared with this, even when the area is the same, the gain of 2 [dB] is higher than when two antenna elements are used.
  • the antenna element 403a in the AM band when the height of the zenith capacity plate is 20200 mm and the area of the zenith capacity plate is 4200 [mm 2 ], the antenna gain exceeds +4 [dB] by itself. Can be increased.
  • the installation space for the antenna element can be further reduced. That is, referring to FIGS. 5A and 5B, for example, in the FM band, the antenna gain becomes ⁇ 4 dB by setting the area of the zenith capacitance plate to 700 [mm 2 ]. Therefore, by using two antenna elements having a zenith capacity plate of this size, the antenna gain becomes -1 [dB]. Since the antenna gain of 3 [dB] can be obtained by deleting the branching circuit, the antenna element installation space can be further reduced while ensuring the antenna performance equivalent to or higher than that of the reference antenna.
  • FIG. 1 An example of an antenna device capable of transmitting and receiving at a cellular 800 [MHz] band, that is, a frequency of 800 [MHz] to 1000 [MHz] will be described.
  • the names of the components of the antenna device are the same as those in the first embodiment.
  • the antenna device of this embodiment is also used by being attached to a conductive antenna installation surface like a vehicle roof.
  • FIG. 9 is an external perspective view showing an example of the structure of the antenna device according to the third embodiment
  • FIG. 10 is an exploded perspective view thereof.
  • the antenna device 101 includes an antenna base 110, a circuit board 120, four element supports 1301 to 1304 (referred to as an element support 130 when it is not necessary to distinguish them), and four antenna elements 1401 to 1404 (these are When it is not necessary to distinguish, it is referred to as an antenna element 140) and a cover portion 150.
  • the cover 150 is made of a radio wave permeable synthetic resin.
  • an antenna mounting surface portion that is electrically connected to the vehicle roof during operation and becomes a ground potential, and a cover joint portion for watertightly joining the cover portion 150.
  • the antenna mounting surface portion has a thickness of about 0.5 [mm]
  • the cover joint portion has a thickness of about 1.0 [mm].
  • An attachment hole 110a for inserting an attachment mechanism (not shown) for attachment to the vehicle roof is formed in a substantially central portion of the antenna attachment surface portion.
  • a circuit board 120 is disposed on the antenna mounting surface. The thickness of the circuit board 120 is about 0.5 [mm].
  • the antenna element 140 includes a zenith capacity plate and a linear conductor.
  • the zenith capacity plate is composed of, for example, a copper plate having a thickness of 0.2 [mm] and four sides of 13 [mm] (13 ⁇ 13 [mm 2 ] in area).
  • the linear conductor is made of, for example, a copper wire having a wire diameter of 0.1 [mm], wound around the element support 130 several times, and has one end connected to a pair of zenith capacity plates and the other end. Is connected to an antenna feed terminal formed on the circuit board 120.
  • the winding directions of the adjacent linear conductors are opposite to each other.
  • the element support 130 has a role of holding and fixing a positioning guide and a corresponding zenith capacity plate when winding the corresponding linear conductor, and is a hollow dielectric block protruding in a direction perpendicular to the antenna installation surface. Consists of. The height from the antenna installation surface to the zenith capacity plate is approximately 10 [mm].
  • the circuit board 120 is used to exchange signals between an external circuit and a transmission / reception terminal connected to the antenna element 140, an electronic circuit including a distribution / synthesis circuit that distributes a signal at the time of transmission and synthesizes a signal at the time of reception. This is a board on which output terminals are mounted.
  • the circuit board 120 is accommodated in the hollow portion of the element support 130, and thus the size of the entire antenna device can be saved.
  • FIG. 11 shows the external appearance of the assembled antenna body.
  • FIG. 11A is a top view
  • FIGS. 11B and 11C are side views.
  • the zenith capacity plate is a substantially rectangular flat plate and is formed in the same shape and size as the zenith portion of the element support 130 protruding from the antenna base 110. Therefore, it becomes substantially parallel to the antenna installation surface.
  • the zenith capacity plate is not necessarily a rectangular flat plate, but may be a circle, a polygon, a ring, a net, a combination of a ring and a lattice, or other shapes. This is the same as the embodiment.
  • the linear conductor is a helical coil wound on the outer surface of the element support 130 at a predetermined interval (pitch), and the helical diameter is substantially the same as the outer diameter of the zenith capacity plate. That is, the size of the helical diameter is equal to the area of the zenith capacity plate (area of the portion surrounded by the outer periphery).
  • the helical diameter and pitch are adjusted so that the antenna element in the 800 [MHz] band resonates at the frequency in the cellular band.
  • the antenna element 140 has a size of 13 ⁇ 13 ⁇ 10 [mm 3 ] as a result of providing the zenith capacitance plate and the linear conductor as described above.
  • the size of the accommodation space of the entire antenna element 140 is 30 ⁇ 30 ⁇ 10 [mm 3 ].
  • FIG. 1 An example of the configuration of an electronic circuit mounted on the circuit board 120 is shown in FIG.
  • the antenna element 1401 and the antenna element 1402 are connected to the distribution / combination circuit 1201, and the antenna element 1403 and the antenna element 1404 are connected to the distribution / combination circuit 1202.
  • the two distribution / combination circuits 1201 and 1202 are connected to the distribution / combination circuit 1203, and the distribution / combination circuit 1203 is connected to an external device including a receiver and a transmitter via an output terminal 1204. ing.
  • the distributing / combining circuits 1201, 1202, and 1203 combine these received signals and guide them to the receiver of the external device. Since the same signal is received simultaneously, the antenna gain is significantly increased. On the other hand, when transmitting a signal, the transmission target signal output from the transmitter of the external device is distributed and fed to each of the antenna elements 1401 to 1404. Also in this case, since the same signal is transmitted simultaneously, the antenna gain is remarkably increased.
  • FIG. 13 is a diagram showing the relationship between the antenna gain and the area of the zenith capacitance plate in the 800 [MHz] band.
  • the vertical axis represents the antenna gain [dB] of the reference antenna ratio, and the horizontal axis represents the area [mm 2 ].
  • the antenna gain [dB] represents an in-band average gain.
  • the reference antenna is a single helical antenna having a height of 10 [mm] wound around 13 [mm] square. That is, it is the same as the antenna element 140 with the zenith capacity plate removed.
  • A1 is set to 0 [dB].
  • A2 is the antenna gain when a zenith capacity plate is added to this reference antenna and four of them are arranged as shown in FIGS. 9 to 11, and the value is 5.4 [dB. ].
  • A3 shows a change in antenna gain when the area of the zenith capacitance plate is changed in a state where the height is maintained at 10 [mm].
  • the antenna gain of one antenna element obtained by adding a zenith capacitance plate to the reference antenna is as high as 1.8 [dB].
  • the area of the zenith capacity plate antenna having an antenna gain equivalent to that of the reference antenna is 80 [mm 2 ].
  • the antenna gain is increased and the bandwidth can be increased.
  • the area when four antenna elements 1401 to 1404 having zenith capacity plates of 13 [mm] ⁇ 13 [mm] are installed in parallel as in the antenna device 101 of the present embodiment is about 900 [mm 2 ]. It is.
  • the antenna gain of one antenna element having a zenith capacity plate with an area of 900 [mm 2 ] is 4.0 [dB]. When divided and used, it was 1.4 [dB] higher.
  • the bandwidth of the antenna element is increased by increasing the area of the zenith capacitance plate, and the antenna gain can be increased by dividing the antenna element into a plurality of parts even in the same area. I was able to increase it.
  • FIG. 14 is a diagram showing configuration examples in the case where an amplifier is provided on the antenna device side.
  • a high-frequency circuit having a configuration illustrated in FIG. 14 is provided.
  • This high-frequency circuit is a circuit in which a reception amplifier R10 and a transmission amplifier T10 are provided in parallel between a pair of distribution / synthesis circuits RT10 and RT11 connected to terminals C1 and C2.
  • FIG. 15 shows an example in which high-frequency circuits 1211 to 1214 having the configuration shown in FIG. 14 are provided directly below the four antenna elements 1401 to 1404, respectively.
  • a distribution / synthesis circuit 1215 is connected to the high frequency circuit 1211 and the high frequency circuit 1212, and a distribution / synthesis circuit 1216 is connected to the high frequency circuit 1213 and the high frequency circuit 1214. Further, the two distribution / synthesis circuits 1215 and 1216 are connected to a distribution / synthesis circuit 1217, and this distribution / synthesis circuit is connected to the output terminal 1204 shown in FIG.
  • FIG. 16 shows an example in which high-frequency circuits 1221 to 1224 having the configuration shown in FIG. 14 are provided immediately below the four antenna elements 1401 to 1404 and these are connected to one distribution / synthesis circuit 1225.
  • This distribution / synthesis circuit 1225 is connected to the output terminal 1204.
  • the distribution / synthesis circuits RT10, RT11, 1215 to 1217, and 1225 function as distribution circuits at the time of transmission and function as synthesis circuits at the time of reception.
  • the antenna device of the present invention can be modified as follows. (1) In the first embodiment, four FM band antenna elements and two AM band antenna elements, and in the second embodiment, two FM band antenna elements and one AM band antenna element. Although an example in which antenna elements are arranged in parallel has been shown, the number of antenna elements may be other than these numbers. Alternatively, the antenna device can be configured by arranging only FM band antenna elements on the antenna installation surface.
  • the circuit board 20 or an electronic circuit mounted thereon is not the antenna base 10.
  • the antenna device may be provided separately from the antenna device so that it can be electrically connected via an interface.
  • only a synthesis circuit that synthesizes each frequency band signal may be provided on the circuit board 20, and the synthesized reception signal may be amplified by an external device of the antenna device.
  • an example of an antenna device for AM band and FM band and in the third embodiment, an example of an antenna device for a cellular 800 [MHz] band has been described.
  • An antenna device having an antenna element capable of receiving a frequency band, a frequency band for a navigation system, or a frequency band for satellite broadcasting may be used.
  • the antenna device shown in the first to third embodiments will be described. These antenna devices can be manufactured through the following manufacturing process.
  • the antenna device 1 of the first embodiment will be described, but the same applies to the antenna devices of the second embodiment and the third embodiment.
  • the number of divisions (k) and the area of the zenith capacity plate after division are determined from the area of the antenna installation surface that can be secured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

