WO2017052138A2 - 아민계 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

아민계 화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2017052138A2
WO2017052138A2 PCT/KR2016/010351 KR2016010351W WO2017052138A2 WO 2017052138 A2 WO2017052138 A2 WO 2017052138A2 KR 2016010351 W KR2016010351 W KR 2016010351W WO 2017052138 A2 WO2017052138 A2 WO 2017052138A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
compound
light emitting
Prior art date
Application number
PCT/KR2016/010351
Other languages
English (en)
French (fr)
Other versions
WO2017052138A3 (ko
Inventor
차용범
홍성길
김정범
김진주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680055754.4A priority Critical patent/CN108137499B/zh
Priority to JP2018512176A priority patent/JP6504641B2/ja
Priority to EP16848864.1A priority patent/EP3336077B1/en
Priority to US15/760,923 priority patent/US10862045B2/en
Publication of WO2017052138A2 publication Critical patent/WO2017052138A2/ko
Publication of WO2017052138A3 publication Critical patent/WO2017052138A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present specification relates to an amine compound and an organic light emitting device including the same.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer is often made of a multi-layered structure composed of different materials to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
  • Ar1 is a substituted or unsubstituted aryl group
  • L is a direct bond; Or a substituted or unsubstituted arylene group,
  • R 1 is hydrogen; heavy hydrogen; Or a substituted or unsubstituted alkyl group,
  • R2 and R3 are the same as or different from each other, and each independently hydrogen; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • a is an integer of 0 to 5
  • b is an integer of 0 to 7
  • c is an integer of 0 to 11, and when a is 2 or more, R1 is the same as or different from each other,
  • R2 is the same as or different from each other
  • R3 is the same as or different from each other when c is 2 or more.
  • an exemplary embodiment of the present specification includes a first electrode; A second electrode provided to face the first electrode; And an organic light emitting device including at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound of Formula 1.
  • the compound described herein can be used as the material of the organic material layer of the organic light emitting device.
  • the compound according to at least one exemplary embodiment may improve efficiency, low driving voltage, and / or lifetime characteristics in the organic light emitting diode.
  • the compounds described herein can be used as hole injection, hole transport, hole injection and hole transport, electron blocking, luminescence, hole suppression, electron transport, or electron injection material.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • FIG. 2 shows an example of an organic light emitting element consisting of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 3, an electron transport layer 7 and a cathode 4 It is.
  • An exemplary embodiment of the present specification provides a compound represented by Chemical Formula 1.
  • the term "substituted or unsubstituted” is deuterium; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide groups; An alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy groups; Aryl sulfoxy group; Silyl groups; Boron group; Germanium group; Alkyl groups; Cycloalkyl group; Alkenyl groups; Aryl group; Aralkyl group; Ar alkenyl group; Alkylaryl group; Alkylamine group; Aralkyl amine groups; Heteroarylamine group; Arylamine group; Aryl phosphine group; And it is substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group, or substituted or unsubstituted two or more substituents of the substituent
  • a substituent to which two or more substituents are linked may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are linked.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • carbon number of a carbonyl group in this specification is not specifically limited, It is preferable that it is C1-C40. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 40 carbon atoms or an aryl group having 6 to 30 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the silyl group may be represented by the formula of -SiR a R b R c , wherein R a , R b and R c are each hydrogen; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group.
  • Specific examples of the silyl group include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, and phenylsilyl group, but are not limited thereto. Do not.
  • the boron group may be represented by the formula of -BR a R b , wherein R a and R b are each hydrogen; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group.
  • the boron group may include, but is not limited to, trimethylboron group, triethylboron group, t-butyldimethylboron group, triphenylboron group, and phenylboron group.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4- Methyl-2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, cyclopentylmethyl group, cyclohexylmethyl group, octyl group, n-octyl group , ter
  • the alkoxy group may be linear, branched or cyclic. Although carbon number of an alkoxy group is not specifically limited, It is preferable that it is C1-C40. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, Isopentyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy and the like It may be, but is not limited thereto.
  • Substituents comprising alkyl groups, alkoxy groups and other alkyl group moieties described herein include both straight and pulverized forms.
  • the alkenyl group may be linear or branched chain, the carbon number is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 40 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the alkylamine group is not particularly limited in carbon number, but is preferably 1 to 40.
  • Specific examples of the alkylamine group include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, 9-methyl-anthracenylamine Groups, diphenylamine groups, phenylnaphthylamine groups, ditolylamine groups, phenyltolylamine groups, triphenylamine groups and the like, but are not limited thereto.
  • examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
  • the aryl group in the arylamine group may be a monocyclic aryl group, may be a polycyclic aryl group.
  • the arylamine group including two or more aryl groups may simultaneously include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group.
  • arylamine group examples include phenylamine, naphthylamine, biphenylamine, anthracenylamine, 3-methyl-phenylamine, 4-methyl-naphthylamine, 2-methyl-biphenylamine, 9-methyl-anthra Cenylamine, diphenyl amine group, phenyl naphthyl amine group, ditolyl amine group, phenyl tolyl amine group, carbazole and triphenyl amine group and the like, but are not limited thereto.
  • examples of the heteroarylamine group include a substituted or unsubstituted monoheteroarylamine group, a substituted or unsubstituted diheteroarylamine group, or a substituted or unsubstituted triheteroarylamine group.
  • the heteroaryl group in the heteroarylamine group may be a monocyclic hetero ring group or may be a polycyclic hetero ring group.
  • the heteroarylamine group including two or more heterocyclic groups may simultaneously include a monocyclic hetero ring group, a polycyclic hetero ring group, or a monocyclic hetero ring group and a polycyclic hetero ring group.
  • examples of the arylphosphine group include a substituted or unsubstituted monoarylphosphine group, a substituted or unsubstituted diarylphosphine group, or a substituted or unsubstituted triarylphosphine group.
  • the aryl group in the arylphosphine group may be a monocyclic aryl group, may be a polycyclic aryl group.
  • the arylphosphine group containing two or more aryl groups may simultaneously include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a monocyclic aryl group, but may be a phenyl group, a biphenyl group, a terphenyl group, etc., but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, triphenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • Spirofluorenyl groups such as (9,9-dimethylfluorenyl group), and It may be a substituted fluorenyl group such as (9,9-diphenyl fluorenyl group).
  • the present invention is not limited thereto.
  • the heterocyclic group is a heterocyclic group including one or more of N, O, P, S, Si, and Se as hetero atoms, and carbon number is not particularly limited, but is preferably 1 to 60 carbon atoms. According to an exemplary embodiment, the heterocyclic group has 1 to 30 carbon atoms.
  • heterocyclic group examples include, for example, pyridyl group, pyrrole group, pyrimidyl group, pyridazinyl group, furanyl group, thiophenyl group, imidazole group, pyrazole group, oxazole group, isoxazole group, thiazole group, isothiazole group, Triazole group, oxadiazole group, thiadiazole group, dithiazole group, tetrazole group, pyranyl group, thiopyranyl group, pyrazinyl group, oxazinyl group, thiazinyl group, deoxyyl group, triazinyl group, tetrazinyl group, qui Nolinyl group, isoquinolinyl group, quinolyl group, quinazolinyl group, quinoxalinyl group, naphthyridinyl group, acriridyl group, xanthenyl group
  • heteroaryl group is aromatic
  • the aryl group in the aryloxy group, arylthioxy group, aryl sulfoxy group, aryl phosphine group, aralkyl group, aralkylamine group, aralkenyl group, alkylaryl group, arylamine group, arylheteroarylamine group is described above.
  • the description of one aryl group may apply.
  • the alkyl group among the alkyl thioxy group, the alkyl sulfoxy group, the aralkyl group, the aralkyl amine group, the alkyl aryl group, and the alkyl amine group may be described with respect to the alkyl group described above.
  • heteroaryl group a heteroarylamine group, and an arylheteroarylamine group among the heteroaryl groups may be applied to the description of the aforementioned heterocyclic group.
  • the germanium group may be represented by the chemical formula of —GeR a R b R c , wherein R a , R b and R c are each hydrogen; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group.
  • the germanium group may include, but is not limited to, a trimethyl germanium group, a triethyl germanium group, a t-butyldimethyl germanium group, and the like.
  • alkenyl group of the alkenyl group may be applied to the description of the alkenyl group described above.
  • heteroarylene is a divalent group
  • the description of the aforementioned heteroaryl group may be applied.
  • the meaning of combining with adjacent groups to form a ring means combining with adjacent groups with each other for a substituted or unsubstituted aliphatic hydrocarbon ring; Substituted or unsubstituted aromatic hydrocarbon ring; Substituted or unsubstituted aliphatic heterocycle; Substituted or unsubstituted aromatic heterocycle; Or to form a condensed ring thereof.
  • the aliphatic hydrocarbon ring means a ring composed only of carbon and hydrogen atoms as a ring which is not aromatic.
  • examples of the aliphatic hydrocarbon ring include cyclopropane, cyclobutane, cyclobutene, cyclopentane, cyclopentene, cyclohexane, cyclohexene, 1,4-cyclohexadiene, cycloheptane, cycloheptene, cyclooctane, cyclooctene, and the like. There is, but is not limited to these.
  • the aromatic hydrocarbon ring means an aromatic ring composed only of carbon and hydrogen atoms.
  • examples of the aromatic hydrocarbon ring include benzene, naphthalene, anthracene, phenanthrene, perylene, fluoranthene, triphenylene, penalene, pyrene, tetracene, chrysene, pentacene, fluorene, indene, acenaph Butylene, benzofluorene, spirofluorene and the like, but is not limited thereto.
  • the aliphatic heterocycle means an aliphatic ring containing one or more of the heteroatoms.
  • examples of aliphatic heterocycles include oxirane, tetrahydrofuran, 1,4-dioxane, pyrrolidine, piperidine, morpholine, oxepan, Azocaine, thiocaine and the like, but are not limited to these.
  • the aromatic heterocycle means an aromatic ring including at least one of heteroatoms.
  • aromatic heterocycles include pyridine, pyrrole, pyrimidine, pyridazine, furan, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, triazole, oxadiazole , Thiadiazole, dithiazole, tetrazole, pyran, thiopyran, diazine, oxazine, thiazine, dioxin, triazine, tetrazine, isoquinoline, quinoline, quinol, quinazoline, quinoxaline, naphthyridine, azine Cridine, phenanthridine, diazanaphthalene, triazaindene, indole, indolizine, benzothiazole, benzoxazole, benzoimid
  • the aliphatic hydrocarbon ring, aromatic hydrocarbon ring, aliphatic hetero ring and aromatic hetero ring may be monocyclic or polycyclic.
  • the compound represented by Formula 1 may be represented by the following formula (2) or formula (3).
  • the compound represented by Formula 1 may be represented by the following formula (4) or formula (5).
  • Ar1 is a monocyclic or polycyclic substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • Ar1 is a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; Substituted or unsubstituted terphenyl group; Substituted or unsubstituted naphthyl group; Substituted or unsubstituted anthracenyl group; Substituted or unsubstituted phenanthryl group; Substituted or unsubstituted pyrenyl group; Substituted or unsubstituted perenyl group; Substituted or unsubstituted chrysenyl group; Or a substituted or unsubstituted fluorenyl group.
  • Ar1 is a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; Substituted or unsubstituted terphenyl group; Substituted or unsubstituted naphthyl group; A substituted or unsubstituted fluorenyl group; Substituted or unsubstituted phenanthrenyl group; Or a substituted or unsubstituted triphenylenyl group.
  • Ar1 may be any one selected from the following structures, and the following structures may be further substituted.
  • the structures are deuterium; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amine groups; Phosphine oxide groups; An alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy groups; Aryl sulfoxy group; Silyl groups; Boron group; Alkyl groups; Cycloalkyl group; Alkenyl groups; Aryl group; Aralkyl group; Ar alkenyl group; Alkylaryl group; Alkylamine group; Aralkyl amine groups; Heteroarylamine group; Arylamine group; Aryl heteroaryl amine group; Aryl phosphine group; And it may be substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group. More specifically, deuterium; Alkyl groups; Or an aryl group may be substituted or unsubstituted.
  • L is a direct bond; Or a monocyclic or polycyclic substituted or unsubstituted arylene group having 6 to 30 carbon atoms.
  • L is a direct bond; Substituted or unsubstituted phenylene group; A substituted or unsubstituted biphenylylene group; A substituted or unsubstituted terphenylylene group; Substituted or unsubstituted naphthylene group; Substituted or unsubstituted anthracenylene group; A substituted or unsubstituted fluorenylene group; Substituted or unsubstituted phenanthrenylene group; Or a substituted or unsubstituted triphenylenylene group.
  • L is a direct bond; Or a substituted or unsubstituted phenylene group.
  • L is a direct bond; Or any one selected from the following structures, and the following structures may be further substituted.
  • the structures are deuterium; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amine groups; Phosphine oxide groups; An alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy groups; Aryl sulfoxy group; Silyl groups; Boron group; Alkyl groups; Cycloalkyl group; Alkenyl groups; Aryl group; Aralkyl group; Ar alkenyl group; Alkylaryl group; Alkylamine group; Aralkyl amine groups; Heteroarylamine group; Arylamine group; Aryl heteroaryl amine group; Aryl phosphine group; And it may be substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group. More specifically, deuterium; Alkyl groups; Or an aryl group may be substituted or unsubstituted.
