WO2015136659A1 - 位相同期ループ回路及び注入同期型分周器の周波数調整方法 - Google Patents

位相同期ループ回路及び注入同期型分周器の周波数調整方法 Download PDF

Info

Publication number
WO2015136659A1
WO2015136659A1 PCT/JP2014/056623 JP2014056623W WO2015136659A1 WO 2015136659 A1 WO2015136659 A1 WO 2015136659A1 JP 2014056623 W JP2014056623 W JP 2014056623W WO 2015136659 A1 WO2015136659 A1 WO 2015136659A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
locked
output voltage
frequency
supply unit
Prior art date
Application number
PCT/JP2014/056623
Other languages
English (en)
French (fr)
Inventor
貴之 中井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016507196A priority Critical patent/JP6234545B2/ja
Priority to US15/111,701 priority patent/US9847785B2/en
Priority to PCT/JP2014/056623 priority patent/WO2015136659A1/ja
Publication of WO2015136659A1 publication Critical patent/WO2015136659A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/183Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between fixed numbers or the frequency divider dividing by a fixed number
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K23/00Pulse counters comprising counting chains; Frequency dividers comprising counting chains
    • H03K23/58Gating or clocking signals not applied to all stages, i.e. asynchronous counters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/095Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using a lock detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/107Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth
    • H03L7/1075Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth by changing characteristics of the loop filter, e.g. changing the gain, changing the bandwidth

