WO2015129802A1 - 医療用システム及び処置具のキャリブレーション方法 - Google Patents

医療用システム及び処置具のキャリブレーション方法 Download PDF

Info

Publication number
WO2015129802A1
WO2015129802A1 PCT/JP2015/055599 JP2015055599W WO2015129802A1 WO 2015129802 A1 WO2015129802 A1 WO 2015129802A1 JP 2015055599 W JP2015055599 W JP 2015055599W WO 2015129802 A1 WO2015129802 A1 WO 2015129802A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
unit
image
treatment
medical system
Prior art date
Application number
PCT/JP2015/055599
Other languages
English (en)
French (fr)
Inventor
雅敏 飯田
直也 畠山
浩志 若井
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201580007642.7A priority Critical patent/CN105979848B/zh
Priority to EP15754565.8A priority patent/EP3111819B1/en
Publication of WO2015129802A1 publication Critical patent/WO2015129802A1/ja
Priority to US15/245,269 priority patent/US10863883B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00057Operational features of endoscopes provided with means for testing or calibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00059Operational features of endoscopes provided with identification means for the endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00087Tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00725Calibration or performance testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body

Definitions

  • Embodiments described herein relate generally to a medical system and a treatment instrument calibration method. This application claims priority based on Japanese Patent Application No. 2014-036824 filed in Japan on February 27, 2014, the contents of which are incorporated herein by reference.
  • a medical system in which a treatment instrument of a manipulator is driven by the rotational power of a motor via a wire.
  • calibration is performed by moving one of the pair of grip parts of the manipulator toward the other grip part and measuring the displacement position and torque value of the grip part at that time. Is done.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a medical system and a calibration method for a treatment instrument that can be calibrated even if there are fluctuations in the characteristics of the wire.
  • the medical system includes a treatment unit that performs treatment on a living body, a joint unit that moves the treatment unit, a flexible tube unit connected to the joint unit, and the flexible unit.
  • a treatment instrument having a drive unit connected to a tube part and displacing the joint part, and a distal end and a proximal end, and the treatment instrument can be protruded from the distal end.
  • An endoscope apparatus including a flexible mantle that is held and an imaging unit capable of acquiring at least one image including at least the joint in an imaging field of view, and controls the operation of the treatment tool based on the image
  • a controller having a parameter for operating the joint unit, and a controller that issues a command to control the drive unit based on the parameter to the drive unit.
  • At least the position and posture of the joint An image processing unit that calculates a displacement based on the image, a displacement of the joint unit based on at least one of the position and posture of the joint unit calculated by the image processing unit, and the command and the command
  • a compensation amount calculation unit that generates a compensation value that compensates for the difference from the displacement of the joint part and feeds the compensation value into the parameter.
  • the image processing unit may calculate a joint angle of the joint by pattern matching using the image.
  • the image processing unit is configured to calculate the joint part from a difference between a latest image and an image acquired immediately in time series. The displacement may be calculated.
  • the control unit applies the image to the image when the joint part cannot be specified in the image.
  • the joint part may be displaced until the joint part is displayed.
  • the control unit determines that the joint unit is located outside the imaging field of view of the imaging unit when the joint unit cannot be specified in the image, and overlays the identifiable region of the joint unit on the image
  • the instruction image is output to the display device instead of the image, and the display device displays the instruction image when the instruction image is received instead of the image, and the image processing unit specifies the joint portion You may calculate at least any one of the position and attitude
  • the treatment tool treats a label portion for specifying the configuration of the treatment tool.
  • the control unit may determine the treatment tool based on the marker unit.
  • the compensation amount calculation unit is configured to displace the joint part after the command is issued. It is also possible to calculate the hysteresis width based on the amount that the drive unit is driven before the start of the operation, and use it as the compensation value.
  • control unit may change a parameter corresponding to the treatment instrument determined based on the marker unit.
  • a method for calibrating a treatment instrument in a medical system to which a treatment instrument having a joint portion can be attached wherein the treatment instrument is calibrated to the medical system.
  • At least one of the position and posture of the joint part is calculated from an image including the joint part acquired with the treatment tool attached, and based on at least one of the calculated position and posture of the joint part Parameters for detecting a displacement of the joint portion, generating a compensation value for compensating for a difference between the command for operating the joint portion and the displacement of the joint portion, and using the command for operating the joint portion
  • the compensation value is added to.
  • the calibration can be performed even if the wire characteristics change.
  • FIG. 1 is a perspective view showing an outline of the overall configuration of the medical system of the first embodiment.
  • the medical system of the present embodiment is a so-called master-slave system. That is, as shown in FIG. 1, the medical system 1 includes a master manipulator 2 on which an operator Op performs an operation for a treatment, a slave manipulator 4 provided with an endoscope device 3, and an operation on the master manipulator 2. And a control unit 50 (see FIG. 4) for controlling the slave manipulator 4 according to the above.
  • the master manipulator 2 includes a master arm 5 that is moved by the operator Op, a display device 6 that displays image information (see FIG. 4) 59 such as video captured using the endoscope device 3, and a control that will be described later. And a controller 7 of the unit 50.
  • the master arm 5 is an operation unit provided for operating the endoscope device 3. Although not shown in detail, two master arms 5 provided in the master manipulator 2 are provided corresponding to each of the right hand and the left hand of the operator Op.
  • the master arm 5 has a multi-joint structure in order to operate the joint portion 22 of the treatment instrument 21 that is an instrument placed in the body with at least one degree of freedom.
  • the display device 6 is a device that displays an image of a treatment target region imaged by an observation device (see FIG. 2) 23 attached to the endoscope device 3.
  • the display device 6 also displays the joint portion 22 of the treatment instrument 21 together with the treatment target portion.
  • the controller 7 generates an operation command for operating the slave manipulator 4 based on the operation of the master arm 5.
  • the slave manipulator 4 includes a mounting table 8 on which a patient is mounted, a multi-joint robot 9 disposed in the vicinity of the mounting table 8, and an endoscope apparatus 3 attached to the multi-joint robot 9.
  • the articulated robot 9 operates according to an operation command issued from the master manipulator 2.
  • FIG. 2 is a perspective view of the endoscope apparatus in the medical system according to the first embodiment.
  • the endoscope apparatus 3 includes an insertion part 24 and an outer tube drive part (drive part) 25.
  • the insertion portion 24 has a mantle tube 26 and an observation device 23.
  • the mantle tube 26 is a long, flexible member that is inserted into the patient's body.
  • the outer tube 26 has a distal end and a proximal end, and a treatment instrument channel 29 into which the treatment instrument 21 can be inserted.
  • the observation device 23 is a device in which an imaging field of view directed from the distal end of the mantle tube 26 to the distal side is set, and can acquire images of the treatment target region and the treatment tool 21 and output them to the display device 6. It is. In the present embodiment, the observation device 23 is arranged inside the distal end portion of the outer tube 26.
  • the observation device 23 includes an imaging unit 30 and an illumination unit 31.
  • the imaging unit 30 can acquire at least one image including at least the joint unit 22 in the imaging visual field.
  • the illumination unit 30 emits illumination light toward the imaging field of view of the imaging unit 30.
  • the observation device 23 may be detachable from the outer tube 26.
  • a known endoscope device may be applied as an observation device, and an endoscope channel into which the known endoscope device can be inserted may be formed in the outer tube 26.
  • the treatment instrument channel 29 holds the treatment instrument 21 so that the treatment section 27 of the treatment instrument 21 can protrude from the distal end of the insertion section 24.
  • the mantle tube drive unit 25 is installed on the proximal side of the mantle tube 26, and the treatment unit 27 provided in the observation device 23 and the treatment tool 21 in the body by bending the distal side of the mantle tube 26 by driving. It can be oriented in the desired direction.
  • FIG. 3 is a partially broken perspective view of the treatment instrument in the medical system of the first embodiment.
  • the treatment instrument 21 includes a treatment instrument drive unit (drive unit) 32, a flexible part 33 that is a flexible tube part, and a distal end part 34.
  • drive unit treatment instrument drive unit
  • flexible part 33 that is a flexible tube part
  • distal end part 34 distal end part
  • the treatment instrument driving unit 32 includes a motor 35, an encoder 36, a driving side rotating body 37, a wire 38, and a driven side rotating body 39.
  • One motor 35 is arranged for each degree of freedom of the joint portion 22 and the treatment portion 27. In the present embodiment, only one motor 35 for bending one joint portion 22 will be described.
