WO2015137423A1 - 発酵乳を得るためのスタータ,低脂肪・無脂肪アイスクリーム様食品,及び低脂肪・無脂肪アイスクリーム様食品の製造方法 - Google Patents

発酵乳を得るためのスタータ,低脂肪・無脂肪アイスクリーム様食品,及び低脂肪・無脂肪アイスクリーム様食品の製造方法 Download PDF

Info

Publication number
WO2015137423A1
WO2015137423A1 PCT/JP2015/057230 JP2015057230W WO2015137423A1 WO 2015137423 A1 WO2015137423 A1 WO 2015137423A1 JP 2015057230 W JP2015057230 W JP 2015057230W WO 2015137423 A1 WO2015137423 A1 WO 2015137423A1
Authority
WO
WIPO (PCT)
Prior art keywords
fat
ice cream
milk
starter
strain
Prior art date
Application number
PCT/JP2015/057230
Other languages
English (en)
French (fr)
Inventor
愛和 土江
勝紀 木村
恵美 阿久津
幸三 大久保
敏昭 小野田
Original Assignee
株式会社 明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 明治 filed Critical 株式会社 明治
Priority to CN201580003993.0A priority Critical patent/CN105916974A/zh
Priority to SG11201607546YA priority patent/SG11201607546YA/en
Priority to JP2016507808A priority patent/JP6653251B2/ja
Publication of WO2015137423A1 publication Critical patent/WO2015137423A1/ja
Priority to HK16111845.6A priority patent/HK1223650A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1238Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt using specific L. bulgaricus or S. thermophilus microorganisms; using entrapped or encapsulated yoghurt bacteria; Physical or chemical treatment of L. bulgaricus or S. thermophilus cultures; Fermentation only with L. bulgaricus or only with S. thermophilus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/327Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds characterised by the fatty product used, e.g. fat, fatty acid, fatty alcohol, their esters, lecithin, glycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/36Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins
    • A23G9/363Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins containing microorganisms, enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Definitions