Definitions

  • the present invention relates to a PLL (Phase Locked Loop) circuit, and more particularly to a frequency adjustment technology of an injection locked frequency divider (ILFD).
  • PLL Phase Locked Loop
  • ILFD injection locked frequency divider
  • the ILFD may be used as a prescaler that divides an output of a voltage controlled oscillator (VCO).
  • VCO voltage controlled oscillator
  • the ILFD is based on the phenomenon of injection locking in which when an external signal is input to an oscillator having a free run frequency, the oscillator outputs a signal in synchronization with a frequency equal to an integral fraction of the input signal.
  • ILFD has the advantage of improving operating frequency and reducing current consumption, compared to Emitter Coupled Logic (ECL) and Current Mode Logic (CML) dividers that have been conventionally used as prescalers. ing.
  • ECL Emitter Coupled Logic
  • CML Current Mode Logic
  • ILFD has the property that it can operate only near the free run frequency. For this reason, for example, there is a problem that the division operation may become impossible if the characteristic of the element varies depending on the manufacturing conditions, the temperature and the power supply voltage and the free run frequency of the divider deviates from the desired operating frequency. Have.
  • An object of the present invention is to realize adjustment of a free run frequency of an ILFD with a simple configuration.
  • the phase locked loop circuit of the present invention is An oscillator that outputs an oscillation signal having a frequency; A first injection locked frequency divider to which an oscillation signal having a frequency output from the oscillator is input; A filter for outputting a voltage to the oscillator; An output voltage supply unit that takes in an output voltage that the filter outputs to the oscillator, performs supply and disconnection of the taken output voltage to the injection-locked frequency divider, holds an output voltage of the filter, and outputs the output voltage And a supply unit having a holding voltage supply unit that supplies the held output voltage to the injection-locked frequency divider when the output voltage is shut off by the voltage supply unit.
  • the present invention it is possible to adjust the frequency of the ILFD with a simple circuit configuration without the need for the frequency measurement means, the calculation means, and the like. Therefore, stable frequency dividing operation can be secured with a simple configuration.
  • FIG. 2 is a diagram of the first embodiment and is a block diagram of a PLL circuit 1001.
  • FIG. 7 is a diagram of Embodiment 1, which is a flowchart of operation of a PLL circuit 1001.
  • FIG. FIG. 2 is a diagram of the first embodiment and is a block diagram of a PLL circuit 1002.
  • FIG. 17 is a diagram of the first embodiment and is a block diagram of a PLL circuit 1003.
  • FIG. 2 is a block diagram showing an analog-to-digital converter and a digital-to-analog converter used in a sample and hold circuit in the diagram of Embodiment 1;
  • FIG. 17 is a diagram of the second embodiment and is a block diagram of a PLL circuit 2000.
  • FIG. 17 is a diagram of the third embodiment and is a block diagram of a PLL circuit 3000.
  • FIG. 21 is a diagram of the fourth embodiment and is a block diagram of a PLL circuit 4000.
  • FIG. 18 is a diagram of the fourth embodiment and is a block diagram illustrating an example of a lock detection unit 95.
  • FIG. 21 is a diagram of the fifth embodiment and is a block diagram of a PLL circuit 5000.
  • FIG. 1 is a block diagram showing a PLL circuit 1001 according to the first embodiment.
  • FIG. 2 is a flowchart showing the operation of the PLL circuit 1001.
  • the PLL circuit 1001 inputs an oscillator control voltage output from the loop filter into an injection locked frequency divider (ILFD), forms a loop using the ILFD as an oscillator to form a PLL, and adjusts the free-running frequency of the ILFD. To realize.
  • ILFD injection locked frequency divider
  • the PLL circuit 1001 includes n (n is an integer of 1 or more) injection-locked frequency divider 10, frequency divider 20, phase comparator 30, charge pump 40, and loop filter connected in series. 50 (filter), n switches 60, n switches 61, n sample and hold circuits 70, a voltage controlled oscillator 100 (oscillator), and a timer circuit 300.
  • the n injection locked frequency dividers 10 are described as IFLD 10 (1), IFLD 10 (2),... IFLD 10 (n). When it is not necessary to distinguish, it is described as IFLD10.
  • the divider 20 is described as DIV 20.
  • the phase comparator 30 is described as PFD 30.
  • the charge pump 40 is described as CP40.
  • the loop filter 50 is described as LP50.
  • the n switches 60 are described as SW 60 (1), SW 60 (2),... SW 60 (n). When it is not necessary to distinguish, it is described as SW60.
  • the n sample and hold circuits 70 are described as SH70 (1), SH70 (2),... SH70 (n). When it is not necessary to distinguish, it is described as SH70.
  • the n switches 61 are described as SW 61 (1), SW 61 (2),... SW 61 (n). When it is not necessary to distinguish, it is described as SW61.
  • IFLDs 10 (1) to IFLDs 10 (n) are connected in series.
  • IFLDs 10 (1) to IFLD 10 (n) connected in series receive the output frequency of voltage controlled oscillator 100 (hereinafter referred to as VCO 100) whose oscillation frequency changes according to the input voltage from the frequency control terminal.
  • VCO 100 voltage controlled oscillator 100
  • Divide the output frequency by the division ratio of The VCO 100 outputs an oscillation signal having a frequency corresponding to the input voltage from the frequency control terminal.
  • the DIV 20 divides the output frequency of the ILFD 10 (n) by a predetermined dividing ratio.
  • the PFD 30 detects the phase difference between the division result signal (denoted as CKDIV) output from the DIV 20 and the reference clock (denoted as CKREF).
  • the CP 40 receives the output of the PFD 30 and outputs a current or voltage.
  • the LPF 50 smoothes the output of the CP 40 and outputs the frequency control voltage Vtune.
  • the SW 60 (1) to the SW 60 (n) select whether to supply the control voltage Vtune to the ILFD 10 (1) to the ILFD 10 (n).
  • SH70 (1) to SH70 (n) sample and hold control voltages of ILFD 10 (1) to ILFD 10 (n).
  • the switches SW61 (1) to SW61 (n) select whether to supply the output voltages of SH70 (1) to SH70 (n) to the ILFDs 10 (1) to IFLD 10 (n), respectively.
  • the timer circuit 300 controls the SW 60, the SW 61, the SH 70, the ILFD 10, and the DA 80 and AD 90 described later.
  • the supply unit 201 includes SW60 (1) to SW60 (n), SW61 (1) to SW61 (n), and SH70 (1) to SH70 (n).
  • the switches SW60 (1) to SW60 (n) take in the output voltage that the LPF 50 outputs to the VCO 100, and supply and shut off the received output voltage to the ILFD 10 (1) to the IFLD 10 (n).
  • SW60 (1) to SW60 (n) are output voltage supply units.
  • SW61 (1) to SW61 (n) and SH70 (1) to SH70 (n) are IFLD that hold the output voltage when the output voltage is cut off by SW60 (1) to SW60 (n). (1) to IFLD (n).
  • SW 61 (1) to SW 61 (n) and SH 70 (1) to SH 70 (n) are holding voltage supply units.
  • the timer circuit 300 is the main operation.
  • the timer circuit 300 opens all the switches (SW60 (1) to SW60 (n) and SW61 (1) to SW61 (n)) (S30).