  • the treatment instrument drive unit 32 can drive the other joint unit 22 (not shown) and the other treatment unit 27 (not shown) independently by another motor (not shown).
  • the motor shaft of the motor 35 is connected to the drive side rotating body 37 via a speed reduction mechanism (not shown). As the motor 35, a stepping motor or the like may be employed.
  • the encoder 36 (see FIG. 4) is attached to a motor shaft (not shown) of the motor 35 in a non-contact manner.
  • the encoder 36 is electrically connected to the control unit 50.
  • the drive-side rotator 37 is, for example, a pulley that is rotated by a driving force generated by the motor 35.
  • One end of a wire 38 is stretched over the drive side rotating body 37.
  • the wire 38 is an annular wire having one end spanned over the wire 38, an intermediate portion movably accommodated in the soft portion 33, and the other end spanned over the driven side rotating body 39.
  • the soft part 33 is formed in a flexible cylindrical shape.
  • a treatment instrument drive unit 32 is disposed on the proximal side of the flexible portion 33, and a treatment portion 27 is disposed on the distal side of the flexible portion 33.
  • the distal end portion 34 of the treatment instrument 21 has a joint portion 22, an arm portion 40, and a treatment portion 27.
  • the joint portion 22 is connected to the arm portion 40.
  • the joint portion 22 displaces the arm portion 40 when the force is transmitted from the driven-side rotator 39.
  • the structure in which the joint portion 22 performs a bending operation is not limited to the joint structure.
  • a joint structure in which a plurality of curved pieces are connected to each other so as to be freely rotatable may be used.
  • the treatment unit 27 is forceps or an incision knife for performing treatment on a treatment target.
  • the distal end portion 34 of the treatment instrument 21 has a label portion X for specifying the type of the treatment instrument 21.
  • the sign part X is arranged on the arm part 40 as, for example, printing or stamping.
  • the driving side rotating body 37 is rotated with the rotation of the motor 35, and the driven side rotating body 39 is rotated via the wire 38. Therefore, the joint portion 22 performs a bending operation by the rotation of the driven side rotating body 39.
  • the rotation signal from the encoder 36 is processed by the control unit 50 and taken in as information on the motor drive amount.
  • FIG. 4 is a block configuration diagram of an example of the medical system according to the first embodiment. This block diagram is incorporated in the following embodiments.
  • the control unit 50 of the medical system 1 includes a master control unit 51, a slave control unit 52, a calibration unit 53, an image processing unit 54, a compensation amount calculation unit 55, a treatment instrument.
  • the information storage unit 56, the parameter table 57, and the controller 7 are included.
  • the master control unit 51 receives and processes an operation input (input) 58 in the master manipulator 2.
  • the slave control unit 52 outputs drive signals for the articulated robot 9, the endoscope apparatus 3, and the treatment tool 21 based on a command from the master control unit 51.
  • the calibration unit 53 generates a parameter for compensation in the operation of the treatment instrument 21. Note that the calibration unit 53 may belong to either the master control unit 51 or the slave control unit 52, and may be independent of the master control unit 51 and the slave control unit 52.
  • the image processing unit 54 analyzes the image information 59 acquired by the imaging unit 30.
  • the image processing unit 54 calculates at least one of the position and posture of the joint unit 22 based on the image information 59.
  • the image processing unit 54 in the present embodiment calculates the joint angle of the joint unit 22 by image recognition using the image information 59.
  • the compensation amount calculation unit 55 detects the displacement of the joint unit 22 based on at least one of the position and posture of the joint unit 22 calculated by the image processing unit 54, and the input (command) 58 and the displacement of the joint unit 22. A compensation value that compensates for the difference is generated, and the compensation value is added to the parameter. Specifically, the compensation amount calculation unit 55 of the present embodiment feeds a hysteresis width, which will be described later, into the parameter as a compensation value. The compensation amount calculation unit 55 calculates a hysteresis width based on the amount by which the treatment instrument driving unit 32 is driven from when the command is issued until the displacement of the joint unit 22 starts, and the displacement of the joint unit 22 is calculated. After starting, confirm the compensation value and put it into the parameter.
  • the treatment instrument information storage unit 56 holds individual data necessary for calibration, such as individual information of the treatment instrument 21 and a pattern matching image.
