WO2015141149A1 - Egr制御装置 - Google Patents

Egr制御装置 Download PDF

Info

Publication number
WO2015141149A1
WO2015141149A1 PCT/JP2015/000988 JP2015000988W WO2015141149A1 WO 2015141149 A1 WO2015141149 A1 WO 2015141149A1 JP 2015000988 W JP2015000988 W JP 2015000988W WO 2015141149 A1 WO2015141149 A1 WO 2015141149A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
engine
internal combustion
combustion engine
control device
Prior art date
Application number
PCT/JP2015/000988
Other languages
English (en)
French (fr)
Inventor
英明 市原
敬太郎 南
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015141149A1 publication Critical patent/WO2015141149A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1472Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a humidity or water content of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to an EGR control device for an internal combustion engine including an external EGR device that recirculates a part of exhaust gas to an intake passage via an EGR pipe.
  • An internal combustion engine equipped with an external EGR device that recirculates a part of exhaust gas as EGR gas to an intake passage in order to improve fuel consumption or reduce exhaust emission is known. Further, in an internal combustion engine equipped with an external EGR device, the EGR gas passing through the EGR pipe is cooled to generate condensed water, and there is a concern that corrosion, breakage, etc. of the EGR pipe and the intake system are promoted by the condensed water. Is done.
  • the throttle valve and the EGR valve are opened during the fuel cut control after the stop request of the internal combustion engine. Then, EGR gas is scavenged at the time when the internal combustion engine is requested to stop, so that the amount of condensed water generated from the EGR gas is reduced.
  • This disclosure is intended to provide a control device for an EGR device that can suppress corrosion and breakage due to condensed water generated from EGR gas, and deposit adhesion.
  • This disclosure relates to a control device for an EGR device that recirculates a part of the exhaust gas of the internal combustion engine to the intake passage as EGR gas through the EGR pipe by opening an EGR valve provided in the EGR pipe.
  • the EGR control device opens the EGR valve and stops water from the EGR pipe during a stop period from when the internal combustion engine is stopped to when the internal combustion engine is started next time.
  • a drainage control device for carrying out EGR drainage control is provided.
  • the block diagram which shows the outline of an engine control system The block diagram which shows the detail of the outline of an external EGR apparatus.
  • the flowchart which shows the process sequence of drainage control before a start The flowchart which shows the process sequence of drainage control after a stop.
  • the figure which shows an example of a valve opening time map The time chart which shows EGR drainage control before engine starting.
  • the time chart which shows EGR drainage control after an engine stop The time chart which shows the EGR drainage control after the engine stop of other embodiment.
  • the figure which shows an example of the relationship between environmental operation time and the determination water temperature of EGR valve opening The figure which shows the outline of the control system of other embodiment.
  • an air flow meter 12 for detecting the amount of intake air is provided upstream of the intake pipe 11.
  • a throttle valve 14 whose opening degree is adjusted by a throttle actuator 13 such as a DC motor is provided on the downstream side of the air flow meter 12.
  • the opening (throttle position) of the throttle valve 14 is detected by a throttle position sensor 15 built in the throttle actuator 13.
  • a surge tank 16 is provided on the downstream side of the throttle valve 14, and an intake manifold 17 that is connected to an intake port of each cylinder is attached to the surge tank 16.
  • the intake port and the exhaust port of the engine 10 are provided with an intake valve and an exhaust valve (both not shown), respectively. Further, the engine 10 is provided with a fuel injection valve 23 and a spark plug 24 for each cylinder.
  • An exhaust manifold 25 is connected to the exhaust port of the engine 10, and an exhaust pipe 26 is connected to a collective portion of the exhaust manifold 25.
  • the exhaust pipe 26 is provided with a catalyst 28 for purifying the exhaust gas.
  • a three-way catalyst that purifies three components of CO, HC, and NOx is used as the catalyst 28.
  • An air-fuel ratio sensor 29 that detects the air-fuel ratio of the air-fuel mixture using exhaust as a detection target is provided on the upstream side of the catalyst 28.
  • an A / F sensor having an output characteristic proportional to the air-fuel ratio is provided.
  • a turbocharger 30 is provided between the intake pipe 11 and the exhaust pipe 26.
  • the turbocharger 30 includes an intake compressor 31 disposed on the upstream side of the throttle valve 14 in the intake pipe 11, an exhaust turbine 32 disposed on the upstream side of the catalyst 28 in the exhaust pipe 26, and the intake compressor 31 and the exhaust turbine 32. And a rotating shaft 33 to be connected.
  • the intake compressor 31 is rotated with the rotation of the exhaust turbine 32, and the intake air is supercharged by the rotation of the intake compressor 31.
  • the intake pipe 11 is provided with an intercooler 34 for cooling the supercharged intake air downstream of the throttle valve 14.
  • the intake air is cooled by the intercooler 34, so that a decrease in air charging efficiency is suppressed.
  • the intercooler 34 is a water-cooled intake air cooling device, and is disposed in a path (I / C cooling water path) different from the cooling water path of the engine 10. In the intercooler 34, the intake air is cooled by circulating the cooling water through the I / C cooling water path.
  • the cooling capacity of the intercooler 34 is variable according to the flow rate of the cooling water.
  • the intercooler 34 is controlled by driving control of a water pump (WP) (not shown) arranged in the I / C cooling water path.
  • WP water pump
  • the cooling water flow rate can be made variable.
  • the intercooler 34 is provided integrally with the surge tank 16, but the intercooler 34 is provided separately from the surge tank 16 on the upstream side of the surge tank 16 or the upstream side of the throttle valve 14. It may be.
  • the intercooler 34 may be air-cooled.
  • the upstream side and the downstream side of the exhaust turbine 32 are communicated with each other by an exhaust bypass passage 21, and a waste gate valve (WGV) 22 that opens and closes the exhaust bypass passage 21 is provided in the exhaust bypass passage 21.
  • the exhaust amount flowing through the exhaust pipe 26 is increased or decreased according to the opening degree of the WGV 22, and the rotational speed of the exhaust turbine 32 and the rotational speed of the intake compressor 31 are adjusted.
  • the upstream side and the downstream side of the intake compressor 31 are communicated with each other by an intake bypass passage 48, and an air bypass valve (ABV) 49 that opens and closes the intake bypass passage 48 is provided in the intake bypass passage 48.
  • ABSV air bypass valve
  • the engine 10 is provided with an external EGR device 35 that introduces a part of the exhaust gas into the intake passage as EGR gas.
  • the EGR device 35 includes an EGR pipe 36 that connects the intake pipe 11 and the exhaust pipe 26, an electromagnetically driven EGR valve 37 that adjusts the amount of EGR gas flowing through the EGR pipe 36, and an EGR cooler 38 that cools the EGR gas.
  • the EGR cooler 38 is, for example, a water-cooled exhaust cooling device, and is disposed in the cooling water path 39 of the engine 10. In the EGR cooler 38, the EGR gas is cooled by circulating the cooling water through the cooling water passage 39.
  • the cooling capacity of the EGR cooler 38 is variable according to the flow rate of the cooling water, and in this embodiment, the cooling water flow rate of the EGR cooler 38 is controlled by controlling the opening degree of the flow rate control valve 40 arranged in the cooling water path 39. Can be made variable.
  • the EGR pipe 36 is provided so as to connect the downstream side of the exhaust turbine 32 (for example, the downstream side of the catalyst 28) in the exhaust pipe 26 and the upstream side of the intake compressor 31 in the intake pipe 11.
  • an LPL type (low pressure loop type) EGR system is constructed.
  • the EGR valve 37 is disposed upstream of the EGR cooler 38 (side closer to the exhaust pipe 26) in the EGR pipe 36.
  • warm exhaust gas before being cooled by the EGR cooler 38 passes through the EGR valve 37, and deposits are prevented from adhering to the EGR valve 37.
  • the EGR cooler 38 is usually mounted so as to be inclined with respect to a horizontal plane. Thus, the water generated by the EGR gas being cooled by the EGR cooler 38 is prevented from entering the engine side.
  • the present system includes a crank angle sensor 41 that outputs a crank angle signal for each predetermined crank angle of the engine 10, a water temperature sensor 42 that detects the coolant temperature of the engine 10, an intake air temperature sensor 43 that detects the temperature of the intake air, A humidity sensor 44 that detects the humidity of the outside air, an outside air temperature sensor 45 that detects the outside air temperature, an atmospheric pressure sensor 46 that detects the atmospheric pressure, and the like are provided.
  • the system is also provided with an ignition switch 55 as a start switch of the engine 10 operated by the driver.
  • This system includes control devices such as an engine ECU 50 and a door ECU 60.
  • Each control device is mainly configured by a microcomputer including a CPU, a ROM, a RAM, and the like, and executes various control programs stored in the ROM.
  • the engine ECU 50 performs various controls of the engine 10 by the microcomputer 51. Specifically, the microcomputer 51 of the engine ECU 50 receives detection signals from the respective sensors described above, and based on the input detection signals, the throttle valve 14, the fuel injection valve 23, the spark plug 24, the EGR valve 37, The drive of WGV22, ABV49, the flow control valve 40, etc. is controlled.
  • the door ECU 60 performs control based on the open / closed state of a vehicle door (not shown). Specifically, the microcomputer of the door ECU 60 inputs various signals from the door sensor 62 and the engine ECU 50 that detect the open / closed state of the vehicle door, and performs control based on the input signals.