  • the adjustment is started from the ILFD 10 (n) connected to the DIV 20 with the lowest operating frequency among the ILFDs 10 (1) to IFLD 10 (n) (S40). Therefore, the timer circuit 300 closes the SW 60 (n) connecting the output voltage Vtune of the LPF 50 to the ILFD 10 (n), and uses the ILFD 10 (n) as an oscillator (S50).
  • the loop PLL (n) configured of the ILFD 10 (n), the DIV 20, the PFD 30, the CP 40, and the LPF 50 is configured to start the lock operation.
  • the output frequency of the ILFD 10 (n) converges to a constant value, and becomes locked (S60).
  • S60 it is considered that the lock state is reached when a predetermined time has elapsed.
  • the configuration having a lock detection unit for detecting the lock state will be described later in the fourth embodiment.
  • the timer circuit 300 After the loop PLL (n) is in the locked state, the timer circuit 300 holds the output voltage Vtune of the LPF 50 at that time with SH70 (n), opens the SW 60 (n), closes the SW 61 (n). Then, the frequency adjustment of the ILFD 10 (n) is completed (S70). Thereafter, in the same procedure, the timer circuit 300 sequentially adjusts the ILFDs 10 (n-1) to the ILFDs 10 (1) (S80, S90).
  • the timer circuit 300 configures a PLL composed of the VCO 100, the ILFDs 10 (1) to the ILFDs 10 (n), the DIV 20, the PFD 30, the CP 40, and the LPF 50 and performs locking operation (normal PLL operation) ) Is started (S110).
  • the operation S30 in FIG. 2 is a so-called reset (initial) operation, and the state of the ILFD 10 is determined by the adjustment operation after S40. As a result, the reset operation S30 does not affect the PLL normal operation S110. Therefore, the reset operation S30 may be omitted.
  • FIG. 3 is a block diagram of the PLL circuit 1002. As shown in FIG. The supply unit 202 is different from FIG. FIG. 3 is a view showing the supply unit 202 having a simpler configuration than the supply unit 201 of FIG.
  • the supply unit 202 includes SWs 60 (1) to SW 60 (n) and sampling capacitors C63 (1) to C63 (n).
  • the supply unit 201 (sample hold circuit SH70, switches SW60 and SW61) of FIG. 1 is a switch SW60 connected between the output of the LP 50 and the control terminal of the ILFD 10, and a predetermined reference with the control terminal of the ILFD 10. It is comprised by sampling capacitance C63 connected between voltage (for example, ground etc.).
  • FIG. 3 shows a configuration of a switch and a sampling capacitor (capacitor).
  • the supply unit 202 can be realized by the switches SW60 (1) to SW60 (n) and the sampling capacitors C63 (1) to C63 (n) corresponding to the switches SW60 (1) to SW60 (n). Therefore, the SW 61 (1) to the SW 61 (n) in FIG. 1 are unnecessary.
  • SW60 (1) to SW60 (n) are output voltage supply units
  • sampling capacitors C63 (1) to C63 (n) are holding voltage supply units.
  • the supply unit 202 corresponds to SH70 (1) to SH70 (n) in FIG.
  • FIG. 4 is a configuration diagram of the PLL circuit 1003.
  • the supply unit 203 is different from FIG. FIG. 4 shows the configuration of the supply unit 203 different from the supply unit 201.
  • the SH 70 of FIG. 1 is realized by the n digital-to-analog converters 80 (referred to as DA 80) and one analog-to-digital converter 90 (referred to as AD 90).
  • the n DAs 80 are denoted as DA80 (1) to DA80 (n).
  • the AD 90 may be provided for each of DA 80 (1) to DA 80 (n).
  • the supply unit 203 includes SW60 (1) to SW60 (n), SW61 (1) to SW61 (n), DA80 (1) to DA80 (n), and AD90.
  • DA80 (1) to DA80 (n) and AD90 correspond to SH70 (1) to SH70 (n) in FIG.
  • SW60 (1) to SW60 (n) are output voltage supply units.
  • DA80 (1) to DA80 (n), AD90, and SW61 (1) to SW61 (n) are holding voltage supply units.
  • FIG. 5 is a diagram showing specific configurations of DA80 (1) to DA80 (n) and AD90.
  • DA80 (1) to DA80 (n) are R-2R type DA converters.
  • the AD 90 is a voltage comparator and SAR (Successive Approximation Resistor) control logic.
  • a sample-and-hold operation can be realized by the SAR type AD converter performing AD conversion and holding of Vtune.
  • the ILFD 10 can be adjusted with a simple configuration of an AD converter, a DA converter, and a switch.
  • FIG. 6 is a block diagram showing a PLL circuit 2000 according to the second embodiment.
  • the LPF 50 receives control to switch the cutoff frequency between the normal time and the ILFD adjustment time.
  • the convergence time and stability of the PLL depend on the cut-off frequency of the loop filter. Therefore, by switching the cut-off frequency of the loop filter, for example, the cut-off frequency is set low in normal times to reduce phase noise, and the cut-off frequency is set higher in normal times to adjust convergence time during adjustment. Shorten. As described above, since the cutoff frequency of the LPF 50 can be changed, it is possible to properly maintain the response characteristics of the PLL at the normal time and at the adjustment time.
  • FIG. 7 is a block diagram showing a PLL circuit 3000 of the third embodiment. Here, only the difference from the PLL circuit 1001 of the first embodiment will be described.
  • the CP 40 switches the output current level between the normal time and the ILFD adjustment time.
  • the convergence time and stability of the PLL depend on the CP40 output current. Therefore, by switching the output current of the CP 40, for example, the output current of the CP 40 is set low in order to reduce phase noise in normal times, and the output current of the CP 40 is increased in order to shorten the convergence time during adjustment. Such switching makes it possible to properly maintain the response characteristics of the PLL circuit 3000 at the normal time and at the adjustment time.
  • FIG. 8 is a block diagram showing a PLL circuit 4000 of the fourth embodiment.
  • a lock detection unit 95 hereinafter referred to as an LD 95
  • the LD 95 determines whether the PLL is in a locked state by determining whether the phase difference between CKREF and CKDIV is within a predetermined range.
  • FIG. 9 shows a configuration example of the LD 95.
  • the LD 95 can be realized by frequency counters 95-1A and 95-1B to which CKREF and CKDIV are input, and a lock determination unit 95-2 comparing the count value of each frequency counter.
  • FIG. 10 is a block diagram showing a PLL circuit 5000 of the fifth embodiment.
  • a switch 101 (1) for selecting whether or not to input a signal from the VCO 100 to the ILFD 10 (1) is added to the PLL circuit 1001 of FIG.
  • the timer circuit 300 turns off the switch 101 (1) and the output of the VCO 100 is not input to the ILFD 10 (1).
  • the VCO 100 in the case of the ILFD 10 (1)
  • the possibility that the ILFD 10 (k) is synchronized with the signal of the previous stage and can not be adjusted to the free run state due to the input of the signal of (1) can be eliminated.
  • the number of ILFDs 10 may be one.
  • the operation of the PLL circuit has been described for the PLL circuit, but it is apparent that the operation of the PLL circuit can be understood as a method of adjusting the free run frequency of the ILFD.
  • IFLD injection locked frequency divider
  • DIV frequency divider
  • PFD phase comparator
  • 40 CP charge pump
  • 50 LFP loop filter
  • 60, 61, 101 SW switch
  • 70 SH sample and hold circuit
  • 80 DA converter digital analog converter
  • 90 AD converter analog digital converter
  • 95 LD lock detection unit
  • 100 VCO voltage controlled oscillator