  • the parameter table 57 has parameters referred to by the controller 7. Initial parameters are loaded into the parameter table 57 when the medical system 1 is started up. The initial parameters loaded in the parameter table 57 are updated for each calibration by the compensation amount calculation unit 55 and become parameters referred to by the controller 7. The controller 7 outputs the output to the motor 35 using the parameters updated in the calibration unit 53 and stored in the parameter table 57.
  • the control unit 50 performs calibration via the calibration unit 53 using the image information 59 obtained by the imaging unit 30.
  • the control unit 50 moves the treatment instrument 21 to a position where the calibration can be suitably performed on the treatment instrument 21.
  • the position of the treatment tool 21 is controlled. For example, when the joint part 22 cannot be specified in the image information 59, the control unit 50 displaces the joint part 22 until the joint part 22 is displayed in the image information 59.
  • the control unit 50 determines that the joint unit 22 is located outside the imaging field of the imaging unit 30 when the joint unit 22 cannot be specified in the image information 59, and the joint unit 22.
  • the instruction image information obtained by superimposing the identifiable area on the image information 59 may be output to the display device 6 instead of the image information 59. That is, in this control method, the controller 50 prompts the user of the medical system 1 to move the treatment tool 21 so that the control unit 50 operates the user so that the treatment tool 21 falls within a calibratable range. Support.
  • the instruction image information is received instead of the image information 59, the instruction image information is displayed by the display device 6.
  • the image processing unit 54 After the joint portion 22 of the treatment instrument 21 is arranged in the identifiable region in the imaging field of the imaging unit 30, the image processing unit 54 includes image information 59 indicating that the joint portion 22 is located in the identifiable region of the joint portion 22. Is used to calculate at least one of the position and posture of the joint 22.
  • FIG. 5 is a diagram illustrating an example of an image of the display device of the medical system according to the first embodiment.
  • the calibration unit 53 performs calibration based on the image information 59 displayed on the display device 6.
  • the control unit 50 sets a bending point in the joint unit 22 as a virtual feature point by image recognition from the image information 59, and calculates a bending angle in each joint unit 22.
  • FIG. 6 is a flowchart illustrating calibration of the medical system according to the first embodiment.
  • the hysteresis width ⁇ is measured (hysteresis width measurement, step ST101).
  • the measurement of the hysteresis width ⁇ is a value based on the amount by which the treatment instrument drive unit 32 is driven from when a command is issued until the displacement of the joint unit 22 starts.
  • the hysteresis value is updated (parameter update, step ST103).
  • the hysteresis value is defined as a parameter element including a function including the hysteresis width ⁇ x as a variable.
  • the hysteresis value is represented by the following formula (1).
  • the symbol u in the above mathematical formula (1) is a hysteresis value, which is a compensation value in the present embodiment.
  • the hysteresis value is stored in the parameter table 57, and is read as an updated parameter when the controller 7 operates.
  • sgn is a sign function that takes +1, 0, and ⁇ 1, respectively, according to the positive, 0, and negative arguments. Then, calibration is performed using the updated hysteresis value.
  • the hysteresis width is obtained by the flowchart shown in FIG.
  • FIG. 7 is a flowchart illustrating an example of measuring the hysteresis width of the medical system according to the first embodiment.
  • the imaging unit 30 in the measurement of the hysteresis width, at least one image including at least the joint portion 22 in the imaging field is acquired by the imaging unit 30 (image acquisition start, step ST201).
  • the image acquired by the imaging unit 30 is displayed on the display device 6 with the joint portion 22 included in the image.
  • the motor 35 of the treatment instrument drive unit 32 starts to be driven in a state where the image pickup unit 30 is picking up (motor drive start, step ST202).
  • the joint unit 22 starts to move.
  • the joint portion 22 may not operate at all until the motor 35 reaches a certain rotation angle.
  • Detection of the treatment instrument tip angle information is started from the time when driving of the motor 35 is started (detection of the treatment tool tip angle information, step ST203). That is, the movement of the moving joint portion 22 is detected.
  • the treatment instrument tip angle information can be detected by pattern matching or optical flow, which will be described later.
  • it is detected whether or not the joint portion 22 has moved (the treatment distal end portion has moved, step ST204).
  • the treatment instrument tip angle information is repeatedly detected (treatment tool tip angle information is detected, step ST203).