  • the present invention relates to a starter added to raw milk of a low-fat or non-fat ice cream-like food, and a low-fat or non-fat ice-cream-like food.
  • “Ice cream-like food” refers to “ice cream” according to the ministerial ordinances regarding the ingredient standards for milk and dairy products in the Japanese Food Sanitation Act, with a milk fat content of less than 8% by weight. That is, “Ice cream-like food” has a milk solid content of 3% by weight or more, does not correspond to “ice cream” (milk fat content of 8% by weight or more) by JAS, and “ice milk” (milk fat content of 3 % Or more) or “lacto ice” (less than 3% by weight of milk fat).
  • lipid is also an element that enhances palatability such as flavor and texture of food and drink, such as richness, richness, and mellowness. For this reason, it has been said that it is difficult to reduce the fat content of foods such as ice cream, which have a delicious taste, because the flavor and texture of the food are impaired.
  • Patent Document 1 a method using whey protein concentrate (WPC) instead of fat is known in order to enhance flavor and texture.
  • WPC whey protein concentrate
  • Patent Literature a method of enhancing the flavor and texture of a fat-free ice cream-like food by using a stabilizer (including an emulsion stabilizer and a thickening stabilizer, the same applies hereinafter) is also known (Patent Literature). 2).
  • the inventors of the present invention have intensively studied the means for solving the above problems, and as a result, fermented milk obtained by using a starter combined with a specific lactic acid bacterium is used as a low-fat or non-fat ice cream-like food. Unexpectedly, it was found that the fat feeling of ice cream-like foods was improved by using it as a raw material, and succeeded in developing a food product that is fat-free but highly palatable. Then, the present inventors have conceived that the conventional problems can be solved based on the above knowledge, and completed the present invention.
  • the first aspect of the present invention relates to a starter that is added to raw milk to ferment the raw milk.
  • the starter of the present invention is a mixture of lactic acid bacteria.
  • the starter of the present invention contains Bulgarian bacteria and Thermophilus bacteria, and the viscosity of fermented milk when the raw milk is cultured at 37 ° C. to pH 4.5 to 5.0 and cooled to 5 ° C. (measured with a B-type viscometer) Is a starter characterized by being 5000 mPa ⁇ s or more.
  • Bulgarian bacteria are Lactobacillus delbrueckii subsp.
  • OLL1247 strain (deposit number: NITE BP-01814) (hereinafter referred to as Bulgarian OLL1247 strain) or Lactobacillus delbrucky subspice -Bulgaricus (Lactobacillus delbrueckii ssp. Bulgaricus) OLL1073R-1 strain (deposit number: FERM BP-10741) (hereinafter, Bulgarian strain OLL1073R-1 strain) can be exemplified.
  • thermophilus bacteria are Streptococcus thermophilus OLS3618 strain (Deposit number: NITE BP-01815) (hereinafter, Thermophilus OLS3618 strain), or Streptococcus thermophilus OLS3078 strain (Deposit number: NITE BP-01 , Thermophilus OLS3078 strain).
  • the starter of the present invention is preferably added to the raw milk of a low-fat and non-fat ice cream-like food having a milk fat content of less than 8% by weight and fermenting the raw milk.
  • the starter of the present invention is a combination of Bulgarian OLL1247 and Thermophilus OLS3618, a combination of Bulgarian OLL1247 and Thermophilus OLS3078, or a combination of Bulgarian OLL1073R-1 and Thermophilus OLS3078. It is preferable that it is a starter consisting of these.
  • fermented milk suitable as a raw material for a low-fat and non-fat ice cream-like food can be obtained by combining a specific type of strain among Bulgarian bacteria and Thermophilus bacteria into a starter. That is, it was found that the fat feeling of this ice cream-like food is unexpectedly improved by using the fermented milk fermented with the starter of the present invention as a low-fat and non-fat ice cream-like food.
  • the present inventors have conducted research on the reason why the fat feeling of the ice cream-like food is improved, and found that the viscosity of the fermented milk as a raw material contributes to the improvement of the fat feeling of the ice cream-like food. It was.
  • emulsification is carried out by inoculating a starter combining Bulgarian OLL1247 and Thermophilus OLS3618, a starter combining Bulgarian OLL1247 and Thermophilus OLS3078, a starter combining Bulgarian OLL1073R-1 and Thermophilus OLS3078. It was found that the viscosity of the fermented milk (measured at 5 ° C.
  • a B-type viscometer using a B-type viscometer is 5000 mPa ⁇ s or more without adding a stabilizer such as a stabilizer and a thickening stabilizer.
  • a stabilizer such as a stabilizer and a thickening stabilizer.
  • the amount of polysaccharide produced is as other strains. It is low compared. Therefore, fermented milk having a preferable viscosity cannot be obtained even if these strains are used alone. On the other hand, by using these strains in combination, the polysaccharide production was dramatically improved, and the viscosity of fermented milk was high.
  • the starter of the present invention combined with the above-mentioned strains was fermented by adding to non-fat or low-fat raw material milk
  • the viscosity of the fermented milk was fermented with a starter using another strain. It became high compared with non-fat or low-fat fermented milk. Therefore, the viscosity of fermented milk (measured by a B-type viscometer) when cultivating raw milk containing milk and thermophilus bacteria at 37 ° C. to pH 4.5 to 5.0 and cooling to 5 ° C. is 5000 mPa -
  • the starter which becomes more than s can be said to be a starter suitable for increasing the viscosity of non-fat or low-fat fermented milk.
  • the viscosity of fermented milk (measured with a B-type viscometer) when the raw milk is cultured at 37 ° C. to pH 4.5 to 5.0 and cooled to 5 ° C. contains 5000 mPa ⁇ s.
  • the fermented milk whose viscosity is to be measured does not contain any stabilizer, or 0.05% by weight or less (when the weight of fermented milk is 100%). It is preferable.
  • the “stabilizer” includes an emulsion stabilizer, a thickening stabilizer, or a mixture thereof. By adding a certain amount or more of stabilizer to the fermented milk, the viscosity can be made 5000 mPa ⁇ s or more.
  • fermented milk to which a stabilizer is added is used as a raw material for an ice cream-like food, the resulting ice cream-like food has a poor mouth melt or a bitter taste. A feeling may occur.
  • the second aspect of the present invention relates to a low-fat and non-fat ice cream-like food obtained by using the starter according to the first aspect.
  • the ice cream-like food of the present invention is a low-fat and non-fat ice cream-like food having a milk fat content of less than 8% by weight obtained by cooling and solidifying an ice cream mix.
  • the ice cream mix includes fermented milk obtained by adding and fermenting the starter according to the first aspect to raw milk.
  • the ice cream mix has a non-fat milk solid content of 11% by weight or more.
  • the ice cream mix may not contain a stabilizer, or may contain 0.05% by weight or less of a stabilizer. preferable.
  • highly viscous fermented milk can be obtained by using a starter in which a strain of a specific type of lactic acid bacterium is combined. And by using highly viscous fermented milk as a raw material, it becomes unnecessary to add a stabilizer to an ice cream mix. As a result, the fat feeling of the ice cream-like food can be improved even when it is fat-free or low-fat, and the artificial mouth-melting mouthfeel unique to the stabilizer can be eliminated.
  • Non-fat milk solids function as a substitute for fat.
  • the fat feeling of the ice cream-like food is further increased. be able to. Further, by increasing the solid content of non-fat milk to 11% by weight or more, overrun can be stabilized during freezing.
  • SNF non-fat milk solid content
  • the fermented milk contained in the ice cream mix preferably has a viscosity (measured with a B-type viscometer, 5 ° C.) of 5000 mPa ⁇ s or more, preferably 5000 to 6000 mPa ⁇ s. More preferred.
  • fermented milk which is a raw material for ice cream-like foods, even if they are low-fat or non-fat ice cream-like foods, the texture and flavor as if they contain fat Can be created.
  • the ice cream mix preferably further includes a whey protein condensate.
  • the “whey protein condensate” is a condensate of particles mainly composed of whey protein having an average particle diameter of 2 to 10 ⁇ m.
  • the whey protein condensate can be obtained by performing heat treatment and mechanical shearing treatment simultaneously or alternately. Whey protein condensate functions as a fat substitute.
  • Overrun is the amount of air in the ice cream-like food, that is, the air content.
  • stabilizers such as thickening stabilizers and emulsion stabilizers are added to maintain the shape retention of ice creams.
  • ice creams containing a stabilizer may have an artificial flavor or texture derived from the stabilizer, such as poor melting in the mouth or a bitter taste.
  • milk-derived whey protein condensate to the ice cream mix as a fat substitute as described above, even if the fat content is low, without using stabilizers, The shape can be stabilized.
  • the third aspect of the present invention relates to a method for producing a low-fat or non-fat ice cream-like food.
  • the production method of the present invention comprises: Adding the starter according to the first aspect to raw milk to obtain fermented milk; Obtaining an ice cream mix using fermented milk; Cooling and solidifying the ice cream mix to obtain a low-fat and non-fat ice cream-like food having a milk fat content of less than 8% by weight.
  • the ice cream mix when the ice cream mix is cooled and solidified, it is preferable to cool and solidify the ice cream mix with an extrusion molding apparatus.
  • the size of ice crystals contained in the ice cream-like food is reduced. For example, when the size of ice crystals is 60 ⁇ m or less in diameter, the texture of the ice cream-like food becomes smooth.
  • FIG. 1 is a graph showing the polysaccharide production for representative viscous strains of Bulgaria and Thermophilus.
  • FIG. 2 is a graph showing the viscosity of fermented milk in which Bulgarian bacteria and Thermophilus bacteria are combined.
  • low fat means that the lipid is less than 3.0% by weight on the nutrition labeling standard.
  • Full-free means that the lipid is less than 0.5% by weight.
  • a to B means “A or more and B or less” unless otherwise specified.
  • deposit number: FERM Means a deposit number at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology, which is an international depositary authority under the Budapest Treaty.
  • Deposit number: NITE Means the deposit number in the Patent Microorganism Deposit Center, National Institute of Technology and Evaluation, which is the international depositary authority under the Budapest Treaty.
  • the 1st side surface of this invention is related with the starter added to the raw material milk
  • the starter contains lactic acid bacteria and ferments the raw milk when added to the raw milk.
  • the present inventors have conducted research on the reason why the fat feeling of the ice cream-like food is improved, and found that the viscosity of the fermented milk as a raw material contributes to the improvement of the fat feeling of the ice cream-like food. It was. Therefore, the main purpose of the starter of the present invention is to increase the viscosity of the fermented milk when the raw material milk to which the starter is added is fermented without using a stabilizer. In particular, the starter of the present invention is capable of increasing the viscosity of the fermented milk even when the milk fat content in the raw milk is small or even when the milk milk is not contained in the raw milk. It has been developed. The present invention is based on the knowledge that high-viscosity fermented milk is used as a raw material for an ice cream-like food, whereby the ice cream-like food has a feeling of fat and can enhance palatability.
  • the starter of the present invention is a combination of Bulgarian bacteria and Thermophilus bacteria. That is, the starter of the present invention includes both Bulgarian bacteria and Thermophilus bacteria.
  • the starter of the present invention is preferably composed only of Bulgarian bacteria and Thermophilus bacteria.
  • the starter of the present invention may contain other lactic acid bacteria in addition to the Bulgarian bacteria and the thermophilus bacteria as long as the effects of the present invention can be achieved.
  • a Bulgarian bacterium is, for example, Lactobacillus delbrueckii subsp.) Bulgaricus OLL1247 strain (deposit number: NITE BP-01814) (hereinafter, Bulgarian bacterium OLL1247 strain) or Lactobacillus -At least one strain selected from Lactobacillus delbrueckii ssp. Bulgaricus OLL1073R-1 strain (deposit number: FERM BP-10741) (hereinafter referred to as Bulgarian strain OLL1073R-1 strain) is used. It is done.
  • thermophilus bacterium is, for example, Streptococcus thermophilus OLS3618 strain (deposit number: NITE BP-01815) (hereinafter, thermophilus OLS3618 strain), or Streptococcus thermophilus OLS30I strain TEB No. 30P. ⁇ 01697) (hereinafter, thermophilus OLS3078 strain) is used.
  • the following three patterns can be given as a combination of Bulgarian bacteria and Thermophilus bacteria constituting the starter of the present invention.
  • a combination of Bulgarian OLL1247 and Thermophilus OLS3618 (2) A combination of Bulgarian OLL1247 and Thermophilus OLS3078 (3) A combination of Bulgarian OLL1073R-1 and Thermophilus OLS3078
  • lactic acid bacteria such as Bulgarian bacteria and Thermophilus bacteria produce viscous polysaccharides when inoculated into raw milk and fermented.
  • polysaccharides derived from lactic acid bacteria include all polysaccharides in which glucose, galactose, rhamnose, and the like are polymerized, and may be partially phosphorylated.
  • a characteristic feature of viscous polysaccharides derived from lactic acid bacteria is that they have a higher stringiness compared to plant-derived viscous polysaccharides. For this reason, it is generally expected that the viscosity of fermented milk will be higher when lactic acid bacteria with higher production of viscous polysaccharides are fermented by adding to raw material milk.
  • FIG. 1 is a graph showing the production amount of polysaccharides for typical viscous strains of Bulgarian bacteria and Thermophilus bacteria. The polysaccharide production was measured under the following conditions.
  • Preparation of culture Non-fat dry milk was dissolved in MilliQ water at 10% (w / v) and autoclaved at 121 ° C. for 7 min.
  • various strains were activated twice, and then 1% of the culture solution was inoculated into 4 ml of a pulverized medium placed in a 15 ml conical tube, followed by stationary culture at 37 ° C. for 18 hours.
  • Quantification of polysaccharide production To 4 ml of the culture solution, 100 ⁇ l of trichloroacetic acid (Wako) was added at 400 ⁇ l (final concentration 10%) and stirred until the viscosity disappeared.
  • Wako trichloroacetic acid
  • the supernatant was collected by centrifugation (12000 g, 4 ° C., 20 min), and the entire amount was transferred to a new 15 ml conical tube. MilliQ water was added to the collected supernatant, and the volume was increased to 4 ml using a conical tube scale. 8 ml (2 times amount) of cold ethanol was gradually added and mixed thoroughly, and then allowed to stand at 4 ° C. overnight to precipitate the polysaccharide. The polysaccharide was recovered as a precipitate by centrifugation, and 4 ml of MilliQ water was added to completely dissolve the polysaccharide.
  • Each polysaccharide aqueous solution was applied to 96-well disodialyzer (250-300 ⁇ ; MWCO 5,000; HARVARD 74-0902) at 180 ⁇ l / well and dialyzed against 5 L of MilliQ for 2 days (MilliQ water was changed daily). It was. After completion of dialysis, the volume of each polysaccharide aqueous solution is measured, and the polysaccharides are determined by the phenol-sulfuric acid method (Dubois et al. Colorimetoric method for determination of sugars and related substances. Anal. Chem. 1956; 28: 350-356.). The concentration was measured, and the polysaccharide production (mg / kg) was calculated.
  • the Bulgarian bacterium OLL1251 strain produces the largest amount of polysaccharides in Bulgaria.
  • Thermophilus OLS3272 strain has the highest yield of polysaccharides. For this reason, when trying to obtain fermented milk having a high viscosity using a starter that combines a Bulgarian bacterium and a thermophilus bacterium, generally, a starter that combines the Bulgarian OLL1251 strain and the Thermophilus OLS3272 strain is the most efficient. It is considered expensive.
  • the present inventors have studied a combination of Bulgarian bacteria and thermophilus bacteria as starters in order to obtain an ice cream-like food that has a fat feeling and can be tasted even if it is low or no fat. Went.
  • an ice cream-like food is obtained by selecting the Bulgarian OLL1247 strain or the Bulgarian OLL1073R-1 strain as the Bulgarian bacterium and the Thermophilus OLS3618 strain or the Thermophilus OLS3078 strain as the Thermophilus bacterium. It has been found that the fat feeling and deliciousness of the food increases to a sufficient level.
  • the Bulgarian bacteria OLL1247 strain and the Bulgarian OLL1073R-1 strain judged to be suitable by the present inventors are not the most common.
  • the thermophilus bacteria of the Thermophilus OLS3618 strain and Thermophilus OLS3078 strain judged to be suitable by the present inventors are not the ones that produce the largest amount of polysaccharides when used alone. In this way, even if the polysaccharide yield is not so high by itself, if the viscosity of fermented milk can be finally increased by combining with other strains, the fat feeling and taste of ice cream-like foods was found to improve. That is, it can be said that the fat feeling and deliciousness of ice cream-like foods vary greatly depending on the compatibility of the combined Bulgarian and thermophilus bacteria.
  • the present inventors examined various combinations of typical Bulgarian bacteria and thermophilus bacteria.
  • the viscosity of fermented milk which is a raw material for ice cream-like foods, plays a role in bringing about a sense of fat and deliciousness, the viscosity of fermented milk is measured for each combination. did.
  • FIG. 2 is a graph showing the viscosity of fermented milk in which Bulgarian bacteria and Thermophilus bacteria are combined.
  • the viscosity of fermented milk was measured under the following conditions. Further, the Bulgarian starter and the Thermophilus starter were activated by performing subculture at 37 ° C. three times in a 10% nonfat dry milk medium.
  • Viscosity measurement A 20% non-fat dry milk solution (non-fat milk solid content 19%) was heated with stirring, sterilized by reaching 95 ° C, and cooled to 37 ° C.
  • the lactic acid bacteria starter to be used was added at the above blending rate and stirred for 1 minute. Thereafter, the cells were cultured at 37 ° C., and the lactic acid acidity and pH were measured over time. Stirring and cooling were started at pH 4.7 to 4.8, the temperature was lowered to 10 ° C. or less, and the pH after cooling was adjusted to 4.5 to It was set to 4.7. Thereafter, using a rotary type B viscometer, the temperature of the fermented milk was set to 5 ° C., and the rotor No. 4, the viscosity was measured at 60 rpm.
  • strain + thermophilus OLS3078 strain the viscosity of the fermented milk (B-type viscometer, 5 ° C.) exceeded 5000 mPa ⁇ s.
  • the viscosity (B-type viscometer, 5 ° C.) of fermented milk using “Bulgaria OLL1247 strain + Thermophyllus OLS3618 strain” was 5670 mPa ⁇ s.
  • strain + thermophilus OLS3078 strain” was 5110 mPa * s.
  • the viscosity (B-type viscometer, 5 ° C.) of fermented milk using “Bulgaria OLL1073R-1 strain + thermophilus OLS3078 strain” was 5270 mPa ⁇ s.
  • the viscosity of the fermented milk (B-type viscometer, 5 ° C.) is preferably 5000 to 6000 mPa ⁇ s, 5100 to 5800 mPa ⁇ s, or 5200 to 5600 mPa ⁇ s.
  • the viscosity of fermented milk is suitable as shown in FIG. 2 even when the Bulgarian OLL1251 strain of Bulgaria, which produces the largest amount of polysaccharides, is combined with the Thermophilus OLLS3272 strain of Thermophilus.
  • the starter that combines the Bulgarian OLL1251 strain and the Thermophilus OLS3272 strain has a viscosity of fermented milk (B-type viscometer, 5 ° C.) of 3000 mPa ⁇ s or less, and is 5000 mPa ⁇ s or more like the starter of the present invention. The preferred viscosity was not exhibited.
  • the starter of the present invention is a combination of Bulgarian bacteria and Thermophilus bacteria.
  • the viscosity of fermented milk (B-type viscometer, 5 ° C.) is 5000 mPa ⁇ s or more. Is preferably selected from Bulgarian OLL1247 strain or Bulgarian OLL1073R-1 strain as the Bulgarian bacterium, and selected from Thermophilus OLS3618 strain or Thermophilus OLS3078 strain as the Thermophilus bacterium. .
  • the starter in which the Bulgarian bacteria OLL1247 and the Thermophilus OLS3618 thermophilus were combined had the highest viscosity of the fermented milk.
  • the starter combining the Bulgarian OLL1247 strain and the Thermophilus OLS3618 strain is suitable for producing a low-fat or non-fat ice cream-like food from the viewpoint of increasing the viscosity of the fermented milk.
  • Bulgarian bacteria when the total weight of the starter is 100%, Bulgarian bacteria can be contained in 20 to 80%, 30 to 70%, 40 to 60%, or about 50% ( ⁇ 2%). Thermophilus bacteria can be included at 20-80%, 30-70%, 40-60%, or about 50% ( ⁇ 2%). However, if the number of lactic acid bacteria in the starter is high, the required amount of starter added can be reduced, and if the number of lactic acid bacteria in the starter is low, the required amount of starter added can be increased.
  • the addition amount of the stabilizer is preferably 0 (zero) or 0.05% by weight or less when the weight of the fermented milk is 100%. In particular, the amount of stabilizer added is preferably 0.03% by weight or less.
  • emulsifying stabilizer examples include quinaya extract, glycerin fatty acid ester (glycerin acetic acid fatty acid ester, glycerin lactic acid fatty acid ester, glycerin citrate fatty acid ester, glycerin succinic acid fatty acid ester, glycerin diacetyl tartaric acid fatty acid ester, polyglycerin.
  • quinaya extract glycerin fatty acid ester (glycerin acetic acid fatty acid ester, glycerin lactic acid fatty acid ester, glycerin citrate fatty acid ester, glycerin succinic acid fatty acid ester, glycerin diacetyl tartaric acid fatty acid ester, polyglycerin.
  • Fatty acid ester polyglycerin condensed ricinoleic acid ester, glycerin acetic acid ester), enzymatically treated lecithin, enzymatically decomposed lecithin, vegetable sterol, plant lecithin, sucrose fatty acid ester, stearoyl calcium lactate, sorbitan fatty acid ester, propylene glycol fatty acid ester, fractionated lecithin , Egg yolk lecithin, polysorbate 20, polysorbate 60, polysorbate 65, and polysorbate 80 are generally commercially available. Mention may be made of things.
  • thickener examples include alginic acid, sodium alginate, carboxymethylcellulose salt, methylcellulose, crystalline cellulose, microfibrous cellulose, fermented cellulose, nata de coco, gum arabic, gati gum, curdlan, carrageenan, xanthan gum, guar gum, psyllium seed.