  • R1 is hydrogen; heavy hydrogen; Or a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms.
  • R1 is hydrogen; heavy hydrogen; Substituted or unsubstituted methyl group; A substituted or unsubstituted ethyl group; Substituted or unsubstituted propyl group; Substituted or unsubstituted n-propyl group; Substituted or unsubstituted isopropyl group; Substituted or unsubstituted butyl group; Substituted or unsubstituted n-butyl group; Substituted or unsubstituted isobutyl group; A substituted or unsubstituted tert-butyl group; Substituted or unsubstituted sec-butyl group; A substituted or unsubstituted 1-methyl-butyl group; Substituted or unsubstituted 1-ethyl-butyl group; Substituted penty
  • R1 is hydrogen; heavy hydrogen; Substituted or unsubstituted methyl group; Or a substituted or unsubstituted t-butyl group.
  • R1 is hydrogen; heavy hydrogen; Methyl group; Or t-butyl group.
  • the compound of Formula 1 may be any one selected from the following compounds.
  • the compound of Formula 1 may be synthesized by the following general scheme, but is not limited thereto.
  • the compound of Formula 1 may be synthesized using the following C to J as an intermediate instead of intermediate A or B in Scheme A or B.
  • the conjugation length of the compound and the energy bandgap are closely related. Specifically, the longer the conjugation length of the compound, the smaller the energy bandgap.
  • compounds having various energy band gaps may be synthesized by introducing various substituents at the positions of Ar1 and R1 of the core structure as described above.
  • the HOMO and LUMO energy levels of the compound may be controlled by introducing various substituents at the positions of Ar1 and R1 of the core structure as described above.
  • the compound which has the intrinsic property of the introduced substituent can be synthesize
  • a substituent mainly used in the hole injection layer material, the hole transport material, the light emitting layer material, and the electron transport layer material used in the manufacture of the organic light emitting device into the core structure, it is possible to synthesize a material satisfying the requirements of each organic material layer. Can be.
  • the organic light emitting device is an organic light emitting device comprising a first electrode, a second electrode, and at least one organic layer disposed between the first electrode and the second electrode, at least one of the organic layer It is characterized by including the compound.
  • the organic light emitting device of the present invention may be manufactured by a conventional method and material for manufacturing an organic light emitting device, except that at least one organic material layer is formed using the above-described compound.
  • the compound may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, inkjet printing, screen printing, spraying method, roll coating and the like, but is not limited thereto.
  • the organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, an electron blocking layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • the organic material layer may include at least one of a hole injection layer, an electron blocking layer, a hole transport layer, and a layer for simultaneously injecting holes and transporting holes, and at least one of the layers. It may include a compound represented by the formula (1).
  • the organic material layer includes an electron blocking layer
  • the electron blocking layer includes a compound represented by Chemical Formula 1.
  • the organic material layer includes a hole transport layer
  • the hole transport layer includes a compound represented by Chemical Formula 1.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes a compound represented by Chemical Formula 1.
  • the compound represented by Formula 1 may be included as a host of the light emitting layer.
  • the compound represented by Chemical Formula 1 may be included as a phosphorescent host of the emission layer.
  • the organic material layer including the compound represented by Chemical Formula 1 may include the compound represented by Chemical Formula 1 as a host, and may include another organic compound, a metal, or a metal compound as a dopant.
  • the organic material layer including the compound represented by Chemical Formula 1 may include the compound represented by Chemical Formula 1 as a host, and may be used together with an iridium-based (Ir) dopant.
  • the organic material layer may include one or more layers of an electron transport layer, an electron injection layer, and a layer for simultaneously transporting and transporting electrons, and one or more of the layers may include the compound.
  • the organic material layer of the organic electronic device includes a hole transport layer, and the hole transport layer includes a compound represented by Chemical Formula 1.
  • the compound may be included in a light emitting layer, a layer for simultaneously injecting / holes transporting and emitting light, a layer for simultaneously transporting holes and emitting light, or a layer for simultaneously transporting electrons and emitting light.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes a compound represented by Chemical Formula 6 below.
  • Ar2 is a substituted or unsubstituted monovalent or higher benzofluorene group; Substituted or unsubstituted monovalent or higher fluoranthene group; A substituted or unsubstituted monovalent or higher pyrene group; Or a substituted or unsubstituted monovalent or higher chrysene group,
  • L 1 is a direct bond; Substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group,
  • Ar3 and Ar4 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted aralkyl group; Or a substituted or unsubstituted heteroaryl group, or may combine with each other to form a substituted or unsubstituted ring,
  • r is an integer of 1 or more
  • the organic material layer includes a light emitting layer
  • the light emitting layer includes the compound represented by Chemical Formula 6 as a dopant of the light emitting layer.
  • L1 is a direct bond
  • Ar2 is a substituted or unsubstituted divalent pyrene group.
  • Ar2 is a divalent pyrene group unsubstituted or substituted with a methyl group, an ethyl group, a t-butyl group, or an isopropyl group.
  • Ar2 is a divalent pyrene group.
  • Ar3 and Ar4 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group having 6 to 30 carbon atoms; A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; Or a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms.
  • Ar3 and Ar4 are the same as or different from each other, and each independently represent a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • the sarks Ar3 and Ar4 are the same as or different from each other, and each independently represent an aryl group having 6 to 30 carbon atoms unsubstituted or substituted with a germanium group substituted with an alkyl group.
  • it is a phenyl group unsubstituted or substituted with a trimethylgermanium group.
  • Chemical Formula 6 may be represented by the following compound.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes a compound represented by the following Chemical Formula 7.
  • X1 is 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9- Phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 3-methyl-2-naphthyl group, 4-methyl- 1-naphthyl group, or ego,
  • X3 is a phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthasenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-biphenylyl group, 2-biphenylyl group , 3-biphenylyl group, 4-biphenylyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m -Terphenyl-3-yl group, m-terphenyl-2-yl
  • X2 and X4 are the same as or different from each other, and each independently hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • p2 is an integer from 1 to 5
  • p1 and p3 are each an integer of 1 to 4,
  • the organic material layer includes a light emitting layer
  • the light emitting layer includes a compound represented by Formula 7 as a host of the light emitting layer.
  • X1 is a 1-naphthyl group.
  • X3 is a 2-naphthyl group, and p2 is 1.
  • X2 and X4 are hydrogen.
  • Chemical Formula 7 may be represented by the following compound.
  • the structure of the organic light emitting device of the present invention may have a structure as shown in FIGS. 1 and 2, but is not limited thereto.
  • FIG. 1 illustrates a structure of an organic light emitting device in which an anode 2, a light emitting layer 3, and a cathode 4 are sequentially stacked on a substrate 1.
  • the compound may be included in the light emitting layer (3).
  • FIG. 2 illustrates an organic light emitting device in which an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 3, an electron transport layer 7, and a cathode 4 are sequentially stacked on a substrate 1.
  • the structure is illustrated.
  • the compound may be included in the hole injection layer 5, the hole transport layer 6, the light emitting layer 3, or the electron transport layer 7.
  • the organic light emitting device uses a metal vapor deposition (PVD) method such as sputtering or e-beam evaporation, and has a metal oxide or a metal oxide or an alloy thereof on a substrate. It can be prepared by depositing an anode to form an anode, an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • PVD metal vapor deposition
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the organic material layer may have a multilayer structure including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, but is not limited thereto and may have a single layer structure.
  • the organic layer may be prepared by using a variety of polymer materials, and by using a method such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer, rather than a deposition method. It can be prepared in layers.
  • the anode material a material having a large work function is usually preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); A combination of a metal and an oxide such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methyl compound), poly [3,4- (ethylene-1,2-dioxy) compound] (PEDT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the hole injection material is a material capable of well injecting holes from the anode at a low voltage, and the highest occupied molecular orbital (HOMO) of the hole injection material is preferably between the work function of the anode material and the HOMO of the surrounding organic material layer.
  • the hole injection material include metal porphyrine, oligothiophene, arylamine-based organics, hexanitrile hexaazatriphenylene-based organics, quinacridone-based organics, and perylene-based Organic compounds, anthraquinones and polyaniline and poly-compounds of conductive polymers, and the like, but are not limited thereto.
  • the hole transporting material a material capable of transporting holes from the anode or the hole injection layer to be transferred to the light emitting layer is suitable.
  • a material capable of transporting holes from the anode or the hole injection layer to be transferred to the light emitting layer is suitable.
  • Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • the organic material layer including the compound represented by Chemical Formula 1 includes the compound represented by Chemical Formula 1 as a host, and may be used together with an iridium-based (Ir) dopant.
  • Iridium complex used as a dopant is as follows.
  • the electron transporting material is a material capable of injecting electrons well from the cathode and transferring the electrons to the light emitting layer.
  • a material having high mobility to electrons is suitable. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
  • the compound according to the present invention may also operate on a principle similar to that applied to organic light emitting devices in organic electronic devices including organic solar cells, organic photoconductors, organic transistors, and the like.
  • ITO indium tin oxide
  • hexanitrile hexaazatriphenylene (HAT) of the following formula was thermally vacuum deposited to a thickness of 500 kPa on the prepared ITO transparent electrode to form a hole injection layer.
  • the following compound 1 was vacuum deposited to a film thickness of 100 kPa on the hole transport layer to form an electron blocking layer.
  • the light emitting layer was formed by vacuum depositing the following BH and BD in a weight ratio of 25: 1 on the electron blocking layer with a film thickness of 300 GPa.
  • Vacuum deposition was performed at a weight ratio of 1: 1 to form an electron injection and transport layer at a thickness of 300 kPa.
  • lithium fluoride (LiF) and aluminum were deposited to a thickness of 12 kPa in order to form a cathode.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ / sec, the lithium fluoride of the cathode was maintained at 0.3 ⁇ / sec, the deposition rate of aluminum was 2 ⁇ / sec, the vacuum degree during deposition is 2 10 -7 ⁇ 5
  • the organic light emitting device was manufactured by maintaining 10 ⁇ 6 torr.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 3 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 9 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 5 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 10 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 89 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 90 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 64 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 61 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 91 was used instead of compound 1 in Experimental Example 1-1.
  • An organic light emitting diode was manufactured according to the same method as Experimental Example 1-1 except for using the compound 92 instead of the compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 29 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 37 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 55 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that compound 94 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that EB 1 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that EB 2 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that EB 3 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that EB 4 was used instead of compound 1 in Experimental Example 1-1.
  • the organic light emitting device was manufactured by the same method as Experimental Example 1-1, except that EB 5 was used instead of compound 1 in Experimental Example 1-1.
  • the compound according to the present invention connected to the N atom without a linking group at the position 2 of the carbazole was excellent in electron suppression ability and showed low voltage and high efficiency and could be applied to an organic light emitting device.
  • An organic light-emitting device was manufactured in the same manner except for using HT 1 instead of compound 1 in Experimental Example 2-1.
  • An organic light-emitting device was manufactured in the same manner except for using HT 2 instead of compound 1 in Experimental Example 2-1.
  • An organic light-emitting device was manufactured in the same manner except for using HT 3 instead of compound 1 in Experimental Example 2-1.
  • An organic light-emitting device was manufactured in the same manner except for using HT 4 instead of compound 1 in Experimental Example 2-1.
  • An organic light-emitting device was manufactured in the same manner except for using HT 5 instead of compound 1 in Experimental Example 2-1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Indole Compounds (AREA)