【課題】低背化による性能劣化を抑える構造のアンテナ装置を提供する。 【解決手段】アンテナベース10上に、4つのFM帯用のアンテナエレメント401~404と、2つのAM帯用のアンテナエレメント405,406とを並列配置する。また各アンテナエレメントと1対1で接続された合成回路を含む回路基板20を各アンテナエレメント401~406の内部空間に配置する。アンテナエレメント401~406は、水平面内で無指向性を呈するものとするために、ヘリカル状に巻かれた線状導体と、接地面(アンテナベース10)から実質的に最も離れた部位で線状導体と導通する面状導体とで構成する。

Description

アンテナ装置及びその製造方法
 本発明は、例えば車体に取付可能な低背型のアンテナ装置及びその製造方法に関する。
 車体に取付可能なFM帯及びAM帯用のアンテナ装置として、例えば特許文献1及び特許文献2に開示されたアンテナ装置がある。特許文献1に開示されたアンテナ装置は、シャークフィン形状のアンテナケース内に、アンテナベースと2種類のヘリカルアンテナ部で構成されたアンテナエレメントとを設ける。アンテナエレメントは、アンテナベースに近い側の第1ヘリカル部と、アンテナベースから遠い側の第2ヘリカル部とを有する。第1ヘリカル部は線路状パターンあるいは板状の導電性部材で構成される。他方、第2ヘリカル部は、第1ヘリカル部よりも単位長さ当たりの表面積が大きく、線状、べた状パターン、べた状パターンとワイヤ、板状の導電性部材を略コ字状に折り曲げたもの(横長な螺旋形状のエレメント)で構成される。
 また、特許文献2に開示されたアンテナ装置では、アンテナエレメントは、螺旋状のアンテナ素子と板状素子とで構成される。アンテナ素子はアンテナベースから車両用アンテナ装置の頂部方向に向かう仮想軸の周りに巻回される。板状素子は導電板であり、螺旋状のアンテナ素子の開放端側に、電気的に接続された状態で頂部上を覆い、仮想軸と垂直又は斜めに交差する位置関係となるように配置される。
特開2012-161075号公報 特開2013-106146号公報
 特許文献1に開示されたアンテナ装置は、限られたスペース内でアンテナエレメント全体を効率良くアンテナとして機能させることを主眼とする。しかしながら、このようなアンテナ装置では、2種類のヘリカル部が一定間隔をおいて高さ方向に設けられる。特に、第2ヘリカル部を板状の導電性部材で構成する場合、その面部がアンテナベースに対して立設する、いわゆる縦置きの構造となる。そのため、低背化には限界があり、70[mm]程度の高さまでしか実現できない。
 特許文献2に開示されたアンテナ装置は、アンテナ素子の先端に取り付けられた板状素子の効果により、低背型でありながら広帯域にわたってほぼ一定のアンテナ利得を確保することができる。しかしながら、このアンテナ装置は、単一のアンテナ素子及び板状素子で構成されているため、アンテナの高利得化には限界がある。例えば従来のシャークフィン型アンテナと同等のアンテナ利得を確保するためには、50[mm]以上の高さが必要となる。
 本発明は、上記の問題点に鑑み、上記の高さ以下に低背化しても従来のアンテナ装置と同等のアンテナ利得その他のアンテナ性能を維持することができる構造のアンテナ装置を提供することを課題とするものである。
 本発明の他の課題は、上記のアンテナ装置の製造方法を提供することにある。
 本発明のアンテナ装置は、動作時に接地電位となる面部を有するアンテナベースと、前記面部と平行の面上で無指向性を呈するように前記アンテナベース上に並べられ、同一信号を同時に受信又は送信するためのn個(nは2以上の自然数)のアンテナエレメントとを備えている。前記n個のアンテナエレメントは、それぞれ、その両端部が前記面部から離れる方向に配置された線状導体と、この線状導体の一端部が前記面部から実質的に最も離れた部位で前記一端部と導通し当該面部と略平行に対向する面状導体とを含み、前記線状導体の他端部が、他のアンテナエレメントの線状導体の他端部と電気的に分離されていることを特徴とする。
 本発明のアンテナ装置の製造方法は、アンテナエレメントを設置する面部の面積をそれぞれ前記アンテナエレメントの高さと、当該面積により確保されるアンテナ利得との関係に基づいてk分割(kは2以上の自然数)する分割工程と、それぞれ、分割された面積を有するk個の面状導体と、その一端部が前記面部から実質的に最も離れた部位で前記面状導体と導通し、その他端部が前記面部に実質的に最も近い部位で、k系統の増幅回路のうちいずれかの系統の増幅回路と電気的に接続される線状導体とを、前記面部と平行の平面上で無指向性となるように前記面部に並列配置する配置工程とを有し、前記面部に、同一信号の受信又は送信するk個のアンテナエレメントを構成することを特徴とする方法である。
 本発明のアンテナ装置は、動作時に接地電位となる面部と略平行に対向する面状導体を備え、この面状導体で対地容量を確保することにより、広帯域化とアンテナ利得の向上を図り、かつ、このような面状導体を有するアンテナエレメントを、前記面部と平行の面内で無指向性を呈するようにアンテナベースに複数並べて、さらなるアンテナ利得の向上を図るので、接地面からのアンテナ高さを低くしても、それに伴うアンテナ利得などの低下を補うことができる。
第1実施形態に係るアンテナ装置の外観斜視図。 第1実施形態のアンテナ装置の分解組立図。 (a)は第1実施形態のアンテナ装置におけるアンテナ本体部の正面図、(b)及び(c)は側面図。 回路基板に搭載される電子回路の構成図。 第1実施形態と比較用アンテナ装置との天頂容量板面積とアンテナ利得の関係を示すグラフであり、(a)はFM帯、(b)はAM帯のものを表す。 従来型アンテナ装置の回路基板に搭載される電子回路の構成図。 第1実施形態のアンテナ装置の指向特性を示すグラフであり、(a)はFM帯、(b)はAM帯のものを表す。 (a)は第2実施形態のアンテナ装置におけるアンテナ本体部の正面図、(b)及び(c)は側面図。 第3実施形態のアンテナ装置の外観斜視図。 第3実施形態のアンテナ装置の分解組立図。 (a)は第3実施形態のアンテナ装置におけるアンテナ本体部の正面図、(b)及び(c)は側面図。 回路基板に搭載される電子回路の構成図。 第3実施形態と基準アンテナとのアンテナ利得の関係を示すグラフ。 高周波回路の構成図。 回路基板に搭載される電子回路の他の構成図。 回路基板に搭載される電子回路の他の構成図。
 以下、図面を参照して本発明の実施の形態を説明する。
[第1実施形態]
 第1実施形態では、本発明をFM帯(76[MHz]~108[MHz])及びAM帯(0.520[MHz]~1.710[MHz])において使用可能な低背型のアンテナ装置に適用した場合の例を説明する。このアンテナ装置は、例えば車両ルーフに取り付けて使用されるものであり、水平面で無指向性を呈するものである。
 図1は、本実施形態に係るアンテナ装置の構造例を示す外観斜視図である。また、図2は、その分解斜視図である。このアンテナ装置1は、アルミダイキャスト等の金属部材で構成されるアンテナベース10を有する。このアンテナベース10は、車両ルーフに取り付けるための部品であり、その上面(車両ルーフを指向する底面と逆の方向。以下同じ。)には、動作時に車両ルーフと導通して接地電位となる面部(「アンテナ取付面部」)と、カバー部50を水密に接合するためのカバー接合部とが形成されている。
 アンテナベース10は4辺の長さがそれぞれ160[mm]の正方形状のものであり、アンテナ取付面部は、アンテナベース10の外周部分のカバー接合部よりやや窪んだ領域に22500[mm](=150[mm]×150[mm])の面積で形成される。
 アンテナ取付面部の厚みは約0.5[mm]、カバー接合部の厚みは約1.0[mm]である。
 アンテナ取付面部の略中央部には、車両ルーフに取り付けるための取付機構(図示省略)を挿入するための取付孔10aが形成されている。アンテナ取付面部には、回路基板20が配設される。回路基板20の厚みは約0.5[mm]である。
 回路基板20は、1枚の樹脂基板に電子回路が実装されたものである。具体的には、基板表面が6つに区画され、各区画毎に、それぞれ配線パターンを介して電気的に接続されたアンテナ給電端子及び増幅器を含む増幅回路が形成されている。つまり、6系統の増幅回路が形成されている。また、各系統の出力信号(増幅信号)を合成する合成回路と、合成回路の出力を外部装置へ伝達するための出力端子も回路基板20に形成されている。
 回路基板20の上面には、6つのエレメント支持体301~306(これらを区別する必要がない場合はエレメント支持体30という。)が並列配置されている。「並列配置」とは、互いに重なることなく、同一面内に並べられることをいう。