  • the engine ECU 50 sets a target EGR rate, which is a target value of the EGR rate, based on the engine operating state (for example, engine speed, load, etc.), and this target EGR rate.
  • the opening degree of the EGR valve 37 is controlled so as to realize the above.
  • the actual EGR rate is calculated based on the engine operating state, and the EGR valve 37 is driven by calculating the drive duty ratio of the EGR valve 37 so that the calculated actual EGR rate becomes the target EGR rate.
  • the introduction of EGR gas is basically performed in a predetermined EGR application operation region excluding the idle operation region and the high load operation region.
  • an exhaust sensor such as an A / F sensor may be attached to the intake pipe 11 and a value directly detected by the exhaust sensor may be used.
  • Exhaust gas contains a lot of water produced by the combustion of fuel, and condensed water is generated in the EGR pipe 36 by cooling the EGR gas.
  • Such cooling of the EGR gas is likely to occur when the engine 10 and the EGR passage are cooled as the engine is stopped.
  • the EGR valve 37 is closed on the downstream side (portion “A” in FIG. 2) when the EGR valve 37 is closed after the engine is stopped.
  • Condensed water tends to accumulate. Further, if the condensed water is kept in the accumulated state, corrosion and deposit adhesion of the EGR pipe 36 and the EGR valve 37 are easily promoted. Furthermore, there is a concern that condensed water will scatter in the intake system of the engine 10 during the next engine operation, causing corrosion and damage to each part of the engine and deposits.
  • the water in the EGR pipe 36 is discharged to the exhaust side by opening the EGR valve 37 during the engine stop period from when the operation of the engine 10 is stopped to when the engine 10 is started next time.
  • EGR drainage control will be implemented. Specifically, as the EGR drainage control during the engine stop period, the post-stop drainage control that opens the EGR valve 37 in a predetermined post-stop period immediately after the engine 10 is stopped, and the operation immediately before the engine 10 is started.
  • Pre-start drainage control is performed to open the EGR valve 37 when it is detected that there is a predetermined pre-start operation performed by a person.
  • the predetermined pre-start operation includes, for example, that the vehicle door has changed from the closed state to the open state, seated on the seat, and the vehicle door key has been released. In this embodiment, the vehicle door Is detected from the closed state to the open state.
  • the predetermined pre-start operation may be an operation other than the vehicle door being in an open state, or may be configured to include an operation other than the vehicle door being in an open state.
  • this system is provided with an EGR opening control circuit 61 as a circuit for opening the EGR valve 37 before the IG switch 55 is turned on.
  • the EGR opening control circuit 61 can receive a control signal from the door ECU 60, and opens the EGR valve 37 by supplying power to the EGR valve 37 with a fixed duty in accordance with the input of the control signal. .
  • the main relay control when the IG switch 55 is switched from ON to OFF, as the main relay control, power supply to the engine ECU 50 is continued for a certain period of time even after the ignition is turned OFF. Thereby, after the ignition is turned off, after predetermined control is executed, the main relay is turned off by the output signal of the engine ECU 50 and the power supply is cut off. In this system, immediately after the engine is stopped, power is supplied to the EGR valve 37 by the main relay control, and the EGR valve 37 is opened.
  • the EGR valve 37 is actively opened after the engine 10 is started and before the engine warm-up is completed. Water measures are being taken. As a countermeasure against water before completion of engine warm-up, the EGR valve 37 is opened by limiting the target EGR rate to a value that can suppress misfire due to the introduction of EGR gas while reducing the cooling capacity of the EGR cooler 38. Thereby, the water in the EGR pipe 36 is evaporated and removed while ensuring the startability of the engine 10.
  • step S101 it is determined whether or not the two conditions of the predetermined pre-start operation and the ignition OFF are both satisfied.
  • the door sensor 62 detects that the vehicle door is in an open state, it is determined that there is a predetermined pre-start operation. Further, if a signal indicating that the IG switch 55 is turned on is not input from the engine ECU 50, it is assumed that the ignition is off.
  • step S101 If at least one of the predetermined pre-start operation and the ignition OFF is not established, this routine is terminated as it is.
  • step S102 the EGR opening control circuit 61 supplies power to the EGR valve 37, and the EGR valve 37 is switched to the opened state. Thereby, the opening degree of the EGR valve 37 is held at the predetermined drainage opening degree ⁇ 1.
  • step S103 it is determined whether or not a predetermined time (for example, several minutes) has elapsed since the EGR valve 37 was opened. If a negative determination is made in step S103, this routine is terminated as it is. On the other hand, when an affirmative determination is made in step S103, the process proceeds to step S104, the power supply to the EGR valve 37 is stopped, and the EGR valve 37 is closed. If the IG switch 55 is turned on before the predetermined time has elapsed after the EGR valve 37 is opened, a negative determination is made in step S101, and this routine is immediately terminated. In this case, the execution of the process of FIG. 4 is started while the EGR valve 37 is opened at the predetermined drain opening degree ⁇ 1.
  • a predetermined time for example, several minutes
  • step S201 it is determined whether or not the IG switch 55 is ON. If the ignition is on, the process proceeds to step S202, where it is determined whether the engine 10 has been started and warm-up has been completed.
  • step S202 it is determined whether the engine 10 has been started and warm-up has been completed.
  • two conditions that is, after cranking by a starter motor as an engine starter (not shown) is started, and that the engine coolant temperature detected by the water temperature sensor 42 is equal to or higher than a determination value. Is affirmed.
  • step S203 the EGR valve 37 is opened at a predetermined minute opening ⁇ 2.
  • the minute opening ⁇ 2 is set to an opening that can suppress misfire of the engine 10 due to the introduction of EGR gas.
  • step S204 the cooling of the EGR gas by the EGR cooler 38 is limited. Specifically, the circulation of the engine coolant in the EGR cooler 38 is stopped by closing the flow control valve 40. Thereby, the temperature drop of the EGR pipe 36 is suppressed, and the water remaining in the EGR pipe 36 is evaporated and removed. In addition, it is good also as a structure which restrict
  • step S205 the rotational speed of the intake compressor 31 is limited.
  • WGV22 and ABV49 are each switched from a valve closing state to a valve opening state.
  • the intake compressor 31 is driven at a relatively high rotational speed, the condensed water present in the EGR pipe 36 is sucked into the intake passage, and there is a possibility that the water is scattered in each part of the engine. Therefore, in the present embodiment, before the engine is warmed up, the rotational speed of the intake compressor 31 is decreased to suppress the sucking of condensed water from the EGR passage.
  • step S202 When the warm-up of the engine 10 is completed, an affirmative determination is made in step S202, the process proceeds to step S206, and EGR control in normal time is started. Specifically, the EGR valve 37 is driven so that the actual EGR rate becomes the target EGR rate. In addition, during engine operation from ignition ON to ignition OFF, an environmental operation time Tdv, which is an integrated value of the time that the engine 10 is operated in a predetermined operating environment where generation of condensed water from EGR gas is predicted, is measured. (S207).
  • the environmental operation time Tdv is calculated by integrating the time during which the engine 10 is operated in an environment in which the external air environment parameters (outside air temperature, outside air humidity, and atmospheric pressure) indicate a predetermined wet state.
  • the outside air temperature detected by the outside air temperature sensor 45 is equal to or lower than a predetermined low temperature determination value TH1 (for example, 10 ° C.) or equal to or higher than a predetermined high temperature determination value (for example, 30 ° C.)
  • a predetermined low temperature determination value TH1 for example, 10 ° C.
  • a predetermined high temperature determination value for example, 30 ° C.
  • the humidity of the outside air detected by the humidity sensor 44 is equal to or higher than a predetermined high humidity determination value (for example, 70%)
  • the atmospheric pressure detected by the atmospheric pressure sensor 46 is a predetermined low pressure determination value.
  • the time during which the engine 10 is operated in an environment that satisfies at least one of the above is integrated, and the integrated value is set as the environmental operation time Tdv.
  • the measured environmental operation time Tdv is stored in the RAM.
  • step S208 the environmental operation time Tdv in the engine operation period immediately before the ignition is turned off is read from the RAM, and the EGR valve 37 is controlled to open according to the read environmental operation time Tdv.
  • the relationship between the environmental operation time Tdv and the valve opening time of the EGR valve 37 is stored in advance in the ROM as a valve opening time map, for example.
  • the microcomputer 51 sets the valve opening time of the EGR valve 37 using the valve opening time map, and drives the EGR valve 37 based on the valve opening time.
  • FIG. 5 shows an example of the valve opening time map. According to FIG. 5, the longer the environmental operation time Tdv, the longer the valve opening time of the EGR valve 37 is set. After the valve opening time elapses, the driving of the EGR valve 37 is stopped and the present process is terminated.
  • FIG. 6 shows the engine before and when starting
  • FIG. 7 shows the engine after stopping.
  • 6A is a transition of the detection signal of the door sensor 62
  • FIG. 6B is a transition of ON / OFF of the IG switch 55
  • FIG. 6C is a transition of the opening degree of the EGR valve 37
  • FIG. 10 is a transition of stop / start (before warm-up) / after warm-up
  • (e) is a transition of valve opening / closing of the flow control valve 40 of the EGR cooler 38
  • (f) is a valve opening / closing of the ABV 49.
  • Transition, (g) indicates the transition of the opening degree of the WGV 22, respectively.
  • (a) is a transition of ON / OFF of the IG switch 55
  • (b) is a transition of operation / stop of the engine 10
  • (c) is a transition of the opening degree of the EGR valve 37
  • (d) is an outside air temperature. Transition of the outside air temperature detected by the sensor 45, (e) shows transition of the environmental operation time Tdv (count value), respectively.
  • the predetermined value ⁇ may be variably set based on the value of the outside air environment parameter. In this case, when the outside air temperature detected by the outside air temperature sensor 45 is equal to or lower than the predetermined low temperature determination value TH1, the predetermined value ⁇ is set to a larger value as the outside air temperature is lower. It is desirable to increase the value ⁇ . Further, it is desirable that the predetermined value ⁇ is increased as the humidity of the outside air detected by the humidity sensor 44 is higher, and the predetermined value ⁇ is increased as the atmospheric pressure detected by the atmospheric pressure sensor 46 is lower.
  • the EGR valve 37 is opened during the engine stop period so that water is actively discharged from the EGR pipe 36. Thereby, corrosion in the EGR pipe 36 and adhesion of deposits can be prevented. In addition, it is possible to prevent the condensed water from splashing during the next engine operation, and thus it is possible to prevent corrosion and breakage of each part of the engine and adhesion of deposits.
  • the EGR pipe 36 is gradually cooled as the engine is stopped, so that condensed water is easily generated in the EGR pipe 36.
  • the EGR drainage control is performed at least during the period from when the engine 10 is stopped until the next engine start, at least immediately after the engine is stopped. According to this configuration, the condensed water generated immediately after the engine is stopped can be removed from the EGR pipe 36 as early as possible.
  • the engine 10 is operated in an operating environment in which the generation of condensed water from EGR gas is predicted during the engine operating period.
  • the environmental operation time Tdv which is an integrated value of the operating time, is measured, and the valve opening time of the EGR valve 37 after the engine is stopped is made variable according to the measured environmental operation time Tdv.
  • the EGR valve 37 When the predetermined pre-start operation performed by the driver immediately before starting the engine is detected before the ignition is turned on, the EGR valve 37 is opened and the water in the EGR pipe 36 is discharged. Thus, water accumulated in the EGR pipe 36 during the engine stop period from the ignition OFF to the next ignition ON can be discharged to the exhaust system side before the engine 10 is started.
  • the EGR valve 37 is opened at a slight opening ⁇ 2 while the cooling of the EGR gas by the EGR cooler 38 is limited.
  • the supercharging of the intake air by the supercharger 30 is limited by limiting the rotation speed of the intake compressor 31.
  • the intake compressor 31 When the intake compressor 31 is rotated at a relatively high speed in a situation where condensed water may exist in the EGR pipe 36, the condensed water in the EGR pipe 36 may be sucked out to the intake passage side.
  • the above configuration makes it possible to suppress the scattering of water to each part of the engine as much as possible.
  • the generation time of the condensed water in the EGR pipe 36 differs according to the outside air temperature when the engine is stopped, and the lower the outside air temperature, the earlier the condensed water is generated after the engine is stopped.
  • the post-stop drainage control is configured such that the opening time of the EGR valve 37 is advanced as the outside air temperature when the engine is stopped is lower. According to this configuration, after the engine is stopped, the EGR valve 37 is opened at an appropriate time for discharging the condensed water and the condensed water is discharged to the exhaust side without having to supply power to the EGR valve 37. Can do. Thereby, drainage can be performed while reducing power consumption.
  • FIG. 8 is a time chart showing a specific mode of post-stop drainage control according to the present embodiment.
  • the valve opening timing of the EGR valve 37 is set according to the outside air temperature Tm1 at time t31 when the IG switch 55 is switched to OFF.
  • FIG. 9 shows an example of a map showing the relationship between the outside air temperature and the EGR valve opening timing. In the map of FIG. 9, the lower the outside air temperature is, the earlier the opening timing of the EGR valve 37 is set after the engine stops. Returning to the description of FIG. 8, after the engine is stopped, the EGR valve 37 is opened at time t32 when the valve opening timing set based on the outside air temperature has arrived.
  • the valve opening time of the EGR valve 37 at this time may be a predetermined constant value, or may be a variable value set based on the environmental operation time Tdv using the valve opening time map of FIG.
  • the valve opening time of the EGR valve 37 after the engine is stopped is made variable according to the environmental operation time Tdv.
  • the EGR valve 37 may be opened until the cooling water temperature of the engine 10 falls below the determination water temperature Tth after the engine 10 is stopped.
  • the determination water temperature Tth may be variable according to the environmental operation time Tdv.
  • the operation time of the EGR valve 37 can be shortened while maintaining the drainage of condensed water.
  • FIG. 10 shows an example of the relationship between the environmental operation time Tdv and the determination water temperature Tth. As shown in FIG. 10, it is desirable to set the determination water temperature Tth to a lower temperature side as the environmental operation time Tdv is longer.
  • the state in which the driver's operation with respect to the high humidity environment is performed is an operation environment in which generation of condensed water from the EGR gas is predicted, and the operation of the engine 10 is performed in the state in which the driver's operation with respect to the high humidity environment is performed.
  • the integrated value of the time when the operation is performed may be set as the environmental operation time Tdv.
  • a switch for operating a wiping device (wiper) such as rain on the windshield
  • a switch for operating a defogger for defogging provided on the windshield.
  • ON operation ON operation of a glass heater switch for heating the heating wire (glass heater) printed on the rear glass.
  • the necessity of drainage in the EGR pipe 36 can also be grasped by the configuration in which the state of the outside air environment is grasped based on the operation of the driver and the environmental operation time Tdv is measured.
  • the integrated value may be used as the environmental operation time Tdv.
  • the environmental operation time Tdv is measured based on the three outdoor air environment parameters of the outdoor air temperature, the outdoor air humidity, and the atmospheric pressure.
  • the environmental operation time is based on one or two of the three outdoor air environment parameters. Tdv may be measured.
  • the valve opening time of the EGR valve 37 is made variable according to the environmental operation time Tdv.
  • the EGR valve 37 is opened regardless of the environmental operation time Tdv.
  • the time may be constant.
  • the predetermined value ⁇ may be variably set based on the outdoor temperature every time. In this case, when the outside air temperature detected by the outside air temperature sensor 45 is equal to or lower than a predetermined low temperature determination value TH1, the predetermined value ⁇ is set to a smaller value as the outside air temperature is lower, and above the predetermined high temperature determination value, the predetermined value is higher as the outside air temperature is higher.
  • the value ⁇ may be a small value.
  • the predetermined value ⁇ may be decreased as the humidity of the outside air detected by the humidity sensor 44 is increased, and the predetermined value ⁇ may be decreased as the atmospheric pressure detected by the atmospheric pressure sensor 46 is decreased.
  • the environmental operation time Tdv is calculated by integrating the time that the engine 10 is operated under the operation environment where the generation of condensed water from the EGR gas is predicted, starting from the ignition ON.
  • the environmental operation time Tdv may be calculated starting from the timing at which the control shifts to EGR control.
  • an EGR pipe 36 is provided so as to connect the upstream side of the exhaust turbine 32 in the exhaust pipe 26 and the downstream side of the intake compressor 31 (for example, the downstream side of the intercooler 34) in the intake pipe 11.
  • the present disclosure may be applied to an engine with a supercharger that employs an HPL (high-pressure loop) EGR device.
  • the EGR valve 37 is disposed on the upstream side of the EGR cooler 38 in the EGR pipe 36, but the present disclosure may be applied to a configuration in which the EGR valve 37 is disposed on the downstream side of the EGR cooler 38.
  • the engine ECU 50 executes the drainage control after the stop and the door ECU 60 executes the drainage control before the start.
  • the engine ECU 50 and the door ECU 60 are configured as one control device, and the control device is stopped after the stop. It is good also as composition which performs drainage control and drainage control before starting.
  • the present invention is not limited to an engine equipped with a turbocharger, and a mechanically driven supercharger or an electric supercharger It may be applied to an engine equipped with. Further, the present invention is not limited to an engine with a supercharger, and may be applied to a naturally aspirated engine not equipped with a supercharger.
  • This disclosure can be applied not only to gasoline engines but also to diesel engines. It can also be applied to engines other than those for vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