Abstract

본 명세서는 아민계 화합물 및 이를 포함하는 유기 발광 소자를 제공한다.

Description

아민계 화합물 및 이를 포함하는 유기 발광 소자
본 출원은 2015년 09월 25일에 한국특허청에 제출된 한국 특허 출원 제10-2015-0137124호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 아민계 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자를 위한 새로운 재료의 개발이 계속 요구되고 있다.
본 명세서에는 아민계 화합물 및 이를 포함하는 유기 발광 소자가 기재된다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2016010351-appb-I000001
상기 화학식 1에 있어서,
X는
Figure PCTKR2016010351-appb-I000002
이고,
Y는
Figure PCTKR2016010351-appb-I000003
이며,
Z는
Figure PCTKR2016010351-appb-I000004
이고,
Ar1은 치환 또는 비치환된 아릴기이며,
L은 직접결합; 또는 치환 또는 비치환된 아릴렌기이고,
R1은 수소; 중수소; 또는 치환 또는 비치환된 알킬기이며,
R2 및 R3는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
a는 0 내지 5의 정수이며,
b는 0 내지 7의 정수이고,
c는 0 내지 11의 정수이며, a가 2 이상인 경우에 R1은 서로 같거나 상이하고,
b가 2 이상인 경우에 R2는 서로 같거나 상이하며,
c가 2 이상인 경우에 R3는 서로 같거나 상이하다.
또한, 본 명세서의 일 실시상태는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1의 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서에 기재된 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있다. 적어도 하나의 실시상태에 따른 화합물은 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 본 명세서에 기재된 화합물은 정공주입, 정공수송, 정공주입과 정공수송, 전자 저지, 발광, 정공억제, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자수송층(7) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
1: 기판
2: 양극
3: 발광층
4: 음극
5: 정공주입층
6: 정공수송층
7: 전자수송층
이하 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서의 일 실시상태는 상기 화학식 1로 표시되는 화합물을 제공한다. 본 명세서에 있어서,
Figure PCTKR2016010351-appb-I000005
Figure PCTKR2016010351-appb-I000006
는 다른 치환기에 연결되는 부분을 의미한다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 게르마늄기; 알킬기; 시클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 및 헤테로 고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2016010351-appb-I000007
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 40의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 30의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2016010351-appb-I000008
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2016010351-appb-I000009
본 명세서에 있어서, 실릴기는 -SiRaRbRc의 화학식으로 표시될 수 있고, 상기 Ra, Rb 및 Rc는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 -BRaRb의 화학식으로 표시될 수 있고, 상기 Ra 및 Rb는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥실메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, i-프로필옥시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 기재된 알킬기, 알콕시기 및 그 외 알킬기 부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함한다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 40이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 알킬아민기는 탄소수는 특별히 한정되지 않으나, 1 내지 40인 것이 바람직하다. 알킬아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기일 수 있다. 상기 2 이상의 아릴기를 포함하는 아릴아민기는 단환식 아릴기, 다환식 아릴기, 또는 단환식 아릴기와 다환식 아릴기를 동시에 포함할 수 있다.
아릴아민기의 구체적인 예로는 페닐아민, 나프틸아민, 비페닐아민, 안트라세닐아민, 3-메틸-페닐아민, 4-메틸-나프틸아민, 2-메틸-비페닐아민, 9-메틸-안트라세닐아민, 디페닐 아민기, 페닐 나프틸 아민기, 디톨릴 아민기, 페닐 톨릴 아민기, 카바졸 및 트리페닐 아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴아민기의 예로는 치환 또는 비치환된 모노헤테로아릴아민기, 치환 또는 비치환된 디헤테로아릴아민기, 또는 치환 또는 비치환된 트리헤테로아릴아민기가 있다. 상기 헤테로아릴아민기 중의 헤테로아릴기는 단환식 헤테로 고리기일 수 있고, 다환식 헤테로 고리기일 수 있다. 상기 2 이상의 헤테로 고리기를 포함하는 헤테로아릴아민기는 단환식 헤테로 고리기, 다환식 헤테로 고리기, 또는 단환식 헤테로 고리기와 다환식 헤테로 고리기를 동시에 포함할 수 있다.
본 명세서에 있어서, 아릴포스핀기의 예로는 치환 또는 비치환된 모노아릴포스핀기, 치환 또는 비치환된 디아릴포스핀기, 또는 치환 또는 비치환된 트리아릴포스핀기가 있다. 상기 아릴포스핀기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기일 수 있다. 상기 아릴기가 2 이상을 포함하는 아릴포스핀기는 단환식 아릴기, 다환식 아릴기, 또는 단환식 아릴기와 다환식 아릴기를 동시에 포함할 수 있다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 트리페닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2016010351-appb-I000010
,
Figure PCTKR2016010351-appb-I000011
등의 스피로플루오레닐기,
Figure PCTKR2016010351-appb-I000012
(9,9-디메틸플루오레닐기), 및
Figure PCTKR2016010351-appb-I000013
(9,9-디페닐플루오레닐기) 등의 치환된 플루오레닐기가 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로 고리기는 이종원자로 N, O, P, S, Si 및 Se 중 1개 이상을 포함하는 헤테로 고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 1 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로 고리기의 탄소수는 1 내지 30이다. 헤테로 고리기의 예로는 예로는 피리딜기, 피롤기, 피리미딜기, 피리다지닐기, 퓨라닐기, 티오페닐기, 이미다졸기, 피라졸기, 옥사졸기, 이소옥사졸기, 티아졸기, 이소티아졸기, 트리아졸기, 옥사디아졸기, 티아디아졸기, 디티아졸기, 테트라졸기, 피라닐기, 티오피라닐기, 피라지닐기, 옥사지닐기, 티아지닐기, 디옥시닐기, 트리아지닐기, 테트라지닐기, 퀴놀리닐기, 이소퀴놀리닐기, 퀴놀릴기, 퀴나졸리닐기, 퀴녹살리닐기, 나프티리디닐기, 아크리딜기, 크산테닐기, 페난트리디닐기, 디아자나프탈레닐기, 트리아자인데닐기, 인돌기, 인돌리닐기, 인돌리지닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 벤조티아졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티오펜기, 벤조퓨라닐기, 디벤조티오페닐기, 디벤조퓨라닐기, 카바졸기, 벤조카바졸기, 디벤조카바졸기, 인돌로카바졸기, 인데노카바졸기, 페나지닐기, 이미다조피리딘기, 페녹사지닐기, 페난트리딘기, 페난트롤린(phenanthroline)기, 페노티아진(phenothiazine)기, 이미다조피리딘기, 이미다조페난트리딘기. 벤조이미다조퀴나졸린기, 또는 벤조이미다조페난트리딘기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 방향족인 것을 제외하고는 전술한 헤테로 고리기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 아릴옥시기, 아릴티옥시기, 아릴술폭시기, 아릴포스핀기, 아르알킬기, 아랄킬아민기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴헤테로아릴아민기 중의 아릴기는 전술한 아릴기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 알킬티옥시기, 알킬술폭시기, 아르알킬기, 아랄킬아민기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 헤테로아릴기, 헤테로아릴아민기, 아릴헤테로아릴아민기 중 헤테로아릴기는 전술한 헤테로 고리기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 게르마늄기는 -GeRaRbRc의 화학식으로 표시될 수 있고, 상기 Ra, Rb 및 Rc는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 게르마늄기는 구체적으로 트리메틸게르마늄기, 트리에틸 게르마늄기, t-부틸디메틸게르마늄기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 인접하는 기와 서로 결합하여 고리를 형성한다는 의미는 인접하는 기와 서로 결합하여 치환 또는 비치환된 지방족 탄화수소고리; 치환 또는 비치환된 방향족 탄화수소고리; 치환 또는 비치환된 지방족 헤테로고리; 치환 또는 비치환된 방향족 헤테로고리; 또는 이들의 축합고리를 형성하는 것을 의미한다.
본 명세서에 있어서, 지방족 탄화수소고리란 방향족이 아닌 고리로서 탄소와 수소 원자로만 이루어진 고리를 의미한다. 구체적으로, 지방족 탄화수소고리의 예로는 시클로프로판, 시클로부탄, 시클로부텐, 시클로펜탄, 시클로펜텐, 시클로헥산, 시클로헥센, 1,4-시클로헥사디엔, 시클로헵탄, 시클로헵텐, 시클로옥탄, 시클로옥텐 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 방향족 탄화수소고리란 탄소와 수소 원자로만 이루어진 방향족의 고리를 의미한다. 구체적으로, 방향족 탄화수소고리의 예로는 벤젠, 나프탈렌, 안트라센, 페난트렌, 페릴렌, 플루오란텐, 트리페닐렌, 페날렌, 피렌, 테트라센, 크라이센, 펜타센, 플루오렌, 인덴, 아세나프틸렌, 벤조플루오렌, 스피로플루오렌 등이 있으나 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 지방족 헤테로고리란 헤테로원자 중 1개 이상을 포함하는 지방족고리를 의미한다. 구체적으로, 지방족 헤테로고리의 예로는 옥시레인(oxirane), 테트라하이드로퓨란, 1,4-디옥세인(1,4-dioxane), 피롤리딘, 피페리딘, 모르폴린(morpholine), 옥세판, 아조케인, 티오케인 등이 있으나 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 방향족 헤테로고리란 헤테로원자 중 1개 이상을 포함하는 방향족고리를 의미한다. 구체적으로, 방향족 헤테로고리의 예로는 피리딘, 피롤, 피리미딘, 피리다진, 퓨란, 티오펜, 이미다졸, 피라졸, 옥사졸, 이소옥사졸, 티아졸, 이소티아졸, 트리아졸, 옥사디아졸, 티아디아졸, 디티아졸, 테트라졸, 피란, 티오피란, 디아진, 옥사진, 티아진, 다이옥신, 트리아진, 테트라진, 이소퀴놀린, 퀴놀린, 퀴놀, 퀴나졸린, 퀴녹살린, 나프티리딘, 아크리딘, 페난트리딘, 디아자나프탈렌, 트리아자인덴, 인돌, 인돌리진, 벤조티아졸, 벤조옥사졸, 벤조이미다졸, 벤조티오펜, 벤조퓨란, 디벤조티오펜, 디벤조퓨란, 카바졸, 벤조카바졸, 디벤조카바졸, 페나진, 이미다조피리딘, 페녹사진, 페난트리딘, 인돌로카바졸, 인데노카바졸 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 지방족 탄화수소고리, 방향족 탄화수소고리, 지방족 헤테로고리 및 방향족 헤테로고리는 단환 또는 다환일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 또는 화학식 3으로 표시될 수 있다.
[화학식 2]
Figure PCTKR2016010351-appb-I000014
[화학식 3]
Figure PCTKR2016010351-appb-I000015
상기 화학식 2 및 화학식 3에 있어서, Ar1, L, R1, R3, a 및 c의 정의는 각각 화학식 1에서와 같다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 하기 화학식 4 또는 화학식 5로 표시될 수 있다.
[화학식 4]
Figure PCTKR2016010351-appb-I000016
[화학식 5]
Figure PCTKR2016010351-appb-I000017
상기 화학식 4 및 화학식 5에 있어서, Ar1, L, R1 및 a의 정의는 각각 화학식 1에서와 같다.
본 발명의 일 실시상태에 있어서, 상기 Ar1은 탄소수 6 내지 30의 단환식 또는 다환식의 치환 또는 비치환된 아릴기이다.
본 발명의 일 실시상태에 있어서, 상기 Ar1은 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 안트라세닐기; 치환 또는 비치환된 페난트릴기; 치환 또는 비치환된 파이레닐기; 치환 또는 비치환된 페릴레닐기; 치환 또는 비치환된 크라이세닐기; 또는 치환 또는 비치환된 플루오레닐기이다.
본 발명의 일 실시상태에 있어서, 상기 Ar1은 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 페난트레닐기; 또는 치환 또는 비치환된 트리페닐레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1은 하기 구조들에서 선택된 어느 하나일 수 있고, 하기 구조들은 추가로 치환될 수 있다.
Figure PCTKR2016010351-appb-I000018