 エレメント支持体301~306は、誘電体ブロックなどで構成され、それぞれ対応するアンテナエレメント401~406(これらを区別する必要がない場合はアンテナエレメント40という。)が支持されている。
 誘電体ブロックで構成する場合、各エレメント支持体30は、アンテナベース10と平行に対向する天頂部と、この天頂部の周縁から下方(回路基板20の方向。以下同じ)に延びる枠体とを含むものとなる。天頂部は開口面であっても良く、枠体は複数本の柱の組み合わせで構成しても良い。
 各エレメント支持体30の枠体で囲まれた部分は、中空の空間となる。回路基板20から突出する回路部品は、この中空の空間に収容される。これにより、アンテナ装置全体のサイズの節約を図ることができる。枠体の外表面には、所定ピッチで溝がヘリカル状に形成されている。
 アンテナエレメント40は、それぞれ、線状導体と、対地容量確保用の面状導体とを含んで構成される。面状導体は、例えば、エレメント支持体30の天頂部とほぼ同じ面積(天頂部の外周で囲まれた部分の面積)で、その厚みが0.2[mm]の矩形平板状となる網状又は板状の導体(以下、「天頂容量板」という。)である。
 本実施形態では、4つのFM帯用のアンテナエレメント401~404と、2つのAM帯用のアンテナエレメント405,406とを並列配置している。FM帯用のアンテナエレメント401~404の各天頂容量板の面積は3500[mm](=70[mm]×50[mm])である。また、AM帯用のアンテナエレメント405,406の各天頂容量板の面積は2800[mm](=70[mm]×40[mm])である。
 各アンテナエレメント40は、それぞれ隣り合うものとの隙間を5~10[mm]空けて配置される。つまり、全体として、22500[mm]のアンテナ設置面部に、6つのアンテナエレメント40が並列配置される。このような面積にした理由については、後述する。
 天頂容量板には、両端部を有する線状導体の一端部が、アンテナベース10から実質的に最も離れた部位で電気的に接続される。「実質的に最も離れた部位」とは、対地容量を最も多く確保できる高さとなる部位を意味する。線状導体の他端部は、回路基板20に形成されたアンテナ給電端子(図示省略)に接続される。
 線状導体は、FM帯用のものは、例えば線径0.4[mm]の銅線をエレメント支持体30の枠部の外周の溝に数回巻回されたものである。つまり、所定間隔(ピッチ)で巻回されたヘリカルコイルである。銅線は枠部の溝に嵌装されるので、溝の深さを銅線の直径にすることで、ヘリカル径は、天頂容量板の外径とほぼ同じとなる。ヘリカル径及びピッチは、FM帯の周波数で共振するように調整される。
 線状導体をヘリカルコイルとする場合、それぞれ隣り合う銅線(ヘリカルコイル)の巻方向は、互いに逆巻とするのが望ましい。このようにすることで、銅線に流れる電流が同相となり、そうでない場合に比べてアンテナエレメント同士の結合が抑制され、アンテナ特性の劣化が抑制される。
 AM帯用の線状導体は、一定のインダクタンス成分を確保できれば良いので、必ずしもヘリカルコイルでなくとも良い。但し、ヘリカルコイルとする場合は、巻方向を互いに逆巻とすることが望ましい。
 組み立てられたアンテナ装置のうちカバー部50を外した部分の外観を図3に示す。図3(a)は上面図、同(b)及び(c)はその側面図である。図3(a)に示されるように、アンテナエレメント40の天頂容量板は、それぞれ略矩形状の平板で、アンテナベース10から突出するエレメント支持体30の天頂部と同じ形状及びサイズに成形される。そのため、天頂容量板は、アンテナベース10のアンテナ取付面部に対して平行に対向し、動作時に対地容量を確保する。
 なお、天頂容量板は、図示の例では矩形平板であるが、必要な電気性能を確保する観点からは、必ずしも矩形平板である必要はなく、円形、多角形、環状、網状、環と格子との組み合わせ、その他の形状の平板であっても良い。この場合、エレメント支持体30の天頂部の形状も、天頂容量板の形状に合わせたものとなる。
 カバー部50は、アンテナベース10、回路基板20、アンテナエレメント40を覆うものであり、アンテナベース10の周縁のカバー接合部に水密に装着される。このカバー部50は、例えば電波透過性の合成樹脂で構成され、箱状に成形されるが、車体の色に合わせたものであっても良い(図1では説明の便宜上、透光性の樹脂で構成している)。また、単一のカバー部でなく、二重構造のカバー部にすることもできる。
 図4は、回路基板20に実装される電子回路の構成例を示す図である。FM帯用アンテナエレメント401~404で受信された信号は、個々のアンテナエレメント401~404とそれぞれ1対1に対応するFM増幅器201~204にそれぞれ入力され、増幅される。FM増幅器201とFM増幅器202の出力は合成回路211で合成される。また、FM増幅器203とFM増幅器204の出力は合成回路212で合成される。2つの合成回路211、212の出力は合成回路221でさらに合成される。
 AM帯用アンテナエレメント405,406で受信された信号もまた、個々のアンテナエレメント405,406とそれぞれペアとなるAM増幅器205,206にそれぞれ入力され、増幅される。各AM増幅器205,206の出力は、合成回路213で合成される。各合成回路221、213の出力は、出力端子231へ出力される。
 なお、電子回路には、適宜、帯域通過フィルタ、AGC(Automatic Gain Control:自動利得制御)器などが付加される。
 ここで、FM増幅器201~204について、詳しく説明する。各FM増幅器201~204の初段の増幅素子は、76[MHz]~108[MHz]のような広い周波数の範囲で低雑音となる素子が好ましい。具体的には、受信周波数帯においてその最小雑音指数Fminが0.2[dB]以下で、等価雑音抵抗Rnが4[Ω]以下となるような素子が好ましい。このような素子としては、例えばGaAs系、InP系、GaN系、SiGeなどの化合物半導体で作製されたHEMT(High Electron Mobility Transistor:高電子移動度トランジスタ)がある。HEMTは、半導体ヘテロ接合に誘起された高移動度の二次元電子ガスをチャネルとしたFET(Field Effect Transistor:電界効果トランジスタ)であり、一般に、FM帯を超える高周波帯で使用される素子である。
 本実施形態でHEMTを使用するのは、入出力インピーダンス整合の追求よりも、アンテナエレメントに接続したときの雑音指数(Noise Figure:以下、「NF」という)を所望の周波数帯域全体でほぼ一定になるように動作させるという視点を重視するためである。なお、NFは、増幅器の入力における信号対雑音比(Si/Ni)と出力における信号対雑音比(So/No)の比で表される指標であり、小さいほど低雑音特性となる。
 AM用増幅器205,206は、1/f雑音、すなわち、低周波域の雑音である3[dB]/オクターブでその強度が減衰する雑音を考慮し、HEMTではなく、一般的なFETもしくはバイポーラトランジスタを利用している。
 次に、本実施形態のアンテナ装置1のアンテナ性能について詳しく説明する。
 接地電位の面から最も離れたアンテナエレメントまでの距離、つまりアンテナエレメントの高さが低くなると、アンテナエレメントに接続されている電子回路とアンテナエレメントとの整合周波数範囲が狭帯域化することは、よく知られていることである。アンテナ利得が、上記高さの2乗に比例することも同様である。
 本実施形態のアンテナ装置1では、アンテナエレメントを低背化するにつれて狭帯域化する整合周波数範囲を、天頂容量板の面積を大きくして対地容量を確保することで、広帯域化する。低背化に伴って低下するアンテナ利得については、同一信号を複数のアンテナエレメント(上記のように天頂容量板の面積を大きくしたもの)で受信し、受信した信号を増幅した後に合成することで補う。なお、合成後に増幅しても良い。これにより、低背化しても、実用的なアンテナ性能を得ることができる。以下、その理由を説明する。
 図5は、上記構造のアンテナエレメント40において、高さを10[mm]、20[mm]、30[mm]と変えたときの天頂容量板の面積とアンテナ利得との関係を表した特性図である。ここにいう「高さ」とは、接地電位であるアンテナ設置面部から天頂容量板までの距離をいう。図5(a)はFM帯、同(b)はAM帯の例である。それぞれ横軸は天頂容量板面積[mm]、縦軸はアンテナ利得[dB]である。アンテナ利得[dB]は、帯域内平均利得を表す。
 この特性図は、ANSYS社の三次元電磁界シミュレータである「HFSS」を使用して計算したものである。比較のため、接地電位の平面(アンテナ装着面部に相当)からの高さが60[mm]で、天頂容量板の面積が10×40(=400)[mm]のFM帯及びAM帯で共用するアンテナ装置のアンテナ利得を基準(0[dB])とした。このようなアンテナ装置を、便宜上「基準アンテナ」という。
