WO2015133200A1 - 流体制御弁 - Google Patents

流体制御弁 Download PDF

Info

Publication number
WO2015133200A1
WO2015133200A1 PCT/JP2015/052023 JP2015052023W WO2015133200A1 WO 2015133200 A1 WO2015133200 A1 WO 2015133200A1 JP 2015052023 W JP2015052023 W JP 2015052023W WO 2015133200 A1 WO2015133200 A1 WO 2015133200A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
passage
anode
gas
introduction passage
Prior art date
Application number
PCT/JP2015/052023
Other languages
English (en)
French (fr)
Inventor
孝忠 宇佐美
剛 竹田
大河原 一郎
Original Assignee
日産自動車株式会社
株式会社鷺宮製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 株式会社鷺宮製作所 filed Critical 日産自動車株式会社
Priority to CA2941710A priority Critical patent/CA2941710C/en
Priority to JP2016506175A priority patent/JP6163604B2/ja
Priority to US15/121,086 priority patent/US10559837B2/en
Priority to EP15758375.8A priority patent/EP3116056B1/en
Priority to CN201580012602.1A priority patent/CN106104114B/zh
Publication of WO2015133200A1 publication Critical patent/WO2015133200A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0672One-way valve the valve member being a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fluid control valve.
  • JP 2011-258396 A discloses a purge valve as an example of a fluid control valve that is disposed in a wet gas flow path and controls the flow of the wet gas.
  • the purge valve is used in the fuel cell system, and is opened when the anode off gas discharged from the fuel cell is discharged to the outside of the fuel cell system.
  • a fluid control valve such as a purge valve controls the flow of fluid by opening and closing a valve port that connects a fluid introduction passage and a discharge passage with a valve body.
  • a fluid control valve controls the flow of fluid by opening and closing a valve port that connects a fluid introduction passage and a discharge passage with a valve body.
  • Water may enter the introduction passage from the wet gas flow path after the system using the fluid control valve is stopped.
  • the valve port When the valve port is disposed below the introduction passage, water that has entered the introduction passage is guided to the valve port by gravity, and in a low temperature environment, the valve port or the valve body may be frozen while the system is stopped. If the valve port or the valve body freezes while the system is stopped, the flow of the wet gas cannot be controlled when the system is subsequently started.
  • valve port when the valve port is arranged below the introduction passage, the water that has entered the introduction passage is discharged from the valve port to the discharge passage using gravity by opening the valve port during system operation. be able to. In other words, drainage is possible simply by opening the valve port during system operation.
  • valve port when the valve port is arranged above the introduction passage, water cannot be discharged by gravity only by opening the valve port during system operation.
  • the introduction passage is curved so as to protrude downward in the direction of gravity, and water is accumulated in the curved portion.
  • the introduction passage is blocked by the accumulated water. The water is discharged from the valve port to the discharge passage by opening the valve port after such a closed state and pushing out the water that has blocked the introduction passage using wet gas.
  • the water cannot be drained unless the introduction passage is completely blocked with water. For this reason, when the system including the fluid control valve is forcibly stopped due to a failure or the like, the water accumulated in the curved portion may be frozen while the system is stopped, and the introduction passage may remain blocked. In such a case, the flow of the wet gas cannot be controlled when the system is restarted.
  • An object of the present invention is to provide a fluid control valve capable of draining without blocking the introduction passage with water.
  • a fluid control valve that is disposed in the wet gas flow path and controls the flow of the wet gas.
  • the fluid control valve includes an introduction passage for introducing wet gas into the fluid control valve, a filter having a mesh for removing foreign substances in the wet gas flowing through the introduction passage, and a valve port disposed above the introduction passage.
  • the filter is disposed at the lowermost part of the introduction passage.
  • FIG. 1 is a schematic perspective view of a fuel cell according to an embodiment of the present invention.
  • 2 is a cross-sectional view of the fuel cell of FIG. 1 taken along the line II-II.
  • FIG. 3 is a schematic diagram of a fuel cell system according to an embodiment of the present invention.
  • FIG. 4 is a perspective view showing the positional relationship among the fuel cell stack, the purge valve, and the buffer tank.
  • FIG. 5 is a schematic cross-sectional view of a purge valve according to an embodiment of the present invention.
  • FIG. 6 is a schematic view of a fuel cell system according to another embodiment of the present invention.
  • FIG. 7A is a diagram illustrating an example of the flow of water in the introduction passage of the purge valve according to the comparative example.
  • FIG. 7A is a diagram illustrating an example of the flow of water in the introduction passage of the purge valve according to the comparative example.
  • FIG. 7B is a diagram illustrating an example of the flow of water in the introduction passage of the purge valve according to the comparative example.
  • FIG. 7C is a diagram illustrating an example of the flow of water in the introduction passage of the purge valve according to the comparative example.
  • a fuel cell is configured by sandwiching an electrolyte membrane between an anode electrode as a fuel electrode and a cathode electrode as an oxidant electrode.
  • the fuel cell generates electric power using an anode gas containing hydrogen supplied to the anode electrode and a cathode gas containing oxygen supplied to the cathode electrode.
  • the electrode reaction that proceeds in both the anode electrode and the cathode electrode is as follows.
  • FIG. 1 is a schematic perspective view of a fuel cell 10 according to an embodiment of the present invention.
  • 2 is a cross-sectional view of the fuel cell 10 of FIG. 1 taken along the line II-II.
  • the fuel cell 10 includes a membrane electrode assembly (MEA) 11, and an anode separator 12 and a cathode separator 13 disposed so as to sandwich the MEA 11.
  • MEA membrane electrode assembly
  • the MEA 11 includes an electrolyte membrane 111, an anode electrode 112, and a cathode electrode 113.
  • the MEA 11 has an anode electrode 112 on one surface of the electrolyte membrane 111 and a cathode electrode 113 on the other surface.
  • the electrolyte membrane 111 is a proton conductive ion exchange membrane formed of a fluorine-based resin.
  • the electrolyte membrane 111 exhibits good electrical conductivity in a wet state.
  • the anode electrode 112 includes a catalyst layer 112a and a gas diffusion layer 112b.
  • the catalyst layer 112a is in contact with the electrolyte membrane 111.
  • the catalyst layer 112a is formed of carbon black particles carrying platinum or platinum.
  • the gas diffusion layer 112b is provided outside the catalyst layer 112a and is in contact with the anode separator 12.
  • the gas diffusion layer 112b is formed of a member having sufficient gas diffusibility and conductivity.
  • the gas diffusion layer 112b is formed of, for example, a carbon cloth woven with yarns made of carbon fibers.
  • the cathode electrode 113 includes a catalyst layer 113a and a gas diffusion layer 113b.
  • the catalyst layer 113a is disposed between the electrolyte membrane 111 and the gas diffusion layer 113b, and the gas diffusion layer 113b is disposed between the catalyst layer 113a and the cathode separator 13.
  • the anode separator 12 is in contact with the gas diffusion layer 112b of the anode electrode 112.
  • the anode separator 12 has a plurality of groove-shaped anode gas passages 121 for supplying anode gas to the anode electrode 112 on the side in contact with the gas diffusion layer 112b.
  • the cathode separator 13 is in contact with the gas diffusion layer 113b of the cathode electrode 113.
  • the cathode separator 13 has a plurality of groove-like cathode gas flow paths 131 for supplying cathode gas to the cathode electrode 113 on the side in contact with the gas diffusion layer 113b.
  • the anode separator 12 and the cathode separator 13 are configured such that the flow direction of the anode gas flowing through the anode gas flow path 121 and the flow direction of the cathode gas flowing through the cathode gas flow path 131 are opposite to each other.
  • the anode separator 12 and the cathode separator 13 may be configured such that the flow directions of these gases flow in the same direction.
  • FIG. 3 is a schematic configuration diagram of the fuel cell system 1 according to an embodiment of the present invention.
  • FIG. 4 is a perspective view showing a positional relationship among the fuel cell stack 2, the purge valve 36 and the buffer tank 37.
  • the fuel cell system 1 includes a fuel cell stack 2, an anode gas supply device 3, and a controller 4.
  • the fuel cell stack 2 is a stacked battery in which a plurality of fuel cells 10 are stacked, and generates power by receiving supply of anode gas and cathode gas.
  • the fuel cell stack 2 generates electric power necessary for driving the vehicle, for example, electric power necessary for driving the motor.
  • the cathode gas supply / exhaust device of the fuel cell stack 2 and the cooling device for cooling the fuel cell stack 2 are not the main part of the present invention, and are not shown for easy understanding of the invention.