구체적으로, 상기 구조들은 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아민기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 시클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴헤테로아릴아민기; 아릴포스핀기; 및 헤테로 고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환될 수 있다. 더욱 구체적으로, 중수소; 알킬기; 또는 아릴기로 치환 또는 비치환될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 L은 직접결합; 또는 탄소수 6 내지 30의 단환식 또는 다환식의 치환 또는 비치환된 아릴렌기이다.
본 발명의 일 실시상태에 있어서, 상기 L은 직접결합; 치환 또는 비치환된 페닐렌기; 치환 또는 비치환된 비페닐릴렌기; 치환 또는 비치환된 터페닐릴렌기; 치환 또는 비치환된 나프틸렌기; 치환 또는 비치환된 안트라세닐렌기; 치환 또는 비치환된 플루오레닐렌기; 치환 또는 비치환된 페난트레닐렌기; 또는 치환 또는 비치환된 트리페닐레닐렌기이다.
본 발명의 일 실시상태에 있어서, 상기 L은 직접결합; 또는 치환 또는 비치환된 페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L은 직접결합; 또는 하기 구조들에서 선택된 어느 하나일 수 있고, 하기 구조들은 추가로 치환될 수 있다.
Figure PCTKR2016010351-appb-I000019
구체적으로, 상기 구조들은 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아민기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 시클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴헤테로아릴아민기; 아릴포스핀기; 및 헤테로 고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환될 수 있다. 더욱 구체적으로, 중수소; 알킬기; 또는 아릴기로 치환 또는 비치환될 수 있다.
본 발명의 일 실시상태에 있어서, 상기 R1은 수소; 중수소; 또는 치환 또는 비치환된 탄소수 1 내지 40의 알킬기이다.
본 발명의 일 실시상태에 있어서, 상기 R1은 수소; 중수소; 치환 또는 비치환된 메틸기; 치환 또는 비치환된 에틸기; 치환 또는 비치환된 프로필기; 치환 또는 비치환된 n-프로필기; 치환 또는 비치환된 이소프로필기; 치환 또는 비치환된 부틸기; 치환 또는 비치환된 n-부틸기; 치환 또는 비치환된 이소부틸기; 치환 또는 비치환된 tert-부틸기; 치환 또는 비치환된 sec-부틸기; 치환 또는 비치환된 1-메틸-부틸기; 치환 또는 비치환된 1-에틸-부틸기; 치환 또는 비치환된 펜틸기; 치환 또는 비치환된 n-펜틸기; 치환 또는 비치환된 이소펜틸기; 치환 또는 비치환된 네오펜틸기; 치환 또는 비치환된 tert-펜틸기; 치환 또는 비치환된 헥실기; 치환 또는 비치환된 n-헥실기; 치환 또는 비치환된 1-메틸펜틸기; 치환 또는 비치환된 2-메틸펜틸기; 치환 또는 비치환된 4-메틸-2-펜틸기; 치환 또는 비치환된 3,3-디메틸부틸기; 치환 또는 비치환된 2-에틸부틸기; 치환 또는 비치환된 헵틸기; 치환 또는 비치환된 n-헵틸기; 치환 또는 비치환된 1-메틸헥실기; 치환 또는 비치환된 시클로펜틸메틸기; 치환 또는 비치환된 시클로헥실메틸기; 치환 또는 비치환된 옥틸기; 치환 또는 비치환된 n-옥틸기; 치환 또는 비치환된 tert-옥틸기; 치환 또는 비치환된 1-메틸헵틸기; 치환 또는 비치환된 2-에틸헥실기; 치환 또는 비치환된 2-프로필펜틸기; 치환 또는 비치환된 n-노닐기; 치환 또는 비치환된 2,2-디메틸헵틸기; 치환 또는 비치환된 1-에틸-프로필기; 치환 또는 비치환된 1,1-디메틸-프로필기; 치환 또는 비치환된 이소헥실기; 치환 또는 비치환된 4-메틸헥실기; 또는 치환 또는 비치환된 5-메틸헥실기이다.
본 발명의 일 실시상태에 있어서, 상기 R1은 수소; 중수소; 치환 또는 비치환된 메틸기; 또는 치환 또는 비치환된 t-부틸기이다.
본 발명의 일 실시상태에 있어서, 상기 R1은 수소; 중수소; 메틸기; 또는 t-부틸기이다.
본 발명의 일 실시상태에 있어서, 상기 화학식 1의 화합물은 하기 화합물들 중에서 선택된 어느 하나일 수 있다.
Figure PCTKR2016010351-appb-I000020
Figure PCTKR2016010351-appb-I000021
Figure PCTKR2016010351-appb-I000022
Figure PCTKR2016010351-appb-I000023
Figure PCTKR2016010351-appb-I000024
Figure PCTKR2016010351-appb-I000025
Figure PCTKR2016010351-appb-I000026
Figure PCTKR2016010351-appb-I000027
Figure PCTKR2016010351-appb-I000028
Figure PCTKR2016010351-appb-I000029
Figure PCTKR2016010351-appb-I000030
Figure PCTKR2016010351-appb-I000031
Figure PCTKR2016010351-appb-I000032
Figure PCTKR2016010351-appb-I000033
Figure PCTKR2016010351-appb-I000034
Figure PCTKR2016010351-appb-I000035
상기 화학식 1의 화합물은 아래와 같은 일반적인 반응식에 의하여 합성할 수 있고, 다만 이에 한정되는 것은 아니다.
<반응식 A> 중간체 A의 합성
Figure PCTKR2016010351-appb-I000036
Figure PCTKR2016010351-appb-I000037
<반응식 B> 중간체 B의 합성
Figure PCTKR2016010351-appb-I000038
또한, 상기 반응식 A 또는 B에서 중간체 A 또는 B 대신 하기 C 내지 J를 중간체로 이용하여 상기 화학식 1의 화합물을 합성할 수 있다.
Figure PCTKR2016010351-appb-I000039
화합물의 컨쥬게이션 길이와 에너지 밴드갭은 밀접한 관계가 있다. 구체적으로, 화합물의 컨쥬게이션 길이가 길수록 에너지 밴드갭이 작아진다.
본 발명에서는 상기와 같은 코어 구조의 Ar1 및 R1의 위치에 다양한 치환기를 도입함으로써 다양한 에너지 밴드갭을 갖는 화합물을 합성할 수 있다. 통상 에너지 밴드갭이 큰 코어 구조에 치환기를 도입하여 에너지 밴드갭을 조절하는 것은 용이하나, 코어 구조가 에너지 밴드갭이 작은 경우에는 치환기를 도입하여 에너지 밴드갭을 크게 조절하기 어렵다. 또한, 본 발명에서는 상기와 같은 구조의 코어 구조의 Ar1 및 R1의 위치에 다양한 치환기를 도입함으로써 화합물의 HOMO 및 LUMO 에너지 준위도 조절할 수 있다.
또한, 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 정공 수송용 물질, 발광층 물질 및 전자 수송층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
또한, 본 발명에 따른 유기 발광 소자는 제1 전극, 제2 전극, 및 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화합물을 포함하는 것을 특징으로 한다.
본 발명의 유기 발광 소자는 전술한 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공 주입층, 전자 저지층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.
따라서, 본 발명의 유기 발광 소자에서, 상기 유기물층은 정공 주입층, 전자 저지층, 정공 수송층, 및 정공 주입 및 정공 수송을 동시에 하는 층 중 1층 이상을 포함할 수 있고, 상기 층들 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
일 실시상태에 있어서, 상기 유기물층은 전자 저지층을 포함하고, 상기 전자 저지층이 상기 화학식 1로 표시되는 화합물을 포함한다.
또 하나의 실시상태에 있어서, 상기 유기물층은 정공 수송층을 포함하고, 상기 정공 수송층이 상기 화학식 1로 표시되는 화합물을 포함한다.
또 하나의 실시 상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층이 상기 화학식 1로 표시되는 화합물을 포함한다. 하나의 예로서, 상기 화학식 1로 표시되는 화합물은 발광층의 호스트로서 포함될 수 있다. 또 하나의 예로서, 상기 화학식 1로 표시되는 화합물은 발광층의 인광 호스트로서 포함될 수 있다.
또 하나의 예로서, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 상기 화학식 1로 표시되는 화합물을 호스트로서 포함하고, 다른 유기화합물, 금속 또는 금속화합물을 도펀트로 포함할 수 있다.
또 하나의 예로서, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 상기 화학식 1로 표시되는 화합물을 호스트로서 포함하고, 이리듐계(Ir) 도펀트와 함께 사용할 수 있다.
또한, 상기 유기물층은 전자 수송층, 전자 주입층, 및 전자 수송 및 전자 주입을 동시에 하는 층 중 1층 이상을 포함할 수 있고, 상기 층들 중 1층 이상이 상기 화합물을 포함할 수 있다.
또 하나의 실시상태에 있어서, 상기 유기 전자 소자의 유기물층은 정공수송층을 포함하고, 상기 정공수송층이 상기 화학식 1로 표시되는 화합물을 포함한다.
이와 같은 다층 구조의 유기물층에서 상기 화합물은 발광층, 정공 주입/정공 수송과 발광을 동시에 하는 층, 정공 수송과 발광을 동시에 하는 층, 또는 전자 수송과 발광을 동시에 하는 층 등에 포함될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 하기 화학식 6으로 표시되는 화합물을 포함한다.
[화학식 6]
Figure PCTKR2016010351-appb-I000040
상기 화학식 6에 있어서,
Ar2는 치환 또는 비치환된 1가 이상의 벤조플루오렌기; 치환 또는 비치환된 1가 이상의 플루오란텐기; 치환 또는 비치환된 1가 이상의 파이렌기; 또는 치환 또는 비치환된 1가 이상의 크라이센기이고,
L1은 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이며,
Ar3 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아르알킬기; 또는 치환 또는 비치환된 헤테로아릴기이거나, 서로 결합하여 치환 또는 비치환된 고리를 형성할 수 있고,
r은 1 이상의 정수이며,
r이 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 6으로 표시되는 화합물을 발광층의 도펀트로 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 L1은 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 r은 2이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar2는 치환 또는 비치환된 2가의 파이렌기이다.
또 하나의 일 실시상태에 있어서, 상기 Ar2는 메틸기, 에틸기, t-부틸기 또는 이소프로필기로 치환 또는 비치환된 2가의 파이렌기이다.
또 하나의 일 실시상태에 있어서, 상기 Ar2는 2가의 파이렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar3 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar3 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, 사익 Ar3 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 알킬기로 치환된 게르마늄기로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, 트리메틸게르마늄기로 치환 또는 비치환된 페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 6은 하기 화합물로 표시될수 있다.
Figure PCTKR2016010351-appb-I000041
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 하기 화학식 7로 표시되는 화합물을 포함한다.
[화학식 7]
Figure PCTKR2016010351-appb-I000042
상기 화학식 7에 있어서,
X1은 1-나프틸기, 2-나프틸기, 1-안트릴기, 2-안트릴기, 1-페난트릴기, 2-페난트릴기, 3-페난트릴기, 4-페난트릴기, 9-페난트릴기, 1-나프타센일기, 2-나프타센일기, 9-나프타센일기, 1-피렌일기, 2-피렌일기, 4-피렌일기, 3-메틸-2-나프틸기, 4-메틸-1-나프틸기, 또는 하기 화학식
Figure PCTKR2016010351-appb-I000043
이고,
X3은 페닐기, 1-나프틸기, 2-나프틸기, 1-안트릴기, 2-안트릴기, 1-페난트릴기, 2-페난트릴기, 3-페난트릴기, 4-페난트릴기, 9-페난트릴기, 1-나프타센일기, 2-나프타센일기, 9-나프타센일기, 1-피렌일기, 2-피렌일기, 4-피렌일기, 2-바이페닐릴기, 2-바이페닐릴기, 3-바이페닐릴기, 4-바이페닐릴기, p-터페닐-4-일기, p-터페닐-3-일기, p-터페닐-2-일기, m-터페닐-4-일기, m-터페닐-3-일기, m-터페닐-2-일기, o-톨릴기, m-톨릴기, p-톨릴기, p-t-뷰틸페닐기, p-(2-페닐프로필)페닐기, 3-메틸-2-나프틸기, 4-메틸-1-나프틸기, 4-메틸-1-안트릴기, 4'-메틸바이페닐릴기, 4"-t-뷰틸-p-터페닐-4-일기, 또는 3-플루오란텐일기이며,
X2 및 X4는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
p2는 1 내지 5의 정수이며,
p1 및 p3는 각각 1 내지 4의 정수이고,
상기 p1 내지 p3가 각각 2 이상인 경우, 괄호내의 치환기는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 7로 표시되는 화합물을 발광층의 호스트로서 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 X1은 1-나프틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 X3는 2-나프틸기이고, p2는 1이다.
본 명세서의 일 실시상태에 있어서, 상기 X2 및 X4는 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 7은 하기 화합물로 표시될 수 있다.
Figure PCTKR2016010351-appb-I000044
예컨대, 본 발명의 유기 발광 소자의 구조는 도 1 및 도 2에 나타낸 것과 같은 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.
도 1에는 기판(1) 위에 양극(2), 발광층(3) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 발광층(3)에 포함될 수 있다.