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

 PLL回路(1001)では、まず、ILFD(10(n))にLPF(50)の出力電圧Vtuneが接続され、ILFD(10(n))が発振器となる。ILFD(10(n))、DIV(20)、PFD(30)、CP(40)、LPF(50)がPLLnを構成し、ロック動作が開始する。PLLnは所定時間が経過すると、ILFD(10(n))の出力周波数がある一定値に収束し、ロック状態となる。ロック状態となった後に、その時点でのループフィルタ出力電圧Vtuneをサンプルホールド回路SH(70(n))が保持し、ILFD(10(n))の周波数調整が完了する。順次、ILFD(10(n-1))~ILFD(10(1))に、同様の周波数調整が実施される。

Description

位相同期ループ回路及び注入同期型分周器の周波数調整方法
 本発明は、PLL(Phase Locked Loop、位相同期ループ)回路に関し、特にILFD(Injection Locked Frequency Divider、注入同期型分周器)の周波数調整技術に関する。
 PLL回路の動作周波数の高速化と小型・低消費電力化を両立するため、ILFDが、VCO(Voltage Controlled Oscillator:電圧制御型発振器)の出力を分周するプリスケーラとして使用される場合がある。ILFDは、あるフリーラン周波数を有する発振器に対して外部から信号を入力すると、発振器が、入力した信号の整数分の1に等しい周波数に同期して信号を出力する注入同期という現象に基づく。ILFDは、従来からプリスケーラとして用いられてきたECL(Emitter Coupled Logic)型やCML(Current Mode Logic)型の分周器と比較して、動作周波数の向上、消費電流の低減が図れる利点を有している。
 一方で、ILFDは、フリーラン周波数近傍でしか動作ができないという性質を有する。このため、例えば素子の特性が、製造条件や温度、電源電圧によりばらつき、所望の動作周波数から分周器のフリーラン周波数がずれた場合、分周動作が不可能になるおそれがあるという課題を有する。
 本課題を解決するため、ILFDの調整回路を具備し、フリーラン周波数の調整手段を持つILFDのフリーラン周波数を測定し、所望の周波数との差異を計算してILFDのフリーラン周波数を制御するといった手法が提案されている(特許文献1)。
特開2008-236557号公報
 特許文献1のような、ILFDのフリーラン周波数の調整手段を用いた場合、本来のPLLの構成要素に加え、周波数カウンタなどの周波数測定手段、測定したフリーラン周波数と所望の周波数との差異から注入同期型分周器のフリーラン周波数制御信号を演算により生成する演算手段が必要となる。よって、回路の構成が複雑になるという課題がある。
 本発明は、ILFDのフリーラン周波数の調整を、簡素な構成で実現することを目的にしている。
 この発明の位相同期ループ回路は、
 周波数を有する発振信号を出力する発振器と、
 前記発振器が出力する周波数を有する発振信号が入力される第1の注入同期型分周器と、
 前記発振器へ電圧を出力するフィルタと、
 前記フィルタが前記発振器へ出力する出力電圧を取り込み、取り込んだ出力電圧の前記注入同期型分周器への供給と遮断とを行う出力電圧供給部と、前記フィルタの出力電圧を保持し、前記出力電圧供給部により出力電圧の遮断が行われた場合に、保持された出力電圧を前記注入同期型分周器に供給する保持電圧供給部とを有する供給部と
を備えたことを特徴とする。
 本発明によれば、周波数測定手段や演算手段等を必要とせず、簡易な回路構成で、ILFDの周波数調整が可能となる。よって簡易な構成で安定した分周動作を確保できる。
実施の形態1の図で、PLL回路1001のブロック図。 実施の形態1の図で、PLL回路1001の動作のフローチャート。 実施の形態1の図で、PLL回路1002のブロック図。 実施の形態1の図で、PLL回路1003のブロック図。 実施の形態1の図で、サンプルホールド回路に用いるアナログディジタルコンバータ、ディジタルアナログコンバータを示すブロック図。 実施の形態2の図で、PLL回路2000のブロック図。 実施の形態3の図で、PLL回路3000のブロック図。 実施の形態4の図で、PLL回路4000のブロック図。 実施の形態4の図で、ロック検出部95の例を示すブロック図。 実施の形態5の図で、PLL回路5000のブロック図。
 実施の形態1.
 図1は、実施の形態1によるPLL回路1001を示すブロック図である。
 図2は、PLL回路1001の動作を示すフローチャートである。PLL回路1001は、ループフィルタから出力される発振器制御電圧を注入同期型分周器(ILFD)に入力し、ILFDを発振器とするループを形成してPLLを構成し、ILFDのフリーラン周波数調整を実現する。
 図1のように、PLL回路1001は、直列接続されたn個(nは1以上の整数)の注入同期型分周器10、分周器20、位相比較器30、チャージポンプ40、ループフィルタ50(フィルタ)、n個のスイッチ60、n個のスイッチ61、n個のサンプルホールド回路70、電圧制御型発振器100(発振器)、タイマー回路300を備える。
 以下の説明では、
(1)n個の注入同期型分周器10は、IFLD10(1)、IFLD10(2)、・・・IFLD10(n)のように記す。区別する必要が無い場合はIFLD10と記す。
(2)分周器20は、DIV20と記す。
(3)位相比較器30はPFD30と記す。
(4)チャージポンプ40は、CP40と記す。
(5)ループフィルタ50は、LP50と記す。
(6)n個のスイッチ60は、SW60(1)、SW60(2)、・・・SW60(n)のように記す。区別する必要が無い場合はSW60と記す。
(7)n個のサンプルホールド回路70は、SH70(1)、SH70(2)、・・・SH70(n)のように記す。区別する必要が無い場合はSH70と記す。
(8)n個のスイッチ61は、SW61(1)、SW61(2)、・・・SW61(n)のように記す。区別する必要が無い場合はSW61と記す。
(1)n個のIFLD10(1)~IFLD10(n)は直列に接続されている。直列接続されたIFLD10(1)~IFLD10(n)は、周波数制御端子からの入力電圧に応じて発振周波数が変化する電圧制御型発振器100(以下、VCO100と記す)の出力周波数を受けて、所定の分周比で出力周波数を分周する。VCO100は、周波数制御端子からの入力電圧に応じた周波数を持つ、発振信号を出力する。