エンジン制御システムは、エンジン(10)と、EGR配管(36)に設けられたEGR弁(37)が開弁されることでEGR配管(36)を通じて排気の一部をEGRガスとして吸気通路に還流させる外部EGR装置(35)とを備えている。ECU(50、60)は、エンジン(10)の運転を停止してから次回エンジン始動するまでのエンジン停止期間中に、EGR弁(37)を開弁してEGR配管(36)内から水を排出するEGR排水制御を実施する。EGR排水制御は、エンジン停止直後に実施する停止後排水制御と、エンジン(10)が始動される直前に運転者が行う所定の始動前動作を検出した場合に実施する始動前排水制御とを含む。

Description

EGR制御装置 関連出願の相互参照
 本開示は、2014年3月17日に出願された日本出願番号2014-53962号に基づくもので、ここにその記載内容を援用する。
 本開示は、EGR配管を介して排気の一部を吸気通路に還流させる外部EGR装置を備える内燃機関のEGR制御装置に関する。
 燃費の改善や排気エミッションの低減等を行うために、排気の一部をEGRガスとして吸気通路に還流させる外部EGR装置を搭載した内燃機関が知られている。また、外部EGR装置を備える内燃機関では、EGR配管内を通過するEGRガスが冷却されて凝縮水が発生し、その凝縮水によってEGR配管や吸気系の腐食、破損等が促進されることが懸念される。特開2010-59921号に開示されたEGR制御装置では、内燃機関の停止要求後の燃料カット制御中において、スロットル弁及びEGR弁を開弁している。そして、内燃機関の停止要求時点でEGRガスを掃気させて、EGRガスから生じる凝縮水の量が減少されるようにしている。
 内燃機関の運転を停止した後では内燃機関が冷却され、EGR配管内に残存しているEGRガスから凝縮水が発生することが考えられる。このとき、凝縮水がEGR配管内に残存したままであると、凝縮水によってEGR配管内やEGR弁の腐食、デポジットの付着が促進されることが懸念される。また、EGR配管内の凝縮水が次回の機関始動時に飛散することで、内燃機関の各部位の腐食や破損、デポジットの付着が促進されるおそれもある。そのため、内燃機関の停止要求時の燃料カット中にEGR通路及び吸気通路の掃気を実施する構成において、その掃気が不十分である場合には、凝縮水に起因する不都合が生じることが未だ懸念される。
特開2010-59921号公報
 本開示は、EGRガスから発生した凝縮水による腐食や破損、デポジット付着を抑制することができるEGR装置の制御装置を提供すること目的とする。
 本開示は、EGR配管に設けられたEGR弁が開弁されることで前記EGR配管を通じて内燃機関の排気の一部をEGRガスとして吸気通路に還流させるEGR装置の制御装置に関する。本開示の一態様によれば、EGR制御装置は、前記内燃機関を停止してから前記内燃機関を次回始動するまでの停止期間中に、前記EGR弁を開弁して前記EGR配管内から水を排出するEGR排水制御を実施する排水制御装置を備える。
 内燃機関の停止後では、外気によってEGR配管が冷やされることで、EGR配管内で凝縮水が発生することが懸念されるが、上記構成では、内燃機関の停止期間中にEGR弁を開弁することでEGR配管内から水を積極的に排出させる。これにより、凝縮水に起因するEGR配管内の腐食やデポジットの付着を防止することができる。また、内燃機関の次回運転時において凝縮水が飛散するのを防止することができ、ひいては内燃機関の各部位の腐食や破損、デポジット付着を防止することができる。
エンジン制御システムの概略を示す構成図。 外部EGR装置の概略の詳細を示す構成図。 始動前排水制御の処理手順を示すフローチャート。 停止後排水制御の処理手順を示すフローチャート。 開弁時間マップの一例を示す図。 エンジン始動前のEGR排水制御を示すタイムチャート。 エンジン運転停止後のEGR排水制御を示すタイムチャート。 他の実施形態のエンジン運転停止後のEGR排水制御を示すタイムチャート。 外気温度とEGR弁の開弁時期との関係の一例を示すマップ。 環境運転時間とEGR開弁の判定水温との関係の一例を示す図。 他の実施形態の制御システムの概略を示す図。
 以下、本開示を具体化した一実施形態を図面に基づいて説明する。本実施形態は、車両に搭載される多気筒4サイクルガソリンエンジンを制御対象とし、当該エンジンにおける各種アクチュエータの電子制御を実施するものとしている。まず、図1によりエンジン制御システムの全体概略構成を説明する。
 図1に示すエンジン10において、吸気管11の上流部には吸入空気量を検出するためのエアフロメータ12が設けられている。エアフロメータ12の下流側には、DCモータ等のスロットルアクチュエータ13によって開度調節されるスロットル弁14が設けられている。スロットル弁14の開度(スロットル位置)は、スロットルアクチュエータ13に内蔵されたスロットル位置センサ15により検出される。スロットル弁14の下流側にはサージタンク16が設けられ、サージタンク16には、各気筒の吸気ポートに通じる吸気マニホールド17が取り付けられている。
 エンジン10の吸気ポート及び排気ポートには、それぞれ吸気弁及び排気弁(共に図示略)が設けられている。また、エンジン10には気筒ごとに燃料噴射弁23と点火プラグ24とが設けられている。
 エンジン10の排気ポートには排気マニホールド25が接続され、その排気マニホールド25の集合部に排気管26が接続されている。排気管26には、排気を浄化するための触媒28が設けられている。本実施形態では、触媒28としてCO、HC、NOxの三成分を浄化する三元触媒が用いられている。触媒28の上流側には、排気を検出対象として混合気の空燃比を検出する空燃比センサ29が設けられている。空燃比センサ29としては、空燃比に比例した出力特性を有するA/Fセンサが設けられている。
 吸気管11と排気管26との間には、ターボチャージャ30が設けられている。ターボチャージャ30は、吸気管11においてスロットル弁14の上流側に配置された吸気コンプレッサ31と、排気管26において触媒28の上流側に配置された排気タービン32と、吸気コンプレッサ31及び排気タービン32を連結する回転軸33とを備えている。排気管26を流れる排気によって排気タービン32が回転されると、排気タービン32の回転に伴い吸気コンプレッサ31が回転され、吸気コンプレッサ31の回転によって吸気が過給される。
 吸気管11には、スロットル弁14の下流側に、過給された吸気を冷却するインタークーラ34が設けられている。このインタークーラ34により吸気が冷却されることで、空気の充填効率の低下が抑制される。インタークーラ34は水冷式の吸気冷却装置であり、エンジン10の冷却水経路とは別の経路(I/C冷却水経路)に配置されている。インタークーラ34では、I/C冷却水経路を冷却水が循環することで吸気が冷却される。インタークーラ34の冷却能力は冷却水の流量に応じて可変となっており、本実施形態では、I/C冷却水経路に配置された図示しないウォーターポンプ(WP)の駆動制御によってインタークーラ34の冷却水流量を可変にできるようになっている。なお、本実施形態では、サージタンク16と一体にインタークーラ34が設けられているが、サージタンク16の上流側又はスロットル弁14の上流側に、サージタンク16とは別にインタークーラ34が設けられていてもよい。また、インタークーラ34を空冷式としてもよい。
 排気タービン32の上流側と下流側とは排気バイパス通路21によって連通されており、排気バイパス通路21に、排気バイパス通路21を開閉するウエイストゲートバルブ(WGV)22が設けられている。このWGV22の開度に応じて排気管26を流れる排気量が増減され、排気タービン32の回転速度及び吸気コンプレッサ31の回転速度が調整される。また、吸気コンプレッサ31の上流側と下流側とは吸気バイパス通路48によって連通されており、吸気バイパス通路48に、吸気バイパス通路48を開閉するエアバイパスバルブ(ABV)49が設けられている。このABV49が開弁されることによって、ターボチャージャ30とスロットル弁14との間の余剰圧力を開放できるようになっている。