도 2에는 기판(1) 위에 양극(2), 정공 주입층(5), 정공 수송층(6), 발광층(3), 전자 수송층(7) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 정공 주입층(5), 정공 수송층(6), 발광층(3) 또는 전자 수송층(7)에 포함될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다.
상기 유기물층은 정공 주입층, 정공 수송층, 발광층 및 전자 수송층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸화합물의), 폴리[3,4-(에틸렌-1,2-디옥시)화합물의](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리화합물의 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌등이 있으나, 이들에만 한정되는 것은 아니다.
상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 상기 화학식 1로 표시되는 화합물을 호스트로서 포함하고, 이리듐계(Ir) 도펀트와 함께 사용할 수 있다.
도펀트로 사용되는 이리듐계 착물은 하기와 같다.
Figure PCTKR2016010351-appb-I000045
Figure PCTKR2016010351-appb-I000046
상기 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3을 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 발명에 따른 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
상기 화학식 1의 화합물의 제조방법 및 이들을 이용한 유기 발광 소자의 제조는 이하의 실시예에서 구체적으로 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
<제조예 1> 화합물 1의 합성
Figure PCTKR2016010351-appb-I000047
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A(12.0g, 37.62mmol), 2-브로모-9-페닐-9H-카바졸(2-bromo-9-phenyl-9H-carbazole)(10.98g, 34.21mmol)을 자일렌(xylene) 240ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.27g, 44.46mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0)) (0.17g, 0.34mmol)을 넣은 후 2시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 테트라하이드로퓨란:헥산 = 1:12 으로 컬럼하여 상기 화합물 1(16.54g, 수율: 78%)을 제조하였다.
MS[M+H]+= 561
<제조예 2> 화합물 3의 합성
Figure PCTKR2016010351-appb-I000048
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A(12.0g, 37.62mmol), 9-([1,1'-바이페닐]-4-일)-2-브로모-9H-카바졸(9-([1,1'-biphenyl]-4-yl)-2-bromo-9H-carbazole)(13.58g, 34.21mmol)을 자일렌(xylene) 280ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.27g, 44.46mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0)) (0.17g, 0.34mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 에틸아세테이트 300ml로 재결정하여 상기 화합물 3(21.33g, 수율: 89%)을 제조하였다.
MS[M+H]+= 637
<제조예 3> 화합물 9의 합성
Figure PCTKR2016010351-appb-I000049
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A(12.0g, 37.62mmol), 2-브로모-9-(9,9-디메틸-9H-플루오렌-2-일)-9H-카바졸(2-bromo-9-(9,9-dimethyl-9H-fluoren-2-yl)-9H-carbazole)(14.95g, 34.21mmol)을 자일렌(xylene) 240ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.27g, 44.46mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0)) (0.17g, 0.34mmol)을 넣은 후 2시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 테트라하이드로퓨란:헥산 = 1:16 으로 컬럼하여 상기 화합물 9(19.77g, 수율: 77%)를 제조하였다.
MS[M+H]+= 677
<제조예 4> 화합물 5의 합성
Figure PCTKR2016010351-appb-I000050
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A(12.0g, 37.62mmol), 2-브로모-9-(나프탈렌-2-일)-9H-카바졸(2-bromo-9-(naphthalen-2-yl)-9H-carbazole)(12.69g, 34.21mmol)을 자일렌(xylene) 180ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.27g, 44.46mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0)) (0.17g, 0.34mmol)을 넣은 후 2시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 테트라하이드로퓨란:헥산 = 1:16으로 컬럼하여 상기 화합물 5(16.92g, 수율: 74%)를 제조하였다.
MS[M+H]+= 611
<제조예 5> 화합물 10의 합성
Figure PCTKR2016010351-appb-I000051
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A(12.0g, 37.62mmol), 9-([1,1'-바이페닐]-2-일)-2-브로모-9H-카바졸(9-([1,1'-biphenyl]-2-yl)-2-bromo-9H-carbazole)(13.58g, 34.21mmol)을 자일렌(xylene) 280ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.27g, 44.46mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0)) (0.17g, 0.34mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 에틸아세테이트 220ml로 재결정하여 상기 화합물 10(17.07g, 수율: 71%)을 제조하였다.
MS[M+H]+= 637
<제조예 6> 화합물 89의 합성
Figure PCTKR2016010351-appb-I000052
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A(12.0g, 37.62mmol), 9-([1,1':4',1''-터페닐]-4-일)-2-브로모-9H-카바졸(9-([1,1':4',1''-terphenyl]-4-yl)-2-bromo-9H-carbazole)(16.18g, 34.21mmol)을 자일렌(xylene) 240ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.27g, 44.46mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0)) (0.17g, 0.34mmol)을 넣은 후 2시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 테트라하이드로퓨란:헥산 = 1:12 으로 컬럼하여 상기 화합물 89(23.08g, 수율: 86%)를 제조하였다.
MS[M+H]+= 713
<제조예 7> 화합물 7의 합성
Figure PCTKR2016010351-appb-I000053
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A(12.0g, 37.62mmol), 9-([1,1'-바이페닐]-3-일)-2-브로모-9H-카바졸(9-([1,1'-biphenyl]-3-yl)-2-bromo-9H-carbazole)(13.58g, 34.21mmol)을 자일렌(xylene) 280ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.27g, 44.46mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0)) (0.17g, 0.34mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 에틸아세테이트 260ml로 재결정하여 상기 화합물 7(15.36g, 수율: 64%)을 제조하였다.
MS[M+H]+= 637
<제조예 8> 화합물 90의 합성
Figure PCTKR2016010351-appb-I000054
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A(12.0g, 37.62mmol), 2-브로모-9-(페닐-d5)-9H-카바졸(2-bromo-9-(phenyl-d5)-9H-carbazole)(10.98g, 34.21mmol)을 자일렌(xylene) 240ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.27g, 44.46mol)를 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0))(0.17g, 0.34mmol)을 넣은 후 2시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 테트라하이드로퓨란:헥산 = 1:12으로 컬럼하여 상기 화합물 90(17.35g, 수율: 82%)을 제조하였다.
MS[M+H]+= 561
<제조예 9> 화합물 17의 합성
Figure PCTKR2016010351-appb-I000055
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A(12.0g, 37.62mmol), 2-브로모-9-(9,9-디메틸-9H-플루오렌-3-일)-9H-카바졸(2-bromo-9-(9,9-dimethyl-9H-fluoren-3-yl)-9H-carbazole)(14.95g, 34.21mmol)을 자일렌(xylene) 240ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.27g, 44.46mol)를 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0)) (0.17g, 0.34mmol)을 넣은 후 2시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 테트라하이드로퓨란:헥산 = 1:15 으로 컬럼하여 상기 화합물 17(17.78, 수율: 69%)을 제조하였다.
MS[M+H]+= 677
<제조예 10> 화합물 23의 합성
Figure PCTKR2016010351-appb-I000056
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 A(12.0g, 37.62mmol), 2-브로모-9-(4-(나프탈렌-2-일)페닐)-9H-카바졸(2-bromo-9-(4-(naphthalen-2-yl)phenyl)-9H-carbazole)(16.18g, 34.21mmol)을 자일렌(xylene) 240ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.27g, 44.46mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0)) (0.17g, 0.34mmol)을 넣은 후 2시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 테트라하이드로퓨란:헥산 = 1:12 으로 컬럼하여 상기 화합물 23(21.16g, 수율: 82%)을 제조하였다.
MS[M+H]+= 687
<제조예 11> 화합물 61, 63~67, 71 및 91~94의 합성
Figure PCTKR2016010351-appb-I000057
제조예 1 내지 10에서 출발물질로 상기 화합물 A 대신 상기 화합물 B를 사용한 것을 제외하고는 동일한 방법으로 하기 화합물을 제조하였다.
Figure PCTKR2016010351-appb-I000058
Figure PCTKR2016010351-appb-I000059
<제조예 12> 화합물 29의 합성
Figure PCTKR2016010351-appb-I000060
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 C(12.0g, 36.04mmol), 2-브로모-9-페닐-9H-카바졸(2-bromo-9-phenyl-9H-carbazole)(10.52g, 32.76mmol)을 자일렌(xylene) 230ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.09g, 42.59mol)를 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0))(0.16g, 0.33mmol)을 넣은 후 2시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 테트라하이드로퓨란:헥산 = 1:12으로 컬럼하여 상기 화합물 29(13.92g, 수율: 67%)를 제조하였다.
MS[M+H]+= 575
<제조예 13> 화합물 37의 합성
Figure PCTKR2016010351-appb-I000061
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 D (12.0g, 32.0mmol), 2-브로모-9-페닐-9H-카바졸(2-bromo-9-phenyl-9H-carbazole)(9.34g, 29.09mmol)을 자일렌(xylene) 240ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(3.63g, 37.82mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0))(0.15g, 0.29mmol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후 에 자일렌(xylene)을 감압농축 시키고 에틸아세테이트 240ml로 재결정하여 상기 화합물 37(15.01g, 수율: 76%)을 제조하였다.
MS[M+H]+= 617
<제조예 14> 화합물 55의 합성
Figure PCTKR2016010351-appb-I000062
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 F (12.0g, 35.40mmol), 9-([1,1'-바이페닐]-4-일)-2-브로모-9H-카바졸(9-([1,1'-biphenyl]-4-yl)-2-bromo-9H-carbazole)(10.33g, 32.18mmol)을 자일렌(xylene) 280ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.02g, 41.83mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0))(0.16g, 0.32mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 에틸아세테이트 210ml로 재결정하여 상기 화합물 55(18.85g, 수율: 83%)를 제조하였다.