 天頂容量板の面積を400[mm]のまま、60[mm]から30[mm]、20[mm]、10[mm]と低背化していくと、アンテナ利得はそれに対応して小さくなる。例えば、図5(a),(b)に示された例では、高さを10[mm]まで低くすると、アンテナ利得は、FM帯、AM帯ともに、約1/36すなわち-15[dB]となる。
 一方、天頂容量板の面積を大きくしていくと、どの高さの場合も、整合周波数範囲の広帯域化によりアンテナ利得の向上を図ることができる。
 但し、AM帯では天頂容量板の面積を大きくするほどアンテナ利得は向上するが、FM帯では、天頂容量板の面積が3500[mm]辺りからアンテナ利得の向上の度合いが鈍る。このことは、車両に搭載されるアンテナ装置のように、アンテナエレメントの収容空間が限られる条件の下では、必要以上に面積を大きくするだけでは、全体として、十分なアンテナ利得を確保できるわけではないことを意味する。
 本実施形態では、アンテナエレメントをFM帯とAM帯とで共用せず、独立のものとした。そして、FM帯用のアンテナエレメント401~404の天頂容量板の面積として3500[mm]を確保するために、それぞれ長辺が70[mm]で短辺が50[mm]の天頂容量板とした。このように4つのアンテナエレメント401~404の天頂容量板を用いることにより、アンテナ利得を6[dB]改善させることができた。つまり、アンテナ設置面部からの高さを10[mm]まで低くしても、60[mm]の高さの基準アンテナとのアンテナ利得差を約-9[dB]にまで縮めることが可能となった。但し、上記の約90%の面積(3000[mm])でも、上記のアンテナ利得差は-9.5[dB]程度であり、このようなサイズの天頂容量板を用いることもできる。
 AM帯の場合は、長辺が70[mm]で短辺が40[mm](=2800[mm])の天頂容量板を用いることにより、アンテナ設置面部からの高さを10[mm]まで低くしても、60[mm]の高さの基準アンテナとのアンテナ利得差を-3[dB]にまで縮めることが可能となった。但し、上記の約90%の面積(2500[mm])でも、上記のアンテナ利得差は-4[dB]程度であり、このようなサイズの天頂容量板を用いることもできる。
 また、上記面積の天頂容量板を有するアンテナエレメント401~404と増幅器201~204とをそれぞれ1対1で対応させ、増幅器201~204の増幅信号を合成して出力信号を得ることにより、FM帯で4倍(6[dB])、AM帯で2倍(3[dB])のアンテナ利得の改善が可能となった。
 これにより、FM帯におけるアンテナ利得は、-9[dB]から-3[dB]に改善することができた。このアンテナ利得は、同じ面積で、一つのアンテナエレメントを使用する場合に比べて高めることができている。すなわち、70[mm]×50[mm]の天頂容量板を有する4つのアンテナエレメント401~404を並列設置したときの面積は、14000[mm]である。このような面積の天頂容量板を、一つのアンテナエレメントで構成した場合、図5(a)の高さ10[mm]のグラフから明らかなように、アンテナ利得は-7.5[dB]である。したがって、同じ面積であっても、アンテナ4個使用した場合は4.5[dB]利得が高くなった。
 なお、図5(a),(b)からわかるように、限られたアンテナ設置面部の面積の中で個々の天頂容量板の面積を上記サイズよりも小さくしてアンテナエレメントの数を増やし、かつ、対応する増幅器の数を増やそうとしても、天頂容量板を小さくした分のアンテナ利得の低下が大きく、かつ合成回路の損失が大きくなり、全体として十分なアンテナ性能を得ることができない場合があるので、アンテナエレメント数については、一定の限界がある。
 他方、アンテナエレメントの高さを20[mm]又は30[mm]にした場合は、アンテナエレメント及び対応する増幅器の数を減らすことができる。
 次に、電子回路側でのアンテナ性能の改善の仕組みについて説明する。
 車両に装着される従来のFM帯及びAM帯用の低背型アンテナ装置は、アンテナエレメント等の収容スペースが限られているため、典型的には、図6に示した構成のものとなる(上述した基準アンテナも同じ)。すなわち、従来型アンテナ装置は、FM帯とAM帯とを一つのアンテナエレメント601で共用し、受信した信号を分波回路602でFM帯信号とAM帯信号とに分離した後、FM帯信号はFM増幅器603に入力し、AM帯信号はAM増幅器604に入力している。そして、FM増幅器603の出力と、AM増幅器604の出力とを出力端子605を通じて外部の電子機器へ導いている。
 ところが、分波回路602は集中定数で組まれるハイパス・フィルタとローパス・フィルタの組み合わせなので、FM帯信号とAM帯信号とを完全に分離することは、一般には困難である。その結果、FM帯信号の一部はAM増幅器に流れ込む。同様に、AM帯信号の一部もFM増幅器へと流れ込む。そのため、受信した信号のエネルギーの一部取りこぼしが生じてしまう。その結果、出力端子605における信号のエネルギーは、FM増幅器603の出力とAM増幅器604の出力との合算値にならない。
 これに対し、本実施形態のアンテナ装置1では、FM帯用のアンテナエレメント401~404と、AM帯用のアンテナエレメント405,406とを用い、FM帯信号はFM増幅器201~204、AM帯信号はAM増幅器205,206でそれぞれ独立に増幅した後に、各合成回路211~213,221で合成している。そのため、信号対雑音比(S/N)が向上し、これがアンテナ利得の向上につながっている。
 このことを、一対のアンテナエレメントの例を挙げて説明する。これらのアンテナエレメントと増幅器によるS/Nは、以下の式で表される。
     So/No=GSi/(GNi+Na)・・・(1)
 但し、Soは出力信号、Noは出力雑音、Siは入力信号、Niは入力雑音、Naは増幅器雑音、Gは増幅利得である。
 出力信号Soは、単純に入力信号SiがG倍されたものであるのに対し、出力雑音Noは、入力雑音NiがG倍されたものに増幅器が発生する雑音Naが加わる。ここで、アンテナエレメントと増幅器とが2個並列に接続された場合は、入力信号Niと入力雑音Noは、ともに同じものが加わるので単純に合算値となる。しかし、増幅器から発生する雑音Naはランダムであり、互いに相関性がない。そのため、単純に合算することはできず、2乗平均の和の平方根、すなわち、√2Naとなる。
 つまり、アンテナエレメントと増幅器との組が並列接続された場合のS/Nは、以下のようになる。
 So/No=2GSi/(2GNi+√2Na) ・・・(2)
 (1)式と(2)式とを比較すると、(2)式(並列接続)の方が出力S/Nが大きくなることがわかる。
 本発明者らの実測によれば、図6に示した分波回路601を削減して、FM帯用のアンテナエレメント401~404と増幅器201~204、及び、AM帯用のアンテナエレメント405,406と増幅器205,206を並列接続させることで、それぞれ3[dB]のアンテナ利得を改善することができることが判明した。
 図7(a)はFM帯、同(b)はAM帯における水平面内の指向特性図である。アンテナエレメント40を図1~図3のような構造にすることにより、FM帯、AM帯ともに、全方位にわたってほぼ同じ受信感度を得ることができた。つまり、本実施形態のアンテナ装置1は、アンテナ設置面部と平行となる面内で無指向性となるものである。
 そのため、例えば指向性をもつアンテナエレメントを複数方向に配置することなく、全方位からの電磁波を受信することができる。
 このように、本実施形態のアンテナ装置1は、FM帯用のアンテナエレメント401~404の天頂容量板の面積を3150[mm]以上、好ましくは3500[mm]以上とすることで約6[dB]、それらを4つ同一平面上に並べることで[6dB]、さらに、分波回路を削減することで3[dB]のアンテナ利得を改善することができた。つまり、高さ60[mm]の基準アンテナと同等のアンテナ性能を、高さ10[mm]まで低背化しても維持することができることが判明した。
 また、AM帯用のアンテナエレメント405,406の天頂容量板の面積を2520[mm]以上、好ましくは2800[mm]以上とすることで約12[dB]、それらを同一平面上に2つ並べることで3[dB]、分波回路を削減することで3[dB]のアンテナ利得を改善することができた。つまり、高さ60[mm]の基準アンテナと同等以上のアンテナ性能を、高さ10[mm]まで低背化しても維持することができることが判明した。
[第2実施形態]
