WO2015136160A1 - Dispositf antivibratoire hydraulique doté d'un dispositif générateur d'électricité et dispositif générateur d'électricité pour un tel dispositif antivibratoire - Google Patents

Dispositf antivibratoire hydraulique doté d'un dispositif générateur d'électricité et dispositif générateur d'électricité pour un tel dispositif antivibratoire Download PDF

Info

Publication number
WO2015136160A1
WO2015136160A1 PCT/FR2014/050553 FR2014050553W WO2015136160A1 WO 2015136160 A1 WO2015136160 A1 WO 2015136160A1 FR 2014050553 W FR2014050553 W FR 2014050553W WO 2015136160 A1 WO2015136160 A1 WO 2015136160A1
Authority
WO
WIPO (PCT)
Prior art keywords
microturbine
rotation
chamber
antivibration device
nozzles
Prior art date
Application number
PCT/FR2014/050553
Other languages
English (en)
Inventor
Pascal Sautier
Gérard Tavin
Alain Bellamy
Gabriel Lemaire
Original Assignee
Hutchinson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hutchinson filed Critical Hutchinson
Priority to PCT/FR2014/050553 priority Critical patent/WO2015136160A1/fr
Priority to CN201480076973.1A priority patent/CN106163839B/zh
Priority to JP2016556809A priority patent/JP6423891B2/ja
Priority to US15/122,209 priority patent/US10361606B2/en
Priority to EP14714304.4A priority patent/EP3116729B1/fr
Priority to KR1020167028369A priority patent/KR102106903B1/ko
Publication of WO2015136160A1 publication Critical patent/WO2015136160A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B1/00Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
    • F03B1/04Nozzles; Nozzle-carrying members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/264Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for acting dynamically on the walls bounding a working chamber