MS[M+H]+= 642
<제조예 15> 화합물 94의 합성
Figure PCTKR2016010351-appb-I000063
질소 분위기에서 500ml 둥근 바닥 플라스크에 화합물 J (12.0g, 35.40mmol), 9-([1,1'-바이페닐]-4-일)-2-브로모-9H-카바졸(9-([1,1'-biphenyl]-4-yl)-2-bromo-9H-carbazole)(10.33g, 32.18mmol)을 자일렌(xylene) 280ml에 완전히 녹인 후 소듐 tert-부톡사이드(sodium tert-butoxide)(4.02g, 41.83mol)을 첨가하고, 비스(트리-tert-부틸포스핀) 팔라듐(0)(Bis(tri-tert-butylphosphine) palladium(0))(0.16g, 0.32mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 염을 제거한 후에 자일렌(xylene)을 감압농축 시키고 에틸아세테이트 210ml로 재결정하여 상기 화합물 94(18.85g, 수율: 83%)를 제조하였다.
MS[M+H]+= 642
<실험예>
<실험예 1-1>
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를
녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5 분간 세정한 후 진공 증착 기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 하기 화학식의 헥사니트릴 헥사아자트리페닐렌 (hexaazatriphenylene; HAT)를 500Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다.
Figure PCTKR2016010351-appb-I000064
상기 정공 주입층 위에 정공을 수송하는 물질인 하기 화합물 HTL 1(N-([1,1'-바이페닐]-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카바졸-3-일)페닐)-H-플루오렌-2-아민(N-([1,1'-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-H-fluoren-2-amine))(300Å)을 진공 증착하여 정공 수송층을 형성하였다.
Figure PCTKR2016010351-appb-I000065
이어서, 상기 정공 수송층 위에 막 두께 100Å으로 하기 화합물 1을 진공 증착하여 전자 저지층을 형성하였다.
Figure PCTKR2016010351-appb-I000066
이어서, 상기 전자 저지층 위에 막 두께 300Å으로 아래와 같은 BH와 BD를 25:1의 중량비로 진공증착하여 발광층을 형성하였다.
Figure PCTKR2016010351-appb-I000067
Figure PCTKR2016010351-appb-I000068
상기 발광층 위에 상기 화합물 ET1과 상기 화합물 LiQ(Lithium Quinolate)를
1:1의 중량비로 진공증착하여 300Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å두께로 리튬플로라이드(LiF)와 2,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
상기의 유기물의 증착속도는 0.4~ 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 10-7 ~ 5 10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
<실험예 1-2>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 3을 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-3>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 9를 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-4>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 5를 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-5>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 10을 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-6>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 89를 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-7>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 90을 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-8>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 64를 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-9>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 61을 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-10>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 91을 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-11>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 92을 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-12>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 29를 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-13>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 37을 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-14>
상기 실험예 1-1에서 화합물 1 대신 상기 화합물 55를 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<실험예 1-15>
상기 실험예1-1에서 화합물 1 대신 상기 화합물 94를 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
<비교예 1-1>
상기 실험예 1-1에서 화합물 1 대신 EB 1을 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2016010351-appb-I000069
<비교예 1-2>
상기 실험예 1-1에서 화합물 1 대신 EB 2를 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2016010351-appb-I000070
<비교예 1-3>
상기 실험예 1-1에서 화합물 1 대신 EB 3을 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2016010351-appb-I000071
<비교예 1-4>
상기 실험예 1-1에서 화합물 1 대신 EB 4를 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2016010351-appb-I000072
<비교예 1-5>
상기 실험예 1-1에서 화합물 1 대신 EB 5를 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2016010351-appb-I000073
실험예 1-1 내지 1-15, 비교예 1-1 내지 1-5에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 표 1의 결과를 얻었다.
화합물(전자 저지층) 전압(V@10mA/cm2) 효율(cd/A@10mA/cm2) 색좌표(x,y)
실험예 1-1 화합물 1 3.55 5.85 (0.139, 0.122)
실험예 1-2 화합물 3 3.52 5.88 (0.138, 0.126)
실험예 1-3 화합물 9 3.61 5.71 (0.138, 0.127)
실험예 1-4 화합물 5 3.62 5.72 (0.137, 0.125)
실험예 1-5 화합물 10 3.64 5.73 (0.136, 0.125)
실험예 1-6 화합물 89 3.66 5.77 (0.136, 0.127)
실험예 1-7 화합물 90 3.68 5.78 (0.136, 0.125)
실험예 1-8 화합물 64 3.74 5.61 (0.137, 0.125)
실험예 1-9 화합물 61 3.73 5.68 (0.138, 0.125)
실험예 1-10 화합물 91 3.78 5.62 (0.136, 0.125)
실험예 1-11 화합물 92 3.79 5.57 (0.137, 0.125)
실험예 1-12 화합물 29 3.75 5.55 (0.136, 0.125)
실험예 1-13 화합물 37 3.82 5.58 (0.138, 0.126)
실험예 1-14 화합물 55 3.87 5.51 (0.137, 0.125)
실험예 1-15 화합물 94 3.80 5.42 (0.136, 0.127)
비교예 1-1 EB 1 4.56 4.73 (0.138, 0.127)
비교예 1-2 EB 2 4.61 4.52 (0.139, 0.125)
비교예 1-3 EB 3 4.79 4.36 (0.139, 0.126)
비교예 1-4 EB 4 4.26 5.05 (0.139, 0.127)
비교예 1-5 EB 5 4.33 4.94 (0.139, 0.127)
상기 표 1에서 보는 바와 같이 실험예 1-1 내지 1-15의 화합물은 유기발광 소자에서 비교예 1-1 내지 1-5보다 저전압, 고효율의 특성을 나타내는 것을 알 수 있다.
비교예 1-1 또는 비교예 1-2처럼 N 원자가 각각 카바졸기의 3번 또는 4번에 연결된 경우 전압이 상대적으로 높고 효율 또한 낮았다. 카바졸기 대신 플루오레닐기 또는 디벤조티오펜기인 경우(비교예 1-3, 비교예 1-4)와 카바졸기가 아릴렌기인 연결기를 통해 N원자에 연결된 경우(비교예 1-5) 또한 유사한 특성을 보여주고 있다.
카바졸의 2번 위치에 연결기 없이 N원자에 연결된 본 발명에 따른 화합물은 전자 억제 능력이 우수하여 저전압 및 고효율의 특성을 보이며 유기 발광 소자에 적용 가능함을 확인할 수 있었다.
<실험예 2>
<실험예 2-1> 내지 <실험예 2-15>
상기 실험예 1에서 전자 저지층으로 EB 1(TCTA)을 사용하고, 정공 수송층으로 HTL 1 대신 실험예 1-1 내지 1-15의 화합물들을 사용한 것을 제외하고는 동일하게 실험하였다.
<비교예 2-1>
상기 실험예 2-1에서 화합물 1 대신 HT 1 을 사용한 것을 제외하고는 동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2016010351-appb-I000074
<비교예 2-2>
상기 실험예 2-1에서 화합물 1 대신 HT 2를 사용한 것을 제외하고는 동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2016010351-appb-I000075
<비교예 2-3>
상기 실험예 2-1에서 화합물 1 대신 HT 3을 사용한 것을 제외하고는동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2016010351-appb-I000076
<비교예 2-4>
상기 실험예 2-1에서 화합물 1 대신 HT 4를 사용한 것을 제외하고는 동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2016010351-appb-I000077
<비교예 2-5>
상기 실험예 2-1에서 화합물 1 대신 HT 5를 사용한 것을 제외하고는 동일한 방법으로 유기 발광 소자를 제작하였다.
Figure PCTKR2016010351-appb-I000078
실험예 2-1 내지 2-15, 비교예 2-1 내지 2-5에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 표 2의 결과를 얻었다.
화합물(정공수송층) 전압(V@10mA/cm2) 효율(cd/A@10mA/cm2) 색좌표(x,y)
실험예 2-1 화합물 1 3.72 6.35 (0.139, 0.122)
실험예 2-2 화합물 3 3.79 6.28 (0.138, 0.126)
실험예 2-3 화합물 9 3.75 6.31 (0.138, 0.127)
실험예 2-4 화합물 5 3.85 6.24 (0.137, 0.125)
실험예 2-5 화합물 10 3.86 6.22 (0.136, 0.125)
실험예 2-6 화합물 89 3.84 6.13 (0.136, 0.127)
실험예 2-7 화합물 90 3.89 6.11 (0.136, 0.125)
실험예 2-8 화합물 64 3.95 6.02 (0.137, 0.125)
실험예 2-9 화합물 61 3.93 6.01 (0.138, 0.125)
실험예 2-10 화합물 91 3.98 5.92 (0.136, 0.125)
실험예 2-11 화합물 92 3.93 5.95 (0.137, 0.125)
실험예 2-12 화합물 29 4.05 5.95 (0.136, 0.125)
실험예 2-13 화합물 37 4.06 5.82 (0.138, 0.126)
실험예 2-14 화합물 55 4.10 5.76 (0.137, 0.125)
실험예 2-15 화합물 94 4.15 5.74 (0.136, 0.127)
비교예 2-1 HT 1 4.51 4.72 (0.135, 0.127)
비교예 2-2 HT 2 4.64 4.65 (0.138, 0.127)
비교예 2-3 HT 3 4.48 4.86 (0.137, 0.125)
비교예 2-4 HT 4 4.60 4.34 (0.139, 0.126)
비교예 2-5 HT 5 4.65 4.40 (0.139, 0.127)
상기 표 2에서 보는 바와 같이 실험예 2-1 내지 2-15의 화합물을 유기 발광 소자에 이용한 경우에 비교예 2-1 내지 2-5 보다 저전압, 고효율의 특성을 나타내는 것을 알 수 있다.
비교예 2-1 또는 비교예 2-2처럼 N 원자가 각각 카바졸기의 3번 또는 4번 위치에 연결된 경우에는 유기 발광 소자의 구동 전압이 상대적으로 높고 효율 또한 낮았다. 카바졸기 대신 플루오레닐기 또는 디벤조티오펜기인 경우(비교예 2-3, 비교예 2-4)와 카바졸기가 아릴렌기인 연결기를 통해 N 원자에 연결된 경우(비교예 2-5)에도 또한 유사한 특성을 보여주고 있다.카바졸의 2번 위치에 연결기 없이 N 원자에 연결된, 본 발명에 따른 화합물은 정공 수송 능력 또한 우수하여 저전압 및 고효율의 특성을 보이며 유기 발광 소자에 적용 가능함을 확인할 수 있었다.
이상을 통해 본 발명의 바람직한 실험예(전자저지층, 정공수송층)에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.