 次に、FM帯及びAM帯用のアンテナ装置としての基本構成は第1実施形態と同じで、アンテナエレメントの高さ、すなわちアンテナ設置面部から天頂容量板までの距離を第1実施形態のアンテナ装置1よりも高くした場合の実施の形態例を説明する。アンテナ装置の構成要素の名称等については、第1実施形態と同様とする。
 アンテナエレメントを10[mm]よりも高くすると、補償する天頂容量板の面積を小さくできること、つまり、アンテナ設置面部の面積を小さくできることは、図5(a),(b)に示した特性図からわかることである。そこで、第2実施形態では、アンテナエレメントの高さを20[mm]、アンテナ設置面部の面積を10000[mm](=100[mm]×100[mm])とする場合の例を示す。
 図8は、第2実施形態に係るアンテナ装置のうち、カバー部を外した部分の外観を示す図である。図8(a)は上面図、同(b)及び(c)はその側面図である。
 図8(a)に示されるように、第2実施形態のアンテナ装置は、2つのFM帯用のアンテナエレメント401a,402aの間に、1つのAM帯用のアンテナエレメント403aをアンテナベース210のアンテナ設置面部に並列配置して構成される。各FM帯用のアンテナエレメント401a,402aには、それぞれ第1実施形態で説明したものと同じFM増幅器が接続されている。これらのFM増幅器の出力は合成回路で合成される。また、AM帯用のアンテナエレメント403aには、第1実施形態で説明したものと同じAM増幅器が接続されている。
 FM帯用のアンテナエレメント401a,402aは、それぞれ誘電体ブロックで構成されるエレメント支持体301a,302aの天頂部に天頂容量板を設けるとともに枠部に線状導体(ヘリカルコイル)を巻回して構成される。また、AM帯用のアンテナエレメント403aは、エレメント支持体303aの天頂部に設けられた天頂容量板と、エレメント支持体303aの中空部を通じて一端が天頂容量板、他端が回路基板と電気的に接続された線状導体(ヘリカルコイル)とを備えて構成される。
 FM帯用のアンテナエレメント401a,402aの天頂容量板のサイズは、長辺が100[mm]で短辺が27[mm]である。また、AM帯用のアンテナエレメント403aの天頂容量板のサイズは、長辺が100[mm]で短辺が42[mm]である。
 図5(a)に示されるように、FM帯用のアンテナエレメント401a、402aの高さが20[mm]で天頂容量板の面積が2700[mm]の場合、1つのアンテナエレメントでアンテナ利得が-4.5[dB]となる。したがって、この面積の天頂容量板を有するアンテナエレメントを2つ用いることで3[dB]、さらに、分波回路を使わないことで3[dB]補償され、計6[dB]補償されるため、基準アンテナ以上のアンテナ性能となる。
 本実施形態においても、複数個のアンテナエレメントを使用することにより、一つのアンテナエレメントを使用する場合に比べて、アンテナ特性を高めることができることがわかる。すなわち、本実施形態のアンテナ装置2のFMアンテナでは、100[mm]×27[mm]の天頂容量板を有する2つのアンテナエレメント401a、402aを並列設置したときの面積は、5400[mm]である。図5(a)から明らかなように、高さ20[mm]で5400[mm]の面積の天頂容量板を有する一つのアンテナエレメントと比較すると、アンテナ利得は-3.5[dB]であるから、これに比較して、同じ面積であっても、アンテナエレメントを2個使用した場合よりも2[dB]利得が高くなった。
 AM帯のアンテナエレメント403aについても、20[mm]の高さで天頂容量板の面積が4200[mm]の場合、それだけでアンテナ利得が+4[dB]を超えるため、基準アンテナよりもアンテナ性能を高めることができる。
 また、第1実施形態のアンテナ装置1では、アンテナ設置面部の面積が22500[mm](=150[mm]×150[mm])であったのに対し、第2実施形態のアンテナ装置は、10000[mm](=100[mm]×100[mm])で済むので、高さが10[mm]増えるだけで、アンテナエレメントの設置スペースを半分以下にすることができる。なお、第2実施形態のアンテナ装置も、水平面内で無指向性となる。
 アンテナエレメントの高さを30[mm]とし、同じアンテナ性能のアンテナ装置を実現する場合は、アンテナエレメントの設置スペースをより小さくすることができる。
 すなわち、図5(a),(b)を参照すると、例えばFM帯では、天頂容量板の面積を700[mm]とすることでアンテナ利得が-4dBとなる。そのため、このサイズの天頂容量板を有するアンテナエレメントを2つ用いることで、アンテナ利得は-1[dB]となる。分波回路を削除することでさらに3[dB]のアンテナ利得が得られるので、基準アンテナと同等以上のアンテナ性能を確保しつつ、アンテナエレメントの設置スペースをより小さくすることができる。
[第3実施形態]
 次に、本発明の第3実施形態を説明する。この実施形態では、セルラー方式の800[MHz]帯、すなわち、800[MHz]~1000[MHz]の周波数で送受信できるアンテナ装置の例を説明する。アンテナ装置の構成要素の名称等については、第1実施形態と同様とする。この実施形態のアンテナ装置もまた、車両ルーフのように、導電性を有するアンテナ設置面に取り付けて使用される。
 図9は、第3実施形態に係るアンテナ装置の構造例を示す外観斜視図、図10は、その分解斜視図である。このアンテナ装置101は、アンテナベース110、回路基板120、4つのエレメント支持体1301~1304(これらを区別する必要がない場合はエレメント支持体130という。)、4つのアンテナエレメント1401~1404(これらを区別する必要がない場合はアンテナエレメント140という。)、及びカバー部150を備えている。カバー部150は、電波透過性の合成樹脂で構成される。
 アンテナベース110の上面には、動作時に車両ルーフと導通して接地電位となるアンテナ取付面部と、カバー部150を水密に接合するためのカバー接合部とが形成されている。アンテナ取付面部は、アンテナベース110の外周部分のカバー接合部よりやや窪んだ領域に900[mm](=30[mm]×30[mm])の面積で形成されている。アンテナ取付面部の厚みは約0.5[mm]、カバー接合部の厚みは約1.0[mm]である。
 アンテナ取付面部の略中央部には、車両ルーフに取り付けるための取付機構(図示省略)を挿入するための取付孔110aが形成されている。アンテナ取付面部には、回路基板120が配設される。回路基板120の厚みは約0.5[mm]である。
 アンテナエレメント140は、第1及び第2実施形態の場合と同様、それぞれ天頂容量板と線状導体とで構成される。天頂容量板は、例えば厚み0.2[mm]、4辺がそれぞれ13[mm](面積では13×13[mm])の銅板などで構成される。線状導体は、例えば線径0.1[mm]の銅線からなり、エレメント支持体130の周囲に数回巻回され、一方端は、それぞれ対となる天頂容量板に接続され、他方端は回路基板120上に形成されたアンテナ給電端子に接続される。それぞれ隣り合う線状導体の巻方向は互いに逆巻である。このようにすることで、銅線に流れる電流が同相となり、そうでない場合に比べてアンテナエレメント同士の結合が抑制され、アンテナ特性の劣化が抑制される。
 エレメント支持体130は、対応する線状導体を巻回する際の位置決めガイド及び対応する天頂容量板を保持固定する役割を持ち、アンテナ設置面に対して垂直方向に突出する中空の誘電体ブロックなどで構成される。アンテナ設置面から天頂容量板までの高さは、略10[mm]である。
 回路基板120は、アンテナエレメント140に接続される送受信端子と、送信時には信号を分配し、受信時には信号を合成する分配・合成回路を含む電子回路と、外部回路との信号の受け渡しを行うための出力端子とを搭載した基板である。
 回路基板120は、エレメント支持体130の中空部に収容され、これにより、アンテナ装置全体のサイズの節約を図ることができる。
 組み立てられたアンテナ本体外観を図11に示す。図11(a)は上面図、(b)及び(c)は側面図である。図11(a)に示されるように、天頂容量板は、略矩形状の平板で、アンテナベース110から突出するエレメント支持体130の天頂部と同じ形状及びサイズに成形される。そのため、アンテナ設置面部に対して略平行となる。
 なお、天頂容量板が、必ずしも矩形平板である必要はなく、円形、多角形、環状、網状、環と格子との組み合わせ、その他の形状であっても良い点は、第1実施形態及び第2実施形態と同じである。
 また、線状導体は、エレメント支持体130の外側面に、所定間隔(ピッチ)で巻かれたヘリカルコイルになっており、ヘリカル径は、天頂容量板の外径とほぼ同じである。つまり、ヘリカル径の大きさは、天頂容量板の面積(外周で囲まれた部分の面積)と同等になっている。ヘリカル径及びピッチは、800[MHz]帯のアンテナエレメントにおいてはセルラー帯の周波数で共振するように調整される。
 次に、図9~図11に示した構造のアンテナ装置101の各部の構成を詳しく説明する。アンテナエレメント140は、それぞれ天頂容量板と線状導体が上記のように設けられる結果、13×13×10[mm]のサイズとなる。アンテナエレメント140間の隙間は4[mm]である。そのため、アンテナベース110上のアンテナ取付面部の面積は900[mm](=30×30[mm])となる。また、アンテナエレメント140全体の収容空間のサイズは、30×30×10[mm]となる。
 回路基板120に実装される電子回路の構成例を図12に示す。アンテナエレメント1401とアンテナエレメント1402は、分配・合成回路1201と接続されており、アンテナエレメント1403とアンテナエレメント1404は、分配・合成回路1202と接続されている。また、2つの分配・合成回路1201、1202は、分配・合成回路1203と接続され、分配・合成回路1203は、出力端子1204を介して、受信機と送信機とを備えた外部装置と接続されている。
 分配・合成回路1201,1202,1203は、アンテナエレメント1401~1404が信号を受信したときは、これらの受信信号を合成して外部装置の受信機に導く。同一信号を同時に受信するので、アンテナ利得は格段に高まる。一方、信号を送信するときは、外部装置の送信機から出力される送信対象信号を分配して各アンテナエレメント1401~1404に給電する。この場合も同一信号を同時に送信するので、アンテナ利得は格段に高まる。
 図13は、800[MHz]帯におけるアンテナの利得と天頂容量板の面積との関係を示す図である。縦軸は、基準アンテナ比のアンテナ利得[dB]であり、横軸は面積[mm]である。アンテナ利得[dB]は、帯域内平均利得を表す。
 この実施形態では、基準アンテナを、13[mm]四方に巻かれた、高さ10[mm]の1つのヘリカルアンテナとした。つまり、アンテナエレメント140から天頂容量板を外したものと同じである。
 基準アンテナ1つ分の開口面積は、169[mm](=13[mm]×13[mm])となるので、その利得A1を基準0[dB]としている。図13において、A2は、この基準アンテナに天頂容量板を付加し、それを図9~図11に示したように、4つ並べたときのアンテナ利得であり、その値は5.4[dB]である。A3は、高さを10[mm]に維持した状態で、天頂容量板の面積を変化させたときのアンテナ利得の変化を示している。
 図13を参照すると、基準アンテナに天頂容量板を付加した1つのアンテナエレメントのアンテナ利得は、1.8[dB]ほど高い。逆に、基準アンテナと同等のアンテナ利得となる天頂容量板アンテナの面積は80[mm]で足りる。つまり、天頂容量板を付加することで、アンテナ利得が大きくなり、広帯域化も図れている。
 一方、本実施形態のアンテナ装置101のように、13[mm]×13[mm]の天頂容量板を有する4つのアンテナエレメント1401~1404を並列設置したときの面積は、約900[mm]である。図13のA3から明らかなように、900[mm]の面積の天頂容量板を有する一つのアンテナエレメントのアンテナ利得は4.0[dB]であるから、同じ面積であっても、4つに分割して使用した場合は1.4[dB]高くなった。
 このように、第3実施形態のアンテナ装置101においても、アンテナエレメントの天頂容量板の面積を広げることにより広帯域化し、また、同じ面積でも、複数個に分割して使用することにより、アンテナ利得を高めることができた。
 なお、この実施形態では、受信時には外部装置の受信機で増幅し、送信時には外部装置の送信機で増幅する場合の例を示したが、これらの増幅器をアンテナ装置側に設けても良い。但し、この場合は、送信時の電波のシールド対策を講じることが望ましい。
 図14~図16は、増幅器をアンテナ装置側に設けた場合の構成例を示す図である。アンテナ装置側で増幅するときは、図14に例示される構成の高周波回路を設ける。この高周波回路は、端子C1,C2に接続された一対の分配・合成回路RT10,RT11の間に、受信増幅器R10と送信増幅器T10とを並列に設けた回路である。
 図15は、4つのアンテナエレメント1401~1404の直下にそれぞれ、図14に示した構成の高周波回路1211~1214を設けた例である。高周波回路1211と高周波回路1212には、分配・合成回路1215が接続され、高周波回路1213と高周波回路1214には、分配・合成回路1216が接続される。さらに、2つの分配・合成回路1215、1216は、分配・合成回路1217に接続され、この分配・合成回路が図12に示した出力端子1204に接続される。
 図16は、4つのアンテナエレメント1401~1404の直下にそれぞれ、図14に示した構成の高周波回路1221~1224を設け、これらを一つの分配・合成回路1225に接続した例である。この分配・合成回路1225が出力端子1204に接続される。
 図14ないし図16の場合、分配・合成回路RT10,RT11,1215~1217、1225は、送信時は分配回路として機能し、受信時は合成回路として機能する。
 [変形例]
 以上、3つの実施形態例を説明したが、本発明のアンテナ装置は、以下のように変形して実施することが可能である。
(1)第1実施形態では、4つのFM帯用のアンテナエレメントと、2つのAM帯用のアンテナエレメント、第2実施形態では、2つのFM帯用のアンテナエレメントと、1つのAM帯用のアンテナエレメントを並列配置した場合の例を示したが、アンテナエレメント数は、これらの数以外にしても良い。また、FM帯のアンテナエレメントだけをアンテナ設置面部に並べてアンテナ装置を構成することもできる。
(2)第1実施形態及び第2実施形態では、回路基板20に増幅器と合成回路とを設けた場合の例を説明したが、回路基板20又はそれに実装される電子回路をアンテナベース10ではなく、アンテナ装置と別体の部位に設け、インタフェースを介して電気的に接続可能な構成にしても良い。また、回路基板20に周波数帯域の信号ごとに合成する合成回路だけを設け、合成された受信信号をアンテナ装置の外部装置で増幅するようにしても良い。
(3)第1実施形態及び第2実施形態ではAM帯用とFM帯用のアンテナ装置、第3実施形態では、セルラーの800[MHz]帯用のアンテナ装置の例を説明したが、GPSの周波数帯、ナビゲーションシステム用の周波数帯、あるいは、衛星放送用の周波数帯を受信できるアンテナエレメントを有するアンテナ装置としても良い。
[第4実施形態]
 次に、第1ないし第3実施形態で示したアンテナ装置の製造方法について説明する。これらのアンテナ装置は、以下の製造工程を経て製造することができる。便宜上、第1実施形態のアンテナ装置1について説明するが、第2実施形態及び第3実施形態のアンテナ装置の場合も同様となる。
(1)分割工程
 アンテナベース10において、アンテナエレメントを設置することが可能なアンテナ設置面部の面積を定める。そして、この面積を、エレメント間の隙間を考慮しつつ周波数帯ごとにk分割(kは2以上の自然数)する。具体的には、図5(a),(b)に示されるアンテナ利得、アンテナエレメントの高さ及び天頂容量板の面積の相互関係と、電子回路において補償可能な利得(3[dB])とを考慮して、確保できるアンテナ設置面部の面積から分割数(k)と、分割後の天頂容量板の面積とを決定する。
(2)配置工程
 分割した系統分の電子回路を実装した回路基板20をアンテナ設置面部に収容した後、分割された面積を有するk個の天頂容量板と線状導体とを、アンテナ装着面部と平行の平面上で無指向性を呈するように取り付ける。すなわち、天頂容量板をアンテナ取付面部と平行又は略平行となるように、エレメント支持体30に取り付ける。線状導体は、その一端部がアンテナ設置面部から実質的に最も離れた部位で天頂容量板と導通し、その他端部が他の線状導体の他端部と独立に電子回路に接続されるようにする。
 このようにして、アンテナベース10上に、同一周波数帯の同一信号の同時受信が可能となるk個のアンテナエレメントを構成する。
(3)組立工程
 最後に、アンテナベース10のカバー接合部にカバー部を接合してアンテナ装置1を完成させる。
 1,101・・・アンテナ装置、10,110・・・アンテナベース、20,120・・・回路基板、201~204・・・FM増幅器、205,206・・・AM増幅器、211~213・・・合成回路、30,130・・・エレメント支持体、40,140・・・アンテナエレメント、401~404,801,802・・・FM帯用アンテナエレメント、405,406,803・・・AM帯用アンテナエレメント、1401~1404・・・セルラー通信用アンテナエレメント、50,150・・・カバー部。 

