WO2015129848A1 - レンズ検査装置、および眼鏡レンズの製造方法 - Google Patents

レンズ検査装置、および眼鏡レンズの製造方法 Download PDF

Info

Publication number
WO2015129848A1
WO2015129848A1 PCT/JP2015/055777 JP2015055777W WO2015129848A1 WO 2015129848 A1 WO2015129848 A1 WO 2015129848A1 JP 2015055777 W JP2015055777 W JP 2015055777W WO 2015129848 A1 WO2015129848 A1 WO 2015129848A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
inspection
layout
processed
mark
Prior art date
Application number
PCT/JP2015/055777
Other languages
English (en)
French (fr)
Inventor
大丸 孝司
Original Assignee
ホヤ レンズ タイランド リミテッド
大丸 孝司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 大丸 孝司 filed Critical ホヤ レンズ タイランド リミテッド
Priority to US15/112,092 priority Critical patent/US20160327450A1/en
Priority to CN201580008579.9A priority patent/CN106461501A/zh
Priority to EP15755694.5A priority patent/EP3112837A1/en
Priority to JP2016505317A priority patent/JP6312800B2/ja
Publication of WO2015129848A1 publication Critical patent/WO2015129848A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses

Definitions

  • the present invention relates to a lens inspection device used for layout inspection of a spectacle lens (hereinafter, also referred to as “lens-finished lens”) that has been processed to match the shape of the spectacle frame, and a method for manufacturing the spectacle lens.
  • a lens inspection device used for layout inspection of a spectacle lens (hereinafter, also referred to as “lens-finished lens”) that has been processed to match the shape of the spectacle frame, and a method for manufacturing the spectacle lens.
  • An eyeglass lens before lens processing (hereinafter also referred to as an “uncut lens”) whose lens surface (convex surface, concave surface) is finished as a final optical surface is processed into a lens shape according to the shape of the eyeglass frame, and then the eyeglass frame Framed.
  • the spectacles that have become a finished product (final product) by the frame insertion are inspected for predetermined inspection items, and those that are determined to be non-defective are provided to the spectacle purchaser.
  • the communication lens processing system is a spectacle lens that is used to transmit the order data required for eyeglass processing of the spectacle lens from the ordering side to the manufacturing side via the communication network, and the target side uses this ordering data to process the target lens.
  • the information on the spectacle frame at hand on the ordering side is included in the ordering data transmitted from the ordering side to the manufacturing side, so that the spectacle frame between the ordering side and the manufacturing side is included. Delivery is unnecessary. For this reason, on the manufacturing side, in the situation where the eyeglass frame is not at hand, an inspection is made as to whether or not the lens processed lens has been processed into a lens shape with a layout suitable for framed into the eyeglass frame (hereinafter referred to as “layout inspection”). Need to do).
  • a method using an inspection chart paper can be considered.
  • lines and marks necessary for layout inspection are printed on the inspection chart paper.
  • a line or mark indicating the alignment reference mark position, the distance measurement point, the near measurement point, or the like is printed.
  • the layout inspection is performed in the following procedure.
  • the inspector places the lens processed lens on the inspection chart paper. At this time, the inspector places the lens processed lens with the convex surface of the lens facing upward so as not to damage the lens surface of the lens processed lens. Next, the inspector visually aligns the outer shape line of the lens having been processed with the reference line of the inspection chart paper.
  • the inspector inspects predetermined inspection items while maintaining the above-described alignment state. For example, if the inspection item is a fitting point, the displacement of the fitting point is inspected. On the convex surface of the lens processed lens to be inspected, a mark is attached at the position of the fitting point. On the other hand, a mark is attached to the position of the eye point on the inspection chart paper. In a state where the lens-shaped lens is actually put in the spectacle frame, it is necessary to make the fitting point coincide with the eye point. For this reason, the inspector confirms the position shift of the fitting point with respect to the eye point by comparing the position of the mark point of the lens having been processed with the position of the mark on the chart paper for inspection corresponding thereto.
  • the product to be inspected is determined as a non-defective product, and if it is outside the allowable range, it is determined as a defective product.
  • the examination items include, for example, the distance between one eye pupil and the astigmatic axis.
  • the first reason is that, as shown in FIG. 15A, when the lens-finished lens 52 is placed on the inspection chart paper 53 with the convex surface 52a of the lens to which the mark 51 is attached facing upward. This is because the mark point 51 and the mark 54 are arranged apart from each other in the thickness direction of the inspection chart paper 53. When the mark point 51 and the mark 54 are separated from each other, the mark point 51 appears to overlap the mark 54 or the mark point 51 appears to be shifted from the mark 54 depending on the position or angle at which they are viewed. For this reason, even if the same positional deviation ⁇ D occurs, the judgment of pass / fail may be different depending on the inspector.
  • the distance between the mark 51 and the mark 54 depends on the curve and thickness of the lens-finished lens 52. Determined. Therefore, in order to bring the mark point 51 and the mark 54 closer, it is necessary to place the target lens 52 on the inspection chart paper 53 with the convex surface 52a of the lens facing downward as shown in FIG. is there. However, in this case, since the convex surface 52a of the lens comes into contact with the inspection chart paper 53, the convex surface 52a of the lens 52 that has been processed into a lens shape may be damaged.
  • the inspection chart paper 53 when the inspection chart paper 53 is used, the inspection must be performed with the convex surface 52a of the lens facing upward, that is, with the mark point 51 and the mark 54 separated from each other so as not to damage the lens surface. There is a circumstance. Therefore, the line-of-sight shift when the inspector actually inspects affects the inspection result.
  • the second reason is that the lens posture is not always stable when the target lens 52 is placed on the inspection chart paper 53.
  • the outer shape of the lens-shaped lens 52 varies depending on the shape of the spectacle frame in which it is framed. For this reason, depending on the outer shape of the lens 52 that has been processed into a lens shape, the posture of the lens being inspected may not be stable, and accurate inspection may not be possible.
  • the lens-finished lens 52 is placed on the inspection chart paper 53 with the convex surface 52a of the lens facing upward, only a part of the outer periphery of the lens contacts the inspection chart paper 53, and the other The part will be in a floating state. For this reason, the outline of the lens 52 having been processed with respect to the reference line of the inspection chart paper 53 is not accurately aligned, and this shift affects the inspection result.
  • the main object of the present invention is to perform a layout inspection with higher accuracy when performing a layout inspection on a lens that has been processed into a lens before being framed into a spectacle frame, as compared with the case of using an inspection chart sheet. It is to provide the technology that can.
  • the first aspect of the present invention is: A lens inspection device that is used for layout inspection of a lens that has been processed into a lens according to the shape of the spectacle frame and has a layout inspection mark on at least one lens surface, A support portion for supporting the lens processed lens; Imaging means for capturing a captured image including an outline of the lens processed lens and the layout inspection mark by imaging the lens processed lens supported by the support unit; A monitor for displaying the captured image captured by the imaging means; A lens outline reference line indicating a position where the outline of the lens processed lens included in the captured image should be aligned, and a layout reference mark indicating a position where the layout inspection mark should be arranged, together with the captured image Display control means for controlling to display on the monitor; It is provided with the lens inspection apparatus characterized by the above-mentioned.
  • the second aspect of the present invention is: The lens inspection according to the first aspect, wherein the display control means displays the lens outer shape reference line with a double line that defines an alignment allowable width of the outer shape line of the lens-finished lens. Device.
  • the third aspect of the present invention is:
  • the display control means displays a determination reference line indicating an allowable range of positional deviation of the layout inspection mark with respect to the layout reference mark at or near the display position of the layout reference mark. Or it is a lens inspection apparatus as described in a 2nd aspect.
  • the fourth aspect of the present invention is:
  • the display control means displays a scale for visually confirming a positional deviation amount of the layout inspection mark with respect to the layout reference mark at or near the display position of the layout reference mark.
  • the lens inspection device according to any one of the third to third aspects.
  • a fifth aspect of the present invention Corresponding image data displayed on the monitor when the lens-finished lens position is adjusted using the lens outline reference line and the layout reference mark, with identification information of the lens-finished lens
  • the lens inspection apparatus according to any one of the first to fourth aspects, further comprising storage means for additionally storing.
  • the sixth aspect of the present invention is:
  • the eyeglass lens manufacturing method includes a lens inspection process in which a lens shape is processed to match the shape of the eyeglass frame and a layout inspection is performed on a lens shape processed lens having a layout inspection mark on at least one lens surface.
  • the lens inspection process includes Supporting the lens-shaped lens on a support portion;
  • the lens outer shape reference line indicating a position where the outer shape line of the lens shape processed lens included in the captured image obtained by imaging the lens processed lens supported by the support portion should be aligned, and the layout inspection
  • the seventh aspect of the present invention is The eyeglass lens manufacturing method according to the sixth aspect, wherein the inspection item of the layout inspection is a displacement of a fitting point.
  • the eighth aspect of the present invention is The method for manufacturing a spectacle lens according to the sixth aspect, wherein the inspection item of the layout inspection is an axis deviation of the lens that has been processed into a lens shape.
  • the layout inspection when performing a layout inspection on a lens that has been processed into a lens before being framed in an eyeglass frame, the layout inspection can be performed with higher accuracy than when using an inspection chart sheet. .
  • FIG. 6 is a first diagram illustrating a display screen of a monitor. It is FIG. (2) which shows the display screen of a monitor. FIG. 6 is a third diagram illustrating a monitor display screen; It is FIG. (4) which shows the display screen of a monitor.
  • FIG. (5) shows the display screen of a monitor. It is a figure explaining the method when test
  • FIG. 1 is a schematic diagram showing the configuration of a communication target lens processing system.
  • the illustrated communication lens processing system 1 is an example of a spectacle lens supply system to which the present invention can be applied, and is divided into an ordering side 2 and a manufacturing side 3.
  • an ordering side 2 For example, there is an eyeglass store as the ordering side 2.
  • An example of the manufacturing side 3 is a processing center of a lens manufacturer.
  • an ordering terminal 4 and a frame tracer 5 are installed on the ordering side 2.
  • an order receiving terminal 6 On the manufacturing side 3, an order receiving terminal 6, a processing control terminal 7, a lens meter 8, a block device 9, a target lens processing machine 10, and a lens inspection device 11 are installed.
  • the ordering terminal 4 and the order receiving terminal 6 are connected to each other via a communication network 12 such as the Internet so that they can communicate with each other.
  • the ordering side 2 generates frame shape data by measuring the shape of the spectacle frame selected by the spectacle wearer (purchaser) with the frame tracer 5 (the shape of the portion where the spectacle lens is framed).
  • the frame tracer 5 measures the shape of the spectacle frame in three dimensions.
  • the ordering terminal 4 takes in the frame shape data generated by the frame tracer 5 and transmits it to the manufacturing side 3 as ordering data together with other data (such as prescription information, spectacle lens information, layout information, and spectacle frame information).
  • the ordering data sent from the ordering side 2 via the communication network 12 is received by the order receiving terminal 6.
  • the received ordering data is taken into the processing control terminal 7 as needed.
  • the processing control terminal 7 calculates processing shape data used for target lens processing in accordance with frame shape data, prescription information, spectacle lens information, and the like included in the ordering data, and supplies this to the target lens processing machine 10.
  • the lens meter 8 measures the optical center, astigmatism axis, and the like of the spectacle lens (uncut lens), and marks the spectacle lens based on the measurement result. The mark point of the spectacle lens can be erased later by wiping.
  • the block device 9 specifies the holder mounting center position on the basis of the mark point given by the lens meter 8, and mounts the lens holder on the spectacle lens according to the holder mounting center position.
  • the target lens shape processing machine 10 subjects the spectacle lens (uncut lens) to target processing according to the processing shape data received from the processing control terminal 7. At that time, the eyeglass lens is set on the target lens shaper 10 using a lens holder. After the target lens shape processing is completed, the target lens shape processed lens is inspected using the lens inspection device 11. Then, the lens-finished lens that has passed the layout inspection by the lens inspection device 11 and other lens inspections (appearance inspection, circumference inspection, etc.) is supplied from the manufacturing side 3 to the ordering side 2.
  • FIG. 2 is a schematic configuration diagram of the lens inspection apparatus according to the embodiment of the present invention.
  • the illustrated lens inspection apparatus 11 performs a layout inspection of a spectacle lens (lens processed lens) that has been subjected to the lens processing by the lens processing machine 10.
  • a device for inspecting the lens processed lens for example, a peripheral inspection device for inspecting (measuring) the peripheral length of the lens is known, but a device for performing a layout inspection with a lens processed single lens is known. It is not done.
  • the layout inspection for example, a simple inspection using, for example, an inspection chart sheet can be used. However, the accuracy of the inspection and the validity of the objective judgment are not necessarily sufficient. Therefore, in the present embodiment, a lens inspection apparatus used for layout inspection is provided. This will be described below.
  • the lens inspection apparatus 11 includes a support unit 16 that supports the lens processed lens, an imaging unit 17 that captures the lens processed lens, a monitor 18 that displays an image, and a predetermined image on the monitor 18.
  • storage part 20 are provided.
  • the support part 16 supports the lens-shaped lens so that the position can be adjusted. Specifically, the support part 16 receives the convex surface of the lens processed lens at three points from below to support the lens processed lens. In this support state, the lens-shaped lens is placed on the support portion 16 by its own weight. For this reason, an operator (inspector) who performs inspection can lightly touch the lens that has been processed into a lens shape to adjust the position of the lens (coarse adjustment, fine adjustment). In addition, the convex surface of the lens that has been processed into a lens shape can be held substantially horizontally by three-point support.
  • the imaging unit 17 captures a captured image including an outline of the lens processed lens and a layout inspection mark by imaging the lens processed lens supported by the support unit 16.
  • the imaging unit 17 is configured using an imaging camera 21 and an optical element 22.
  • the imaging camera 21 is configured using, for example, a CCD (Charge-Coupled Device) camera, a CMOS (Complementary Metal-Oxide Semiconductor) camera, or the like.
  • the optical element 22 is configured using, for example, a lens, a mirror, a diaphragm, and the like.
  • the imaging light source may be equipped with a dedicated light source in the lens inspection device 1 or may be replaced with illumination (such as a fluorescent lamp) installed on the ceiling portion of the manufacturing site.
  • the monitor 18 displays various images.
  • the monitor 18 can be configured using, for example, a liquid crystal display monitor.
  • Image data displayed on the monitor 18 is input from the display control unit 19.
  • the image captured by the image capturing unit 17 may be directly input from the image capturing unit 17 to the monitor 18 without relaying the display control unit 19.
  • the display control unit 19 includes a lens outline reference line indicating a position where the outline of the lens processed lens included in the captured image captured by the imaging unit 17 is to be aligned, and a layout indicating a position where the layout inspection mark is to be disposed.
  • the reference mark is controlled so as to be displayed on the monitor 18 together with the captured image. Specifically, what kind of image the display control unit 19 displays on the screen of the monitor 18 will be described in detail later.
  • the storage unit 20 stores the image data displayed on the monitor 18 in association with the lens-shaped lens identification information when the lens-finished lens outline is aligned with the lens outline reference line. It is.
  • job identification information generated by the processing control terminal 7 can be used as the lens identification information for lens processing when the lens processing is performed using the order data received by the order receiving terminal 6.
  • the storage unit 20 can be configured using, for example, a storage medium such as a non-volatile memory and a hard disk drive, and a unit that writes and reads data to and from the storage medium.
  • FIG. 3 is a plan view of the lens inspection apparatus (including a view taken along the line EE). Shows the same side view.
  • the illustrated lens inspection apparatus 11 is configured based on a gantry 26.
  • the support portion 16 is configured using three support arms 27 provided on the upper surface portion of the gantry 26.
  • a support pin 28 is provided at one end of each support arm 27.
  • Each support pin 28 is arranged in a vertically standing state so as to protrude from the upper surface portion of the gantry 26.
  • These support pins 28 receive and support the convex surface 29a of the lens 29 that has been processed into a lens shape at three points.
  • Each support pin 28 is arranged in a state of being located at the apex of the triangle when seen in a plan view.
  • the upper ends of the support pins 28 are arranged at the same height in the vertical direction, and a portion in contact with the target lens 29 is hemispherically rounded.
  • the lens 29 that has been processed into a lens shape is shown as a circle, but in reality, a lens that has been processed into a lens shape according to the frame shape is supplied to the support portion 16.
  • a reflector 31 is provided above the support 16.
  • the reflection plate 31 has a surface (lower surface) facing the support portion 16 as a light reflection surface 31a.
  • the reflecting surface 31a reflects the illumination light emitted from the pair of lighting fixtures 32 toward the lens 29 that has been processed into a target lens shape.
  • a dotted line in FIG. 4 indicates an optical path of the illumination light.
  • An imaging camera 21 and an optical element 22 are arranged inside the gantry 26.
  • the imaging camera 21 is configured using a CCD camera as an example.
  • the optical element 22 is configured by using a total reflection type mirror as an example.
  • the imaging camera 21 is attached horizontally to the upper plate portion of the gantry 26.
  • the imaging camera 21 images the lens processed lens 29 via the optical element 22.
  • the reflection surface of the optical element 22 is disposed with an inclination of 45 degrees with respect to the optical axis of the imaging camera 21.
  • the optical axis of the imaging unit 17 is set such that, for example, the center of the lens processed lens 29 (boxing center) is the light of the imaging unit 17 when the lens processed lens 29 is supported in a preliminarily assumed reference posture.
  • the axis is set to pass.
  • the reference posture described here refers to the posture of the lens when the center of the lens-finished lens 29 (boxing center) coincides with the center of the triangle whose apex is the position of the three support pins 28.
  • the number of optical elements constituting the optical system of the imaging unit 17 may be two or more. Further, the camera and the optical element may be configured integrally.
  • FIG. 5A is a front view showing the configuration of the spectacle lens before processing the target lens shape
  • FIG. 5B is a front view showing the configuration of the spectacle lens after processing the target lens shape.
  • the uncut lens 33 which is a spectacle lens before processing the target lens shape, has a circular outer shape.
  • the spectacle lens is a single focus lens so that the contents of the invention can be easily understood.
  • three mark points M1, M2, and M3 are attached to the uncut lens 33 using the lens meter 8 described above.
  • the three mark points M1 to M3 are attached in a line on the astigmatism axis (X axis in the figure) specified by the spectacle wearer's prescription information. ing.
  • the marking points M1, M3 at both ends are attached at positions equidistant from the central marking point M2.
  • the central mark M2 is attached to the optical center of the uncut lens 33.
  • the optical center indicated by the mark point M2 corresponds to a fitting point in the single focus lens.
  • a fitting point will be described as an example as a specific inspection item for the eyeglass lens layout inspection.
  • the mark point M2 indicating the position of the fitting point corresponds to a layout inspection mark.
  • the mark points M1 to M3 are given to one lens surface (convex surface) of the spectacle lens, but in carrying out the present invention, the other lens surface of the spectacle lens may be given a mark point.
  • the position (holder mounting center position) that becomes the center (reference) when the lens holder is mounted on the uncut lens 33 is determined based on the offset amount specified in accordance with the pupil center distance included in the prescription information.
  • the offset amount is designated by the coordinate values of the XY coordinates (X coordinate value, Y coordinate value) with the astigmatic axis as the X axis and the Y axis as the axis orthogonal to the X axis at the optical center of the uncut lens 33.
  • the block device 9 identifies the position eccentric from the coordinate origin of the XY coordinates according to the offset amount as the holder mounting center position Hc.
  • the block device 9 attaches the lens holder 34 to the uncut lens 33 so that the holder attachment center position Hc becomes the processing center of the target lens shape processing.
  • the uncut lens 33 is processed into a target lens shape according to the processing shape data with the holder mounting center position Hc as the processing center.
  • the lens-finished lens 29 that is a spectacle lens after processing the target lens is processed into a target lens shape in accordance with the frame shape of a spectacle frame (not shown).
  • the intersection of “x” in the figure indicates the boxing center Bc of the boxing system defined by the JISB7281 standard.
  • This boxing center Bc corresponds to a frame center of a spectacle frame in which the lens-shaped lens 29 is framed.
  • the method for manufacturing a spectacle lens according to the embodiment of the present invention includes a lens inspection process for performing a layout inspection of the lens processed lens 29 that has been processed into a lens shape according to the shape of the spectacle frame.
  • a layout inspection of the target lens 29 is performed according to the procedure (process) shown in FIG. This will be specifically described below.
  • the lens-finished lens 29 is supported by the support portion 16. Specifically, the lens-finished lens 29 is placed on the three support pins 28. At this time, the convex surface 29a of the lens-finished lens 29 is directed downward and the concave surface 29b is directed upward. As a result, the three support pins 28 come into contact with the convex surface 29a of the lens 29 that has been processed into a lens, that is, the lens 29 that has been processed into a lens is supported at three points. This step may be performed manually by the operator or automatically using a lens supply device (not shown).
  • the position of the lens processed lens 29 is adjusted while viewing the image on the monitor 18.
  • the position adjustment of the lens-shaped lens 29 is performed manually by the inspector.
  • the display control unit 19 displays the following image on the monitor 18.
  • the display control unit 19 displays the lens outline reference line OLref and the layout reference mark Mref on the screen of the monitor 18 before supplying the target lens 16 to the support unit 16 as shown in FIG. .
  • the lens outer shape reference line OLref indicates the position on the monitor 18 where the outer shape line of the lens processed lens 29 should be matched.
  • the lens outer shape reference line OLref is displayed with a double line that defines the alignment allowable width W of the outer shape line of the lens 29 that has been processed into a lens shape.
  • the layout reference mark Mref indicates a position on the screen of the monitor 18 where the mark point (layout inspection mark) M2 is to be arranged.
  • the timing for starting the display of the lens outline reference line OLref and the layout reference mark Mref on the screen of the monitor 18 may be any time as long as it is before the start of the position adjustment of the lens processed lens 29.
  • the display control unit 19 determines the position for displaying the lens outer shape reference line OLref and the position for displaying the layout reference mark Mref as follows.
  • the holder mounting center position Hc is specified based on the positions of the mark points M1 to M3 attached to the uncut lens 33, and the holder mounting center position Hc is further processed.
  • the processing shape data of the lens is obtained by calculation assuming the center. Therefore, the outline of the lens processed lens 29 displayed on the monitor 18 is determined by processed shape data used for processing the target lens processed lens 29.
  • the relative positional relationship between the outline of the lens-finished lens 29 displayed on the monitor 18 and the mark point M2 is determined by the offset amount specified for specifying the holder mounting center position Hc by the block device 9.
  • the position where the lens outer shape reference line OLref and the layout reference mark Mref are displayed can be specified based on the processing shape data and the offset amount in consideration of the imaging magnification of the imaging unit 17 and the like.
  • the display position of the lens outer shape reference line OLref can be specified by a double line that obtains a lens outer shape line from the processed shape data and expects an alignment allowable width W from the lens outer shape line.