Claims (16)

  1. 하기 화학식 1 로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2016010351-appb-I000079
    상기 화학식 1에 있어서,
    X는
    Figure PCTKR2016010351-appb-I000080
    이고,
    Y는
    Figure PCTKR2016010351-appb-I000081
    이며,
    Z는
    Figure PCTKR2016010351-appb-I000082
    이고,
    Ar1은 치환 또는 비치환된 아릴기이며,
    L은 직접결합; 또는 치환 또는 비치환된 아릴렌기이고,
    R1은 수소; 중수소; 또는 치환 또는 비치환된 알킬기이며,
    R2 및 R3는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
    a는 0 내지 5의 정수이며,
    b는 0 내지 7의 정수이고,
    c는 0 내지 11의 정수이며, a가 2 이상인 경우에 R1은 서로 같거나 상이하고,
    b가 2 이상인 경우에 R2는 서로 같거나 상이하며,
    c가 2 이상인 경우에 R3는 서로 같거나 상이하다.
  2. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 2 또는 3으로 표시되는 것인 화합물:
    [화학식 2]
    Figure PCTKR2016010351-appb-I000083
    [화학식 3]
    상기 화학식 2 및 화학식 3에 있어서, Ar1, L, R1, R3, a 및 c의 정의는 각각 화학식 1에서와 같다.
  3. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 4 또는 5로 표시되는 것인 화합물:
    [화학식 4]
    Figure PCTKR2016010351-appb-I000085
    [화학식 5]
    Figure PCTKR2016010351-appb-I000086
    상기 화학식 4 및 화학식 5에 있어서, Ar1, L, R1 및 a의 정의는 각각 화학식 1에서와 같다.
  4. 청구항 1에 있어서, 상기 Ar1은 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 페난트레닐기; 또는 치환 또는 비치환된 트리페닐레닐기인 것인 화합물.
  5. 청구항 1에 있어서, Ar1은 하기 구조들 중에서 선택된 어느 하나인 것인 화합물:
    Figure PCTKR2016010351-appb-I000087
    상기 구조들은 중수소; 알킬기; 또는 아릴기로 치환 또는 비치환될 수 있다.
  6. 청구항 1에 있어서, 상기 화학식 1의 화합물은 하기 구조식들 중에서 선택된 어느 하나인 것인 화합물:
    Figure PCTKR2016010351-appb-I000088
    Figure PCTKR2016010351-appb-I000089
    Figure PCTKR2016010351-appb-I000090
    Figure PCTKR2016010351-appb-I000091
    Figure PCTKR2016010351-appb-I000092
    Figure PCTKR2016010351-appb-I000093
    Figure PCTKR2016010351-appb-I000094
    Figure PCTKR2016010351-appb-I000095
    Figure PCTKR2016010351-appb-I000096
    Figure PCTKR2016010351-appb-I000097
    Figure PCTKR2016010351-appb-I000098
    Figure PCTKR2016010351-appb-I000099
    Figure PCTKR2016010351-appb-I000100
    Figure PCTKR2016010351-appb-I000101
    Figure PCTKR2016010351-appb-I000102
    Figure PCTKR2016010351-appb-I000103
  7. 제1 전극, 제2 전극, 및 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 청구항 1 내지 6 중 어느 하나의 항에 따른 화합물을 포함하는 것을 특징으로 하는 유기 발광 소자.
  8. 청구항 7에 있어서, 상기 유기물층은 전자 수송층, 전자 주입층, 및 전자 수송 및 전자 주입을 동시에 하는 층 중 1층 이상을 포함하고, 상기 층들 중 1층 이상이 상기 화합물을 포함하는 것을 특징으로 하는 유기 발광 소자.
  9. 청구항 7에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층이 상기 화합물을 발광층의 호스트로서 포함하는 것인 유기 발광 소자.
  10. 청구항 7에 있어서, 상기 유기물층은 정공 주입층, 전자 저지층, 정공 수송층, 및 정공 주입 및 정공 수송을 동시에 하는 층 중 1층 이상을 포함하고, 상기 층들 중 1층 이상이 상기 화합물을 포함하는 것을 특징으로 하는 유기 발광 소자.
  11. 청구항 7에 있어서, 상기 유기물층은 상기 화합물을 호스트로서 포함하고, 다른 유기 화합물, 금속 또는 금속 화합물을 도펀트로 포함하는 것인 유기 발광 소자.
  12. 청구항 7에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 하기 화학식 6으로 표시되는 화합물을 포함하는 것인 유기 발광 소자:
    [화학식 6]
    Figure PCTKR2016010351-appb-I000104
    상기 화학식 6에 있어서,
    Ar2는 치환 또는 비치환된 1가 이상의 벤조플루오렌기; 치환 또는 비치환된 1가 이상의 플루오란텐기; 치환 또는 비치환된 1가 이상의 파이렌기; 또는 치환 또는 비치환된 1가 이상의 크라이센기이고,
    L1은 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이며,
    Ar3 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아르알킬기; 또는 치환 또는 비치환된 헤테로아릴기이거나, 서로 결합하여 치환 또는 비치환된 고리를 형성할 수 있고,
    r은 1 이상의 정수이며,
    r이 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
  13. 청구항 12에 있어서, 상기 L1은 직접결합이고, Ar2는 치환 또는 비치환된 2가의 파이렌기이며, Ar3 및 A4는 서로 같거나 상이하고, 각각 독립적으로 알킬기로 치환된 게르마늄기로 치환 또는 비치환된 아릴기이고, r은 2인 것인 유기 발광 소자.
  14. 청구항 7에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 하기 화학식 7로 표시되는 화합물을 포함하는 것인 유기 발광 소자:
    [화학식 7]
    Figure PCTKR2016010351-appb-I000105
    상기 화학식 7에 있어서,
    X1은 1-나프틸기, 2-나프틸기, 1-안트릴기, 2-안트릴기, 1-페난트릴기, 2-페난트릴기, 3-페난트릴기, 4-페난트릴기, 9-페난트릴기, 1-나프타센일기, 2-나프타센일기, 9-나프타센일기, 1-피렌일기, 2-피렌일기, 4-피렌일기, 3-메틸-2-나프틸기, 4-메틸-1-나프틸기, 또는 하기 화학식
    Figure PCTKR2016010351-appb-I000106
    이고,
    X3은 페닐기, 1-나프틸기, 2-나프틸기, 1-안트릴기, 2-안트릴기, 1-페난트릴기, 2-페난트릴기, 3-페난트릴기, 4-페난트릴기, 9-페난트릴기, 1-나프타센일기, 2-나프타센일기, 9-나프타센일기, 1-피렌일기, 2-피렌일기, 4-피렌일기, 2-바이페닐릴기, 2-바이페닐릴기, 3-바이페닐릴기, 4-바이페닐릴기, p-터페닐-4-일기, p-터페닐-3-일기, p-터페닐-2-일기, m-터페닐-4-일기, m-터페닐-3-일기, m-터페닐-2-일기, o-톨릴기, m-톨릴기, p-톨릴기, p-t-뷰틸페닐기, p-(2-페닐프로필)페닐기, 3-메틸-2-나프틸기, 4-메틸-1-나프틸기, 4-메틸-1-안트릴기, 4'-메틸바이페닐릴기, 4"-t-뷰틸-p-터페닐-4-일기, 또는 3-플루오란텐일기이며,
    X2 및 X4는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
    p2는 1 내지 5의 정수이며,
    p1 및 p3는 각각 1 내지 4의 정수이고,
    상기 p1 내지 p3가 각각 2 이상인 경우, 괄호내의 치환기는 서로 같거나 상이하다.
  15. 청구항 14에 있어서, 상기 X1은 1-나프틸기이고, X3는 2-나프틸기인 것인 유기 발광 소자.
  16. 청구항 12에 있어서, 상기 발광층은 하기 화학식 7로 표시되는 화합물을 포함하는 것인 유기 발광 소자:
    [화학식 7]
    Figure PCTKR2016010351-appb-I000107
    상기 화학식 7에 있어서,
    X1은 1-나프틸기, 2-나프틸기, 1-안트릴기, 2-안트릴기, 1-페난트릴기, 2-페난트릴기, 3-페난트릴기, 4-페난트릴기, 9-페난트릴기, 1-나프타센일기, 2-나프타센일기, 9-나프타센일기, 1-피렌일기, 2-피렌일기, 4-피렌일기, 3-메틸-2-나프틸기, 4-메틸-1-나프틸기, 또는 하기 화학식
    Figure PCTKR2016010351-appb-I000108
    이고,
    X3은 페닐기, 1-나프틸기, 2-나프틸기, 1-안트릴기, 2-안트릴기, 1-페난트릴기, 2-페난트릴기, 3-페난트릴기, 4-페난트릴기, 9-페난트릴기, 1-나프타센일기, 2-나프타센일기, 9-나프타센일기, 1-피렌일기, 2-피렌일기, 4-피렌일기, 2-바이페닐릴기, 2-바이페닐릴기, 3-바이페닐릴기, 4-바이페닐릴기, p-터페닐-4-일기, p-터페닐-3-일기, p-터페닐-2-일기, m-터페닐-4-일기, m-터페닐-3-일기, m-터페닐-2-일기, o-톨릴기, m-톨릴기, p-톨릴기, p-t-뷰틸페닐기, p-(2-페닐프로필)페닐기, 3-메틸-2-나프틸기, 4-메틸-1-나프틸기, 4-메틸-1-안트릴기, 4'-메틸바이페닐릴기, 4"-t-뷰틸-p-터페닐-4-일기, 또는 3-플루오란텐일기이며,
    X2 및 X4는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
    p2는 1 내지 5의 정수이며,
    p1 및 p3는 각각 1 내지 4의 정수이고,
    상기 p1 내지 p3가 각각 2 이상인 경우, 괄호내의 치환기는 서로 같거나 상이하다.
PCT/KR2016/010351 2015-09-25 2016-09-13 아민계 화합물 및 이를 포함하는 유기 발광 소자 WO2017052138A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680055754.4A CN108137499B (zh) 2015-09-25 2016-09-13 基于胺的化合物和包含其的有机发光器件
JP2018512176A JP6504641B2 (ja) 2015-09-25 2016-09-13 アミン系化合物およびこれを含む有機発光素子
EP16848864.1A EP3336077B1 (en) 2015-09-25 2016-09-13 Amine-based compound and organic light-emitting element comprising same
US15/760,923 US10862045B2 (en) 2015-09-25 2016-09-13 Amine-based compound and organic light-emitting element comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0137124 2015-09-25
KR20150137124 2015-09-25