(2)DIV20は、ILFD10(n)の出力周波数を、所定の分周比で分周する。
(3)PFD30は、DIV20から出力される分周結果信号(CKDIVと記す)と、基準クロック(CKREFと記す)の位相差を検出する。
(4)CP40は、PFD30の出力を受けて電流もしくは電圧を出力する。
(5)LPF50は、CP40の出力を平滑化して周波数制御電圧Vtuneを出力する。
(6)SW60(1)~SW60(n)は、制御電圧VtuneをILFD10(1)~ILFD10(n)に供給するか否かを選択する。
(7)SH70(1)~SH70(n)は、ILFD10(1)~ILFD10(n)の制御電圧をサンプル及びホールドする。
(8)SW61(1)~SW61(n)は、SH70(1)~SH70(n)の出力電圧をILFD10(1)~IFLD10(n)にそれぞれ供給するか否かを選択する。
(9)タイマー回路300は、SW60,SW61、SH70、ILFD10や後述のDA80,AD90を制御する。
 図1において、供給部201は、SW60(1)~SW60(n)、SW61(1)~SW61(n)及びSH70(1)~SH70(n)を備える。SW60(1)~SW60(n)は、LPF50がVCO100へ出力する出力電圧を取り込み、取り込んだ出力電圧のILFD10(1)~IFLD10(n)への供給と遮断とを行う。SW60(1)~SW60(n)は出力電圧供給部である。SW61(1)~SW61(n)及びSH70(1)~SH70(n)は、SW60(1)~SW60(n)により出力電圧の遮断が行われた場合に、保持している出力電圧をIFLD(1)~IFLD(n)に供給する。SW61(1)~SW61(n)及びSH70(1)~SH70(n)は、保持電圧供給部である。
 以下、図1及び図2を用い、PLL回路1001の動作について説明する。図2はタイマー回路300が動作の主体である。
 まず、PLL回路1001の動作開始時(S10)においては、いずれのILFD10もフリーラン周波数は調整されていない状態であるため、ILFD10の調整動作を開始する(S20)。
 ILFD10の調整が開始されると、まずタイマー回路300が、全てのスイッチ(SW60(1)~SW60(n)、SW61(1)~SW61(n))を開放する(S30)。次に、ILFD10(1)~IFLD10(n)の中で最も動作周波数が低く、DIV20に接続されるILFD10(n)から調整を開始する(S40)。このため、タイマー回路300は、ILFD10(n)にLPF50の出力電圧Vtuneを接続するSW60(n)を閉じて、ILFD10(n)を発振器とする(S50)。これによって、ILFD10(n)、DIV20、PFD30、CP40、LPF50で構成されるループPLL(n)を構成してロック動作を開始する。ループPLL(n)では、ある時間が経過すると、ILFD10(n)の出力周波数がある一定値に収束し、ロック状態となる(S60)。S60では、一定時間が経過したときにロック状態に達したとみなす。なお、ロック状態を検出するロック検出部を有する構成は実施の形態4で後述する。
 ループPLL(n)がロック状態となった後に、タイマー回路300は、その時点でのLPF50の出力電圧VtuneをSH70(n)で保持し、SW60(n)を開放し、SW61(n)を閉じて、ILFD10(n)の周波数調整を完了する(S70)。以下、同様の手順で、タイマー回路300は、ILFD10(n-1)からILFD10(1)までを順に調整する(S80、S90)。
 全てのILFD10の調整が完了後(S100)、タイマー回路300は、VCO100、ILFD10(1)~ILFD10(n)、DIV20、PFD30、CP40、LPF50からなるPLLを構成し、ロック動作(通常のPLL動作)を開始する(S110)。これにより、周波数測定手段や演算手段も必要とせず、SW60(1)~SW60(n)、SH70(1)~SH70(n)及びSW61(1)~SW61(n)の追加のみで、ILFD10の調整が実現できる。
 ここで、図2における動作S30はいわゆるリセット(初期)動作であり、ILFD10の状態はS40以降の調整動作により決定され、結果としてこのリセット動作S30がPLL通常動作S110には影響しない。このため、リセット動作S30は省略して構わない。
 図3は、PLL回路1002の構成図である。図1に対して供給部202が異なる。図3は図1の供給部201よりも簡素な構成の、供給部202を示す図である。供給部202は、SW60(1)~SW60(n)とサンプリング容量C63(1)~C63(n)を備えている。図3では、図1の供給部201(サンプルホールド回路SH70、スイッチSW60、SW61)が、LP50の出力とILFD10の制御端子との間に接続されたスイッチSW60と、ILFD10の制御端子と所定の基準電圧(例えばグランド等)との間に接続されたサンプリング容量C63で構成されている。
 図3は、スイッチとサンプリング容量(コンデンサ)による構成である。この構成は、SW60(1)~SW60(n)と、SW60(1)~SW60(n)に対応するサンプリング容量C63(1)~C63(n)とで、供給部202を実現できる。よって、図1のSW61(1)~SW61(n)は不要である。供給部202では、SW60(1)~SW60(n)は出力電圧供給部であり、サンプリング容量C63(1)~C63(n)は保持電圧供給部である。なお供給部202は図1のSH70(1)~SH70(n)に相当する。
 図4は、PLL回路1003の構成図である。図1に対して供給部203が異なる。図4は、供給部201とは別の、供給部203の構成を示す。図4では、n個のディジタルアナログコンバータ80(DA80と記す)と、一つのアナログディジタルコンバータ90(AD90と記す)とで、図1のSH70を実現する。n個のDA80はDA80(1)~DA80(n)と記す。図4ではAD90は一つの場合を示しているが、AD90はDA80(1)~DA80(n)のそれぞれに設ける構成でも構わない。