  • air is used as the cathode gas.
  • the anode gas supply device 3 includes a high-pressure tank 31, an anode gas supply passage 32, a pressure regulating valve 33, a pressure sensor 34, an anode gas discharge passage 35, a purge valve 36, a buffer tank 37, and a purge passage 38. .
  • the high pressure tank 31 stores the anode gas supplied to the fuel cell stack 2 in a high pressure state.
  • the anode gas supply passage 32 is a passage for supplying the anode gas discharged from the high-pressure tank 31 to the fuel cell stack 2.
  • One end of the anode gas supply passage 32 is connected to the high-pressure tank 31, and the other end is connected to the anode gas inlet 21 of the fuel cell stack 2.
  • the pressure regulating valve 33 is provided in the anode gas supply passage 32.
  • the pressure regulating valve 33 adjusts the anode gas discharged from the high-pressure tank 31 to a desired pressure and supplies it to the fuel cell stack 2.
  • the pressure regulating valve 33 is an electromagnetic valve capable of adjusting the opening degree continuously or stepwise. The opening degree of the pressure regulating valve 33 is controlled by the controller 4.
  • the pressure sensor 34 is provided in the anode gas supply passage 32 downstream of the pressure regulating valve 33.
  • the pressure sensor 34 detects the pressure of the anode gas flowing through the anode gas supply passage 32 downstream of the pressure regulating valve 33.
  • the pressure of the anode gas detected by the pressure sensor 34 is used as the pressure of the entire anode system (anode pressure) including each anode gas flow path 121 and the buffer tank 37.
  • the anode gas discharge passage 35 is a passage through which the anode off gas discharged from the fuel cell stack 2 flows.
  • the anode off-gas includes excess anode gas that has not been used for the electrode reaction, and impure gas such as nitrogen or moisture (water vapor or liquid water) that has permeated from the cathode gas channel 131 to the anode gas channel 121. It is a mixed gas.
  • One end of the anode gas discharge passage 35 is connected to the anode gas outlet 22 of the fuel cell stack 2, and the other end is connected to the purge valve 36.
  • the anode off gas discharged from the fuel cell stack 2 is a wet gas containing moisture, and the anode gas discharge passage 35 is a wet gas passage through which the wet gas flows.
  • the position of the other end of the anode gas discharge passage 35 is set lower than the position of one end as shown in FIG.
  • the purge valve 36 is a fluid control valve that controls the discharge state (for example, discharge / non-discharge) of the anode off gas to the purge passage 38.
  • the detailed structure of the purge valve 36 will be described later with reference to FIG. 5 and will be briefly described below.
  • an introduction passage 361 and a discharge passage 364 are formed inside the purge valve 36.
  • One end of the introduction passage 361 is connected to the anode gas discharge passage 35, and the other end is connected to the buffer tank 37.
  • the discharge passage 364 is connected to connect the introduction passage 361 and the purge passage 38.
  • a valve portion 365 that is opened and closed by the controller 4 is provided between the introduction passage 361 and the discharge passage 364. By opening and closing the valve portion 365, the discharge state of the anode off gas from the introduction passage 361 to the discharge passage 364, that is, the discharge state of the anode off gas to the purge passage 38 is controlled.
  • the buffer tank 37 temporarily stores the anode off gas that has passed through the anode gas discharge passage 35 and the introduction passage 361 of the purge valve 36.
  • the anode off gas stored in the buffer tank 37 flows from the introduction passage 361 to the discharge passage 364 by opening the valve portion 365 of the purge valve 36 and is discharged to the purge passage 38.
  • One end of the purge passage 38 is connected to the discharge passage 364 of the purge valve 36.
  • the anode off gas discharged to the purge passage 38 is merged with, for example, a cathode gas discharge passage for diluting hydrogen in the anode off gas, and finally discharged to the outside of the fuel cell system 1.
  • the controller 4 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • the controller 4 includes a current sensor 41 that detects the output current of the fuel cell stack 2, a voltage sensor 42 that detects the output voltage, and an accelerator stroke sensor 43 that detects the amount of depression of the accelerator pedal.
  • a current sensor 41 that detects the output current of the fuel cell stack 2
  • a voltage sensor 42 that detects the output voltage
  • an accelerator stroke sensor 43 that detects the amount of depression of the accelerator pedal.
  • the controller 4 controls the pressure regulating valve 33 based on the operating state of the fuel cell system 1 to control the flow rate and pressure of the anode gas supplied to the fuel cell stack 2. Further, in order to discharge the impure gas that has permeated from the cathode gas passage 131 to the anode gas passage 121 to the outside of the fuel cell system 1, the valve portion 365 of the purge valve 36 is opened to purge the anode off gas as necessary. It discharges to the passage 38.
  • FIG. 5 is a schematic sectional view of a purge valve 36 as a fluid control valve for controlling the flow of wet gas.
  • the purge valve 36 includes a housing 360, an introduction passage 361, a filter 362, a guide passage 363, a discharge passage 364, and a valve portion 365.
  • the introduction passage 361 is a passage formed in the housing 360.
  • a first port 361 a constituting one end of the introduction passage 361 is connected to the anode gas discharge passage 35, and a second port 361 b constituting the other end is connected to the buffer tank 37.
  • the introduction passage 361 is formed in a shape such that water that has entered the introduction passage 361 flows down toward a specific portion of the introduction passage 361. More specifically, the introduction passage 361 is formed in a shape in which the passage is inclined downward from one end and the other end toward the central portion, and the central portion is curved downward. Therefore, the central portion of the introduction passage 361 is configured to protrude downward in the gravity direction.
  • water reservoir a portion where water is accumulated in the introduction passage 361 is referred to as a “water reservoir”.
  • the filter 362 is disposed at the lowermost portion of the central portion of the introduction passage 361, that is, at the water reservoir of the introduction passage 361.
  • the filter 362 is formed in, for example, a cylindrical shape, and a mesh 362a in which a large number of small holes are formed is provided on the side surface of the cylinder.
  • Examples of the mesh 362a include a metal mesh woven wire rod, and a metal plate or the like having a hole.
  • the filter 362 removes foreign matters in the anode off gas by the mesh 362a, and prevents the foreign matter from being caught in the valve portion 365 disposed downstream.
  • the guide passage 363 is a passage formed in the housing 360.
  • the guide passage 363 is formed so as to extend upward from the upper surface side (upper part) of the filter 362.
  • the guide passage 363 is a passage for guiding the anode off gas that has passed through the filter 362 to above the filter 362.
  • the upper end of the guide passage 363 is formed as an open end, and constitutes a valve port 368 that functions as a valve seat.
  • the valve port 368 is disposed above the introduction passage 361.
  • the discharge passage 364 is a passage formed in the housing 360. One end of the discharge passage 364 communicates with the upper end of the guide passage 363 via the valve port 368, and the other end is connected to the purge passage 38.
  • the valve unit 365 includes a drive unit 366 and a valve body 367.
  • the drive unit 366 of the valve unit 365 drives the valve body 367, and the valve body 367 opens and closes the valve port 368 based on the driving force of the drive unit 366.
  • the driving unit 366 includes a fixed iron core 366a, a movable iron core 366b, and a coil 366c.
  • the drive unit 366 includes a spring 366d that biases the movable core 366b in a direction away from the fixed core 366a (downward in the drawing) between the fixed core 366a and the movable core 366b.
  • the coil 366c When the coil 366c is energized, the fixed iron core 366a and the movable iron core 366b are magnetized, and the movable iron core 366b is driven in a direction approaching the fixed iron core 366a (upward in the drawing) by the mutual attractive force.
  • the valve body 367 includes a valve stem portion 367a and a diaphragm 367b.
  • the valve stem portion 367a is fixed to the movable iron core 366b via an insert nut and moves together with the movable iron core 366b.
  • the diaphragm 367b is disposed at the tip of the valve stem portion 367a.
  • the outer edge portion of the diaphragm 367b is fixed to the housing 360, and the central portion is fixed to the valve stem portion 367a.
  • valve portion 365 of the purge valve 36 configured as described above is in a state in which the movable iron core 366b is urged downward in the figure by the spring 366d when the coil is not energized. Therefore, when the coil is not energized, the valve rod portion 367a is also urged downward in the figure, and the valve port 368 (the upper end of the guide passage 363) is closed by the diaphragm 367b.