  • Gum gellan gum, tamarind seed gum, enzyme-treated tamarind seed gum, tara gum, pectin, soybean polysaccharide, starch, modified starch (acetylated adipic acid crosslinked starch, acetylated oxidized starch, acetylated phosphate crosslinked starch, octenyl succinate starch sodium , Starch acetate, oxidized starch, sodium starch glycolate, hydroxypropylated phosphate cross-linked starch, hydroxypropyl starch, phosphate rack Starch, phosphorylated starch, phosphoric acid monoester phosphate-crosslinked starch), it may be mentioned agar, gelatin, pullulan and mannan, those generally commercially available.
  • modified starch acetylated adipic acid crosslinked starch, acetylated oxidized starch, acetylated phosphate crosslinked starch, octenyl succinate starch sodium , Star
  • low fat / non-fat means that the milk fat content in the ice cream-like food is less than 8% by weight.
  • the ice cream-like food of the present invention preferably has a milk fat content of 0 to 7% by weight, 0 to 5% by weight, or 0 to 3% by weight.
  • an ice cream mix is prepared.
  • An ice cream mix means a mixture of raw materials for producing ice cream-like foods before air is included. It becomes an ice cream-like food by cooling and solidifying while adding air to the ice cream mix.
  • the ice cream mix includes fermented milk obtained by fermenting raw material milk to which the starter according to the first aspect described above is added.
  • raw milk it is preferable to use low-fat milk or non-fat milk obtained by adjusting ingredients of raw milk.
  • Low-fat milk refers to milk whose milk fat content is 0.5 wt% or more and 1.5 wt% or less, among milk adjusted only for milk fat content.
  • Non-fat milk refers to milk whose milk fat content is not less than 0 and less than 0.5% by weight, among milks adjusted only for milk fat content.
  • a starter is added to this raw milk and fermented. As described above, the starter uses a combination of a specific Bulgarian bacterium and a specific thermophilus bacterium.
  • the combination patterns of Bulgarian bacteria and Thermophilus bacteria constituting the starter are as follows (1) to (3).
  • the fermentation conditions of the raw material milk to which the starter is added may follow a known fermentation method.
  • the fermented milk obtained as described above preferably has a viscosity of 5000 mPa ⁇ s or more. Viscosity greatly depends on the type of starter added to the raw milk. In other words, fermented milk with high viscosity can be obtained by using a starter that produces a large amount of viscous polysaccharide. Fermented milk having a viscosity of 5000 to 6000 mPa ⁇ s can be obtained by using the starter according to the combination of (1) to (3). Among these, it is most preferable to use “(1) Combination of Bulgarian OLL1247 and Thermophilus OLS3618” as a starter.
  • the viscosity of the fermented milk is preferably 5000 to 5800 mPa ⁇ s, particularly preferably 5100 to 5600 mPa ⁇ s.
  • raw milk containing Bulgarian bacteria and Thermophilus bacteria is cultured at 37 ° C. to pH 4.5 to 5.0 and cooled to 5 ° C. What is necessary is just to select the starter whose viscosity (measured with a B-type viscometer) of time fermented milk is 5000 mPa * s or more.
  • the viscosity of fermented milk (measured with a B-type viscometer) is 5000 mPa ⁇ s or more, a combination of Bulgarian bacteria and Thermophilus bacteria can be selected.
  • the composition of the non-fat milk solid content of the raw milk here is not limited, but is preferably 5 to 30%, more preferably 8 to 30%, and more preferably 10 to 30%. Further preferred.
  • the viscosity of fermented milk is a measured value at 5 ° C., and the temperature factor can be predicted in advance and converted in consideration of the fact that the viscosity changes as the temperature of the object increases.
  • the viscosity of fermented milk can be appropriately adjusted by known techniques. For example, it is already known that the viscosity of fermented milk obtained can be increased by fermenting raw material milk inoculated with a starter at a low temperature for a long time. It is also known that the viscosity of the obtained fermented milk is increased by increasing the content of skim milk mixed with the raw material milk.
  • the viscosity of the fermented milk (B-type viscometer, 5 ° C.) is preferably set to 5000 mPa ⁇ s or more, but means for reaching this appropriate viscosity is not particularly limited.
  • the ice cream mix may contain other additives as long as a low-fat or non-fat ice cream-like food can be produced.
  • ice cream mixes are dairy products (cream, butter, condensed milk, powdered milk, etc.), sugars (sugar, etc.), fats, eggs, stabilizers (emulsification stabilizer, thickening stable) Agent), flavoring agents, coloring agents, and other raw materials can be mixed and dissolved.
  • dairy products cream, butter, condensed milk, powdered milk, etc.
  • sugars sucgar, etc.
  • fats eggs
  • stabilizers emulsification stabilizer, thickening stable
  • flavoring agents coloring agents
  • other raw materials can be mixed and dissolved.
  • milk fat raw materials such as fresh cream and butter, vegetable fat raw materials such as palm oil and coconut oil, or egg yolk may be used. it can.
  • Non-fat milk solids As described above, the low-fat and non-fat ice cream-like food of the present invention uses a novel starter to increase the viscosity of fermented milk and bring about a sense of fat. In addition, in order to further enhance the fat feeling of low-fat and non-fat ice cream-like foods, the ice cream mix is prepared so that the non-fat milk solid content (SNF: Solid Not Fat) is 11% by weight or more. It is preferred that Non-fat milk solids are components obtained by removing moisture and milk fat from milk and contribute to improving the flavor of ice cream-like foods. Non-fat milk solids include, for example, proteins, carbohydrates, minerals, and vitamins.
  • non-fat milk solids as a substitute for milk fat, the fat and taste of low-fat and non-fat ice cream-like foods can be further enhanced. Moreover, the preservation stability of an ice cream-like food can be improved by containing a large amount of non-fat milk solids. Further, by increasing the solid content of non-fat milk to 11% by weight or more, overrun can be stabilized during freezing.
  • the non-fat milk solid content in the ice cream mix is 11% by weight or more, 12% by weight or more, or 14% by weight or more. Specifically, the non-fat milk solid content is preferably 11 to 20% by weight, 12 to 19% by weight, or 14 to 18% by weight.
  • the limit of non-fat milk solids is said to be about 11% (Reference: “Production of ice cream” (supervised by Yuhei Soyama, Issuing Office Kogyo), page 19) (Issued April 30, 1996).
  • This is because when an ice cream-like food is produced using an ice cream mix containing a large amount of non-fat milk solids, the resulting ice cream-like food tends to have a strong salty taste. Therefore, in the present invention, it is preferable to ferment after desalting and concentrating all or part of an ice cream mix (fat milk) containing non-fat milk solids before fermentation.
  • the NF membrane is a membrane-like filter having nano-sized through holes (for example, a pore diameter of 0.5 to 2 nm).
  • the NF membrane is a membrane that mainly transmits monovalent ions and water. Therefore, according to the nanofiltration method, monovalent cations (sodium ions, potassium ions, chloride ions) and moisture can be removed.
  • NF film As a material for the NF film, polyamide, cellulose acetate, polyethersulfone, polyester, polyimide, vinyl polymer, polyolefin, polysulfone, regenerated cellulose, or polycarbonate can be used.
  • the retentate obtained by the nanofiltration method includes all or part of the total solid content (TS) of the ice cream mix (fat milk) including the non-fat milk solid content before fermentation, that is, milk fat (FAT), Non-fat milk solids (SNF) is concentrated.
  • TS total solid content
  • FAT milk fat
  • SNF Non-fat milk solids
  • the non-fat milk solid content of the ice cream mix containing fermented milk can be adjusted to 11% by weight or more or 14% by weight or more.
  • the permeate removed by the nanofiltration method contains a lot of water in all or part of the ice cream mix (fat milk) containing non-fat milk solids before fermentation, and some water-soluble components. (Especially monovalent ions).
  • a component removed from the water solubility of fermented milk there is ash.
  • Ash is an inorganic substance such as sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), chlorine (Cl), phosphorus (S), and vitamins such as vitamin A, B1, B2, and niacin. It is a generic name.
  • fermented milk as a raw material for the ice cream mix can be desalted and concentrated.
  • powdered emulsified skim milk that has been desalted and concentrated by nanofiltration is also referred to as NF degreasing.
  • reverse osmosis (RO) treatment may be performed on the permeate removed by the nanofiltration method to obtain a reverse osmosis membrane permeate.
  • Reverse osmosis treatment uses, for example, a membrane filter that captures monovalent cations (reverse osmosis membrane), and the reverse osmosis membrane is charged with the permeate removed by the nanofiltration method. This is done by applying pressure from the upstream side.
  • reverse osmosis treatment since a pressure higher than the osmotic pressure is used, most of the permeate removed by the nanofiltration method passes through the reverse osmosis membrane and becomes RO permeate.
  • the reverse osmosis membrane retentate (the portion that did not pass through the reverse osmosis membrane) is concentrated as monovalent cations such as sodium ions and potassium ions contained in the permeate removed by the nanofiltration method. Is done. That is, performing reverse osmosis treatment on the permeate removed by the nanofiltration method is also part of the desalting treatment.
  • the permeate that permeates the reverse osmosis membrane becomes demineralized water.
  • the desalted milk is obtained as a mixed solution.
  • the amount of permeate removed by the nanofiltration method and the amount of reverse osmosis membrane permeate (demineralized water) are almost the same.
  • the amount of desalted milk obtained by mixing the desalted water obtained by reverse osmosis treatment and the retentate obtained by the nanofiltration method is substantially the same as the amount of raw milk prepared first.
  • the desalted milk is desalted milk from which a part of sodium and potassium, which are salty, are removed while the total solid content of the raw material milk is concentrated.
  • the solid content of non-fat milk increases and the ice becomes more fatty.
  • the ice cream-like food produced in this way has a good texture (tongue feel) because the growth of lactose crystals during frozen storage is suppressed.
  • an ice cream-like food with a high fat feeling can be obtained by performing lactose decomposition to suppress the growth of lactose crystals.
  • lactose decomposition for the technology for suppressing lactose crystal growth by performing lactose decomposition, reference can be made to, for example, the description of International Publication No. WO2011 / 077739.
  • the low-fat and non-fat ice cream-like food of the present invention preferably contains a whey protein condensate in the ice cream mix as a raw material.
  • the “whey protein condensate” here is a condensate of particles mainly composed of whey protein having an average particle diameter of 2 to 10 ⁇ m.
  • the whey protein condensate can be obtained by subjecting the whey protein solution to heat treatment and mechanical shearing treatment simultaneously or alternately. Whey protein condensate functions as a substitute for fat such as milk fat.
  • the ice cream-like food of the present invention is a bubble-containing emulsion that is solidified by entraining air.
  • overrun that is, sufficient amount of air entrainment (air content) cannot be secured, and the shape is retained when the final product is obtained.
  • air content air entrainment
  • sex cannot be maintained.
  • ice creams containing these stabilizers sometimes have artificial flavors and textures derived from the stabilizer, such as poor mouth melting and bitterness.
  • whey protein condensate is included in the ice cream mix as a fat substitute.
  • the whey protein condensate can be obtained by subjecting the whey protein solution to heat treatment and mechanical shearing simultaneously.
  • the whey protein condensate contains particles having an average particle size of 2 to 10 ⁇ m.
  • the temperature of the heat treatment is 75 to 85 ° C. and the heating time is 5 to 10 minutes.
  • the solid content concentration contained in the whey protein solution is preferably 5 to 20% by weight.
  • the “whey protein solution” used for the production of the whey protein condensate can be obtained by mixing the whey protein concentrate in water and dissolving and / or dispersing it.
  • the water may be replaced with milk containing a lot of water or other dairy products, or these may be used in combination.
  • the whey protein solution is preferably skim milk in order to reduce the fat content of the actually obtained whey protein aggregate.
  • the “whey protein concentrate” (WPC) referred to here is also called whey protein concentrate and means a whey protein concentrated to a predetermined concentration by membrane treatment or the like.
  • WPC used for this invention, WPC derived from cheese whey, WPC derived from lactic acid whey, etc. can be mentioned.
  • WPC1 purified whey protein
  • WPC1 whey protein concentrate
  • WPC whey protein concentrate
  • the composition of the components of whey protein concentrate (WPC) varies depending on whey raw materials, products, preparation methods, and the like.
  • the end product of the present invention is a low-fat or non-fat ice cream-like food. % Or less is preferable.
  • the whey protein solution thus prepared is subjected to heat treatment and shearing treatment.
  • the heat treatment is not particularly limited as long as the heat treatment can be performed simultaneously with the mechanical discontinuation treatment.
  • a general heat treatment apparatus used in food processing technology can be used.
  • heat treatment devices include jacketed tanks, plate-type heat exchangers, tube-type heat exchangers, scraping-type heat exchangers, steam-injection-type heating devices, and energizing-type heating devices. be able to.
  • the temperature of the heat treatment is preferably 55 ° C. or higher, for example, 55 to 100 ° C., 70 to 90 ° C., or 75 to 85 ° C.
  • the heat treatment time may be 5 to 20 minutes, 5 to 15 minutes, or 5 to 10 minutes.
  • the mechanical shearing process is not particularly limited as long as the shearing process can be performed simultaneously with the heat treatment.
  • a general mechanical shearing apparatus used in food processing technology can be used.
  • a homomixer manufactured by PRIMIX
  • the rotational speed is 100 to 10,000 rpm, 200 to 8000 rpm, Alternatively, it is preferably 250 to 5000 rpm.
  • care must be taken not to make the whey protein condensate particle size too small.
  • the shearing force (shear stress) is 1.9 to 187.2 Pa, 3.7 to 149.7 Pa, respectively. Or 4.7 to 93.6 Pa.
  • the shearing force of mechanical shearing varies greatly depending on the type of shearing device actually used and the setting of its capability (operation conditions). For this reason, those skilled in the art may obtain the effects of the present invention by appropriately changing the model and operating conditions of the shearing device.
  • the “whey protein aggregate” means a whey protein solution obtained by performing the above heat treatment and mechanical shearing treatment simultaneously or alternately on a whey protein solution. Aggregates. This whey protein aggregate has an average particle diameter of 2 to 10 ⁇ m.
  • average particle size means the average particle size obtained by measuring the particle size by the laser diffraction / scattering method (Mie scattering method) in accordance with JIS Z8825-1 and obtaining in accordance with JIS Z8819-2. It means the value of the diameter (D 50 ).
  • the particle diameter may be measured using a laser diffraction / scattering particle size distribution analyzer LS230 (manufactured by Beckman Coulter, Inc.).
  • the average particle diameter is sometimes referred to as the average fat globule diameter in dairy products such as milk and milk drinks.
  • the expression “average fat sphere diameter” includes the meaning of “average particle diameter”.
  • the whey protein aggregate used in the present invention contains many particles having a particle size of 1 ⁇ m or less, the stability of overrun of the actually obtained bubble-containing emulsion is poor and the shape retention cannot be maintained. For this reason, the whey protein aggregate preferably has an average particle diameter of 2 to 10 ⁇ m.
  • such a whey protein aggregate is preferably prepared in the range of pH of 5.5 to 7 and more preferably in the range of 6 to 7 of the whey protein solution. That is, it is desirable that the whey protein aggregate is prepared in a neutral range of pH.
  • whey protein condensate prepared as described above By adding the whey protein condensate prepared as described above to the ice cream mix, a high overrun can be ensured without adding the conventionally required stabilizer, and the shape of the final product can be preserved. Sex can also be sufficiently maintained.
  • the low-fat and non-fat ice cream-like food of the present invention is obtained by cooling and solidifying the ice cream mix prepared as described above. Moreover, it is good also as homogenizing the solution of an ice cream mix before cooling and solidifying an ice cream mix.
  • the ice cream mix solution is filtered to remove impurities.
  • the particle size of fat or the like is adjusted by, for example, atomizing the fat particle size of the ice cream mix to 2 ⁇ m or less, for example, at a temperature of 50 to 70 ° C. To do.
  • the ice cream mix whose particle size has been adjusted is heated to, for example, 68 ° C. or more and 75 ° C. or less, and held for 30 minutes to sterilize. This homogenizes the ice cream.
  • the homogenized ice cream mix solution is cooled to a temperature of 0 to 10 ° C., for example.
  • the ice cream mix solution is not frozen and kept in a certain fluidity state.
  • a well-known flavor for example, vanilla flavor, chocolate flavor, strawberry flavor, cocoa flavor
  • vanilla flavor for example, vanilla flavor, chocolate flavor, strawberry flavor, cocoa flavor
  • the ice cream mix in the cooled state is aged for a predetermined time. Aging may be performed at a temperature of 0 to 30 ° C., preferably 0 to 20 ° C., more preferably 0 to 15 ° C., and still more preferably 0 to 10 ° C. By performing this aging, the fat can be crystallized and the protein can be hydrated to stabilize the ice cream mix.
  • Freezing is performed, for example, by stirring the ice cream mix for a predetermined period at a temperature of ⁇ 2 ° C. to ⁇ 10 ° C.
  • Freezing is performed, for example, by stirring the ice cream mix for a predetermined period at a temperature of ⁇ 2 ° C. to ⁇ 10 ° C.
  • an extrusion apparatus in the freezing step.
  • the extrusion device a known device can be used as appropriate.
  • an extrusion apparatus is disclosed in JP2013-162758A.
  • the extrusion device is a continuous freezer that freezes the water in the ice cream mix, which is the raw material of the ice cream-like food, and freezes the water in the ice cream mix. Discharge.
  • the frozen ice cream mix discharged from the nozzle is cut perpendicular to the discharge direction and formed into a desired shape and size.
  • the extrusion device can cool the ice cream mix at a low temperature as compared with, for example, freezing by a known bitter method. For this reason, if an extrusion apparatus is used, the size of the ice crystal contained in an ice cream-like food can be made smaller.
  • the ice cream-like food is preferably prepared so that the average particle size of ice crystals is 60 ⁇ m or less. More specifically, the average particle size of ice crystals contained in the ice cream-like food is preferably 20 to 60 ⁇ m, or 30 to 50 ⁇ m. In this way, it is possible to produce an ice cream-like food with a smoother touch by freezing the ice cream mix with an extrusion device and reducing the size of the ice crystals. For example, in ice creams, a smooth texture is generally obtained when the particle size of ice crystals is 35 ⁇ m or less, and a rough texture is assumed when the particle diameter exceeds 60 ⁇ m. In this regard, as described above, if an extrusion device is used, the average particle size of ice crystals contained in the ice cream-like food can be adjusted to 60 ⁇ m or less, and a smooth texture can be imparted.
  • thickening polysaccharides such as locust bee gum, guar gum, tamarind, carrageenan, pectin, and processed starch can also be used for the purpose of suppressing the growth of ice crystals during storage.
  • Ice crystal particle diameter is the diameter (equivalent circle diameter) of the cross section when the ice crystal is regarded as a spherical circle based on the area of the ice crystal measured from the processing analysis. : ⁇ m).
  • the “average particle diameter of ice crystals” is the median diameter of the equivalent circle diameter of 100 ice crystals obtained from an optical micrograph.
  • an ice cream-like food was produced under the following conditions. Further, the Bulgarian starter and the Thermophilus starter were activated by performing subculture at 37 ° C. three times in a 10% nonfat dry milk medium.
  • Viscosity, acidity, and pH were measured for various low-fat and non-fat ice cream-like foods obtained according to the above conditions.
  • sensory evaluations of flavor and texture were performed on various ice cream-like foods by 5 panelists specializing in ice cream.
  • the presence or absence of fat feeling of various ice cream-like foods was evaluated based on the results of the sensory evaluation of the flavor and texture described above.
  • a feeling of fat that is, when the feeling of fat is “ ⁇ ”, when the ice cream-like food is crushed with the tongue and upper jaw, it feels firm elasticity (elasticity), and the ice-cream-like food
  • viscosity when the mouth dissolves in the mouth, it feels clinging (viscosity) to the whole mouth.
  • the case where there is no feeling of fat refers to the case where neither elasticity nor viscosity is felt.
  • Example 1 an ice cream according to Example 1 (Bulgaria OLL1073R-1 + Thermophilus OLS3078), Example 2 (Bulgaria OLL1247 + Thermophilus OLS3618), and Example 3 (Bulgaria OLL1247 + Thermophilus OLS3078) of the present invention.
  • These foods were confirmed to have a firm fat feeling despite being low or no fat. That is, from the above results, it was found that the fermented milk produced by the combination of Examples 1 to 3 improved the palatability of fat-free or low-fat ice.
  • the blending ratio of the fermented milk with respect to the total weight of the ice cream mix was 66%. However, if the blending ratio of the fermented milk is 30% or more, the effect on the feeling of fat according to the above test results. It was also confirmed that
  • the present invention relates to a starter used for obtaining fermented milk, a low-fat / non-fat ice cream-like food, and a method for producing a low-fat / non-fat ice-cream-like food. Therefore, the present invention can be suitably used in the manufacturing industry of ice creams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Dairy Products (AREA)
  • Confectionery (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【解決課題】脂肪感のある低脂肪又は無脂肪のアイスクリーム様食品を提供する。 【解決手段】本発明は,低脂肪・無脂肪アイスクリーム様食品の原料乳に添加されるスタータに関する。スタータは,ブルガリア菌とサーモフィラス菌を含む。具体的には,原料乳を37℃でpH4.5~5.0まで培養し,5℃に冷却した時の発酵乳の粘度が,5000mPa・s以上であるスタータに関する。ブルガリア菌は,ラクトバチルス・デルブリュッキー・サブスピーシーズ・ブルガリクス ブルガリア菌OLL1247株,又はラクトバチルス・ブルガリクス ブルガリア菌OLL1073R-1株を例示できる。サーモフィラス菌は,ストレプトコッカス・サーモフィラス サーモフィラス菌OLS3618株,又はストレプトコッカス・サーモフィラス サーモフィラス菌OLS3078株を例示できる。