  • the display position of the layout reference mark Mref can be specified at a position that is decentered by an offset amount from the center position of the lens outline obtained from the processed shape data.
  • the outline of the lens processed lens 29 described here is the lens processed lens 29 in two-dimensional coordinates with the boxing center Bc as the origin when the lens processed lens 29 is viewed from the convex surface 29a side.
  • the target lens processed lens 29 is included in the captured image sent from the imaging unit 17 to the display control unit 19. Image of the outline and the mark M2. For this reason, when the target lens 16 is supplied to the support unit 16, the screen displayed on the monitor 18 by the display control unit 19 is displayed on the monitor 18 as shown in FIG. In addition to the mark Mref, an image of the lens processed lens 29 and an image of the mark M2 are included. However, before the position adjustment of the lens processed lens 29 is performed, for example, as illustrated in FIG. 8 described above, the outer shape line 29c of the lens processed lens 29 is displaced with respect to the lens outer reference line OLref. ing.
  • the inspector slightly touches the edge or the like of the lens-finished lens 29 supported by the support portion 16 and slightly shifts its position (posture). Then, the positions of the lens processed lens 29 and the mark M2 image displayed on the screen of the monitor 18 change according to the movement of the lens processed lens 29. Therefore, the inspector adjusts (finely adjusts) the position of the lens processed lens 29 while viewing the screen of the monitor 18.
  • the position of the lens 29 that has been processed into a lens shape. Here, one of them will be described as an example. First, when the outer shape line 29c of the lens-finished lens 29 is displaced with respect to the lens outer shape reference line OLref as shown in FIG. 8 above, as shown in FIG.
  • the outline 29c of the lens 29 that has been subjected to mold processing is aligned. Specifically, the alignment is performed such that the outer shape line 29c of the lens-shaped lens 29 is within the alignment allowable width W of the lens outer shape reference line OLref displayed by a double line. As a result, the lens-finished lens 29 is supported in the reference posture in the support portion 16.
  • the image data displayed on the monitor 18 when the position of the lens processed lens 29 is adjusted is stored in the storage unit 20 in association with the identification information of the lens processed lens 29 at a predetermined timing.
  • the storage unit 20 stores the image data displayed on the monitor 18 as inspection data relating to the layout inspection.
  • the timing for storing the image data in the storage unit 20 is preferably, for example, after finishing the quality determination described later.
  • a determination reference line indicating a permissible range of displacement of the mark point M2 with respect to the layout reference mark Mref at or near the display position of the layout reference mark Mref (FIG. 11).
  • a square frame SH may be displayed.
  • the center of the mark point M2 (indicated by a black circle in the figure) exists within the frame of the determination reference line SH, it is determined as a non-defective product.
  • the center of the mark M2 exists outside the frame of the determination reference line SH, it is determined as a defective product. Thereby, the inspector can easily determine pass / fail.
  • a captured image obtained by imaging the target lens 29 supported on the support unit 16 by the imaging unit 17 is displayed on the monitor 18 together with the lens outer shape reference line OLref and the layout reference mark Mref.
  • the layout inspection can be performed with higher accuracy than when the inspection chart paper is used.
  • the inspection results tend to vary due to the deviation of the viewpoint when the inspector looks at the lens, the mark, etc., and also the instability of the lens posture.
  • the inspection result judgment of pass / fail
  • the inspection result is not changed by the inspector. For this reason, it is possible to realize a highly accurate layout inspection.
  • the lens outline reference line OLref displayed on the monitor 18 may be a single line, but is preferably displayed as a double line.
  • the reason is as follows. First, when the lens outline reference line is displayed as a single line, when the outline of the lens-finished lens is superimposed on the lens outline reference line on the screen of the monitor 18, the line itself is caused by the overlap of the lines. Is difficult to see. For this reason, it is difficult to align the outline 29c with the lens outline reference line over the entire circumference of the lens 29 that has been processed into a lens shape. On the other hand, when the lens outline reference line OLref is displayed as a double line as in the present embodiment, the line itself does not become difficult to see due to the overlap of the lines.
  • the alignment of the lens-finished lens 29 is facilitated.
  • the outer shape line 29c of the lens-finished lens 29 within the alignment allowable width W of the lens outer shape reference line OLref, variations in alignment by individual inspectors are reduced.
  • the image data displayed on the monitor 18 when the lens-shaped lens 29 is adjusted using the lens outer shape reference line OLref and the layout reference mark Mref is stored.
  • a configuration that can be stored in the unit 20 is adopted. For this reason, even after the lens-finished lens 29 is shipped to the ordering side 2, the result of the layout inspection can be presented to the ordering side 2 as an image as necessary.
  • the image data stored in the storage unit 20 can be effectively used as a cause investigation material.
  • the inspection items for layout inspection are not limited to the displacement of the fitting point position, but various items such as the displacement of the distance between the pupils of one eye, the misalignment of the lens for which the lens has been processed, and the misidentification of the processing shape, etc. Is also included.
  • the axial deviation of the lens processed lens for example, as shown in FIG. 12, three mark points M1, M2, M3 are attached as layout inspection marks on the astigmatic axis of the lens processed lens 29. Keep it. Then, on the monitor screen, the position of the lens processed lens 29 is adjusted using the three mark points M1, M2, M3 attached to the lens processed lens 29, and the lens processed in that state.
  • Whether or not the layout inspection relating to the axis deviation is acceptable may be determined depending on whether or not the outer shape line 29c of the lens 29 is within the allowable width W of the lens outer shape reference line OLref. Furthermore, since the allowable range of the axis deviation varies depending on the prescription power, the allowable width W of the lens outline reference line OLref displayed on the monitor screen may be changed according to the prescription power of the spectacle lens. Specifically, when the prescription power is weak, the allowable width W may be widened, and when the prescription power is strong, the allowable width W may be narrowed.
  • the spectacle lens to be subjected to the layout inspection is not limited to a single focus lens, and may be a progressive power lens, a bifocal lens, or the like, for example.
  • the progressive power lens is to be subjected to layout inspection, for example, as shown in FIG. 13, the kakushi marks M1 and M2 are used as layout inspection marks on the horizontal reference line (not shown) of the lens 29 having been processed.
  • the layout reference marks Mref1 and Mref2 are displayed on the monitor screen correspondingly.
  • the positional deviation from the layout reference marks Mref1 and Mref2 may be confirmed, and the quality may be determined based on the result.
  • the progressive-power lens targeted by the present invention is a convex progressive-power lens (also referred to as outer surface progression) in which a progressive surface is arranged on the convex side which is the object side surface, or a progressive surface is arranged on the concave side which is the eyeball side surface.
  • a concave progressive power lens also referred to as inner surface progressive
  • a double-sided progressive power also referred to as compound progressive
  • the progressive refraction lens which is one form of the spectacle lens, includes two alignment reference marks (in the above-described kakushi marks M1 and M2) for specifying a design reference point (distance design reference point) defined by the JIS standard (JIST7330). Equivalent).
  • a concave progressive power lens is a progressive power lens having a spherical convex surface and an aspherical surface (progressive surface).
  • the alignment reference mark is formed on the concave surface side of the concave progressive refractive lens.
  • the alignment reference mark is attached at a position that is separated from the prism measurement reference position by an equal distance from side to side (horizontal axis direction). Therefore, in the concave progressive refractive lens, it is possible to specify the midpoint between the two alignment reference marks as the prism measurement reference position on the horizontal reference line passing through the centers of the two alignment reference marks.
  • the alignment reference mark When attaching an alignment reference mark to a progressive refraction lens, it is obliged to “display it in a way that does not disappear easily” in the JIS standard (JIS 7315).
  • the alignment reference mark is often left on the spectacle lens even after the lens shape processing is finished, the alignment reference mark is attached by a method that is not conspicuous in appearance (for example, a method of marking with a laser). For this reason, the alignment reference mark is also called a “kakushi mark”. Unlike the mark points that are erased by wiping off, the alignment reference mark is basically a mark that remains without being erased.
  • the so-called “kakushi mark” includes other marks (marks for displaying the lens manufacturer name, type, frequency, etc.) attached to the spectacle lens in the same manner.
  • mark points M1 and M2 are provided as layout inspection marks on both ends of the segment top of the lens 29 that has been processed into a lens shape. deep. Further, the segment mark SGM that is an image of the segment of the lens 29 that has been processed is displayed on the monitor screen as a layout reference mark for confirming misalignment. Then, on the monitor screen, the mark points M1 and M2 attached to the lens-finished lens 29 in a state where the outline 29c of the lens-finished lens 29 is within the allowable width W of the lens outline reference line OLref.
  • the segment mark SGM may confirm the positional deviation between both ends of the segment top, and the quality may be determined based on the result.
  • the axial misalignment is inspected based on the kakushi mark.
  • the axis deviation may be inspected with reference to the segment top.
  • the outer shape of the lens 29 processed to the lens outer reference line OLref is used.
  • this invention is not restricted to this.
  • the position of the lens-finished lens 29 is shifted within a range where the outline 29c of the lens-finished lens 29 is within the alignment allowable width W of the lens outline reference line OLref, and the mark M2 is set on the layout reference mark Mref.
  • the position of the lens processed lens 29 may be adjusted so as to be as close as possible.
  • the positional deviation (for example, the positional deviation amount) of the mark point M2 with respect to the layout reference mark Mref is confirmed, and the quality of the layout inspection of the lens-finished lens 29 is determined based on the confirmation result.
  • the position of the mark point M2 of the lens processed lens 29 is aligned with the layout reference mark Mref, and in this state, the contour line 29c of the lens processed lens 29 is aligned with the lens contour reference line OLref.
  • the position of the lens processed lens 29 may be adjusted so as to be as close as possible.
  • the positional deviation of the outer shape line 29c of the lens-finished lens 29 with respect to the lens outer shape reference line OLref is confirmed (for example, whether the outer shape line 29c is within the alignment allowable width W), and based on this confirmation result.
  • the quality of the layout inspection of the target lens processed lens 29 is determined.
  • the lens-finished lens 29 is supported with the convex surface 29a with a mark to be a layout inspection mark facing downward, and the lens-finished lens 29 is imaged from the convex surface 29a side.
  • the present invention is not limited to this.
  • the following configuration may be adopted. (1) A configuration in which the target lens 29 is supported with the convex surface 29a to which the mark to be a layout inspection mark is attached facing downward, and the target lens 29 is imaged from the concave surface 29b side. (2) A mark to be a layout inspection mark is attached to the concave surface 29b, the opposite convex surface 29a is faced downward to support the lens processed lens 29, and the lens processed lens 29 is imaged from the concave surface 29b side.
  • Configuration to do (3) A mark to be a layout inspection mark is attached to the concave surface 29b, the convex surface 29a on the opposite side faces downward to support the lens processed lens 29, and the lens processed lens 29 is imaged from the convex surface 29a side. Configuration to do. Among these, it is preferable to consider the influence of refraction of the lens-shaped lens 29 when taking an image from the opposite side of the lens surface with the mark as in the configurations of (1) and (3).
  • the progressive-power lens has a layout mark indicating a reference position for measuring the distance power, a layout mark indicating the reference position for measuring the near power, and a distance eye point.
  • the layout marks to be shown are shown, and these layout marks may be used as “layout inspection marks”.
  • the layout mark may be disposed on the concave surface, but may also be disposed on the convex surface.
  • the layout mark is disposed on the concave surface, for example, the above configuration (2) is preferable.
  • the layout mark is disposed on the convex surface, the above configuration (1) is preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Eyeglasses (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