  • Water may enter the introduction passage 361 of the purge valve 36 from the anode gas discharge passage 35 even after the fuel cell system 1 is stopped. Therefore, when the valve port 368 is disposed below the introduction passage 361, water that has entered the introduction passage 361 is guided to the valve port 368 by gravity, and the valve port 368 is stopped while the fuel cell system 1 is stopped in a low temperature environment. 368 and the valve body 367 are frozen. In order to avoid this, in the purge valve 36 according to the present embodiment, the valve port 368 is disposed above the introduction passage 361.
  • the anode gas flow path 121 is in a state where air that has entered during the system stop is mixed. Therefore, when the system is activated, the anode gas is additionally supplied from the high-pressure tank 31 to discharge the air present in the anode gas flow path 121 to the anode gas discharge passage 35. At this time, by opening the valve port 368 by the valve body 367 of the purge valve 36, the anode off gas containing the air discharged to the anode gas discharge passage 35 is discharged to the purge passage 38. However, if the valve port 368 or the valve body 367 freezes while the fuel cell system 1 is stopped, the anode off-gas cannot be discharged to the purge passage 38 when the system is restarted.
  • valve port 368 is disposed above the introduction passage 361 as in this embodiment, the above-described problem can be solved.
  • the position of the valve port 368 is arranged above the introduction passage 361, even if the valve port 368 is opened, the liquid water that has flowed into the introduction passage 361 during the operation of the fuel cell system 1 is utilized using gravity. It cannot be discharged to the outside.
  • the introduction passage 361 when the position of the valve port 368 is disposed above the introduction passage 361, the liquid water that has flowed into the introduction passage 361 during system operation is discharged.
  • the introduction passage 361 As in the comparative example shown in FIGS. 7A to 7C It is conceivable to form the introduction passage 361. That is, the introduction passage 361 on the upstream side of the filter 362 is curved so as to protrude downward in the gravity direction. By forming in this way, a part of the introduction passage 361 functions as a water reservoir.
  • the water reservoir portion is configured so that water can be collected early by setting the passage diameter of the introduction passage 361 to be smaller than the passage diameter of the anode gas discharge passage 35.
  • the introduction passage 361 By configuring the introduction passage 361 as described above, water accumulates in the water reservoir during system operation. Eventually, as shown in FIG. 7B, the introduction passage 361 is completely blocked by water. When the valve port 368 is opened after being in the closed state, the water closing the introduction passage 361 is pushed out at once by the gas pressure of the anode off-gas as shown in FIG. 7C. Thereby, the water in the introduction passage 361 is discharged to the discharge passage 364 through the valve port 368.
  • the water cannot be drained unless the introduction passage 361 is completely blocked with water. Therefore, when the fuel cell system 1 is forcibly stopped due to a failure or the like, water stored in the water reservoir during system operation may freeze during system stop and block the introduction passage 361. In this case, the anode off gas cannot be discharged to the purge passage 38 when the system is restarted.
  • valve port 368 when the valve port 368 is disposed above the introduction passage 361, the water flowing into the introduction passage 361 is discharged to the discharge passage 364 without blocking the introduction passage 361 during operation of the fuel cell system 1. It is desirable to make it.
  • the filter 362 is disposed in the water reservoir that is the lowermost part of the introduction passage 361.
  • the present inventors have found that such an arrangement allows the water in the introduction passage 361 to be discharged to the discharge passage 364 when the valve port 368 is opened even if the introduction passage 361 is not blocked by water. Obtained.
  • the pressure of the introduction passage 361 when the valve port 368 is opened pressure corresponding to the anode pressure
  • the pressure of the discharge passage 364 atmospheric pressure
  • the pressure in the water reservoir is sucked up along the surface of the mesh 362a of the filter 362 prior to the anode off gas.
  • the phenomenon in which water is sucked up is due to the fact that a water film is formed in the small holes of the mesh 362a due to the surface tension of the water itself, and this water film is formed on the surface of the mesh 362a in the upward direction in the figure.
  • the water sucked up along the surface of the mesh 362a rises through the guide passage 363 based on the above-described differential pressure, and is discharged to the discharge passage 364.
  • the filter 362 is disposed at the lowermost part (water reservoir) of the introduction passage 361 as described above, the water in the water reservoir can be discharged to the discharge passage 364 prior to the anode off-gas only by opening the valve port 368. .
  • the purge valve 36 is connected to the anode gas discharge passage 35 to control the flow of the anode off gas.
  • the purge valve 36 is positioned above the introduction passage 361, an introduction passage 361 for introducing the anode off gas into the purge valve 36, a filter 362 having a mesh 362 a for removing foreign matters in the anode off gas flowing through the introduction passage 361.
  • a discharge passage 364 that has a valve port 368 and discharges the anode off gas that has passed through the filter 362 from the purge valve 36 through the valve port 368, and a valve portion 365 that opens and closes the valve port 368 by the valve body 367. .
  • the filter 362 is disposed at the lowermost part of the introduction passage 361.
  • the water accumulated in the lowermost portion (water reservoir) of the introduction passage 361 is sucked up along the surface of the mesh 362a of the filter 362, and the water sucked up by the mesh 362a of the introduction passage 361 when the valve port 368 is opened.
  • the pressure can be discharged to the discharge passage 364 using the pressure difference between the pressure and the pressure in the discharge passage 364.
  • the introduction passage 361 is not completely blocked with water during operation of the fuel cell system 1, the water accumulated at the lowermost portion of the introduction passage 361 can be discharged to the discharge passage 364 by opening the valve port 368. it can. Therefore, even if the fuel cell system 1 is forcibly stopped due to a failure, it is possible to prevent the introduction passage 361 from being completely blocked by frozen water when the system is restarted.
  • the introduction passage 361 does not have to be completely blocked with water as in the comparative example. Therefore, the passage diameter of the introduction passage 361 is changed to the anode gas discharge passage so that water can be easily collected. It is not necessary to make it smaller than 35 passage diameters. Therefore, when the purge valve 36 according to the present embodiment is used in the fuel cell system 1, the performance of the fuel cell system 1 can be improved as follows.
  • the introduction passage is provided in the case of the anode dead end type fuel cell system 1 as in this embodiment in which the anode off gas discharged into the anode gas discharge passage 35 is pushed into the buffer tank 37 without returning to the anode gas supply passage 32. It is not necessary to reduce the passage diameter of 361. Therefore, an increase in pressure loss in the introduction passage 361 when the anode off gas is pushed into the buffer tank 37 can be suppressed. Therefore, the anode pressure when pushing the anode off gas into the buffer tank 37 can be kept low, and the fuel efficiency can be improved. Moreover, since the pressure applied to the parts such as the anode gas supply passage 32 and the fuel cell stack 2 can be kept low, the durability of the parts can also be improved.
  • a circulation type fuel cell system in which the anode off gas is returned to the anode gas supply passage 32 by a circulation pump 40 provided in a circulation passage 39 connecting the anode gas discharge passage 35 and the anode gas supply passage 32. If it is 1, an increase in pressure loss in the introduction passage 361 when the anode off gas is discharged through the purge valve 36 can be suppressed. Therefore, the discharge flow rate of the anode off gas per unit time can be increased, and the purge valve opening time can be shortened to prevent wasteful discharge of hydrogen in the anode off gas. In the case of such a circulation type fuel cell system 1, the second port 361b of the purge valve 36 may be closed.
  • the introduction passage 361 is inclined from each of the one end and the other end toward the center so that the central portion of the introduction passage 361 protrudes downward in the direction of gravity.
  • the shape of the introduction passage 361 is not limited to this, since the introduction passage 361 may have a shape such that the water in the introduction passage 361 flows down toward a specific portion of the introduction passage 361.
  • a part of the introduction passage 361 is hollowed out in a bowl shape to form a curved surface inclined in the direction of gravity, and the hollowed out part may be used as a water reservoir.
  • the purge valve used in the fuel cell system 1 has been described as an example of the fluid control valve.
  • the use of the fluid control valve is not limited to the fuel cell system, and the fluid control valve can be employed in the entire system using the wet gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Valve Housings (AREA)
  • Details Of Valves (AREA)