  • the drive of the motor 35 is temporarily stopped (motor drive stop, step ST205).
  • the hysteresis width can be calculated by moving the tip 34 in one direction.
  • the hysteresis width can be calculated while the initial value is unknown by reciprocating the distal end portion 34 in two opposing directions (for example, left and right directions).
  • the motor 35 is operated to move the distal end portion 34 in a predetermined direction, the operation amount of the motor 35 when a minute operation of the distal end portion 34 is detected is stored, and then the predetermined one direction is stored.
  • the motor 35 is operated to move in the opposite direction, and the operation amount of the motor 35 when the minute operation of the tip end portion 34 is detected is stored.
  • the hysteresis width can be calculated from the information on the two motion amounts acquired in this process. Then, the compensation amount calculation unit 55 calculates a hysteresis width based on the amount by which the treatment instrument drive unit 32 is driven from when the command is issued to when the displacement of the joint unit 22 starts, and the hysteresis value is calculated. Determined and set as a compensation value u (calculates hysteresis width, step ST206). In this way, the motor 35 is driven until the joint portion 22 performs a minute operation, and the hysteresis width is calculated based on the amount by which the treatment instrument drive unit 32 is driven.
  • FIG. 8 is a flowchart of an example of detecting treatment instrument tip angle information of the medical system according to the first embodiment.
  • image information 59 is acquired by the imaging unit 30 of the endoscope apparatus 3 (an endoscope image is acquired, step ST301).
  • the image information 59 of the treatment tool 21 is extracted from the acquired image information 59 by pattern matching with reference to a pattern set in advance based on the sign part X (the treatment tool is extracted from the image by pattern matching).
  • Step ST302 feature points are extracted from the extracted image information 59 (feature points are extracted, step ST303).
  • angle information of the distal end portion 34 of the treatment instrument 21 is calculated from the extracted feature points (calculate treatment instrument distal end angle information, step ST304).
  • FIG. 9 is a flowchart of another example of detecting the treatment instrument tip angle information of the medical system of the first embodiment.
  • the image information 59 acquired by the endoscope apparatus 3 is processed by the optical flow method. That is, the image processing unit 54 calculates the displacement of the joint unit 22 from the difference between the latest image information 59 and the image information 59 acquired immediately in time series in the image information 59. That is, first, the latest image information 59 of the endoscope apparatus 3 is acquired. Thereafter, the image information 59 of the immediately preceding endoscope apparatus 3 is acquired, and the deviation of both the image information 59 is calculated, whereby the moving direction and moving distance of the endoscope tip are calculated (the latest endoscope).
  • the moving direction and moving distance of the endoscope tip are calculated from the difference between the mirror image information and the immediately preceding endoscope image information, step ST401).
  • the amount of angular displacement of the distal end portion 34 of the treatment instrument 21 is calculated (calculation of the amount of angular displacement of the distal end portion of the treatment instrument, step ST402).
  • the control unit 50 includes the parameter table 57, the controller 7, the image processing unit 54, and the compensation amount calculation unit 55. Calibration can be performed in consideration of a change in the operation of the distal end portion 34 of the treatment instrument 21 that occurs. Thereby, in the endoscope apparatus 3 of this embodiment which is flexible, when the front-end
  • the image processing unit 54 can calculate the bending angle of the joint portion 22 of the treatment instrument 21 using pattern matching or optical flow, which is indispensable for observing the treatment target region.
  • the imaging unit 30 can be used as a configuration for calibration. For this reason, an encoder for detecting the joint angle of the joint portion 22 is not required, and high-precision calibration can be performed with a simple configuration.
  • the control unit 50 when the joint unit 22 cannot be specified in the image information 59, the control unit 50 performs calibration in order to displace the joint unit 22 until the joint unit 22 is displayed in the image information 59. You can avoid the situation that you can not.
  • the treatment instrument 21 can be moved stably. Note that the calibration may be automatically started when the treatment instrument 21 is moved to an appropriate position by the user, and in this case, the operation required from the user can be simplified.
  • the control unit 50 can detect the treatment tool 21 by simple image processing in order to determine the treatment tool 21 based on the label part X.