 図4に示すように、供給部203は、SW60(1)~SW60(n)、SW61(1)~SW61(n)、DA80(1)~DA80(n)及びAD90を備える。DA80(1)~DA80(n)及びAD90が、図1のSH70(1)~SH70(n)に相当する。SW60(1)~SW60(n)は、出力電圧供給部である。DA80(1)~DA80(n)、AD90及びSW61(1)~SW61(n)が保持電圧供給部である。
 図5は、DA80(1)~DA80(n)、及びAD90の具体例な構成を示す図である。図5に示すように、DA80(1)~DA80(n)は、R-2R型のDAコンバータとする。AD90は、電圧比較器及びSAR(Successive Approximation Resister)制御ロジックとする。AD90とDA80(k)(k=1,2、・・・n)とを結合して1つのSAR型ADコンバータを構成する。SAR型ADコンバータがVtuneをAD変換し保持することで、サンプルホールド動作を実現できる。
 図4、図5に示すように、ADコンバータ、DAコンバータ及びスイッチという簡単な構成でILFD10を調整できる。
 実施の形態2.
 図6は、実施の形態2によるPLL回路2000を示すブロック図である。ここでは、実施の形態1のPLL回路1001との差分のみを説明する。実施の形態2のPLL回路2000では、LPF50が、制御を受けることにより、カットオフ周波数が、通常時とILFD調整時とで切り替わる。
 PLLの収束時間及び安定性はループフィルタのカットオフ周波数に依存する。このため、ループフィルタのカットオフ周波数を切り替えることで、例えば通常時はカットオフ周波数を低く設定して位相雑音を低減し、調整時はカットオフ周波数を通常時よりも高く設定して収束時間を短縮する。このようにLPF50のカットオフ周波数が変更可能であることで、通常時と調整時とで、PLLの応答特性をそれぞれ適切に保つことが可能となる。
 実施の形態3.
 図7は、実施の形態3のPLL回路3000を示すブロック図である。ここでは、実施の形態1のPLL回路1001との差分のみを説明する。実施の形態3のPLL回路3000では、CP40は、制御を受けることで、出力電流レベルが通常時とILFD調整時とで切り替わる。
 PLLの収束時間及び安定性は、CP40の出力電流に依存する。このため、CP40の出力電流を切り替えることで、例えば通常時は位相雑音を低減するためにCP40の出力電流を低く設定し、調整時は収束時間を短縮するためにCP40の出力電流を高くする。このような切替によって、通常時と調整時とで、PLL回路3000の応答特性をそれぞれ適切に保つことが可能となる。
 実施の形態4.
 図8は、実施の形態4のPLL回路4000を示すブロック図である。ここでは、実施の形態1のPLL回路1001との差分のみを説明する。実施の形態4のPLL回路4000では、図1のPLL回路1001に対してロック検出部95(以下、LD95と記す)が追加された。LD95は、CKREFとCKDIVの位相差が一定範囲内にあるか判定をすることで、PLLがロック状態にあるか否かを検出する。LD95がロック状態を検出したところで、タイマー回路300はILFD10(k)(k=1,2、・・・n)の調整完了と判断できる。
 PLLのロックアップタイムは、製造ばらつきや温度、電源電圧による素子特性の変動による影響を受ける。このため、実施の形態1では、図2におけるロックアップ待ちの時間として、十分な余裕をとる必要がある。これに対して実施の形態4のPLL回路4000によれば、ロックしているか否かを直接判定することができるため、ILFD10(k)の確実な調整が可能となる。
 図9は、LD95の構成例を示す。LD95は、例えば図9のように、CKREFとCKDIVが入力される周波数カウンタ95-1A、95-1Bと、各周波数カウンタのカウント値を比較するロック判定部95-2とによって実現ができる。
 実施の形態5.
 図10は、実施の形態5のPLL回路5000を示すブロック図である。ここでは、実施の形態1のPLL回路1001との差分にのみを説明する。実施の形態5のPLL回路5000では、図1のPLL回路1001に対して、VCO100からILFD10(1)に、信号を入力するか否かを選択するスイッチ101(1)が追加された。ILFD10(1)の調整中には、タイマー回路300がスイッチ101(1)をオフにし、VCO100の出力がILFD10(1)に入力されない。また、同様に、ILFD10(2)~ILFD10(n)にも、入力箇所に、タイマー回路300によって制御されるスイッチ101(1)~101(n)を設けた。これにより、ILFD10(k)(k=1,2,3、・・・n)の調整中に、タイマー回路300がスイッチ101(k)をオフにし、ILFD10(k)に、前段の出力信号が入力されないようにする。
 この構成により、ILFD10(k)(k=1,2,3、・・・n)の調整中にVCO100(ILFD10(1)の場合)あるいは前段のILFD(ILFD10(2)~10(n)の場合)の信号が入力されることが原因となって、ILFD10(k)が前段の信号に同期しフリーランの状態にならず調整ができなくなるといった可能性を排除できる。
 以上の実施の形態では、PLL回路が複数のILFD10を備える場合を説明したが、ILFD10は一つでも構わない。
 以上の実施の形態では、PLL回路について、PLL回路の動作を説明したが、PLL回路の動作はILFDのフリーラン周波数の調整方法として把握できることは明らかである。
 以上、本発明の実施の形態1~5について説明したが、これらの実施の形態のうち、2つ以上を組み合わせて実施しても構わない。あるいは、これらの実施の形態のうち、1つを部分的に実施しても構わない。あるいは、これらの実施の形態のうち、2つ以上を部分的に組み合わせて実施しても構わない。なお、本発明は、これらの実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。
 1001,1002,1003,2000,3000,4000,5000 PLL回路、10 IFLD(注入同期型分周器)、20 DIV(分周器)、30 PFD(位相比較器)、40 CP(チャージポンプ)、50 LFP(ループフィルタ)、60,61,101 SW(スイッチ)、70 SH(サンプルホールド回路)、80 DAコンバータ(ディジタルアナログコンバータ)、90 ADコンバータ(アナログディジタルコンバータ、95 LD(ロック検出部)、100 VCO(電圧制御型発振器)、201,202,203 供給部、300 タイマー回路。