 眼鏡フレームの形状に合わせて玉型加工されるとともに、レンズ面にレイアウト検査用マークが付された玉型加工済みレンズのレイアウト検査に用いられるレンズ検査装置であって、玉型加工済みレンズを支持する支持部16と、そこで支持した玉型加工済みレンズを撮像することにより、玉型加工済みレンズの外形線およびレイアウト検査用マークを含む撮像画像を取り込む撮像部17と、そこで取り込んだ撮像画像を表示するモニタ18と、撮像画像に含まれる玉型加工済みレンズの外形線を合わせるべき位置を示すレンズ外形基準線と、レイアウト検査用マークが配置されるべき位置を示すレイアウト基準マークとを、撮像画像とともにモニタ18に表示させる表示制御部19と、を備える。

Description

レンズ検査装置、および眼鏡レンズの製造方法
 本発明は、眼鏡フレームの形状に合わせて玉型加工された眼鏡レンズ(以下、「玉型加工済みレンズ」ともいう)のレイアウト検査に用いられるレンズ検査装置、および眼鏡レンズの製造方法に関する。
 レンズ面(凸面、凹面)を最終光学面に仕上げた玉型加工前の眼鏡レンズ(以下、「アンカットレンズ」ともいう)は、眼鏡フレームの形状に合わせて玉型加工された後、眼鏡フレームに枠入れされる。枠入れによって完成品(最終製品)となった眼鏡は、あらかじめ決められた検査項目について検査を行った後、良品と判断されたものが眼鏡購入者に提供される。
 眼鏡完成品の検査項目の中には、眼鏡フレームに対する眼鏡レンズのレイアウトに関するものがある。具体的には、たとえば、完成した眼鏡(レンズ付きの眼鏡フレーム)を眼鏡装用者が装用したときに、眼鏡レンズのフィッティングポイントと瞳孔中心が一致するかどうかを検査する項目がある。眼鏡レンズのフィッティングポイントと瞳孔中心(以下、「アイポイント」ともいう)がずれていると眼鏡レンズのもつ視力矯正などの機能を最大限に引き出すことができない。このため、眼鏡装用者に見えにくさや疲労などの悪影響をおよぼすおそれがある。そこで、従来においては、検査用チャート用紙を用いて、眼鏡完成品の検査を行っている(たとえば、特許文献1を参照)。
特開平6-242408号公報
 ところで、眼鏡レンズの供給システムのひとつに、通信玉型加工システムと呼ばれるものがある。通信玉型加工システムとは、眼鏡レンズの玉型加工に必要な発注データを発注側から製造側に通信ネットワークを経由して送信し、この発注データを用いて製造側で玉型加工した眼鏡レンズを製造側から発注側に供給(配送)するシステムである。
 上述した通信玉型加工システムにおいては、発注側の手元にある眼鏡フレームに関する情報を、発注側から製造側に送信される発注データに含めることにより、発注側と製造側との間で眼鏡フレームの配送を不要にしている。このため、製造側においては、眼鏡フレームが手元にない状況で、玉型加工済みレンズが眼鏡フレームへの枠入れに適したレイアウトで玉型加工されているかどうかの検査(以下、「レイアウト検査」という)を行う必要がある。
 製造側における玉型加工済みレンズのレイアウト検査には、検査用チャート用紙を用いる方法が考えられる。その場合、検査用チャート用紙には、レイアウト検査に必要な線や印などを印刷しておく。具体的には、フレームセンタに対するアイポイント位置や累進レンズであればアライメント基準マーク位置、遠用測定点、近用測定点等を示す線や印などを印刷しておく。そして、実際のレンズ検査工程では、たとえば以下のような手順でレイアウト検査を行う。
 まず、検査者は、検査用チャート用紙の上に玉型加工済みレンズを載せる。このとき、玉型加工済みレンズのレンズ面を傷つけないように、検査者はレンズの凸面を上向きにして玉型加工済みレンズを載せる。
 次に、検査者は、検査用チャート用紙の基準線に玉型加工済みレンズの外形線を目視で位置合わせする。
 次に、検査者は、上述した位置合わせの状態を維持しながら、あらかじめ決められた検査項目について検査する。たとえば、検査項目がフィッティングポイントであれば、このフィッティングポイントのずれについて検査する。検査対象品となる玉型加工済みレンズの凸面には、フィッティングポイントの位置に印点が付されている。一方、検査用チャート用紙には、アイポイントの位置に目印が付されている。実際に玉型加工済みレンズを眼鏡フレームに枠入れした状態では、フィッティングポイントをアイポイントに一致させる必要がある。このため、検査者は、玉型加工済みレンズの印点の位置とこれに対応する検査用チャート用紙の目印の位置とを見比べることにより、アイポイントに対するフィッティングポイントの位置ずれを確認する。そして、フィッティングポイントの位置ずれ量があらかじめ決められた許容範囲内であれば、検査対象品を良品と判断し、許容範囲外であれば不良品と判断する。
 なお、検査項目には、フィッテイングの他にも、たとえば、片眼瞳孔間距離、乱視軸などがある。
 しかしながら検査用チャート用紙を用いたレイアウト検査においては、検査者が印点や目印を見るときの視点(目の位置)が少しずれただけでも印点と目印の見え方が変わる。このため、たとえば、ある検査者が良品と判断した玉型加工済みレンズを別の検査者が検査したときに不良品と判断する場合もあり得る。その場合、どちらが正しいのか客観的に判断できないという問題があった。
 検査者によって良否の判断が分かれる理由としては、上述した視点のずれ以外にも、たとえば次のような理由が考えられる。
 第1の理由は、図15(A)に示すように、印点51が付されたレンズの凸面52aを上向きにして玉型加工済みレンズ52を検査用チャート用紙53の上に載せたときに、印点51と目印54が検査用チャート用紙53の厚み方向に離れて配置されるためである。印点51と目印54が離れていると、これらを見る位置や角度の違いによって、印点51が目印54に重なって見えたり、印点51が目印54からずれて見えたりする。このため、同じ位置ずれΔDが生じていても、検査者によって良否の判断が分かれることがある。
 また、レンズの凸面52aを上向きにして玉型加工済みレンズ52を検査用チャート用紙53の上に載せる場合、印点51と目印54の離間距離は、玉型加工済みレンズ52のカーブや厚みによって決まる。このため、印点51と目印54を近づけるには、図15(B)に示すように、レンズの凸面52aを下向きにして玉型加工済みレンズ52を検査用チャート用紙53の上に載せる必要がある。ただし、その場合は、レンズの凸面52aが検査用チャート用紙53に接触することになるため、玉型加工済みレンズ52の凸面52aを傷つけてしまうおそれがある。このため、検査用チャート用紙53を用いる場合は、レンズ面を傷つけないように、レンズの凸面52aを上向きにした状態、つまり印点51と目印54が離れた状態で検査を行わざるを得ないという事情がある。したがって、実際に検査者が検査するときの視線のずれが検査結果に影響を与えてしまう。
 第2の理由は、玉型加工済みレンズ52を検査用チャート用紙53の上に載せたときのレンズの姿勢が必ずしも安定しないためである。玉型加工済みレンズ52の外形は、これを枠入れする眼鏡フレームの形状ごとに異なる。このため、玉型加工済みレンズ52の外形によっては検査中のレンズの姿勢が安定せず、正確な検査ができなくなるおそれがある。また、レンズの凸面52aを上向きにして玉型加工済みレンズ52を検査用チャート用紙53の上に載せた場合は、検査用チャート用紙53に対してレンズ外周の一部だけが接触し、他の部分は浮いた状態になる。このため、検査用チャート用紙53の基準線に対して、玉型加工済みレンズ52の外形線が正確に位置合わせされず、このずれが検査結果に影響を与えてしまう。
 本発明の主な目的は、眼鏡フレームに枠入れする前の玉型加工済みレンズを対象にレイアウト検査を行う場合に、検査用チャート用紙を用いる場合に比較して、精度良くレイアウト検査を行うことができる技術を提供することにある。
 本発明の第1の態様は、
 眼鏡フレームの形状に合わせて玉型加工されるとともに、少なくとも一方のレンズ面にレイアウト検査用マークが付された玉型加工済みレンズのレイアウト検査に用いられるレンズ検査装置であって、
 前記玉型加工済みレンズを支持する支持部と、
 前記支持部で支持した前記玉型加工済みレンズを撮像することにより、前記玉型加工済みレンズの外形線および前記レイアウト検査用マークを含む撮像画像を取り込む撮像手段と、
 前記撮像手段で取り込んだ前記撮像画像を表示するモニタと、
 前記撮像画像に含まれる前記玉型加工済みレンズの外形線を合わせるべき位置を示すレンズ外形基準線と、前記レイアウト検査用マークが配置されるべき位置を示すレイアウト基準マークとを、前記撮像画像とともに前記モニタに表示するように制御する表示制御手段と、
 を備えることを特徴とするレンズ検査装置である。
 本発明の第2の態様は、
 前記表示制御手段は、前記玉型加工済みレンズの外形線の位置合わせ許容幅を規定する二重線で前記レンズ外形基準線を表示する
 ことを特徴とする上記第1の態様に記載のレンズ検査装置である。
 本発明の第3の態様は、
 前記表示制御手段は、前記レイアウト基準マークの表示位置またはその近傍に、前記レイアウト基準マークに対する前記レイアウト検査用マークの位置ずれの許容範囲を示す判定基準線を表示する
 ことを特徴とする上記第1または第2の態様に記載のレンズ検査装置である。
 本発明の第4の態様は、
 前記表示制御手段は、前記レイアウト基準マークの表示位置またはその近傍に、前記レイアウト基準マークに対する前記レイアウト検査用マークの位置ずれ量を目視確認するための目盛りを表示する
 ことを特徴とする上記第1~第3の態様のいずれか一つに記載のレンズ検査装置である。
 本発明の第5の態様は、
 前記レンズ外形基準線と前記レイアウト基準マークとを用いて前記玉型加工済みレンズの位置調整を行ったときに前記モニタに表示されている画像データを、前記玉型加工済みレンズの識別情報と対応付けて記憶する記憶手段を備える
 ことを特徴とする上記第1~第4の態様のいずれか一つに記載のレンズ検査装置である。
 本発明の第6の態様は、
 眼鏡フレームの形状に合わせて玉型加工されるとともに、少なくとも一方のレンズ面にレイアウト検査用マークが付された玉型加工済みレンズのレイアウト検査を行うレンズ検査工程を有する眼鏡レンズの製造方法であって、
 前記レンズ検査工程は、
 前記玉型加工済みレンズを支持部に支持させる工程と、
 前記支持部で支持した前記玉型加工済みレンズを撮像し、これによって得られる撮像画像に含まれる前記玉型加工済みレンズの外形線を合わせるべき位置を示すレンズ外形基準線と、前記レイアウト検査用マークが配置されるべき位置を示すレイアウト基準マークとを、前記撮像画像とともにモニタに表示しながら、前記玉型加工済みレンズの位置調整を行う工程と、
 前記玉型加工済みレンズの位置調整の結果に基づいて前記玉型加工済みレンズのレイアウト検査の良否を判定する工程と、を含む
 ことを特徴とする眼鏡レンズの製造方法である。
 本発明の第7の態様は、
 前記レイアウト検査の検査項目がフィッティングポイントの位置ずれである