Publications (2)

Publication Number Publication Date
WO2017052138A2 true WO2017052138A2 (ko) 2017-03-30
WO2017052138A3 WO2017052138A3 (ko) 2017-05-11

Family

ID=58386174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010351 WO2017052138A2 (ko) 2015-09-25 2016-09-13 아민계 화합물 및 이를 포함하는 유기 발광 소자

Country Status (7)

Country Link
US (1) US10862045B2 (ko)
EP (1) EP3336077B1 (ko)
JP (1) JP6504641B2 (ko)
KR (1) KR101888248B1 (ko)
CN (1) CN108137499B (ko)
TW (1) TWI636118B (ko)
WO (1) WO2017052138A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062505A (ja) * 2016-10-13 2018-04-19 東ソー株式会社 新規なカルバゾール化合物及びその用途

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7066979B2 (ja) * 2016-06-02 2022-05-16 東ソー株式会社 ジ置換ベンゼンを有するカルバゾール化合物及びその用途
US11871656B2 (en) * 2018-01-26 2024-01-09 Samsung Display Co., Ltd. Organic electroluminescence device and monoamine compound for organic electroluminescence device
US20200235297A1 (en) * 2018-01-26 2020-07-23 Samsung Display Co., Ltd. Organic electroluminescence device and monoamine compound for organic electroluminescence device
JP7465062B2 (ja) 2018-01-26 2024-04-10 三星ディスプレイ株式會社 有機電界発光素子及び有機電界発光素子用モノアミン化合物
KR20200113057A (ko) 2019-03-20 2020-10-06 삼성디스플레이 주식회사 아민계 화합물 및 이를 포함한 유기 발광 소자
JP2022553670A (ja) * 2019-10-17 2022-12-26 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセントデバイス用の材料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (ko) 1999-01-27 2004-05-10 주식회사 엘지화학 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자 및 그의 제조 방법
JP2008195841A (ja) * 2007-02-14 2008-08-28 Toray Ind Inc 発光素子材料および発光素子
KR101443755B1 (ko) * 2010-09-20 2014-10-07 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2012091428A2 (ko) * 2010-12-29 2012-07-05 주식회사 엘지화학 새로운 화합물 및 이를 이용한 유기 발광 소자
JP2015155378A (ja) * 2012-04-18 2015-08-27 保土谷化学工業株式会社 トリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
KR101550429B1 (ko) 2013-04-30 2015-09-08 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR20150010016A (ko) * 2013-07-17 2015-01-28 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
US10062850B2 (en) * 2013-12-12 2018-08-28 Samsung Display Co., Ltd. Amine-based compounds and organic light-emitting devices comprising the same
JP2015122356A (ja) * 2013-12-20 2015-07-02 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2015122369A (ja) * 2013-12-20 2015-07-02 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062505A (ja) * 2016-10-13 2018-04-19 東ソー株式会社 新規なカルバゾール化合物及びその用途
JP7009877B2 (ja) 2016-10-13 2022-01-26 東ソー株式会社 新規なカルバゾール化合物及びその用途

Also Published As

Publication number Publication date
CN108137499B (zh) 2021-07-09
KR20170037522A (ko) 2017-04-04
CN108137499A (zh) 2018-06-08
TWI636118B (zh) 2018-09-21
JP2018535924A (ja) 2018-12-06
EP3336077A4 (en) 2018-08-08
WO2017052138A3 (ko) 2017-05-11
TW201726888A (zh) 2017-08-01
KR101888248B1 (ko) 2018-08-13
JP6504641B2 (ja) 2019-04-24
EP3336077A2 (en) 2018-06-20
US10862045B2 (en) 2020-12-08
US20180269401A1 (en) 2018-09-20
EP3336077B1 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
WO2017052261A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2019240462A1 (ko) 유기 발광 소자
WO2017150859A1 (ko) 함질소 화합물 및 이를 포함하는 유기 발광 소자
WO2014010824A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2017204594A1 (ko) 유기 발광 소자
WO2015046988A1 (ko) 헤테로환 화합물 및 이를 이용한 유기 발광 소자
WO2017073932A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2014123392A1 (ko) 헤테로환 화합물 및 이를 이용한 유기 발광 소자
WO2017052138A2 (ko) 아민계 화합물 및 이를 포함하는 유기 발광 소자
WO2020145725A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2017119792A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2013191429A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2015046835A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
WO2017047977A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
WO2017086696A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2018182297A1 (ko) 벤조카바졸계 화합물 및 이를 포함하는 유기 발광 소자
WO2017039388A1 (ko) 아민계 화합물 및 이를 포함하는 유기 발광 소자
WO2017086724A1 (ko) 스피로형 화합물 및 이를 포함하는 유기 발광 소자
WO2017160068A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017086713A1 (ko) 화합물 및 이를 포함하는 유기전자소자
WO2019235902A1 (ko) 다환 화합물 및 이를 포함하는 유기전자소자
WO2017146522A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2015152651A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2016195459A2 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2018056773A1 (ko) 아민계 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848864

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2018512176

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2016848864

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15760923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE