WO2015133776A1 - 내부에 양쪽성 물질을 포함하는 스크롤 복합재 및 그의 제조방법 - Google Patents

내부에 양쪽성 물질을 포함하는 스크롤 복합재 및 그의 제조방법 Download PDF

Info

Publication number
WO2015133776A1
WO2015133776A1 PCT/KR2015/001976 KR2015001976W WO2015133776A1 WO 2015133776 A1 WO2015133776 A1 WO 2015133776A1 KR 2015001976 W KR2015001976 W KR 2015001976W WO 2015133776 A1 WO2015133776 A1 WO 2015133776A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
acid
formula
amphoteric
degrees
Prior art date
Application number
PCT/KR2015/001976
Other languages
English (en)
French (fr)
Inventor
서동학
황다영
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150026298A external-priority patent/KR101725616B1/ko
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US15/117,575 priority Critical patent/US10486971B2/en
Priority to CN201580011069.7A priority patent/CN106061896B/zh
Publication of WO2015133776A1 publication Critical patent/WO2015133776A1/ko
Priority to US16/598,410 priority patent/US11247904B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/14Compounds containing boron and nitrogen, phosphorus, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J31/00Normal steroids containing one or more sulfur atoms not belonging to a hetero ring
    • C07J31/006Normal steroids containing one or more sulfur atoms not belonging to a hetero ring not covered by C07J31/003
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0055Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of at least three carbon atoms which may or may not be branched, e.g. cholane or cholestane derivatives, optionally cyclised, e.g. 17-beta-phenyl or 17-beta-furyl derivatives
    • C07J41/0061Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of at least three carbon atoms which may or may not be branched, e.g. cholane or cholestane derivatives, optionally cyclised, e.g. 17-beta-phenyl or 17-beta-furyl derivatives one of the carbon atoms being part of an amide group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0088Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 containing unsubstituted amino radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0094Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 containing nitrile radicals, including thiocyanide radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane
    • C07J9/005Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane containing a carboxylic function directly attached or attached by a chain containing only carbon atoms to the cyclopenta[a]hydrophenanthrene skeleton

Definitions

  • the present invention relates to a one-dimensional material, and more particularly to a scroll.
  • Two-dimensional materials such as graphene have different thermal, mechanical, and electrical properties than bulk materials in three dimensions. Specifically, it is known to be excellent in mechanical rigidity, strength and ductility, and also excellent in electrical and thermal conductivity. Due to the excellent properties of the two-dimensional material, the two-dimensional material has been widely applied in energy reservoirs, energy conversion devices, sensors, catalysts, and bio-application devices.
  • carbon nanotubes which are one-dimensional materials corresponding to the allotropes of graphene, also have excellent thermal, mechanical, and electrical properties, and thus are being applied in various fields as in the two-dimensional materials.
  • an object of the present invention is to provide a method of forming a one-dimensional scroll by inducing curling of a two-dimensional material and a one-dimensional scroll formed thereby.
  • the scroll composite has a two-dimensional scroll of material open at both ends.
  • An amphoteric material is disposed inside the scroll.
  • the two-dimensional material is graphene, graphene oxide, boron nitride, boron carbon nitride (BCN), tungsten oxide (WO 3 ), tungsten sulfide (WS 2 ), mol It may be a single material selected from the group consisting of ribdenum sulfide (MoS 2 ), molybdenum telluride (MoTe 2 ), and manganese oxide (MnO 2 ) or a composite material in which two or more of them are laminated.
  • MoS 2 ribdenum sulfide
  • MoTe 2 molybdenum telluride
  • MnO 2 manganese oxide
  • the amphoteric material may be a surfactant, bilic acid, bilate, bilate hydrate, bilate ester, bilate derivative, or bacteriophage.
  • the amphoteric material may be a self-assembled body.
  • the hydrophilic portion of the amphoteric material may be exposed to the outside of the self-assembly.
  • the self-assembly may be spherical, rod-shaped, or fibrous.
  • the amphoteric material self-assemble may comprise one or more shells having core particles and amphoteric material self-assembled on the core particles.
  • the hydrophilic portion of the amphoteric material may be exposed outside of the amphoteric material self-assembly.
  • the core particles may be spherical or rod-shaped.
  • the core particles may be metal particles, metal oxide particles, or bacteriophages.
  • an aspect of the present invention provides a two-dimensional material scroll.
  • the two-dimensional material scroll has a form in which the two-dimensional material is curled, has a van der Waals interaction between adjacent two-dimensional material sheets, and has an open structure at both ends.
  • the two-dimensional material scroll may be a hollow scroll with an empty inside.
  • One aspect of the present invention to achieve the above technical problem provides a two-dimensional scroll material manufacturing method.
  • a two-dimensional material is provided. Scrolling the two-dimensional material by providing an amphoteric material having a hydrophilic portion and a hydrophobic portion on the two-dimensional material. The result is a scroll composite with the amphoteric material disposed within the scroll structure.
  • the two-dimensional material may be provided in the form of a two-dimensional material dispersion dispersed in a solvent.
  • Providing the amphoteric material may be mixing the amphoteric material solution in which the amphoteric material is dissolved in a solvent with the two-dimensional material dispersion.
  • the amphoteric solution may be heated before mixing with the two-dimensional material dispersion.
  • the heated amphoteric material solution may also be cooled before mixing with the two-dimensional material dispersion.
  • the amphoteric solution may comprise core particles.
  • the scroll composite may be solvent treated and / or heat treated to remove at least some of the amphoteric material therein to form a hollow scroll.
  • the solvent may be a solvent for dissolving the amphoteric material.
  • the heat treatment may be 200 to 800 °C.
  • one-dimensional scrolling can be easily formed by inducing curling of a two-dimensional material using an amphoteric material.
  • one-dimensional scrolling may be provided.
  • FIG. 1 to 3 are schematic views sequentially showing a scroll manufacturing method according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing a scroll manufacturing method according to another embodiment of the present invention.
  • 5, 6, and 7 are schematic views showing a scroll manufacturing method according to another embodiment of the present invention.
  • FIG 8 and 9 are schematic views showing scroll manufacturing methods according to another embodiment of the present invention.
  • FIG. 10 shows a SEM (Scanning Electron Microscope) photograph (a) and a TEM (Transmission Electron Microscope) photograph (b) of the boron nitride dispersion liquid obtained in the course of Preparation Example 18.
  • SEM Sccanning Electron Microscope
  • TEM Transmission Electron Microscope
  • FIG. 11 is a photograph (a) of the boron nitride dispersion liquid obtained in the course of Preparation Example 18, and a photo (c) photographing the mixed liquid of the dispersion solution and the solution of the valine acid derivative of Formula 4.
  • FIG. 11 is a photograph (a) of the boron nitride dispersion liquid obtained in the course of Preparation Example 18, and a photo (c) photographing the mixed liquid of the dispersion solution and the solution of the valine acid derivative of Formula 4.
  • FIG. 12 shows TEM pictures (a) and HR (TE) -TEM pictures (b, c, d, e, and f) of the boron nitride scroll composites obtained in Preparation Example 18.
  • FIG. 12 shows TEM pictures (a) and HR (TE) -TEM pictures (b, c, d, e, and f) of the boron nitride scroll composites obtained in Preparation Example 18.
  • FIG. 13 shows TEM images (a) and boron nitride scroll composites (TEM) photographing boron nitride dispersions obtained in the course of Preparation Example 18 (b, c, d). .
  • FIG. 15 are HR-TEM photographs of the BN scroll composite material (a) obtained in Preparation Example 18 and the BN scroll composite material (b) obtained in Preparation Example 19.
  • FIG. 15 are HR-TEM photographs of the BN scroll composite material (a) obtained in Preparation Example 18 and the BN scroll composite material (b) obtained in Preparation Example 19.
  • FIG. 15 are HR-TEM photographs of the BN scroll composite material (a) obtained in Preparation Example 18 and the BN scroll composite material (b) obtained in Preparation Example 19.
  • FIG. 16 are SEM photographs (a, b) and TEM photographs (c, d) photographing BN scrolls obtained in Preparation Examples 79 and 80.
  • FIG. 16 are SEM photographs (a, b) and TEM photographs (c, d) photographing BN scrolls obtained in Preparation Examples 79 and 80.
  • FIG. 16 are SEM photographs (a, b) and TEM photographs (c, d) photographing BN scrolls obtained in Preparation Examples 79 and 80.
  • FIG. 17 is a TGA graph (a) and a TEM photograph (b) obtained by heat treating boron nitride, a baline acid derivative of formula 4, and a BN scroll composite obtained according to Preparation Example 18 in a nitrogen atmosphere.
  • FIG. 18 shows a SEM (Scanning Electron Microscope) photograph of the graphene dispersion obtained in the course of Preparation Example 1.
  • FIG. 18 shows a SEM (Scanning Electron Microscope) photograph of the graphene dispersion obtained in the course of Preparation Example 1.
  • FIG. 19 is a photograph (A) of a graphene dispersion obtained in the course of Preparation Example 1, and a photograph (D) photographing a mixture of the dispersion and the solution of the valine acid derivative of Formula 4.
  • FIG. 19 is a photograph (A) of a graphene dispersion obtained in the course of Preparation Example 1, and a photograph (D) photographing a mixture of the dispersion and the solution of the valine acid derivative of Formula 4.
  • FIG. 20 shows a high resolution (HR) -TEM image of the graphene scroll composites obtained in Preparation Example 1.
  • FIG. 22 shows SEM pictures of graphene scroll composites obtained in the course of Preparation Example 2.
  • FIG. 23 shows HR-TEM photographs (A, B, C) of graphene scrolls obtained in Preparation Example 74 and SEM photographs (D, E, F) of graphene scrolls obtained in Preparation Example 75; to be.
  • FIG. 25 is an SEM photograph of the amphoteric solution obtained during the preparation of Example 17.
  • FIG. 1 to 3 are schematic views sequentially showing a scroll manufacturing method according to an embodiment of the present invention.
  • the two-dimensional material 30 refers to a very thin material having a nanometer thickness, for example, a material having 1 to 10 atomic layers, further 1 to 5 atomic layers, for example 1 to 2 atomic layers. Can be. Each atomic layer may have a hexagonal honeycomb shape as an example of a crystal structure.
  • the two-dimensional material 30 is graphene, graphene oxide, boron nitride, boron carbon nitride, tungsten oxide (WO 3 ), tungsten sulfide (WS 2). ), Molybdenum sulfide (MoS 2 ), molybdenum telluride (MoTe 2 ), and manganese oxide (MnO 2 ) It may be a single material selected from the group consisting of or a composite material in which two or more of them are laminated.
  • the composite material may be one in which boron nitride, boron carbon nitride, or molybdenum sulfide is laminated on graphene, or molybdenum sulfide is stacked on boron nitride.
  • edges of the 2D material 30 may have higher surface energy than the in-plane area, and thus may be easily oxidized due to low stability.
  • the two-dimensional material 30 may be dispersed in a solvent to provide a two-dimensional material dispersion.
  • the two-dimensional material dispersion may be obtained through centrifugation after dispersing the two-dimensional material powder in a solvent and using mechanical steering or ultrasonic waves.
  • the solvent is water, methanol, ethanol, isopropyl alcohol, toluene, benzene, hexane, heptane, m-cresol, ethyl acetate, carbon disulfide, dimethyl sulfoxide, dichloromethane, dichlorobenzene, chloroform, carbon tetrachloride, acetone, tetrahydrofuran
  • It may be one solvent selected from the group consisting of dimethylacetamide, N-methylpyrrolidone, dimethylformamide and acetic acid or two or more complex solvents.
  • the solvent may be appropriately selected so that the two-dimensional material can be well dispersed according to the two-dimensional material.
  • An amphoteric material 10 may be provided on the two-dimensional material 30.
  • the amphoteric material 10 may be added to the solvent in which the two-dimensional material 30 is dispersed, or the amphoteric material solution in which the amphoteric material 10 is dissolved in the solvent may be mixed with the two-dimensional material dispersion. Can be.
  • the amphoteric solution may be heated before mixing with the two-dimensional material dispersion. In this case, the amphoteric material solution may be cooled while being mixed with the two-dimensional material dispersion in a room temperature state, so that the amphoteric material 10 may be self-assembled at an edge portion of the two-dimensional material 30. Can be done.
  • the amphoteric material may be contained, for example, at a concentration of 0.001 g / mL to 1 g / mL, but is not limited thereto. However, according to the concentration of the amphoteric material, it is possible to adjust the amount of the scroll composites (40 in FIG. 2) of the two-dimensional material to be described later, which is generated after mixing the amphoteric solution and the two-dimensional material dispersion liquid). have.
  • the solvents in the amphoteric solution are water, methanol, ethanol, isopropyl alcohol, toluene, benzene, hexane, heptane, m-cresol, ethyl acetate, carbon disulfide, dimethyl sulfoxide, dichloromethane, dichlorobenzene, chloroform, carbon tetrachloride,
  • the amphoteric material 10 may be a material having both a hydrophilic portion 10a and a hydrophobic portion 10b in one molecule.
  • the amphoteric material 10 may be an organic material, and may be a surfactant, a bile acid, a bilate salt, a bilate hydrate, a bilate ester, a bilate derivative, or a bacteriophage.
  • the surfactant is sodium dodecyl sulfate (SDS), ammonium lauryl sulfate, sodium laureth sulfate, alkyl benzene sulfonate, cetyltrimethylammonium bromide Cetyl trimethylammonium bromide (CTAB), hexadecyl trimethyl ammonium bromide, alkyltrimethylammonium salts, Cetylpyridinium chloride (CPCl), polyethoxylate tallow amine (Polyethoxylated tallow amine).
  • SDS sodium dodecyl sulfate
  • ammonium lauryl sulfate sodium laureth sulfate
  • alkyl benzene sulfonate alkyl benzene sulfonate
  • cetyltrimethylammonium bromide Cetyl trimethylammonium bromide (CTAB), hexadecyl trimethyl ammonium
  • BAC Benzalkonium chloride
  • BZT Benzethonium chloride
  • Dodecyl betaine dodecyl dimethylamine oxide, cocamidopropyl betamin Cocamidopropyl betaine, alkyl poly (ethylene oxide), poloxamers, poloxamine ( Poloxamines, alkyl polyglucosides, Cetyl alcohol, sodium deoxy cocamide MEA, cocamide DEA, sorbitan esters, polyoxyethylene sorbitan fatty acid esters, sucrose fatty acid esters, polyethylene Glycol hydroxystearate, polyoxyethylene glycolated natural or hydrogenated castor oil, polyoxyethylene-polyoxypropylene copolymer, synthetic vitamin E derivatives, polyoxyethylene alkyl esters, fatty acid macrogol glycerides, polyglyceryl fatty acid esters, And it may be one or more compounds selected from the group consisting of a silicone-based surfactant.
  • the one or more may be one or more or two or
  • the balic acid may be represented by the following Formula 1, for example.
  • R 1 and R 2 may be -H or -OH irrespective of each other, R 3 is-(CONH- (CH 2 ) n1 ) n2 -Y 1 , n1 is 1 or 2, n2 is 1 or 0 and Y 1 may be -COOH or -SO 3 H.
  • R 1 , R 2 , and R 3 may be as shown in Table 1 below.
  • baline acid is dehydrocholic acid, hiyodeoxycholic acid, or ursodeoxycholic acid.
  • the balate may be a metal salt of the baline acid, specifically, a sodium bilate salt.
  • a sodium bilate salt sodium glycochenodeoxycholate, sodium taurochenodeoxycholate, sodium taurocholate, sodium tahydrocholate, sodium dehydrocholate, or sodium deoxycholate deoxycholate).
  • carboxylate hydrate may be a hydrate of the metal metal salt of carboxylate, specifically, a hydrate of sodium bilate salt. As an example, it may be sodium taurocholate hydrate, or sodium cholate hydrate.
  • the valic acid ester may be, for example, Hiyodeoxycholic acid methyl ester.
  • the balic acid derivative may be represented by the following formula (2).
  • n 0, 1 or 2
  • R 4 to R 7 are groups represented by Formula 3 independently of each other.
  • B 1 is , , , , , , And It is one group selected from the group consisting of,
  • L 1 is -W 1- , -Q 1- , -Q 2 -W 2- , -W 3 -Q 3 -W 4- , or -W 5 -Q 4 -W 6 -Q 5 -Q 6- W 1 , W 2 , W 3 , W 4 , W 5 , and W 6 are independent of each other , , or A 1 to a 3 are integers from 1 to 4, and Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , and Q 6 are independent of each other. , , , , , , , , , , or ego,
  • n is 0 or 1
  • B 1 and L 1 and G 1 is directly connected.
  • the baline acid derivative may be a baline acid derivative of any one of Formulas 4 to 20 below.
  • the bile acid has at least one -OH, -COOH or -SO 3 H group is exposed to the hydrophilic ⁇ -face and -CH 3 groups are exposed to the hydrophobic property - ⁇ -face, exhibiting amphoteric.
  • the baline acid derivative has amphoteric properties, having an ⁇ -plane exposed to G 1 groups of Formula 3 exhibiting hydrophilicity and a ⁇ -plane exposed to —CH 3 groups to show hydrophobicity.
  • the bacteriophage is known to have a protein moiety and a hydrophobic tail. As such, the bacteriophage may exhibit amphoteric properties.
  • the bacteriophage may be a filamentous bacteriophage having a membrane shape. It is known that the epidermal bacteriophage has a hydrophilic rod having a residue such as a carboxyl group or an amine group in a central portion thereof, and a hydrophobic tail is disposed at both ends thereof.
  • the bacteriophage may be at least one selected from the group consisting of T1, T2, T3, T4, T5, T6, T7, M13, MS2, fd, f1, and P22.
  • the hydrophilic portion 10a of this amphoteric material 10 can bind to the edges with the highest surface energy of the two-dimensional material 30, in particular any of the edges with the highest surface energy.
  • the edge of the two-dimensional material 30 and the hydrophilic portion 10a of the amphoteric material 10 may be joined by surface interacion 21.
  • the surface interaction may be a hydrophilic-hydrophilic interaction, an interaction between a Lewis acid and a Lewis base, or a hydrogen bond.
  • the hydrophobic portions 10b of the amphoteric materials 10 bonded adjacent to each other at the edge of the two-dimensional material 30 may be coupled to each other by a force 22 such as van der Waals force. have. Accordingly, the amphoteric material 10 may be self-assembled at an edge of the two-dimensional material 30.
  • the hydrophobic portions 10b of the self-assembled amphoteric materials 10 interact with the in-plane area of the two-dimensional material 30 by van der Waals forces or the like (23). )can do. Such interaction may initiate scrolling of the two-dimensional material 30. However, even if there is no such interaction 23, the two-dimensional material 30 may be formed only by the surface interaction 21 of the edge of the two-dimensional material 30 and the hydrophilic portion 10a of the amphoteric material 10. It is assumed that the scrolling can be started.
  • the scrolling is accelerated by van der Waals interaction 25, for example ⁇ - ⁇ interaction, between the in-plane regions of the two-dimensional material 30.
  • van der Waals interaction 25 for example ⁇ - ⁇ interaction
  • the two-dimensional material 30 may be changed into a scroll form.
  • a scroll composite 40 may be formed in the two-dimensional material scroll structure, specifically, with the amphoteric material 10 positioned at the center thereof.
  • the two-dimensional scroll material, that is, the scroll composite 40 may have a one-dimensional structure, that is, a rod or fiber, and may have a structure in which both ends are open.
  • the amphoteric materials 10 may remain in the scroll composite 40. By adjusting the size, shape, or amount of the amphoteric material 10, it is possible to adjust the internal size of the scroll composite 40.
  • a hollow scroll 50 having at least some or completely empty interior therein as solvent treatment and / or heat treatment is used to remove at least some or the amphoteric material 10 from the scroll composite 40.
  • the hollow scroll 50 may have a one-dimensional structure, that is, a hollow rod or fiber, that is, a tube shape.
  • the hollow scroll 50 may have a structure in which both ends thereof are open unlike carbon nanotubes.
  • heat treatment may be added to promote etching.
  • the solvent is a substance capable of selectively dissolving only the amphoteric substance 10, and includes water, methanol, ethanol, isopropyl alcohol, toluene, benzene, hexane, heptane, m-cresol, ethyl acetate, carbon disulfide, and dimethyl sulfoxide.
  • the treatment time is 1 It may be from time to 24 hours or several days, but is not limited thereto.
  • the scroll of the scroll composite may not be unrolled in the solvent by van der Waals interaction 25 between two-dimensional material sheets adjacent to each other.
  • the heat treatment temperature is not particularly limited as long as the deformation of the form of the scroll is not caused, for example, 100 to 800 °C, 100 to 700 °C, 100 to 600 °C, 100 to 500 °C, 200 to 800 °C, 200 to 700 ° C, 200 to 600 ° C, 200 to 500 ° C, 300 to 800 ° C, 300 to 700 ° C, 300 to 600 ° C, 300 to 500 ° C, 400 to 800 ° C, 400 to 700 ° C, 400 to 600 ° C, or 400 To 500 ° C, 500 to 800 ° C, 500 to 700 ° C, or 500 to 600 ° C, and a treatment time may be 0.1 to 10 hours, but is not limited thereto.
  • the gas may include, for example, argon, nitrogen, and the like, but is not limited thereto.
  • the inert gas may be supplied, for example, at a rate of about 1 to 10 cc / min.
  • the heat treatment may include, but is not limited to, induction heating, radiant heat, laser, IR, microwave, plasma, UV, or surface plasmon heating.
  • Figure 4 is a schematic diagram showing a scroll manufacturing method according to another embodiment of the present invention. Except as described below, the scroll manufacturing method according to the present embodiment may be similar to the scroll manufacturing method described with reference to FIGS. 1 to 3. 4 is an enlarged view of one edge portion of the two-dimensional material.
  • the linear bacteriophage may be provided as the amphoteric material 10 on the two-dimensional material 30.
  • the linear bacteriophage has a hydrophilic hydrophilic rod 10a having a residue such as a carboxyl group or an amine group, and a hydrophobic tail 10b at both ends thereof. Is known to be disposed.
  • the bacteriophage may be at least one selected from the group consisting of T1, T2, T3, T4, T5, T6, T7, M13, MS2, fd, f1, and P22.
  • the hydrophilic rod 10a of the bacteriophage 10 may be coupled to edges having the highest surface energy of the two-dimensional material 30, in particular, one edge having the highest surface energy among the edges.
  • the edge of the two-dimensional material 30 and the hydrophilic rod 10a of the bacteriophage 10 may be coupled by surface interacion 21.
  • the hydrophobic tails 10b of the bacteriophage 10 may interact 23 by an in-plane region of the two-dimensional material 30 and van der Waals forces. This interaction may initiate scrolling of the two-dimensional material 30. However, even if there is no such interaction 23, the two-dimensional material 30 may be formed only by the surface interaction 21 between the edge of the two-dimensional material 30 and the hydrophilic rod 10a of the bacteriophage 10.
  • a hollow scroll (50 in FIG. 3) can be formed by removing the bacteriophage using a solvent that selectively dissolves the bacteriophage.
  • FIG. 5 and FIG. 6 are schematic views showing a scroll manufacturing method according to another embodiment of the present invention. Except as described below, the scroll manufacturing method according to the present embodiment may be similar to the scroll manufacturing method described with reference to FIGS. 1 to 3. In addition, in FIG. 5 and FIG. 6, one side edge part of the two-dimensional raw material is expanded and shown.
  • the amphoteric material self-assembles M1 and M2 may be provided on the two-dimensional material 30.
  • the concentration of the amphoteric material 10 in the amphoteric solution in which the amphoteric material 10 is dissolved in the solvent is adjusted above the critical micelle concentration, and also before mixing with the two-dimensional material dispersion.
  • the amphoteric material solution is heated to a predetermined temperature, it may be cooled and left for a predetermined time.
  • the amphoteric material 10 is self-assembled in the amphoteric material solution, so that the rod- or fibrous self-assembly M1 as shown in FIG. 5 or the spherical shape as shown in FIG. 6.
  • Self-assembly (M2) can be formed.
  • the self-assemblies M1 and M2 may also be called micelles.
  • These self-assembled bodies M1 and M2 may be exposed to the hydrophilic portion 10a of the amphoteric material 10.
  • the shape of these self-assembled (M1, M2) can be determined by the solvent in the amphoteric material solution.
  • the diameters and / or lengths of the magnetic assemblies M1 and M2 may be changed depending on the concentration of the amphoteric material in the amphoteric material solution, the heating temperature, the cooling temperature, and the time left to stand.
  • the concentration of the ampholytic material in the amphoteric material solution may be from about 0.001 g / L to about 1 g / L.
  • the heating temperature may be 30 to 200 degrees.
  • the cooling temperature may be about -196 degrees (° C.) to about 25 degrees (° C.).
  • the time left may be 0.5 to 24 days.
  • the amphoteric materials 10 form the shell of one layer to form the self-assembled bodies M1 and M2, but the present disclosure is not limited thereto, as illustrated in FIGS. 8 and 9.
  • the diameter of the amphoteric materials 10 may be controlled by forming a multi-layer shell to form the self-assembled bodies M1 and M2.
  • the hydrophilic portion 10a of the amphoteric material exposed to the outside of these self-assemblies M1, M2 is one of the edges with the highest surface energy of the two-dimensional material 30, in particular the highest surface energy of the edges. Can be coupled to the edge. Specifically, the edge of the two-dimensional material 30 and the hydrophilic portion 10a of the amphoteric material 10 may be joined by surface interaction 21. On the other hand, in the region where the density of the amphoteric material 10 is sparsely disposed in the self-assemblies M1 and M2, the hydrophobic portion 10b of the amphoteric material 10 may be exposed, and the hydrophobic parts may be exposed.
  • the 10b may interact 23 with an in-plane region of the two-dimensional material 30 by van der Waals forces or the like. This interaction may initiate scrolling of the two-dimensional material 30. However, even if there is no such interaction 23, the surface interaction 21 only between the edge of the two-dimensional material 30 and the hydrophilic portion 10a of the amphoteric material 10 may be used. It is assumed that the scrolling can be started.
  • the scroll composite 40 according to the present embodiment may have a larger inner diameter than the scroll composite described with reference to FIG. 2 as the amphoteric material 10 forms the self-assembles M1 and M2. .
  • the hollow scroll (50 in FIG. 3) may be manufactured by removing the amphoteric material 10 from the scroll composite 40 using a solvent and / or heat treatment.
  • the hollow scroll formed in the present embodiment may have a larger inner diameter than the hollow scroll described with reference to FIG. 3.
  • FIGS. 8 and 9 are schematic views showing scroll manufacturing methods according to another embodiment of the present invention. Except as described below, the scroll manufacturing method according to the present embodiment may be similar to the scroll manufacturing method described with reference to FIGS. 1 to 3. In addition, in FIG. 8 and FIG. 9, one side edge part of the two-dimensional raw material is expanded and shown.
  • the amphoteric material self-assembles C1 and C2 may be provided on the two-dimensional material 30.
  • the amphoteric material self-assembles C1 and C2 may have a form in which the amphoteric material 10 is self-assembled on the core particles 15 and 17.
  • the core particles 15 and 17 may be metal particles, metal oxide particles, or bacteriophages, and may be spherical particles 15 as shown in FIG. 9 or rod-shaped particles 17 as shown in FIG. 10. have.
  • the bacteriophage may correspond to the rod-shaped particles 17 as shown in FIG. 10.
  • the amphoteric material self-assembled body C1 When the amphoteric material 10 is self-assembled on the spherical particles 15, the amphoteric material self-assembled body C1 may have a spherical shape, while the amphoteric material ( When 10) is self-assembled, the amphoteric material self-assembled body (C2) may have the form of a rod or fiber.
  • the metal particles may be Au, Ag, Fe, Al, Cu, Co, Ni, W, Zn, Mo, Ti, Ru, Pd, Ge, Pt, Li, Si, or alloy particles of two or more thereof, and The diameter may be 1 nm to 10 ⁇ m.
  • the metal oxide particles are Al (OH) 3 , Al 2 O 3 , MnO, SiO 2 , ZnO, Fe 2 O 3 , Fe 3 O 4 , Li 4 Ti 5 O 12 , LiNi 0 . 5 Mn 1 . 5 O 4 or TiO 2 particles, the diameter may be 1nm to 10 ⁇ m. When the metal particles or the metal oxide particles are rod-shaped, the length may be 1 nm to 10 ⁇ m.
  • amphoteric material self-assembles (C1, C2) on the two-dimensional material 30
  • the amphoteric material (10) and the core particles are added to the solvent and stirred to prepare a amphoteric material solution, This can be done by mixing with a two-dimensional material dispersion.
  • the metal particles, the metal oxide particles, and the bacteriophage 15, 17 may have hydrophilic surfaces thereof such that the hydrophilic portion 10a of the amphoteric material 10 is magnetic on the amphoteric material. It may be assembled to form the first shell (S1). The surface of the first shell S1 may be exposed to the hydrophobic portion 10b of the amphoteric material 10, and the hydrophobic portion of the amphoteric material 10 on the surface of the first shell S1. 10b may be self-assembled again to form the second shell S2. The hydrophilic portion 10a may be exposed on the surface of the second shell S2.
  • the second shell S2 may have a sparse density of the amphoteric material 10 compared to the first shell S1, so that the surface of the amphoteric material self-assembled bodies C1 and C2 has a hydrophilic part ( 10a) and hydrophobic portion 10b may be exposed simultaneously.
  • the hydrophilic portion 10a exposed to the surfaces of the amphoteric material self-assembles C1 and C2 may be formed at edges having the highest surface energy of the two-dimensional material 30, particularly at one of the edges having the highest surface energy. Can be combined.
  • the hydrophobic portions 10b exposed on the surfaces of the amphoteric material self-assembles C1 and C2 may interact 23 by the van der Waals forces and the in-plane area of the two-dimensional material 30. have. This interaction may initiate scrolling of the two-dimensional material 30. However, even if there is no such interaction 23, the surface interaction 21 only between the edge of the two-dimensional material 30 and the hydrophilic portion 10a of the amphoteric material 10 may be used. It is assumed that the scrolling can be started.
  • the scroll composite according to the present embodiment is larger than the scroll composite described with reference to FIG. 2 as the amphoteric material 10 forms the self-assembled bodies C1 and C2 together with the particles 15 and 17. It may have an inner diameter.
  • the size of the amphoteric material self-assembly (C1, C2) for example, by adjusting the diameter of the inside of the scroll composite (40 of FIG. 2), for example, it may be possible to adjust the internal diameter.
  • the size of the amphoteric material self-assembly (C1, C2) can be adjusted by adjusting the size of the particles (15, 17) and / or the number of layers of the shell (S1, S2) constituting the amphoteric material (10) Can be.
  • a hollow hollow scroll (50 in FIG. 3) may be produced by removing the amphoteric material 10 from the scroll composite using solvent and / or heat treatment. At this time, if the amphoteric material 10 bonded by the interaction with the two-dimensional material 30 is removed, the core particles may also be removed.
  • the hollow scroll formed in the present embodiment may have a larger inner diameter than the hollow scroll described with reference to FIG. 3.
  • Graphene a two-dimensional material, 1.5 g was placed in the solvent shown in Table 2 or Table 6, and dispersed at 1,400 rpm for 1 hour by mechanical steering. After sonication for 30 minutes, the dispersion was centrifuged at 4400 rpm for 30 minutes, and then a supernatant graphene dispersion was obtained.
  • baline acid derivatives represented by Formulas 4 to 8 (Preparation Examples 1 to 6), sodium dodecyl sulfate (Preparation Example 7), lauroyl macrogol glyceride (Preparation Example 8), sodium cholate hydrate Hydrate (Sodium cholate hydrate, Preparation Example 9), deoxycholic acid (Preparation Example 9), which is bilic acid, bacteriophages T1, M13, and fd (Preparation Examples 11 to 13), or the balic acid represented by Formulas 13 to 15
  • the amphoteric material of any one of the derivatives (Preparation Examples 66 to 68) was dissolved in the solvent shown in Table 2 or Table 6 by the amount shown in Table 2 or Table 6 to prepare an amphoteric solution. Thereafter, it was heated to the temperature shown in Table 2 or Table 6.
  • a graphene dispersion was obtained in the same manner as in Preparation Example 1, except that 1.5 g of graphene was added to methanol.
  • a solution of 2.0 wt% of total concentration was prepared by adding a bipolar derivative (Formula 4) and a metal oxide particle, TiO 2 particles (diameter 20 nm, R & D Korea), in a weight ratio of 97: 3 to methanol. Agitated for 5 hours to prepare an amphoteric solution. The amphoteric solution was then heated to 65 degrees and then left at 11 degrees for 3 hours.
  • a bipolar derivative Formula 4
  • TiO 2 particles diameter 20 nm, R & D Korea
  • a graphene dispersion was obtained in the same manner as in Preparation Example 1, except that 1.5 g of graphene was added to heptane.
  • ammonium biacetic acid derivative of Formula 4 and the bacteriophage P22 were added to heptane in a weight ratio of 80:20 to prepare a solution having a total concentration of 3.0% by weight, and then stirred for 1 hour to prepare an amphoteric solution. Prepared. Thereafter, the amphoteric solution was heated to 90 degrees.
  • a graphene dispersion was obtained in the same manner as in Preparation Example 1, except that 1.5 g of graphene was added to carbon disulfide.
  • Dioxycholic acid, an amphoteric substance, and Fe 3 O 4 particles, which are metal oxide particles, were added to carbon disulfide in a weight ratio of 60:40 to prepare a solution having a total concentration of 5% by weight, followed by stirring for 3 hours. The solution was prepared. The amphoteric solution was then heated to 110 degrees and then left at 0 degrees for 4 hours.
  • a graphene dispersion was obtained in the same manner as in Preparation Example 1, except that 1.5 g of graphene was added to dichloromethane.
  • 1.5 g of two-dimensional boron nitride was placed in 5 ml of ODCB, and dispersed at 1,400 rpm for 1 hour by mechanical steering. After sonication for 30 minutes, the dispersion was centrifuged at 4400 rpm for 30 minutes, and the supernatant boron nitride dispersion was obtained.
  • the boron nitride dispersion and the heated amphoteric solution were mixed and left at room temperature for 24 hours. As a result, a boron nitride scroll composite having an amphoteric material contained in the boron nitride scroll was obtained.
  • Amphoteric solution was prepared by dissolving 0.002 mmol of the bile acid derivative of Formula 4 as an amphoteric substance in 1 ml of ODCB. This amphoteric solution was heated to 60 ° C. The heated amphoteric solution was then left at room temperature for 24 hours. Except for this, the same method as in Preparation Example 18 was used to obtain a boron nitride scroll composite including an amphoteric material in the boron nitride scroll.
  • boron nitride 1.5 g of a two-dimensional material, boron nitride, was placed in the solvent shown in Table 3 or Table 6, and dispersed at 1,400 rpm for 1 hour by mechanical steering. After sonication for 30 minutes, the dispersion was centrifuged at 4400 rpm for 30 minutes, and the supernatant boron nitride dispersion was obtained.
  • amphoteric substances N-hexadecyltrimethylammonium salt (Preparation Example 20), benzylconium chloride (Preparation Example 21), the balylic acid derivative represented by the above formula (7) (preparation example 22), and the baline acid derivative represented by the above formula (8)
  • Preparation 23 Sodium Dodecyl Sulfate (Preparation 24), Sodium Laurethsulfate (Preparation 25), Cetylpyridylchloride (Preparation 26), Alpha-tocopherol ( ⁇ -tocopherol) as a synthetic vitamin E derivative ( Preparation 27), sodium taurocholate (Preparation 28), bacteriophages M13, Fd, T2, MS2 (Preparations 29-32), or the baline derivatives represented by Formulas 16-17 (Preparations 69 and Amphoteric material of any one of 70) was dissolved in the solvent shown in Table 3 or Table 6 by the amount shown in Table 3 or Table 6 to prepare an amphoteric solution.
  • boron nitride scroll composites containing an amphoteric material in the boron nitride scroll were obtained.
  • the maldivendenum sulfide dispersion and the amphoteric solution were mixed and then maintained at the temperature indicated in Table 4 or Table 6 and for the time indicated in Table 4 or Table 6.
  • the Maldives desulfide scroll composites containing an amphoteric substance inside the Maldives desulfide scroll were obtained.
  • Maldivene disulfide dispersion was obtained in the same manner as in Preparation Example 47, except that 1.5 g of maldivene sulfide was added to dichloromethane.
  • ammonium biacetic acid derivative of Formula 7 and the bacteriophage fd were added to dichloromethane in a weight ratio of 70:30 to prepare a solution having a total concentration of 6% by weight, followed by stirring for 0.5 hours. Was prepared. The amphoteric solution was then heated to 55 degrees.
  • Maldivene disulfide dispersion was obtained in the same manner as in Preparation Example 47, except that 1.5 g of maldivene sulfide was added to ODCB.
  • amphoteric material cetyl alcohol and bacteriophage P22 were added to the ODCB in a weight ratio of 50:50 to prepare a solution having a total concentration of 5% by weight, and then stirred for 3 hours to prepare an amphoteric material solution. The amphoteric solution was then heated to 120 degrees.
  • Maldivene disulfide dispersion was obtained in the same manner as in Preparation Example 47, except that 1.5 g of maldivene sulfide was added to chloroform.
  • N-hexadecyltrimethylammonium salt, an amphoteric substance, and Al (OH) 3 particles, which are metal oxide particles, were added to chloroform in a weight ratio of 70:30 to prepare a solution having a total concentration of 2% by weight, which was then stirred for 1 hour.
  • Amphoteric solution was prepared. Thereafter, the amphoteric solution was heated to 40 degrees and then left at room temperature for 18 hours.
  • a molybdenum sulfide dispersion was obtained in the same manner as in Preparation Example 47, except that 1.5 g of maldivenden sulfide was added to acetic acid.
  • Sodium dodecyl sulfate as an amphoteric substance and SiO 2 particles as metal oxide particles were added to acetic acid in a weight ratio of 95: 5 to prepare a solution having a total concentration of 1% by weight, and then stirred for 4 hours to prepare an amphoteric solution. Prepared. The amphoteric solution was then heated to 70 degrees and then left at -60 degrees for 2 hours.
  • One amphoteric material was added to the solvent shown in Table 5 by the weight shown in Table 5 below to prepare an amphoteric solution. Thereafter, it was heated to the temperature shown in Table 5.
  • amphoteric solution was left at the temperatures shown in Table 5 for the time indicated in Table 5 so that the amphoteric material could be recrystallized, self-assembled or micelleized.
  • FIG. 10 shows a SEM (Scanning Electron Microscope) photograph (a) and a TEM (Transmission Electron Microscope) photograph (b) of the boron nitride dispersion liquid obtained in the course of Preparation Example 18.
  • SEM Sccanning Electron Microscope
  • TEM Transmission Electron Microscope
  • exfoliated hexagonal-boron nitride is a multi-layer boron nitride in which a plurality of layers are stacked in parallel, and its size is several hundred nanometers (several). hundred nanometers) level.
  • FIG. 11 is a photograph (a) of the boron nitride dispersion liquid obtained in the course of Preparation Example 18, and a photo (c) photographing the mixed liquid of the dispersion solution and the solution of the valine acid derivative of Formula 4.
  • FIG. Preparation Example 18 and the photo (c) was used 0.02 mmol of the valine acid derivative of formula (4), while the photo (b) and photo (d) was obtained by varying the molar number of the bilic acid derivative of formula (4) to 0.01mmol and 0.1mmol, respectively
  • the photographs are taken of a mixture of a boron nitride dispersion solution and a solution of a valine acid derivative of Formula 4.
  • the bottom precipitates are agglomerated h-BN and h-BN multilayers, while the suspended precipitates are mostly mostly boron nitride scroll composites.
  • FIG. 12 shows TEM pictures (a) and HR (TE) -TEM pictures (b, c, d, e, and f) of the boron nitride scroll composites obtained in Preparation Example 18.
  • FIG. 12 shows TEM pictures (a) and HR (TE) -TEM pictures (b, c, d, e, and f) of the boron nitride scroll composites obtained in Preparation Example 18.
  • boron nitride scroll composites formed by interaction between h-BN sheets having a valine acid derivative represented by Chemical Formula 4 have a tube-like shape. It can be seen that the inner diameter of the boron nitride scroll composite is 20 to 60 nm, and the d-spacing in the walls of the boron nitride scroll composite is 0.33 nm (see b). 0.33 nm corresponds to the interlayer distance in the multi-layer h-BN sheets and BN nanotubes.
  • One fully dried boron nitride scroll is shown in photographs (c) and (d), and enlarged photographs of the circles indicated in photographs (c) and (d) are shown in (e) and (f). Each is shown. In (e) and (f) it can be seen that the ends of the scroll are circular.
  • FIG. 13 shows TEM images (a) and boron nitride scroll composites (TEM) photographing boron nitride dispersions obtained in the course of Preparation Example 18 (b, c, d). .
  • pictures (b) and (c) correspond to initial stages of scrolling by h-BN, and picture (d) shows a state in which scrolling is completed.
  • the separation h-BN (a) represents the FWHM (full width at half maxium) of 16cm -1 at 1364cm -1 as the E 2g mode phonons, BN scroll composite (b) the E 2g phonons
  • the mode shows an FWHM of 1366 cm ⁇ 1 to 19 cm ⁇ 1 .
  • This blue shift (2 cm -1 ) and increase in FWHM (3 cm -1 ) of this E 2g phonon mode of BN scroll composites resulted in lip-lip interactions between scrolled h-BN sheets and BN It was estimated to be due to the morphological differences of the scrolls.
  • FIG. 15 are HR-TEM photographs of the BN scroll composite material (a) obtained in Preparation Example 18 and the BN scroll composite material (b) obtained in Preparation Example 19.
  • FIG. 15 are HR-TEM photographs of the BN scroll composite material (a) obtained in Preparation Example 18 and the BN scroll composite material (b) obtained in Preparation Example 19.
  • FIG. 15 are HR-TEM photographs of the BN scroll composite material (a) obtained in Preparation Example 18 and the BN scroll composite material (b) obtained in Preparation Example 19.
  • the BN scroll composite material (b) obtained in Preparation Example 19 compared to the BN scroll composite material (a) obtained in Preparation Example 18 has a larger internal diameter due to self-assembly of the baline acid derivative of Formula 4 It can be seen that.
  • the bile acid derivative of Formula 4 is self-assembled to form a fiber.
  • the baline derivative is recrystallized to form a fiber.
  • the internal diameter of the two-dimensional material scroll can be changed by recrystallization of the amphoteric material.
  • FIG. 16 are SEM photographs (a, b) and TEM photographs (c, d) photographing BN scrolls obtained in Preparation Examples 79 and 80.
  • FIG. 16 are SEM photographs (a, b) and TEM photographs (c, d) photographing BN scrolls obtained in Preparation Examples 79 and 80.
  • FIG. 16 are SEM photographs (a, b) and TEM photographs (c, d) photographing BN scrolls obtained in Preparation Examples 79 and 80.
  • (a) is a TEM photograph of a case where a BN scroll composite having a relatively small internal diameter obtained according to Preparation Example 18 in Preparation Example 79 was washed several times with methanol, and only at both ends of the BN scroll composite. It can be seen that the inner baline derivative is etched.
  • (b) is a TEM photograph of the case where the BN scroll composite material having a relatively small inner diameter obtained according to Preparation Example 18 in Preparation Example 79 was left to immerse in methanol for several days. It can be seen that a hollow BN scroll is formed.
  • (c) and (d) are SEM images of the case where the BN scroll composite having a relatively large internal diameter obtained according to Preparation Example 19 in Preparation Example 80 was washed several times with methanol, and the relatively large inner diameter of about 125 nm was obtained. It can be seen that the hollow BN scroll having is formed.
  • FIG. 17 is a TGA graph (a) and a TEM photograph (b) obtained by heat treating boron nitride, a baline acid derivative of formula 4, and a BN scroll composite obtained according to Preparation Example 18 in a nitrogen atmosphere.
  • the side wall of the hollow BN scroll is composed of six to seven layers of sheets.
  • FIG. 18 shows a SEM (Scanning Electron Microscope) photograph of the graphene dispersion obtained in the course of Preparation Example 1.
  • FIG. 18 shows a SEM (Scanning Electron Microscope) photograph of the graphene dispersion obtained in the course of Preparation Example 1.
  • the exfoliated graphene is a multi-layered graphene having a plurality of layers stacked in parallel, and the size thereof is on the order of several hundred nanometers.
  • FIG. 19 is a photograph (A) of a graphene dispersion obtained in the course of Preparation Example 1, and a photograph (D) photographing a mixture of the dispersion and the solution of the valine acid derivative of Formula 4.
  • FIG. 19 is a photograph (A) of a graphene dispersion obtained in the course of Preparation Example 1, and a photograph (D) photographing a mixture of the dispersion and the solution of the valine acid derivative of Formula 4.
  • FIG. 20 shows a high resolution (HR) -TEM image of the graphene scroll composites obtained in Preparation Example 1.
  • the graphene scroll composites formed by interaction between graphene sheets having a valine acid derivative of Formula 4 therein have a tube-like shape.
  • the inside diameter of the graphene scroll composite is 12 to 20 nm, and the inside of the graphene scroll composite contains amphoteric material, which forms a black color.
  • the distance between the crystal faces in the graphene walls is 0.33. It can be seen that it is nm.
  • the exfoliated graphene is G and D phonon mode 1576cm -1 and 2677cm -1 , graphene powder 1570cm -1 and 2673cm -1 and graphene scroll composite 1564cm -1 and 2698cm -1 Is confirmed.
  • FIG. 22 shows SEM pictures of graphene scroll composites obtained in the course of Preparation Example 2.
  • the inner diameter of the graphene scroll composite is 250 nm, and it is confirmed that the amphoteric material entered into the graphene scroll composite forms a fiber.
  • FIG. 23 shows HR-TEM photographs (A, B, C) of graphene scrolls obtained in Preparation Example 74 and SEM photographs (D, E, F) of graphene scrolls obtained in Preparation Example 75; to be.
  • FIG. 23 (A) and (B) are HR-TEM photographs illustrating a case where a graphene scroll composite having a relatively small inner diameter obtained according to Preparation Example 1 in Preparation Example 74 was washed with methanol several times. It can be seen that the inner baline derivative is etched only at both ends of the graphene scroll composite.
  • (C) is an HR-TEM photograph of a graphene scroll composite having a relatively small inner diameter obtained according to Preparation Example 1 in Preparation Example 74 and left for several days after immersing in methanol, wherein the inner baline derivative is It can be seen that it is completely removed to form a hollow graphene scroll with an internal diameter of about 5 nm.
  • (D), (E) and (F) are SEM images of the case where the graphene scroll composite having a relatively large inner diameter obtained according to Preparation Example 2 in Preparation Example 75 was washed several times with methanol, and was about 300 nm. It can be seen that hollow graphene scrolls with a relatively large inner diameter are formed.
  • the side wall of the hollow graphene scroll is composed of 10 to 11 layers of sheets.
  • FIG. 25 is an SEM photograph of the amphoteric solution obtained during the preparation of Example 17.
  • the metal particles Ag and amphoteric substances are sufficiently mixed. This means that the metal particles and the amphoteric material can enter the inside of the two-dimensional material scroll by self-assembly to form a two-dimensional material scroll composite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

2차원 소재를 사용한 스크롤 제조방법 및 이에 의해 제조된 스크롤을 제공한다. 스크롤 제조방법은 2차원 소재를 제공하는 것을 포함한다. 상기 2차원 소재 상에 친수성 부분과 소수성 부분을 갖는 양쪽성 물질을 제공하여 상기 2차원 소재를 스크롤한다. 그 결과 스크롤 구조 내부에 상기 양쪽성 물질이 배치된 스크롤 복합재가 형성된다.

Description

내부에 양쪽성 물질을 포함하는 스크롤 복합재 및 그의 제조방법
본 발명은 1차원 소재에 관한 것으로, 보다 상세하게는 스크롤에 관한 것이다.
그래핀과 같은 2차원 소재는 3차원의 벌크소재와는 다른 열적, 기계적, 전기적 성질을 지닌다. 구체적으로, 기계적 강성, 강도, 연성이 우수하고, 또한 전기 및 열 전도도가 우수한 것으로 알려져 있다. 이러한 2차원 소재의 우수한 특성으로 인해 2차원 소재는 에너지 저장소자, 에너지 변환 소자, 센서, 촉매, 및 바이오응용소자 등에서 많이 적용되고 있다.
한편, 그래핀의 동소체에 해당하는 1차원 소재인 탄소나노튜브 또한 우수한 열적, 기계적, 전기적 성질을 지님에 따라 상기 2차원 소재와 마찬가지로 다양한 분야에서 응용되고 있다.
이러한 나노튜브의 내부를 이용하여 원하는 다양한 물질을 포함하는 복합구조를 만드는 연구가 진행되고 있다. 탄소나노튜브의 경우, 내부에 플러렌 (Brian W. Smith, Marc Monthioux, David E. Luzzi, Encapsulated C60 in carbon nanotubes, Nature, VOL 396, 26, NOVEMBER, 1998), 유기물 (TAISHI TAKENOBU et al., Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes, Nature materials , VOL 2, OCTOBER, 2003), 금속 (Jean-Philippe et al., Selective Deposition of Metal Nanoparticles Inside or Outside Multiwalled Carbon Nanotubes, ACSNano, VOL. 3, NO. 8, 2081??2089, 2009) 등 원하는 물질을 넣어 탄소나노튜브 복합소재를 만들어 왔다. 그러나 나노튜브의 끝부분을 열린 상태로 제조하는 방법과, 원하는 물질을 넣은 후 그 물질을 제거하는 것이 쉽지 않았다.
따라서, 본 발명이 해결하고자 하는 과제는 2차원 소재의 말림을 유도하여 1차원의 스크롤을 형성하는 방법 및 그에 의해 형성된 1차원 스크롤을 제공함에 있다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 이루기 위하여 본 발명의 일 측면은 스크롤 복합재를 제공한다. 상기 스크롤 복합재는 양측 말단이 오픈된 2차원 소재 스크롤을 구비한다. 상기 스크롤의 내부에 양쪽성 물질이 배치된다.
상기 2차원 소재는 그래핀(Graphene), 그래핀 옥사이드(Graphene oxide), 보론 나이트라이드(boron nitride), 보론카본 나이트라이드(BCN), 텅스텐 옥사이드(WO3), 텅스텐 설파이드(WS2), 몰리브데넘 설파이드(MoS2), 몰리브데넘 텔루라이드(MoTe2), 및 망간 옥사이드(MnO2)로 이루어진 군에서 선택되는 단일물질 또는 이들 중 둘 이상이 적층된 복합물질일 수 있다.
상기 양쪽성 물질은 계면 활성제, 바일산, 바일산염, 바일산염 수화물, 바일산 에스터, 바일산 유도체, 또는 박테리오파지일 수 있다.
상기 양쪽성 물질은 자기조립체일 수 있다. 상기 자기조립체의 외부에는 상기 양쪽성 물질의 친수성 부분이 노출될 수 있다. 상기 자기조립체는 구형, 막대형, 또는 섬유형일 수 있다.
상기 양쪽성 물질 자기조립체는 코어 입자 및 상기 코어 입자 상에 자기조립된 양쪽성 물질을 구비하는 하나 이상의 쉘을 포함할 수 있다. 상기 양쪽성 물질 자기조립체의 외부에는 상기 양쪽성 물질의 친수성 부분이 노출될 수 있다. 상기 코어 입자는 구형 또는 막대형일 수 있다. 상기 코어 입자는 금속 입자, 금속 산화물 입자, 또는 박테리오파지일 수 있다.
상기 기술적 과제를 이루기 위하여 본 발명의 일 측면은 2차원 소재 스크롤을 제공한다. 상기 2차원 소재 스크롤은 2차원 소재가 말린 형태를 갖고, 서로 인접하는 2차원 소재 시트들 사이에 반데르발스 상호작용을 가지며, 양측 말단이 오픈된 구조를 갖는다. 상기 2차원 소재 스크롤은 내부가 비어 있는 중공 스크롤일 수 있다.
상기 기술적 과제를 이루기 위하여 본 발명의 일 측면은 2차원 소재 스크롤제조방법을 제공한다. 먼저, 2차원 소재를 제공한다. 상기 2차원 소재 상에 친수성 부분과 소수성 부분을 갖는 양쪽성 물질을 제공하여 상기 2차원 소재를 스크롤한다. 그 결과 스크롤 구조 내부에 상기 양쪽성 물질이 배치된 스크롤 복합재가 형성된다.
상기 2차원 소재는 용매 내에 분산된 2차원 소재 분산액의 형태로 제공될 수 있다. 상기 양쪽성 물질을 제공하는 것은 상기 양쪽성 물질을 용매 내에 용해시킨 양쪽성 물질 용액을 상기 2차원 소재 분산액과 혼합하는 것일 수 있다. 상기 양쪽성 물질 용액을, 상기 2차원 소재 분산액과 혼합하기 전에, 가열할 수 있다. 또한, 상기 가열된 양쪽성 물질 용액을, 상기 2차원 소재 분산액과 혼합하기 전에, 냉각시킬 수 있다.
상기 양쪽성 물질 용액은 코어 입자를 포함할 수 있다.
상기 스크롤 복합재를 용매 처리 및/또는 열처리하여 내부의 상기 양쪽성 물질을 적어도 일부 제거하여 중공 스크롤을 형성할 수 있다. 상기 용매는 상기 양쪽성 물질을 용해하는 용매일 수 있다. 상기 열처리는 200 내지 800℃일 수 있다.
상술한 바와 같이 본 발명에 따르면, 양쪽성 물질을 이용하여 2차원 소재의 말림을 유도하여 1차원의 스크롤을 용이하게 형성할 수 있다. 또한, 1차원 스크롤이 제공될 수 있다.
도 1 내지 도 3은 본 발명의 일 실시예에 따른 스크롤 제조방법을 순차적으로 나타낸 개략도들이다.
도 4는 본 발명의 다른 실시예에 따른 스크롤 제조방법을 나타낸 개략도이다.
도 5, 도 6, 및 도 7은 본 발명의 다른 실시예에 따른 스크롤 제조방법을 나타낸 개략도들이다.
도 8 및 도 9는 본 발명의 다른 실시예에 따른 스크롤 제조방법들을 나타낸 개략도들이다.
도 10은 제조예 18의 진행과정 중 얻어진 보론나이트라이드 분산액을 촬영한 SEM (Scanning Electron Microscope) 사진(a)과 TEM (Transmission Electron Microscope) 사진(b)을 나타낸다.
도 11은 제조예 18의 진행과정 중 얻어진 보론나이트라이드 분산액의 사진(a)과 이 분산액과 화학식 4의 바일산 유도체 용액의 혼합액을 촬영한 사진(c)을 나타낸다.
도 12는 제조예 18에서 얻어진 보론나이트라이드 스크롤 복합소재들을 촬영한 TEM 사진들(a)과 HR(high resolution)-TEM 사진들(b, c, d, e, f)을 나타낸다.
도 13은 제조예 18의 진행과정 중 얻어진 보론나이트라이드 분산액을 촬영한 TEM (Transmission Electron Microscope) 사진(a)과 보론나이트라이드 스크롤 복합소재들을 촬영한 TEM 사진들(b, c, d)을 나타낸다.
도 14 제조예 18의 진행과정 중 얻어진 박리된 h-BN (a)과 제조예 18에서 얻어진 BN 스크롤 복합소재 (b)의 라만 그래프(Raman graph)이다.
도 15는 제조예 18에서 얻어진 BN 스크롤 복합소재(a)와 제조예 19에서 얻어진 BN 스크롤 복합소재(b)를 촬영한 HR-TEM 사진들이다.
도 16는 제조예 79 및 80에 따라 얻어진 BN 스크롤을 촬영한 SEM 사진들(a, b)과 TEM 사진들(c, d)이다.
도 17은 보론나이트라이드, 화학식 4의 바일산 유도체, 및 제조예 18에 따라 얻어진 BN 스크롤 복합체를 질소 분위기에서 열처리하여 얻은 TGA 그래프(a)와 TEM사진(b)이다.
도 18은 제조예 1의 진행과정 중 얻어진 그래핀 분산액을 촬영한 SEM (Scanning Electron Microscope) 사진을 나타낸다.
도 19는 제조예 1의 진행과정 중 얻어진 그래핀 분산액의 사진(A)과 이 분산액과 화학식 4의 바일산 유도체 용액의 혼합액을 촬영한 사진(D)을 나타낸다.
도 20는 제조예 1에서 얻어진 그래핀 스크롤 복합소재들을 촬영한 HR(high resolution)-TEM 사진을 나타낸다.
도 21 제조예 2의 진행과정 중 얻어진 박리된 그래핀(G5 dispersion), 그래핀 파우더 및 제조예 2에서 얻어진 그래핀 스크롤 복합소재 (M-GNSs) 의 라만 그래프(Raman graph)이다.
도 22은 제조예 2의 진행과정 중 얻어진 그래핀 스크롤 복합소재들을 촬영한 SEM 사진들을 나타낸다.
도 23은 제조예 74에 따라 얻어진 그래핀 스크롤을 촬영한 HR-TEM 사진들(A, B, C)과 제조예 75에 따라 얻어진 그래핀 스크롤을 촬영한 SEM 사진들(D, E, F)이다.
도 24은 그래파이트, 화학식 4의 바일산 유도체, 및 제조예 1에 따라 얻어진 그래핀 스크롤 복합체를 질소 분위기에서 열처리하여 얻은 TGA 그래프(a)와 TEM사진(b)이다.
도 25는 제조예 17의 진행과정 중 얻어진 양쪽성 물질 용액을 촬영한 SEM 사진이다.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다.
도 1 내지 도 3은 본 발명의 일 실시예에 따른 스크롤 제조방법을 순차적으로 나타낸 개략도들이다.
도 1을 참조하면, 2차원 소재(30)가 제공된다. 상기 2차원 소재(30)는 나노미터 수준의 두께를 갖는 매우 얇은 소재를 의미하는데, 예를 들어, 1 내지 10 원자층, 나아가 1 내지 5원자층, 일 예로서 1 내지 2 원자층을 갖는 소재일 수 있다. 각 원자층은 결정구조 일 예로서, 육각형의 벌집모양을 가질 수 있다.
상기 2차원 소재(30)는 그래핀(Graphene), 그래핀 옥사이드(Graphene oxide), 보론 나이트라이드(boron nitride), 보론카본 나이트라이드(BCN), 텅스텐 옥사이드(WO3), 텅스텐 설파이드(WS2), 몰리브데넘 설파이드(MoS2), 몰리브데넘 텔루라이드(MoTe2), 및 망간 옥사이드(MnO2)로 이루어진 군에서 선택되는 단일물질 또는 이들 중 둘 이상이 적층된 복합물질일 수 있다. 복합물질은 그래핀 상에 보론나이트라이드, 보론카본나이트라이드, 또는 몰리브데넘설파이드가 적층된 것, 또는 보론나이트라이드 상에 몰리브데넘설파이드가 적층된 것일 수 있다.
이러한 2차원 소재(30)의 에지들은 면 내의 영역에 비해 높은 표면 에너지(surface energy)를 가져 안정성(stability)가 낮아 산화되기 쉬울 수 있다.
상기 2차원 소재(30)를 용매 내에 분산시켜, 2차원 소재 분산액을 제공할 수 있다. 구체적으로, 상기 2차원 소재 분산액은 2차원 소재 파우더를 용매 내에 넣고 기계적 스터어링 또는 초음파를 사용하여 분산시킨 후, 원심분리를 통해 얻어질 수 있다. 상기 용매는 물, 메탄올, 에탄올, 이소프로필알콜, 톨루엔, 벤젠, 헥산, 헵탄, m-크레졸, 에틸아세테이트, 카본디설파이드, 디메틸설폭사이드, 디클로로메탄, 디클로로벤젠, 클로로포름, 사염화탄소, 아세톤, 테트라히드로푸란, 디메틸아세트아마드, N-메틸피롤리돈, 디메틸포름아미드 및 아세트산으로 이루어진 군에서 선택되는 하나의 용매 또는 둘 이상의 복합용매일 수 있다. 상기 용매는 상기 2차원 소재에 따라 상기 2차원 소재를 잘 분산시킬 수 있도록 적절하게 선택될 수 있다.
상기 2차원 소재(30) 상에 양쪽성 물질(10)을 제공할 수 있다. 구체적으로, 상기 2차원 소재(30)이 분산된 용매 내에 상기 양쪽성 물질(10)을 추가하거나, 양쪽성 물질(10)을 용매 내에 용해시킨 양쪽성 물질 용액을 상기 2차원 소재 분산액과 혼합할 수 있다. 추가적으로, 상기 양쪽성 물질 용액은 상기 2차원 소재 분산액과 혼합되기 전에 가열될 수 있다. 이 경우, 상기 양쪽성 물질 용액이 상온 상태의 상기 2차원 소재 분산액과 혼합됨과 동시에 냉각될 수 있어, 상기 2차원 소재(30)의 에지 부분에 상기 양쪽성 물질(10)이 자기조립되는 것이 용이해질 수 있다.
상기 양쪽성 물질 용액 내에서, 상기 양쪽성 물질은 일 예로서, 0.001g/mL 내지 1g/mL의 농도로 함유될 수 있으나, 이에 한정되는 것은 아니다. 다만, 상기 양쪽성 물질의 농도에 따라서, 상기 양쪽성 물질 용액과 상기 2차원 소재 분산액을 혼합한 후에 생성되는, 후술하는 2차원 소재의 스크롤 복합재들(도 2의 40))의 양을 조절할 수 있다.
양쪽성 물질 용액 내에서 용매는 물, 메탄올, 에탄올, 이소프로필알콜, 톨루엔, 벤젠, 헥산, 헵탄, m-크레졸, 에틸아세테이트, 카본디설파이드, 디메틸설폭사이드, 디클로로메탄, 디클로로벤젠, 클로로포름, 사염화탄소, 아세톤, 테트라히드로푸란, 디메틸아세트아마드, N-메틸피롤리돈, 디메틸포름아미드 및 아세트산으로 이루어진 군에서 선택되는 하나의 용매 또는 둘 이상의 복합용매로서, 상기 2차원 소재 분산액 내의 용매와 동일하거나 다를 수 있다.
상기 양쪽성 물질(10)은 하나의 분자 내에 친수성 부분(10a)과 소수성 부분(10b)을 모두 갖는 물질일 수 있다. 구체적으로, 상기 양쪽성 물질(10)은 유기물로서, 계면 활성제, 바일산, 바일산염, 바일산염 수화물, 바일산 에스터, 바일산 유도체, 또는 박테리오파지일 수 있다.
상기 계면 활성제는 소디움 도데실설페이트(Sodium dodecyl sulfate, SDS), 암모늄 라우릴설페이트(Ammonium lauryl sulfate), 소디움 라루레쓰 설페이트(Sodium laureth sulfate), 알킬벤젠설페이트(Alkyl benzene sulfonate), 세틸트리메틸암모늄 브로마이드(Cetyl trimethylammonium bromide, CTAB), 헥사데실트리메틸 암모늄 브로마이드(hexadecyl trimethyl ammonium bromide), 알킬트리메틸암모늄염 (alkyltrimethylammonium salts), 세틸피리딜 클로라이드(Cetylpyridinium chloride, CPCl), 폴리에톡실레이트탈로우 아민(Polyethoxylated tallow amine. POEA), 벤자일코늄 클로라이드(Benzalkonium chloride, BAC), 벤즈소늄 클로라이드(Benzethonium chloride, BZT), 도데실 베타민(Dodecyl betaine), 도데실 디메틸아민 옥사이드(dodecyl dimethylamine oxide), 코카미도프로필 베타민(Cocamidopropyl betaine), 알킬 폴리(에틸렌 옥사이드), 폴록사머(poloxamers), 폴록사민(Poloxamines), 알킬 폴리글루코사이드(alkyl polyglucoside), 세틸알콜(Cetyl alcohol), 소듐 디옥시크 코카미드(cocamide) MEA, 코카미드 DEA, 솔비탄 에스테르, 폴리옥시에틸렌 솔비탄 지방산 에스테르, 자당지방산에스테르, 폴리에틸렌 글리콜 히드록시스테아레이트, 폴리옥시에틸렌 글리콜화 천연 또는 수소화 피마자유, 폴리옥시에틸렌-폴리옥시프로필렌 공중합체, 합성 비타민 E 유도체, 폴리옥시에틸렌 알킬 에스테르, 지방산 마크로골 글리세라이드, 폴리글리세릴 지방산 에스테르, 및 실리콘계 계면활성제로 이루어진 군에서 선택되는 하나 이상의 화합물일 수 있다. 상기 하나 이상은 한 종류 이상 또는 같은 종류에서 둘 이상의 화합물일 수 있다.
상기 바일산은 일 예로서, 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Figure PCTKR2015001976-appb-I000001
상기 화학식 1에서, R1과 R2는 서로에 관계없이 -H 또는 -OH일 수 있고, R3는 -(CONH-(CH2)n1)n2-Y1이고, n1은 1 또는 2이고, n2은 1 또는 0이고, Y1은 -COOH 또는 -SO3H일 수 있다. 일 예로서, R1, R2, 및 R3는 하기 표 1에 나타낸 바와 같을 수 있다.
R1 R2 R3 바일산
-OH -OH -COOH 콜릭 산 (Cholic Acid)
-OH -H -COOH 체노디옥시콜릭 산 (Chenodeoxycholic Acid)
-H -OH -COOH 디옥시콜릭 산 (Deoxycholic Acid)
-H -H -COOH 리쏘콜릭 산 (Lithocholic Acid)
-OH -OH -CONH-CH2-COOH 글리코콜릭 산 (Glycocholic Acid)
-OH -OH -CONH-(CH2)2-SO3H 타우로콜릭 산 (Taurocholic Acid)
-OH -H -CONH-CH2-COOH 글리코체노디옥시콜릭 산 (Glycochenodeoxycholic Acid)
-OH -H -CONH-(CH2)2-SO3H 타우로체노디옥시콜릭 산 (Taurochenodeoxycholic Acid)
-H -OH -CONH-CH2-COOH 글리코디옥시콜릭 산 (Glycodeoxycholic Acid)
-H -OH -CONH-(CH2)2-SO3H 타우로디옥시콜릭 산 (Taurodeoxycholic Acid)
-H -H -CONH-CH2-COOH 글리코리쏘콜릭 산 (Glycolithocholic Acid)
-H -H -CONH-(CH2)2-SO3H 타우로리쏘콜릭 산 (Taurolithocholic Acid)
상기 바일산의 다른 예로서는, 디하이드록시콜릭산(Dehydrocholic acid), 히요디옥시콜릭산(Hyodeoxycholic acid), 또는 얼소디옥시콜릭산(Ursodeoxycholic acid)이 있다.
상기 바일산염은 상기 바일산의 금속염, 구체적으로, 바일산 나트륨염일 수 있다. 일 예로서, 소듐 글리고체노디옥시콜레이트(Sodium glycochenodeoxycholate), 소듐 타우로디옥시콜레이트(Sodium taurochenodeoxycholate), 소듐 타우로콜레이트(Sodium taurocholate), 소듐 디하이드로콜레이트(Sodium dehydrocholate), 또는 소듐 디옥시콜레이트(Sodium deoxycholate)일 수 있다.
또한, 상기 바일산염 수화물은 상기 바일산 금속염의 수화물, 구체적으로, 바일산 나트륨염의 수화물일 수 있다. 일 예로서, 소듐 타우로콜레이트 하이드레이트(Sodium taurocholate hydrate), 또는 소듐 콜레이트 하이드레이트(Sodium cholate hydrate)일 수 있다.
상기 바일산 에스터는 일 예로서, 히요디옥시콜릭산 메틸에스터(Hyodeoxycholic acid methyl ester)일 수 있다.
상기 바일산 유도체는 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2015001976-appb-I000002
상기 화학식 2에서, n은 0, 1 또는 2이고, R4 내지 R7는 서로 독립적으로 화학식 3으로 표시되는 기(group)이다.
[화학식 3]
Figure PCTKR2015001976-appb-I000003
상기 화학식 3에서, B1
Figure PCTKR2015001976-appb-I000004
,
Figure PCTKR2015001976-appb-I000005
,
Figure PCTKR2015001976-appb-I000006
,
Figure PCTKR2015001976-appb-I000007
,
Figure PCTKR2015001976-appb-I000008
,
Figure PCTKR2015001976-appb-I000009
, 및
Figure PCTKR2015001976-appb-I000010
로 이루어진 군에서 선택되는 하나의 기이고,
L1은 -W1-, -Q1-, -Q2-W2-, -W3-Q3-W4-, 또는 -W5-Q4-W6-Q5-Q6-인 연결기이며, W1, W2, W3, W4, W5, 및 W6는 서로에 관계없이
Figure PCTKR2015001976-appb-I000011
,
Figure PCTKR2015001976-appb-I000012
, 또는
Figure PCTKR2015001976-appb-I000013
이고, a1 내지 a3는 1 내지 4의 정수이고, Q1, Q2, Q3, Q4, Q5, 및 Q6는 서로에 관계없이
Figure PCTKR2015001976-appb-I000014
,
Figure PCTKR2015001976-appb-I000015
,
Figure PCTKR2015001976-appb-I000016
,
Figure PCTKR2015001976-appb-I000017
,
Figure PCTKR2015001976-appb-I000018
,
Figure PCTKR2015001976-appb-I000019
,
Figure PCTKR2015001976-appb-I000020
,
Figure PCTKR2015001976-appb-I000021
,
Figure PCTKR2015001976-appb-I000022
,
Figure PCTKR2015001976-appb-I000023
,
Figure PCTKR2015001976-appb-I000024
,
Figure PCTKR2015001976-appb-I000025
,
Figure PCTKR2015001976-appb-I000026
,
Figure PCTKR2015001976-appb-I000027
, 또는
Figure PCTKR2015001976-appb-I000028
이고,
G1
Figure PCTKR2015001976-appb-I000029
,
Figure PCTKR2015001976-appb-I000030
,
Figure PCTKR2015001976-appb-I000031
,
Figure PCTKR2015001976-appb-I000032
,
Figure PCTKR2015001976-appb-I000033
,
Figure PCTKR2015001976-appb-I000034
,
Figure PCTKR2015001976-appb-I000035
,
Figure PCTKR2015001976-appb-I000036
,
Figure PCTKR2015001976-appb-I000037
,
Figure PCTKR2015001976-appb-I000038
,
Figure PCTKR2015001976-appb-I000039
, -NH2, -CH3,, -SO3H, =O, -H, 또는
Figure PCTKR2015001976-appb-I000040
로 표시되는 기이다.
그리고, m은 0 또는 1이고, n은 0 또는 1이며, m과 n이 동시에 0인 경우, B1 및 L1은 없고 G1이 직접 연결된다.
일 예로서, R4, R5, 및 R6는 서로에 관계없이 -H, -OH, -SO3H, -OSO3H, 또는 =O이고, R7은 상기 화학식 3으로 표시되는 기일 수 있다.
상기 바일산 유도체는 하기 화학식들 4 내지 20중 어느 하나의 바일산 유도체일 수 있다.
[화학식 4]
Figure PCTKR2015001976-appb-I000041