  • the image processing apparatus may have a configuration capable of performing both image processing of pattern matching and optical flow. For example, when the sign part X is identifiable and there is a pattern matching image, pattern matching is adopted, and when the sign part X cannot be identified or there is no appropriate pattern matching image, an optical flow is adopted. Good. That is, it may have a configuration in which either pattern matching or optical flow is selected according to the situation.
  • the compensation amount calculation unit 55 sets the hysteresis width based on the amount that the treatment instrument driving unit 32 is driven from when the command is issued until the displacement of the joint unit 22 starts. In order to calculate and set the compensation value, an appropriate compensation value using the actual measurement value at the distal end portion 34 of the treatment instrument 21 can be acquired.
  • control unit 50 can accurately detect the treatment tool 21 in order to change the parameter corresponding to the treatment tool 21 determined based on the labeling part X. .
  • FIG. 10 is a flowchart illustrating calibration of the medical system according to the second embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different points will be described.
  • the calibration procedure in the control unit 50 is different from that in the above embodiment.
  • a delay time is used when the distal end portion 34 of the treatment instrument 21 starts to be turned back in response to this command after the command to turn the distal end portion 34 of the treatment instrument 21 is generated.
  • “turning back” means that the direction of displacement is switched from a state where the tip 34 is displaced in a predetermined direction so that the tip 34 is displaced in the opposite direction.
  • a count value when a switching command is generated is acquired (count acquisition when switching input occurs, step ST501).
  • the count value is acquired, for example, by resetting a timer (not shown) to zero and starting counting up to zero when a turn-back command is generated.
  • the count value when the distal end portion 34 of the treatment instrument 21 starts to be turned back by the turn-back command is acquired (Treatment tool turn-back count acquisition, step ST502).
  • the fact that the distal end portion 34 of the treatment instrument 21 has started to be turned back can be detected by detecting the displacement of the distal end portion 34 using the pattern matching or optical flow described in the first embodiment.
  • a delay time from when the turn-back command is generated to when the distal end portion 34 of the treatment instrument 21 starts turning back is acquired (delay time acquisition, step ST503).
  • the count value in the timer that is reset to zero when a switching command is generated is acquired as the delay time.
  • the parameter table 57 is referred to (table reference, step ST504), and then the compensation value for the delay time is updated (compensation value for the delay time is updated, step ST505).
  • the delay time can be compensated by a phase advance filter represented by the following formula (2) and a control compensation represented by formula (3).
  • Equation (2) ⁇ T is a time constant
  • s is a Laplace operator. Note that a phase advance filter may be set from the time constant.
  • u is a compensation value.
  • the delay time from when the turning command is generated until the distal end portion 34 of the treatment instrument 21 starts turning is referred to by the parameter table 57, and the compensation value for the delay time is updated.
  • FIG. 11 is a flowchart illustrating calibration of the medical system according to the third embodiment.
  • the calibration procedure in the control unit 50 is different from that in the above embodiment.
  • the compensation amount is changed based on
  • an input value is referred to (input value reference, step ST601).
  • the amount of amplitude of the distal end portion 34 of the treatment instrument 21 is measured (measurement instrument distal end portion amplitude measurement, step ST602).
  • the measured amplitude amount is referred to in the parameter table 57 (table reference, step 603), and the compensation coefficient is updated (update the compensation coefficient, step ST604).
  • the compensation value based on the compensation coefficient is expressed as u in the equation defined by the following equation (4).
  • ⁇ in the above formula (4) is a compensation coefficient and is represented by the following formula (5).
  • ⁇ ref is a command value of an angle included in a command for displacing the tip portion 34
  • ⁇ out is a response value of an angle of the tip portion 34 with respect to the command. For example, if the actual amplitude of the tip portion 34 with respect to the commanded amplitude is 1 ⁇ 2, the compensation coefficient ⁇ is 2, and the compensation value u is 2 ⁇ ref from the above equation (4).
  • calibration is performed even if the characteristic of the wire 38 is changed by changing the compensation amount based on the command and the amplitude ratio of the angle response of the distal end portion 34 of the treatment instrument 21. be able to.
  • FIG. 12 is a flowchart for explaining calibration of the medical system of the fourth embodiment.
  • the calibration procedure in the control unit 50 is different from that in the above embodiment.