Abstract

 湿潤ガス流路に接続され、湿潤ガスの流量を制御する流体制御弁は、湿潤ガスを流体制御弁内に導入するための導入通路と、導入通路を流れる湿潤ガス中の異物を除去するためのメッシュを有するフィルタと、導入通路よりも上方に配置された弁ポートを有し、フィルタを通過した湿潤ガスを弁ポートを介して流体制御弁内から排出するための排出通路と、弁ポートを弁体によって開閉する弁部と、を備える。この流体制御弁において、フィルタは導入通路の最下部に配置される。

Description

流体制御弁
 本発明は、流体制御弁に関する。
 特開2011-258396号公報は、湿潤ガス流路に配置されて湿潤ガスの流れを制御する流体制御弁の一例として、パージ弁を開示する。パージ弁は、燃料電池システムに用いられ、燃料電池から排出されたアノードオフガスを燃料電池システムの外部に排出するときに開かれる。
 パージ弁等の流体制御弁は、流体の導入通路と排出通路とを連通する弁ポートを弁体によって開閉することで、流体の流れを制御する。このような流体制御弁によって水分を含む湿潤ガスの流れを制御する場合、水の浸入を考慮して、弁ポートの位置は導入通路よりも上方に配置される必要がある。
 導入通路には、流体制御弁を用いたシステムの停止後に湿潤ガス流路から水が浸入してくることがある。弁ポートを導入通路よりも下方に配置する場合、導入通路に侵入した水が重力によって弁ポートへと導かれ、低温環境下においてはシステム停止中に弁ポートや弁体を凍結させるおそれがある。システム停止中に弁ポートや弁体が凍結すると、その後のシステム起動時に湿潤ガスの流れを制御することができなくなる。
 但し、弁ポートが導入通路よりも下方に配置されている場合、システム運転中に弁ポートを開けることで、導入通路に侵入してきた水を重力を利用して弁ポートから排出通路へと排出することができる。つまり、システム運転中に弁ポートを開けるだけで、排水が可能となる。
 一方、弁ポートを導入通路よりも上方に配置する場合、システム運転中に弁ポートを開けただけでは、水を重力によって排出することができない。
 そのため、弁ポートが導入通路よりも上方に配置されている場合、例えば、導入通路は、重力方向下向きに凸となるように湾曲形成され、湾曲部に水が溜まるように構成される。湾曲部に水が溜まっていくと、溜まった水によって導入通路は塞がれた状態となる。このような閉塞状態になってから弁ポートを開き、湿潤ガスを用いて導入通路を塞いでいた水を一気に押し出すことで、水が弁ポートから排出通路へ排出される。
 しかしながら、この方法では、水によって導入通路を完全に塞いでからでないと排水することができない。そのため、流体制御弁を含むシステムがフェールによって強制停止した場合等には、湾曲部に溜めていた水がシステム停止中に凍結し、導入通路が閉塞状態のままとなるおそれがある。このような場合には、システム再起動時に湿潤ガスの流れを制御することができなくなる。
 本発明の目的は、導入通路を水で塞ぐことなく排水することが可能な流体制御弁を提供することである。
 本発明のある態様によれば、湿潤ガス流路に配置されて湿潤ガスの流れを制御する流体制御弁が提供される。流体制御弁は、湿潤ガスを流体制御弁内に導入するための導入通路と、導入通路を流れる湿潤ガス中の異物を除去するメッシュを有するフィルタと、導入通路よりも上方に配置された弁ポートを有し、フィルタを通過した湿潤ガスを弁ポートを介して流体制御弁内から排出するための排出通路と、弁ポートを弁体によって開閉する弁部と、を備える。この流体制御弁において、フィルタは導入通路の最下部に配置される。
図1は、本発明の一実施形態による燃料電池の概略斜視図である。 図2は、図1の燃料電池のII-II断面図である。 図3は、本発明の一実施形態による燃料電池システムの概略図である。 図4は、燃料電池スタック、パージ弁及びバッファタンクの位置関係を示す斜視図である。 図5は、本発明の一実施形態によるパージ弁の概略断面図である。 図6は、本発明の他の実施形態による燃料電池システムの概略図である。 図7Aは、比較例によるパージ弁の導入通路における水の流れの一例について説明する図である。 図7Bは、比較例によるパージ弁の導入通路における水の流れの一例について説明する図である。 図7Cは、比較例によるパージ弁の導入通路における水の流れの一例について説明する図である。
 以下、図面等を参照し、本発明の実施形態について説明する。
 燃料電池は、燃料極としてのアノード電極と酸化剤極としてのカソード電極とによって電解質膜を挟んで構成されている。燃料電池は、アノード電極に供給される水素を含有するアノードガス及びカソード電極に供給される酸素を含有するカソードガスを用いて発電する。アノード電極及びカソード電極の両電極において進行する電極反応は、以下の通りである。
   アノード電極:2H→4H+4e- ・・・(1)
   カソード電極:4H+4e+O→2H2O       ・・・(2)
 これら(1)(2)の電極反応によって、燃料電池は1ボルト程度の起電力を生じる。
 図1は、本発明の一実施形態による燃料電池10の概略斜視図である。図2は、図1の燃料電池10のII-II断面図である。
 図1及び図2に示すように、燃料電池10は、膜電極接合体(MEA)11と、MEA11を挟むように配置されるアノードセパレータ12及びカソードセパレータ13と、を備える。
 MEA11は、電解質膜111と、アノード電極112と、カソード電極113と、を備える。MEA11は、電解質膜111の一方の面にアノード電極112を有し、他方の面にカソード電極113を有する。
 電解質膜111は、フッ素系樹脂により形成されたプロトン伝導性のイオン交換膜である。電解質膜111は、湿潤状態で良好な電気伝導性を示す。
 アノード電極112は、触媒層112aとガス拡散層112bとを備える。触媒層112aは、電解質膜111と接する。触媒層112aは、白金又は白金等が担持されたカーボンブラック粒子から形成される。ガス拡散層112bは、触媒層112aの外側に設けられ、アノードセパレータ12と接する。ガス拡散層112bは、充分なガス拡散性および導電性を有する部材によって形成される。ガス拡散層112bは、例えば炭素繊維からなる糸で織成したカーボンクロスで形成される。
 アノード電極112と同様に、カソード電極113も触媒層113aとガス拡散層113bとを備える。触媒層113aは電解質膜111とガス拡散層113bとの間に配置され、ガス拡散層113bは触媒層113aとカソードセパレータ13との間に配置される。
 アノードセパレータ12は、アノード電極112のガス拡散層112bと接する。アノードセパレータ12は、ガス拡散層112bと接する側にアノード電極112にアノードガスを供給するための複数の溝状のアノードガス流路121を有する。
 カソードセパレータ13は、カソード電極113のガス拡散層113bと接する。カソードセパレータ13は、ガス拡散層113bと接する側にカソード電極113にカソードガスを供給するための複数の溝状のカソードガス流路131を有する。
 アノードセパレータ12及びカソードセパレータ13は、アノードガス流路121を流れるアノードガスの流れ方向とカソードガス流路131を流れるカソードガスの流れ方向とが互いに逆向きとなるように構成されている。なお、アノードセパレータ12及びカソードセパレータ13は、これらガスの流れ方向が同じ向きに流れるように構成されてもよい。
 このような燃料電池10を自動車用電源として使用する場合、要求される電力が大きいため、数百枚の燃料電池10を積層した燃料電池スタック2として使用する。そして、燃料電池スタック2にアノードガス及びカソードガスを供給する燃料電池システム100を構成して、車両を駆動させるための電力を取り出す。
 以下、図3及び図4を参照して、本発明の一実施形態による燃料電池システム1について説明する。
 図3は、本発明の一実施形態による燃料電池システム1の概略構成図である。図4は、燃料電池スタック2、パージ弁36及びバッファタンク37の位置関係を示す斜視図である。
 燃料電池システム1は、燃料電池スタック2と、アノードガス供給装置3と、コントローラ4と、を備える。
 燃料電池スタック2は、複数枚の燃料電池10を積層した積層電池であり、アノードガス及びカソードガスの供給を受けて発電する。燃料電池スタック2は、車両の駆動に必要な電力、例えばモータを駆動するために必要な電力を発電する。
 燃料電池スタック2のカソードガス給排装置及び燃料電池スタック2を冷却する冷却装置については、本発明の主要部ではないので、発明の理解を容易にするために図示を省略した。なお、燃料電池システム1においてはカソードガスとして空気を使用している。