Description

発酵乳を得るためのスタータ,低脂肪・無脂肪アイスクリーム様食品,及び低脂肪・無脂肪アイスクリーム様食品の製造方法
 本発明は,低脂肪又は無脂肪のアイスクリーム様食品の原料乳に添加するスタータ,及び低脂肪又は無脂肪のアイスクリーム様食品に関するものである。
 ここにいう「アイスクリーム様食品」とは,日本の食品衛生法における乳及び乳製品の成分規格に関する省令による「アイスクリーム類」のうち,乳脂肪分が8重量%未満のものを意味する。すなわち,「アイスクリーム様食品」は,乳固形分が3重量%以上であり,JASによる「アイスクリーム」(乳脂肪分8重量%以上)に該当せず,「アイスミルク」(乳脂肪分3重量%以上)又は「ラクトアイス」(乳脂肪分3重量%未満)に該当するものである。
 近年,消費者の健康志向の高まりを受け,エネルギー(カロリー)の摂取を抑えることのできる食品の需要が高まっている。脂質は1g摂取したときに体内に吸収されるエネルギーが9kcalであり,タンパク質や炭水化物を同量摂取するよりも,体内に吸収されるエネルギー量が多い。このため,脂質の量を従来よりも減らした食品,特に「脂質ゼロ」(無脂肪)の食品の潜在的な需要が高まっている。
 一方,脂質は,コクや濃厚感,まろやかさなど,飲食品の風味や食感といった嗜好性を高める要素でもある。このため,特にアイスクリームのような脂肪分で美味しさを醸し出している食品の脂肪分をゼロにすることは,食品の風味や食感を損なうため困難であるとされていた。
 ここで,アイスクリームの脂肪分をゼロとした「アイスクリーム様食品」を製造する場合に,このアイスクリーム様食品の風味や食感を通常のアイスクリームと同様とするためには,アイスクリーム特有の滑らかさやコクを補うことが課題となる。
 従来から,無脂肪のアイスクリーム様食品を製造するにあたり,風味や食感を高めるために,例えば,ホエイタンパク質濃縮物(WPC)を脂肪の代わりに用いる方法が知られている(特許文献1)。また,例えば,安定剤(乳化安定剤及び増粘安定剤を含む。以下同じ。)を併用して,無脂肪のアイスクリーム様食品の風味や食感を高める方法も知られている(特許文献2)。
 また,アイスクリーム様食品の物性を滑らかにするために,NF(Nano Filtration)膜によってアイスクリーム用の原料乳に対し脱塩処理と乳糖分解処理を施す方法が知られている(特許文献3)。また,氷結晶を小さくすることで,アイスクリーム様食品の物性の滑らかさを向上させることも公知である。
 さらに,安定剤の代わりに,粘性多糖類を多く産出する乳酸菌によって発酵させた発酵乳を混合し,固形分38%以上のアイスクリームミックスを得る方法も知られている(特許文献4)。このような粘性多糖類を多く産出する乳酸菌を利用することで,食感が滑らかで口溶けの良い食品を得ることができるとされている。
特開平08-107759号公報 特開平02-255046号公報 国際公開公報WO2011/77739号パンフレット 特開2005-278638号公報
 上述したように,脂肪分(特に乳脂肪分)で美味しさを醸し出しているアイスクリームは,脂肪分をゼロにしてしまうと風味や食感が損なわれてしまう。このため,無脂肪でありながらも脂肪感のあるアイスクリーム様食品は,その実現が困難であるとされていた。
 ここで,上記した特許文献1~4に開示された従来の技術を組み合わせて,無脂肪のアイスクリーム様食品を製造することも考えられる。しかしながら,単に,従来の技術を組み合わせただけでは,無脂肪でありながらも脂肪感のある滑らかなアイスクリーム様食品を開発することができなかった。
 このため,現在では,嗜好性の高い低カロリーのアイスクリーム様食品を製造するために,低脂肪又は無脂肪のアイスクリーム様食品の脂肪感を向上させるのに適した新しい技術が求められているといえる。
 そこで,本発明の発明者らは,上記課題を解決する手段について鋭意検討した結果,特定の乳酸菌を組み合わせたスタータを利用して得られた発酵乳を低脂肪又は無脂肪のアイスクリーム様食品の原料として用いることで,予想外にも,アイスクリーム様食品の脂肪感が向上することを見出し,無脂肪でありながらも嗜好性の高い食品を開発することに成功した。そして,本発明者らは,上記知見に基づけば,従来の課題を解決できることに想到し,本発明を完成させた。
[スタータ]
 本発明の第1の側面は,原料乳に添加されて,当該原料乳を発酵させるスタータに関する。本発明のスタータは,乳酸菌の混合物である。
 本発明のスタータは,ブルガリア菌とサーモフィラス菌を含み,原料乳を37℃でpH4.5~5.0まで培養し,5℃に冷却した時の発酵乳の粘度(B型粘度計により測定)が,5000mPa・s以上であることを特徴とするスタータである。
 ブルガリア菌は,ラクトバチルス・デルブリュッキー・サブスピーシーズ・ブルガリクス(Lactobacillus delbrueckii subsp. bulgaricus) OLL1247株(寄託番号:NITE BP-01814)(以下,ブルガリア菌OLL1247株),又はラクトバチラス・デルブルッキー・サブスピーシス・ブルガリクス(Lactobacillus delbrueckii ssp. bulgaricus)OLL1073R-1株(寄託番号:FERM BP-10741)(以下,ブルガリア菌OLL1073R-1株)を例示できる。
 また,サーモフィラス菌は,ストレプトコッカス・サーモフィラス(Streptococcus thermophilus)OLS3618株(寄託番号:NITE BP-01815)(以下,サーモフィラス菌OLS3618株),又はストレプトコッカス・サーモフィラスOLS3078株(寄託番号:NITE BP-01697)(以下,サーモフィラス菌OLS3078株)を例示できる。
 本発明のスタータは,乳脂肪分が8重量%未満である低脂肪・無脂肪アイスクリーム様食品の原料乳に添加されて,当該原料乳を発酵させるものであることが好ましい。
 また,本発明のスタータは,ブルガリア菌OLL1247株とサーモフィラス菌OLS3618株との組み合わせ,ブルガリア菌OLL1247株とサーモフィラス菌OLS3078株との組み合わせ,又はブルガリア菌OLL1073R-1株とサーモフィラス菌OLS3078株の組み合わせのいずれかからなるスタータであることが好ましい。
 上記のように,ブルガリア菌とサーモフィラス菌のうち,特定の種類の菌株を組み合わせてスタータとすることにより,低脂肪・無脂肪アイスクリーム様食品の原料に適した発酵乳を得ることができる。すなわち,本発明のスタータで発酵させた発酵乳を,低脂肪・無脂肪アイスクリーム様食品として用いることで,予想外にも,このアイスクリーム様食品の脂肪感が向上することがわかった。
 本発明者らは,アイスクリーム様食品の脂肪感が向上する理由について研究を進めたところ,原料となる発酵乳の粘度が,アイスクリーム様食品の脂肪感の向上に寄与していることを見出した。特に,ブルガリア菌OLL1247株とサーモフィラス菌OLS3618株を組み合わせたスタータ,ブルガリア菌OLL1247株とサーモフィラス菌OLS3078株を組み合わせたスタータ,ブルガリア菌OLL1073R-1株とサーモフィラス菌OLS3078株を組み合わせたスタータを接種すると,乳化安定剤及び増粘安定剤などの安定剤を添加しなくても,発酵乳の粘度(B型粘度計を使用し,5℃で測定)が5000mPa・s以上となることがわかった。このような高粘性の発酵乳をアイスクリーム様食品の原料として用いることで,アイスクリーム様食品に脂肪感が生まれ嗜好性を高めることができた。
 ただし,後述するように,ブルガリア菌OLL1247株や,ブルガリア菌OLL1073R-1株,サーモフィラス菌OLS3618株,サーモフィラス菌OLS3078株は,単独でスタータとして用いた場合には,多糖体生産量が他の菌株として比較して低いものである。このことから,これらの菌株を単独で用いても好ましい粘度の発酵乳を得ることはできない。他方,これらの菌株を組み合わせて用いることで,多糖体生産量が飛躍的に向上し,発酵乳の粘度が高いものとなった。さらに,上記の菌株を組み合わせた本発明のスタータは,無脂肪又は低脂肪の原料乳に添加して発酵させたときに,その発酵乳の粘度が,他の菌株を用いたスタータで発酵させた無脂肪又は低脂肪の発酵乳と比較して高いものとなった。このことから,ブルガリア菌とサーモフィラス菌を含み,原料乳を37℃でpH4.5~5.0まで培養し,5℃に冷却した時の発酵乳の粘度(B型粘度計により測定)が5000mPa・s以上となるスタータは,無脂肪又は低脂肪の発酵乳の粘度を高めるのに適したスタータであるといえる。従って,ブルガリア菌とサーモフィラス菌を含み,原料乳を37℃でpH4.5~5.0まで培養し,5℃に冷却した時の発酵乳の粘度(B型粘度計により測定)が5000mPa・s以上となるスタータを用いることで,低脂肪又は無脂肪であっても脂肪感のある嗜好性の高いアイスクリーム様食品を製造することができる。
 本発明において,粘度の測定対象である発酵乳は,安定剤が一切添加されていないか,若しくは0.05重量%以下(発酵乳の重量を100%とした場合)の安定剤が添加されたものであることが好ましい。なお,ここにいう「安定剤」には,乳化安定剤,増粘安定剤,又はこれらを混合したものが含まれる。発酵乳に安定剤を一定量以上添加することで,その粘度を5000mPa・s以上とすることも可能である。しかし,安定剤が添加された発酵乳をアイスクリーム様食品の原料とすると,得られたアイスクリーム様食品は,口溶けが悪かったり,苦味を呈するなど,安定剤に由来する人工的な風味や食感が生じることがある。そこで,発酵乳の粘度を高めるにあたり,その発酵乳には安定剤を一切添加しないか,若しくは安定剤を添加するとしてもアイスクリーム様食品の風味や食感を損なわない程度の微量な添加量とすることが好ましい。
[低脂肪・無脂肪アイスクリーム様食品]
 本発明の第2の側面は,上記第1の側面に係るスタータを利用して得られる低脂肪・無脂肪アイスクリーム様食品に関する。
 本発明のアイスクリーム様食品は,アイスクリームミックスを冷却固化して得られた乳脂肪分が8重量%未満の低脂肪・無脂肪アイスクリーム様食品である。
 アイスクリームミックスは,原料乳に上記第1の側面に係るスタータを添加して発酵させることで得られる発酵乳を含む。
 また,アイスクリームミックスは,無脂乳固形分が11重量%以上である。
 また,本発明に係る低脂肪・無脂肪アイスクリーム様食品において,アイスクリームミックスは,安定剤が添加されていないか,若しくは0.05重量%以下の安定剤が添加されたものであることが好ましい。
 上述したように,特定の種類の乳酸菌の菌株を組み合わせたスタータを用いることで,高粘性の発酵乳を得ることができる。そして,高粘性の発酵乳を原料として用いることで,安定剤をアイスクリームミックスに添加することが必須でなくなる。その結果,無脂肪又は低脂肪であってもアイスクリーム様食品の脂肪感が向上させることができるとともに,安定剤特有の人工的な口溶けの悪い食感を解消することができる。また,無脂乳固形分は,脂肪の代替物として機能する。従って,アイスクリームミックスの無脂乳固形分(SNF)が11重量%以上となるように脱塩や乳糖分解をしながら濃縮した濃縮乳を用いることで,アイスクリーム様食品の脂肪感をより高めることができる。また,無脂乳固形分を11重量%以上に高めることで,フリージングの際にオーバーランを安定させることができる。
 また,本発明の第2の側面において,アイスクリームミックスに含まれる発酵乳は,粘度(B型粘度計で測定,5℃)が5000mPa・s以上が好ましく,5000~6000mPa・sであることがより好ましい。
 上述したように,アイスクリーム様食品の原料である発酵乳の粘度を高めることで,低脂肪又は無脂肪のアイスクリーム様食品であっても,脂肪分が含まれるかのような食感や風味を醸し出すことができる。
 本発明の第2の側面において,アイスクリームミックスは,ホエイタンパク質凝縮物を,さらに含むことが好ましい。「ホエイタンパク質凝縮物」とは,平均粒子径が2~10μmであるホエイタンパク質を主成分とする粒子の凝縮体である。ホエイタンパク質凝縮物は,加熱処理と機械的な剪断処理とを同時又は交互に施すことにより得ることができる。ホエイタンパク質凝縮物は,脂肪代替物として機能する。
 上記のホエイタンパク質凝縮物を脂肪代替物としてアイスクリームミックスに加えることで,脂肪分が少ない場合であっても,オーバーランを十分に確保できるようになり,最終製品であるアイスクリーム様食品の保形性を維持することができる。オーバーラン(OR)とは,アイスクリーム様食品の空気の巻き込み量,すなわち空気の含有量である。通常,脂肪分が少ない場合,増粘安定剤や乳化安定剤などの安定剤を添加してアイスクリーム類の保形性を維持している。しかし,安定剤を含むアイスクリーム類は,口溶けが悪かったり,苦味を呈するなど,安定剤に由来する人工的な風味や食感が生じることがあった。この点,上記のように乳由来のホエイタンパク質凝縮物を脂肪代替物としてアイスクリームミックスに加えることで,脂肪分が少ない場合であっても,安定剤を使用せずに,アイスクリーム様食品の形状を安定させることができる。
[低脂肪・無脂肪アイスクリーム様食品の製造方法]
 本発明の第3の側面は,低脂肪又は無脂肪のアイスクリーム様食品の製造方法に関する。
 本発明の製造方法は,
 原料乳に上記第1の側面に係るスタータを添加して発酵乳を得る工程と,
 発酵乳を用いてアイスクリームミックスを得る工程と,
 アイスクリームミックスを冷却固化して,乳脂肪分が8重量%未満である低脂肪・無脂肪アイスクリーム様食品を得る工程と,を含む。
 上記工程に従ってアイスクリーム様食品を製造することで,低脂肪又は無脂肪ながらも,脂肪感のあるアイスクリーム様食品を製造することができる。
 また,本発明の第3の側面において,アイスクリームミックスを冷却固化する際には,押し出し成型(エクストルージョン)装置によって,アイスクリームミックスを冷却固化することが好ましい。このように,エクストルージョン装置によってアイスクリームミックスを低温で冷却固化することにより,アイスクリーム様食品に含まれる氷結晶のサイズが小さくなる。例えば,氷結晶のサイズを直径60μm以下とすることで,アイスクリーム様食品の食感が滑らかなものとなる。
 本発明によれば,脂肪感があり嗜好性の高い低脂肪又は無脂肪のアイスクリーム様食品を提供することができる。
図1は,ブルガリア菌とサーモフィラス菌の代表的な粘性株について,その多糖体生産量をグラフで示している。 図2は,ブルガリア菌とサーモフィラス菌を組み合わせた発酵乳の粘度をグラフで示している。