 エンジン10には、排気の一部をEGRガスとして吸気通路内に導入する外部EGR装置35が設けられている。このEGR装置35は、吸気管11と排気管26とを接続するEGR配管36と、EGR配管36を流れるEGRガス量を調節する電磁駆動式のEGR弁37と、EGRガスを冷却するEGRクーラ38とを備えている。EGRクーラ38は、例えば水冷式の排気冷却装置であり、エンジン10の冷却水経路39に配置されている。EGRクーラ38では、冷却水経路39を冷却水が循環することでEGRガスが冷却される。EGRクーラ38の冷却能力は冷却水の流量に応じて可変となっており、本実施形態では、冷却水経路39に配置された流量制御弁40の開度を制御によってEGRクーラ38の冷却水流量を可変にできるようになっている。
 EGR配管36は、排気管26において排気タービン32の下流側(例えば触媒28の下流側)と、吸気管11において吸気コンプレッサ31の上流側とを接続するように設けられている。これにより、LPL方式(低圧ループ方式)のEGRシステムを構築するものとなっている。
 図2に示すように、EGR弁37は、EGR配管36においてEGRクーラ38の上流側(排気管26に近い側)に配置されている。これにより、EGRクーラ38によって冷却される前の暖かい排気がEGR弁37を通過するようにし、EGR弁37へのデポジットの付着を抑制するようにしている。EGRクーラ38は通常、水平面に対して傾斜するようにして搭載される。これにより、EGRクーラ38にてEGRガスが冷却されることで生じた水がエンジン側に入り込むことを抑制するようにしている。
 その他、本システムには、エンジン10の所定クランク角ごとにクランク角信号を出力するクランク角センサ41、エンジン10の冷却水温度を検出する水温センサ42、吸気の温度を検出する吸気温センサ43、外気の湿度を検出する湿度センサ44、外気温を検出する外気温センサ45、大気圧を検出する大気圧センサ46等が設けられている。また、本システムには、運転者により操作されるエンジン10の始動スイッチとしてのイグニッションスイッチ55が設けられている。
 本システムは、エンジンECU50、ドアECU60等の制御装置を備えている。各制御装置は、それぞれCPU、ROM、RAM等よりなるマイクロコンピュータを中心に構成されており、ROMに記憶された各種制御プログラムを実行する。
 エンジンECU50は、マイクロコンピュータ51によりエンジン10の各種制御を実施する。具体的には、エンジンECU50のマイクロコンピュータ51は、前述した各センサから検出信号を入力し、その入力した検出信号に基づいて、スロットル弁14や燃料噴射弁23、点火プラグ24、EGR弁37、WGV22、ABV49、流量制御弁40等の駆動を制御する。
 ドアECU60は、図示しない車両ドアの開閉状態に基づいて制御を実施する。具体的には、ドアECU60のマイクロコンピュータは、車両ドアの開状態/閉状態を検出するドアセンサ62及びエンジンECU50から各種信号を入力し、その入力した信号に基づく制御を実施する。
 EGR弁37の駆動制御(EGR制御)に関し、エンジンECU50は、エンジン運転状態(例えばエンジン回転速度や負荷等)に基づいて、EGR率の目標値である目標EGR率を設定し、この目標EGR率を実現するようにEGR弁37の開度を制御する。具体的には、エンジン運転状態に基づいて実EGR率を算出し、その算出した実EGR率が目標EGR率になるようにEGR弁37の駆動デューティ比を算出してEGR弁37を駆動する。なお、EGRガスの導入は、基本的には、アイドル運転領域及び高負荷運転領域を除く所定のEGR適用運転領域で実施される。実EGR率については、例えばA/Fセンサなどの排気センサを吸気管11に取り付け、排気センサにより直接検出した値を用いてもよい。
 排気には燃料の燃焼によって生じた水が多く含まれており、EGRガスが冷却されることによってEGR配管36内で凝縮水が発生する。こうしたEGRガスの冷却は、エンジン停止に伴いエンジン10やEGR通路が冷却されることで生じやすい。特にEGRクーラ38の上流側にEGR弁37が配置されている構成では、エンジン停止後にEGR弁37が閉弁された状態において、EGR弁37の下流側(図2中、“A”の部分)に凝縮水が溜まりやすい。また、凝縮水が溜まったままの状態にしておくと、EGR配管36やEGR弁37の腐食やデポジット付着が促進されやすくなる。さらに、次回のエンジン運転時にエンジン10の吸気系に凝縮水が飛散し、エンジン各部位の腐食や破損、デポジットの付着が生じることも懸念される。
 そこで本実施形態では、エンジン10の運転を停止してからエンジン10が次回始動されるまでのエンジン停止期間中にEGR弁37を開弁することで、EGR配管36内の水を排気側に排出するEGR排水制御を実施することとしている。エンジン停止期間中のEGR排水制御として具体的には、エンジン10が停止された直後の所定の停止後期間にEGR弁37を開弁する停止後排水制御と、エンジン10が始動される直前に運転者が行う所定の始動前動作があったことが検出された場合にEGR弁37を開弁する始動前排水制御とを実施している。所定の始動前動作としては、例えば車両ドアが閉状態から開状態になったこと、座席シートへの着座があったこと、車両のドアキーが解除されたこと等があり、本実施形態では車両ドアが閉状態から開状態になったことを検出している。
 なお、所定の始動前動作は、車両ドアが開状態になったこと以外の動作としてもよいし、あるいは車両ドアが開状態になったこととそれ以外の動作とを含む構成としてもよい。
 エンジン停止期間中の排水制御を実現するための構成として、本システムには、IGスイッチ55のON前にEGR弁37を開弁するための回路としてEGR開制御回路61が設けられている。EGR開制御回路61は、ドアECU60からの制御信号を入力可能になっており、その制御信号の入力に伴い、EGR弁37への電力供給を固定デューティで行うことでEGR弁37を開弁させる。
 また、IGスイッチ55のONからOFFへの切替時には、メインリレー制御として、イグニッションOFF後もエンジンECU50への電力供給が一定時間継続されるようになっている。これにより、イグニッションOFF後では、所定の制御が実行された後、エンジンECU50の出力信号にてメインリレーがOFFされて電力供給が遮断される。本システムでは、エンジン停止直後にはかかるメインリレー制御にてEGR弁37への電力供給を行い、EGR弁37を開弁させる。
 本システムでは、エンジン停止期間中のEGR排水制御とともに、エンジン10の始動後であってエンジン暖機完了前の期間にEGR弁37を積極的に開弁させることで、エンジン暖機完了前の被水対策を行っている。エンジン暖機完了前の被水対策では、EGRクーラ38の冷却能力を低下させつつ、EGRガスの導入による失火を抑制可能な値に目標EGR率を制限してEGR弁37を開く。これにより、エンジン10の始動性を確保しつつ、EGR配管36内の水を蒸発させて除去するようにしている。
 次に、本実施形態のEGR排水制御の処理手順について図3及び図4を用いて説明する。まずは始動前排水制御の処理手順について図3を用いて説明する。この処理は、ドアECU60のマイクロコンピュータにより所定周期毎に実行される。
 図3において、ステップS101では、所定の始動前動作があったこと及びイグニッションOFFであることの2つの条件が共に成立しているか否かを判定する。本実施形態では、ドアセンサ62によって車両ドアが開状態になったことが検出された場合に所定の始動前動作ありと判定する。また、エンジンECU50からIGスイッチ55がONになったことを示す信号が入力されていなければイグニッションOFFであるものとする。
 所定の始動前動作があったこと及びイグニッションOFFであることのうち、少なくともいずれかが不成立の場合にはそのまま本ルーチンを終了する。一方、ステップS101で肯定判定された場合にはステップS102へ進み、EGR開制御回路61によりEGR弁37に電力供給して、EGR弁37を開弁状態に切り替える。これによりEGR弁37の開度が所定の排水開度θ1で保持される。