Definitions

  • Hydraulic antivibration device with an electricity generating device and an electricity generator device for such an antivibration device.
  • the present invention relates to hydraulic antivibration devices equipped with electricity generating devices and devices generating electricity for such antivibration devices.
  • the invention relates to a hydraulic antivibration device intended to be interposed for the purpose of damping between first and second rigid elements, this antivibration device comprising:
  • first and second armatures intended to be fixed to the two rigid elements to be joined
  • an elastomer body which interconnects the first and second armatures and which at least partially delimits a first hydraulic chamber
  • a second deformable hydraulic chamber which communicates with the first hydraulic chamber via a constricted passage, the first and second hydraulic chambers and the constricted passage forming a hydraulic circuit filled with liquid, and the antivibration device being shaped so that said liquid alternately moves in said constricted passage in first and second opposite directions when the first and second armatures are subjected to relative vibratory movements,
  • An electric power generating device comprising firstly a microturbine rotatably mounted about an axis of rotation in the throttled passage and secondly, a generator coupled to the microturbine to produce electric current when the microturbine rotates.
  • the present invention is intended in particular to improve the antivibration mounts of the above type, and in particular to increase the amount of electricity produced.
  • an antivibration support of the kind in question is characterized in that the microturbine is shaped to be driven always in the same direction of rotation by the liquid when the liquid moves alternately in the first and second senses in the strangled passage.
  • the antivibration support may optionally be resorted to in addition to one and / or the other of the following provisions:
  • the constricted passage comprises a microturbine chamber in which the microturbine is rotatably mounted, and first and second nozzles which open into said microturbine chamber substantially tangentially to the axis of rotation respectively from the first and second hydraulic chambers, said first and second nozzles opening into the microturbine chamber respectively according to first and second directions of injection both corresponding to said direction of rotation;
  • the microturbine comprises curved blades disposed around the axis of rotation in a median radial plane, each blade being substantially perpendicular to said median radial plane and comprising a substantially radial inner portion and an outer portion which is disposed substantially in accordance with the first and second injection directions when said blade is in correspondence respectively with the first and second nozzles;
  • the microturbine comprises blades arranged around the axis of rotation in a median radial plane, each blade being substantially perpendicular to said median radial plane, and said microturbine has a free space surrounded by the blades;
  • the blades occupy a first radial thickness and said free space occupies a second radial thickness, said first radial thickness being between 0.47 and 0.87 times the sum of the first and second radial thicknesses;
  • the microturbine further comprises at least one hub extending along the axis of rotation and at least one radial plate connecting said hub to the blades;
  • the microturbine chamber is a bore formed in a first rigid wall, said bore being delimited axially by a bottom and radially by a cylindrical surface into which the first and second nozzles open, said bore being closed by the plate opposite the bottom the bore, said hub being rotatably mounted in the bottom of the bore;
  • the generator comprises a stator and a rotor integral with the microturbine, said rotor comprising a trunnion which extends along the axis of rotation opposite said hub, said trunnion being rotatably mounted in the bottom of a housing containing the generator and being integral with said first rigid wall;
  • the throttled passage comprises first and second sections which open into the microturbine chamber through said first and second nozzles, said first and second sections and said first and nozzles being delimited by first and second grooves hollowed in the first rigid wall and open axially towards the second hydraulic chamber, said first and second grooves being closed axially by a second rigid wall integral with the first rigid wall and comprising said housing, the first and second rigid walls together forming a partition which separates the first and second hydraulic chambers;
  • the generator comprises a rotor and a stator, the rotor comprising a number 2.N of alternating magnetic poles which are equidistributed angularly and which belong to at least one permanent magnet, N being a non-zero natural integer, and the stator comprises a ring ferromagnetic arranged opposite the magnetic poles and carrying a number 2.N of toric coils equidistributed angularly;
  • the antivibration device furthermore comprises an electronic circuit comprising at least one converter adapted to convert into direct current an electric current produced by the generator, a device for storing electrical energy supplied by the converter, and a control device connected to a sensor and adapted to control an actuator according to information received from the sensor, said actuator being adapted to act on a part of the antivibration device;
  • said sensor is a vibration sensor integral with the second armature
  • the subject of the invention is also an energy generating device that can be used in an antivibration device as defined above, comprising:
  • microturbine chamber communicating with first and second nozzles and in which a microturbine is rotatably mounted about an axis of rotation
  • the microturbine is shaped to be driven always in the same direction of rotation as liquid moves alternately in first and second opposite directions between the first and second nozzles, the first and second nozzles opening into said microturbine chamber substantially tangential to the axis of rotation, said first and second nozzles opening into the microturbine chamber respectively according to first and second directions of injection both corresponding to said direction of rotation,
  • the microturbine comprises blades disposed about the axis of rotation in a median radial plane, each blade being substantially perpendicular to said median radial plane, and said microturbine has a free space surrounded by the blades.
  • FIG. 1 is a perspective view of an antivibration device according to one embodiment of the invention, in axial section, FIGS. 2 and 3 are perspective views, seen from above and below, of the rigid partition separating the two hydraulic chambers of the antivibration device of FIG. 1,
  • FIG. 4 is a radial sectional view of the partition of FIGS. 2 and 3, the section being taken along the line IV - IV of FIG. 1,
  • FIG. 5 is a detail view of the section of FIG. 4,
  • FIG. 6 is a radial sectional view of the electricity generator device equipping the antivibration device of FIG. 1, the section being taken along the line VI-VI of FIG. 1,
  • FIG. 7 is a block diagram of the electronic circuit fitted to the antivibration device of FIG. 1.
  • FIG. 1 represents a hydraulic antivibration device 1, comprising:
  • a first rigid armature 2 having for example the shape of a metal base and intended to be fixed in particular to the engine of a vehicle to support it,
  • a second rigid reinforcement 3 for example an annular reinforcement of metal or plastic, which is intended to be fixed for example to the vehicle body directly,
  • an elastomer body 4 capable of supporting, in particular, the static forces due to the weight of the vehicle engine and connecting the first and second armatures 2, 3, this elastomer body possibly having, for example, a bell shape that extends axially along an axis Z0 for example vertical, between a top 4a adhered and overmolded on the first frame 2 and an annular base 4b overmolded and adhered to the second frame 3.
  • the antivibration support 1 further comprises a radial rigid partition 5, secured to the second reinforcement 3 and sealingly applied against the base 4b of the elastomer body, delimiting therewith a first hydraulic chamber A, in this case a working room.
  • the working chamber A, the compensation chamber B and the constricted passage C together form a hydraulic circuit filled liquid, especially glycol or other.
  • the constricted passage C is sized to have a resonance frequency of, for example, between 5 and 20 Hz, typically between 8 and 12 Hz, corresponding to the hash movements due to the rolling of the vehicle.
  • the hydraulic antivibration support further comprises a lid 3a, made for example of molded plastic material, which covers the bellows 6 downwards.
  • This cover 3a may comprise for example a 3al flange fixed to the first frame by any means, for example by screwing, and the side wall of said cover 3a may optionally comprise an inner shoulder 3a2 which holds the rigid partition 5 pressed against the second frame 3 and the base of the elastomer body.
  • the antivibration device 1 may further comprise a housing 3b assembled for example under the lid 3a and which delimits an interior space 3c intended to contain an electronic circuit (not shown in FIG. Figure 1) described later.
  • the rigid partition 5 may optionally be formed by first and second superimposed rigid walls 7, 8, made for example of molded plastic or light alloy.
  • the first rigid wall 7 may be arranged for example to the working chamber A and the second rigid wall 8 to the compensation chamber B.
  • the second rigid wall 8 may for example form a housing 9 open upwards, that is to say towards the first rigid wall 8, and a bowl 10 also open upwards.
  • the second rigid wall 8 may further comprise an axial hole 11 in the center of the bowl 10 and an opening 12 downwards, which makes the constricted passage C communicate with the compensation chamber B.
  • the first rigid wall 7 may comprise an opening 13 upwards, which communicates the constricted passage C with the working chamber A, and possibly a hole 13a closed by a movable wall 14 which partially delimits the working chamber A.
  • the wall mobile 14 may optionally comprise a rigid radial wall 16 sealingly connected to the first rigid wall 7 by an elastomeric membrane 15. The bowl 10 thus delimits with the movable wall 14 a pneumatic chamber filled with air.
  • the first rigid wall 7 may define a microturbine chamber 17 belonging to the constricted passage C and wherein a microturbine 18 is rotatably mounted about an axis of rotation ZI parallel to the axis Z0.
  • the microturbine 18 is part of an electric generator device 19 which further includes a generator 20 coupled to the microturbine 18 to produce electric current when the microturbine 18 rotates.
  • the generator 20 comprises a stator 22 and a rotor 21 integral with the microturbine 18.
  • the generator 20 can be contained for example in the housing 9 formed by the second rigid wall 8.