Claims (14)

  1.  周波数を有する発振信号を出力する発振器と、
     前記発振器が出力する周波数を有する発振信号が入力される第1の注入同期型分周器と、
     前記発振器へ電圧を出力するフィルタと、
     前記フィルタが前記発振器へ出力する出力電圧を取り込み、取り込んだ出力電圧の前記注入同期型分周器への供給と遮断とを行う出力電圧供給部と、前記フィルタの出力電圧を保持し、前記出力電圧供給部により出力電圧の遮断が行われた場合に、保持された出力電圧を前記注入同期型分周器に供給する保持電圧供給部とを有する供給部と
    を備えたことを特徴とする位相同期ループ回路。
  2.  前記位相同期ループ回路は、
     直列に接続された複数の注入同期型分周器あって、直列の最初の注入同期型分周器が前記第1の注入同期型分周器である複数の注入同期型分周器を備え、
     前記供給部は、
     前記出力電圧供給部が、取り込んだ出力電圧の各注入同期型分周器への供給と遮断とを行い、
     前記保持電圧供給部が、前記フィルタの出力電圧を保持し、前記出力電圧供給部により出力電圧の遮断が行われた場合に、保持された出力電圧を出力電圧が遮断された前記注入同期型分周器に供給することを特徴とする請求項1記載の位相同期ループ回路。
  3.  前記供給部は、
     前記フィルタの出力電圧の前記注入同期型分周器への供給と、
     前記フィルタの出力電圧の保持と、
     出力電圧の前記注入同期型分周器への供給の遮断と、
     出力電圧の遮断後の保持された出力電圧の前記注入同期型分周器への供給と
    の一連の処理を、
     前記注入同期型分周器ごとに、順番に行うことを特徴とする請求項2記載の位相同期ループ回路。
  4.  前記出力電圧供給部は、
     前記注入同期型分周器ごとに設けられ、前記フィルタの出力電圧の前記注入同期型分周器への供給と遮断とを行うスイッチを有し、
     前記保持電圧供給部は、
     前記注入同期型分周器ごとに設けられ、前記フィルタの出力電圧を保持するサンプルホールド回路と、前記注入同期型分周器ごとに設けられ、前記サンプルホールド回路の出力の前記注入同期型分周器への供給と遮断とを行うスイッチとを
    有することを特徴とする請求項2または3に記載の位相同期ループ回路。
  5.  前記出力電圧供給部は、
     前記注入同期型分周器ごとに設けられ、前記フィルタの出力電圧の前記注入同期型分周器への供給と遮断とを行うスイッチを有し、
     前記保持電圧供給部は、
     前記注入同期型分周器ごとに設けられ、前記注入同期型分周器と前記スイッチとの間に配置されたコンデンサを有することを特徴とする請求項2または3に記載の位相同期ループ回路。
  6.  前記出力電圧供給部は、
     前記注入同期型分周器ごとに設けられ、前記フィルタの出力電圧の前記注入同期型分周器への供給と遮断とを行うスイッチを有し、
     前記保持電圧供給部は、
     前記フィルタの出力電圧を取り込むアナログディジタルコンバータと、
     前記注入同期型分周器ごとに設けられ、前記アナログディジタルコンバータの出力を取り込むディジタルアナログコンバータと、
     前記ディジタルアナログコンバータごとに設けられ、前記ディジタルアナログコンバータと前記注入同期型分周器との間に配置され、前記ディジタルアナログコンバータの出力信号の前記注入同期型分周器への供給と遮断とを行うスイッチと
    を有することを特徴とする請求項2または3に記載の位相同期ループ回路。
  7.  前記アナログディジタルコンバータは、
     前記注入同期型分周器ごとに設けられたことを特徴とする請求項6記載の位相同期ループ回路。
  8.  前記フィルタは、
     制御を受けることで、カットオフ周波数が切り替わることを特徴とする請求項1~7のいずれかに記載の位相同期ループ回路。
  9.  前記位相同期ループ回路は、
     前記フィルタに電流を出力するチャージポンプであって、出力する電流のレベルが、制御を受けることで切り替わるチャージポンプを備えたことを特徴とする請求項1~8のいずれかに記載の位相同期ループ回路。
  10.  前記位相同期ループ回路は、
     前記出力電圧供給部によって前記出力電圧が供給されている前記注入同期型分周器が、前記注入同期型分周器の出力信号と、基準となる基準信号との位相差に基づき定まるロック状態にあるかどうかを検出するロック検出部を備えたことを特徴とする請求項1~9のいずれかに記載の位相同期ループ回路。
  11.  前記位相同期ループ回路は、
     前記発振器と前記第1の注入同期型分周器との間と、前記注入同期型分周器どうしの間とに、制御によってオンとオフとが切り替わるスイッチを備えたことを特徴とする請求項2~7のいずれかに記載の位相同期ループ回路。
  12.  供給部と注入同期型分周器とを備えた位相同期ループ回路の前記注入同期型分周器のフリーラン周波数の調整方法において、
     前記供給部が、
     フィルタが発振器に出力する出力電圧を取り込み、取り込んだ出力電圧の第1の注入同期型分周器への供給を開始し、
     出力電圧の供給の開始時点から時間が経過した時点の前記フィルタの出力電圧を保持し、かつ、出力電圧の前記第1の注入同期型分周器への供給の遮断を実行し、
     出力電圧の前記第1の注入同期型分周器への供給の遮断後に、保持された出力電圧を前記第1の注入同期型分周器に供給することを特徴とするフリーラン周波数の調整方法。
  13.  前記位相同期ループ回路は、
     直列に接続された複数の注入同期型分周器あって、直列の最初の注入同期型分周器が前記第1の注入同期型分周器である複数の注入同期型分周器を備え、
     前記供給部は、
     前記フィルタの出力電圧の前記注入同期型分周器への供給開始と、
     前記フィルタの出力電圧の保持と、
     出力電圧の前記注入同期型分周器への供給の遮断と、
     出力電圧の遮断後の保持された出力電圧の前記注入同期型分周器への供給と
    の一連の処理を、
     注入同期型分周器ごとに、順番に行うことを特徴とする請求項12記載のフリーラン周波数の調整方法。
  14.  前記複数の注入同期型分周器は、
     前記発振器に接続する前記第1の注入同期型分周器と、前記第1の注入同期型分周器に直列に接続する1以上の注入同期型分周器とによって直列接続を作り、
     前記供給部は、
     前記直列に接続された複数の注入同期型分周器のうち、直列接続において前記発振器に対して遠い注入同期型分周器から、前記一連の処理を実行することを特徴とする請求項13記載のフリーラン周波数の調整方法。
PCT/JP2014/056623 2014-03-13 2014-03-13 位相同期ループ回路及び注入同期型分周器の周波数調整方法 WO2015136659A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016507196A JP6234545B2 (ja) 2014-03-13 2014-03-13 注入同期型分周器のフリーラン周波数調整方法及びそれを用いた位相同期ループ
US15/111,701 US9847785B2 (en) 2014-03-13 2014-03-13 Phase locked loop circuit and method of frequency adjustment of injection locked frequency divider
PCT/JP2014/056623 WO2015136659A1 (ja) 2014-03-13 2014-03-13 位相同期ループ回路及び注入同期型分周器の周波数調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056623 WO2015136659A1 (ja) 2014-03-13 2014-03-13 位相同期ループ回路及び注入同期型分周器の周波数調整方法

Publications (1)

Publication Number Publication Date
WO2015136659A1 true WO2015136659A1 (ja) 2015-09-17

Family

ID=54071136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056623 WO2015136659A1 (ja) 2014-03-13 2014-03-13 位相同期ループ回路及び注入同期型分周器の周波数調整方法

Country Status (3)