 アノードガス供給装置3は、高圧タンク31と、アノードガス供給通路32と、調圧弁33と、圧力センサ34と、アノードガス排出通路35と、パージ弁36と、バッファタンク37と、パージ通路38と、を備える。
 高圧タンク31は、燃料電池スタック2に供給するアノードガスを高圧状態に保って貯蔵する。
 アノードガス供給通路32は、高圧タンク31から排出されたアノードガスを燃料電池スタック2に供給するための通路である。アノードガス供給通路32の一端部は高圧タンク31に接続され、他端部は燃料電池スタック2のアノードガス入口部21に接続される。
 調圧弁33は、アノードガス供給通路32に設けられる。調圧弁33は、高圧タンク31から排出されたアノードガスを所望の圧力に調節して燃料電池スタック2に供給する。調圧弁33は、連続的又は段階的に開度を調節することができる電磁弁である。調圧弁33の開度はコントローラ4によって制御される。
 圧力センサ34は、調圧弁33よりも下流のアノードガス供給通路32に設けられる。圧力センサ34は、調圧弁33よりも下流のアノードガス供給通路32を流れるアノードガスの圧力を検出する。燃料電池システム1では、圧力センサ34で検出されたアノードガスの圧力は、各アノードガス流路121とバッファタンク37とを含むアノード系全体の圧力(アノード圧力)として使用される。
 アノードガス排出通路35は、燃料電池スタック2から排出されたアノードオフガスを流す通路である。アノードオフガスは、電極反応に使用されなかった余剰のアノードガスと、カソードガス流路131からアノードガス流路121へと透過してきた窒素や水分(水蒸気や液水)等の不純ガスと、を含む混合ガスである。アノードガス排出通路35の一端部は燃料電池スタック2のアノードガス出口部22に接続され、他端部はパージ弁36に接続される。燃料電池スタック2から排出されるアノードオフガスは水分を含む湿潤ガスであり、アノードガス排出通路35は湿潤ガスが流れる湿潤ガス流路である。燃料電池システム1では重力を利用した排水を実現するため、図4に示すようにアノードガス排出通路35の他端部の位置は一端部の位置よりも低くなるように設定されている。
 パージ弁36は、パージ通路38へのアノードオフガスの排出状態(例えば排出/非排出)を制御する流体制御弁である。パージ弁36の詳細な構造については図5を参照して後述するので、以下では簡単に説明する。
 図3に示すように、パージ弁36の内部には、導入通路361及び排出通路364が形成されている。導入通路361の一端部はアノードガス排出通路35に接続され、他端部はバッファタンク37に接続される。排出通路364は、導入通路361とパージ通路38とを連結するように接続される。導入通路361と排出通路364との間には、コントローラ4によって開閉される弁部365が設けられる。弁部365を開閉することで、導入通路361から排出通路364へのアノードオフガスの排出状態、つまりパージ通路38へのアノードオフガスの排出状態が制御される。
 バッファタンク37は、アノードガス排出通路35及びパージ弁36の導入通路361を通過したアノードオフガスを一旦蓄える。バッファタンク37に蓄えられたアノードオフガスは、パージ弁36の弁部365を開くことで導入通路361から排出通路364へと流れ出し、パージ通路38に排出される。
 パージ通路38の一端部は、パージ弁36の排出通路364に接続される。パージ通路38に排出されたアノードオフガスは、アノードオフガス中の水素希釈のために例えばカソードガスの排出通路等に合流させられて、最終的に燃料電池システム1の外部に排出される。
 コントローラ4は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。
 コントローラ4には、前述した圧力センサ34の他にも、燃料電池スタック2の出力電流を検出する電流センサ41や出力電圧を検出する電圧センサ42、アクセルペダルの踏み込み量を検出するアクセルストロークセンサ43等の、燃料電池システム1の運転状態を検出するための各種の信号が入力される。
 コントローラ4は、燃料電池システム1の運転状態に基づいて調圧弁33を制御し、燃料電池スタック2に供給するアノードガスの流量及び圧力を制御する。また、カソードガス流路131からアノードガス流路121へと透過してきた不純ガスを燃料電池システム1の外部に排出するため、必要に応じてパージ弁36の弁部365を開いてアノードオフガスをパージ通路38に排出する。
 図5は、湿潤ガスの流れを制御する流体制御弁としてのパージ弁36の概略断面図である。
 図5に示すように、パージ弁36は、ハウジング360と、導入通路361と、フィルタ362と、案内通路363と、排出通路364と、弁部365と、を備える。
 導入通路361は、ハウジング360内に形成される通路である。導入通路361の一端部を構成する第1ポート361aはアノードガス排出通路35に接続され、他端部を構成する第2ポート361bはバッファタンク37に接続される。導入通路361は、導入通路361内に侵入してきた水が導入通路361の特定箇所に向かって流下するような形状として形成されている。より詳細には、導入通路361は、一端部及び他端部から中央部分に向けて通路が下り傾斜し、中央部分が下向きに湾曲するような形状に形成されている。したがって、導入通路361の中央部分は重力方向下向きに凸となるように構成されている。このように導入通路361を構成することで、導入通路361の中央部分に向かって水が流下するようになり、当該中央部分に水が溜まりやすくなる。以下、導入通路361内において水が溜まる部分のことを「水溜め部」と称する。
 フィルタ362は、導入通路361の中央部分における最下部、すなわち導入通路361の水溜め部に配置される。フィルタ362は例えば円筒形状に形成されており、円筒側面には多数の小孔が形成されたメッシュ362aが設けられる。メッシュ362aとしては、金属等の棒線を織って金網としたものや、金属板等に孔を空けたものなどがある。フィルタ362は、メッシュ362aによってアノードオフガス中の異物を除去し、下流に配置された弁部365での異物の噛み込み等を防止する。
 案内通路363は、ハウジング360内に形成される通路である。案内通路363は、フィルタ362の上面側(上部)から上方に延びるように形成される。案内通路363は、フィルタ362を通過したアノードオフガスを、フィルタ362の上方に導くための通路である。案内通路363の上端は、開口端として形成されており、弁座として機能する弁ポート368を構成する。このように弁ポート368は、導入通路361よりも上方に配置されている。
 排出通路364は、ハウジング360内に形成される通路である。排出通路364の一端部は弁ポート368を介して案内通路363の上端に連通しており、他端部はパージ通路38に接続されている。
 弁部365は、駆動部366と、弁体367と、を備える。弁部365の駆動部366は弁体367を駆動し、弁体367は駆動部366の駆動力に基づいて弁ポート368を開閉する。
 駆動部366は、固定鉄心366aと、可動鉄心366bと、コイル366cと、を備える。また、駆動部366は、固定鉄心366aと可動鉄心366bとの間に、可動鉄心366bを固定鉄心366aから離れる方向(図中下方向)に付勢するスプリング366dを備える。コイル366cに対して通電が行われると、固定鉄心366a及び可動鉄心366bが磁化し、互いの吸引力によって可動鉄心366bは固定鉄心366aに近づく方向(図中上方向)に駆動される。
 弁体367は、弁棒部367aと、ダイアフラム367bと、を備える。弁棒部367aは、インサートナットを介して可動鉄心366bに固定され、可動鉄心366bと共に移動する。ダイアフラム367bは、弁棒部367aの先端に配置される。ダイアフラム367bの外縁部分はハウジング360に固定され、中央部分は弁棒部367aに固定される。
 上記のように構成されるパージ弁36の弁部365は、コイル非通電時には、可動鉄心366bがスプリング366dによって図中下方向に付勢された状態となる。そのため、コイル非通電時は弁棒部367aも図中下方向に付勢された状態となり、ダイアフラム367bによって弁ポート368(案内通路363の上端)は閉じられた状態となる。
 これに対して、コイル通電時には、可動鉄心366bは、固定鉄心366aによる吸い上げられるため、スプリング366dの付勢力に抗して図中上方向に移動することになる。これにより、可動鉄心366bと共に弁棒部367aが図中上方向に移動し、ダイアフラム367bが弁ポート368から離れて弁ポート368が開いた状態となる。
 次に、本実施形態によるパージ弁36の作用効果について説明する。