Claims (12)

  1.  動作時に接地電位となる面部を有するアンテナベースと、
     前記面部と平行の面上で無指向性を呈するように前記アンテナベース上に並べられ、同一信号を同時に受信又は送信するためのn個(nは2以上の自然数)のアンテナエレメントとを備えており、
     前記n個のアンテナエレメントは、それぞれ、
     その両端部が前記面部から離れる方向に配置された線状導体と、
     この線状導体の一端部が前記面部から実質的に最も離れた部位で前記一端部と導通し当該面部と略平行に対向する面状導体とを含み、
     前記線状導体の他端部が、他のアンテナエレメントの線状導体の他端部と電気的に分離されている、
     アンテナ装置。
  2.  前記線状導体の他端部は、入力された信号を他のアンテナエレメントで受信した信号と合成する電子回路の入力部に接続される、
     請求項1記載のアンテナ装置。
  3.  前記線状導体の他端部は、他のアンテナエレメントからも送信される送信対象信号を分配して出力する電子回路の出力部に接続される、
     請求項1記載のアンテナ装置。
  4.  前記n個のアンテナエレメントは、それぞれ前記線状導体を支持する中空の枠体に支持されており、
     前記線状導体は前記枠体の側面に沿ってヘリカル状に巻かれ、
     前記面状導体は前記枠体のうち前記面部から実質的に最も離れた部位に接合され、
     前記電子回路が、前記枠体で囲まれた空間に収容されている、
     請求項2又は3記載のアンテナ装置。
  5.  隣り合う前記線状導体が互いに逆方向のヘリカル状に巻かれている、
     請求項4記載のアンテナ装置。
  6.  前記受信又は送信する信号が800[MHz]帯の信号であり、
     前記面状導体の前記面部からの高さが10[mm]のときの前記アンテナエレメントの面状導体の面積が80[mm]以上である、
     請求項1ないし5のいずれか1項記載のアンテナ装置。
  7.  動作時に接地電位となる面部を有するアンテナベースと、
     前記面部と平行の面上で無指向性を呈するように前記アンテナベース上に並べられ、第1周波数帯の同一信号を同時に受信するn個(nは2以上の自然数)の第1アンテナエレメント及び前記第1周波数帯と異なる第2周波数帯の信号を受信するm個(mは1以上の自然数)の第2アンテナエレメントとを備えており、
     前記第1アンテナエレメント及び前記第2アンテナエレメントは、それぞれ、
     その両端部が前記面部から離れる方向に配置された線状導体と、
     この線状導体の一端部が前記面部から実質的に最も離れた部位で前記一端部と導通し当該面部と略平行に対向する面状導体とを含み、
     前記第1アンテナエレメントの線状導体の他端部と前記第2アンテナエレメントの線状導体の他端部とが電気的に分離されている、
     アンテナ装置。
  8.  隣り合う前記線状導体が互いに逆方向のヘリカル状に巻かれている、
     請求項7記載のアンテナ装置。
  9.  前記第1周波数帯がFM帯、前記第2周波数帯がAM帯であり、前記面状導体の前記面部からの高さが10[mm]のときのそれぞれの面状導体の面積は、
     前記第1アンテナエレメントの面状導体の面積が3000[mm]以上であり、
     前記第2アンテナエレメントの面状導体の面積が2500[mm]以上である、
     請求項7又は8記載のアンテナ装置。
  10.  前記第1アンテナエレメントの線状導体の他端部が、入力された信号を他の第1アンテナエレメントで受信した信号と合成する電子回路の入力部に接続される、
     請求項7、8又は9記載のアンテナ装置。
  11.  前記電子回路は、さらに、受信する周波数帯においてその最小雑音指数が0.2[dB]以下で、等価雑音抵抗が4[Ω]以下の半導体素子を初段の増幅素子とする増幅器を含む、
     請求項10記載のアンテナ装置。
  12.  アンテナエレメントを設置する面部の面積をそれぞれ前記アンテナエレメントの高さと、当該面積により確保されるアンテナ利得との関係に基づいてk分割(kは2以上の自然数)する分割工程と、
     それぞれ、分割された面積を有するk個の面状導体と、その一端部が前記面部から実質的に最も離れた部位で前記面状導体と導通し、その他端部が前記面部に実質的に最も近い部位で、k系統の増幅回路のうちいずれかの系統の増幅回路と電気的に接続される線状導体とを、前記面部と平行の平面上で無指向性となるように前記面部に並列配置する配置工程とを有し、
     前記面部に、同一信号の受信又は送信するk個のアンテナエレメントを構成することを特徴とする、
     アンテナ装置の製造方法。 
PCT/JP2015/054795 2014-03-18 2015-02-20 アンテナ装置及びその製造方法 WO2015141386A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580013949.8A CN106104922B (zh) 2014-03-18 2015-02-20 天线装置及其制造方法
US15/126,068 US10211542B2 (en) 2014-03-18 2015-02-20 Antenna device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014055422A JP6385694B2 (ja) 2014-03-18 2014-03-18 アンテナ装置及びその製造方法
JP2014-055422 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015141386A1 true WO2015141386A1 (ja) 2015-09-24