 ことを特徴とする上記第6の態様に記載の眼鏡レンズの製造方法である。
 本発明の第8の態様は、
 前記レイアウト検査の検査項目が玉型加工済みレンズの軸ずれである
 ことを特徴とする上記第6の態様に記載の眼鏡レンズの製造方法である。
 本発明によれば、眼鏡フレームに枠入れする前の玉型加工済みレンズを対象にレイアウト検査を行う場合に、検査用チャート用紙を用いる場合に比較して、精度良くレイアウト検査を行うことができる。
通信玉型加工システムの構成を示す模式図である。 本発明の実施の形態に係るレンズ検査装置の概略構成図である。 本発明の実施の形態に係るレンズ検査装置の機械構成を説明する図(その1)である。 本発明の実施の形態に係るレンズ検査装置の機械構成を説明する図(その2)である。 玉型加工前・後の眼鏡レンズの構成を示す図である。 本発明の実施の形態に係る眼鏡レンズの製造方法を説明する工程図である。 モニタの表示画面を示す図(その1)である。 モニタの表示画面を示す図(その2)である。 モニタの表示画面を示す図(その3)である。 モニタの表示画面を示す図(その4)である。 モニタの表示画面を示す図(その5)である。 レイアウト検査の検査項目として軸ずれを検査するときの方法を説明する図である。 累進屈折力レンズをレイアウト検査の対象とする場合の具体例を説明する図である。 二重焦点レンズをレイアウト検査の対象とする場合の具体例を説明する図である。 課題を説明する図であって、(A)はレンズの凸面を上向きにして玉型加工済みレンズを検査用チャート用紙の上に載せた場合、(B)はレンズの凸面を下向きにして玉型加工済みレンズを検査用チャート用紙の上に載せた場合である。
 以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。
 本発明の実施の形態においては、次の順序で説明を行う。
 1.通信玉型加工システムの構成
 2.レンズ検査装置の概略構成
 3.レンズ検査装置の機械構成
 4.眼鏡レンズの構成
 5.眼鏡レンズの製造方法
 6.実施の形態に係る効果
 7.変形例等
<1.通信玉型加工システムの構成>
 図1は通信玉型加工システムの構成を示す模式図である。
 図示した通信玉型加工システム1は、本発明を適用可能な眼鏡レンズの供給システムの一例となるもので、発注側2と製造側3に分かれている。発注側2に相当するものとしては、たとえば眼鏡店がある。製造側3に相当するものとしては、たとえば、レンズメーカの加工センタがある。
 発注側2には、発注端末4とフレームトレーサ5とが設置されている。製造側3には、受注端末6と、加工制御端末7と、レンズメータ8と、ブロック装置9と、玉型加工機10と、レンズ検査装置11とが設置されている。発注端末4と受注端末6は、インターネット等の通信ネットワーク12を介して相互に通信可能に接続されている。
 発注側2においては、眼鏡の装用者(購入者)が選んだ眼鏡フレームの形状(眼鏡レンズが枠入れされる部分の形状)をフレームトレーサ5で測定することにより、フレーム形状データを生成する。フレームトレーサ5は、眼鏡フレームの形状を三次元で測定する。発注端末4は、フレームトレーサ5が生成したフレーム形状データを取り込み、これを他のデータ(処方情報、眼鏡レンズ情報、レイアウト情報、眼鏡フレーム情報など)とともに発注データとして製造側3に送信する。
 製造側3においては、発注側2から通信ネットワーク12を経由して送られてきた発注データを受注端末6で受注する。受注した発注データは、必要に応じて随時、加工制御端末7に取り込まれる。加工制御端末7は、発注データに含まれるフレーム形状データや処方情報、眼鏡レンズ情報などに合わせて、玉型加工に用いられる加工形状データを計算し、これを玉型加工機10に供給する。レンズメータ8は、眼鏡レンズ(アンカットレンズ)の光学中心、乱視軸等を測定し、この測定結果に基づいて眼鏡レンズに印点を付す。眼鏡レンズの印点は、あとで拭き取ることによって消去可能である。
 ブロック装置9は、レンズメータ8によって付された印点を基準にホルダ装着中心位置を特定し、このホルダ装着中心位置に合わせて眼鏡レンズにレンズホルダを装着する。玉型加工機10は、加工制御端末7から受け取った加工形状データにしたがって眼鏡レンズ(アンカットレンズ)を玉型加工する。その際、眼鏡レンズは、レンズホルダを用いて玉型加工機10にセットされる。玉型加工を終えた後は、レンズ検査装置11を用いて玉型加工済みレンズを検査する。そして、レンズ検査装置11によるレイアウト検査や他のレンズ検査(外観検査、周長検査など)に合格した玉型加工済みレンズを製造側3から発注側2に供給する。
<2.レンズ検査装置の概略構成>
 図2は本発明の実施の形態に係るレンズ検査装置の概略構成図である。
 図示したレンズ検査装置11は、玉型加工機10で玉型加工を終えた眼鏡レンズ(玉型加工済みレンズ)のレイアウト検査を行うものである。玉型加工済みレンズの検査用の装置としては、たとえばレンズの周長を検査(測定)する周長検査装置などが知られているが、玉型加工済みレンズ単体でレイアウト検査を行う装置は知られていない。また、レイアウト検査に関しては、たとえば検査用チャート用紙などを用いた簡易的な検査でも対応可能であるが、検査の正確性や客観的判断の妥当性などの点では必ずしも十分ではない。このため、本実施の形態においては、レイアウト検査に用いるレンズ検査装置を提供することとした。以下、説明する。
 レンズ検査装置11は、大きくは、玉型加工済みレンズを支持する支持部16と、玉型加工済みレンズを撮像する撮像部17と、画像を表示するモニタ18と、所定の画像をモニタ18に表示させる表示制御部19と、記憶部20と、を備える。
 支持部16は、玉型加工済みレンズを位置調整可能に支持するものである。具体的には、支持部16は、玉型加工済みレンズの凸面を下方から3点で受けて玉型加工済みレンズを支持するものである。この支持状態においては、玉型加工済みレンズが自重で支持部16に載ることになる。このため、検査を行う作業者(検査者)は、玉型加工済みレンズに軽く触れてレンズの位置を調整(粗調整、微調整)することが可能である。また、玉型加工済みレンズの凸面を3点支持によって略水平に保持することができる。
 撮像部17は、支持部16で支持した玉型加工済みレンズを撮像することにより、玉型加工済みレンズの外形線およびレイアウト検査用マークを含む撮像画像を取り込むものである。撮像部17は、撮像カメラ21と光学素子22とを用いて構成されている。撮像カメラ21は、たとえば、CCD(Charge Coupled Device)カメラ、CMOS(Complementary Metal Oxide Semiconductor)カメラ等を用いて構成されるものである。光学素子22は、たとえば、レンズ、ミラー、絞り等を用いて構成されるものである。なお、撮像用の光源は、それ専用の光源をレンズ検査装置1に装備してもよいし、製造現場の天井部分に設置された照明(蛍光灯など)を代用してもよい。
 モニタ18は、各種の画像を表示するものである。モニタ18は、たとえば、液晶表示モニタ等を用いて構成することが可能である。モニタ18に表示される画像データは、表示制御部19から入力される。ただし、撮像部17で撮像した画像については、表示制御部19を中継することなく、撮像部17からモニタ18に直接入力する構成とすることも可能である。
 表示制御部19は、撮像部17が撮像した撮像画像に含まれる玉型加工済みレンズの外形線を合わせるべき位置を示すレンズ外形基準線と、レイアウト検査用マークが配置されるべき位置を示すレイアウト基準マークとを、撮像画像とともにモニタ18に表示するように制御するものである。具体的に表示制御部19がモニタ18の画面にどのような画像を表示させるのかについては、後段で詳しく説明する。
 記憶部20は、玉型加工済みレンズの外形線をレンズ外形基準線に位置合わせしたときにモニタ18に表示されている画像データを、玉型加工済みレンズの識別情報と対応付けて記憶するものである。玉型加工済みレンズの識別情報としては、たとえば、受注端末6が受注した発注データを用いて眼鏡レンズの玉型加工を行う場合に、加工制御端末7が生成するジョブ識別情報を用いることができる。記憶部20は、たとえば、不揮発性メモリやハードディスクドライブなどの記憶媒体と、この記憶媒体に対してデータの書き込みや読み出しを行う手段とを用いて構成することが可能である。
<3.レンズ検査装置の機械構成>
 図3および図4は本発明の実施の形態に係るレンズ検査装置の機械構成を説明する図であって、図3はレンズ検査装置の平面図(E-E矢視図を含む)、図4は同側面図を示している。
 図示したレンズ検査装置11は、架台26をベースに構成されている。このレンズ検査装置11においては、架台26の上面部分に設けられた3つの支持アーム27を用いて支持部16が構成されている。各々の支持アーム27の一端には支持ピン28が設けられている。各々の支持ピン28は、架台26の上面部分から突出するように、鉛直に起立した状態で配置されている。これらの支持ピン28は、玉型加工済みレンズ29の凸面29aを3点で受けて支持するものである。各々の支持ピン28は、平面的に見て、三角形の頂点に位置する状態で配置されている。また、各々の支持ピン28の上端は、鉛直方向で同じ高さに配置されるとともに、玉型加工済みレンズ29に接する部分が半球状に丸みを付けて形成されている。図3においては便宜上、玉型加工済みレンズ29を円形に表記しているが、実際にはフレーム形状に合わせて玉型加工されたレンズが支持部16に供給される。
 一方、支持部16の上方には、反射板31が設けられている。反射板31は、支持部16に対向する面(下面)を光の反射面31aとしている。反射面31aは、一対の照明器具32から出射された照明光を玉型加工済みレンズ29に向けて反射する。図4中の点線は照明光の光路を示している。
 架台26の内部には、撮像カメラ21と光学素子22が配置されている。撮像カメラ21は、一例としてCCDカメラを用いて構成されている。光学素子22は、一例として全反射式のミラーを用いて構成されている。撮像カメラ21は、架台26の上板部分に水平に取り付けられている。撮像カメラ21は、光学素子22を介して玉型加工済みレンズ29を撮像する。光学素子22の反射面は、撮像カメラ21の光軸に対して45度傾いて配置されている。また、撮像部17の光軸は、あらかじめ想定された基準姿勢で玉型加工済みレンズ29が支持されたときに、たとえば、玉型加工済みレンズ29の中心(ボクシング中心)を撮像部17の光軸が通過するように設定されている。ここで記述する基準姿勢とは、3つの支持ピン28の位置を頂点とする三角形の中心に、玉型加工済みレンズ29の中心(ボクシング中心)が一致するときのレンズの姿勢をいう。
 なお、撮像部17の光学系を構成する光学素子の個数は2個以上であってもよい。また、カメラと光学素子を一体的に構成してもよい。
<4.眼鏡レンズの構成>