  • the rotor 21 can be formed in one piece with the microturbine 18.
  • the rotor 21 may comprise a number 2.N of alternating magnetic poles which are equidistributed angularly around the axis of rotation ZI and which belong to at least one permanent magnet 23, N being a nonzero natural integer.
  • N 1 and the rotor comprises a single permanent magnet 23.
  • the stator 22 comprises a ferromagnetic ring 25 arranged opposite the magnetic poles and around them, and this ring 25 has a number 2.N of angular reels angularly distributedparts, here two coils 26 wound in opposition, each on an angular extent which may for example be about 90 degrees.
  • This type of generator has the advantage of not having a hard point that can hinder the rotation of the rotor 21 and microturbine 18.
  • stator could comprise permanent magnets (for example 12) and the rotor could comprise a ferromagnetic core forming radially projecting poles (for example 4) around which coils producing electricity are wound during the rotation of the rotor.
  • microturbines with an electric generator, for example by placing them on either side of the rotor of the generator.
  • the microturbine chamber 17 may advantageously be a bore formed in a first rigid wall 7, said bore being delimited axially upwards by a bottom and radially by a cylindrical surface.
  • the microturbine 18 may comprise a disk-shaped plate 28 arranged radially with respect to the axis of rotation ZI and closing the above-mentioned bore downwards.
  • the plate 28 carries a hub 29 and blades 30.
  • the hub 29 extends along the axis of rotation ZI and can be rotatably mounted in the bottom of the bore forming the microturbine chamber 17, possibly with the interposition of a sliding ring 24 forming a bearing.
  • the rotor 21 of the generator may itself comprise a pin 29a which is rotatably mounted in the bottom of the housing 9 mentioned above, possibly with the interposition of a sliding ring 24a forming a bearing.
  • the blades 30 are arranged around the axis of rotation ZI in a radial median plane, each blade being substantially perpendicular to said median radial plane.
  • the microturbine 18 has a free annular space 27 included radially between the hub 29 and the blades 30.
  • This free annular space 27 may have a radial thickness such that R-R1 is between 0.22 (R-R0) /3 and 1, 3.2 (R-R0) /3 (or between about 0.47 (R-R0) ) and 0.87 (R-R0)), advantageously R-R1 is between 0.9x2 (R-R0) / 3 and 1, 1x2 (R-R0) / 3, for example of the order of 2 ( R-R0) / 3, where:
  • - 2.R is the outer diameter of the blades 30, that is to say substantially the inner diameter of the microturbine chamber 17 (this diameter may be for example of the order of 1 to 3 cm),
  • the inner diameter of the blades 30, and - 2.R0 is the outer diameter of the hub 29 in the center of the free space 27.
  • This diameter 2.R0 is generally small and can even possibly be reduced to 0 by adopting a microturbine structure having no hub 29 in the center of the free space 27 (for example the microturbine 18 could comprise two trays 28 axially framing the blades 30, the plate 28 "upper” then being rotatably mounted in the bottom of the bore which forms the microturbine chamber 17).
  • the above-mentioned geometry of the microturbine 18 makes it possible to create a vortex in the center of the microturbine.
  • the aforementioned dimensional ratios in particular allow this vortex to cause a volume of fluid close to that coming out of the turbine, which facilitates changes in the direction of passage of the fluid in the turbine.
  • constricted passage C may comprise, in addition to the microturbine chamber 17, first and second sections C1, C2 which make said microturbine chamber 17 communicate respectively with the working chamber A by means of the microturbine chamber 17. opening 13 and with the compensation chamber B through the opening 10.
  • sections C1, C2 may be delimited respectively by first and second grooves 31a, 31b dug in the first rigid wall 7 and open downwards, said first and second grooves being closed towards the compensation chamber B by the second rigid wall 8 .
  • the sections C1, C2 each comprise an arcuate portion centered on the axis Z0, respectively 32a, 32b.
  • These arcuate portions 32a, 32b respectively connect the openings 13, 12 respectively to first and second nozzles respectively 33a, 33b which opens substantially tangentially in the microturbine chamber 17 (see Figure 5).
  • each nozzle 33a, 33b ends, towards the microturbine chamber 17, by a convergent respectively 34a, 34b.
  • the first and second nozzles 33a, 33b can open into the microturbine chamber 17 at positions substantially diametrically opposite to the axis of rotation ZI
  • the microturbine is shaped to be driven always in the same direction of rotation W by the liquid of the hydraulic circuit when said liquid moves alternately in the first and second opposite directions F1, F2 in the constricted passage C (the direction Fl corresponds here to a displacement of the liquid of the working chamber A to the compensation chamber B and F2 of the compensation chamber B to the working chamber A).
  • the first and second nozzles 33a, 33b open into the microturbine chamber 17 substantially tangentially with respect to the axis of rotation ZI, respectively in the directions Fl, F2, according to first and second directions of injection corresponding to all both of these directions of rotation W.
  • This one-way rotation of the microturbine 18 allows optimum use of the low available hydraulic power.
  • the maintained rotation of the microturbine 18 is further facilitated by the aforementioned free space 27, which allows the establishment of a vortex flow of liquid in the direction of rotation W.
  • the blades 30 of the microturbine 18 are preferably curved in the radial plane, with a convex extrados 30a turned in the direction of rotation W and a concave intrados 30b turned away from the direction of rotation W.
  • the intrados 30b each blade 30 has a radially inner portion 30c which is disposed in a substantially radial direction Y and a radially outer portion 30d which is disposed substantially in the injection direction XI, X2 when said blade 30 is in correspondence with one first and second nozzles 33a, 33b.
  • the antivibration device 1 further comprises an electric actuator 37, for example similar to that described in EP1614931, which is adapted to selectively block or leave free the movable wall 14 according to commands of the aforementioned electronic circuit.
  • This actuator 37 may for example comprise an electrically controlled valve which can either vent the air chamber delimited by the bowl 10 and the movable wall 14, or isolate it.
  • the actuator 37 comprises in parallel with the aforementioned valve, an air outlet valve which, when the valve is closed, only allows the air outlet of the air chamber, so that the air chamber is progressively emptied under the effect of the movements of the movable wall 14 due to vibratory motions of the motor, so that the movable wall is pressed against the bottom of the bowl 10 when the vacuum is made in the air chamber, which blocks said movable wall.
  • the electronic circuit 39 may comprise, for example:
  • a converter 40 connected to the coils 26 of the generator 20 (GEN.) for generating a direct current from the alternating current produced by said coils 26,
  • control device 42 for example comprising a microcontroller, powered by the storage device 41 and controlling the actuator 37
  • a sensor 42 connected to the control device 41, for example a vibration sensor such as an accelerometer or the like.
  • All of this electronic circuit 39 can be housed in the interior space 3C of the housing 3b, and does not require information exchange with the outside or external power supply.
  • the sensor 42 or an additional sensor could be arranged elsewhere than in the housing 3b, depending on the application envisaged and the mounting of the antivibration device 1.
  • the antivibration device 1 which has just been described operates as follows.
  • the vibratory movements of the engine produce movements of liquid in the constricted passage C between the hydraulic chambers A and B, alternately in the directions Fl and F2. These movements of liquid rotate the microturbine 18 and therefore the rotor 21 in the direction of rotation W, so that the coils 26 of the generator generate an electric current which is rectified by the converter 40 and stored in the storage device 41.
  • the relative movements between the first and second armatures 2, 3 are generally of frequency between 10 and 40 Hz depending on the type of motor and low amplitude (less than 0.2 mm) .
  • the electrical power produced by the generator 20 is relatively low, for example from a few tens to a few hundred milliwatts.
  • the control device 41 controls the actuator 37 to leave free the movable wall 14, which then has a decoupling effect avoiding transmitting the engine vibrations to the vehicle body .
  • the relative movements of hash between the first and second armatures 2, 3 are of relatively low frequency (generally between 10 and 15 Hz depending on the type of motor) and large amplitude (greater than 0.3 mm ).
  • the electrical power produced by the generator 20 may be greater, for example a few Watts (for example of the order of 2 W).
  • the control device 41 controls 1 'actuator 37 to lock the movable wall 14 as explained above, so that the throttled passage C then plays its usual antivibration role.
  • the dimensioning of the fluid passage sections in the constricted passage C and in the microturbine does not significantly modify the hydraulic behavior of the engine support, and therefore the response in stiffness and phase angle as a function of the excitation frequency of the system, by compared to a similar antivibration support devoid of microturbine.
  • actuator 37 and the movable wall 14 could be replaced by any other control system or by any other active system generating counter-vibrations (the electric actuator fed from the generator 20 can then control any vibrating control such as piston, vibrating mass or other).
  • stator 22 facilitates starting the microturbine under very low load (less than 0.1 mm at the Z0 axis), because there is no hard point of magnetic equilibrium between rotor magnet and stator: The magnetic forces are in the axis of the magnet and do not disturb the starting torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Vibration Prevention Devices (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Dispositif antivibratoire comprenant deux armatures (2, 3) et un corps en élastomère (4) qui relie entre elles les 5 armatures et qui délimite une première chambre hydraulique (A) communiquant avec une deuxième chambre hydraulique (B) déformable par un passage étranglé. Une microturbine (18) est montée rotative dans le passage étranglé et est couplée à une génératrice (20). La microturbine (18) est conformée 10 pour être entraînée toujours dans un même sens de rotation par le liquide lorsque le liquide se déplace alternativement dans des premier et deuxième sens opposés dans le passage étranglé.

Description

Dispositif antivibratoire hydraulique doté d' un dispositif générateur d' électricité et dispositif générateur d' électricité pour un tel dispositif antivibratoire . La présente invention est relative aux dispositifs antivibratoires hydrauliques dotés de dispositifs générateurs d'électricité et aux dispositifs générateurs d'électricité pour de tels dispositifs antivibratoires.
Plus particulièrement, l'invention concerne un dispositif antivibratoire hydraulique destiné à être interposé aux fins d'amortissement entre des premier et deuxième éléments rigides, ce dispositif antivibratoire comprenant :
des première et deuxième armatures destinées à être fixées aux deux éléments rigides à réunir,
un corps en élastomère qui relie entre elles les première et deuxième armatures et qui délimite au moins partiellement une première chambre hydraulique,
une deuxième chambre hydraulique déformable qui communique avec la première chambre hydraulique par l'intermédiaire d'un passage étranglé, les première et deuxième chambres hydrauliques et le passage étranglé formant un circuit hydraulique rempli de liquide, et le dispositif antivibratoire étant conformé pour que ledit liquide se déplace alternativement dans ledit passage étranglé dans des premier et deuxième sens opposés lorsque le première et deuxième armatures sont soumises à des mouvements vibratoires relatifs,
- un dispositif générateur de courant électrique comprenant d'une part, une microturbine montée rotative autour d'un axe de rotation dans le passage étranglé et d'autre part, une génératrice couplée à la microturbine pour produire du courant électrique lorsque la microturbine tourne .
Mohareri et al. ont déjà proposé un support antivibratoire de ce type (Proceedings of the IEEE International Conférence on Mechatronics , 13-15 avril 2011, Istambul, Turquie, pp 134-139).
La présente invention a notamment pour objet de perfectionner les supports antivibratoires du type ci- dessus, et notamment d'augmenter la quantité d'électricité produite .
A cet effet, selon l'invention, un support antivibratoire du genre en question est caractérisé en ce que la microturbine est conformée pour être entraînée toujours dans un même sens de rotation par le liquide lorsque le liquide se déplace alternativement dans les premier et deuxième sens dans le passage étranglé.
Grâce à ces dispositions, on optimise l'utilisation de l'énergie hydraulique disponible pour la transformer en énergie électrique, en évitant les gaspillages d'énergie dus aux inversions de sens de rotation de la turbine.
Dans divers modes de réalisation du support antivibratoire selon l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes :
le passage étranglé comporte une chambre de microturbine dans laquelle la microturbine est montée rotative, et des premier et deuxième ajutages qui débouchent dans ladite chambre de microturbine sensiblement tangentiellement par rapport à l'axe de rotation en provenance respectivement des première et deuxième chambres hydrauliques, lesdits premier et deuxième ajutages débouchant dans la chambre de microturbine respectivement selon des première et deuxième directions d'injections correspondant toutes les deux audit sens de rotation ;
les premier et deuxième ajutages débouchent dans la chambre de microturbine (17) dans des positions sensiblement diamétralement opposées par rapport à l'axe de rotation ; - la microturbine comporte des pales incurvées disposées autour de l'axe de rotation dans un plan radial médian, chaque pale étant sensiblement perpendiculaire audit plan radial médian et comprenant une partie intérieure sensiblement radiale et une partie extérieure qui est disposée sensiblement selon les première et deuxième directions d'injections lorsque ladite pale se trouve en correspondance respectivement avec les premier et deuxième ajutages ;
- la microturbine comporte des pales disposées autour de l'axe de rotation dans un plan radial médian, chaque pale étant sensiblement perpendiculaire audit plan radial médian, et ladite microturbine présente un espace libre entouré par les pales ;
- les pales occupent une première épaisseur radiale et ledit espace libre occupe une deuxième épaisseur radiale, ladite première épaisseur radiale étant comprise entre 0,47 et 0,87 fois la somme des première et deuxième épaisseurs radiales ;
- la microturbine comporte en outre au moins un moyeu d'étendant selon l'axe de rotation et au moins un plateau radial reliant ledit moyeu aux pales ;
la chambre de microturbine est un alésage ménagé dans une première paroi rigide, ledit alésage étant délimité axialement par un fond et radialement par une surface cylindrique dans laquelle débouchent les premier et deuxième ajutages, ledit alésage étant fermé par le plateau à l'opposé du fond de l'alésage, ledit moyeu étant monté rotatif dans le fond de l'alésage ;
- la génératrice comporte un stator et un rotor solidaire de la microturbine, ledit rotor comportant un tourillon qui s'étend selon l'axe de rotation à l'opposé dudit moyeu, ledit tourillon étant monté rotatif dans le fond d'un boîtier contenant la génératrice et étant solidaire de ladite première paroi rigide ; le passage étranglé comprend des premier et deuxième tronçons qui débouchent dans la chambre de microturbine par lesdits premier et deuxième ajutages, lesdits premier et deuxième tronçons et lesdits premier et de ajutages étant délimités par des première et deuxième gorges creusées dans la première paroi rigide et ouvertes axialement vers la deuxième chambre hydraulique, lesdites première et deuxième gorges étant fermées axialement par une deuxième paroi rigide solidaire de la première paroi rigide et comprenant ledit boîtier, les première et deuxième parois rigides formant ensemble une cloison qui sépare les première et deuxième chambres hydrauliques ;
- la génératrice comporte un rotor et un stator, le rotor comportant un nombre 2.N de pôles aimantés alternés qui sont équirépartis angulairement et qui appartiennent à au moins un aimant permanent, N étant un entier naturel non nul, et le stator comporte un anneau ferromagnétique disposé en regard des pôles aimantés et portant un nombre 2.N de bobines toriques équiréparties angulairement ;
- le dispositif antivibratoire comporte en outre un circuit électronique comprenant au moins un convertisseur adapté pour convertir en courant continu un courant électrique produit par la génératrice, un dispositif de stockage d'énergie électrique alimenté par le convertisseur, et un dispositif de commande relié à un capteur et adapté pour commander un actionneur en fonction d'informations reçues du capteur, ledit actionneur étant adapté pour agir sur une partie du dispositif antivibratoire ;
- ledit capteur est un capteur de vibrations solidaire de la deuxième armature ;
ledit actionneur est adapté pour sélectivement bloquer ou laisser libre une paroi mobile qui délimite partiellement la première chambre hydraulique. Par ailleurs, l'invention a également pour objet un dispositif générateur d'énergie utilisable dans un dispositif antivibratoire tel que défini ci-dessus, comprenant :
- une chambre de microturbine communiquant avec des premier et deuxième ajutages et dans laquelle une microturbine est montée rotative autour d'un axe de rotation,
- une génératrice couplée à la microturbine pour produire du courant électrique lorsque la microturbine tourne,
caractérisé en ce que la microturbine est conformée pour être entraînée toujours dans un même sens de rotation lorsque du liquide se déplace alternativement dans des premier et deuxième sens opposés entre les premier et deuxième ajutages, les premier et deuxième ajutages débouchant dans ladite chambre de microturbine sensiblement tangentiellement par rapport à l'axe de rotation, lesdits premier et deuxième ajutages débouchant dans la chambre de microturbine respectivement selon des première et deuxième directions d'injection correspondant toutes les deux audit sens de rotation,
et en ce que la microturbine comporte des pales disposées autour de l'axe de rotation dans un plan radial médian, chaque pale étant sensiblement perpendiculaire audit plan radial médian, et ladite microturbine présente un espace libre entouré par les pales.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description suivante d'une de ses formes de réalisation, donnée à titre d'exemple non limitatif, en regard des dessins joints.
Sur les dessins :
- la figure 1 est une vue en perspective d'un dispositif antivibratoire selon une forme de réalisation de l'invention, en coupe axiale, les figures 2 et 3 sont des vues en perspective, vues de ¾ de dessus et de dessous, de la cloison rigide séparant les deux chambres hydrauliques du dispositif antivibratoire de la figure 1,
- la figure 4 est une vue en coupe radiale de la cloison des figures 2 et 3, la coupe étant prise selon la ligne IV-IV de la figure 1,
la figure 5 est une vue de détail de la coupe de la figure 4,
- la figure 6 est une vue en coupe radiale du dispositif générateur d'électricité équipant le dispositif antivibratoire de la figure 1, la coupe étant prise selon la ligne VI-VI de la figure 1,
et la figure 7 est un schéma bloc du circuit électronique équipant le dispositif antivibratoire de la figure 1.
Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires.
La figure 1 représente un dispositif antivibratoire hydraulique 1, comportant :
- une première armature rigide 2 présentant par exemple la forme d'une embase métallique et destinée à être fixée notamment au moteur d'un véhicule pour le supporter,
- une deuxième armature rigide 3, par exemple une armature annulaire en métal ou matière plastique, qui est destinée à être fixée par exemple à la caisse du véhicule directement ,
un corps en élastomère 4 capable de supporter notamment les efforts statiques dus au poids du moteur du véhicule et reliant les première et deuxième armatures 2, 3, ce corps en élastomère pouvant présenter par exemple une forme de cloche qui s'étend axialement selon un axe Z0 par exemple vertical, entre un sommet 4a adhérisé et surmoulé sur la première armature 2 et une base annulaire 4b surmoulée et adhérisée sur la deuxième armature 3. Le support antivibratoire 1 comporte en outre une cloison rigide 5 radiale, solidarisée avec la deuxième armature 3 et appliquée de façon étanche contre la base 4b du corps en élastomère, en délimitant avec celui-ci une première chambre A hydraulique, en l'occurrence une chambre de travail. Une membrane souple en élastomère 6 formant soufflet, appliquée de façon étanche contre la cloison 5 à l'opposé de la chambre de travail A, en délimitant avec ladite cloison 5 une deuxième chambre B hydraulique, en l'occurrence une chambre de compensation, qui communique avec la chambre de travail A par un passage étranglé C formé dans la cloison rigide 5, visible notamment sur les figures 2 à 4. La chambre de travail A, la chambre de compensation B et le passage étranglé C forment ensemble un circuit hydraulique rempli de liquide, notamment du glycol ou autre.
Le passage étranglé C est dimensionné pour présenter une fréquence de résonance comprise par exemple entre 5 et 20 Hz, typiquement entre 8 et 12 Hz, correspondant aux mouvements de hachis dus au roulage du véhicule .
Dans l'exemple représenté sur la figure 1, le support antivibratoire hydraulique comporte en outre un couvercle 3a, réalisé par exemple en matière plastique moulée, qui recouvre le soufflet 6 vers le bas. Ce couvercle 3a peut comporter par exemple une bride 3al fixée à la première armature par tout moyen, par exemple par vissage, et la paroi latérale dudit couvercle 3a peut éventuellement comporter un épaulement intérieur 3a2 qui maintient la cloison rigide 5 plaquée contre la deuxième armature 3 et la base du corps en élastomère.
Le dispositif antivibratoire 1 peut en outre comporter un carter 3b assemblé par exemple sous le couvercle 3a et qui délimite un espace intérieur 3c destiné à contenir un circuit électronique (non représenté sur la figure 1) décrit plus loin.
La cloison rigide 5 peut éventuellement est formée par des première et deuxième parois rigides 7, 8 superposées, réalisées par exemple en matière plastique moulée ou en alliage léger. La première paroi rigide 7 peut être disposée par exemple vers la chambre de travail A et la deuxième paroi rigide 8 vers la chambre de compensation B.
Comme représenté sur les figures 1 à 4, la deuxième paroi rigide 8 peut former par exemple un boîtier 9 ouvert vers le haut, c'est-à-dire vers la première paroi rigide 8, et une cuvette 10 également ouverte vers le haut. La deuxième paroi rigide 8 peut en outre comporter un trou 11 axial au centre de la cuvette 10 et une ouverture 12 vers le bas, qui fait communiquer le passage étranglé C avec la chambre de compensation B.
La première paroi rigide 7 peut comporter une ouverture 13 vers la haut, qui fait communiquer le passage étranglé C avec la chambre de travail A, et éventuellement un trou 13a fermé par une paroi mobile 14 qui délimite partiellement la chambre de travail A. La paroi mobile 14 peut éventuellement comporter une paroi radiale rigide 16 reliée de façon étanche à la première paroi rigide 7 par une membrane d'élastomère 15. La cuvette 10 délimite ainsi avec la paroi mobile 14 une chambre pneumatique remplie d ' air .
Comme représenté sur les figures 1, 4, 5, La première paroi rigide 7 peut délimiter une chambre de microturbine 17 appartenant au passage étranglé C et dans laquelle une microturbine 18 est montée rotative autour d'un axe de rotation ZI parallèle à l'axe Z0. La microturbine 18 fait partie d'un dispositif générateur de courant électrique 19 qui comporte en outre une génératrice 20 couplée à la microturbine 18 pour produire du courant électrique lorsque la microturbine 18 tourne. La génératrice 20 comporte un stator 22 et un rotor 21 solidaire de la microturbine 18. La génératrice 20 peut être contenue par exemple dans le boîtier 9 formé par la deuxième paroi rigide 8. Le rotor 21 peut être formé d'une pièce avec la microturbine 18.
Selon une forme de réalisation avantageuse de l'invention, le rotor 21 peut comporter un nombre 2.N de pôles aimantés alternés qui sont équirépartis angulairement autour de l'axe de rotation ZI et qui appartiennent à au moins un aimant permanent 23, N étant un entier naturel non nul. Dans l'exemple considéré, N = 1 et le rotor comporte un seul aimant permanent 23. Le stator 22 comporte un anneau ferromagnétique 25 disposé en regard des pôles aimantés et autour d'eux, et cet anneau 25 porte un nombre 2.N de bobines toriques équiréparties angulairement, ici deux bobines 26 bobinées en opposition, chacune sur une étendue angulaire qui peut par exemple être d'environ 90 degrés. Ce type de génératrice présente l'avantage de ne pas présenter de point dur pouvant gêner la rotation du rotor 21 et de la microturbine 18.
Bien entendu, d'autres types de génératrice électrique peuvent être utilisés. Notamment, le stator pourrait comporter des aimants permanents (par exemple 12) et le rotor pourrait comporter un noyau ferromagnétique formant des pôles saillants radialement (par exemple 4) autour desquels sont enroulées des bobines produisant du courant électrique lors de la rotation du rotor.
Il est également possible d'associer plusieurs microturbines à une génératrice électrique, par exemple en les disposant de part et d'autre du rotor de la génératrice .
La chambre de microturbine 17 peut avantageusement être un alésage ménagé dans une première paroi rigide 7, ledit alésage étant délimité axialement vers le haut par un fond et radialement par une surface cylindrique. La microturbine 18 peut comporter un plateau 28 en forme de disque, disposé radialement par rapport à l'axe de rotation ZI et fermant l'alésage susmentionné vers le bas. Le plateau 28 porte un moyeu 29 et des pales 30. Le moyeu 29 s'étend selon l'axe de rotation ZI et peut être monté rotatif dans le fond de l'alésage formant la chambre de microturbine 17, éventuellement avec interposition d'une bague de glissement 24 formant palier. Le rotor 21 de la génératrice peut lui-même comporter un tourillon 29a qui est monté rotatif dans le fond du boîtier 9 susmentionné, éventuellement avec interposition d'une bague de glissement 24a formant palier.
Les pales 30 sont disposées autour de l'axe de rotation ZI dans un plan médian radial, chaque pale étant sensiblement perpendiculaire audit plan radial médian. Avantageusement, la microturbine 18 présente un espace annulaire libre 27 compris radialement entre le moyeu 29 et les pales 30.
Cet espace annulaire libre 27 peut présenter une épaisseur radiale telle que R-Rl soit compris entre 0, 7.2 (R-R0) /3 et 1, 3.2 (R-R0) /3 (soit entre environ 0,47(R- R0) et 0,87(R-R0)), avantageusement R-Rl soit compris entre 0, 9x2 (R-R0) /3 et 1 , 1x2 (R-R0 ) /3 , par exemple de l'ordre de 2(R-R0)/3, où :
- 2.R est le diamètre extérieur des pales 30, c'est-à-dire sensiblement le diamètre intérieur de la chambre de microturbine 17 (ce diamètre peut être par exemple de l'ordre de 1 à 3 cm),
2. RI le diamètre intérieur des pales 30, et - 2.R0 est le diamètre extérieur du moyeu 29 au centre de l'espace libre 27. Ce diamètre 2.R0 est généralement faible et peut même éventuellement être réduit à 0 en adoptant une structure de microturbine ne comportant pas de moyeu 29 au centre de l'espace libre 27 (par exemple la microturbine 18 pourrait comporter deux plateaux 28 encadrant axialement les pales 30, le plateau 28 « supérieur » étant alors monté rotatif dans le fond de l'alésage qui forme la chambre de microturbine 17) .
La géométrie susmentionnée de la microturbine 18 permet de créer un tourbillon au centre de la microturbine. Les rapports dimensionnels susmentionnés permettent en particulier que ce tourbillon entraine un volume de fluide proche de celui qui sort de la turbine, ce qui facilite les changements de sens de passage du fluide dans la turbine.
Comme représenté plus en détail sur la figure 4, le passage étranglé C peut comporter, outre la chambre de microturbine 17, des premier et deuxième tronçons Cl, C2 qui font communiquer ladite chambre de microturbine 17 respectivement avec la chambre de travail A par l'ouverture 13 et avec la chambre de compensation B par l'ouverture 10.
Ces tronçons Cl, C2 peuvent être délimités respectivement par des première et deuxième gorges 31a, 31b creusées dans la première paroi rigide 7 et ouvertes vers le bas, lesdites première et deuxième gorges étant fermées vers la chambre de compensation B par la deuxième paroi rigide 8.
Dans l'exemple considéré, les tronçons Cl, C2 comportent chacun une partie en arc de cercle centrée sur l'axe Z0, respectivement 32a, 32b. Ces parties en arc de cercle 32a, 32b relient respectivement les ouvertures 13, 12 respectivement à des à des premier et deuxième ajutages, respectivement 33a, 33b qui débouchant sensiblement tangentiellement dans la chambre de microturbine 17 (voir figure 5). Avantageusement, chaque ajutage 33a, 33b se termine, vers la chambre de microturbine 17, par un convergent, respectivement 34a, 34b. Les premier et deuxième ajutages 33a, 33b peuvent déboucher dans la chambre de microturbine 17 en des positions sensiblement diamétralement opposées par rapport à l'axe de rotation ZI
Avantageusement, la microturbine est conformée pour être entraînée toujours dans un même sens de rotation W par le liquide du circuit hydraulique lorsque ledit liquide se déplace alternativement dans les premier et deuxième sens opposés Fl, F2 dans le passage étranglé C (le sens Fl correspond ici à un déplacement du liquide de la chambre de travail A vers la chambre de compensation B et F2 de la chambre de compensation B vers la chambre de travail A) . A cet effet, les premier et deuxième ajutages 33a, 33b débouchent dans la chambre de microturbine 17 sensiblement tangentiellement par rapport à l'axe de rotation ZI, respectivement dans les sens Fl, F2, selon des première et deuxième directions d'injections correspondant toutes les deux audit sens de rotation W. Cette rotation à sens unique de la microturbine 18 permet une utilisation optimale de la faible puissance hydraulique disponible. La rotation entretenue de la microturbine 18 est en outre facilitée par l'espace libre 27 susmentionné, qui permet l'établissement d'un courant tourbillonnaire de liquide dans le sens de rotation W.
Les pales 30 de la microturbine 18 sont de préférence incurvées dans le plan radial, avec un extrados 30a convexe tourné dans le sens de rotation W et un intrados 30b concave tourné à l'opposé du sens de rotation W. Avantageusement, l'intrados 30b de chaque pale 30 comporte une partie radialement intérieure 30c qui est disposée dans une direction sensiblement radiale Y et une partie radialement extérieure 30d qui est disposée sensiblement selon la direction d'injection XI, X2 lorsque ladite pale 30 se trouve en correspondance avec l'un des premier et deuxième ajutages 33a, 33b.
Comme représenté sur la figure 1, le dispositif antivibratoire 1 comporte en outre un actionneur électrique 37, par exemple similaire à celui décrit dans le document EP1614931, qui est adapté pour sélectivement bloquer ou laisser libre la paroi mobile 14 en fonction des commandes du circuit électronique susmentionné. Cet actionneur 37 peut par exemple comporter une valve à commande électrique qui peut soit mettre à l'air libre la chambre pneumatique délimitée par la cuvette 10 et la paroi mobile 14, soit l'isoler. L'actionneur 37 comporte en parallèle de la valve susmentionnée, un clapet de sortie d'air qui, lorsque la valve est fermée, permet uniquement la sortie d'air de la chambre pneumatique, de sorte que cette chambre pneumatique se vide progressivement sous l'effet des mouvements de la paroi mobile 14 dus aux mouvements vibratoires du moteur, de sorte que la paroi mobile vient se plaquer contre le fond de la cuvette 10 lorsque le vide est fait dans la chambre pneumatique, ce qui bloque ladite paroi mobile.
Comme représenté sur la figure 7, le circuit électronique 39 (CIRC.) peut comporter par exemple :
un convertisseur 40 (CONV.) connecté aux bobines 26 de la génératrice 20 (GEN.) pour générer un courant continu à partir du courant alternatif produit par lesdites bobines 26,
- un dispositif de stockage d'énergie électrique
41 (ACC), par exemple une capacité, alimenté par le convertisseur 40,
un dispositif de commande 42 (CONTR.), par exemple comprenant un microcontrôleur, alimenté par le dispositif de stockage 41 et commandant l'actionneur 37
(ACT . ) ,
un capteur 42 (SENS.) relié au dispositif de commande 41, par exemple un capteur de vibrations tel qu'un accéléromètre ou autre.
L'ensemble de ce circuit électronique 39 peut être logé dans l'espace intérieur 3C du carter 3b, et ne nécessite pas d'échanges d'informations avec l'extérieur ni d'alimentation électrique extérieure. Eventuellement, le capteur 42 ou un capteur supplémentaire, pourrait être disposé ailleurs que dans le carter 3b, selon l'application envisagée et le montage du dispositif antivibratoire 1.
Le dispositif antivibratoire 1 qui vient d'être décrit fonctionne comme suit.
Lorsque le véhicule dans lequel est installé le dispositif antivibratoire fonctionne, les mouvements vibratoires du moteur produisent des mouvements de liquide dans le passage étranglé C entre les chambres hydrauliques A et B, alternativement dans les sens Fl et F2. Ces mouvements de liquide mettent en rotation la microturbine 18 et donc le rotor 21, dans le sens de rotation W, de sorte que les bobines 26 de la génératrice génèrent un courant électrique qui est redressé par le convertisseur 40 et stocké dans le dispositif de stockage 41.
Lorsque le moteur fonctionne au ralenti sans roulage du véhicule, les mouvements relatifs entre les première et deuxième armatures 2, 3 sont généralement de fréquence comprise entre 10 et 40 Hz selon le type de moteur et de faible amplitude (inférieure à 0,2 mm) . Dans ces conditions, la puissance électrique produite par la génératrice 20 est relativement faible, par exemple de quelques dizaines à quelques centaines de milliwatts. Dans ces circonstances, détectées à l'aide du capteur 42, le dispositif de commande 41 commande l'actionneur 37 pour laisser libre la paroi mobile 14, qui a alors un effet de découplage évitant de transmettre les vibrations du moteur à la caisse du véhicule.
Lorsque le véhicule roule, les mouvements relatifs dits de hachis entre les première et deuxième armatures 2, 3 sont de fréquence relativement faible (généralement comprise entre 10 et 15 Hz selon le type de moteur) et de grande amplitude (supérieure à 0,3 mm) . Dans ces conditions, la puissance électrique produite par la génératrice 20 peut être plus importante, par exemple de quelques Watts (par exemple de l'ordre de 2 W) . Dans ces circonstances, détectées à l'aide du capteur 42, le dispositif de commande 41 commande 1 ' actionneur 37 pour bloquer la paroi mobile 14 comme expliqué ci-dessus, de sorte que le passage étranglé C joue alors son rôle antivibratoire habituel. Le dimensionnement des sections de passage du fluide dans le passage étranglé C et dans la microturbine ne modifie pas notablement le comportement hydraulique du support moteur, et donc la réponse en raideur et angle de phase en fonction de la fréquence d'excitation du système, par rapport à un support antivibratoire similaire dépourvu de microturbine.
On notera que l'actionneur 37 et la paroi mobile 14 pourraient être remplacés par tout autre système de pilotage ou par tout autre système actif générant des contre-vibrations (l'actionneur électrique alimenté à partir de la génératrice 20 peut alors commander tout organe de commande vibrant tel que piston, masse vibrante ou autre) .
On notera également que la forme torique du stator 22 facilite un démarrage de la microturbine sous très faible sollicitation (inférieure à 0.1mm au niveau de l'axe Z0), car il n'y a pas de point dur d'équilibre magnétique entre l'aimant du rotor et le stator : Les forces magnétiques sont dans l'axe de l'aimant et ne perturbent pas le couple de démarrage.

Claims

REVENDICATIONS
1. Dispositif antivibratoire hydraulique destiné à être interposé aux fins d'amortissement entre des premier et deuxième éléments rigides, ce dispositif antivibratoire comprenant :
des première et deuxième armatures (2, 3) destinées à être fixées aux deux éléments rigides à réunir,
- un corps en élastomère (4) qui relie entre elles les première et deuxième armatures et qui délimite au moins partiellement une première chambre hydraulique (A) ,
une deuxième chambre hydraulique (B) déformable qui communique avec la première chambre hydraulique (A) par l'intermédiaire d'un passage étranglé (C) , les première et deuxième chambres hydrauliques et le passage étranglé formant un circuit hydraulique rempli de liquide, et le dispositif antivibratoire étant conformé pour que ledit liquide se déplace alternativement dans ledit passage étranglé (C) dans des premier et deuxième sens opposés (Fl, F2) lorsque le première et deuxième armatures (2, 3) sont soumises à des mouvements vibratoires relatifs,
- un dispositif générateur de courant électrique (19) comprenant d'une part, une microturbine (18) montée rotative autour d'un axe de rotation (ZI) dans le passage étranglé (C) et d'autre part, une génératrice (20) couplée à la microturbine pour produire du courant électrique lorsque la microturbine tourne,
caractérisé en ce que la microturbine (18) est conformée pour être entraînée toujours dans un même sens de rotation (W) par le liquide lorsque le liquide se déplace alternativement dans les premier et deuxième sens (Fl, F2) dans le passage étranglé (C) .
2. Dispositif antivibratoire selon la revendication 1, dans lequel le passage étranglé (C) comporte une chambre de microturbine (17) dans laquelle la microturbine (18) est montée rotative, et des premier et deuxième ajutages (33a, 33b) qui débouchent dans ladite chambre de microturbine
(17) sensiblement tangentiellement par rapport à l'axe de rotation en provenance respectivement des première et deuxième chambres hydrauliques (A, B) , lesdits premier et deuxième ajutages (33a, 33b) débouchant dans la chambre de microturbine respectivement selon des première et deuxième directions d'injections (XI, X2) correspondant toutes les deux audit sens de rotation (W) .
3. Dispositif antivibratoire selon la revendication 2, dans lequel les premier et deuxième ajutages (33a, 33b) débouchent dans la chambre de microturbine (17) dans des positions sensiblement diamétralement opposées par rapport à l'axe de rotation (ZI) .
4. Dispositif antivibratoire selon l'une quelconque des revendications 2 et 3, dans lequel la microturbine (18) comporte des pales (30) incurvées disposées autour de l'axe de rotation (ZI) dans un plan radial médian, chaque pale étant sensiblement perpendiculaire audit plan radial médian et comprenant une partie intérieure (30c) sensiblement radiale et une partie extérieure (30d) qui est disposée sensiblement selon les première et deuxième directions d'injections (XI, X2) lorsque ladite pale se trouve en correspondance respectivement avec les premier et deuxième ajutages (33a, 33b) .
5. Dispositif antivibratoire selon l'une quelconque des revendications précédentes, dans lequel la microturbine
(18) comporte des pales (30) disposées autour de l'axe de rotation (ZI) dans un plan radial médian, chaque pale (30) étant sensiblement perpendiculaire audit plan radial médian, et ladite microturbine présente un espace libre (27) entouré par les pales (30) .
6. Dispositif antivibratoire selon la revendication 5, dans lequel les pales (30) occupent une première épaisseur radiale (R-Rl) et ledit espace libre occupe une deuxième épaisseur radiale (R1-R0), ladite première épaisseur radiale (R-Rl) étant comprise entre 0,47 et 0,87 fois la somme des première et deuxième épaisseurs radiales (R-RO) .
7. Dispositif antivibratoire selon l'une quelconque des revendications 5 et 6, dans lequel la microturbine (18) comporte en outre au moins un moyeu (29) d'étendant selon l'axe de rotation (ZI) et au moins un plateau (28) radial reliant ledit moyeu (29) aux pales (30) .
8. Dispositif antivibratoire selon la revendication
7, dans lequel la chambre de microturbine (17) est un alésage ménagé dans une première paroi rigide (7), ledit alésage étant délimité axialement par un fond et radialement par une surface cylindrique dans laquelle débouchent les premier et deuxième ajutages (33A, 33b) , ledit alésage étant fermé par le plateau à l'opposé du fond de l'alésage, ledit moyeu (29) étant monté rotatif dans le fond de l'alésage.
9. Dispositif antivibratoire selon la revendication
8, dans lequel la génératrice (20) comporte un stator (22) et un rotor (21) solidaire de la microturbine (18), ledit rotor comportant un tourillon (29a) qui s'étend selon l'axe de rotation (ZI) à l'opposé dudit moyeu (29), ledit tourillon (29a) étant monté rotatif dans le fond d'un boîtier (9) contenant la génératrice et étant solidaire de ladite première paroi rigide (7) .
10. Dispositif antivibratoire selon la revendication
9, dans lequel le passage étranglé (C) comprend des premier et deuxième tronçons (Cl, C2) qui débouchent dans la chambre de microturbine (17) par lesdits premier et deuxième ajutages (33a, 33b) , lesdits premier et deuxième tronçons et lesdits premier et de ajutages étant délimités par des première et deuxième gorges (31a, 31b) creusées dans la première paroi rigide (7) et ouvertes axialement vers la deuxième chambre hydraulique (B) , lesdites première et deuxième gorges (31a, 31b) étant fermées axialement par une deuxième paroi rigide (8) solidaire de la première paroi rigide (7) et comprenant ledit boîtier (9), les première et deuxième parois rigides formant ensemble une cloison (5) qui sépare les première et deuxième chambres hydrauliques (A, B) .
11. Dispositif antivibratoire selon l'une quelconque des revendications précédentes, dans lequel la génératrice (20) comporte un rotor (21) et un stator (22), le rotor (21) comportant un nombre 2.N de pôles aimantés alternés qui sont équirépartis angulairement et qui appartiennent à au moins un aimant permanent (23), N étant un entier naturel non nul, et le stator (22) comporte un anneau ferromagnétique (25) disposé en regard des pôles aimantés et portant un nombre 2.N de bobines toriques (26) équiréparties angulairement.
12. Dispositif antivibratoire selon l'une quelconque des revendications précédentes, dans lequel le dispositif antivibratoire comporte en outre un circuit électronique (39) comprenant au moins :
- un convertisseur (40) adapté pour convertir en courant continu un courant électrique produit par la génératrice (20),
- un dispositif de stockage d'énergie électrique
(41) alimenté par le convertisseur,
et un dispositif de commande (41) relié à un capteur (42) et adapté pour commander un actionneur (37) en fonction d'informations reçues du capteur (42), ledit actionneur étant adapté pour agir sur une partie du dispositif antivibratoire.
13. Dispositif antivibratoire selon la revendication 12, dans lequel ledit capteur (42) est un capteur de vibrations solidaire de la deuxième armature (3) .
14. Dispositif antivibratoire selon la revendication 12 ou la revendication 13, dans lequel ledit actionneur (37) est adapté pour sélectivement bloquer ou laisser libre une paroi mobile (14) qui délimite partiellement la première chambre hydraulique (A) .
15. Dispositif générateur d'énergie (19) utilisable dans un dispositif antivibratoire selon l'une quelconque des revendications précédentes, comprenant :
une chambre de microturbine (17) communiquant avec des premier et deuxième ajutages (33a, 33b) et dans laquelle une microturbine (18) est montée rotative autour d'un axe de rotation (ZI),
une génératrice (20) couplée à la microturbine (18) pour produire du courant électrique lorsque la microturbine tourne,
caractérisé en ce que la microturbine (18) est conformée pour être entraînée toujours dans un même sens de rotation (W) lorsque du liquide se déplace alternativement dans des premier et deuxième sens opposés (Fl, F2) entre les premier et deuxième ajutages (33a, 33b) , les premier et deuxième ajutages (33a, 33b) débouchant dans ladite chambre de microturbine sensiblement tangent iellement par rapport à l'axe de rotation (ZI), lesdits premier et deuxième ajutages (33a, 33b) débouchant dans la chambre de microturbine respectivement selon des première et deuxième directions d'injection (XI, X2) correspondant toutes les deux audit sens de rotation,
et en ce que la microturbine (18) comporte des pales (30) disposées autour de l'axe de rotation (ZI) dans un plan radial médian, chaque pale étant sensiblement perpendiculaire audit plan radial médian, et ladite microturbine (18) présente un espace libre (27) entouré par les pales (30) .
PCT/FR2014/050553 2014-03-12 2014-03-12 Dispositf antivibratoire hydraulique doté d'un dispositif générateur d'électricité et dispositif générateur d'électricité pour un tel dispositif antivibratoire WO2015136160A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/FR2014/050553 WO2015136160A1 (fr) 2014-03-12 2014-03-12 Dispositf antivibratoire hydraulique doté d'un dispositif générateur d'électricité et dispositif générateur d'électricité pour un tel dispositif antivibratoire
CN201480076973.1A CN106163839B (zh) 2014-03-12 2014-03-12 装有发电装置的液压防震装置以及用于该防震装置的发电装置
JP2016556809A JP6423891B2 (ja) 2014-03-12 2014-03-12 発電機が設けられた油圧振動抑制装置
US15/122,209 US10361606B2 (en) 2014-03-12 2014-03-12 Hydraulic anti-vibration device provided with an electricity generator device and electricity generator device for such an anti-vibration device
EP14714304.4A EP3116729B1 (fr) 2014-03-12 2014-03-12 Dispositf antivibratoire hydraulique doté d'un dispositif générateur d'électricité
KR1020167028369A KR102106903B1 (ko) 2014-03-12 2014-03-12 전기 발생 장치를 구비한 유압 진동 방지 장치 및 이러한 진동 방지 장치를 위한 전기 발생 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2014/050553 WO2015136160A1 (fr) 2014-03-12 2014-03-12 Dispositf antivibratoire hydraulique doté d'un dispositif générateur d'électricité et dispositif générateur d'électricité pour un tel dispositif antivibratoire

Publications (1)

Publication Number Publication Date
WO2015136160A1 true WO2015136160A1 (fr) 2015-09-17

Family

ID=50397186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050553 WO2015136160A1 (fr) 2014-03-12 2014-03-12 Dispositf antivibratoire hydraulique doté d'un dispositif générateur d'électricité et dispositif générateur d'électricité pour un tel dispositif antivibratoire

Country Status (6)

Country Link
US (1) US10361606B2 (fr)
EP (1) EP3116729B1 (fr)
JP (1) JP6423891B2 (fr)
KR (1) KR102106903B1 (fr)
CN (1) CN106163839B (fr)
WO (1) WO2015136160A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016213376A1 (de) 2016-07-21 2018-01-25 Audi Ag Elektromagnetisches Dämpfungselement für einen Aggregatträger
EP3276200A1 (fr) * 2016-07-26 2018-01-31 Hutchinson Dispositif antivibratoire hydraulique
FR3054628A1 (fr) * 2016-07-26 2018-02-02 Hutchinson Dispositif antivibratoire hydraulique

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016105711U1 (de) * 2016-10-12 2018-01-15 Ossberger Gmbh + Co Kg Walzenförmiges Laufrad einer Durchströmturbine
US10648529B2 (en) * 2017-11-21 2020-05-12 Bell Helicopter Textron Inc. Hydraulic vibration control
USD904982S1 (en) * 2017-11-24 2020-12-15 Siemens Aktiengesellschaft Electric motor starter
JP1616481S (fr) * 2017-12-11 2018-10-29
JP1619986S (fr) * 2018-02-09 2018-12-10
JP1622555S (ja) * 2018-02-27 2019-01-21 モータアクチュエータ
WO2019190996A1 (fr) 2018-03-26 2019-10-03 Milwaukee Electric Tool Corporation Source d'alimentation portable sur batterie haute puissance
US11271415B2 (en) 2018-05-18 2022-03-08 Milwaukee Electric Tool Corporation Portable power source
USD906240S1 (en) * 2018-06-04 2020-12-29 Semikron Elektronik Gmbh & Co. Kg Powercore module
USD909299S1 (en) * 2018-07-12 2021-02-02 Advanced Thermal Control, Inc. Exothermic extermination device
USD900742S1 (en) * 2018-08-02 2020-11-03 Aws Holdings Llc Water generator unit
USD933010S1 (en) * 2019-05-29 2021-10-12 Milwaukee Electric Tool Corporation Portable power source
US20230291278A1 (en) * 2021-03-25 2023-09-14 General Electric Company Gas turbine engine equipped with a control system for management of rotor modes using an electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2175962A (en) * 1985-04-16 1986-12-10 Ryokuseisha Kabushiki Kaisha Wave power generator
EP1614931A2 (fr) 2004-07-07 2006-01-11 Hutchinson Support antivibratoire hydraulique pilotable
GB2461983A (en) * 2008-07-23 2010-01-27 Harold Birkett Water turbine with unidirectional rotation
US20100219641A1 (en) * 2009-02-27 2010-09-02 Gm Global Technology Operations, Inc. Harvesting energy from vehicular vibrations
JP2011099474A (ja) * 2009-11-04 2011-05-19 Honda Motor Co Ltd ダンパ装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE686253A (fr) * 1965-09-01 1967-02-01
JPS61286632A (ja) * 1985-06-13 1986-12-17 Honda Motor Co Ltd 液体封入型マウントラバ−
FR2596837B1 (fr) * 1986-04-07 1990-06-22 Hutchinson Perfectionnements aux supports antivibratoires de type hydraulique
FR2610054B1 (fr) * 1987-01-26 1991-08-16 Hutchinson Perfectionnements apportes aux supports antivibratoires hydrauliques
JPH0211822A (ja) * 1988-06-29 1990-01-16 Isuzu Motors Ltd 回転電機付ターボチャージャの駆動装置
JPH03123981U (fr) * 1990-03-30 1991-12-17
US5202633A (en) * 1990-11-01 1993-04-13 Doty Scientific, Inc. High temperature nmr sample spinner
US5932940A (en) * 1996-07-16 1999-08-03 Massachusetts Institute Of Technology Microturbomachinery
TW390936B (en) * 1997-12-20 2000-05-21 Allied Signal Inc Microturbine power generating system
US6032459A (en) * 1998-06-15 2000-03-07 Alliedsignal, Inc. Turbine exhaust cooling in a microturbine power generating system
US6093975A (en) * 1998-10-27 2000-07-25 Capstone Turbine Corporation Turbogenerator/motor control with synchronous condenser
FR2793859B1 (fr) * 1999-05-17 2001-08-03 Hutchinson Support antivibratoire hydraulique actif, et systeme antivibratoire actif comportant un tel support
US6523816B1 (en) * 2000-11-07 2003-02-25 Hutchinson Method of damping vibration, active hydraulic anti-vibration mount and vehicle including such a mount
JP2002235793A (ja) * 2001-02-09 2002-08-23 Toyo Tire & Rubber Co Ltd 液体封入式防振装置
JP3581924B2 (ja) * 2001-03-09 2004-10-27 東洋ゴム工業株式会社 防振装置
US7328888B2 (en) * 2004-11-24 2008-02-12 Toyo Tire & Rubber Co., Ltd. Hydraulic antivibration device and hydraulic antivibration assembly containing the same
EP1837549A1 (fr) * 2004-12-24 2007-09-26 Toyo Tire Rubber Co., Ltd. Unite a dispositif isolant des vibrations etanche au liquide, dispositif isolant des vibrations etanche au liquide et support côte carrosserie
US7663261B2 (en) * 2005-02-15 2010-02-16 Spiroflo, Inc. Flow development and cogeneration chamber
US7279803B1 (en) * 2005-04-17 2007-10-09 Kenneth Randall Bosley Ocean current power generator
FR2886176B1 (fr) * 2005-05-25 2007-07-06 Eurocopter France Generateur de vibrations par effet centrifuge a rotors contrarotatifs coaxiaux.
US7541687B2 (en) * 2006-03-10 2009-06-02 Deere & Company Method and system for managing an electrical output of a turbogenerator
EP1879280B1 (fr) * 2006-07-14 2014-03-05 OpenHydro Group Limited Turbine hydroélectrique
JP2008095930A (ja) * 2006-10-16 2008-04-24 Bridgestone Corp 防振装置
DE102007052959B4 (de) * 2007-03-15 2018-11-08 Korea Institute Of Energy Research Tragbare Stromerzeugungsvorrichtung, Vorrichtung zur Versorgung mit Kraftstoff und Luft für die tragbare Stromerzeugungsvorrichtung, Mikromotor mit Gleichstromspülung für die tragbare Stromerzeugungsvorrichtung
JP2009115301A (ja) * 2007-11-09 2009-05-28 Toyota Motor Corp ショックアブソーバ制御装置
EP2081276A1 (fr) * 2008-01-21 2009-07-22 Marco Cipriani Dispositif électromagnétique doté d'un fonctionnement réversible générateur/moteur
US8017354B2 (en) * 2008-07-18 2011-09-13 Enzymicals Ag Microorganism for producing recombinant pig liver esterase
US8338975B2 (en) * 2008-09-12 2012-12-25 AGlobal Tech, LLC Supplemental power source
FR2937702B1 (fr) * 2008-10-23 2010-11-26 Hutchinson Support antivibratoire hydraulique et vehicule comportant un tel support
DE102009002260A1 (de) * 2009-04-07 2010-10-21 Zf Friedrichshafen Ag Schwingungsdämpfer mit einer Vorrichtung zur Erzeugung elektrischer Energie
US8541895B2 (en) * 2009-10-05 2013-09-24 Honda Motor Co., Ltd. Energy regenerating damper
US8814151B2 (en) * 2010-01-12 2014-08-26 Bridgestone Corporation Antivibration device
JP5204901B2 (ja) * 2010-08-17 2013-06-05 川崎重工業株式会社 電液一体型液圧装置
CN102288281B (zh) * 2011-06-25 2012-08-22 四川大学 基于振动发电的高压线微风振动在线监测装置及方法
US8629572B1 (en) * 2012-10-29 2014-01-14 Reed E. Phillips Linear faraday induction generator for the generation of electrical power from ocean wave kinetic energy and arrangements thereof
JP6211319B2 (ja) * 2013-07-10 2017-10-11 日野自動車株式会社 エンジンの防振システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2175962A (en) * 1985-04-16 1986-12-10 Ryokuseisha Kabushiki Kaisha Wave power generator
EP1614931A2 (fr) 2004-07-07 2006-01-11 Hutchinson Support antivibratoire hydraulique pilotable
GB2461983A (en) * 2008-07-23 2010-01-27 Harold Birkett Water turbine with unidirectional rotation
US20100219641A1 (en) * 2009-02-27 2010-09-02 Gm Global Technology Operations, Inc. Harvesting energy from vehicular vibrations
JP2011099474A (ja) * 2009-11-04 2011-05-19 Honda Motor Co Ltd ダンパ装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOHARERI O ET AL: "Energy harvesting from vibration of a hydraulic engine mount using a turbine", MECHATRONICS (ICM), 2011 IEEE INTERNATIONAL CONFERENCE ON, IEEE, 13 April 2011 (2011-04-13), pages 134 - 139, XP031911290, ISBN: 978-1-61284-982-9, DOI: 10.1109/ICMECH.2011.5971270 *
PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS, 13 April 2011 (2011-04-13), pages 134 - 139

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016213376A1 (de) 2016-07-21 2018-01-25 Audi Ag Elektromagnetisches Dämpfungselement für einen Aggregatträger
DE102016213376B4 (de) * 2016-07-21 2020-08-06 Audi Ag Hilfsrahmenträger und Verfahren zum Dämpfen einer Bewegung eines Aggregats
EP3276200A1 (fr) * 2016-07-26 2018-01-31 Hutchinson Dispositif antivibratoire hydraulique
FR3054629A1 (fr) * 2016-07-26 2018-02-02 Hutchinson Dispositif antivibratoire hydraulique
FR3054628A1 (fr) * 2016-07-26 2018-02-02 Hutchinson Dispositif antivibratoire hydraulique
CN107654565A (zh) * 2016-07-26 2018-02-02 哈金森公司 液压减振装置
US10260592B2 (en) 2016-07-26 2019-04-16 Hutchinson Hydraulic antivibrating device
US10260593B2 (en) 2016-07-26 2019-04-16 Hutchinson Hydraulic antivibrating device

Also Published As

Publication number Publication date
JP2017511444A (ja) 2017-04-20
CN106163839B (zh) 2019-03-19
EP3116729B1 (fr) 2019-09-18
JP6423891B2 (ja) 2018-11-14
EP3116729A1 (fr) 2017-01-18
CN106163839A (zh) 2016-11-23
KR102106903B1 (ko) 2020-05-06
US20160365774A1 (en) 2016-12-15
KR20160134742A (ko) 2016-11-23
US10361606B2 (en) 2019-07-23

Similar Documents

Publication Publication Date Title
EP3116729B1 (fr) Dispositf antivibratoire hydraulique doté d'un dispositif générateur d'électricité
EP1614931B1 (fr) Support antivibratoire hydraulique pilotable
FR2574031A1 (fr) Structure de montage de groupe moteur pour vehicule
EP3304706B1 (fr) Machine électrique tournante avec un stator à encoches fermées et plus particulièrement machine électrique synchrone à réluctance variable assistée d'aimants permanents
EP1614930B1 (fr) Support antivibratoire hydraulique à commande pneumatique
FR2779501A1 (fr) Oscillateur d'amortissement actif ayant un element formant arbre non relie et un manchon exterieur mobiles l'un par rapport a l'autre par excitation de bobines
EP0412856B1 (fr) Dispositif de propulsion d'un fluide
EP2908023A1 (fr) Support antivibratoire hydraulique pilotable
FR2792697A1 (fr) Dispositif d'amortissement actif de vibrations, rempli par un fluide, comportant un element de stabilisation servant a stabiliser un element oscillant
FR2798710A1 (fr) Montage elastique actif a remplissage de fluide
FR3054628A1 (fr) Dispositif antivibratoire hydraulique
EP3276200B1 (fr) Dispositif antivibratoire hydraulique
FR3047124A1 (fr) Ensemble de support d'un moteur electrique, notamment dans un dispositif de chauffage, ventilation et/ou climatisation pour vehicule automobile
EP3029351B1 (fr) Support antivibratoire hydraulique pilotable
EP0509911A1 (fr) Amortisseur de vibrations hybride à vibrateur magnétique actif
FR2617555A1 (fr) Perfectionnements apportes aux supports antivibratoires hydrauliques
EP1099875B1 (fr) Procédé pour atténuer des vibrations, support antivibratoire hydraulique actif, et véhicule comprenant un tel support
EP1157751B1 (fr) Transducteur électrodynamique pour acoustique sous-marine
FR3083388A1 (fr) Machine electrique tournante comportant un stator monte elastiquement entre deux paliers
EP0612135A1 (fr) Dispositif de pivotement pour rotor noye
FR3047122A1 (fr) Ensemble de support d'un moteur electrique, notamment dans un dispositif de chauffage, ventilation et/ou climatisation pour vehicule automobile
EP3578849B1 (fr) Dispositif antivibratoire hydraulique actif et véhicule comportant un tel dispositif antivibratoire hydraulique actif
FR2861909A1 (fr) Dispositif de stockage d'energie a volant d'inertie.
WO2021180489A1 (fr) Flasque plastique muni de murets de renfort pour une machine electrique tournante
FR2690961A1 (fr) Perfectionnements aux dispositifs antivibratoires hydrauliques.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14714304

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014714304

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014714304

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15122209

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016556809

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167028369

Country of ref document: KR

Kind code of ref document: A