(R)-N-(아미노메틸)-4-((3R, 5R, 8R, 9S, 10S, 13R, 14S, 17R)-3-하이드록시-10, 13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜탄아미드 ((R)-N-(aminomethyl)-4-((3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamide)
[화학식 5]
Figure PCTKR2015001976-appb-I000042
(R)-메틸-4-((3R, 5S, 7R, 8R, 9S, 10S, 12S, 13R, 14S, 17R)-3, 7, 12-트라이하이드록시-10, 13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜타노에이트 ((R)-methyl-4-((3R, 5S, 7R, 8R, 9S, 10S, 12S, 13R, 14S, 17R)-3, 7, 12-trihydroxy-10, 13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate)
[화학식 6]
Figure PCTKR2015001976-appb-I000043
(R)-4-((3R, 5R, 8R, 9S, 10S, 13R, 14S, 17R)-3-하이드록시-10, 13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)-N-(하이드록시메틸)펜탄아미드 ((R)-4-((3R, 5R, 8R, 9S, 10S, 13R, 14S, 17R)-3-hydroxy-10, 13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)-N-(hydroxymethyl)pentanamide)
[화학식 7]
Figure PCTKR2015001976-appb-I000044
(R)-N-(아미노메틸)-4-((3R, 5S, 7R, 8R, 9S, 10S, 12S, 13R, 14S, 17R)-3,7,12-트라이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜탄아미드 ((R)-N-(aminomethyl)-4-((3R, 5S, 7R, 8R, 9S, 10S, 12S, 13R, 14S, 17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamide)
[화학식 8]
Figure PCTKR2015001976-appb-I000045
(R)-4-((3R, 5R, 7R, 8R, 9S, 10S, 13R, 14S, 17R)-7-하이드록시-10,13-다이메틸-3-(설포옥시)헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜타노익산 ((R)-4-((3R, 5R, 7R, 8R, 9S, 10S, 13R, 14S, 17R)-7-hydroxy-10,13-dimethyl-3-(sulfooxy)hexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid)
[화학식 9]
Figure PCTKR2015001976-appb-I000046
β-콜란닉-3α,12α-디올 3-아세테이트 메틸 에스터(5β-Cholanic acid-3α,12α-diol 3-acetate methyl ester)
[화학식 10]
Figure PCTKR2015001976-appb-I000047
5β-콜란닉 산-3-온(5β-Cholanic acid-3-one)
[화학식 11]
Figure PCTKR2015001976-appb-I000048
5β-콜란닉산 3,7-디온 메틸 에스터(5β-Cholanic acid 3,7-dione methyl ester)
[화학식 12]
Figure PCTKR2015001976-appb-I000049
5β-콜란닉 산-3,7-디온(5β-Cholanic acid-3,7-dione)
[화학식 13]
Figure PCTKR2015001976-appb-I000050
카바믹(4R)-4-((3R,8R,9S,10S,13R,14S,17R)-3-하이드록시-10,13- 다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜타노익 안하이드라이드 (Carbamic(4R)-4-((3R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic anhydride)
[화학식 14]
Figure PCTKR2015001976-appb-I000051
(3R,7R,8R,9S,10S,12S,13R,14S,17R)-7,12-다이하이드록시-10,13-다이메틸-17-((R)-5-((2-메틸-3-옥소부탄-2-일)아미노)-5-옥소펜탄-2-일)헥사데카하이드로-1H-사이클로펜타[a]페난트렌-3-설포닉산( (3R,7R,8R,9S,10S,12S,13R,14S,17R)-7,12-dihydroxy-10,13-dimethyl-17-((R)-5-((2-methyl-3-oxobutan-2-yl)amino)-5-oxopentan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-3-sulfonic acid)
[화학식 15]
Figure PCTKR2015001976-appb-I000052
(R)-4-옥소-7-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-트라이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)옥탄나이트릴 ((R)-4-oxo-7-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)octanenitrile)
[화학식 16]
Figure PCTKR2015001976-appb-I000053
3-((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-트라이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜탄아미도)프로파노익 산(3-((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamido)propanoic acid)
[화학식 17]
Figure PCTKR2015001976-appb-I000054
(R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-트라이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜타노익 설퓨릭 안하이드라이드 ((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic sulfuric anhydride)
[화학식 18]
Figure PCTKR2015001976-appb-I000055
(R)-N-카바모일-4-((3R,5R,8R,9S,10S,12S,13R,14S,17R)-3,12-다이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜탄아미드((R)-N-carbamoyl-4-((3R,5R,8R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamide)
[화학식 19]
Figure PCTKR2015001976-appb-I000056
4-((S)-1-((3R,5R,8R,9S,10S,12S,13S,14S,17R)-3,12-다이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)에틸)벤젠설포닉 산(4-((S)-1-((3R,5R,8R,9S,10S,12S,13S,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)benzenesulfonic acid)
[화학식 20]
Figure PCTKR2015001976-appb-I000057
4-((S)-1-((3R,5R,8R,9S,10S,12S,13S,14S,17R)-3,12-다이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)에틸)벤조산(4-((S)-1-((3R,5R,8R,9S,10S,12S,13S,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)benzoic acid)
상기 바일산은 적어도 하나의 -OH와, -COOH 또는 -SO3H기가 노출되어 친수성을 나타내는 α-면과 -CH3기들이 노출되어 소수성을 나타내는 β-면을 구비하여, 양쪽성을 나타낸다. 또한, 상기 바일산 유도체는 친수성을 나타내는 상기 화학식 3의 G1기들이 노출된 α-면과 -CH3기들이 노출되어 소수성을 나타내는 β-면을 구비하여, 양쪽성을 나타낸다.
상기 박테리오파지는 단백질 부분과 소수성 테일을 구비하는 것으로 알려져 있다. 이와 같이 박테리오파지는 양쪽성을 나타낼 수 있다. 상기 박테리오파지는 막태 형태를 갖는 선상 박테리오파지(filamentous bacteriophage)일 수 있다. 서상 박테리오파지는 중앙부분에는 카르복실기 또는 아민기 등의 잔기(residue)를 구비하여 친수성을 갖는 친수성 막대가 배치되고, 양측 끝단에는 소수성을 갖는 테일들이 배치된 것으로 알려져 있다. 일 예로서, 상기 박테리오파지는 T1, T2, T3, T4, T5, T6, T7, M13, MS2, fd, f1 및 P22로 이루어진 군에서 선택되는 적어도 하나일 수 있다.
이러한 양쪽성 물질(10)의 친수성 부분(10a)은 상기 2차원 소재(30)의 표면 에너지가 높은 에지들, 특히 에지들 중 가장 표면 에너지가 높은 어느 한 에지에 결합할 수 있다. 구체적으로, 상기 2차원 소재(30)의 에지와 상기 양쪽성 물질(10)의 친수성 부분(10a)은 표면 상호작용(surface interacion, 21)에 의해 결합할 수 있다. 상기 표면 상호작용은 친수성-친수성 상호작용, 루이스 산과 루이스 염기 사이의 상호작용, 또는 수소결합일 수 있다. 이 때, 상기 2차원 소재(30)의 에지에 서로 인접하여 결합된 상기 양쪽성 물질들(10)의 소수성 부분들(10b)은 반데르발스 힘과 같은 힘(22)에 의해 서로 결합될 수 있다. 이에 따라, 상기 2차원 소재(30)에 에지에 상기 양쪽성 물질(10)이 자기조립될 수 있다.
도 1 및 도 2를 동시에 참조하면, 상기 자기조립된 양쪽성 물질들(10)의 소수성 부분들(10b)은 2차원 소재(30)의 면 내의 영역과 반데르발스 힘 등에 의해 상호작용(23)할 수 있다. 이러한 상호작용은 상기 2차원 소재(30)의 스크롤(scroll)을 개시할 수 있다. 그러나, 이러한 상호작용(23)이 없다고 하더라도, 상기 2차원 소재(30)의 에지와 상기 양쪽성 물질(10)의 친수성 부분(10a)의 표면 상호작용(21) 만으로도 상기 2차원 소재(30)의 스크롤을 개시시킬 수 있는 것으로 추정된다.
상기 2차원 소재(30)의 스크롤이 개시된 후에는 2차원 소재(30)의 면 내 영역들 사이의 반데르발스 상호작용(25), 일 예로서, π-π 상호작용에 의해, 스크롤이 가속화되면서 상기 2차원 소재(30)가 스크롤된 구조 즉, 2차원 소재가 두루마리 형태로 변화될 수 있다. 그 결과, 2차원 소재 스크롤 구조 내부 구체적으로, 중심에 양쪽성 물질(10)이 위치된 스크롤 복합재(40)가 형성될 수 있다. 상기 2차원 소재 스크롤 즉, 스크롤 복합재(40)는 1차원 구조 즉, 막대형 또는 섬유형을 가질 수 있고, 양측 말단이 오픈된 구조를 가질 수 있다.
상기 스크롤 복합재(40) 내에는 상기 양쪽성 물질들(10)이 잔존할 수 있다. 상기 양쪽성 물질(10)의 크기, 모양, 또는 량을 조절함으로써, 상기 스크롤 복합재(40)의 내부 크기의 조절이 가능할 수 있다.
도 3을 참조하면, 용매 처리 및/또는 열처리를 사용하여, 상기 스크롤 복합재(40)로부터 상기 양쪽성 물질(10)을 적어도 일부 또는 완전히 제거함에 따라 내부가 적어도 일부 또는 완전히 비어있는 중공 스크롤(50)를 제조할 수도 있다. 상기 중공 스크롤(50)는 1차원 구조 즉, 속이 비어있는 막대형 또는 섬유형 즉, 튜브형태를 가질 수 있다. 그러나, 상기 중공 스크롤(50)는 탄소나노튜브 등과는 달리 양측 말단이 오픈된 구조를 가질 수 있다.
상기 용매를 사용하면서 열처리를 부가하여 식각을 촉진시킬 수도 있다.
상기 용매는 상기 양쪽성 물질(10) 만을 선택적으로 용해할 수 있는 물질로서, 물, 메탄올, 에탄올, 이소프로필알콜, 톨루엔, 벤젠, 헥산, 헵탄, m-크레졸, 에틸아세테이트, 카본디설파이드, 디메틸설폭사이드, 디클로로메탄, 디클로로벤젠, 클로로포름, 사염화탄소, 아세톤, 테트라히드로푸란, 디메틸아세트아마드, N-메틸피롤리돈, 디메틸포름아미드 및 아세트산으로 이루어진 군중에서 선택되는 적어도 하나일 수 있고, 처리시간은 1시간 내지 24시간 또는 수일(several days)일 수 있으나 이에 한정되지 않는다.
한편, 상기 스크롤 복합재의 스크롤은 서로 인접하는 2차원 소재 시트들 사이의 반데르발스 상호작용(25)에 의해 상기 용매 내에서 스크롤이 풀리지 않을 수 있다.
상기 열처리 온도는 스크롤의 형태의 변형이 유발되지 않는 정도라면 특별히 제한되지 않으며 예를 들어, 100 내지 800℃, 100 내지 700℃, 100 내지 600℃, 100 내지 500℃, 200 내지 800℃, 200 내지 700℃, 200 내지 600℃, 200 내지 500℃, 300 내지 800℃, 300 내지 700℃, 300 내지 600℃, 300 내지 500℃, 400 내지 800℃, 400 내지 700℃, 400 내지 600℃, 또는 400 내지 500℃, 500 내지 800℃, 500 내지 700℃, 또는 500 내지 600℃일 수 있고, 처리시간은 0.1 내지 10시간일 수 있으나 이에 한정되지 않는다. 상기 열처리를 기체 분위기에서 실시하는 경우에, 기체는 예를 들어, 아르곤, 질소 등을 들 수 있으나 이에 한정되지 않는다. 또한, 상기 불활성기체는 예를 들어, 1~ 10 cc/min 정도의 속도로 공급될 수 있다.
상기 열처리는 유도가열, 복사열, 레이저, IR, 마이크로웨이브, 플라즈마, UV 또는 표면 플라즈몬 가열 등을 들 수 있으나 이에 한정되지 않는다.
도 4는 본 발명의 다른 실시예에 따른 스크롤 제조방법을 나타낸 개략도이다. 후술하는 것을 제외하고는 본 실시예에 따른 스크롤 제조방법은 도 1 내지 도 3을 참조하여 설명한 스크롤 제조방법과 유사할 수 있다. 또한, 도 4는 2차원 소재의 일 에지 부분을 확대해서 나타낸 도면이다.
도 4를 참조하면, 2차원 소재(30) 상에 양쪽성 물질(10)로서 선상 박테리오 파지를 제공할 수 있다. 선상 박테리오파지는 도 1을 참조하여 설명한 바와 같이, 중앙부분에는 카르복실기 또는 아민기 등의 잔기(residue)를 구비하여 친수성을 갖는 친수성 막대(10a)가 배치되고, 양측 끝단에는 소수성을 갖는 테일들(10b)이 배치된 것으로 알려져 있다. 일 예로서, 상기 박테리오파지는 T1, T2, T3, T4, T5, T6, T7, M13, MS2, fd, f1 및 P22로 이루어진 군에서 선택되는 적어도 하나일 수 있다.
이러한 박테리오파지(10)의 친수성 막대(10a)는 상기 2차원 소재(30)의 표면 에너지가 높은 에지들, 특히 에지들 중 가장 표면 에너지가 높은 어느 한 에지에 결합할 수 있다. 구체적으로, 상기 2차원 소재(30)의 에지와 상기 박테리오 파지(10)의 친수성 막대(10a)은 표면 상호작용(surface interacion, 21)에 의해 결합할 수 있다. 상기 박테리오 파지(10)의 소수성 테일들(10b)은 2차원 소재(30)의 면 내의 영역과 반데르발스 힘 등에 의해 상호작용(23)할 수 있다. 이러한 상호작용은 상기 2차원 소재(30)의 스크롤을 개시할 수 있다. 그러나, 이러한 상호작용(23)이 없다고 하더라도, 상기 2차원 소재(30)의 에지와 상기 박테리오 파지(10)의 친수성 막대(10a) 사이의 표면 상호작용(21)만으로도 상기 2차원 소재(30)의 스크롤을 개시시킬 수 있는 것으로 추정된다. 상기 2차원 소재(30)의 스크롤이 개시된 후에는 2차원 소재(30)의 면 내 영역들 사이의 반데르발스 상호작용(도 2의 25)에 의해, 스크롤이 가속화되면서 스크롤 복합재(도 2의 40)가 형성될 수 있다. 또한, 이후에는 상기 박테리오 파지를 선택적으로 용해시키는 용매를 사용하여 제거함으로써, 중공 스크롤(도 3의 50)을 형성할 수 있다.
도 5, 도 6, 및 도 7은 본 발명의 다른 실시예에 따른 스크롤 제조방법을 나타낸 개략도들이다. 후술하는 것을 제외하고는 본 실시예에 따른 스크롤 제조방법은 도 1 내지 도 3을 참조하여 설명한 스크롤 제조방법과 유사할 수 있다. 또한, 도 5 및 도 6에서는 2차원 소재의 일측 에지 부분을 확대해서 나타내었다.
도 5 및 도 6을 참조하면, 2차원 소재(30) 상에 양쪽성 물질 자기조립체(M1, M2)를 제공할 수 있다. 이를 위해, 양쪽성 물질(10)을 용매 내에 용해시킨 양쪽성 물질 용액 내의 양쪽성 물질(10)의 농도를 임계 마이셀 농도(critical micelle concentration) 이상으로 조절하고, 또한 2차원 소재 분산액과 혼합하기 전에, 상기 양쪽성 물질 용액을 소정 온도 가열한 후, 이를 냉각시키고 소정시간 방치할 수 있다. 이 과정에서, 상기 양쪽성 물질(10)은 상기 양쪽성 물질 용액 내에서 자기조립되어, 도 5에 도시된 바와 같이 막대형 또는 섬유형의 자기조립체(M1) 또는 도 6에 도시된 바와 같이 구형의 자기조립체(M2)를 형성할 수 있다. 상기 자기조립체들(M1, M2)는 마이셀들(micelles)로도 불리워질 수도 있다.
이러한 자기조립체들(M1, M2)은 외부에 양쪽성 물질(10)의 친수성 부분(10a)이 노출될 수 있다. 한편, 이러한 자기조립체들(M1, M2)의 형태는 양쪽성 물질 용액 내의 용매에 의해 결정될 수 있다.
한편, 자기조립체들(M1, M2)의 직경 및/또는 길이는 상기 양쪽성 물질 용액 내의 상기 양쪽성 물질의 농도, 가열온도, 냉각온도, 및 방치된 시간에 의존하여 변화될 수 있다. 이를 위해, 상기 양쪽성 물질 용액 내의 상기 양쪽성 물질의 농도는 약 0.001g/L 내지 약 1g/L일 수 있다. 상기 가열온도는 30도 내지 200도일 수 있다. 상기 냉각온도는 약 -196도(℃) 내지 약 25도(℃)일 수 있다. 또한, 방치된 시간은 0.5 내지 24일 수 있다.
도 5 및 도 6에서는 양쪽성 물질들(10)이 1층의 쉘을 구성하여 자기조립체들(M1, M2)를 형성하는 것으로 도시하였으나, 이에 한정되지 않고 도 8 및 도 9에 도시된 바와 같이 양쪽성 물질들(10)이 다수층의 쉘을 구성하여 자기조립체들(M1, M2)을 형성함으로써 그 직경이 조절될 수도 있다.
이러한 자기조립체들(M1, M2)의 외부에 노출된 양쪽성 물질의 친수성 부분(10a)는 상기 2차원 소재(30)의 표면 에너지가 높은 에지들, 특히 에지들 중 가장 표면 에너지가 높은 어느 한 에지에 결합할 수 있다. 구체적으로, 상기 2차원 소재(30)의 에지와 상기 양쪽성 물질(10)의 친수성 부분(10a)은 표면 상호작용(21)에 의해 결합할 수 있다. 한편, 자기조립체들(M1, M2) 내에서 양쪽성 물질(10)의 밀도가 희박하게 배치된 영역에서는 상기 양쪽성 물질(10)의 소수성 부분(10b)이 노출될 수 있는데, 이 소수성 부분들(10b)은 2차원 소재(30)의 면 내 영역과 반데르발스 힘 등에 의해 상호작용(23)할 수 있다. 이러한 상호작용은 상기 2차원 소재(30)의 스크롤을 개시할 수 있다. 그러나, 이러한 상호작용(23)이 없다고 하더라도, 상기 2차원 소재(30)의 에지와 상기 양쪽성 물질(10)의 친수성 부분(10a) 사이의 표면 상호작용(21) 만으로도 상기 2차원 소재(30)의 스크롤을 개시시킬 수 있는 것으로 추정된다.
도 7을 참조하면, 상기 2차원 소재(30)의 스크롤이 개시된 후에는 2차원 소재(30)의 면 내 영역들 사이의 반데르발스 상호작용(25)에 의해, 스크롤이 가속화되면서 스크롤 복합재(40)가 형성될 수 있다. 본 실시예에 따른 스크롤 복합재(40)는, 양쪽성 물질(10)이 자기조립체들(M1, M2)을 형성함에 따라, 도 2를 참조하여 설명한 스크롤 복합재에 비해 더 큰 내부 직경을 가질 수 있다.
이 후, 용매 및/또는 열처리를 사용하여, 상기 스크롤 복합재(40)로부터 상기 양쪽성 물질(10)을 제거함에 따라 내부가 빈 중공 스크롤(도 3의 50)를 제조할 수도 있다. 다만, 본 실시예에서 형성된 중공 스크롤은 도 3을 참조하여 설명한 중공 스크롤에 비해 더 큰 내부 직경을 가질 수 있다.
도 8 및 도 9는 본 발명의 다른 실시예에 따른 스크롤 제조방법들을 나타낸 개략도들이다. 후술하는 것을 제외하고는 본 실시예에 따른 스크롤 제조방법은 도 1 내지 도 3을 참조하여 설명한 스크롤 제조방법과 유사할 수 있다. 또한, 도 8 및 도 9에서는 2차원 소재의 일측 에지 부분을 확대해서 나타내었다.
도 8 및 도 9를 참조하면, 2차원 소재(30) 상에 양쪽성 물질 자기조립체(C1, C2)를 제공할 수 있다. 상기 양쪽성 물질 자기조립체(C1, C2)는 코어 입자(15, 17) 상에 양쪽성 물질(10)이 자기조립된 형태를 가질 수 있다. 상기 코어 입자(15, 17)는 금속 입자, 금속 산화물 입자, 또는 박테리오파지일 수 있으며, 도 9에 도시된 바와 같이 구형 입자(15) 또는 도 10에 도시된 바와 같이 막대형 입자(17)일 수도 있다. 상기 박테리오파지의 경우에는 도 10에 도시된 바와 같이 막대형 입자(17)에 해당할 수도 있다. 상기 구형 입자(15) 상에 양쪽성 물질(10)이 자기조립된 경우 양쪽성 물질 자기조립체(C1)는 구형의 형태를 가질 수 있고, 한편 상기 막대형 입자(17) 상에 양쪽성 물질(10)이 자기조립된 경우 양쪽성 물질 자기조립체(C2)는 막대 또는 섬유의 형태를 가질 수 있다.
상기 금속 입자는 Au, Ag, Fe, Al, Cu, Co, Ni, W, Zn, Mo, Ti, Ru, Pd, Ge, Pt, Li, Si, 또는 이들 중 둘 이상의 합금 입자일 수 있고, 그 직경은 1㎚ 내지 10㎛일 수 있다. 상기 금속 산화물 입자는 Al(OH)3, Al2O3, MnO, SiO2, ZnO, Fe2O3, Fe3O4, Li4Ti5O12, LiNi0 . 5Mn1 . 5O4 또는 TiO2 입자일 수 있고, 그 직경은 1㎚ 내지 10㎛일 수 있다. 상기 금속 입자 또는 상기 금속 산화물 입자가 막대형인 경우에, 그 길이는 1㎚ 내지 10㎛일 수 있다.
상기 2차원 소재(30) 상에 양쪽성 물질 자기조립체(C1, C2)를 제공하는 것은, 상기 양쪽성 물질(10)과 상기 코어 입자를 용매에 첨가하고 교반하여 양쪽성 물질 용액을 제조하고, 이를 2차원 소재 분산액과 혼합함으로써 수행할 수 있다.