 パージ弁36の導入通路361には、燃料電池システム1の停止後もアノードガス排出通路35から水が浸入してくることがある。そのため、弁ポート368を導入通路361よりも下方に配置すると、導入通路361に侵入してきた水が重力によって弁ポート368へと導かれ、低温環境下での燃料電池システム1の停止中に弁ポート368や弁体367が凍結する。これを回避するため、本実施形態によるパージ弁36では、弁ポート368は導入通路361よりも上方に配置される。
 燃料電池システム1の起動時には、アノードガス流路121内は、システム停止中に侵入してきた空気が混入した状態となっている。そのため、システム起動時には、高圧タンク31からアノードガスを追加供給することでアノードガス流路121内に存在する空気をアノードガス排出通路35に排出する。この時、パージ弁36の弁体367により弁ポート368を開くことで、アノードガス排出通路35に排出された空気を含むアノードオフガスはパージ通路38に排出される。しかしながら、燃料電池システム1の停止中に弁ポート368や弁体367が凍結してしまうと、システム再起動時に、アノードオフガスをパージ通路38に排出することができなくなる。
 しかしながら、本実施形態のように弁ポート368を導入通路361よりも上方に配置すれば、上記した問題については解決することができる。一方、弁ポート368の位置を導入通路361よりも上方に配置すると、弁ポート368を開いても、燃料電池システム1の運転中に導入通路361内に流れ込んできた液水を重力を利用して外部に排出することができない。
 そこで、弁ポート368の位置を導入通路361よりも上方に配置する場合、システム運転中に導入通路361内に流れ込んできた液水を排出するため、例えば図7A~図7Cに示す比較例のように導入通路361を構成することが考えられる。つまり、フィルタ362よりも上流側の導入通路361は、重力方向下向きに凸となるように湾曲形成される。このように形成することで、導入通路361の一部が水溜め部として機能する。なお、導入通路361の通路径がアノードガス排出通路35の通路径よりも小さく設定されることで、水溜め部は早期に水が溜まるように構成されている。
 導入通路361をこのような構成とすることで、システム運転中に水溜め部に水が溜まっていく。最終的には、図7Bに示すように、導入通路361は水によって完全に塞がれた状態となる。閉塞状態になった後に弁ポート368を開くと、導入通路361を塞いでいた水は、図7Cに示すようにアノードオフガスのガス圧により一気に押し出される。これにより、導入通路361内の水は、弁ポート368を通じて排出通路364に排出される。
 しかしながら、図7A~図7Cに示した比較例による方法では、水によって導入通路361を完全に塞いでからでないと排水ができない。そのため、燃料電池システム1がフェールによって強制的に停止した場合等には、システム運転中に水溜め部に溜めていた水が、システム停止中に凍結して導入通路361を塞ぐおそれがある。この場合には、システム再起動時にアノードオフガスをパージ通路38に排出することができない。
 したがって、弁ポート368を導入通路361よりも上方に配置する場合、燃料電池システム1の運転中に導入通路361を水で塞ぐことなく、導入通路361内に流れ込んできた水を排出通路364に排出させることが望ましい。
 そこで、本実施形態では、図5に示すように、導入通路361の最下部となる水溜め部にフィルタ362が配置される。本発明者らは、このような配置とすることで、導入通路361を水で塞がなくても、弁ポート368を開いた時に導入通路361内の水を排出通路364に排出できるという知見を得た。
 この知見について説明する。本実施形態のように導入通路361の水溜め部にフィルタ362を配置すると、弁ポート368を開いた時の導入通路361の圧力(アノード圧力に相当する圧力)と排出通路364の圧力(大気圧に相当する圧力)との差圧によって、アノードオフガスよりも先に水溜め部の水がフィルタ362のメッシュ362aの表面に沿って吸い上げられる。水が吸い上げられる現象は、水自体の表面張力によってメッシュ362aの小孔に水膜が形成され、この水膜がメッシュ362aの表面を図中上方向に形成されていくことに起因する。このようにメッシュ362aの表面に沿って吸い上げられた水は、上述した差圧に基づき案内通路363を通じて上昇し、排出通路364に排出される。
 このように導入通路361の最下部(水溜め部)にフィルタ362を配置すれば、弁ポート368を開くだけで、水溜め部の水をアノードオフガスに先駆けて排出通路364に排出することができる。
 本実施形態によるパージ弁36は、アノードガス排出通路35に接続されてアノードオフガスの流れを制御する。パージ弁36は、アノードオフガスをパージ弁36内に導入する導入通路361と、導入通路361を流れるアノードオフガス中の異物を除去するメッシュ362aを有するフィルタ362と、導入通路361よりも上方に位置する弁ポート368を有し、フィルタ362を通過したアノードオフガスを弁ポート368を介してパージ弁36内から排出する排出通路364と、弁ポート368を弁体367によって開閉する弁部365と、を備える。
 このパージ弁36においては、フィルタ362は導入通路361の最下部に配置される。これにより、導入通路361の最下部(水溜り部)に溜まった水をフィルタ362のメッシュ362aの表面に沿って吸い上げ、メッシュ362aにより吸い上げた水を弁ポート368を開いたときの導入通路361の圧力と排出通路364の圧力との差圧を利用して排出通路364に排出することができる。
 そのため、燃料電池システム1の運転中に導入通路361を完全に水で塞がなくても、弁ポート368を開くことで導入通路361の最下部に溜まった水を排出通路364に排出することができる。したがって、仮に燃料電池システム1がフェールによって強制停止した場合であっても、システム再起動時に導入通路361が凍結した水によって完全に塞がれた状態となることを抑制できる。
 本実施形態によるパージ弁36によれば、比較例のように導入通路361を完全に水で塞がなくてもよいので、水を溜まりやすくするために導入通路361の通路径をアノードガス排出通路35の通路径よりも小さくする必要がない。そのため、本実施形態によるパージ弁36を燃料電池システム1に使用した場合には、以下の通り、燃料電池システム1の性能を向上させることができる。
 すなわち、アノードガス排出通路35に排出されたアノードオフガスをアノードガス供給通路32に戻さずにバッファタンク37へと押し込む本実施形態のようなアノードデッドエンド型の燃料電池システム1であれば、導入通路361の通路径を小さくする必要がない。そのため、アノードオフガスをバッファタンク37に押し込む際の導入通路361での圧力損失の増加を抑制できる。したがって、アノードオフガスをバッファタンク37に押し込む際のアノード圧力を低く抑えることができるので、燃費を向上させることができる。また、アノードガス供給通路32や燃料電池スタック2等の部品にかかる圧力を低く抑えることもできるので、部品の耐久性も向上させることができる。
 一方、図6に示すように、アノードガス排出通路35とアノードガス供給通路32とを接続する循環通路39に設けた循環ポンプ40によってアノードオフガスをアノードガス供給通路32に戻す循環型の燃料電池システム1であれば、パージ弁36を介してアノードオフガスを排出するときの導入通路361での圧力損失の増加を抑制できる。したがって、単位時間当たりのアノードオフガスの排出流量を多くすることができ、パージ弁開弁時間を短くして無駄にアノードオフガス中の水素が排出されるのを抑制することができる。なお、このような循環型の燃料電池システム1の場合は、パージ弁36の第2ポート361bについては閉塞させておけば良い。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記実施形態では、導入通路361の中央部分が重力方向下向きに凸となるように、一端部及び他端部のそれぞれから中央部分に向けて導入通路361を傾斜させていた。しかしながら、導入通路361は、導入通路361内の水が導入通路361の特定箇所に向かって流下するような形状とすれば良いので、導入通路361の形状はこれに限られるものではない。例えば、導入通路361の一部分をお椀状にくり抜いて重力方向に傾斜した曲面を形成することで、そのくり抜いた部分を水溜め部としても良い。
 上記実施形態では、流体制御弁の一例として、燃料電池システム1に用いられるパージ弁について説明した。流体制御弁の使用は燃料電池システムに限定されるものではなく、流体制御弁は湿潤ガスを利用したシステム全般において採用され得る。
 本願は2014年3月7日に日本国特許庁に出願された特許出願No.2014-45174に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (4)