Country Link
US (1) US9847785B2 (ja)
JP (1) JP6234545B2 (ja)
WO (1) WO2015136659A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10594336B2 (en) * 2015-10-07 2020-03-17 University College Dublin Injection locked time mode analog to digital converter
US10367488B2 (en) * 2017-08-25 2019-07-30 HKC Corporation Limited Device and method for eliminating electromagnetic interference
CN107835015B (zh) * 2017-11-15 2020-06-26 中国科学技术大学 一种低参考杂散快速锁定i型锁相环
US10862423B2 (en) 2018-01-25 2020-12-08 University College Dublin Multi-stage sub-THz frequency generator incorporating injection locking
US10771296B1 (en) * 2019-06-25 2020-09-08 Realtek Semiconductor Corp. 2.4GHz ISM band zero-IF transceiver and method thereof
JP2023182368A (ja) 2022-06-14 2023-12-26 キオクシア株式会社 半導体集積回路、pll回路及び信号処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725728A (en) * 1980-06-02 1982-02-10 Gen Electric Multiple feedback phase locked loop
JP2008236557A (ja) * 2007-03-22 2008-10-02 Toshiba Corp 周波数シンセサイザ及びこれを用いた無線通信装置
US7856212B2 (en) * 2007-08-07 2010-12-21 Intel Corporation Millimeter-wave phase-locked loop with injection-locked frequency divider using quarter-wavelength transmission line and method of calibration
US20130195224A1 (en) * 2012-01-31 2013-08-01 Innophase Inc. Receiver Architecture and Methods for Demodulating Quadrature Phase Shift Keying Signals
WO2013140755A1 (ja) * 2012-03-21 2013-09-26 パナソニック株式会社 Pll回路、キャリブレーション方法及び無線通信装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3119205B2 (ja) 1997-07-18 2000-12-18 日本電気株式会社 Pll回路
JP2001339298A (ja) 2000-05-29 2001-12-07 Nec Microsystems Ltd Pll回路およびその制御方法
JP2007208589A (ja) 2006-02-01 2007-08-16 Univ Of Tokyo 周波数分周器
JP2009225438A (ja) 2008-02-20 2009-10-01 Tokyo Institute Of Technology 発振装置
CN103997318B (zh) 2010-01-22 2016-08-31 松下知识产权经营株式会社 注入锁定奇数分频器、以及锁相环电路
JP5174055B2 (ja) 2010-02-02 2013-04-03 株式会社半導体理工学研究センター 広帯域発振回路
US8378724B2 (en) * 2010-12-22 2013-02-19 Silicon Laboratories Inc. Controlling a frequency locked loop
JP5841993B2 (ja) 2011-03-07 2016-01-13 パナソニック株式会社 Pll回路、キャリブレーション方法及び無線通信端末
JP5372114B2 (ja) 2011-11-10 2013-12-18 株式会社半導体理工学研究センター 分周回路およびpll回路
US9024696B2 (en) 2013-03-15 2015-05-05 Innophase Inc. Digitally controlled injection locked oscillator
US8929486B2 (en) 2013-03-15 2015-01-06 Innophase Inc. Polar receiver architecture and signal processing methods
US9020066B2 (en) 2012-03-23 2015-04-28 Innophase Inc. Single-bit direct modulation transmitter
US9264282B2 (en) 2013-03-15 2016-02-16 Innophase, Inc. Polar receiver signal processing apparatus and methods
US8941441B2 (en) 2013-03-15 2015-01-27 Innophase Inc. LNA with linearized gain over extended dynamic range
US8791763B2 (en) * 2012-08-09 2014-07-29 Qualcomm Incorporated Tunable injection locked dividers with enhanced locking range
US9083588B1 (en) 2013-03-15 2015-07-14 Innophase, Inc. Polar receiver with adjustable delay and signal processing metho
JP2014204418A (ja) 2013-04-10 2014-10-27 パナソニック株式会社 キャリブレーション回路及びpll回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725728A (en) * 1980-06-02 1982-02-10 Gen Electric Multiple feedback phase locked loop
JP2008236557A (ja) * 2007-03-22 2008-10-02 Toshiba Corp 周波数シンセサイザ及びこれを用いた無線通信装置
US7856212B2 (en) * 2007-08-07 2010-12-21 Intel Corporation Millimeter-wave phase-locked loop with injection-locked frequency divider using quarter-wavelength transmission line and method of calibration
US20130195224A1 (en) * 2012-01-31 2013-08-01 Innophase Inc. Receiver Architecture and Methods for Demodulating Quadrature Phase Shift Keying Signals
WO2013140755A1 (ja) * 2012-03-21 2013-09-26 パナソニック株式会社 Pll回路、キャリブレーション方法及び無線通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANGHUA CAO ET AL.: "A-50GHz Phase-Locked Loop in 0.13-pm CMOS", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 42, no. 8, August 2007 (2007-08-01), pages 1649 - 1656 *
SHO IKEDA ET AL.: "A Low Voltage Phase-Locked Loop with Digitally Calibrated Injection Locked Frequency Divider and Linearized Varactor", PROCEEDINGS OF THE 2013 IEICE ELECTRONICS SOCIETY CONFERENCE, vol. 2, 18 September 2013 (2013-09-18) *

Also Published As

Publication number Publication date
JPWO2015136659A1 (ja) 2017-04-06
US20160336944A1 (en) 2016-11-17
JP6234545B2 (ja) 2017-11-22
US9847785B2 (en) 2017-12-19

Similar Documents

Publication Publication Date Title
WO2015136659A1 (ja) 位相同期ループ回路及び注入同期型分周器の周波数調整方法
US8264286B2 (en) Phase-locked loop circuit
EP2903163B1 (en) Apparatus and methods for fast charge pump holdover on signal interruption
US7019569B2 (en) Method of implementing multi-transfer curve phase lock loop
US10693480B2 (en) PLL with Lock-in Frequency Controller
US20110102030A1 (en) System and method for dynamically switching between low and high frequency reference clock to pll and minimizing pll output frequency changes
WO2013075121A1 (en) Integrated phase-locked and multiplying delay-locked loop with spur cancellation
US7738618B2 (en) Multiband PLL arrangement and a method of controlling such arrangement
JP4381975B2 (ja) 位相同期ループ
CN110999087B (zh) 锁相环路电路
US8264258B1 (en) Phase lock loop circuit
CN107026647B (zh) 时间数字系统以及频率合成器
JP4459923B2 (ja) Pllシンセサイザ
US20120076180A1 (en) Phase-locked loop and radio communication device
US9083360B2 (en) Lock detecter and clock generator having the same
US9438252B1 (en) Integrated circuits having low power, low interference and programmable delay generators therein and methods of operating same
Kim Adaptive-bandwidth phase-locked loop with continuous background frequency calibration
US20110260760A1 (en) Voltage control oscillator and control method thereof
US8373465B1 (en) Electronic device and method for phase locked loop
US11923860B2 (en) PLL circuit
JP2004080624A (ja) 周波数シンセサイザ
KR100520441B1 (ko) 위상동기루프를 이용한 디엘엘의 성능시험장치 및 방법
JP2007281895A (ja) 周波数シンセサイザ
Kao Frequency presetting and phase error detection technique for fast-locking phase-locked loop
Mano et al. Design and implementation of modified charge pump for phase locked loop

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507196

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15111701

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885573

Country of ref document: EP

Kind code of ref document: A1