  • the distal end portion 34 has an elastic characteristic due to an elastic restoring force accumulated in the soft portion 33 and an elastic repulsive force possessed by the wire 38. For this reason, the amplitude is reduced by the elastic characteristics of the soft portion 33 and the wire 38. That is, first, the driving amount of the motor 35 by the encoder 36 is referred to (refer to motor driving amount, step ST701).
  • step ST702 the response of the distal end portion 34 of the treatment instrument 21 is detected (response detection of the treatment instrument distal end, step ST702).
  • is the angle of the tip 34
  • ⁇ m is the angle of the motor 35
  • ⁇ ′ is the angular velocity of the tip 34
  • J is the moment of inertia of the tip 34
  • J m is The moment of inertia of the motor 35
  • F is the torque generated by the motor 35
  • k e is the environmental rigidity in the rotational direction of the tip 34
  • c is the viscous friction coefficient in the rotational direction
  • f d is the friction torque applied to the tip 34
  • k is The rigidity of the wire 38 converted to the rotation direction is shown.
  • the detection of the tip 34 is a position.
  • is the position of the tip 3
  • ⁇ m is the position of the motor 35
  • ⁇ ′ is the tip.
  • speed parts 34 J is the mass of the tip 34
  • J m is the mass of the motor 35
  • F is the force motor 35 is generated
  • k e is the translation direction of the environment stiffness of the tip portion 34
  • c is the translation direction of the viscous friction
  • the coefficient, f d indicates the frictional force applied to the tip 34
  • k indicates the rigidity of the wire 38.
  • the parameters in the model are updated (update the parameters in the model, step ST704).
  • Parameters in the model can be obtained by repeatedly calculating so that the tip angle information obtained from the image information matches the model output.
  • the compensation value u can be obtained by the following formulas (8) and (9) using parameters in the model.
  • f d represents the friction torque applied to the tip end portion 34
  • k represents the rigidity of the wire 38 converted to the rotation direction.
  • the compensation amount can be determined by matching the model output with the command output.
  • the parameter table 57 is changed using the model assumed from the input and the angle response, so that the calibration can be performed even if the characteristics of the wire 38 are changed.
  • the models represented by the above formulas (6) and (7) are examples, and the models may be defined by other functions.
  • FIG. 13 is a perspective view of the distal end portion when performing calibration of the medical system of the fifth embodiment.
  • This embodiment is different from the above embodiment in that the control unit 50 performs calibration with respect to the advance / retreat amount of the distal end portion 34 in the center line direction of the treatment instrument channel 29.
  • the treatment section 27 is moved forward and backward by the treatment instrument drive section 32 at a stroke length L1 between the position A1 and the position A2.
  • FIG. 14 is a flowchart of an example when the medical system according to the fifth embodiment is calibrated.
  • image information 59 of the endoscope apparatus 3 is acquired (an endoscope image is acquired, step ST801).
  • the treatment tool 21 is detected from the image information 59 of the endoscope apparatus 3 by pattern matching (the treatment tool is detected from the image by pattern matching, step ST802).
  • an identification unit (feature point) X is extracted from the detected treatment instrument 21 (feature point is extracted, step ST803).
  • the amount of advancement / retraction of the treatment instrument 21 is calculated using the extracted identification unit X (calculation of the advancement / retraction amount of the treatment instrument, step ST804).
  • FIG. 15 is a flowchart of another example when the medical system according to the fifth embodiment is calibrated.
  • the calibration in the present embodiment may use the optical flow described in the first embodiment. That is, as shown in FIG. 15, first, the latest image information 59 of the endoscope apparatus 3 is acquired. Thereafter, the image information 59 of the immediately preceding endoscope apparatus 3 is acquired, and the deviation of both the image information 59 is calculated, whereby the moving direction and moving distance of the endoscope tip are calculated (the latest endoscope). The moving direction and moving distance of the endoscope tip are calculated from the difference between the mirror image information and the immediately preceding endoscope image information, step ST901). Next, the advance / retreat amount of the distal end portion 34 of the treatment tool 21 is calculated (calculate the treatment tool advance / retreat amount, step ST902).
  • the calibration is performed using the advance / retreat amount in the image information 59 of the endoscope device 3 of the treatment unit 27, so that the calibration is performed even if the characteristic of the wire 38 is changed. be able to.
  • FIG. 16 is a perspective view of the distal end portion when performing calibration of the medical system of the sixth embodiment.