  1.  湿潤ガス流路に接続され、湿潤ガスの流れを制御する流体制御弁であって、
     湿潤ガスを前記流体制御弁内に導入するための導入通路と、
     前記導入通路を流れる湿潤ガス中の異物を除去するためのメッシュを有するフィルタと、
     前記導入通路よりも上方に配置された弁ポートを有し、前記フィルタを通過した湿潤ガスを前記弁ポートを介して前記流体制御弁内から排出するための排出通路と、
     前記弁ポートを弁体によって開閉する弁部と、を備え、
     前記フィルタは、前記導入通路の最下部に配置される、
     流体制御弁。
  2.  請求項1に記載の流体制御弁であって、
     前記流体制御弁は、燃料電池から排出される湿潤ガスとしてのアノードオフガスを、燃料電池システムの外部に排出するためのパージ弁である、
     流体制御弁。
  3.  請求項2に記載の流体制御弁であって、
     前記燃料電池システムは、前記燃料電池から排出されたアノードオフガスが流れる前記湿潤ガス流路としてのアノードガス排出通路と、前記燃料電池から排出されたアノードオフガスを蓄えるバッファ部と、を備えるアノードデッドエンド型燃料電池システムである、
     流体制御弁。
  4.  請求項3に記載の流体制御弁であって、
     前記導入通路は、湿潤ガスを前記導入通路内に導入する2つのポートを備え、
     前記2つのポートの一方のポートは前記アノードガス排出通路に接続され、
     前記2つのポートの他方のポートは前記バッファ部に接続される、
     流体制御弁。
PCT/JP2015/052023 2014-03-07 2015-01-26 流体制御弁 WO2015133200A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2941710A CA2941710C (en) 2014-03-07 2015-01-26 Fluid control valve
JP2016506175A JP6163604B2 (ja) 2014-03-07 2015-01-26 流体制御弁
US15/121,086 US10559837B2 (en) 2014-03-07 2015-01-26 Fluid control valve
EP15758375.8A EP3116056B1 (en) 2014-03-07 2015-01-26 Fluid control valve
CN201580012602.1A CN106104114B (zh) 2014-03-07 2015-01-26 流体控制阀