 図5(A)は玉型加工前の眼鏡レンズの構成を示す正面図であり、図5(B)は玉型加工後の眼鏡レンズの構成を示す正面図である。玉型加工前の眼鏡レンズであるアンカットレンズ33は円形の外形を有している。本実施の形態においては、発明の内容を理解しやすいように、眼鏡レンズが単焦点レンズであるものとする。その場合、アンカットレンズ33には、上述したレンズメータ8を用いて3つの印点M1,M2,M3が付される。3つの印点M1~M3は、たとえば眼鏡装用者の処方情報に乱視処方がある場合、眼鏡装用者の処方情報で特定される乱視軸(図中のX軸)上に一列に並んで付されている。両端の印点M1,M3は、中央の印点M2から等距離を隔てた位置に付されている。中央の印点M2は、アンカットレンズ33の光学中心に付されている。印点M2が示す光学中心は、単焦点レンズにおけるフィッティングポイントに相当する。
 本実施の形態においては、眼鏡レンズのレイアウト検査の具体的な検査項目として、フィッティングポイントを例に挙げて説明する。この場合、フィッティングポイントの位置を示す印点M2は、レイアウト検査用マークに相当するものとなる。通常、印点M1~M3は眼鏡レンズの一方のレンズ面(凸面)に付されるが、本発明を実施するにあたっては、眼鏡レンズの他方のレンズ面に印点が付されていてもよい。
 アンカットレンズ33にレンズホルダを装着するときに中心(基準)となる位置(ホルダ装着中心位置)は、処方情報に含まれる瞳孔中心間距離などに合わせて指定されるオフセット量に基づいて決定される。オフセット量は、乱視軸をX軸とし、このX軸にアンカットレンズ33の光学中心で直交する軸をY軸としたXY座標の座標値(X座標値、Y座標値)で指定される。実際にオフセット量を指定してブロック装置9を駆動すると、ブロック装置9は、XY座標の座標原点からオフセット量に応じて偏心した位置をホルダ装着中心位置Hcと特定する。そして、ブロック装置9は、ホルダ装着中心位置Hcが玉型加工の加工中心となるように、アンカットレンズ33にレンズホルダ34を装着する。これにより、玉型加工機10においては、ホルダ装着中心位置Hcを加工中心とした加工形状データにしたがってアンカットレンズ33を玉型加工することになる。
 一方、玉型加工後の眼鏡レンズである玉型加工済みレンズ29は、図示しない眼鏡フレームのフレーム形状に合わせて玉型加工されている。図中の「×印」の交点は、JISB7281規格で規定するボクシングシステムのボクシング中心Bcを示している。このボクシング中心Bcは、玉型加工済みレンズ29が枠入れされる眼鏡フレームのフレームセンタに相当する。玉型加工済みレンズ29の3つの印点M1~M3が玉型加工によって除去された場合、再度レンズメータ8を用いて3つの印点M1,M2,M3を付すことが可能である。
<5.眼鏡レンズの製造方法>
 続いて、本発明の実施の形態に係る眼鏡レンズの製造方法について説明する。
 本発明の実施の形態に係る眼鏡レンズの製造方法は、眼鏡フレームの形状に合わせて玉型加工された玉型加工済みレンズ29のレイアウト検査を行うレンズ検査工程を有する。レンズ検査工程においては、図6に示す手順(工程)にしたがって玉型加工済みレンズ29のレイアウト検査(本形態例ではフィッティングポイントのレイアウト検査)を行う。以下、具体的に説明する。
 (支持工程:S1)
 まず、支持部16に玉型加工済みレンズ29を支持させる。具体的には、玉型加工済みレンズ29を3つの支持ピン28の上に載せる。このとき、玉型加工済みレンズ29の凸面29aを下向き、凹面29bを上向きにする。これにより、玉型加工済みレンズ29の凸面29aに3つの支持ピン28が接触した状態、つまり玉型加工済みレンズ29が3点で支持された状態となる。この工程は作業者の手作業で行ってもよいし、図示しないレンズ供給装置を用いて自動で行ってもよい。
 (レンズ位置調整工程:S2)
 次に、モニタ18の画像を見ながら玉型加工済みレンズ29の位置を調整する。玉型加工済みレンズ29の位置調整は検査者の手作業で行う。その際、表示制御部19は、次のような画像をモニタ18に表示する。
 まず、表示制御部19は、支持部16に玉型加工済みレンズ29を供給する前は、図7に示すように、モニタ18の画面にレンズ外形基準線OLrefとレイアウト基準マークMrefとを表示する。
 レンズ外形基準線OLrefは、モニタ18の画面上で玉型加工済みレンズ29の外形線を合わせるべき位置を示すものである。本実施の形態においては、特に好ましい形態として、玉型加工済みレンズ29の外形線の位置合わせ許容幅Wを規定する二重線でレンズ外形基準線OLrefを表示している。レイアウト基準マークMrefは、モニタ18の画面上で印点(レイアウト検査用マーク)M2が配置されるべき位置を示すものである。モニタ18の画面上にレンズ外形基準線OLrefとレイアウト基準マークMrefの表示を開始するタイミングは、玉型加工済みレンズ29の位置調整を開始する前であればいつでもかまわない。
 モニタ18の画面上において、レンズ外形基準線OLrefを表示する位置やレイアウト基準マークMrefを表示する位置は、表示制御部19において次のように決定する。 まず、アンカットレンズ33を玉型加工するにあたっては、アンカットレンズ33に付された印点M1~M3の位置を基準にホルダ装着中心位置Hcを特定し、さらにこのホルダ装着中心位置Hcを加工中心に想定してレンズの加工形状データを計算によって求めている。このため、モニタ18に表示する玉型加工済みレンズ29の外形線は、玉型加工済みレンズ29の玉型加工に用いる加工形状データによって決まる。また、モニタ18に表示する玉型加工済みレンズ29の外形線と印点M2の相対的な位置関係は、ブロック装置9でホルダ装着中心位置Hcを特定するために指定したオフセット量によって決まる。
 したがって、レンズ外形基準線OLrefやレイアウト基準マークMrefを表示する位置は、撮像部17の撮像倍率等を考慮して、加工形状データおよびオフセット量に基づいて特定することができる。具体的には、レンズ外形基準線OLrefの表示位置に関しては、加工形状データからレンズ外形線を求め、このレンズ外形線に位置合わせ許容幅Wを見込んだ二重線により特定することができる。また、レイアウト基準マークMrefの表示位置に関しては、加工形状データにより求めたレンズ外形線の中心位置からオフセット量だけ偏心させた位置で特定することができる。
 ここで記述する玉型加工済みレンズ29の外形線とは、玉型加工済みレンズ29を凸面29a側から見たときに、ボクシング中心Bcを原点とした二次元座標において、玉型加工済みレンズ29の最も外側の形状を表す線をいう。つまり、本実施の形態においては、凸面29aおよび凹面29bのカーブによって三次元の構造を有する玉型加工済みレンズ29の外形を二次元の外形線で捉えている。このため、玉型加工済みレンズ29のコバ面に突状のヤゲンが形成されている場合は、このヤゲンの頂部を結ぶ輪郭線が、玉型加工済みレンズ29の外形線となる。また、玉型加工済みレンズ29のコバ面が平面である場合、あるいはコバ面に溝(凹み)が形成されている場合は、コバ面によって形成される輪郭線が、玉型加工済みレンズ29の外形線となる。
 また、支持部16で支持した玉型加工済みレンズ29を撮像部17の撮像カメラ21で撮像した場合に、撮像部17から表示制御部19に送られる撮像画像には、玉型加工済みレンズ29の外形線や印点M2の画像が含まれる。このため、支持部16に玉型加工済みレンズ29を供給した場合に、表示制御部19がモニタ18に表示させる画面には、図8に示すように、上述したレンズ外形基準線OLrefおよびレイアウト基準マークMrefの他に、玉型加工済みレンズ29の画像と印点M2の画像が含まれる。ただし、玉型加工済みレンズ29の位置調整を行う前は、たとえば上記図8に示すように、レンズ外形基準線OLrefに対して玉型加工済みレンズ29の外形線29cが位置ずれした状態になっている。
 そうした場合、検査者は、支持部16に支持されている玉型加工済みレンズ29の縁などに軽く触れて、その位置(姿勢)を少しずらす。そうすると、モニタ18の画面に表示されている玉型加工済みレンズ29や印点M2の画像の位置が、玉型加工済みレンズ29の動きに応じて変化する。そこで、検査者は、モニタ18の画面を見ながら玉型加工済みレンズ29の位置を調整(微調整)する。玉型加工済みレンズ29の位置調整の仕方は幾つか考えられるが、ここではそのうちの一つを例に挙げて説明する。
 まず、上記図8に示すようにレンズ外形基準線OLrefに対して玉型加工済みレンズ29の外形線29cが位置ずれしていた場合は、図9に示すように、レンズ外形基準線OLrefに玉型加工済みレンズ29の外形線29cを位置合わせする。具体的には、二重線で表示されたレンズ外形基準線OLrefの位置合わせ許容幅W内に玉型加工済みレンズ29の外形線29cが収まるように位置合わせする。これにより、支持部16において玉型加工済みレンズ29が基準姿勢で支持された状態になる。
 玉型加工済みレンズ29を位置調整したときにモニタ18に表示されている画像データは、所定のタイミングで玉型加工済みレンズ29の識別情報と対応付けて記憶部20に記憶される。これにより、記憶部20は、モニタ18に表示されている画像データを、レイアウト検査に関する検査データとして記憶する。画像データを記憶部20に記憶するタイミングは、たとえば、後述する良否の判定を終えた後とすることが好ましい。
 (判定工程:S3)
 次に、レイアウト基準マークMrefに対する印点M2の位置ずれを確認し、この確認結果に基づいて玉型加工済みレンズ29のレイアウト検査の良否を判定する。この工程は、検査者がモニタ18の表示画面を見て行う。具体的には、上記図9に示すように、レイアウト基準マークMrefに対して印点M2の位置ずれがない場合、あるいは図10に示すように位置ずれがあっても、そのずれ量があらかじめ決められた許容範囲内であれば、良品と判断する。また、レイアウト基準マークMrefに対する印点M2の位置ずれ量が許容範囲を超えている場合は、不良品と判断する。
 その際、図11(A),(B)に示すように、レイアウト基準マークMrefの表示位置またはその近傍に、レイアウト基準マークMrefに対する印点M2の位置ずれの許容範囲を示す判定基準線(図例では四角形の枠線)SHを表示してもよい。この場合は、図11(A)に示すように、判定基準線SHの枠内に印点M2の中心(図中、黒丸で表示)が存在する場合は良品と判断する。また、図11(B)に示すように、判定基準線SHの枠外に印点M2の中心が存在する場合は不良品と判断する。これにより、検査者は良否の判別を容易に行うことができる。また、レイアウト基準マークMrefの表示位置またはその近傍に、レイアウト基準マークMrefの位置を中心に目盛りSMを表示することにより、レイアウト基準マークMrefに対する印点M2の位置ずれ量をモニタ18上で目視確認(測定)することができる。
<6.本実施の形態に係る効果>