 ステップS103では、EGR弁37を開弁してから所定時間(例えば数分)が経過したか否かを判定する。ステップS103で否定判定された場合にはそのまま本ルーチンを終了する。一方、ステップS103で肯定判定された場合には、ステップS104へ進み、EGR弁37への電力供給を停止し、EGR弁37を閉弁させる。なお、EGR弁37を開弁してから所定時間が経過する前にIGスイッチ55がONされた場合にはステップS101で否定判定されてそのまま本ルーチンを終了する。この場合には、EGR弁37が所定の排水開度θ1で開いた状態のまま図4の処理の実行が開始される。
 次に、エンジン暖機前の排水制御及び停止後排水制御について図4を用いて説明する。この処理は、エンジンECU50のマイクロコンピュータ51により所定周期毎に実行される。
 図4において、ステップS201では、IGスイッチ55がONか否かを判定する。イグニッションONの場合にはステップS202へ進み、エンジン10が始動されて暖機完了したか否かを判定する。ここでは、図示しないエンジン始動装置としてのスタータモータによるクランキングが開始された後であること、及び水温センサ42により検出されるエンジン冷却水温が判定値以上であることの2つの条件が成立した場合に肯定判定される。
 エンジン始動が未だ開始されていない場合、又はエンジン始動は開始されているが暖機完了前である場合には、ステップS202で否定判定されてステップS203へ進む。ステップS203では、EGR弁37を所定の微少開度θ2で開弁させる。この微少開度θ2は、EGRガスの導入に起因するエンジン10の失火を抑制可能な開度に設定されている。また、ステップS204では、EGRクーラ38によるEGRガスの冷却を制限する。具体的には、流量制御弁40を閉弁状態とすることによってEGRクーラ38におけるエンジン冷却水の循環を停止させる。これにより、EGR配管36の温度低下を抑制し、EGR配管36に残存している水を蒸発させて除去する。なお、流量制御弁40の開度を全閉よりも僅かに開弁側の所定開度とすることによって冷却水流量を制限する構成としてもよい。
 ステップS205では、吸気コンプレッサ31の回転速度を制限する。ここでは、WGV22及びABV49をそれぞれ閉弁状態から開弁状態に切り替える。吸気コンプレッサ31を比較的高い回転速度で駆動させると、EGR配管36の内部に存在する凝縮水が吸気通路内に吸い出され、エンジン各部位に水が飛散するおそれがある。そこで本実施形態では、エンジン暖機前では吸気コンプレッサ31の回転速度を落とし、EGR通路からの凝縮水の吸出しを抑制するようにしている。
 エンジン10の暖機が完了すると、ステップS202で肯定判定されてステップS206へ進み、通常時におけるEGR制御を開始する。具体的には、実EGR率が目標EGR率になるようにEGR弁37を駆動する。また、イグニッションONからイグニッションOFFまでのエンジン運転中では、EGRガスからの凝縮水の発生が予測される所定の運転環境下でエンジン10が運転された時間の積算値である環境運転時間Tdvを計測する(S207)。
 本実施形態では、外気環境パラメータ(外気温度、外気湿度及び大気圧)が所定の被水状態を示す環境下で、エンジン10の運転が実施された時間を積算することにより環境運転時間Tdvを算出する。具体的には、(a)外気温センサ45により検出される外気温が所定の低温判定値TH1(例えば10℃)以下であるか又は所定の高温判定値(例えば30℃)以上である場合、(b)湿度センサ44により検出される外気の湿度が所定の高湿度判定値(例えば70%)以上である場合、及び(c)大気圧センサ46により検出される大気圧が所定の低圧判定値(例えば85kPa)以下である場合、の少なくともいずれかを満たす環境下でエンジン10の運転を行った時間を積算し、その積算値を環境運転時間Tdvとする。計測した環境運転時間TdvはRAMに格納しておく。
 運転者によってIGスイッチ55がOFFされると、ステップS201で否定判定されてステップS208へ進む。ステップS208では、イグニッションOFFされた直前のエンジン運転期間での環境運転時間TdvをRAMから読み出し、その読み出した環境運転時間Tdvに応じてEGR弁37を開制御する。本実施形態では、環境運転時間TdvとEGR弁37の開弁時間との関係が、例えば開弁時間マップとして予めROMに記憶されている。マイクロコンピュータ51は、この開弁時間マップを用いてEGR弁37の開弁時間を設定し、この開弁時間に基づきEGR弁37を駆動する。図5に、開弁時間マップの一例を示す。図5によれば、環境運転時間Tdvが長いほど、EGR弁37の開弁時間が長く設定される。開弁時間の経過後はEGR弁37の駆動を停止し、本処理を終了する。
 次に、本実施形態のEGR排水制御の具体的態様を図6及び図7のタイムチャートを用いて説明する。図6は、エンジン始動前及び始動時について、図7は、エンジン停止後について示している。また、図6中、(a)はドアセンサ62の検出信号の推移、(b)はIGスイッチ55のON/OFFの推移、(c)はEGR弁37の開度の推移、(d)はエンジン10の停止/始動(暖機前)/暖機後の推移、(e)はEGRクーラ38の流量制御弁40の開弁/閉弁の推移、(f)はABV49の開弁/閉弁の推移、(g)はWGV22の開度の推移をそれぞれ示す。図7中、(a)はIGスイッチ55のON/OFFの推移、(b)はエンジン10の運転/停止の推移、(c)はEGR弁37の開度の推移、(d)は外気温センサ45によって検出される外気温度の推移、(e)は環境運転時間Tdv(カウント値)の推移をそれぞれ示す。
 図6において、エンジン停止中の時刻t12以前に運転者が車両ドアを開けると、その時刻t11でEGR弁37が排水開度θ1まで開弁される。その後、運転者によりIGスイッチ55がONされることで、EGR弁37の開度が微少開度θ2に変更される(t12)。なお、微少開度θ2は排水開度θ1よりも閉弁側の値に設定されている。エンジン暖機完了前の期間t12~t13では、EGR開度が微少開度θ2で保持されるとともに、EGRクーラ38の流量制御弁40が閉弁状態で保持される。また、WGV22及びABV49が開弁される。そして、エンジン10の暖機が完了すると、その時刻t13で通常時のEGR制御に移行される。
 次に、エンジン運転停止後のEGR排水制御について説明する。図7において、イグニッションON後では、外気環境パラメータが所定の被水状態を示す環境下でエンジン10の運転が実施された時間が積算される。図7では、外気温度が低温判定値TH1以下である場合(例えば期間t21~t22)では環境運転時間Tdvのカウント値が所定値αずつカウントアップされ、低温判定値TH1を超える場合(例えば期間t22~t23)では環境運転時間Tdvのカウント値がホールドされる。そして、IGスイッチ55がOFFされると、その時刻t24以降ではメインリレー制御にてEGR弁37への電力供給が行われ、EGR弁37が開弁される。また、イグニッションOFF時の環境運転時間Tdvのカウント値N1に応じた開弁時間T1が経過した時刻t25で、EGR弁37が閉弁される。
 なお、所定値αについては、外気環境パラメータの値に基づき可変に設定してもよい。この場合、外気温センサ45により検出される外気温度が所定の低温判定値TH1以下では、外気温度が低いほど所定値αを大きい値にし、所定の高温判定値以上では、外気温度が高いほど所定値αを大きい値にすることが望ましい。また、湿度センサ44により検出される外気の湿度が高いほど所定値αを大きい値にし、大気圧センサ46により検出されせる大気圧が低いほど所定値αを大きい値にすることが望ましい。
 以上詳述した本実施形態によれば、次の効果が得られる。
 本実施形態では、エンジン停止期間中にEGR弁37を開弁することで、EGR配管36内から水を積極的に排出させる構成とした。これにより、EGR配管36内の腐食やデポジットの付着を防止することができる。また、次回のエンジン運転時に凝縮水が飛散することを防止することができ、ひいてはエンジン各部位の腐食や破損、デポジットの付着を防止することができる。
 エンジン停止直後では、エンジン停止に伴いEGR配管36が徐々に冷却されることで、EGR配管36内で凝縮水が発生しやすくなる。この点に鑑み、エンジン10を停止してから次回のエンジン始動までの期間のうち、少なくともエンジン停止直後の期間にEGR排水制御を実施する構成とした。この構成によれば、エンジン停止直後に発生した凝縮水をできるだけ早い段階でEGR配管36内から除去することができる。