 以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。
 ここで,本願明細書において,「低脂肪」とは,栄養表示基準上,脂質が3.0重量%未満であることを意味する。また,「無脂肪」とは,脂質が0.5重量%未満であることを意味する。
 なお,本願明細書において,「A~B」とは,特に断りのない限り「A以上B以下」であることを意味する。
 また,本願明細書において,「寄託番号:FERM・・」とは,ブダペスト条約上の国際寄託当局である独立行政法人産業技術総合研究所特許生物寄託センターにおける寄託番号を意味する。また,「寄託番号:NITE・・」とは,ブダペスト条約上の国際寄託当局である独立行政法人製品評価技術基盤機構特許微生物寄託センターにおける寄託番号を意味する。
[1.低脂肪・無脂肪アイスクリーム様食品用のスタータ]
 本発明の第1の側面は,低脂肪又は無脂肪のアイスクリーム様食品の原料乳に添加されるスタータに関する。スタータは,乳酸菌を含むものであり,原料乳に添加されるとその原料乳を発酵させる。
 本発明者らは,アイスクリーム様食品の脂肪感が向上する理由について研究を進めたところ,原料となる発酵乳の粘度が,アイスクリーム様食品の脂肪感の向上に寄与していることを見出した。このため,本発明のスタータは,安定剤を利用することなく,このスタータが添加された原料乳が発酵したときに,その発酵乳の粘度を高めることを主たる目的としている。特に,本発明のスタータは,原料乳に含まれる乳脂肪分が少ない場合,又は原料乳に乳脂肪分が含まれていない場合であっても,その発酵乳の粘度を高めることができるように開発されたものである。本発明は,高粘性の発酵乳をアイスクリーム様食品の原料として用いることで,アイスクリーム様食品に脂肪感が生まれ嗜好性を高めることができるという知見に基づく。
 具体的に説明すると,本発明のスタータは,ブルガリア菌とサーモフィラス菌を組み合わせたものである。すなわち,本発明のスタータは,ブルガリア菌とサーモフィラス菌の両方を含む。特に,本発明のスタータは,ブルガリア菌とサーモフィラス菌のみからなることが好ましい。ただし,本発明のスタータは,本発明の効果を奏し得る範囲において,ブルガリア菌とサーモフィラス菌以外に他の乳酸菌を含んでいてもよい。
 本発明において,ブルガリア菌は例えば,ラクトバチルス・デルブリュッキー・サブスピーシーズ・ブルガリクス(Lactobacillus delbrueckii subsp. bulgaricus)OLL1247株(寄託番号:NITE BP-01814)(以下,ブルガリア菌OLL1247株),又はラクトバチラス・デルブルッキー・サブスピーシス・ブルガリクス(Lactobacillus delbrueckii ssp. bulgaricus)OLL1073R-1株(寄託番号:FERM BP-10741)(以下,ブルガリア菌OLL1073R-1株)から選択された少なくともいずれか一方の菌株が用いられる。
 また,本発明において,サーモフィラス菌は例えば,ストレプトコッカス・サーモフィラス(Streptococcus thermophilus) OLS3618株(寄託番号:NITE BP-01815)(以下,サーモフィラス菌OLS3618株),又はストレプトコッカス・サーモフィラス OLS3078株(寄託番号:NITE BP-01697)(以下,サーモフィラス菌OLS3078株)から選択された少なくともいずれか一方の菌株が用いられる。
 例えば,本発明のスタータを構成するブルガリア菌とサーモフィラス菌の組み合わせとしては,以下の3つのパターンを挙げることができる。
(1)ブルガリア菌OLL1247株とサーモフィラス菌OLS3618株の組み合わせ
(2)ブルガリア菌OLL1247株とサーモフィラス菌OLS3078株の組み合わせ
(3)ブルガリア菌OLL1073R-1株とサーモフィラス菌OLS3078株の組み合わせ
 ところで,一般的に,ブルガリア菌やサーモフィラス菌などの乳酸菌は,原料乳に接種されて発酵すると粘性多糖類を産出する。乳酸菌由来の多糖類としては,グルコース,ガラクトース,及びラムノースなどが重合した多糖類全般を挙げることができ,部分的にリン酸化されている場合もある。乳酸菌由来の粘性多糖類は,植物由来の粘性多糖類と比べて,糸ひき性が強いのが特徴である。このため,粘性多糖類の産出量が多い乳酸菌ほど,原料乳に添加して発酵させたときに,発酵乳の粘度が高くなると一般的には予想される。
 ここで,図1は,ブルガリア菌とサーモフィラス菌の代表的な粘性株について,その多糖体生産量をグラフで示している。なお,多糖体生産量の測定は,以下の条件で行った。
<多糖体生産量の測定>
1.培養物の調製 
 脱脂粉乳を10%(w/v)でMilliQ水に溶解し,121℃,7minオートクレーブしたものを培地として用いた(以下,「脱粉培地」という)。培養は各種の菌株を2回賦活した後,15mlのコニカルチューブに入れた脱粉培地4mlに培養液を1%接種し,37℃,18hr静置培養した。
2.多糖体生産量の定量 
 培養液4mlに100%トリクロロ酢酸(Wako)を400μl(最終濃度10%)で加え,粘性が無くなるまで攪拌した。遠心(12000g,4℃,20min)により上清を回収し,新たな15mlコニカルチューブに全量を移した。回収した上清にMilliQ水を加え,コニカルチューブの目盛りで4mlまでメスアップした。8ml(2倍量)の冷エタノールを徐々に加えて完全に混合し,その後4℃で一晩静置することで多糖体を沈澱させた。遠心により多糖体を沈澱として回収し,4mlのMilliQ水を加えた後,完全に溶解させた。各多糖体水溶液は96-well dispo DIALYZER(250~300μ; MWCO5,000; HARVARD 74-0902)に180μl/wellでアプライし,5LのMilliQに対して2日間透析(MilliQ水は毎日交換)を行った。透析終了後,各多糖体水溶液の体積を測定するとともに,フェノール・硫酸法(Dubois et al. Colorimetoric method for determination of sugars and related substances. Anal. Chem. 1956; 28: 350-356.)により多糖体濃度の測定を行い,多糖体生産量(mg/kg)を算出した。
 図1に示されるように,ブルガリア菌では,ブルガリア菌OLL1251株が最も多糖体産出量が多くなっている。また,サーモフィラス菌では,サーモフィラス菌OLS3272株が最も多糖体産出量が多くなっている。このため,ブルガリア菌とサーモフィラス菌を組み合わせたスタータを用いて粘度の高い発酵乳を得ようとした場合,一般的には,ブルガリア菌OLL1251株とサーモフィラス菌OLS3272株を組み合わせたスタータが最も効率性が高いものと考えられる。しかしながら,予想に反し,ブルガリア菌OLL1251株とサーモフィラス菌OLS3272株を組み合わせたスタータを用いても,発酵乳の粘度を十分に高めることができなかった。このため,ブルガリア菌OLL1251株とサーモフィラス菌OLS3272株を組み合わせたスタータで発酵させた発酵乳を原料として低脂肪又は無脂肪のアイスクリーム様食品を製造しても,そのアイスクリーム様食品には十分な脂肪感がなく,良好な風味や食感,美味しさを感じることができなかった。
 そこで,本発明者らは,低脂肪又は無脂肪であっても,脂肪感があり美味しさを感じることのできるアイスクリーム様食品を得るために,スタータとなるブルガリア菌とサーモフィラス菌の組み合わせについて研究を行った。その研究の結果,ブルガリア菌としてブルガリア菌OLL1247株又はブルガリア菌OLL1073R-1株を選択し,且つ,サーモフィラス菌としてサーモフィラス菌OLS3618株又はサーモフィラス菌OLS3078株を選択した組み合わせとすることで,アイスクリーム様食品の脂肪感と美味しさが十分な程度まで高まることが判った。
 ここで,本発明者らによって好適であると判断されたブルガリア菌OLL1247株とブルガリア菌OLL1073R-1株のブルガリア菌は,図1に示されるように,単独で用いた場合には多糖体産出量が最も多いものではない。また,本発明者らによって好適であると判断されたサーモフィラス菌OLS3618株とサーモフィラス菌OLS3078株のサーモフィラス菌も,単独で用いた場合には多糖体産出量が最も多いものではない。このように,単体では多糖体産出量がそれ程高くない菌株であっても,他の菌株と組み合わせることで最終的に発酵乳の粘度を高めることができれば,アイスクリーム様食品の脂肪感と美味しさが向上することがわかった。すなわち,アイスクリーム様食品の脂肪感と美味しさは,組み合わせるブルガリア菌とサーモフィラス菌の相性によって大きく変化するといえる。
 そこで,本発明者らは,代表的なブルガリア菌とサーモフィラス菌について,種々の組み合わせを検討した。ここでは,上述したとおりアイスクリーム様食品の原料となる発酵乳の粘度が,脂肪感と美味しさをもたらす一要素を担っているとの知見に基づき,それぞれの組み合わせについて,発酵乳の粘度を測定した。
 図2は,ブルガリア菌とサーモフィラス菌を組み合わせた発酵乳の粘度をグラフで示している。なお,発酵乳の粘度の測定は,以下の条件で行った。また,ブルガリア菌スタータ,及びサーモフィラス菌スタータは10%脱脂粉乳培地にて37℃での継代培養を3回行い,賦活させた。
<発酵乳の粘度の測定>
1.発酵乳配合 (無脂乳固形分19%)
Figure JPOXMLDOC01-appb-I000001
2.粘度の測定 
 20%脱脂粉乳溶液(無脂乳固形分19%)を撹拌しながら加温し,95℃達温により殺菌し,37℃まで冷却した。使用する乳酸菌スタータを上記配合率で添加し,1分間撹拌した。その後,37℃で培養し,経時的に乳酸酸度とpHを測定し,pH4.7~4.8で撹拌冷却を開始し,10℃以下まで温度を下げ,冷却後のpHを4.5~4.7となるようにした。その後,回転式B型粘度計を用いて,発酵乳の温度を5℃とし,ローターNo.4により,60rpmで粘度を測定した。
 図2に示されるように,本発明者らによって好ましいと判断された「ブルガリア菌OLL1247株+サーモフィラス菌OLS3618株」と,「ブルガリア菌OLL1247株+サーモフィラス菌OLS3078株」と,「ブルガリア菌OLL1073R-1株+サーモフィラス菌OLS3078株」の組み合わせは,それぞれ,発酵乳の粘度(B型粘度計,5℃)が5000mPa・sを超えるものとなった。すなわち,「ブルガリア菌OLL1247株+サーモフィラス菌OLS3618株」を用いた発酵乳の粘度(B型粘度計,5℃)は,5670mPa・sであった。また,「ブルガリア菌OLL1247株+サーモフィラス菌OLS3078株」を用いた発酵乳の粘度(B型粘度計,5℃)は,5110mPa・sであった。また,「ブルガリア菌OLL1073R-1株+サーモフィラス菌OLS3078株」を用いた発酵乳の粘度(B型粘度計,5℃)は,5270mPa・sであった。このため,5000mPa・s以上の粘度(B型粘度計,5℃)を有する発酵乳を原料として用いることで,脂肪感と美味しさを有する無脂肪又は低脂肪のアイスクリーム様食品を製造できることがわかった。例えば,発酵乳の粘度(B型粘度計,5℃)は,5000~6000mPa・s,5100~5800mPa・s,又は5200~5600mPa・sであることが好ましい。
 これに対し,図1のグラフにおいて最も多糖体産出量が多いブルガリア菌のブルガリア菌OLL1251株とサーモフィラス菌のサーモフィラス菌OLS3272株を組み合わせても,図2に示されるように,発酵乳の粘度を好適に高めることはできなかった。すなわち,ブルガリア菌OLL1251株とサーモフィラス菌OLS3272株を組み合わせたスタータは,発酵乳の粘度(B型粘度計,5℃)が3000mPa・s以下であり,本発明のスタータのように,5000mPa・s以上の好ましい粘度を呈するものではなかった。
 以上のことから,本発明のスタータは,ブルガリア菌とサーモフィラス菌を組み合わせたものであり,具体的には,発酵乳の粘度(B型粘度計,5℃)が5000mPa・s以上となるブルガリア菌とサーモフィラス菌とを組み合わせたものであり,ブルガリア菌としてブルガリア菌OLL1247株又はブルガリア菌OLL1073R-1株から選択し,サーモフィラス菌としてサーモフィラス菌OLS3618株又はサーモフィラス菌OLS3078株から選択したものであることが好ましい。特に,図2に示されるように,ブルガリア菌OLL1247のブルガリア菌とサーモフィラス菌OLS3618のサーモフィラス菌を組み合わせたスタータは,発酵乳の粘度が最も高くなるものであった。このため,ブルガリア菌OLL1247株とサーモフィラス菌OLS3618株の組み合わせたスタータが,発酵乳の粘度を高められる観点から低脂肪又は無脂肪のアイスクリーム様食品の製造に適しているといえる。
 また,本発明において,スタータ全体の重量を100%とした場合に,ブルガリア菌は20~80%,30~70%,40~60%,又は約50%(±2%)含めることができ,サーモフィラス菌は20~80%,30~70%,40~60%,又は約50%(±2%)含めることができる。ただし,スタータの乳酸菌数が高ければ,必要とするスタータの添加量を下げることができ,スタータの乳酸菌数が低ければ,必要とするスタータの添加量を上げることができる。
 また,粘度の測定実験の条件を見れば明らかなとおり,粘度の測定対象である発酵乳には,乳化安定剤及び増粘安定剤などの安定剤が一切添加されていない。発酵乳に安定剤を添加することで,この発酵乳の粘度を高めることができる。しかし,安定剤の添加された発酵乳を原料としてアイスクリーム様食品を製造しても,安定剤に由来する人工的な風味や食感が生じることがあり,好ましいものとはならない。このため,発酵乳には安定剤を一切添加しないか,若しくは安定剤を添加するとしてもアイスクリーム様食品の風味や食感を損なわない程度の微量な添加量とすることが好ましい。例えば,安定剤の添加量は,発酵乳の重量を100%とした場合に,0(ゼロ)であるか,若しくは0.05重量%以下であることが好ましい。特に,安定剤の添加量は,0.03重量%以下であることが好ましい。
 ここにいう,乳化安定剤としては,例えば,キラヤ抽出物,グリセリン脂肪酸エステル(グリセリン酢酸脂肪酸エステル,グリセリン乳酸脂肪酸エステル,グリセリンクエン酸脂肪酸エステル,グリセリンコハク酸脂肪酸エステル,グリセリンジアセチル酒石酸脂肪酸エステル,ポリグリセリン脂肪酸エステル,ポリグリセリン縮合リシノレイン酸エステル,グリセリン酢酸エステル),酵素処理レシチン,酵素分解レシチン,植物性ステロール,植物レシチン,ショ糖脂肪酸エステル,ステアロイル乳酸カルシウム,ソルビタン脂肪酸エステル,プロピレングリコール脂肪酸エステル,分別レシチン,卵黄レシチン,ポリソルベート20,ポリソルベート60,ポリソルベート65,およびポリソルベート80など,一般に市販されているものを挙げることができる。