 本発明の実施の形態によれば、支持部16に支持した玉型加工済みレンズ29を撮像部17で撮像して得られる撮像画像を、レンズ外形基準線OLrefやレイアウト基準マークMrefとともにモニタ18に表示し、このモニタ18の画面を見ながら玉型加工済みレンズ29の位置調整を行うことにより、レイアウト基準マークMrefに対する印点M2の位置ずれを確認することができる。これにより、検査用チャート用紙を用いる場合に比較して、精度良くレイアウト検査を行うことができる。すなわち、検査用チャート用紙を用いる場合は、検査者がレンズや印などを見るときの視点のずれ、さらにはレンズの姿勢の不安定さなどに起因して、検査結果にばらつきが生じやすくなるのに対して、本実施の形態では、検査者がモニタ18の表示画面を見てレイアウト検査を行えるため、検査者によって検査結果(良否の判断)が変わってしまうことがない。このため、高精度なレイアウト検査を実現することが可能となる。また、検査者による検査結果のバラツキを抑えた客観的な検査を実現することが可能となる。
 また、モニタ18に表示するレンズ外形基準線OLrefは、一本の線でもかまわないが、二重線で表示したほうが好ましい。その理由は、以下のとおりである。
 まず、レンズ外形基準線を一本の線で表示した場合は、モニタ18の画面上でレンズ外形基準線に玉型加工済みレンズの外形線を重ね合わせたときに、線同士の重なりによって線自体が見づらくなる。このため、玉型加工済みレンズ29の全周にわたって外形線29cをレンズ外形基準線に位置合わせすることが困難になる。これに対して、本実施の形態のようにレンズ外形基準線OLrefを二重線で表示した場合は、線同士の重なりによって線自体が見づらくなることがない。このため、玉型加工済みレンズ29の位置合わせが容易になる。また、玉型加工済みレンズ29の外形線29cをレンズ外形基準線OLrefの位置合わせ許容幅W内に収めることにより、個々の検査者による位置合わせのバラツキが小さくなる。
 また、本発明の実施の形態においては、レンズ外形基準線OLrefとレイアウト基準マークMrefとを用いて玉型加工済みレンズ29の位置調整を行ったときにモニタ18に表示されている画像データを記憶部20に記憶可能な構成を採用している。このため、玉型加工済みレンズ29を発注側2に発送した後でも、必要に応じて、発注側2にレイアウト検査の結果を画像で提示することができる。また、発注側2で枠入れが正常に行えなかったなどの不具合が生じた場合に、その原因究明の資料として、記憶部20に記憶してある画像データを有効に活用することができる。
<7.変形例等>
 本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
 たとえば、レイアウト検査の検査項目は、フィッティングポイントの位置のずれに限らず、種々の項目、たとえば、片眼瞳孔間距離のずれ、玉型加工済みレンズの軸ずれ、加工形状の指定間違いの発見なども含まれる。このうち、玉型加工済みレンズの軸ずれに関しては、たとえば図12に示すように、玉型加工済みレンズ29の乱視軸上にレイアウト検査用マークとして3つの印点M1,M2,M3を付しておく。そして、モニタ画面上において、玉型加工済みレンズ29に付されている3つの印点M1,M2,M3を用いて、玉型加工済みレンズ29の位置を調整し、その状態で玉型加工済みレンズ29の外形線29cがレンズ外形基準線OLrefの許容幅W内に収まっているかどうかにより、軸ずれに関するレイアウト検査の良否判定を行えばよい。さらに、軸ずれの許容範囲は処方度数によって異なるため、モニタ画面に表示されるレンズ外形基準線OLrefの許容幅Wを、眼鏡レンズの処方度数に応じて変えてもよい。具体的には、処方度数が弱い場合は許容幅Wを広くし、処方度数が強い場合は許容幅Wを狭くするように変更してもよい。
 また、レイアウト検査の対象となる眼鏡レンズは単焦点レンズに限らず、たとえば、累進屈折力レンズや二重焦点レンズなどであってもよい。このうち、累進屈折力レンズをレイアウト検査の対象とする場合は、たとえば図13に示すように、玉型加工済みレンズ29の水平基準線(不図示)上にレイアウト検査用マークとしてカクシマークM1,M2を付しておき、これに対応してモニタ画面上にレイアウト基準マークMref1,Mref2を表示する。そして、モニタ画面上において、玉型加工済みレンズ29の外形線29cをレンズ外形基準線OLrefの許容幅W内に収めた状態で、玉型加工済みレンズ29に付されているカクシマークM1,M2とレイアウト基準マークMref1,Mref2との位置ずれを確認し、その結果に基づいて良否の判定を行えばよい。
 本発明が対象とする累進屈折力レンズは、物体側面である凸面側に累進面が配置された凸面累進屈折力レンズ(外面累進ともいう)、または、眼球側面である凹面側に累進面が配置された凹面累進屈折力レンズ(内面累進ともいう)、あるいは、両面(凸面および凹面)に累進要素が配分されて配置された両面累進屈折力(複合累進ともいう)レンズである。
 以下に、凹面累進屈折力レンズを例に挙げて説明する。
 眼鏡レンズの一形態である累進屈折カレンズには、JIS規格(JIST7330)で規定される設計基準点(遠用部設計基準点)を特定するための2つのアライメント基準マーク(上記カクシマークM1,M2に相当するもの)が設けられている。たとえば、凹面累進屈折カレンズは、凸面が球面で、凹面が非球面(累進面)の累進屈折力レンズとなっている。アライメント基準マークは、凹面累進屈折カレンズの凹面側に形成される。また、アライメント基準マークは、プリズム測定基準位置から左右(水平軸方向)に均等な距離を隔てた位置に付される。このため、凹面累進屈折カレンズにおいては、2つのアライメント基準マークの中心を通る水平基準線上において、2つのアライメント基準マーク間の中点をプリズム測定基準位置として特定することが可能となる。
 累進屈折カレンズにアライメント基準マークを付する場合は、JIS規格(JIST7315)において「容易に消えない方法で表示する」ことが義務づけられている。また、アライメント基準マークは玉型加工を終えた段階でも眼鏡レンズに残ることが多いため、外観的に目立たない方法(たとえば、レーザーで刻印する方法)で付されている。このため、アライメント基準マークは「カクシマーク」とも呼ばれている。アライメント基準マークは、拭き取って消される印点とは異なり、基本的に消えずに残るマークである。ただし、カクシマークと呼ばれるもののなかには、アライメント基準マークの他にも、これと同様の方法で眼鏡レンズに付される他のマーク(レンズのメーカ名、種類、度数などを表示するマーク)も含まれる。
 また、二重焦点レンズをレイアウト検査の対象とする場合は、たとえば図14に示すように、玉型加工済みレンズ29のセグメントトップの両端にレイアウト検査用マークとして印点M1,M2を付しておく。また、玉型加工済みレンズ29のセグメントをイメージしたセグメントマークSGMを、位置ずれ確認用のレイアウト基準マークとしてモニタ画面上に表示する。そして、モニタ画面上において、玉型加工済みレンズ29の外形線29cをレンズ外形基準線OLrefの許容幅W内に収めた状態で、玉型加工済みレンズ29に付されている印点M1,M2とセグメントマークSGMが示すセグメントトップ両端との位置ずれを確認し、その結果に基づいて良否の判定を行えばよい。また、先述した玉型加工済みレンズの軸ずれをレイアウト検査の検査項目とする場合は、検査対象となる玉型加工済みレンズが累進屈折力レンズであればカクシマークを基準に軸ずれを検査し、二重焦点レンズであればセグメントトップを基準に軸ずれを検査すればよい。
 また、上記実施の形態においては、レンズ外形基準線OLrefとレイアウト基準マークMrefとを用いた玉型加工済みレンズ29の位置調整の仕方として、レンズ外形基準線OLrefに玉型加工済みレンズ29の外形線29cを位置合わせする例を挙げたが、本発明はこれに限らない。たとえば、玉型加工済みレンズ29の外形線29cがレンズ外形基準線OLrefの位置合わせ許容幅W内に収まる範囲で玉型加工済みレンズ29の位置をずらして、レイアウト基準マークMrefに印点M2をなるべく近づけるように、玉型加工済みレンズ29の位置を調整してもよい。この場合は、レイアウト基準マークMrefに対する印点M2の位置ずれ(たとえば、位置ずれ量)を確認し、この確認結果に基づいて玉型加工済みレンズ29のレイアウト検査の良否を判定することになる。また、上記の例のほかにも、レイアウト基準マークMrefに玉型加工済みレンズ29の印点M2の位置を合わせ、その状態でレンズ外形基準線OLrefに玉型加工済みレンズ29の外形線29cをなるべく近づけるように、玉型加工済みレンズ29の位置を調整してもよい。この場合は、レンズ外形基準線OLrefに対する玉型加工済みレンズ29の外形線29cの位置ずれ(たとえば、位置合わせ許容幅W内に外形線29cが収まっているか)を確認し、この確認結果に基づいて玉型加工済みレンズ29のレイアウト検査の良否を判定することになる。
 また、上記実施の形態においては、レイアウト検査用マークとなる印点が付された凸面29aを下向きにして玉型加工済みレンズ29を支持し、凸面29a側から玉型加工済みレンズ29を撮像する構成としたが、本発明はこれに限らず、たとえば、以下のような構成を採用してもよい。
 (1)レイアウト検査用マークとなる印点が付された凸面29aを下向きにして玉型加工済みレンズ29を支持し、凹面29b側から玉型加工済みレンズ29を撮像する構成。 (2)レイアウト検査用マークとなる印点を凹面29bに付し、その反対側の凸面29aを下向きにして玉型加工済みレンズ29を支持し、凹面29b側から玉型加工済みレンズ29を撮像する構成。
 (3)レイアウト検査用マークとなる印点を凹面29bに付し、その反対側の凸面29aを下向きにして玉型加工済みレンズ29を支持し、凸面29a側から玉型加工済みレンズ29を撮像する構成。
 このうち、(1)、(3)の構成のように、印点を付したレンズ面と反対側から撮像する場合は、玉型加工済みレンズ29の屈折による影響を考慮することが好ましい。
 なお、累進屈折力レンズでは、上述したアライメント基準マークの他にも、遠用度数を測定する基準位置を示すレイアウトマーク、近用度数を測定する基準位置を示すレイアウトマーク、遠用のアイポイントを示すレイアウトマークなどを表記しており、これらのレイアウトマークを「レイアウト検査用マーク」として利用してもよい。また、凹面累進屈折カレンズでは、アライメント基準マークが凹面側にあるので、レイアウトマークを凹面に配置することもあるが、凸面に配置することもある。レイアウトマークを凹面に配置する場合は、たとえば、上記(2)の構成とすることが好ましく、レイアウトマークを凸面に配置する場合は、上記(1)の構成とすることが好ましい。
 1…通信玉型加工システム
 11…レンズ検査装置
 16…支持部
 17…撮像部
 18…モニタ
 19…表示制御部
 20…記憶部
 21…撮像カメラ
 22…光学素子
 29…玉型加工済みレンズ
 33…アンカットレンズ
 M1,M2,M3…印点
 Mref…レイアウト基準マーク
 OLref…レンズ外形基準線