 EGR配管36内での凝縮水の発生しやすさは運転環境に応じて異なることに着目し、エンジン運転期間中において、EGRガスからの凝縮水の発生が予測される運転環境下でエンジン10が運転された時間の積算値である環境運転時間Tdvを計測し、その計測した環境運転時間Tdvに応じて、エンジン停止後のEGR弁37の開弁時間を可変にする構成とした。こうした構成とすることにより、凝縮水の排出性を保持しつつEGR弁37の作動時間を短縮することができ、電力消費の低減の点で好適である。
 イグニッションON前に、エンジン始動の直前に運転者が行う所定の始動前動作が検出された場合にEGR弁37を開弁してEGR配管36内の水を排出する構成とした。これにより、イグニッションOFFから次回のイグニッションONまでのエンジン停止期間中にEGR配管36内に溜まった水を、エンジン10が始動される前に排気系側に排出することができる。
 エンジン始動後であって暖機完了前の期間に、EGRクーラ38によるEGRガスの冷却を制限しつつEGR弁37を微少開度θ2で開弁する構成とした。この構成により、エンジン10の始動性を確保しつつEGR配管36内の水を除去することができ、被水対策を更に強化することが可能になる。
 エンジン始動後であって暖機完了前の期間では、吸気コンプレッサ31の回転速度を制限することによって、過給機30による吸入空気の過給を制限する構成とした。EGR配管36内に凝縮水が存在している可能性がある状況で吸気コンプレッサ31を比較的高速で回転させると、EGR配管36内の凝縮水が吸気通路側に吸い出されるおそれがある。こうした点に鑑み上記構成とすることにより、エンジン各部位への水の飛散を極力抑制することができる。
 (他の実施形態)
 本開示は上記実施形態の記載内容に限定されず、例えば次のように実施されてもよい。
 EGR配管36内での凝縮水の発生時期はエンジン停止時の外気温度に応じて相違し、外気温度が低いほど、エンジン停止後の早い時期に凝縮水が発生する。この点に鑑み、本実施形態では、停止後排水制御において、エンジンの停止時の外気温度が低いほどEGR弁37の開弁時期を早くする構成とする。この構成によれば、エンジン停止後では、EGR弁37に電力供給したままにしなくても、凝縮水の排出に適切な時期でEGR弁37を開弁して凝縮水を排気側に排出することができる。これにより、電力消費の低減を図りつつ排水を行うことができる。
 図8は、本実施形態の停止後排水制御の具体的態様を示すタイムチャートである。本実施形態では、IGスイッチ55がOFFに切り替えられた時刻t31での外気温度Tm1に応じてEGR弁37の開弁時期を設定する。図9に、外気温度とEGR開弁時期との関係を示すマップの一例を示す。図9のマップでは、外気温度が低いほど、エンジン停止後の早い時期にEGR弁37の開弁時期が設定されるようになっている。図8の説明に戻り、エンジン停止後では、外気温度に基づき設定した開弁時期が到来した時刻t32でEGR弁37を開弁させる。そして、所定の開弁時間が経過すると、その時刻t33でEGR弁37を閉弁させる。このときのEGR弁37の開弁時間は、予め定めた一定値としてもよいし、図5の開弁時間マップを用いて環境運転時間Tdvに基づき設定した可変値としてもよい。
 上記実施形態では、環境運転時間Tdvに応じて、エンジン停止後のEGR弁37の開弁時間を可変にする構成とした。これを変更し、エンジン10の停止後においてエンジン10の冷却水温度が判定水温Tthよりも低下するまでEGR弁37を開弁する構成としてもよい。またこうした構成において、環境運転時間Tdvに応じて判定水温Tthを可変にする構成としてもよい。こうした構成によっても、凝縮水の排出性を保持しつつEGR弁37の作動時間を短縮することができる。図10に環境運転時間Tdvと判定水温Tthとの関係の一例を示す。図10に示すように、環境運転時間Tdvが長いほど判定水温Tthを低温側に設定することが望ましい。
 高湿度環境に対する運転者の動作が行われている状態を、EGRガスからの凝縮水の発生が予測される運転環境とし、高湿度環境に対する運転者の動作が行われている状態でエンジン10の運転が実施された時間の積算値を環境運転時間Tdvとしてもよい。高湿度環境に対する運転者の動作としては、例えばフロントガラスの雨等の拭き取り装置(ワイパー)を作動させるスイッチのオン操作、フロントガラスに設けられた曇り取り用の送風装置(デフォッガ)を作動させるスイッチのオン操作、リアガラスにプリントされた電熱線(ガラスヒータ)を発熱させるためのガラスヒータスイッチのオン操作等が挙げられる。こうした運転者の動作に基づき外気環境の状態を把握して環境運転時間Tdvを計測する構成によってもEGR配管36内の排水の必要性を把握することができる。また、外気環境パラメータが所定の被水状態を示す値であること及び高湿度環境に対する運転者の動作が行われていることの少なくともいずれかを満たす環境下でエンジン10の運転が実施された時間を積算し、その積算値を環境運転時間Tdvとしてもよい。
 上記実施形態では、外気温度、外気湿度及び大気圧の3つの外気環境パラメータに基づいて環境運転時間Tdvを計測したが、3つの外気環境パラメータのうちの1つ又は2つに基づいて環境運転時間Tdvを計測してもよい。
 上記実施形態の停止後排水制御(図4のステップS208)では、環境運転時間Tdvに応じてEGR弁37の開弁時間を可変にしたが、環境運転時間Tdvに関わらずEGR弁37の開弁時間を一定にしてもよい。
 上記実施形態では、エンジン運転期間において外気温度が低温判定値TH1よりも高温である場合には環境運転時間Tdvのカウント値をホールドしたが、時間の経過に伴い所定値βずつカウントダウンする構成としてもよい。また、所定値βについては、都度の外気温度に基づき可変に設定してもよい。この場合、外気温センサ45により検出される外気温度が所定の低温判定値TH1以下では、外気温度が低いほど所定値βを小さい値にし、所定の高温判定値以上では、外気温度が高いほど所定値βを小さい値にしてもよい。また、湿度センサ44により検出される外気の湿度が高いほど所定値βを小さい値にし、大気圧センサ46により検出されせる大気圧が低いほど所定値βを小さい値にしてもよい。
 上記実施形態では、イグニッションONを始点として、EGRガスからの凝縮水の発生が予測される運転環境下でエンジン10が運転された時間を積算することにより環境運転時間Tdvを算出したが、通常時EGR制御に移行したタイミングを始点として環境運転時間Tdvを算出してもよい。
 ・上記実施形態では、LPL方式(低圧ループ方式)のEGR装置を採用した過給機付きエンジンに本開示を適用する場合について説明した。図11に示すように、排気管26において排気タービン32の上流側と、吸気管11において吸気コンプレッサ31の下流側(例えばインタークーラ34の下流側)とを接続するようにEGR配管36が設けられたHPL方式(高圧ループ方式)のEGR装置を採用した過給機付きエンジンに本開示を適用してもよい。
 上記実施形態では、EGR配管36においてEGRクーラ38の上流側にEGR弁37を配置したが、EGRクーラ38の下流側にEGR弁37を配置する構成に本開示を適用してもよい。
 上記実施形態では、エンジンECU50が停止後排水制御を実行し、ドアECU60が始動前排水制御を実行する構成としたが、エンジンECU50とドアECU60とを一つの制御装置とし、この制御装置が停止後排水制御及び始動前排水制御を実行する構成としてもよい。
 上記実施形態では、排気タービン駆動式のターボチャージャを搭載したエンジンに適用する場合について説明したが、ターボチャージャを搭載したエンジンに限定せず、機械駆動式のスーパーチャージャや、電動式の過給機を搭載したエンジンに適用してもよい。また、過給機付きのエンジンに限定せず、過給機を搭載していない自然吸気エンジンに適用してもよい。
 本開示は、ガソリンエンジンだけでなくディーゼルエンジンにも適用できる。また、車両用以外のエンジンにも適用できる。