 また,増粘剤としては,例えば,アルギン酸,アルギン酸ナトリウム,カルボキシメチルセルロース塩,メチルセルロース,結晶セルロース,微小繊維状セルロース,発酵セルロース,ナタデココ,アラビアガム,ガティガム,カードラン,カラギナン,キサンタンガム,グァーガム,サイリウムシードガム,ジェランガム,タマリンドシードガム,酵素処理タマリンドシードガム,タラガム,ペクチン,ダイズ多糖類,デンプン,加工デンプン(アセチル化アジピン酸架橋デンプン,アセチル化酸化デンプン,アセチル化リン酸架橋デンプン,オクテニルコハク酸デンプンナトリウム,酢酸デンプン,酸化デンプン,デンプングリコール酸ナトリウム,ヒドロキシプロピル化リン酸架橋デンプン,ヒドロキシプロピルデンプン,リン酸架橋デンプン,リン酸化デンプン,リン酸モノエステル化リン酸架橋デンプン),寒天,ゼラチン,プルランおよびマンナンなど,一般に市販されているものを挙げることができる。
[2.低脂肪・無脂肪アイスクリーム様食品]
 続いて,本発明の第2の側面に係る低脂肪・無脂肪アイスクリーム様食品について説明する。第2の側面に係るアイスクリーム様食品は,上記した第1の側面に係るスタータを利用して製造するものである。
 ここで,「低脂肪・無脂肪」とは,アイスクリーム様食品に含まれる乳脂肪分が8重量%未満であることを意味する。特に,本発明のアイスクリーム様食品は,乳脂肪分が0~7重量%,0~5重量%,又は0~3重量%であることが好ましい。
 本発明の低脂肪・無脂肪アイスクリーム様食品を製造するにあたり,アイスクリームミックスを調製する。アイスクリームミックスとは,空気を含ませる前のアイスクリーム様食品類製造用原料の混合物を意味する。アイスクリームミックスに空気を含ませながら冷却固化することでアイスクリーム様食品となる。
 アイスクリームミックスは,上記した第1の側面に係るスタータを添加した原料乳を発酵させて得られた発酵乳を含む。原料乳としては,生乳の成分を調整することにより得られた低脂肪牛乳又は無脂肪牛乳を用いることが好ましい。低脂肪乳とは,乳脂肪分のみを調整した牛乳のうち,乳脂肪分が0.5重量%以上1.5重量%以下のものをいう。また。無脂肪牛乳とは,乳脂肪分のみを調整した牛乳のうち,乳脂肪分が0以上0.5重量%未満のものをいう。この原料乳に,スタータを添加して発酵させる。スタータは,上述したとおり,特定のブルガリア菌と特定のサーモフィラス菌を組み合わせたものを利用する。スタータを構成するブルガリア菌とサーモフィラス菌の組み合わせのパターンは,以下(1)~(3)のとおりである。なお,スタータを添加した原料乳の発酵条件は,公知の発酵方法に従えばよい。
(1)ブルガリア菌OLL1247株とサーモフィラス菌OLS3618株の組み合わせ
(2)ブルガリア菌OLL1247株とサーモフィラス菌OLS3078株の組み合わせ
(3)ブルガリア菌OLL1073R-1株とサーモフィラス菌OLS3078株の組み合わせ
 上記のようにして得られた発酵乳は,その粘度が5000mPa・s以上であることが好ましい。粘度は,原料乳に添加されるスタータの種類に大きく依存する。すなわち,粘性多糖類の産出量が多いスタータを使えば,粘度の高い発酵乳を得ることができる。上記した(1)~(3)の組み合わせによるスタータを利用することで,5000~6000mPa・sの粘度を有する発酵乳を得ることができる。なかでも,「(1)ブルガリア菌OLL1247株とサーモフィラス菌OLS3618株の組み合わせ」をスタータとして利用することが最も好ましい。発酵乳の粘度は,5000~5800mPa・sであることが好ましく,5100~5600mPa・sであることが特に好ましい。例えば,上記した(1)~(3)の組み合わせによるスタータ以外であれば,ブルガリア菌とサーモフィラス菌を含んだ原料乳を37℃でpH4.5~5.0まで培養し,5℃に冷却した時の発酵乳の粘度(B型粘度計により測定)が,5000mPa・s以上であるスタータを選抜すればよい。このように,発酵乳の粘度(B型粘度計により測定)が5000mPa・s以上となるという観点で,ブルガリア菌とサーモフィラス菌との組み合わせを選抜することができる。ここでいう,原料乳の無脂乳固形分の組成には制限はないが,5~30%であることが好ましく,8~30%であることがより好ましく,10~30%であることが更に好ましい。発酵乳の粘度は5℃における測定値であり,粘度が対象物の温度の上昇により変化することも考慮して,温度の要因を予め予測して換算することもできる。
 その他,発酵乳の粘度は,適宜公知の技術によって調節することが可能である。例えば,スタータを接種した原料乳を低温で長時間発酵させることにより,得られる発酵乳の粘度を高めることができることは既に知られている。また,原料乳に配合する脱脂粉乳の含有量を高めることで,得られる発酵乳の粘度が高まることも公知である。本発明では,発酵乳の粘度(B型粘度計,5℃)を5000mPa・s以上とすることが好ましいが,この適切な粘度に到達するための手段については特に限定されない。
 その他,アイスクリームミックスは,低脂肪又は無脂肪のアイスクリーム様食品を製造できる限度において,他の添加物を含んでいてもよい。例えば,アイスクリームミックスは,発酵乳の他に,必要に応じて乳製品(クリーム,バター,練乳,粉乳など),糖類(砂糖等),脂肪,卵,安定剤(乳化安定剤,増粘安定剤),着香料,着色料などの原料を混合溶解させて調製することもできる。例えば,低脂肪アイスの場合は,脂肪分が3%以下となる範囲内で,生クリームやバター等の乳脂肪原料,パーム油やヤシ油等の植物性脂肪原料,又は卵黄を使用することができる。
[2-1.無脂乳固形分]
 本発明の低脂肪・無脂肪アイスクリーム様食品は,上記の通り,新規なスタータを用いることにより発酵乳の粘度を高めて,脂肪感を醸し出すものである。これに加え,低脂肪・無脂肪アイスクリーム様食品の脂肪感をさらに高めるために,アイスクリームミックスは,無脂乳固形分(SNF:Solid Not Fat)が,11重量%以上となるように調製されたものであることが好ましい。無脂乳固形分は,乳から水分と乳脂肪分を除いた成分であり,アイスクリーム様食品の風味の向上に寄与する。無脂乳固形分には,例えばたんぱく質,炭水化物,ミネラル,及びビタミンが含まれる。無脂乳固形分を,乳脂肪の代替成分として利用することで,低脂肪・無脂肪アイスクリーム様食品の脂肪感と美味しさをさらに高めることができる。また,無脂乳固形分を多く含むことで,アイスクリーム様食品の保存安定性を高めることができる。また,無脂乳固形分を11重量%以上に高めることで,フリージングの際にオーバーランを安定させることができる。
 アイスクリームミックス中の無脂乳固形分は,11重量%以上,12重量%以上,又は14重量%以上であることが好ましい。具体的に,無脂乳固形分は,11~20重量%,12~19重量%,又は14~18重量%であることが好ましい。
 ここで,一般的なアイスクリーム製品において,無脂乳固形分の限界は11%程度であるとされている(参考:「アイスクリームの製造」(監修 湯山荘平,発行所 光琳)第19ページ 平成8年4月30日発行)。なぜならば,無脂乳固形分を多く含むアイスクリームミックスを用いて,アイスクリーム様食品を製造すると,得られるアイスクリーム様食品の塩味が強くなる傾向にあるからである。そこで,本発明では,無脂乳固形分を含むアイスクリームミックス(脱脂乳)の全部又は一部を発酵前に脱塩及び濃縮してから発酵することが好ましい。発酵前の無脂乳固形分を含むアイスクリームミックス(脱脂乳)の全部又は一部を脱塩工程及び濃縮工程については,特許文献3(国際公開公報WO2011/77739号パンフレット)に開示されている技術を適宜利用することができる。
 具体的に説明すると,発酵前の無脂乳固形分を含むアイスクリームミックス(脱脂乳)の全部又は一部を,NF膜を用いたナノ濾過法により脱塩及び濃縮することが好ましい。NF膜は,ナノサイズの貫通孔(例えば,細孔径が0.5~2nm)を持つ膜状のフィルタである。ナノ濾過法では,このNF膜に対して発酵前の無脂乳固形分を含むアイスクリームミックス(脱脂乳)の全部又は一部を投入し,浸透圧を利用して濾過を行う。NF膜は,主に1価のイオンと水を透過する膜である。このため,ナノ濾過法によれば,1価のカチオン(ナトリウムイオン,カリウムイオン,塩化物イオン)と水分を除去することができる。このようにして,ナノ濾過法を用いることで,ナトリウムやカリウムを除去する脱塩を行うことができる。NF膜の素材としては,ポリアミド,酢酸セルロース,ポリエーテルスルホン,ポリエステル,ポリイミド,ビニルポリマー,ポリオレフィン,ポリスルフォン,再生セルロース,又はポリカーボネートを用いることができる。
 ナノ濾過法で得られる保持液には,発酵前の無脂乳固形分を含むアイスクリームミックス(脱脂乳)の全部又は一部の全固形分(TS),つまり,乳脂肪(FAT)と,無脂乳固形分(SNF)とが濃縮される。このようにして,発酵乳を含むアイスクリームミックスの無脂乳固形分を,11重量%以上又は14重量%以上に調整することができる。反対に,ナノ濾過法で除去される透過液には,発酵前の無脂乳固形分を含むアイスクリームミックス(脱脂乳)の全部又は一部の水分の多くと,水溶性の成分の一部(特に1価のイオン)とが含まれている。ここで,発酵乳の水溶性から除去される成分としては,灰分がある。灰分とは,ナトリウム(Na),カリウム(K),マグネシウム(Mg),カルシウム(Ca),塩素(Cl),リン(S)などの無機質や,ビタミンA,B1,B2,ナイアシンなどのビタミンの総称である。このようにして,アイスクリームミックスの原料となる発酵乳を脱塩及び濃縮することができる。なお,ナノ濾過法により,脱塩及び濃縮が行われた脱脂乳を粉乳化したものを,NF脱粉ともいう。
 また,ナノ濾過法で除去した透過液に対して,逆浸透(RO:reverse osmosis)処理を行い,逆浸透膜透過液を得ることとしてもよい。逆浸透処理は,例えば,1価のカチオンを捕捉する膜状のフィルタ(逆浸透膜)を用い,この逆浸透膜に対して,ナノ濾過法で除去された透過液を投入し,逆浸透膜の上流側から圧力をかけることで行われる。逆浸透処理では,浸透圧以上の圧力を利用しているので,ナノ濾過法で除去された透過液の大部分は,逆浸透膜を通過してRO透過液となる。なお,逆浸透膜の保持液(逆浸透膜を通過しなかった部分)には,1価のカチオンとして,ナノ濾過法で除去された透過液に含まれていたナトリウムイオンやカリウムイオンなどが濃縮される。すなわち,ナノ濾過法で除去された透過液に対して逆浸透処理を行うことも,脱塩処理の一部となる。逆浸透膜を透過した透過液は,脱塩水となる
 その後,逆浸透処理で得られた脱塩水を,ナノ濾過法で得られた保持液に添加する(戻す)。これにより,混合液として脱塩乳が得られる。ここで,ナノ濾過法で除去された透過液の量と,逆浸透膜透過液(脱塩水)の量はほぼ同じである。このため,逆浸透処理で得られた脱塩水とナノ濾過法で得られた保持液を混合した脱塩乳の量は,はじめに用意した原料乳の量とほぼ同じとなる。言い換えると,この脱塩乳は,原料乳の全固形分が濃縮されながら,塩味のもととなるナトリウムやカリウムの一部が除去された脱塩乳となる。
 このように,アイスクリーム様食品の原料となる発酵前の無脂乳固形分を含むアイスクリームミックス(脱脂乳)の全部又は一部ついて脱塩と濃縮を行い,無脂乳固形分を所定値以上に調整しつつ,塩味を取り除くことが好ましい。
 また,アイスクリームミックス内における発酵乳の含有量が多いほど,無脂乳固形分が多くなり,脂肪感の高いアイスとなる。これに対し,発酵乳の含有量を下げる場合は,予め,乳糖分解した脱脂粉乳を配合して発酵乳を調整し,アイスクリームミックスにおける無脂乳固形分を高めることが好ましい。乳糖分解した脱脂粉乳を配合しないと,アイスの保存中に乳糖結晶が生成される可能性があるためである。このようにして製造したアイスクリーム様食品は,冷凍保存時における乳糖結晶の成長が抑制されているため,食感(舌触り)が良好となる。また,乳糖分解を行って乳糖結晶の成長を抑制することで,脂肪感の高いアイスクリーム様食品を得ることができる。乳糖分解を行って乳糖結晶の成長を抑制する技術は,例えば,国際公開公報WO2011/077739の記載を参照することができる。
[2-1.ホエイタンパク質凝縮物]
 本発明の低脂肪・無脂肪アイスクリーム様食品は,その原料となるアイスクリームミックスに,ホエイタンパク質凝縮物が含まれていることが好ましい。ここにいう「ホエイタンパク質凝縮物」とは,平均粒子径が2~10μmであるホエイタンパク質を主成分とする粒子の凝縮体である。ホエイタンパク質凝縮物は,ホエイタンパク質溶液に加熱処理と機械的な剪断処理とを同時又は交互に施すことにより得ることができる。ホエイタンパク質凝縮物は,乳脂肪分などの脂肪の代替物として機能する。
 本発明のアイスクリーム様食品は,空気を巻き込んで固化された気泡含有乳化物である。ただし,本発明のアイスクリーム様食品のように脂肪分が少ないと,オーバーラン(OR),すなわち空気の巻き込み量(空気の含有量)を十分に確保できず,最終製品としたときに保形性を維持できない恐れがある。ここで,従来,最終製品の物性を維持したまま脂肪分を減らすために,様々な安定剤を添加することによってオーバーランを高めることもできる。しかし,これらの安定剤を含むアイスクリーム類は,口溶けが悪かったり苦味が生じるなど,安定剤に由来する人工的な風味や食感が生じることがあった。
 この点,上記のようにして生成した「ホエイタンパク質凝縮物」を,アイスクリームミックスに添加することで,従来は必要とされていた安定剤を添加しなくても,高いオーバーランを確保し,最終製品の保形性も十分に維持できる。
 このように,「ホエイタンパク質凝縮物」は,脂肪代替物としてアイスクリームミックスに含まれるものである。ホエイタンパク質凝縮物は,ホエイタンパク質溶液を加熱処理と機械的な剪断処理とに同時に付すことにより得ることができる。ホエイタンパク質凝縮物は,平均粒子径が2~10μmである粒子を含んでいる。ホエイタンパク質凝集物の調製条件として,加熱処理の温度が75~85℃で,加熱時間が5~10分であることが好ましい。また,ホエイタンパク質溶液に含まれる固形分濃度は,5~20重量%であることが好ましい。