Claims (8)

  1.  眼鏡フレームの形状に合わせて玉型加工されるとともに、少なくとも一方のレンズ面にレイアウト検査用マークが付された玉型加工済みレンズのレイアウト検査に用いられるレンズ検査装置であって、
     前記玉型加工済みレンズを支持する支持部と、
     前記支持部で支持した前記玉型加工済みレンズを撮像することにより、前記玉型加工済みレンズの外形線および前記レイアウト検査用マークを含む撮像画像を取り込む撮像手段と、
     前記撮像手段で取り込んだ前記撮像画像を表示するモニタと、
     前記撮像画像に含まれる前記玉型加工済みレンズの外形線を合わせるべき位置を示すレンズ外形基準線と、前記レイアウト検査用マークが配置されるべき位置を示すレイアウト基準マークとを、前記撮像画像とともに前記モニタに表示するように制御する表示制御手段と、
     を備えることを特徴とするレンズ検査装置。
  2.  前記表示制御手段は、前記玉型加工済みレンズの外形線の位置合わせ許容幅を規定する二重線で前記レンズ外形基準線を表示する
     ことを特徴とする請求項1に記載のレンズ検査装置。
  3.  前記表示制御手段は、前記レイアウト基準マークの表示位置またはその近傍に、前記レイアウト基準マークに対する前記レイアウト検査用マークの位置ずれの許容範囲を示す判定基準線を表示する
     ことを特徴とする請求項1または2に記載のレンズ検査装置。
  4.  前記表示制御手段は、前記レイアウト基準マークの表示位置またはその近傍に、前記レイアウト基準マークに対する前記レイアウト検査用マークの位置ずれ量を目視確認するための目盛りを表示する
     ことを特徴とする請求項1~3のいずれか一つに記載のレンズ検査装置。
  5.  前記レンズ外形基準線と前記レイアウト基準マークとを用いて前記玉型加工済みレンズの位置調整を行ったときに前記モニタに表示されている画像データを、前記玉型加工済みレンズの識別情報と対応付けて記憶する記憶手段を備える
     ことを特徴とする請求項1~4のいずれか一つに記載のレンズ検査装置。
  6.  眼鏡フレームの形状に合わせて玉型加工されるとともに、少なくとも一方のレンズ面にレイアウト検査用マークが付された玉型加工済みレンズのレイアウト検査を行うレンズ検査工程を有する眼鏡レンズの製造方法であって、
     前記レンズ検査工程は、
     前記玉型加工済みレンズを支持部に支持させる工程と、
     前記支持部で支持した前記玉型加工済みレンズを撮像し、これによって得られる撮像画像に含まれる前記玉型加工済みレンズの外形線を合わせるべき位置を示すレンズ外形基準線と、前記レイアウト検査用マークが配置されるべき位置を示すレイアウト基準マークとを、前記撮像画像とともにモニタに表示しながら、前記玉型加工済みレンズの位置調整を行う工程と、
     前記玉型加工済みレンズの位置調整の結果に基づいて前記玉型加工済みレンズのレイアウト検査の良否を判定する工程と、を含む
     ことを特徴とする眼鏡レンズの製造方法。
  7.  前記レイアウト検査の検査項目がフィッティングポイントの位置ずれである
     ことを特徴とする請求項6に記載の眼鏡レンズの製造方法。
  8.  前記レイアウト検査の検査項目が玉型加工済みレンズの軸ずれである
     ことを特徴とする請求項6に記載の眼鏡レンズの製造方法。
PCT/JP2015/055777 2014-02-28 2015-02-27 レンズ検査装置、および眼鏡レンズの製造方法 WO2015129848A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/112,092 US20160327450A1 (en) 2014-02-28 2015-02-27 Lens inspection device and method of manufacturing spectacle lens
CN201580008579.9A CN106461501A (zh) 2014-02-28 2015-02-27 镜片检查装置和眼镜镜片的制造方法
EP15755694.5A EP3112837A1 (en) 2014-02-28 2015-02-27 Lens inspection apparatus and method for producing eyeglass lens
JP2016505317A JP6312800B2 (ja) 2014-02-28 2015-02-27 レンズ検査装置、および眼鏡レンズの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-039191 2014-02-28
JP2014039191 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129848A1 true WO2015129848A1 (ja) 2015-09-03

Family

ID=54009161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055777 WO2015129848A1 (ja) 2014-02-28 2015-02-27 レンズ検査装置、および眼鏡レンズの製造方法

Country Status (5)

Country Link
US (1) US20160327450A1 (ja)
EP (1) EP3112837A1 (ja)
JP (1) JP6312800B2 (ja)
CN (1) CN106461501A (ja)
WO (1) WO2015129848A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181232A (ja) * 2016-03-30 2017-10-05 東海光学株式会社 眼鏡レンズのプリズム検査方法
JP2018163103A (ja) * 2017-03-27 2018-10-18 株式会社トプコン レンズメータ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3039660B1 (fr) * 2015-07-30 2017-09-08 Essilor Int Methode de verification d'une caracteristique geometrique et d'une caracteristique optique d'une lentille ophtalmique detouree et dispositif associe
CN108204889A (zh) * 2017-12-27 2018-06-26 大连鉴影光学科技有限公司 一种新型的眼镜光学参数全局检测方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383841U (ja) * 1989-12-18 1991-08-26
JPH06242408A (ja) * 1993-02-16 1994-09-02 Tokai Kogaku Kk 眼鏡検査用チャート及びその作成装置と眼鏡の検査方法
JPH1058294A (ja) * 1996-08-26 1998-03-03 Topcon Corp 眼鏡レンズの適合判定装置
JP2005069939A (ja) * 2003-08-26 2005-03-17 Seiko Epson Corp 光学部材の形状認識方法、その装置及びそのプログラム
JP2006118935A (ja) * 2004-10-20 2006-05-11 Hoya Corp レンズ用撮像装置
US20080111989A1 (en) * 2006-11-15 2008-05-15 Christian Dufour Transparent material inspection system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2146791B (en) * 1983-09-16 1987-01-28 Suwa Seikosha Kk Progressive multifocal ophthalmic lens
JP4145012B2 (ja) * 2000-12-11 2008-09-03 Hoya株式会社 眼鏡レンズ加工方法及びレンズメータ
JP2004003944A (ja) * 2002-04-08 2004-01-08 Hoya Corp 眼鏡枠形状測定装置
US6846078B2 (en) * 2002-09-11 2005-01-25 National Optronics, Inc. System and method for aligning reference marks on a lens blank using adjustable alignment marks
US20060011617A1 (en) * 2004-07-13 2006-01-19 Ricardo Covarrubias Automated laser cutting of optical lenses
JP4920181B2 (ja) * 2004-08-23 2012-04-18 株式会社ニデック レンズメータ
KR20100014399A (ko) * 2007-02-14 2010-02-10 더 인스티튜트 포 아이 리서치 리미티드 광학 시스템의 특성
EP3269296A1 (en) * 2008-12-01 2018-01-17 Perfect Vision Technology (HK) Ltd. Methods and devices for refractive correction of eyes
FR2968400B1 (fr) * 2010-12-03 2012-12-28 Essilor Int Procede de determination d'au moins une caracteristique de refraction d'une lentille ophtalmique
US9253448B1 (en) * 2011-12-28 2016-02-02 Cognex Corporation System and method for determination of contact lens orientation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383841U (ja) * 1989-12-18 1991-08-26
JPH06242408A (ja) * 1993-02-16 1994-09-02 Tokai Kogaku Kk 眼鏡検査用チャート及びその作成装置と眼鏡の検査方法
JPH1058294A (ja) * 1996-08-26 1998-03-03 Topcon Corp 眼鏡レンズの適合判定装置
JP2005069939A (ja) * 2003-08-26 2005-03-17 Seiko Epson Corp 光学部材の形状認識方法、その装置及びそのプログラム
JP2006118935A (ja) * 2004-10-20 2006-05-11 Hoya Corp レンズ用撮像装置
US20080111989A1 (en) * 2006-11-15 2008-05-15 Christian Dufour Transparent material inspection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181232A (ja) * 2016-03-30 2017-10-05 東海光学株式会社 眼鏡レンズのプリズム検査方法
JP2018163103A (ja) * 2017-03-27 2018-10-18 株式会社トプコン レンズメータ

Also Published As

Publication number Publication date
US20160327450A1 (en) 2016-11-10
JP6312800B2 (ja) 2018-04-18
CN106461501A (zh) 2017-02-22
EP3112837A1 (en) 2017-01-04
JPWO2015129848A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
US11351650B2 (en) Spectacle lens manufacturing method
JP6368872B1 (ja) 眼鏡の個別データ測定
US7441895B2 (en) Spectacle lens supply system, spectacle wearing parameter measurement apparatus, spectacle wearing test system, spectacle lens, and spectacle
US7530690B2 (en) Centering and blocking device for an ophthalmic spectacles lens, an automatic detection method, and associated manual centering methods
JP5013930B2 (ja) 眼鏡装用パラメータ測定装置及び眼鏡装用パラメータ測定方法
EP1728467A1 (en) Spectacle lens supply system, spectacle wearing parameter measurement device, spectacle wearing inspection system, spectacle lens, and spectacle
KR102120919B1 (ko) 안경을 착용하는 개인의 행동, 자세 또는 기하-형태 특성을 결정하는 방법
JP6312800B2 (ja) レンズ検査装置、および眼鏡レンズの製造方法
US10520751B2 (en) Apparatus and method for determining optical parameters
JP2007093636A (ja) 眼鏡装用パラメータ測定装置、眼鏡レンズ及び眼鏡
IL264747B2 (en) Method and device for checking the focus of at least one eyeglass lens
JP4514030B2 (ja) 眼鏡装用パラメータ測定装置
JP2007003923A (ja) 眼鏡装用パラメータ測定装置、眼鏡レンズ及び眼鏡
JP2002139713A (ja) 眼鏡レンズのレンズホルダ取付方法及び装置
US20220252905A1 (en) System and method for determining at least one feature of at least one lens mounted in a spectacle frame
JP2013142597A (ja) 眼鏡フィッティングパラメータ計測システム及び眼鏡フィティングパラメータ計測方法
CN104460047A (zh) 获取和测量适用于眼镜架的演示镜片的几何数据的方法
JP2017181657A (ja) 眼鏡装用画像解析装置、眼鏡装用画像解析方法、及び眼鏡装用画像解析プログラム
JP4795017B2 (ja) 眼鏡レンズ評価装置
JP7452037B2 (ja) 眼鏡レンズ情報取得装置及び眼鏡レンズ情報取得プログラム
JP2012048004A (ja) 眼鏡レンズ用加工装置
JP2015049378A (ja) 測定補助具および測定補助方法
JPH08297262A (ja) 眼鏡レンズの位置合わせ方法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505317

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15112092

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015755694

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015755694

Country of ref document: EP