Claims (8)

  1.  EGR配管(36)に設けられたEGR弁(37)が開弁されることで前記EGR配管を通じて排気の一部をEGRガスとして吸気通路に還流させるEGR装置(35)を備える内燃機関(10)のEGR制御装置(50、60)であって、
     前記内燃機関を停止してから前記内燃機関を次回始動するまでの停止期間中に、前記EGR弁を開弁して前記EGR配管内から水を排出するEGR排水制御を実施する排水制御装置を備えることを特徴とするEGR制御装置。
  2.  前記排水制御装置は、前記内燃機関を停止した直後の所定の停止後期間に前記EGR排水制御を実施する請求項1に記載のEGR制御装置。
  3.  前記EGRガスからの凝縮水の発生が予測される所定の運転環境下において前記内燃機関の運転が実施された時間の積算値である環境運転時間を計測する時間計測装置を備え、
     前記排水制御装置は、前記時間計測装置により計測した環境運転時間に応じて、前記所定の停止後期間における前記EGR弁の開弁時間を可変に設定する請求項2に記載のEGR制御装置。
  4.  前記EGRガスからの凝縮水の発生が予測される所定の運転環境下において前記内燃機関の運転が実施された時間の積算値である環境運転時間を計測する時間計測装置を備え、
     前記排水制御装置は、前記内燃機関の停止後において前記内燃機関の冷却水温度が判定値よりも低下するまで前記EGR弁を開弁し、
     前記時間計測装置により計測した環境運転時間に応じて前記判定値を可変に設定する請求項2に記載のEGR制御装置。
  5.  外気の温度を検出する温度検出装置(44)を備え、
     前記排水制御装置は、前記内燃機関の停止時に前記温度検出装置により検出される外気温度が低いほど、前記EGR弁の開弁時期を早くする請求項1~4のいずれか一項に記載のEGR制御装置。
  6.  前記内燃機関が始動される直前に運転者が行う所定の始動前動作を検出する動作検出装置を備え、
     前記排水制御装置は、前記停止期間中に前記動作検出装置により前記所定の始動前動作があったことが検出された場合に前記EGR排水制御を実施する請求項1~5のいずれか一項に記載のEGR制御装置。
  7.  前記吸気通路に還流する排気を冷却する排気冷却装置(38)が前記EGR配管に設けられており、
     前記内燃機関の始動後であって前記内燃機関の暖機完了前の期間に、前記排気冷却装置による排気の冷却を制限しつつ、前記内燃機関の失火を抑制可能な所定開度で前記EGR弁を開弁する暖機前制御装置を備える請求項1~6のいずれか一項に記載のEGR制御装置。
  8.  前記内燃機関の吸入空気を過給する過給機(30)が前記内燃機関のガス通路(11,26)に設けられており、
     前記内燃機関の始動後であって前記内燃機関の暖機完了前の期間では、前記過給機による吸入空気の過給を制限する請求項7に記載のEGR制御装置。
PCT/JP2015/000988 2014-03-17 2015-02-26 Egr制御装置 WO2015141149A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-053962 2014-03-17
JP2014053962A JP6364843B2 (ja) 2014-03-17 2014-03-17 Egr制御装置

Publications (1)

Publication Number Publication Date
WO2015141149A1 true WO2015141149A1 (ja) 2015-09-24

Family

ID=54144140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000988 WO2015141149A1 (ja) 2014-03-17 2015-02-26 Egr制御装置

Country Status (2)

Country Link
JP (1) JP6364843B2 (ja)
WO (1) WO2015141149A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170007418A (ko) * 2014-06-19 2017-01-18 도요타지도샤가부시키가이샤 과급식 내연기관
CN114738079A (zh) * 2022-03-16 2022-07-12 潍柴动力股份有限公司 一种发动机气体循环系统及其控制方法和车辆
CN115478945A (zh) * 2022-08-16 2022-12-16 潍柴动力股份有限公司 废气再循环系统的控制方法及装置、电子设备、存储介质
CN116733617A (zh) * 2023-06-07 2023-09-12 长城汽车股份有限公司 Egr的自排水方法、电子设备和汽车

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399023B2 (ja) * 2016-03-22 2018-10-03 トヨタ自動車株式会社 内燃機関の制御装置
JP6900886B2 (ja) * 2017-11-29 2021-07-07 トヨタ自動車株式会社 車両制御装置
JP2023158932A (ja) 2022-04-19 2023-10-31 トヨタ自動車株式会社 内燃機関制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159029A (ja) * 1992-11-17 1994-06-07 Mazda Motor Corp エンジンの油圧制御装置
JP2010059921A (ja) * 2008-09-05 2010-03-18 Toyota Motor Corp 内燃機関のegr制御装置
JP2013015127A (ja) * 2011-07-06 2013-01-24 Daihatsu Motor Co Ltd Egrガス通路構造
JP2013019377A (ja) * 2011-07-13 2013-01-31 Isuzu Motors Ltd エンジンの制御装置
JP2013253509A (ja) * 2012-06-05 2013-12-19 Toyota Motor Corp 内燃機関の制御装置
JP2014009634A (ja) * 2012-06-29 2014-01-20 Toyota Motor Corp 冷却システムの制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159029A (ja) * 1992-11-17 1994-06-07 Mazda Motor Corp エンジンの油圧制御装置
JP2010059921A (ja) * 2008-09-05 2010-03-18 Toyota Motor Corp 内燃機関のegr制御装置
JP2013015127A (ja) * 2011-07-06 2013-01-24 Daihatsu Motor Co Ltd Egrガス通路構造
JP2013019377A (ja) * 2011-07-13 2013-01-31 Isuzu Motors Ltd エンジンの制御装置
JP2013253509A (ja) * 2012-06-05 2013-12-19 Toyota Motor Corp 内燃機関の制御装置
JP2014009634A (ja) * 2012-06-29 2014-01-20 Toyota Motor Corp 冷却システムの制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170007418A (ko) * 2014-06-19 2017-01-18 도요타지도샤가부시키가이샤 과급식 내연기관
KR101897888B1 (ko) * 2014-06-19 2018-09-12 도요타지도샤가부시키가이샤 과급식 내연기관
US10280853B2 (en) 2014-06-19 2019-05-07 Toyota Jidosha Kabushiki Kaisha Supercharged internal combustion engine
CN114738079A (zh) * 2022-03-16 2022-07-12 潍柴动力股份有限公司 一种发动机气体循环系统及其控制方法和车辆
CN114738079B (zh) * 2022-03-16 2023-10-20 潍柴动力股份有限公司 一种发动机气体循环系统及其控制方法和车辆
CN115478945A (zh) * 2022-08-16 2022-12-16 潍柴动力股份有限公司 废气再循环系统的控制方法及装置、电子设备、存储介质
CN115478945B (zh) * 2022-08-16 2023-12-15 潍柴动力股份有限公司 废气再循环系统的控制方法及装置、电子设备、存储介质
CN116733617A (zh) * 2023-06-07 2023-09-12 长城汽车股份有限公司 Egr的自排水方法、电子设备和汽车

Also Published As

Publication number Publication date
JP2015175330A (ja) 2015-10-05
JP6364843B2 (ja) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6364843B2 (ja) Egr制御装置
JP6049577B2 (ja) 過給機付きエンジンの排気還流装置
US8942909B2 (en) Control apparatus for internal combustion engine
US10174719B2 (en) Control device for internal combustion engine
US10125727B2 (en) Internal combustion engine
JP2016020686A (ja) 過給機付き内燃機関
JPWO2012077183A1 (ja) 内燃機関の制御装置
US10174672B2 (en) Electric waste gate valve control device
JP5775509B2 (ja) 内燃機関の制御装置
US10920629B2 (en) Oil temperature sensor diagnostic device
JP2014227955A (ja) エンジンの制御装置
JP6379548B2 (ja) 内燃機関の制御装置
JP2008075589A (ja) 内燃機関のegrガス掃気装置
EP2837808B1 (en) Device for controlling flow rate of internal combustion engine
JP6691498B2 (ja) 内燃機関の制御装置
JP2014227844A (ja) 内燃機関の制御装置
JP2016031063A (ja) 過給機付きエンジンの排気還流装置
KR101651167B1 (ko) 자동차의 자동 정지를 관리하는 방법
JP2014169648A (ja) 内燃機関の過給機制御装置
JP6763488B2 (ja) 車両用内燃機関の制御方法および制御装置
JP2006017053A (ja) 過給機付き内燃機関の燃料噴射時期制御装置
JP2015203309A (ja) 内燃機関の制御システム
JP6154315B2 (ja) エンジンの排気還流装置
WO2019203138A1 (ja) ブローバイガス還流システム、ブローバイガス還流システムの制御装置及び記録媒体
JP6328519B2 (ja) ブローバイガス還元装置と過給機を備えたエンジンの排気還流装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765374

Country of ref document: EP

Kind code of ref document: A1