 ホエイタンパク質凝縮物の生成に利用される「ホエイタンパク質溶液」は,ホエイタンパク質濃縮物を水に混合し,溶解および/または分散することにより得ることができる。ここで,水は,水分を多く含む乳や他の乳製品で代用しても,これらを併用してもよい。本発明において,実際に得られるホエイタンパク質凝集物の脂肪分を少なくするために,ホエイタンパク質溶液は脱脂乳であることが好ましい。また,ここにいう「ホエイタンパク質濃縮物」(WPC)とは,乳清タンパク質濃縮物とも呼ばれるものであり,ホエイタンパク質を膜処理などによって所定濃度まで濃縮したものを意味する。本発明に用いられるWPCとしては,チーズホエイ由来のWPCや,乳酸ホエイ由来のWPC等を挙げることができる。また,WPCの代わりに,より精製度の高いホエイタンパク質精製物(WP1)を用いてもよい。これらは,定法に従って製造してもよいし市販品であってもよい。ホエイタンパク質濃縮物(WPC)の成分の組成は,ホエイの原料や製品,調製方法などにより変動する。本発明に用いられるWPCでは,本発明の目的とする最終製品が低脂肪又は無脂肪のアイスクリーム様食品である点で,WPCは,脂肪分が5重量%以下,3重量%以下,1重量%以下であることが好ましい。このように調製されたホエイタンパク質溶液に対し,加熱処理及び剪断処理を施す。
 加熱処理は,機械的な勢断処理と同時に加熱できる方法であれば特に限定されない。加熱処理としては,食品加工技術で用いられる一般的な加熱処理装置を用いることができる。
加熱処理装置としては,例えば,ジャケット付きのタンク,プレート式の熱交換器,チューブ式の熱交換器,掻き取り式の熱交換器,スチームインジェクション式の加熱装置,通電式の加熱装置などを挙げることができる。加熱処理の温度は,55℃以上であることが好ましく,例えば,55~100℃,70~90℃,又は75~85℃とすればよい。また,加熱処理の時間は,5~20分間,5~15分間,又は5~10分間とすればよい。
 また,機械的な剪断処理は,加熱処理と同時に剪断処理できる方法であれば特に限定されない。剪断処理としては,食品加工技術で用いられる一般的な機械的な剪断処理装置を用いることができる。剪断装置として,例えば,ホモミキサー(プライミクス社製)などを挙げることができる。機械的な剪断処理の剪断力は,例えばホモミキサー
(T. K. HOMO MI XER MARKII Mo d e 1 2. 5:プライミクス社製)を用いた場合,回転数(回転速度)が100~10000rpm,200~8000rpm,又は250~5000rpmであることが好ましい。ホモミキサーを用いる場合,ホエイタンパク質凝縮物の粒子径が小さくなり過ぎないように注意する必要がある。ここで,ホモミキサーの回転数が100~10000rpm,200~8000rpm,又は250~5000rpmである場合,剪断力(剪断応力)は,それぞれ1.9~187.2Pa,3.7~149.7Pa,又は4.7~93.6Paに相当する。なお,機械的な剪断処理の剪断力は,実際に用いる剪断処理装置の機種とその能力(操作条件)の設定により大きく異なる。このため,当業者は,剪断処理装置の機種や操作条件などを適宜変更することで,本発明の効果を得ることとすればよい。
 本発明において「ホエイタンパク質凝集物」とは,ホエイタンパク質溶液に対して,上記の加熱処理と機械的な剪断処理とを同時又は交互に行うことによって得られる,ホエイタンパク質を主成分とする粒子の凝集体である。このホエイタンパク質凝集物は,粒子の平均粒子径が,2~10μmである
 本願明細書において,「平均粒子径」とは,JIS Z8825-1に準拠してレーザー回折・散乱法(ミー散乱法)により粒子径を測定し,JIS Z8819-2に準拠して求めた平均粒子径(D50)の値を意味する。粒子径は,レーザー回折散乱法粒度分布測定装置LS230(ベックマン・コールタ一社製)を用いて測定すればよい。
 ここで,平均粒子径は,牛乳や乳飲料などの乳製品において,平均脂肪球径と称されることもある。本発明において,「平均粒子径」には,平均脂肪球径という表現も意味として包含される。
 本発明に用いられるホエイタンパク質凝集物では,粒子径が1μm以下の粒子を多く含むものであると,実際に得られる気泡含有乳化物のオーバーランの安定性が悪く,保形性を維持できない。このため,ホエイタンパク質凝集物は,粒子の平均粒子径が,2~10μmであることが好ましい。
 また,このようなホエイタンパク質凝集物は,ホエイタンパク質溶液のpHが5.5~7の範囲で調製されることが好ましく,pHが6~7の範囲で調製されることがより好ましい。つまり,ホエイタンパク質凝集物は,pHの中性領域で調製されることが望ましい。
 上記のように調製されたホエイタンパク質凝縮物を,アイスクリームミックスに添加することで,従来は必要とされていた安定剤を添加しなくても,高いオーバーランを確保し,最終製品の保形性も十分に維持することができる。
[2-3.冷却固化]
 本発明の低脂肪・無脂肪アイスクリーム様食品は,上記のようにして調製されたアイスクリームミックスを冷却して固化させることにより得られる。また,アイスクリームミックスの冷却固化を行う前に,アイスクリームミックスの溶液を均質化することとしてもよい。
 まず,均質化の処理では,必要に応じてアイスクリームミックスの溶液を濾過して不純物を除去する。その後,例えば,ホモジナイザーを用いて,例えば,50~70℃の温度下で,アイスクリームミックスの脂肪の粒径を,例えば,2μm以下へと微粒化するなどして,脂肪などの粒径を調整する。その後,この粒径を調整したアイスクリームミックスを,例えば,68℃以上75℃以下に加熱し,30分間で保持して殺菌する。これにより,アイスクリームを均質化する。
 その後,均質化したアイスクリームミックスの溶液を,例えば,0~10℃の温度に冷却する。ここでは,アイスクリームミックスの溶液を冷凍させず,ある程度の流動性をもった状態で保持する。また,冷却状態にあるアイスクリームミックスの溶液には,適宜公知のフレーバー(例えば,バニラフレーバー,チョコレートフレーバー,ストロベリーフレーバー,ココアフレーバー)を添加することとしてもよい。
 その後,冷却状態にあるアイスクリームミックスのエージングを所定時間で行う。エージングは,0~30℃,好ましくは0~20℃,より好ましくは0~15℃,さらに好ましくは0~10℃の温度下で行うこととすればよい。このエージングを行うことにより,脂肪を結晶化させるとともに,タンパク質を水和させて,アイスクリームミックスを安定化させることができる。
 その後,エージング処理が完了したアイスクリームミックスに対して,フリージングを
行う。フリージングは,例えば-2℃~-10℃の温度下において,所定期間にわたってアイスクリームミックスを撹拌することにより行われる。このフリージングにより,アイスクリームミックスが冷却され,水分などが凍結して固化する。これにより,アイスクリームミックスが冷却固化されたアイスクリーム様食品を製造することができる。
 また,本発明において,フリージングの工程では,押し出し成型(エクストルージョン)装置を用いることが好ましい。エクストルージョン装置としては,公知のものを適宜利用することができる。例えば,エクストルージョン装置は,特開2013-162758号公報などに開示されている。
 エクストルージョン装置は,連続式フリーザーで,アイスクリーム様食品の原料であるアイスクリームミックス中に空気を混入しながら,そのアイスクリームミックス中の水を凍結させ,所望の形状の開口部を有するノズルから排出する。ノズルから排出された凍結したアイスクリームミックスは,排出方向に対して垂直に切断されて,所望の形状及び大きさに成形される。
 エクストルージョン装置は,例えば公知のバイター方式によるフリージングと比較し,低温でアイスクリームミックスを冷却することができる。このため,エクストルージョン装置を用いれば,アイスクリーム様食品に含まれる氷結晶のサイズを,より小さくすることができる。
 例えば,アイスクリーム様食品は,氷結晶の平均粒子径が60μm以下となるように調製されるものであることが好ましい。より具体的には,アイスクリーム様食品に含まれる氷結晶の平均粒子径は,20~60μm,又は30~50μmであることが好ましい。このように,アイスクリームミックスをエクストルージョン装置によってフリージングし,氷結晶のサイズを小さくすることで,より口触りが滑らかなアイスクリーム様食品を製造することが可能となる。例えば,アイスクリーム類においては,一般に,氷結晶の粒子径が35μm以下であると滑らかな食感が得られ,60μmを超えるとザラ付き易く,粗い組織であるとされている。この点,上記のように,エクストルージョン装置を用いれば,アイスクリーム様食品に含まれる氷結晶の平均粒子径を60μm以下となるように調整でき,滑らかな食感を付与することができる。
 また,本発明において,保存中の氷結晶の成長を抑制する目的で,ローカストビーインガム,グアガム,タマリンド,カラギナン,ペクチン,及び加工でんぷん等の増粘多糖類を使用することもできる。
 なお,「氷結晶の粒子径」とは,処理解析から測定された氷結晶の面積値をもとに,氷結晶を球円とみなしたときの断面の直径(円相当径)である(単位:μm)。また,「氷結晶の平均粒子径」は,光学顕微鏡写真から得られる100個の氷結晶の円相当径のメジアン径である。
 続いて,本発明に係るスタータを利用して得られる低脂肪・無脂肪アイスクリーム様食品の脂肪感を確認するため,以下の条件で,アイスクリーム様食品を製造した。また,ブルガリア菌スタータ,及びサーモフィラス菌スタータは10%脱脂粉乳培地にて37℃での継代培養を3回行い,賦活させた。
1.発酵乳配合 (無脂乳固形分19%)
Figure JPOXMLDOC01-appb-I000002
2.発酵乳の製造条件 
 20%脱脂粉乳溶液(無脂乳固形分19%)を撹拌しながら加温し,95℃達温により殺菌し,37℃まで冷却した。使用する乳酸菌スタータを上記配合率で添加し,1分間撹拌した。その後,37℃で培養し,経時的に乳酸酸度とpHを測定し,pH4.7~4.8で撹拌冷却を開始し,10℃以下まで温度を下げ,冷却後のpHを4.5~4.7となるようにした。これにより得られた発酵乳を,以下の条件に従ってアイスクリームミックスに配合した。なお,今回は,原材料における脱脂粉乳の配合率を20%として発酵乳の粘度を検討したが,脱脂粉乳の配合率は27%まで上げても,スタータの乳酸菌の生育に問題ないことが確認された。また,スタータの乳酸菌の生育に影響がない範囲で,原材料に糖類(砂糖,水あめ等)などを添加することもできる。なお,対照として,「明治ブルガリアヨーグルト」より分離したブルガリア菌とサーモフィラス菌を組み合わせたスタータで発酵乳を調製した(市販品分離株)。さらに,対照として,スタータで発酵乳を調製しないもの(脱脂乳)を置いた。
3.アイスクリームミックス配合 
Figure JPOXMLDOC01-appb-I000003
4.アイスクリーム様食品の製造条件 
 アイスクリームの調合では,まず,水に砂糖と水あめを投入した原料を,撹拌しながら70℃まで昇温した。その後,原料をミキサーで2分間撹拌混合し,10℃以下まで冷却した。その後,その後,原料と発酵乳と混合し,アイスクリームミックスとした。また,得られたアイスクリームミックスをフリーザーによってフリージングし,カップに充填した後,-35℃で急凍した。これにより,アイスクリーム様食品を製造した。なお,固形分は低すぎると氷結晶が大きくなりシャリシャリとした食感になり易いので,33重量%以上であることが好ましい。
 上記の条件に従って得られた各種の低脂肪・無脂肪アイスクリーム様食品について,それぞれ,粘度,酸度,pHを測定した。また,各種のアイスクリーム様食品について,5名のアイスクリーム専門パネラにより,風味及び食感の官能評価を行った。
 なお,粘度の測定条件については上述したが,再掲すると以下のとおりである。
[粘度の測定]
 20%脱脂粉乳溶液(無脂乳固形分19%)を撹拌しながら加温し,95℃達温により殺菌し,37℃まで冷却した。使用する乳酸菌スタータを上記配合率で添加し,1分間撹拌した。その後,37℃で培養し,経時的に乳酸酸度とpHを測定し,pH4.7~4.8で撹拌冷却を開始し,10℃以下まで温度を下げ,冷却後のpHを4.5~4.7となるようにした。その後,回転式B型粘度計を用いて,発酵乳の温度を5℃とし,ローターNo.4により,60rpmで粘度を測定した。
 また,上記の風味及び食感の官能評価の結果に基づき,各種のアイスクリーム様食品の脂肪感の有無を評価した。ここで,脂肪感が有る場合,すなわち脂肪感「○」の場合とは,アイスクリーム様食品を舌と上顎で押しつぶした際にしっかりとした弾力(弾力性)を感じ,且つ,アイスクリーム様食品が口の中で溶解する際に口の中全体へのまとわりつき(粘性)を感じる場合を指す。また,脂肪感が無い場合とは,弾力性及び粘性の両方又はいずれか一方を感じない場合を指す。すなわち,弾力性と粘性のいずれか一方を感じない場合には,脂肪感「×」となり,弾力性と粘性の両方を感じない場合には,脂肪感「××」となる。さらに,脂肪感「××」に加えて,風味評価において酸味が強いと判断された場合には,脂肪感「×××」となる。上記官能評価の結果を,以下の表1に示す。なお,以下では,対照サンプル(比較例11)として,スタータを添加しなかったサンプルについても評価を行った。対照サンプル(比較例11)は,発酵乳の必要性を推すためのデータとして有用である。
Figure JPOXMLDOC01-appb-T000004
 上記表1から,本発明の実施例1(ブルガリア菌OLL1073R-1+サーモフィラス菌OLS3078),実施例2(ブルガリア菌OLL1247+サーモフィラス菌OLS3618),及び実施例3(ブルガリア菌OLL1247+サーモフィラス菌OLS3078)に係るアイスクリーム様食品は,低脂肪又は無脂肪ながらも,しっかりとした脂肪感を有することが確認された。すなわち,上記の結果より,上記実施例1~3の組み合わせで製造した発酵乳が,無脂肪又は低脂肪のアイスの嗜好性を向上させることが判った。
 なお,上記の実施例では,アイスクリームミックスの全重量に対する発酵乳の配合比率を66%としたが,発酵乳の配合比率を30%以上とすれば,上記試験結果に準じた脂肪感に対する効果が得られることも確認された。
 以上,本願明細書では,本発明の内容を表現するために,図面を参照しながら本発明の実施形態の説明を行った。ただし,本発明は,上記実施形態に限定されるものではなく,本願明細書に記載された事項に基づいて当業者が自明な変更形態や改良形態を包含するものである。
 本発明は,発酵乳を得るために用いられるスタータ,低脂肪・無脂肪アイスクリーム様食品,及び低脂肪・無脂肪アイスクリーム様食品の製造方法に関する。従って,本発明はアイスクリーム類の製造業などにおいて好適に利用し得る。