Family

ID=54144365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054795 WO2015141386A1 (ja) 2014-03-18 2015-02-20 アンテナ装置及びその製造方法

Country Status (4)

Country Link
US (1) US10211542B2 (ja)
JP (1) JP6385694B2 (ja)
CN (1) CN106104922B (ja)
WO (1) WO2015141386A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3370306A4 (en) * 2015-10-30 2018-09-19 Mitsubishi Electric Corporation High-frequency antenna module and array antenna device
WO2020054870A1 (ja) 2018-09-14 2020-03-19 原田工業株式会社 アンテナ装置
JP6876665B2 (ja) * 2018-11-02 2021-05-26 矢崎総業株式会社 アンテナユニット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183502A (ja) * 1983-04-01 1984-10-18 Matsushita Electric Ind Co Ltd アンテナ
JPH01165206A (ja) * 1987-12-21 1989-06-29 Sumitomo Electric Ind Ltd 空中線
JPH10242731A (ja) * 1997-02-24 1998-09-11 Murata Mfg Co Ltd アンテナ装置
JPH11355031A (ja) * 1998-06-03 1999-12-24 Dx Antenna Co Ltd アンテナ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530751A (ja) * 2008-08-07 2011-12-22 ウォルマート ストアーズ,インコーポレーティッド 無線周波数識別システムの構成要素間の通信を円滑化する装置および方法
US8816917B2 (en) 2011-01-12 2014-08-26 Harada Industry Co., Ltd. Antenna device
JP5647023B2 (ja) * 2011-01-31 2014-12-24 株式会社ヨコオ 地上放送波受信用アンテナ装置及びその構成部品
JP2013106146A (ja) 2011-11-11 2013-05-30 Harada Ind Co Ltd 車両用アンテナ装置
JP6167745B2 (ja) * 2013-08-13 2017-07-26 富士通株式会社 アンテナ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183502A (ja) * 1983-04-01 1984-10-18 Matsushita Electric Ind Co Ltd アンテナ
JPH01165206A (ja) * 1987-12-21 1989-06-29 Sumitomo Electric Ind Ltd 空中線
JPH10242731A (ja) * 1997-02-24 1998-09-11 Murata Mfg Co Ltd アンテナ装置
JPH11355031A (ja) * 1998-06-03 1999-12-24 Dx Antenna Co Ltd アンテナ

Also Published As

Publication number Publication date
CN106104922A (zh) 2016-11-09
US20170104275A1 (en) 2017-04-13
US10211542B2 (en) 2019-02-19
JP2015179896A (ja) 2015-10-08
JP6385694B2 (ja) 2018-09-05
CN106104922B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
JP5076019B1 (ja) アンテナ装置とこのアンテナ装置を備えた電子機器
US20180261913A1 (en) Low-profile antenna device
EP2342830B1 (en) Multi-band wireless repeaters
US8004465B2 (en) Multiband omnidirectional antenna
US20150340768A1 (en) Wideband and high gain omnidirectional array antenna
JP2012124714A (ja) アンテナ装置
JP6385694B2 (ja) アンテナ装置及びその製造方法
JP2017041661A (ja) アンテナ装置
JP2007037086A5 (ja)
JP6181498B2 (ja) アンテナ装置
JP7233913B2 (ja) アンテナ装置および無線端末
JP6612399B1 (ja) エレメント共有複合アンテナ装置
JP4795898B2 (ja) 水平偏波無指向性アンテナ
JP4744371B2 (ja) アンテナ装置
JP5837452B2 (ja) アンテナ装置
AU2013300234B2 (en) Three band whip antenna
JP2005311551A (ja) 無指向性アンテナ
KR101612839B1 (ko) 차량용 무지향성 3폴 안테나
WO2021085483A1 (ja) Mimoアンテナ装置
KR20130052176A (ko) 원형 편파 및 선형 편파 수신을 위한 패치 안테나
JP2008244733A (ja) 平面アレーアンテナ装置とそれを備えた無線通信装置
JP2011015329A (ja) 統合アンテナ
KR20160023744A (ko) 차량 통신시스템
KR20160004155A (ko) 차량 통신시스템
JP2014011783A (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764925

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15126068

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764925

Country of ref document: EP

Kind code of ref document: A1