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014045174 2014-03-07
JP2014-045174 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133200A1 true WO2015133200A1 (ja) 2015-09-11

Family

ID=54055012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052023 WO2015133200A1 (ja) 2014-03-07 2015-01-26 流体制御弁

Country Status (6)

Country Link
US (1) US10559837B2 (ja)
EP (1) EP3116056B1 (ja)
JP (1) JP6163604B2 (ja)
CN (1) CN106104114B (ja)
CA (1) CA2941710C (ja)
WO (1) WO2015133200A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6822296B2 (ja) * 2017-04-20 2021-01-27 トヨタ自動車株式会社 燃料電池システム
JP7152373B2 (ja) * 2019-09-20 2022-10-12 本田技研工業株式会社 燃料電池システムの低温起動方法及び燃料電池システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073999U (ja) * 1983-10-27 1985-05-24 三井液化ガス株式会社 ガス導管用水取り装置
JPH0639112U (ja) * 1992-10-31 1994-05-24 嘉徳 北村 排水管の入口用フィルター
US6148844A (en) * 1998-07-01 2000-11-21 Steam Tech, Inc. Condensate removal device
JP2002373698A (ja) * 2001-06-15 2002-12-26 Kojima Press Co Ltd 燃料電池用気液分離器
JP2005177331A (ja) * 2003-12-22 2005-07-07 Mitsubishi Electric Corp 洗濯機
JP2005243476A (ja) * 2004-02-27 2005-09-08 Toyota Motor Corp 燃料電池システム
JP2007280892A (ja) * 2006-04-11 2007-10-25 Toyota Motor Corp 燃料電池システム
JP2014241260A (ja) * 2013-06-12 2014-12-25 日産自動車株式会社 燃料電池システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119880A (ja) 1997-06-27 1999-01-19 Sanyo Electric Co Ltd 洗濯機
JP4533114B2 (ja) 2004-11-30 2010-09-01 株式会社ケーヒン 燃料電池用電磁遮断弁
JP3112488U (ja) 2005-05-13 2005-08-18 享子 大家 排水口用異物除去具
WO2011004780A1 (ja) * 2009-07-07 2011-01-13 日産自動車株式会社 燃料電池パワープラントの運転制御装置及び運転制御方法
EP2528149A4 (en) * 2010-01-21 2015-08-05 Saginomiya Seisakusho Inc FILTER DEVICE
WO2011114787A1 (ja) * 2010-03-19 2011-09-22 日産自動車株式会社 燃料電池システム及びその運転方法
JP2011258396A (ja) 2010-06-09 2011-12-22 Toyota Motor Corp 燃料電池システム
WO2013035609A1 (ja) 2011-09-08 2013-03-14 株式会社鷺宮製作所 フィルター装置、およびフィルター装置を備えた制御弁、ならびに、燃料電池システム
CN104106167B (zh) * 2012-02-09 2016-08-31 日产自动车株式会社 燃料电池堆和燃料电池系统
EP2827420A4 (en) * 2012-03-12 2015-07-01 Nissan Motor FUEL CELL SYSTEM
JP5969795B2 (ja) * 2012-03-31 2016-08-17 株式会社鷺宮製作所 制御弁、および制御弁を用いた燃料電池システム
JP2013258038A (ja) 2012-06-12 2013-12-26 Toyota Motor Corp 燃料電池システム及びその制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073999U (ja) * 1983-10-27 1985-05-24 三井液化ガス株式会社 ガス導管用水取り装置
JPH0639112U (ja) * 1992-10-31 1994-05-24 嘉徳 北村 排水管の入口用フィルター
US6148844A (en) * 1998-07-01 2000-11-21 Steam Tech, Inc. Condensate removal device
JP2002373698A (ja) * 2001-06-15 2002-12-26 Kojima Press Co Ltd 燃料電池用気液分離器
JP2005177331A (ja) * 2003-12-22 2005-07-07 Mitsubishi Electric Corp 洗濯機
JP2005243476A (ja) * 2004-02-27 2005-09-08 Toyota Motor Corp 燃料電池システム
JP2007280892A (ja) * 2006-04-11 2007-10-25 Toyota Motor Corp 燃料電池システム
JP2014241260A (ja) * 2013-06-12 2014-12-25 日産自動車株式会社 燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3116056A4 *

Also Published As

Publication number Publication date
US10559837B2 (en) 2020-02-11
CA2941710C (en) 2019-06-25
CN106104114A (zh) 2016-11-09
EP3116056B1 (en) 2019-08-07
EP3116056A1 (en) 2017-01-11
CA2941710A1 (en) 2015-09-11
EP3116056A4 (en) 2017-03-29
JPWO2015133200A1 (ja) 2017-04-06
CN106104114B (zh) 2019-09-24
US20160365587A1 (en) 2016-12-15
JP6163604B2 (ja) 2017-07-12

Similar Documents

Publication Publication Date Title
US10044052B2 (en) Gas liquid separator and fuel cell system
KR101071369B1 (ko) 연료전지 시스템
JP4779301B2 (ja) 燃料電池システム
JP2003151585A (ja) 燃料電池及び拡散層
KR20200101590A (ko) 연료전지용 가습기
JP5858138B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
US9853316B2 (en) Fuel cell system
JP6163604B2 (ja) 流体制御弁
JP7438692B2 (ja) 燃料電池用加湿器
JP5222010B2 (ja) 弁装置
JP2010053983A (ja) 開閉弁
JP5330736B2 (ja) 燃料電池システム
JP2008181768A (ja) 燃料電池システム
JP4280185B2 (ja) 弁装置
JP2006147455A (ja) 燃料電池システム用バルブおよび燃料電池システム
JP4742522B2 (ja) 燃料電池システム
JP5320695B2 (ja) 燃料電池システム
JP5600893B2 (ja) 燃料電池システム
JP5194580B2 (ja) 燃料電池システム
JP5420195B2 (ja) 燃料電池システム
JP4806181B2 (ja) 燃料電池システム
JP2009059573A (ja) 燃料電池システム
JP2005344873A (ja) 流体制御弁
JP2008243782A (ja) 燃料電池システム
JP2005265036A (ja) 弁装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15121086

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016506175

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2941710

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015758375

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015758375

Country of ref document: EP