상기 금속 입자, 상기 금속 산화물 입자, 및 상기 박테리오 파지(15, 17)는 그의 표면이 친수성일 수 있으며, 이에 따라 상기 양쪽성 물질(10)의 친수성 부분(10a)이 상기 양쪽성 물질 상에 자기조립되어 제1 쉘(S1)을 형성할 수 있다. 상기 제1 쉘(S1)의 표면은 상기 양쪽성 물질(10)의 소수성 부분(10b)이 노출될 수 있고, 상기 제1 쉘(S1)의 표면 상에 상기 양쪽성 물질(10)의 소수성 부분(10b)이 다시 자기조립되어 제2 쉘(S2)을 형성할 수 있다. 상기 제2 쉘(S2)의 표면 상에 친수성 부분(10a)이 노출될 수 있다. 그러나, 제2 쉘(S2)은 제1 쉘(S1)에 비해 양쪽성 물질(10)의 밀도가 희박하게 배치될 수 있어, 상기 양쪽성 물질 자기조립체(C1, C2)의 표면에는 친수성 부분(10a)과 소수성 부분(10b)이 동시에 노출될 수 있다.
상기 양쪽성 물질 자기조립체(C1, C2)의 표면에 노출된 친수성 부분(10a)은 상기 2차원 소재(30)의 표면 에너지가 높은 에지들, 특히 에지들 중 가장 표면 에너지가 높은 어느 한 에지에 결합할 수 있다. 이에 더하여, 상기 양쪽성 물질 자기조립체(C1, C2)의 표면에 노출된 소수성 부분들(10b)은 2차원 소재(30)의 면 내의 영역과 반데르발스 힘 등에 의해 상호작용(23)할 수 있다. 이러한 상호작용은 상기 2차원 소재(30)의 스크롤을 개시할 수 있다. 그러나, 이러한 상호작용(23)이 없다고 하더라도, 상기 2차원 소재(30)의 에지와 상기 양쪽성 물질(10)의 친수성 부분(10a) 사이의 표면 상호작용(21) 만으로도 상기 2차원 소재(30)의 스크롤을 개시시킬 수 있는 것으로 추정된다.
상기 2차원 소재(30)의 스크롤이 개시된 후에는 2차원 소재(30)의 면 내 영역들 사이의 반데르발스 상호작용(도 2의 25)에 의해, 스크롤이 가속화되면서 스크롤 복합재(도 2의 40)가 형성될 수 있다. 다만, 본 실시예에 따른 스크롤 복합재는, 양쪽성 물질(10)이 입자(15, 17)와 함께 자기조립체(C1, C2)를 형성함에 따라, 도 2를 참조하여 설명한 스크롤 복합재에 비해 더 큰 내부 직경을 가질 수 있다.
이와 더불어서, 상기 양쪽성 물질 자기조립체(C1, C2)의 크기 예를 들어, 직경 조절 통해 상기 스크롤 복합재(도 2의 40)의 내부 크기 예를 들어, 내부 직경의 조절이 가능할 수 있다. 상기 양쪽성 물질 자기조립체(C1, C2)의 크기는 입자(15, 17)의 크기 조절 및/또는 상기 양쪽성 물질(10)이 구성하는 쉘들(S1, S2)의 층수를 조절함에 따라 조절될 수 있다.
이 후, 용매 및/또는 열처리를 사용하여, 상기 스크롤 복합재로부터 상기 양쪽성 물질(10)을 제거함에 따라 내부가 빈 중공 스크롤(도 3의 50)를 제조할 수도 있다. 이 때, 상기 2차원 소재(30)와 상호작용에 의해 결합된 양쪽성 물질(10)이 제거되면 코어 입자 또한 제거될 수 있다. 다만, 본 실시예에서 형성된 중공 스크롤은 도 3을 참조하여 설명한 중공 스크롤에 비해 더 큰 내부 직경을 가질 수 있다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예들에 의해 한정되는 것은 아니다.
<제조예들 1 내지 13, 66 내지 68>
2차원 소재인 그래핀 1.5g을 표 2 또는 표 6에 표시된 용매에 넣고, 2400rpm으로 1시간동안 기계적 스터어링으로 분산시켰다. 그 후, 30분 동안 초음파 처리하고, 분산액을 4400rpm으로 30분 동안 원심분리한 후, 상층액인 그래핀 분산액을 얻어내었다.
한편, 화학식 4 내지 8에 표시된 바일산 유도체들(제조예들 1 내지 6), 소듐 도데실설페이트(제조예 7), 라우로일 마크로골 글리세라이드(제조예 8), 바일산염 수화물인 소듐 콜레이트 하이드레이트(Sodium cholate hydrate, 제조예 9), 바일산인 디옥시 콜릭산(제조예 9), 박테리오파지들인 T1, M13, 및 fd(제조예들 11 내지 13), 또는 화학식 13 내지 15에 표시된 바일산 유도체들(제조예들 66 내지 68) 중 어느 하나의 양쪽성 물질를 하기 표 2 또는 표 6에 표시된 양만큼 표 2 또는 표 6에 표시된 용매에 넣고 녹여 양쪽성 물질 용액을 제조하였다. 이 후, 표 2 또는 표 6에 표시된 온도로 가열하였다.
이 후, 제조예들 2 내지 4, 6 내지 8, 10 내지 13, 및 66의 경우, 양쪽성 물질이 재결정화, 자기조립 또는 마이셀화될 수 있도록 표 2 또는 표 6에 표시된 온도에서 표 2 또는 표 6에 표시된 시간동안 양쪽성 물질 용액을 방치하였다.
상기 그래핀 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 혼합액을 표 2 또는 표 6에서 표시된 온도에서 또한 표 2 또는 표 6에서 표시된 시간동안 유지하였다. 그 후, PTFE 멤브레인을 사용하여 필터링함으로써, 그래핀 스크롤 내부에 양쪽성 물질이 포함된 그래핀 스크롤 복합재들이 얻어졌다.
<제조예14>
그래핀 1.5g을 메탄올에 넣은 것을 제외하고는 제조예 1과 동일한 방법을 사용하여 그래핀 분산액을 얻어내었다.
양쪽성 물질인 바일산 유도체 (화학식 4)와 금속산화물 입자인 TiO2 입자 (직경 20nm, R&D코리아)를 무게비 97:3으로 메탄올에 첨가하여 합계 농도가 2.0중량%인 용액을 제조한 후, 이를 5시간 동안 교반하여 양쪽성 물질 용액을 제조하였다. 이 후, 양쪽성 물질 용액을 65도로 가열한 후, 11도에서 3시간 동안 방치하였다.
그런 다음, 상기 그래핀 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 60도에서 5시간 동안 유지하였다. 그 결과, 그래핀 스크롤 내부에 양쪽성 물질 자기조립체가 포함된 그래핀 스크롤 복합재가 얻어졌다.
<제조예 15>
그래핀 1.5g을 헵탄에 넣은 것을 제외하고는 제조예 1과 동일한 방법을 사용하여 그래핀 분산액을 얻어내었다.
양쪽성 물질인 상기 화학식 4의 바일산 유도체와 박테리오 파지인 P22를 무게비 80:20으로 헵탄에 첨가하여 합계 농도가 3.0중량%인 용액을 제조한 후, 이를 1시간 동안 교반하여 양쪽성 물질 용액을 제조하였다. 이 후, 양쪽성 물질 용액을 90도로 가열하였다.
상기 그래핀 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 180도에서 3시간 동안 유지하였다. 그 결과, 그래핀 스크롤 내부에 양쪽성 물질 자기조립체가 포함된 그래핀 스크롤 복합재가 얻어졌다.
<제조예 16>
그래핀 1.5g을 카본디설파이드에 넣은 것을 제외하고는 제조예 1과 동일한 방법을 사용하여 그래핀 분산액을 얻어내었다.
양쪽성 물질인 디옥시콜릭산과 금속산화물 입자인 Fe3O4 입자를 무게비 60:40으로 카본디설파이드에 첨가하여 합계 농도가 5중량%인 용액을 제조한 후, 이를 3시간 동안 교반하여 양쪽성 물질 용액을 제조하였다. 이 후, 양쪽성 물질 용액을 110도로 가열한 후, 0도에서 4시간 동안 방치하였다.
상기 그래핀 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 10도에서 6시간 동안 유지하였다. 그 결과, 그래핀 스크롤 내부에 양쪽성 물질 자기조립체가 포함된 그래핀 스크롤 복합재가 얻어졌다.
<제조예 17>
그래핀 1.5g을 디클로로메탄에 넣은 것을 제외하고는 제조예 1과 동일한 방법을 사용하여 그래핀 분산액을 얻어내었다.
양쪽성 물질인 소디움 도데실 설페이트와 금속 입자인 Ag 입자(직경 1 ㎛, R&D코리아)를 무게비 90:10으로 디클로로메탄에 첨가하여 합계 농도가 2.0중량%인 용액을 제조한 후, 이를 1시간 동안 교반하여 양쪽성 물질 용액을 제조하였다. 이 후, 양쪽성 물질 용액을 40도로 가열한 후, -4도에서 5.5시간 동안 방치하였다.
상기 그래핀 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 상온에서 1시간 동안 유지하였다. 그 결과, 그래핀 스크롤 내부에 양쪽성 물질 자기조립체가 포함된 그래핀 스크롤 복합재가 얻어졌다.
<제조예 18>
2차원 소재인 보론나이트라이드 1.5g을 ODCB 5㎖에 넣고, 2400rpm으로 1시간동안 기계적 스터어링으로 분산시켰다. 그 후, 30분 동안 초음파 처리하고, 분산액을 4400rpm으로 30분 동안 원심분리한 후, 상층액인 보론나이트라이드 분산액을 얻어내었다.
한편, 양쪽성 물질인 화학식 4의 바일산 유도체 0.02mmol을 ODCB 1㎖에 녹여 양쪽성 물질 용액을 제조하였다. 이 양쪽성 물질 용액을 60℃로 가열하였다.
상기 보론나이트라이드 분산액과 상기 가열된 양쪽성 물질 용액을 혼합한 후, 상온에서 24 시간동안 방치하였다. 그 결과, 보론나이트라이드 스크롤 내부에 양쪽성 물질이 포함된 보론나이트라이드 스크롤 복합재가 얻어졌다.
<제조예 19>
양쪽성 물질인 화학식 4의 바일산 유도체 0.002mmol을 ODCB 1㎖에 녹여 양쪽성 물질 용액을 제조하였다. 이 양쪽성 물질 용액을 60℃로 가열하였다. 그 후, 가열된 양쪽성 물질 용액을 상온에서 24시간동안 방치하였다. 이를 제외하고는 제조예 18과 동일한 방법을 사용하여 보론나이트라이드 스크롤 내부에 양쪽성 물질이 포함된 보론나이트라이드 스크롤 복합재를 얻었다.
<제조예들 20 내지 32, 69, 및 70>
2차원 소재인 보론나이트라이드 1.5g을 표 3 또는 표 6에 표시된 용매에 넣고, 2400rpm으로 1시간동안 기계적 스터어링으로 분산시켰다. 그 후, 30분 동안 초음파 처리하고, 분산액을 4400rpm으로 30분 동안 원심분리한 후, 상층액인 보론나이트라이드 분산액을 얻어내었다.
한편, 양쪽성 물질들인 N-헥사데실트리메틸암모늄염(제조예 20), 벤자일코늄 클로라이드(제조예 21), 상기 화학식 7에 표시된 바일산 유도체(제조예 22), 상기 화학식 8에 표시된 바일산 유도체(제조예 23), 소듐 도데실설페이트(제조예 24), 소디움 라루레쓰설페이트(제조예 25), 세틸피리딜클로라이드(제조예 26), 합성비타민 E 유도체로서 알파-토코페롤(α-tocopherol)(제조예 27), 소듐 타우로콜레이트(제조예 28), 박테리오파지들인 M13, Fd, T2, MS2 (제조예들 29 내지 32), 또는 화학식 16 내지 17에 표시된 바일산 유도체들(제조예들 69 및 70) 중 어느 하나의 양쪽성 물질를 하기 표 3 또는 표 6에 표시된 양만큼 표 3 또는 표 6에 표시된 용매에 넣고 녹여 양쪽성 물질 용액을 제조하였다. 이 후, 표 3 또는 표 6에 표시된 온도로 가열하였다.
그런 다음, 제조예들 21, 23 내지 27, 29 내지 32, 69, 및 70의 경우, 양쪽성 물질이 재결정화, 자기조립 또는 마이셀화될 수 있도록 표 3 또는 표 6에 표시된 온도에서 표 3 또는 표 6에 표시된 시간동안 양쪽성 물질 용액을 방치하였다.
상기 보론나이트라이드 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 표 3 또는 표 6에서 표시된 온도에서 또한 표 3 또는 표 6에서 표시된 시간동안 유지하였다. 그 결과, 보론나이트라이드 스크롤 내부에 양쪽성 물질이 포함된 보론나이트라이드 스크롤 복합재들이 얻어졌다.
<제조예들 33 내지 47, 71 내지 73>
2차원 소재인 몰디브데넘설파이드 1.5g을 표 4 또는 표 6에 표시된 용매에 넣고, 2400rpm으로 1시간동안 기계적 스터어링으로 분산시켰다. 그 후, 30분 동안 초음파 처리하고, 분산액을 4400rpm으로 30분 동안 원심분리한 후, 상층액인 몰디브데넘설파이드 분산액을 얻어내었다.
한편, 양쪽성 물질들인 세틸알콜(제조예 33), 폴리옥시에틸렌-폴리옥시프로필렌(제조예 34), 라우로일 마크로골 글리세라이드(제조예 35), 소듐콜레이트 하이드레이트 (제조예 36), 디옥시콜릭산 (제조예 37), 상기 화학식 4 내지 8에 표시된 바일산 유도체들(제조예들 38 내지 42), 박테리오파지들인 T2, T4, M13, Fd, P22 (제조예들 43 내지 47), 또는 화학식 18 내지 20에 표시된 바일산 유도체들(제조예들 71 내지 73) 중 어느 하나의 양쪽성 물질를 하기 표 4 또는 표 6에 표시된 중량만큼 표 4 또는 표 6에 표시된 용매에 넣고 녹여 양쪽성 물질 용액을 제조하였다. 이 후, 표 4 또는 표 6에 표시된 온도로 가열하였다.
그런 다음, 제조예들 34, 35, 38 내지 45, 73의 경우, 양쪽성 물질이 재결정화, 자기조립 또는 마이셀화될 수 있도록 표 4 또는 표 6에 표시된 온도에서 표 4 또는 표 6에 표시된 시간동안 양쪽성 물질 용액을 방치하였다.
상기 몰디브데넘설파이드 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 표 4 또는 표 6에서 표시된 온도에서 또한 표 4 또는 표 6에서 표시된 시간동안 유지하였다. 그 결과, 몰디브데넘설파이드스크롤 내부에 양쪽성 물질이 포함된 몰디브데넘설파이드 스크롤 복합재들이 얻어졌다.
<제조예 48>
몰디브데넘설파이드 1.5g을 디클로로메탄에 넣은 것을 제외하고는 제조예 47과 동일한 방법을 사용하여 몰디브데넘설파이드 분산액을 얻어내었다.
양쪽성 물질인 상기 화학식 7의 바일산 유도체와 박테리오 파지인 fd를 무게비 70:30으로 디클로로메탄에 첨가하여 합계 농도가 6중량%인 용액을 제조한 후, 이를 0.5시간 동안 교반하여 양쪽성 물질 용액을 제조하였다. 이 후, 양쪽성 물질 용액을 55도로 가열하였다.
상기 몰디브데넘설파이드 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 상온에서 24시간 동안 유지하였다. 그 결과, 몰디브데넘설파이드 스크롤 내부에 양쪽성 물질 자기조립체가 포함된 몰디브데넘설파이드 스크롤 복합재가 얻어졌다.
<제조예 49>
몰디브데넘설파이드 1.5g을 ODCB에 넣은 것을 제외하고는 제조예 47과 동일한 방법을 사용하여 몰디브데넘설파이드 분산액을 얻어내었다.
양쪽성 물질인 세틸알콜와 박테리오 파지인 P22를 무게비 50:50으로 ODCB에 첨가하여 합계 농도가 5중량%인 용액을 제조한 후, 이를 3시간 동안 교반하여 양쪽성 물질 용액을 제조하였다. 이 후, 양쪽성 물질 용액을 120도로 가열하였다.
상기 몰디브데넘설파이드 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 100도에서 11시간 동안 유지하였다. 그 결과, 몰디브데넘설파이드 스크롤 내부에 양쪽성 물질 자기조립체가 포함된 몰디브데넘설파이드 스크롤 복합재가 얻어졌다.
<제조예 50>
몰디브데넘설파이드 1.5g을 클로로포름에 넣은 것을 제외하고는 제조예 47과 동일한 방법을 사용하여 몰디브데넘설파이드 분산액을 얻어내었다.
양쪽성 물질인 N-헥사데실트리메틸암모늄염과 금속산화물 입자인 Al(OH)3 입자를 무게비 70:30으로 클로로포름에 첨가하여 합계 농도가 2중량%인 용액을 제조한 후, 이를 1시간 동안 교반하여 양쪽성 물질 용액을 제조하였다. 이 후, 양쪽성 물질 용액을 40도로 가열한 후, 상온도에서 18시간 동안 방치하였다.
상기 몰디브데넘설파이드 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 상온에서 0.1시간 동안 유지하였다. 그 결과, 몰디브데넘설파이드 스크롤 내부에 양쪽성 물질 복합체가 포함된 몰디브데넘설파이드 스크롤 복합재가 얻어졌다.
<제조예 51>
몰디브데넘설파이드 1.5g을 아세트산에 넣은 것을 제외하고는 제조예 47과 동일한 방법을 사용하여 몰디브데넘설파이드 분산액을 얻어내었다.
양쪽성 물질인 소디움도데실설페이트와 금속산화물 입자인 SiO2 입자를 무게비 95:5으로 아세트산에 첨가하여 합계 농도가 1중량%인 용액을 제조한 후, 이를 4시간 동안 교반하여 양쪽성 물질 용액을 제조하였다. 이 후, 양쪽성 물질 용액을 70도로 가열한 후, -60도에서 2시간 동안 방치하였다.
상기 몰디브데넘설파이드 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 250도에서 0.5시간 동안 유지하였다. 그 결과, 몰디브데넘설파이드 스크롤 내부에 양쪽성 물질 복합체가 포함된 몰디브데넘설파이드 스크롤 복합재가 얻어졌다.
<제조예들 52 내지 59>
2차원 소재인 그래핀/보론카본나이트라이드 1.5g을 표 5에 표시된 용매에 넣고, 2400rpm으로 1시간동안 기계적 스터어링으로 분산시켰다. 그 후, 30분 동안 초음파 처리하고, 분산액을 4400rpm으로 30분 동안 원심분리한 후, 상층액인 그래핀/보론카본나이트라이드 분산액을 얻어내었다.
한편, 양쪽성 물질들인 소디움 라루레쓰설페이트(제조예 52), 세틸피리딜클로라이드(제조예 53), 합성비타민 E 유도체로서 알파-토코페롤(α-tocopherol)(제조예 54), 소듐 타우로콜레이트(제조예 55), 박테리오파지들인 M13, Fd, T2, MS2 (제조예들 56 내지 59) 중 어느 하나의 양쪽성 물질를 하기 표 5에 표시된 중량만큼 표 5에 표시된 용매에 넣고 녹여 양쪽성 물질 용액을 제조하였다. 이 후, 표 5에 표시된 온도로 가열하였다.
그런 다음, 제조예들 52 내지 55, 58, 59의 경우, 양쪽성 물질이 재결정화, 자기조립 또는 마이셀화될 수 있도록 표 5에 표시된 온도에서 표 5에 표시된 시간동안 양쪽성 물질 용액을 방치하였다.
상기 그래핀/보론카본나이트라이드 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 표 5에서 표시된 온도에서 또한 표 5에서 표시된 시간동안 유지하였다. 그 결과, 그래핀/보론카본나이트라이드 스크롤 내부에 양쪽성 물질이 포함된 그래핀/보론카본나이트라이드 스크롤 복합소재들이 얻어졌다.
<제조예들 60 내지 65>
2차원 소재인 그래핀/몰리브데넘설파이드 1.5g을 표 5에 표시된 용매에 넣고, 2400rpm으로 1시간동안 기계적 스터어링으로 분산시켰다. 그 후, 30분 동안 초음파 처리하고, 분산액을 4400rpm으로 30분 동안 원심분리한 후, 상층액인 그래핀/보론카본나이트라이드 분산액을 얻어내었다.
한편, 양쪽성 물질들인 상기 화학식 5 내지 8에 표시된 바일산 유도체들(제조예들 60 내지 63), 소디움 도데실설페이트(제조예 64), 라우로일 마크로골 글리세라이드(제조예 65) 중 어느 하나의 양쪽성 물질를 하기 표 5에 표시된 중량만큼 표 5에 표시된 용매에 넣고 녹여 양쪽성 물질 용액을 제조하였다. 이 후, 표 5에 표시된 온도로 가열하였다.
그런 다음, 제조예들 60, 63, 및 64의 경우, 양쪽성 물질이 재결정화, 자기조립 또는 마이셀화될 수 있도록 표 5에 표시된 온도에서 표 5에 표시된 시간동안 양쪽성 물질 용액을 방치하였다.
상기 그래핀/몰리브데넘설파이드 분산액과 상기 양쪽성 물질 용액을 혼합한 후, 표 5에서 표시된 온도에서 또한 표 5에서 표시된 시간동안 유지하였다. 그 결과, 그래핀/몰리브데넘설파이드 스크롤 내부에 양쪽성 물질이 포함된 그래핀/몰리브데넘설파이드 스크롤 복합재들이 얻어졌다.
제조예 2차원 소재 분산액 양쪽성 물질 용액 양쪽성 물질 용액 방치조건 혼합액
2차원 소재(1.5g) 용매(부피) 온도(℃) 양쪽성 물질(몰수 또는 중량) 용매(부피) 가열온도 온도(℃) 유지시간(h) 온도(℃) 유지시간(h)
제조예1 그래핀 ODCB(5㎖) 상온 바일산 유도체 (화학식4)(0.02 mmol) ODCB(1㎖) 60도 - - 상온 24
제조예2 그래핀 ODCB(5㎖) 상온 바일산 유도체 (화학식4)(0.02 mmol) ODCB(1㎖) 60 상온 24 상온 24
제조예3 그래핀 톨루엔(5㎖) 60도 바일산 유도체 (화학식5)(0.02 mmol) 톨루엔(1㎖) 180도 18도 0.5 60도 4
제조예4 그래핀 이소프로필알콜(500㎖) 60도 바일산 유도체 (화학식6)(0.2 mmol) 이소프로필알콜(100㎖) 100도 -196도 0.5 180도 0.1
제조예5 그래핀 벤젠(5㎖) 70도 바일산 유도체 (화학식 7)(0.01 g) 벤젠(5㎖) 100도 - - 10도 12
제조예6 그래핀 테트라하이드로푸란(15㎖) 상온 바일산 유도체 (화학식 8)(0.1 g) 테트라하이드로푸란(5㎖) 70도 4도 4 상온 3
제조예7 그래핀 ODCB(15㎖) 상온 소듐 도데실설페이트(0.05 g) ODCB(2㎖) 180도 0도 0.1 200도 5
제조예8 그래핀 사염화탄소(5㎖) 65도 라우로일 마크로골 글리세라이드(0.01 g) 사염화탄소(1㎖) 200도 -10도 12 300도 7
제조예9 그래핀 ODCB(5㎖) 90도 소듐콜레이트 하이드레이트(0.01 g) ODCB(1㎖) 300도 - - 상온 10
제조예10 그래핀 클로로포름(500㎖) 55도 디옥시콜릭산(0.1 g) 클로로포름(100㎖) 60도 0도 5 100도 24
제조예11 그래핀 아세트산(50㎖) 65도 T1(0.02 g) 아세트산(1㎖) 100도 4도 7 상온 0.5
제조예12 그래핀 ODCB(25㎖) 90도 M13(0.01 g) ODCB(15㎖) 30도 18도 10 250도 2
제조예13 그래핀 물(15㎖) 40도 fd(0.001 g) 물(10㎖) 200도 13도 24 120도 2
제조예14 그래핀 메탄올(20㎖) 40도 TiO2/바일산 유도체 (화학식4)(0.05 g) 메탄올(10㎖) 65도 11도 3 60도 5
제조예15 그래핀 헵탄(30㎖) 상온 P22/바일산 유도체(화학식 4)(0.05 g) 헵탄(10㎖) 90도 - - 180도 3
제조예16 그래핀 카본디설파이드(35㎖) 55도 Fe3O4/디옥시 콜릭산(0.03 g) 카본디설파이드(15㎖) 110도 0도 4 10도 6
제조예17 그래핀 디클로로메탄(55㎖) 65도 Ag/소디움 도데실 설페이트(0.01 g) 디클로로메탄(10㎖) 40도 -4도 5.5 상온 1
제조예 2차원 소재 분산액 양쪽성 물질 용액 양쪽성 물질 용액 방치조건 혼합액
2차원 소재(1.5g) 용매(부피) 온도(℃) 양쪽성 물질(몰수 또는 중량) 용매(부피) 가열온도 온도(℃) 유지시간(h) 온도(℃) 유지시간(h)
제조예18 보론나이트라이드 ODCB(50㎖) 상온 바일산 유도체 (화학식4)(0.02 mmol) ODCB(20㎖) 60 - - 상온 24
제조예19 보론나이트라이드 ODCB(50㎖) 상온 바일산 유도체 (화학식4)(0.02 mmol) ODCB(10㎖) 60 상온 24 상온 24
제조예 20 보론나이트라이드 아세톤(60㎖) 상온 N-헥사데실트리메틸암모늄염(0.01 g) 아세톤(10㎖) 45도 0도 1 20도 24
제조예 21 보론나이트라이드 ODCB(20㎖) 55도 벤자일코늄 클로라이드(0.01 g) ODCB(10㎖) 130도 0도 3 300도 24
제조예22 보론나이트라이드 톨루엔(15㎖) 65도 바일산 유도체 (화학식 7)(0.005 g) 톨루엔(10㎖) 100도 - - 상온 11
제조예23 보론나이트라이드 이소프로필알콜(150㎖) 30도 바일산 유도체 (화학식 8)(0.05 g) 이소프로필알콜(100㎖) 60도 상온 24 100도 24
제조예24 보론나이트라이드 벤젠(5㎖) 45도 소디움 도데실설페이트(0.001 g) 벤젠(1㎖) 100도 4도 1 5도 4
제조예25 보론나이트라이드 테트라하이드로푸란(5㎖) 상온 소디움 라루레쓰페이트(0.001 g) 테트라하이드로푸란(1㎖) 60도 0도 0.5 250도 0.1
제조예26 보론나이트라이드 ODCB(5㎖) 상온 세틸피리딜 클로라이드(0.001 g) ODCB(1㎖) 180도 -10도 1 상온 12
제조예27 보론나이트라이드 사염화탄소(5㎖) 30도 알파-토코페롤(0.001 g) 사염화탄소(1㎖) 30도 4도 1 60도 3
제조예28 보론나이트라이드 ODCB(5㎖) 60도 소듐 타우로콜레이트(0.001 g) ODCB(1㎖) 120도 - - 180도 5
제조예29 보론나이트라이드 클로로포름(50㎖) 50도 M13(0.03 g) 클로로포름(20㎖) 50도 -196도 4 10도 7
제조예30 보론나이트라이드 아세트산(50㎖) 40도 Fd(0.01 g) 아세트산(20㎖) 40도 -20도 0.1 상온 10
제조예31 보론나이트라이드 ODCB(10㎖) 상온 T2(0.001 g) ODCB(1㎖) 150도 -10도 12 200도 24
제조예32 보론나이트라이드 물(10㎖) 상온 MS2(0.001 g) 물(1㎖) 100도 0도 3 300도 0.5
제조예 2차원 소재 분산액 양쪽성 물질 용액 양쪽성 물질 용액 방치조건 혼합액
2차원 소재(1.5g) 용매(부피) 온도(℃) 양쪽성 물질(몰수 또는 중량) 용매(부피) 가열온도 온도(℃) 유지시간(h) 온도(℃) 유지시간(h)
제조예33 몰디브데넘설파이드 메탄올(15㎖) 상온 세틸알콜(0.02 g) 메탄올(10㎖) 60도 - - 180도 10
제조예34 몰디브데넘설파이드 헵탄(30㎖) 60도 폴리옥시에틸렌-폴리옥시프로필렌(0.003 g) 헵탄(10㎖) 55도 0도 1 10도 24
제조예35 몰디브데넘설파이드 카본디설파이드(30㎖) 50도 라우로일 마크로골 글리세라이드(0.007 g) 카본디설파이드(10㎖) 120도 0도 3 상온 11
제조예36 몰디브데넘설파이드 디클로로메탄(5㎖) 60도 소듐콜레이트 하이드레이트(0.001 g) 디클로로메탄(1㎖) 70도 - - 200도 24
제조예37 몰디브데넘설파이드 아세톤(5㎖) 65도 디옥시콜릭산(0.001 g) 아세톤(1㎖) 70도 - - 300도 4
제조예38 몰디브데넘설파이드 ODCB(5㎖) 30도 바일산 유도체 (화학식4)(0.02 mmol) ODCB(1㎖) 60도 4도 10 상온 0.1
제조예39 몰디브데넘설파이드 톨루엔(5㎖) 45도 바일산 유도체 (화학식5)(0.02 mmol) 톨루엔(1㎖) 120도 0도 24 100도 12
제조예40 몰디브데넘설파이드 이소프로필알콜(15㎖) 60도 바일산 유도체 (화학식6)(0.005 g) 이소프로필알콜(1㎖) 70도 -10도 11 상온 3
제조예41 몰디브데넘설파이드 벤젠(15㎖) 상온 바일산 유도체 (화학식7)(0.004 g) 벤젠(5㎖) 100도 4도 24 250도 5
제조예42 몰디브데넘설파이드 테트라하이드로푸란(5㎖) 상온 바일산 유도체 (화학식8)(0.005 g) 테트라하이드로푸란(1㎖) 60도 상온 24 상온 7
제조예43 몰디브데넘설파이드 ODCB(5㎖) 65도 T2(0.001 g) ODCB(1㎖) 180도 상온 0.5 60도 10
제조예44 몰디브데넘설파이드 사염화탄소(5㎖) 30도 T4(0.005 g) 사염화탄소(1㎖) 30도 18도 24 180도 24
제조예45 몰디브데넘설파이드 ODCB(15㎖) 45도 M13(0.001 g) ODCB(10㎖) 120도 4도 12 10도 0.5
제조예46 몰디브데넘설파이드 클로로포름(50㎖) 상온 fd(0.006 g) 클로로포름(10㎖) 50도 - - 상온 2
제조예47 몰디브데넘설파이드 아세트산(50㎖) 상온 P22(0.008 g) 아세트산(10㎖) 60도 - - 200도 2
제조예48 몰디브데넘설파이드 디클로로메탄(15㎖) 상온 fd/바일산 유도체 (화학식7)(0.05 g) 디클로로메탄(10㎖) 55도 - - 상온 24
제조예49 몰디브데넘설파이드 ODCB(5㎖) 상온 P22/세틸알콜(0.005 g) ODCB(1㎖) 120도 - - 100도 11
제조예50 몰디브데넘설파이드 클로로포름(5㎖) 상온 Al(OH)3/N-헥사데실트리메틸암모늄염(0.002 g) 클로로포름(1㎖) 40도 상온 18 상온 0.1
제조예51 몰디브데넘설파이드 아세트산(5㎖) 40도 SiO2/소디움 도데실설페이트(0.007 g) 아세트산(1㎖) 70도 -60도 2 250도 0.5
제조예 2차원 소재 분산액 양쪽성 물질 용액 양쪽성 물질 용액 방치조건 혼합액
2차원 소재(1.5g) 용매(부피) 온도(℃) 양쪽성 물질(몰수 또는 중량) 용매(부피) 가열온도 온도(℃) 유지시간(h) 온도(℃) 유지시간(h)
제조예52 그래핀/보론카본나이트라이드 사염화탄소(15㎖) 70도 소디움 라루레쓰설페이트(0.001 g) 사염화탄소(10㎖) 30도 0도 1 10도 24
제조예53 그래핀/보론카본나이트라이드 ODCB(15㎖) 55도 세틸피리딜 클로라이드(0.02 mmol) ODCB(10㎖) 180도 0도 3 상온 11
제조예54 그래핀/보론카본나이트라이드 클로로포름(20㎖) 상온 알파-토코페롤(0.02 g) 클로로포름(1㎖) 40도 -55도 0.5 200도 24
제조예55 그래핀/보론카본나이트라이드 아세트산(20㎖) 상온 소듐 타우로콜레이트(0.002 g) 아세트산(1㎖) 70도 -25도 24 300도 4
제조예56 그래핀/보론카본나이트라이드 ODCB(500㎖) 40도 M13(0.1 g) ODCB(100㎖) 180도 - - 상온 0.1
제조예57 그래핀/보론카본나이트라이드 물(500㎖) 55도 Fd(0.05 g) 물(100㎖) 100도 - - 100도 12
제조예58 그래핀/보론카본나이트라이드 메탄올(100㎖) 40도 T2(0.05 g) 메탄올(100㎖) 65도 상온 12 상온 3
제조예59 그래핀/보론카본나이트라이드 헵탄(500㎖) 55도 MS2(0.03 g) 헵탄(50㎖) 60도 10도 5 250도 5
제조예60 그래핀/몰디브데넘설파이드 ODCB(5㎖) 상온 바일산 유도체 (화학식5)(0.02 mmol) ODCB(1㎖) 120도 상온 24 60도 10
제조예61 그래핀/몰디브데넘설파이드 사염화탄소(5㎖) 상온 바일산 유도체 (화학식6)(0.02 mmol) 사염화탄소(1㎖) 30도 - - 180도 24
제조예62 그래핀/몰디브데넘설파이드 ODCB(20㎖) 40도 바일산 유도체 (화학식7)(0.02 mmol) ODCB(10㎖) 200도 - - 상온 0.5
제조예63 그래핀/몰디브데넘설파이드 클로로포름(25㎖) 70도 바일산 유도체 (화학식8)(0.02 g) 클로로포름(10㎖) 40도 0도 1 100도 2
제조예64 그래핀/몰디브데넘설파이드 아세트산(50㎖) 상온 소디움 도데실설페이트(0.05 g) 아세트산(10㎖) 70도 0도 3 상온 2
제조예65 그래핀/몰디브데넘설파이드 ODCB(5㎖) 상온 라우로일 마크로골 글리세라이드(0.001 g) ODCB(1㎖) 120도 - - 250도 5
제조예 2차원 소재 분산액 양쪽성 물질 용액 양쪽성 물질 용액 방치조건 혼합액
2차원 소재(1.5g) 용매(부피) 온도(℃) 양쪽성 물질(몰수 또는 중량) 용매(부피) 가열온도(℃) 온도(℃) 유지시간(h) 온도(℃) 유지시간(h)
제조예66 그래핀 ODCB(5㎖) 상온 바일산 유도체 (화학식13)(0.02 mmol) ODCB(1㎖) 120도 상온 24 60도 10
제조예67 그래핀 사염화탄소(5㎖) 상온 바일산 유도체 (화학식14)(0.02 mmol) 사염화탄소(1㎖) 30도 - - 180도 24
제조예68 그래핀 ODCB(20㎖) 40도 바일산 유도체 (화학식15)(0.02 mmol) ODCB(10㎖) 200도 - - 상온 0.5
제조예69 보론나이트라이드 클로로포름(25㎖) 70도 바일산 유도체 (화학식16)(0.02 g) 클로로포름(10㎖) 40도 0도 1 100도 2
제조예70 보론나이트라이드 아세트산(50㎖) 상온 바일산 유도체 (화학식17)(0.02 mmol) 아세트산(10㎖) 70도 0도 3 상온 2
제조예71 몰디브데넘설파이드 ODCB(5㎖) 60도 바일산 유도체 (화학식18)(0.02 mmol) ODCB(1㎖) 120도 - - 250도 5
제조예72 몰디브데넘설파이드 ODCB(5㎖) 상온 바일산 유도체 (화학식19)(0.02 mmol) ODCB(1㎖) 120도 - - 250도 5
제조예73 몰디브데넘설파이드 ODCB(5㎖) 60도 바일산 유도체 (화학식20)(0.02 mmol ODCB(1㎖) 40도 0도 1 100도 2
ODCB : Ortho-DichloroBenzene
<제조예들 74 내지 91>
제조예들 1, 2, 3, 9, 10, 18, 19, 26, 27, 28, 39, 40, 41, 42, 52, 53, 61, 및 62에서 제조된 2차원 소재 스크롤 복합재 중 어느 하나를 표 7에 기재된 용매 내에 넣고 표 7에 기재된 온도를 유지하면서 표 7에 기재된 처리시간동안 처리하였다. 그 결과, 스크롤 복합재 내의 양쪽성 물질이 제거되고 중공 스크롤만 남았다.
제조예 스크롤 복합재 제조예 2차원 소재 양쪽성 물질 용매 열처리 제거여부
제조예74 제조예 1 그래핀 바일산 유도체 (화학식4) 메탄올 200도 O
제조예75 제조예 2 그래핀 바일산 유도체 (화학식4) 메탄올 200도 O
제조예76 제조예 3 그래핀 바일산 유도체 (화학식5) 에탄올 300도 O
제조예77 제조예 9 그래핀 소듐콜레이트 하이드레이트 프로판올 450도 O
제조예78 제조예 10 그래핀 디옥시콜릭산 테트라하이드로푸란 400도 O
제조예 79 제조예 18 보론나이트라이드 바일산 유도체(화학식 4) 메탄올 400도 O
제조예 80 제조예 19 보론나이트라이드 바일산 유도체(화학식 4) 메탄올 300도 O
제조예81 제조예 26 보론나이트라이드 세틸피리딜 클로라이드 사염화탄소 150도 O
제조예82 제조예 27 보론나이트라이드 합성비타민 E 유도체 ODCB 500도 O
제조예83 제조예 28 보론나이트라이드 소듐 타우로콜레이트 사염화탄소 200도 O
제조예84 제조예 39 몰디브데넘설파이드 바일산 유도체 (화학식5) ODCB 450도 O
제조예85 제조예 40 몰디브데넘설파이드 바일산 유도체 (화학식6) 메탄올 600도 O
제조예86 제조예 41 몰디브데넘설파이드 바일산 유도체 (화학식 7) 에탄올 800도 O
제조예87 제조예 42 몰디브데넘설파이드 바일산 유도체 (화학식 8) 프로판올 700도 O
제조예88 제조예 52 그래핀/보론카본나이트라이드 소디움 라루레쓰설페이트 사염화탄소 300도 O
제조예89 제조예 53 그래핀/보론카본나이트라이드 세틸피리딜 클로라이드 ODCB 600도 O
제조예90 제조예 61 그래핀/몰디브데넘설파이드 바일산 유도체 화학식6 사염화탄소 350도 O
제조예91 제조예 62 그래핀/몰디브데넘설파이드 바일산 유도체 화학식 7 ODCB 200도 O
도 10은 제조예 18의 진행과정 중 얻어진 보론나이트라이드 분산액을 촬영한 SEM (Scanning Electron Microscope) 사진(a)과 TEM (Transmission Electron Microscope) 사진(b)을 나타낸다.
도 10을 참조하면, 박리된 h-BN(exfoliated hexagonal-boron nitride)은 다수의 층이 평행하게 적층된 멀티-층 보론나이트라이드(multi-layers boron nitride)이고, 그 크기는 수백 나노미터(several hundred nanometers) 수준이었다.
도 11은 제조예 18의 진행과정 중 얻어진 보론나이트라이드 분산액의 사진(a)과 이 분산액과 화학식 4의 바일산 유도체 용액의 혼합액을 촬영한 사진(c)을 나타낸다. 제조예 18 및 사진 (c)는 화학식 4의 바일산 유도체를 0.02 mmol 사용한 반면, 사진 (b)와 사진 (d)는 각각 화학식 4의 바일산 유도체의 몰수를 0.01mmol과 0.1mmol로 달리하여 얻은 보론나이트라이드 분산액과 화학식 4의 바일산 유도체 용액의 혼합액들을 촬영한 사진들이다.
도 11을 참조하면, 양쪽성 물질인 바일산 유도체의 몰수가 증가할수록 부유하는 침전물의 밀도가 증가하고, 또한 상분리가 유도됨을 알 수 있다. 이 때, 바닥의 침전물은 응집된 h-BN과 h-BN 다중층들인 반면, 부유하는 침전물은 거의 대부분 보론나이트라이드 스크롤 복합소재들이다.
도 12는 제조예 18에서 얻어진 보론나이트라이드 스크롤 복합소재들을 촬영한 TEM 사진들(a)과 HR(high resolution)-TEM 사진들(b, c, d, e, f)을 나타낸다.
도 12를 참조하면, 화학식 4의 바일산 유도체를 내부에 갖고 h-BN 시트들 사이의 상호작용에 의해 형성된 보론나이트라이드 스크롤 복합소재들은 튜브와 같은 형상을 갖는 것을 알 수 있다. 보론나이트라이드 스크롤 복합소재의 내부직경은 20 내지 60 ㎚이고, 보론나이트라이드 스크롤 복합소재의 벽들 내 결정면간 거리(d-spacing)는 0.33 ㎚임을 알 수 있다(b 참조). 0.33 ㎚는 멀티층 h-BN 시트들 그리고 BN 나노튜브 내의 층간거리에 상응한다. 완전하게 말려진 하나의 보론나이트라이드 스크롤이 사진 (c)와 (d)에 도시되고, 사진 (c)와 (d)에서 원으로 표시된 부분들에 대한 확대사진이 (e)와 (f)에 각각 도시된다. (e)와 (f)에서는 스크롤의 단부들이 원형인 것을 알 수 있다.
도 13은 제조예 18의 진행과정 중 얻어진 보론나이트라이드 분산액을 촬영한 TEM (Transmission Electron Microscope) 사진(a)과 보론나이트라이드 스크롤 복합소재들을 촬영한 TEM 사진들(b, c, d)을 나타낸다.
도 13을 참조하면, 사진 (b)와 (c)는 h-BN이 스크롤링하는 초기단계에 해당하고, 사진 (d)는 스크롤링이 완료된 상태를 보여준다.
도 14 제조예 18의 진행과정 중 얻어진 박리된 h-BN (a)과 제조예 18에서 얻어진 BN 스크롤 복합소재 (b)의 라만 그래프(Raman graph)이다.
도 14를 참조하면, 박리된 h-BN (a)은 E2g 포논 모드로서 1364cm-1에서 16cm-1의 FWHM(full width at half maxium)을 나타내고, BN 스크롤 복합소재 (b)은 E2g 포논 모드로서 1366cm-1에서 19cm-1의 FWHM을 나타낸다. BN 스크롤 복합소재의 이러한 E2g 포논 모드의 블루 시프트(2cm-1)와 FWHM의 증가(3cm-1)는 스크롤된 h-BN 시트들 사이의 립-립 상호작용(lip-lip interaction)과 BN 스크롤의 형태적인 차이에 기인하는 것으로 추정되었다.
도 15는 제조예 18에서 얻어진 BN 스크롤 복합소재(a)와 제조예 19에서 얻어진 BN 스크롤 복합소재(b)를 촬영한 HR-TEM 사진들이다.
도 15를 참조하면, 제조예 18에서 얻어진 BN 스크롤 복합소재(a) 대비 제조예 19에서 얻어진 BN 스크롤 복합소재(b)는 화학식 4의 바일산 유도체의 자기조립에 기인하여 더 큰 내부 직경을 갖고 있음을 알 수 있다. 이와 더불어서, 제조예19의 경우, 화학식 4의 바일산 유도체는 자기조립되어 섬유를 형성함을 알 수 있다. 이는 제조예 19의 경우, 60도에서 바일산 유도체 용액을 형성한 후, 이를 상온에서 24시간 동안 방치하는 과정을 수행하는데, 이러한 과정에서 바일산 유도체가 재결정화되어 섬유를 형성하는 것으로 추정된다. 이와 같이, 양쪽성 물질의 재결정화에 의해 2차원 소재 스크롤의 내부 직경을 변화시킬 수 있음을 알 수 있다.
도 16는 제조예 79 및 80에 따라 얻어진 BN 스크롤을 촬영한 SEM 사진들(a, b)과 TEM 사진들(c, d)이다.
도 16을 참조하면, (a)는 제조예 79에서 제조예 18에 따라 얻어진 비교적 작은 내부 직경을 갖는 BN 스크롤 복합재를 메탄올로 몇 번 씻은 경우를 촬영한 TEM 사진으로서, BN 스크롤 복합재의 양측 단부에서만 내부의 바일산 유도체가 식각됨을 알 수 있다. (b)는 제조예 79에서 제조예 18에 따라 얻어진 비교적 작은 내부 직경을 갖는 BN 스크롤 복합재를 메탄올에 침지시킨 후 몇일 동안 방치한 경우를 촬영한 TEM 사진으로서, 내부의 바일산 유도체가 완전히 제거되어 중공 BN 스크롤이 형성됨을 알 수 있다. (c) 및 (d)는 제조예 80에서 제조예19에 따라 얻어진 비교적 큰 내부 직경을 갖는 BN 스크롤 복합재를 메탄올로 몇 번 씻은 경우를 촬영한 SEM 사진들로서, 약 125㎚의 비교적 큰 내부 직경을 갖는 중공 BN 스크롤이 형성됨을 알 수 있다.
도 17은 보론나이트라이드, 화학식 4의 바일산 유도체, 및 제조예 18에 따라 얻어진 BN 스크롤 복합체를 질소 분위기에서 열처리하여 얻은 TGA 그래프(a)와 TEM사진(b)이다.
도 17 (a)을 참조하면, 보론나이트라이드의 경우 810도에 이르기까지 약간의 중량 감소만 있을 뿐임을 알 수 있다. 화학식 4의 바일산 유도체(LCA)의 경우 약 300도에서 급격한 열화가 시작되고 400 내지 810도 사이에서 천천히 열화되어 결국 완전히 제거되었다. 한편, 제조예 18에 따라 제조된 BN 스크롤 복합체(S-BNS)의 경우, 화학식 4의 바일산 유도체와 유사한 커브를 보여주나, 최종 16.3 wt%의 잔존물이 남았다. 이 잔존물은 열에 의해 내부의 바일산 유도체가 제거된 중공 BN 스크롤인 것으로 추정되었다.
도 17 (b)를 참조하면, 중공 BN 스크롤의 측벽은 6 내지 7 층의 시트들로 이루어진 것을 알 수 있다.
도 18은 제조예 1의 진행과정 중 얻어진 그래핀 분산액을 촬영한 SEM (Scanning Electron Microscope) 사진을 나타낸다.
도 18을 참조하면, 박리된 그래핀은 다수의 층이 평행하게 적층된 멀티-층 그래핀이고, 그 크기는 수백 나노미터(several hundred nanometers) 수준이었다.
도 19는 제조예 1의 진행과정 중 얻어진 그래핀 분산액의 사진(A)과 이 분산액과 화학식 4의 바일산 유도체 용액의 혼합액을 촬영한 사진(D)을 나타낸다.
제조예 1 및 사진 (D)는 화학식 4의 바일산 유도체를 0.02 mmol 사용한 반면, 사진 (B), (C), 및 (E)는 각각 화학식 4의 바일산 유도체의 몰수를 0.001mmol, 0.01mmol, 및 0.1mmol로 달리하여 얻은 화학식 4의 바일산 유도체 용액과 그래핀 분산액의 혼합액들을 촬영한 사진들이다.
도 19을 참조하면, 양쪽성 물질인 바일산 유도체의 몰수가 증가할수록 부유하는 침전물의 밀도가 증가하고, 또한 상분리가 유도됨을 알 수 있다. 이 때, 바닥의 침전물은 응집된 그래핀과 그래핀 다중층들인 반면, 부유하는 침전물은 거의 대부분 그래핀 스크롤 복합소재들이다.
도 20는 제조예 1에서 얻어진 그래핀 스크롤 복합소재들을 촬영한 HR(high resolution)-TEM 사진을 나타낸다.
도 12를 참조하면, 화학식 4의 바일산 유도체를 내부에 갖고 그래핀 시트들 사이의 상호작용에 의해 형성된 그래핀 스크롤 복합소재들은 튜브와 같은 형상을 갖는 것을 알 수 있다. 그래핀 스크롤 복합소재의 내부직경은 12 내지 20 ㎚이고, 그래핀 스크롤 복합소재의 내부에 양쪽성 물질이 들어가 내부가 검은 색을 이루며 그래핀 벽들 내 결정면간 거리면간 거리(d-spacing)는 0.33 ㎚임을 알 수 있다.
도 21 제조예 2의 진행과정 중 얻어진 박리된 그래핀(G5 dispersion), 그래핀 파우더 및 제조예 2에서 얻어진 그래핀 스크롤 복합소재 (M-GNSs) 의 라만 그래프(Raman graph)이다.
도 21을 참조하면, 박리된 그래핀은 G와 D 포논 모드로서 1576cm-1 과 2677cm-1 , 그래핀 파우더는 1570cm-1 과 2673cm-1 및 그래핀 스크롤 복합소재는 1564cm-1 과 2698cm-1에서 확인된다.
그래핀 스크롤 복합소재의 이러한 G 와 D 포논 모드의 시프트는 스크롤된 그래핀 시트들 사이의 π-π상호작용(pi-pi interaction)과 그래핀 스크롤의 형태적인 차이에 기인하는 것으로 추정되었다.
도 22은 제조예 2의 진행과정 중 얻어진 그래핀 스크롤 복합소재들을 촬영한 SEM 사진들을 나타낸다.
도 22를 참조하면, 그래핀 스크롤 복합소재의 내부직경은 250㎚이고, 그래핀 스크롤 복합소재의 내부에 들어간 양쪽성 물질은 섬유를 형성하는 것이 확인된다.
도 23은 제조예 74에 따라 얻어진 그래핀 스크롤을 촬영한 HR-TEM 사진들(A, B, C)과 제조예 75에 따라 얻어진 그래핀 스크롤을 촬영한 SEM 사진들(D, E, F)이다.
도 23을 참조하면, (A) 및 (B)는 제조예 74에서 제조예 1에 따라 얻어진 비교적 작은 내부 직경을 갖는 그래핀 스크롤 복합재를 메탄올로 몇 번 씻은 경우를 촬영한 HR-TEM 사진들로서, 그래핀 스크롤 복합재의 양측 단부에서만 내부의 바일산 유도체가 식각됨을 알 수 있다. (C)는 제조예 74에서 제조예 1에 따라 얻어진 비교적 작은 내부 직경을 갖는 그래핀 스크롤 복합재를 메탄올에 침지시킨 후 몇일 동안 방치한 경우를 촬영한 HR-TEM 사진으로서, 내부의 바일산 유도체가 완전히 제거되어 약 5nm의 내부 직경을 갖는 중공 그래핀 스크롤이 형성됨을 알 수 있다. (D), (E) 및 (F)는 제조예 75에서 제조예 2에 따라 얻어진 비교적 큰 내부 직경을 갖는 그래핀 스크롤 복합재를 메탄올로 몇 번 씻은 경우를 촬영한 SEM 사진들로서, 약 300㎚의 비교적 큰 내부 직경을 갖는 중공 그래핀 스크롤이 형성됨을 알 수 있다.
도 24은 그래파이트, 화학식 4의 바일산 유도체, 및 제조예 1에 따라 얻어진 그래핀 스크롤 복합체를 질소 분위기에서 열처리하여 얻은 TGA 그래프(a)와 TEM사진(b)이다.
도 24 (a)을 참조하면, 그래파이트의 경우 810도에 이르기까지 약간의 중량 감소만 있을 뿐임을 알 수 있다. 화학식 4의 바일산 유도체의 경우 약 300도에서 급격한 열화가 시작되고 400 내지 810도 사이에서 천천히 열화되어 결국 완전히 제거되었다. 한편, 제조예 1에 따라 제조된 그래핀 스크롤 복합체의 경우, 화학식 4의 바일산 유도체와 유사한 커브를 보여주나, 최종 24.5 wt%의 잔존물이 남았다. 이 잔존물은 열에 의해 내부의 바일산 유도체가 제거된 중공 그래핀 스크롤인 것으로 추정되었다.
도 24 (b)를 참조하면, 중공 그래핀 스크롤의 측벽은 10 내지 11 층의 시트들로 이루어진 것을 알 수 있다.
도 25는 제조예 17의 진행과정 중 얻어진 양쪽성 물질 용액을 촬영한 SEM 사진이다.
도 25를 참조하면, 금속입자(Ag)와 양쪽성 물질(소디움 도데실 설페이트)가 충분히 섞여 있음을 확인할 수 있다. 이는 금속입자와 양쪽성 물질이 자기조립에 의해 2차원 소재 스크롤의 내부로 들어가 2차원 소재 스크롤 복합체를 이룰 수 있음을 의미한다.
이상 본 발명을 바람직한 특정 제조예를 참조하여 설명했지만, 본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (30)

  1. 양측 말단이 오픈된 2차원 소재 스크롤; 및
    상기 스크롤의 내부에 배치된 양쪽성 물질을 포함하는 스크롤 복합재.
  2. 제1항에 있어서,
    상기 2차원 소재는 그래핀(Graphene), 그래핀 옥사이드(Graphene oxide), 보론 나이트라이드(boron nitride), 보론카본 나이트라이드(BCN), 텅스텐 옥사이드(WO3), 텅스텐 설파이드(WS2), 몰리브데넘설파이드(MoS2), 몰리브데넘 텔루라이드(MoTe2), 및 망간 옥사이드(MnO2)로 이루어진 군에서 선택되는 단일물질 또는 이들 중 둘 이상이 적층된 복합물질인 스크롤 복합재.
  3. 제1항에 있어서,
    상기 양쪽성 물질은 계면 활성제, 바일산, 바일산염, 바일산염 수화물, 바일산 에스터, 바일산 유도체, 또는 박테리오파지인 스크롤 복합재.
  4. 제3항에 있어서,
    계면 활성제는 소디움 도데실설페이트(Sodium dodecyl sulfate, SDS), 암모늄 라우릴설페이트(Ammonium lauryl sulfate), 소디움 라루레쓰 설페이트(Sodium laureth sulfate), 알킬벤젠설페이트(Alkyl benzene sulfonate), 세틸트리메틸암모늄 브로마이드(Cetyl trimethylammonium bromide, CTAB), 헥사데실트리메틸 암모늄 브로마이드(hexadecyl trimethyl ammonium bromide), 알킬트리메틸암모늄염 (alkyltrimethylammonium salts), 세틸피리딜 클로라이드(Cetylpyridinium chloride, CPCl), 폴리에톡실레이트탈로우 아민(Polyethoxylated tallow amine. POEA), 벤자일코늄 클로라이드(Benzalkonium chloride, BAC), 벤즈소늄 클로라이드(Benzethonium chloride, BZT), 도데실 베타민(Dodecyl betaine), 도데실 디메틸아민 옥사이드(dodecyl dimethylamine oxide), 코카미도프로필 베타민(Cocamidopropyl betaine), 알킬 폴리(에틸렌 옥사이드) , 폴록사머(poloxamers), 폴록사민(Poloxamines), 알킬 폴리글루코사이드(alkyl polyglucoside), 세틸알콜(Cetyl alcohol), 소듐 디옥시크 코카미드(cocamide) MEA, 코카미드 DEA, 솔비탄 에스테르, 폴리옥시에틸렌 솔비탄 지방산 에스테르, 자당지방산에스테르, 폴리에틸렌 글리콜 히드록시스테아레이트, 폴리옥시에틸렌 글리콜화 천연 또는 수소화 피마자유, 폴리옥시에틸렌-폴리옥시프로필렌 공중합체, 합성 비타민 E 유도체, 폴리옥시에틸렌 알킬 에스테르, 지방산 마크로골 글리세라이드, 폴리글리세릴 지방산 에스테르, 및 실리콘계 계면활성제로 이루어진 군에서 선택되는 하나 이상의 화합물인 스크롤 복합재.
  5. 제3항에 있어서,
    상기 바일산은 하기 화학식 1로 표시되는 스크롤 복합재:
    [화학식 1]
    Figure PCTKR2015001976-appb-I000058
    상기 화학식 1에서,
    R1과 R2는 서로에 관계없이 -H 또는 -OH이고,
    R3는 -(CONH-(CH2)n1)n2-Y1이고, n1은 1 또는 2이고, n2은 1 또는 0이고, Y1은 -COOH 또는 -SO3H이다.
  6. 제5항에 있어서,
    상기 바일산은 콜릭 산 (Cholic Acid), 체노디옥시콜릭 산 (Chenodeoxycholic Acid), 디옥시콜릭 산 (Deoxycholic Acid), 리쏘콜릭 산 (Lithocholic Acid), 글리코콜릭 산 (Glycocholic Acid), 타우로콜릭 산 (Taurocholic Acid), 글리코체노디옥시콜릭 산 (Glycochenodeoxycholic Acid), 타우로체노디옥시콜릭 산 (Taurochenodeoxycholic Acid), 글리코디옥시콜릭 산 (Glycodeoxycholic Acid), 타우로디옥시콜릭 산 (Taurodeoxycholic Acid), 글리코리쏘콜릭 산 (Glycolithocholic Acid), 및 타우로리쏘콜릭 산 (Taurolithocholic Acid) 으로 이루어진 군에서 선택되는 적어도 하나인 스크롤 복합재.
  7. 제5항에 있어서,
    상기 바일산염은 소듐 글리고체노디옥시콜레이트(Sodium glycochenodeoxycholate), 소듐 타우로디옥시콜레이트(Sodium taurochenodeoxycholate), 소듐 타우로콜레이트(Sodium taurocholate), 또는 소듐 디옥시콜레이트(Sodium deoxycholate)인 스크롤 복합재.
  8. 제5항에 있어서,
    상기 바일산염은 상기 바일산염 수화물은 소듐 타우로콜레이트 하이드레이트(Sodium taurocholate hydrate) 또는 소듐 콜레이트 하이드레이트(Sodium cholate hydrate)인 스크롤 복합재.
  9. 제3항에 있어서,
    상기 바일산 유도체는 하기 화학식 2로 표시되는 스크롤 복합재.
    [화학식 2]
    Figure PCTKR2015001976-appb-I000059
    상기 화학식 2에서,
    n은 0, 1 또는 2이고,
    R4 내지 R7는 서로 독립적으로 화학식 3으로 표시되는 기(group)이고,
    [화학식 3]
    Figure PCTKR2015001976-appb-I000060
    상기 화학식 3에서, B1
    Figure PCTKR2015001976-appb-I000061
    ,
    Figure PCTKR2015001976-appb-I000062
    ,
    Figure PCTKR2015001976-appb-I000063
    ,
    Figure PCTKR2015001976-appb-I000064
    ,
    Figure PCTKR2015001976-appb-I000065
    ,
    Figure PCTKR2015001976-appb-I000066
    , 및
    Figure PCTKR2015001976-appb-I000067
    로 이루어진 군에서 선택되는 하나의 기이고,
    L1은 -W1-, -Q1-, -Q2-W2-, -W2-Q1-W3-, 또는 -W4-Q2-W5-Q3-Q6-인 연결기이며, W1, W2, W3, W4, W5, 및 W6는 서로에 관계없이
    Figure PCTKR2015001976-appb-I000068
    ,
    Figure PCTKR2015001976-appb-I000069
    , 또는
    Figure PCTKR2015001976-appb-I000070
    이고, a1 내지 a3는 1 내지 4의 정수이고, Q1, Q2, Q3, Q4, Q5, 및 Q6는 서로에 관계없이
    Figure PCTKR2015001976-appb-I000071
    ,
    Figure PCTKR2015001976-appb-I000072
    ,
    Figure PCTKR2015001976-appb-I000073
    ,
    Figure PCTKR2015001976-appb-I000074
    ,
    Figure PCTKR2015001976-appb-I000075
    ,
    Figure PCTKR2015001976-appb-I000076
    ,
    Figure PCTKR2015001976-appb-I000077
    ,
    Figure PCTKR2015001976-appb-I000078
    ,
    Figure PCTKR2015001976-appb-I000079
    ,
    Figure PCTKR2015001976-appb-I000080
    , ,
    Figure PCTKR2015001976-appb-I000082
    ,
    Figure PCTKR2015001976-appb-I000083
    ,
    Figure PCTKR2015001976-appb-I000084
    , 또는
    Figure PCTKR2015001976-appb-I000085
    이고,
    G1
    Figure PCTKR2015001976-appb-I000086
    ,
    Figure PCTKR2015001976-appb-I000087
    ,
    Figure PCTKR2015001976-appb-I000088
    ,
    Figure PCTKR2015001976-appb-I000089
    ,
    Figure PCTKR2015001976-appb-I000090
    ,
    Figure PCTKR2015001976-appb-I000091
    ,
    Figure PCTKR2015001976-appb-I000092
    ,
    Figure PCTKR2015001976-appb-I000093
    ,
    Figure PCTKR2015001976-appb-I000094
    ,
    Figure PCTKR2015001976-appb-I000095
    ,
    Figure PCTKR2015001976-appb-I000096
    , -NH2, -CH3,, -SO3H, =O, -H, 또는
    Figure PCTKR2015001976-appb-I000097
    로 표시되는 기이고,
    m은 0 또는 1이고, n은 0 또는 1이다.
  10. 제9항에 있어서,
    상기 바일산 유도체는 하기 화학식들 4 내지 20중 어느 하나인 스크롤 복합재.
    [화학식 4]
    Figure PCTKR2015001976-appb-I000098
    (R)-N-(아미노메틸)-4-((3R, 5R, 8R, 9S, 10S, 13R, 14S, 17R)-3-하이드록시-10, 13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜탄아미드
    [화학식 5]
    Figure PCTKR2015001976-appb-I000099
    (R)-메틸-4-((3R, 5S, 7R, 8R, 9S, 10S, 12S, 13R, 14S, 17R)-3, 7, 12-트라이하이드록시-10, 13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜타노에이트
    [화학식 6]
    Figure PCTKR2015001976-appb-I000100
    (R)-4-((3R, 5R, 8R, 9S, 10S, 13R, 14S, 17R)-3-하이드록시-10, 13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)-N-(하이드록시메틸)펜탄아미드
    [화학식 7]
    Figure PCTKR2015001976-appb-I000101
    (R)-N-(아미노메틸)-4-((3R, 5S, 7R, 8R, 9S, 10S, 12S, 13R, 14S, 17R)-3,7,12-트라이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜탄아미드
    [화학식 8]
    Figure PCTKR2015001976-appb-I000102
    (R)-4-((3R, 5R, 7R, 8R, 9S, 10S, 13R, 14S, 17R)-7-하이드록시-10,13-다이메틸-3-(설포옥시)헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜타노익산
    [화학식 9]
    Figure PCTKR2015001976-appb-I000103
    β-콜란닉-3α,12α-디올 3-아세테이트 메틸 에스터(5β-Cholanic acid-3α,12α-diol 3-acetate methyl ester)
    [화학식 10]
    Figure PCTKR2015001976-appb-I000104
    5β-콜란닉 산-3-온(5β-Cholanic acid-3-one)
    [화학식 11]
    Figure PCTKR2015001976-appb-I000105
    5β-콜란닉산 3,7-디온 메틸 에스터(5β-Cholanic acid 3,7-dione methyl ester)
    [화학식 12]
    Figure PCTKR2015001976-appb-I000106
    5β-콜란닉 산-3,7-디온(5β-Cholanic acid-3,7-dione)
    [화학식 13]
    Figure PCTKR2015001976-appb-I000107
    카바믹(4R)-4-((3R,8R,9S,10S,13R,14S,17R)-3-하이드록시-10,13- 다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜타노익 안하이드라이드 (Carbamic(4R)-4-((3R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic anhydride)
    [화학식 14]
    Figure PCTKR2015001976-appb-I000108
    (3R,7R,8R,9S,10S,12S,13R,14S,17R)-7,12-다이하이드록시-10,13-다이메틸-17-((R)-5-((2-메틸-3-옥소부탄-2-일)아미노)-5-옥소펜탄-2-일)헥사데카하이드로-1H-사이클로펜타[a]페난트렌-3-설포닉산( (3R,7R,8R,9S,10S,12S,13R,14S,17R)-7,12-dihydroxy-10,13-dimethyl-17-((R)-5-((2-methyl-3-oxobutan-2-yl)amino)-5-oxopentan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthrene-3-sulfonic acid)
    [화학식 15]
    Figure PCTKR2015001976-appb-I000109
    (R)-4-옥소-7-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-트라이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)옥탄나이트릴 ((R)-4-oxo-7-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)octanenitrile)
    [화학식 16]
    Figure PCTKR2015001976-appb-I000110
    3-((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-트라이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜탄아미도)프로파노익 산(3-((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamido)propanoic acid)
    [화학식 17]
    Figure PCTKR2015001976-appb-I000111
    (R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-트라이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜타노익 설퓨릭 안하이드라이드 ((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic sulfuric anhydride)
    [화학식 18]
    Figure PCTKR2015001976-appb-I000112
    (R)-N-카바모일-4-((3R,5R,8R,9S,10S,12S,13R,14S,17R)-3,12-다이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)펜탄아미드((R)-N-carbamoyl-4-((3R,5R,8R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamide)
    [화학식 19]
    Figure PCTKR2015001976-appb-I000113
    4-((S)-1-((3R,5R,8R,9S,10S,12S,13S,14S,17R)-3,12-다이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)에틸)벤젠설포닉 산(4-((S)-1-((3R,5R,8R,9S,10S,12S,13S,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)benzenesulfonic acid)
    [화학식 20]
    Figure PCTKR2015001976-appb-I000114
    4-((S)-1-((3R,5R,8R,9S,10S,12S,13S,14S,17R)-3,12-다이하이드록시-10,13-다이메틸헥사데카하이드로-1H-사이클로펜타[a]페난트렌-17-일)에틸)벤조산(4-((S)-1-((3R,5R,8R,9S,10S,12S,13S,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)ethyl)benzoic acid)
  11. 제3항에 있어서,
    상기 박테리오파지는 선상 박테리오파지(filamentous bacteriophage)인 스크롤 복합재.
  12. 제11항에 있어서,
    상기 박테리오파지는 T1, T2, T3, T4, T5, T6, T7, M13, MS2, fd, f1 및 P22로 이루어진 군에서 선택되는 적어도 하나인 스크롤 복합재.
  13. 제1항에 있어서,
    상기 양쪽성 물질은 자기조립체인 스크롤 복합재.
  14. 제13항에 있어서,
    상기 자기조립체의 외부에는 상기 양쪽성 물질의 친수성 부분이 노출된 스크롤 복합재.
  15. 제13항에 있어서,
    상기 자기조립체는 구형, 막대형, 또는 섬유형인 스크롤 복합재.
  16. 제13항에 있어서,
    상기 양쪽성 물질 자기조립체는 코어 입자 및 상기 코어 입자 상에 자기조립된 양쪽성 물질을 구비하는 하나 이상의 쉘을 포함하는 스크롤 복합재.
  17. 제16항에 있어서,
    상기 양쪽성 물질 자기조립체의 외부에는 상기 양쪽성 물질의 친수성 부분이 노출된 스크롤 복합재.
  18. 제16항에 있어서,
    상기 코어 입자는 구형 또는 막대형인 스크롤 복합재.
  19. 제16항에 있어서,
    상기 코어 입자는 금속 입자, 금속 산화물 입자, 또는 박테리오파지인 스크롤 복합재.
  20. 2차원 소재가 스크롤된 형태를 갖고, 서로 인접하는 2차원 소재 시트들 사이에 반데르발스 상호작용을 가지며, 양측 말단이 오픈된 2차원 소재 스크롤.
  21. 제21항에 있어서,
    상기 2차원 소재 스크롤은 내부가 비어 있는 중공 스크롤인 2차원 소재 스크롤.
  22. 2차원 소재를 제공하는 단계; 및
    상기 2차원 소재 상에 친수성 부분과 소수성 부분을 갖는 양쪽성 물질을 제공하여 상기 2차원 소재를 스크롤하여 스크롤 구조 내부에 상기 양쪽성 물질이 배치된 스크롤 복합재를 형성하는 단계를 포함하는 2차원 소재 스크롤 제조방법.
  23. 제22항에 있어서,
    상기 2차원 소재는 용매 내에 분산된 2차원 소재 분산액의 형태로 제공되는 2차원 소재 스크롤 제조방법.
  24. 제23항에 있어서,
    상기 양쪽성 물질을 제공하는 것은 상기 양쪽성 물질을 용매 내에 용해시킨 양쪽성 물질 용액을 상기 2차원 소재 분산액과 혼합하는 것인 2차원 소재 스크롤 제조방법.
  25. 제24항에 있어서,
    상기 양쪽성 물질 용액을, 상기 2차원 소재 분산액과 혼합하기 전에, 가열하는 단계를 더 포함하는 2차원 소재 스크롤 제조방법.
  26. 제24항에 있어서,
    상기 가열된 양쪽성 물질 용액을, 상기 2차원 소재 분산액과 혼합하기 전에, 냉각시키는 단계를 더 포함하는 2차원 소재 스크롤 제조방법.
  27. 제24항에 있어서,
    상기 양쪽성 물질 용액은 코어 입자를 포함하는 2차원 소재 스크롤 제조방법.
  28. 제22항에 있어서,
    상기 스크롤 복합재를 용매 처리 및/또는 열처리하여 내부의 상기 양쪽성 물질을 적어도 일부 제거하여 중공 스크롤을 형성하는 단계를 더 포함하는 2차원 소재 스크롤 제조방법.
  29. 제28항에 있어서,
    상기 용매는 상기 양쪽성 물질을 용해하는 용매인 2차원 소재 스크롤 제조방법.
  30. 제28항에 있어서,
    상기 열처리는 200 내지 800℃인 2차원 소재 스크롤 제조방법.
PCT/KR2015/001976 2014-03-04 2015-03-02 내부에 양쪽성 물질을 포함하는 스크롤 복합재 및 그의 제조방법 WO2015133776A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/117,575 US10486971B2 (en) 2014-03-04 2015-03-02 Scroll composite having amphiphilic substance inside and method for preparation of the same
CN201580011069.7A CN106061896B (zh) 2014-03-04 2015-03-02 内部具有两亲性物质的卷状物复合体及其制备方法
US16/598,410 US11247904B2 (en) 2014-03-04 2019-10-10 Scroll composite having amphiphilic substance inside and method for preparation of the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140025413 2014-03-04
KR10-2014-0025413 2014-03-04
KR1020150026298A KR101725616B1 (ko) 2014-03-04 2015-02-25 내부에 양쪽성 물질을 포함하는 스크롤 복합재 및 그의 제조방법
KR10-2015-0026298 2015-02-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/117,575 A-371-Of-International US10486971B2 (en) 2014-03-04 2015-03-02 Scroll composite having amphiphilic substance inside and method for preparation of the same
US16/598,410 Division US11247904B2 (en) 2014-03-04 2019-10-10 Scroll composite having amphiphilic substance inside and method for preparation of the same

Publications (1)

Publication Number Publication Date
WO2015133776A1 true WO2015133776A1 (ko) 2015-09-11

Family

ID=54055526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001976 WO2015133776A1 (ko) 2014-03-04 2015-03-02 내부에 양쪽성 물질을 포함하는 스크롤 복합재 및 그의 제조방법

Country Status (2)

Country Link
US (1) US11247904B2 (ko)
WO (1) WO2015133776A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106890626A (zh) * 2015-12-18 2017-06-27 财团法人工业技术研究院 吸附材料与其形成方法与吸附式热泵

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112320811B (zh) * 2020-11-20 2023-08-29 中国地质大学(武汉) 一种蒙脱土质非对称结构湿度刺激响应型材料的制备方法
KR102623009B1 (ko) * 2021-11-17 2024-01-09 한국생산기술연구원 환원 그래핀 옥사이드 스크롤의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100025615A (ko) * 2008-08-28 2010-03-10 서동학 수용성기를 포함한 바일산 유도체 및 그의 응용

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100025615A (ko) * 2008-08-28 2010-03-10 서동학 수용성기를 포함한 바일산 유도체 및 그의 응용

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HWANG, D. Y. ET AL.: "Formation of hexagonal boron nitride nanoscrolls induced by inclusion and exclusion of selfassembling molecules in solution process", NANOSCALE, vol. 6, 7 April 2014 (2014-04-07), pages 5686 - 5690 *
HWANG, D. Y. ET AL.: "Inclusion and exclusion of self-assembled molecules inside graphene scrolls and control of their inner-tube diameter", RSC ADV., vol. 4, 2 July 2014 (2014-07-02), pages 35943 - 56949 *
LIANG, W. ET AL.: "Self-assembly of J-aggregate nanotubes and their applications for sensing dopamine", LANGMUIR, vol. 30, 7 January 2014 (2014-01-07), pages 805 - 811 *
SHARIFI, T. ET AL.: "Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic y-Fe203 nanoparticles", NATURE COMMUNICATIONS, vol. 4, no. 2319, 14 August 2013 (2013-08-14), pages 1 - 9, XP055156958 *
ZHENG, JIAN ET AL.: "Production of High-Quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen", ADV. MATER., vol. 23, 8 April 2011 (2011-04-08), pages 2460 - 2463 *
ZHU, SHUZE ET AL.: "Hydrogenation enabled scrolling of graphene", J. PHYS. D: APPL. PHYS., vol. 46, 23 January 2013 (2013-01-23), pages 1 - 8 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106890626A (zh) * 2015-12-18 2017-06-27 财团法人工业技术研究院 吸附材料与其形成方法与吸附式热泵

Also Published As

Publication number Publication date
US11247904B2 (en) 2022-02-15
US20200165136A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2012060601A2 (en) Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method
WO2015133776A1 (ko) 내부에 양쪽성 물질을 포함하는 스크롤 복합재 및 그의 제조방법
WO2016032299A1 (ko) 단량체 염을 이용한 폴리이미드 제조방법
WO2020226348A1 (ko) 신규한 금속 층상수산화물 복합체 및 이의 제조방법
WO2020022822A1 (ko) 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극
WO2012067439A2 (ko) 다이아자다이엔계 금속 화합물, 이의 제조 방법 및 이를 이용한 박막 형성 방법
WO2016072810A1 (ko) 엑시톤 버퍼층을 포함하는 페로브스카이트 발광 소자 및 이의 제조방법
WO2013100409A1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2021177551A1 (ko) 표면작용기 제어를 통한 맥신의 산화안정성 향상 방법
WO2020145725A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2012128509A2 (ko) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2013187542A1 (ko) 실리카라이트-1 또는 제올라이트 베타 종자 결정들의 표면으로부터 2차 성장만을 유도하는 결정 성장 합성젤
KR101725616B1 (ko) 내부에 양쪽성 물질을 포함하는 스크롤 복합재 및 그의 제조방법
WO2019209012A1 (ko) 비침지 방식을 통한 유리의 이온교환 방법
WO2017052138A2 (ko) 아민계 화합물 및 이를 포함하는 유기 발광 소자
WO2018030552A1 (ko) 중합성 조성물
WO2016032284A1 (ko) 봉형 산화 몰리브덴의 제조방법 및 산화 몰리브덴 복합체의 제조방법
WO2017082558A1 (en) Thermoelectric material, thermoelectric module and thermoelectric device including the same
WO2023191535A1 (ko) 클릭반응을 이용한 패턴화된 cnt 필름 코팅 기판 및 이의 제조방법
WO2023177186A1 (ko) 클릭반응을 이용한 cnt 필름, 이를 이용한 cnt 기반 바이오 센서 및 이의 제조방법
WO2016175573A2 (ko) 화합물 및 이를 포함하는 유기 태양 전지
WO2022097949A1 (ko) 탄소나노튜브의 연속 합성 방법
WO2017023045A1 (ko) 환상 폴리설페인계 중합체, 이의 제조 방법, 및 이를 포함하는 필름
WO2023033465A1 (ko) 클릭반응을 이용한 cnt 트랜지스터 및 이의 제조방법
WO2015115796A1 (ko) 페길레이션된 7-디하이드로콜레스테롤 유도체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15117575

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15759314

Country of ref document: EP

Kind code of ref document: A1