Claims (9)

  1.  原料乳に添加されて,発酵乳を得るためのスタータであって,
     前記スタータは,ブルガリア菌とサーモフィラス菌を含み,
     前記スタータが添加された原料乳を37℃でpH4.5~5.0まで培養し,5℃に冷却した時の発酵乳の粘度(B型粘度計により測定)が,5000mPa・s以上である
     スタータ。
  2.  請求項1に記載のスタータであって,
     ラクトバチルス・デルブリュッキー・サブスピーシーズ・ブルガリクス OLL1247株(寄託番号:NITE BP-01814)とストレプトコッカス・サーモフィラス OLS3618株(寄託番号:NITE BP-01815)との組み合わせ,
     ラクトバチルス・デルブリュッキー・サブスピーシーズ・ブルガリクス OLL1247株(寄託番号:NITE BP-01814)とストレプトコッカス・サーモフィラス OLS3078株(寄託番号:NITE BP-01697)との組み合わせ,又は
     ラクトバチルス・デルブリュッキー・サブスピーシーズ・ブルガリクス OLL1073R-1株(寄託番号:FERM BP-10741)とトレプトコッカス・サーモフィラス OLS3078株(寄託番号:NITE BP-01697)との組み合わせのいずれかからなる
     スタータ。
  3.  請求項1に記載のスタータであって,
     前記ブルガリア菌は,
      ラクトバチルス・デルブリュッキー・サブスピーシーズ・ブルガリクス OLL1247株(寄託番号:NITE BP-01814),又は
      ラクトバチルス・デルブリュッキー・サブスピーシーズ・ブルガリクス OLL1073R-1株(寄託番号:FERM BP-10741)であり,
     前記サーモフィラス菌は,
      ストレプトコッカス・サーモフィラス OLS3618株(寄託番号:NITE BP-01815),又は
      ストレプトコッカス・サーモフィラス OLS3078株(寄託番号:NITE BP-01697)である
     スタータ。
  4.  請求項1に記載のスタータであって,
     前記発酵乳は,安定剤が添加されていないか,若しくは0.05重量%以下の安定剤が添加されたものである
     スタータ。
  5.  アイスクリームミックスを冷却固化して得られる乳脂肪分が8重量%未満の低脂肪・無脂肪アイスクリーム様食品であって,
     前記アイスクリームミックスは,
      原料乳に請求項1から請求項4のいずれかに記載の前記スタータを添加して発酵させることで得られる発酵乳を含み,
      無脂乳固形分が11重量%以上である
     低脂肪・無脂肪アイスクリーム様食品。
  6.  請求項5に記載の食品であって,
     前記発酵乳は,5℃に冷却した時の粘度(B型粘度計により測定)が5000mPa・s以上である
     食品。
  7.  請求項5に記載の食品であって,
     前記アイスクリームミックスは,
      ホエイタンパク質凝縮物を,さらに含み,
     前記ホエイタンパク質凝縮物は,
      平均粒子径が2~10μmであるホエイタンパク質を主成分とする粒子の凝縮体である
     食品。
  8.  請求項1に記載の食品であって,
     前記アイスクリームミックスは,安定剤が添加されていないか,若しくは0.05重量%以下の安定剤が添加されたものである
     食品。
  9.  原料乳に請求項1から請求項4のいずれかに記載の前記スタータを添加して発酵乳を得る工程と,
     前記発酵乳を用いてアイスクリームミックスを得る工程と,
     前記アイスクリームミックスを冷却固化して,乳脂肪分が8重量%未満である低脂肪・無脂肪アイスクリーム様食品を得る工程と,を含む
     低脂肪・無脂肪アイスクリーム様食品の製造方法。
PCT/JP2015/057230 2014-03-14 2015-03-12 発酵乳を得るためのスタータ,低脂肪・無脂肪アイスクリーム様食品,及び低脂肪・無脂肪アイスクリーム様食品の製造方法 WO2015137423A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580003993.0A CN105916974A (zh) 2014-03-14 2015-03-12 制造酸乳的菌母、类低脂无脂冰淇淋食品、及类低脂无脂冰淇淋食品的制造方法
SG11201607546YA SG11201607546YA (en) 2014-03-14 2015-03-12 Starter for fermented milk, low-fat or fat-free ice cream-like food product, and method for producing low-fat or fat-free ice cream-like food product
JP2016507808A JP6653251B2 (ja) 2014-03-14 2015-03-12 発酵乳を得るためのスタータ,低脂肪・無脂肪アイスクリーム様食品,及び低脂肪・無脂肪アイスクリーム様食品の製造方法
HK16111845.6A HK1223650A1 (zh) 2014-03-14 2016-10-13 製造酸乳的菌母、類低脂無脂冰淇淋食品、及類低脂無脂冰淇淋食品的製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-051816 2014-03-14
JP2014051816 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015137423A1 true WO2015137423A1 (ja) 2015-09-17

Family

ID=54071862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057230 WO2015137423A1 (ja) 2014-03-14 2015-03-12 発酵乳を得るためのスタータ,低脂肪・無脂肪アイスクリーム様食品,及び低脂肪・無脂肪アイスクリーム様食品の製造方法

Country Status (6)

Country Link
JP (1) JP6653251B2 (ja)
CN (1) CN105916974A (ja)
HK (1) HK1223650A1 (ja)
SG (1) SG11201607546YA (ja)
TW (1) TWI577799B (ja)
WO (1) WO2015137423A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060449A (ja) * 2015-09-25 2017-03-30 森永乳業株式会社 発酵乳およびその製造方法
WO2017057319A1 (ja) * 2015-09-30 2017-04-06 株式会社明治 乳酸菌スターターの調製方法及び発酵乳の製造方法
WO2017164298A1 (ja) * 2016-03-24 2017-09-28 株式会社 明治 紅斑生成抑制用組成物ならびにその使用方法およびその製造方法、紅斑の生成を抑制する方法、乳酸菌産生物
WO2017195846A1 (ja) * 2016-05-12 2017-11-16 株式会社明治 固液分離装置の固液分離カラム内における固液分布検出方法及び検出装置
JP2017223712A (ja) * 2017-09-27 2017-12-21 株式会社明治 可視光が外部から内部に透過する槽内における粒度分布検出方法及び検出装置
JP2018012648A (ja) * 2016-07-19 2018-01-25 株式会社明治 デオキシリボ核酸保存用組成物およびその製造方法、デオキシリボ核酸を保存する方法、乳酸菌産生物およびその使用方法
JPWO2020032100A1 (ja) * 2018-08-08 2021-08-10 株式会社明治 フィトケミカル吸収促進用組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7267020B2 (ja) * 2019-01-24 2023-05-01 株式会社明治 血糖値上昇抑制作用を有する発酵乳

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235543A (ja) * 1988-03-16 1989-09-20 Snow Brand Milk Prod Co Ltd 撹拌型ヨーグルトの製造方法
JP2000197469A (ja) * 1999-01-08 2000-07-18 New Food Creation Gijutsu Kenkyu Kumiai 血清脂質改善効果を有する機能性飲食品
JP2001258478A (ja) * 2000-03-23 2001-09-25 Snow Brand Milk Prod Co Ltd 冷菓及びその製造方法
JP2003158997A (ja) * 2001-11-22 2003-06-03 Snow Brand Milk Prod Co Ltd 後発酵型ヨーグルト
JP2005278638A (ja) * 2004-03-03 2005-10-13 Meiji Milk Prod Co Ltd フローズンヨーグルトの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235543A (ja) * 1988-03-16 1989-09-20 Snow Brand Milk Prod Co Ltd 撹拌型ヨーグルトの製造方法
JP2000197469A (ja) * 1999-01-08 2000-07-18 New Food Creation Gijutsu Kenkyu Kumiai 血清脂質改善効果を有する機能性飲食品
JP2001258478A (ja) * 2000-03-23 2001-09-25 Snow Brand Milk Prod Co Ltd 冷菓及びその製造方法
JP2003158997A (ja) * 2001-11-22 2003-06-03 Snow Brand Milk Prod Co Ltd 後発酵型ヨーグルト
JP2005278638A (ja) * 2004-03-03 2005-10-13 Meiji Milk Prod Co Ltd フローズンヨーグルトの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ASLIM B. ET AL.: "Productions and monomer compositions of exopolysaccharides by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains isolated from traditional home-made yoghurts and raw milk", INT. J. FOOD SCI. TECH., vol. 41, no. 8, 2006, pages 973 - 979, XP055223763, ISSN: 0950-5423 *
BOUZAR F. ET AL.: "Exopolysaccharide Production and Texture-Promoting Abilities of Mixed-Strain Starter Cultures in Yogurt Production", J. DAIRY SCI., vol. 80, no. 10, 1997, pages 2310 - 2317, XP000724109, ISSN: 0022-0302 *
CERNING J. ET AL.: "Comparison of exocellular polysaccharide production by thermophilic lactic acid bacteria", SCIENCES DES ALIMENTS, vol. 10, no. 2, 1990, pages 443 - 451 *
FOLKENBERG D. ET AL.: "Interactions between EPS-producing Streptococcus thermophilus strains in mixed yoghurt cultures", J. DIARY RES., vol. 73, no. 4, 2006, pages 385 - 393, XP009126989, ISSN: 0022-0299 *
FOLKENBERG D. ET AL.: "Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures", INT. DAIRY J., vol. 16, no. 2, 2006, pages 111 - 118, XP024963397, ISSN: 0958-6946 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060449A (ja) * 2015-09-25 2017-03-30 森永乳業株式会社 発酵乳およびその製造方法
WO2017057319A1 (ja) * 2015-09-30 2017-04-06 株式会社明治 乳酸菌スターターの調製方法及び発酵乳の製造方法
JPWO2017164298A1 (ja) * 2016-03-24 2019-01-31 株式会社明治 紅斑生成抑制用組成物ならびにその使用方法およびその製造方法、紅斑の生成を抑制する方法、乳酸菌産生物
WO2017164298A1 (ja) * 2016-03-24 2017-09-28 株式会社 明治 紅斑生成抑制用組成物ならびにその使用方法およびその製造方法、紅斑の生成を抑制する方法、乳酸菌産生物
JP7061560B2 (ja) 2016-03-24 2022-04-28 株式会社明治 スフィンゴミエリン吸収促進用兼紅斑生成抑制用発酵乳ならびにその使用方法およびその製造方法、スフィンゴミエリンの吸収を促進させると共に紅斑の生成を抑制する方法、乳酸菌産生物およびスフィンゴミエリンを含有する発酵乳
US10935412B2 (en) 2016-05-12 2021-03-02 Meiji Co., Ltd. Method for detecting solid-liquid distribution in solid-liquid separation column of solid-liquid separation device and detection device
JP2017203710A (ja) * 2016-05-12 2017-11-16 株式会社明治 固液分離装置の固液分離カラム内における固液分布検出方法及び検出装置
WO2017195846A1 (ja) * 2016-05-12 2017-11-16 株式会社明治 固液分離装置の固液分離カラム内における固液分布検出方法及び検出装置
JP2018012648A (ja) * 2016-07-19 2018-01-25 株式会社明治 デオキシリボ核酸保存用組成物およびその製造方法、デオキシリボ核酸を保存する方法、乳酸菌産生物およびその使用方法
WO2018016393A1 (ja) * 2016-07-19 2018-01-25 株式会社 明治 デオキシリボ核酸保存用組成物およびその製造方法、デオキシリボ核酸を保存する方法、乳酸菌産生物およびその使用方法
JP2017223712A (ja) * 2017-09-27 2017-12-21 株式会社明治 可視光が外部から内部に透過する槽内における粒度分布検出方法及び検出装置
JPWO2020032100A1 (ja) * 2018-08-08 2021-08-10 株式会社明治 フィトケミカル吸収促進用組成物
JP7385572B2 (ja) 2018-08-08 2023-11-22 株式会社明治 フィトケミカル吸収促進用組成物

Also Published As

Publication number Publication date
JPWO2015137423A1 (ja) 2017-04-06
TW201540836A (zh) 2015-11-01
SG11201607546YA (en) 2016-10-28
TWI577799B (zh) 2017-04-11
CN105916974A (zh) 2016-08-31
JP6653251B2 (ja) 2020-02-26
HK1223650A1 (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
WO2015137423A1 (ja) 発酵乳を得るためのスタータ,低脂肪・無脂肪アイスクリーム様食品,及び低脂肪・無脂肪アイスクリーム様食品の製造方法
KR102388527B1 (ko) 고단백질 변성 유장 단백질 조성물, 관련 제품, 및 그의 생성 방법 및 용도
KR102362483B1 (ko) Cmp-함유, 고단백질 변성 유장 단백질 조성물, 그들을 함유하는 제품 및 그의 용도
AU2014338893A1 (en) High protein denatured whey protein composition, related products, method of production and uses thereof
JP3351343B2 (ja) 酸性蛋白食品及びその製造法
IL260180A (en) Dairy products sweetened with steviol glycosides and lactase enzyme
TWI613970B (zh) 低脂肪或無脂肪之含有氣泡的乳化物
WO2011078107A1 (ja) 濃厚タイプヨーグルトの製造方法
JP2009082023A (ja) トロミヨーグルトの製造方法
JP2018074915A (ja) 乳タンパク質濃縮物を主原料とした発酵乳およびその製造方法
JP6203050B2 (ja) 液状発酵乳及びその製造方法
JPWO2015037679A1 (ja) 乳化組成物および乳飲料
JP5719741B2 (ja) 低糖発酵乳の製造方法
JP5993182B2 (ja) 発酵乳およびその製造方法
CN113784622B (zh) 新型高蛋白酸化乳制品、其生产方法、蛋白粉及其用途
JP6400940B2 (ja) 乳性飲料
Banerjee et al. Insights into the technological and nutritional aspects of lactic milk drinks: buttermilk
JP2016202150A (ja) 乳風味付与材
JP6533079B2 (ja) スプレッド用油中水中油型乳化油脂組成物
JP2024122141A (ja) 前発酵型のヨーグルト及びその製造方法
JP2024122140A (ja) 前発酵型のヨーグルト及びその製造方法
UA135572U (uk) Спосіб виробництва м'якого низьколактозного морозива
JP2013111026A (ja) 脂肪代替組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15762160

Country of ref document: EP

Kind code of ref document: A1