  • the present embodiment is different from the above-described embodiment in that the controller 50 performs calibration with respect to the parallel movement amount of the distal end portion 34 in the direction orthogonal to the center line of the treatment instrument channel 29.
  • calibration is performed using the parallel movement amount in the image information 59 of the endoscope apparatus 3 of the treatment unit 27 instead of the joint unit 22.
  • the treatment portion 27 is translated by the treatment instrument drive portion 32 with a stroke length L2 between the position B1 and the position B2.
  • FIG. 17 is a flowchart of an example when the medical system according to the sixth embodiment is calibrated.
  • image information 59 of the endoscope apparatus 3 is acquired (acquire an endoscopic image, step ST1101).
  • the treatment tool 21 is detected from the image information 59 of the endoscope apparatus 3 by pattern matching (a treatment tool is detected from the image by pattern matching, step ST1102).
  • an identification unit (feature point) X is extracted from the detected treatment instrument 21 (feature point is extracted, step ST1103).
  • the amount of translation of the treatment instrument 21 is calculated using the extracted identification unit X (calculation of the treatment instrument translation, step ST1104).
  • FIG. 18 is a flowchart of another example when the medical system according to the sixth embodiment is calibrated.
  • the calibration in the present embodiment may use the optical flow described in the first embodiment. That is, as shown in FIG. 18, first, the latest image information 59 of the endoscope device 3 is acquired. Thereafter, the image information 59 of the immediately preceding endoscope apparatus 3 is acquired, and the deviation of both the image information 59 is calculated, whereby the moving direction and moving distance of the endoscope tip are calculated (the latest endoscope). The moving direction and moving distance of the endoscope tip are calculated from the difference between the mirror image information and the immediately preceding endoscope image information, step ST1201). Next, the parallel movement amount of the distal end portion 34 of the treatment instrument 21 is calculated (calculate the treatment parallel movement amount, step ST1202).
  • the calibration is performed using the parallel movement amount in the image information 59 of the endoscope device 3 of the treatment unit 27, so that the calibration is performed even if the characteristic of the wire 38 is changed. It can be carried out.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Robotics (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Manipulator (AREA)

Abstract

本医療用システムは、処置部、関節部、可撓管部、及び駆動部を備えた処置具と、前記処置具を保持する外套管、及び少なくとも前記関節部を含む画像を取得可能な撮像部を備えた内視鏡装置と、前記処置具の動作を制御する制御部と、を備え、前記制御部は、前記関節部を動作させるためのパラメータを有するテーブルと、前記パラメータに基づいて前記駆動部を制御する指令を前記駆動部に対して発する制御器と、前記関節部の位置と姿勢との少なくともいずれかを画像に基づいて算出する画像処理部と、前記画像処理部により算出された前記関節部の位置と姿勢との少なくともいずれかに基づいて前記関節部の変位を検出し前記指令と前記関節部の変位との差分を補償する補償値を生成して前記パラメータに前記補償値を繰り入れる補償量演算部とを備える。

Description

医療用システム及び処置具のキャリブレーション方法
 本発明の実施形態は、医療用システム及び処置具のキャリブレーション方法に関する。
本願は、2014年2月27日に、日本国に出願された特願2014-036824号に基づき優先権を主張し、その内容をここに援用する。
 ワイヤを介してモータの回転動力によりマニピュレータの処置具を駆動させる医療用システムが知られている。このような医療用システムでは、マニピュレータに有する一対の握り部品のうちの一方を、他方の握り部品の方に移動させ、そのときの握り部品の変位位置とトルク値とを測定することによりキャリブレーションが行われる。
米国特許出願公開第2008/0114494号明細書
 ところが、軟性のマニピュレータの場合に、マニピュレータを処置対象部位まで案内する過程でマニピュレータが湾曲するので、マニピュレータの内部におけるワイヤの経路が変化する。特許文献1に開示された技術では、マニピュレータにおけるワイヤ経路の変化の影響を反映させたキャリブレーションが困難である。
 本発明は、上記の問題を鑑みてなされたもので、ワイヤの特性変動があったとしてもキャリブレーションを行うことができる医療用システム及び処置具のキャリブレーション方法を提供することを目的とする。
 上記課題を解決するために、この発明は以下の手段を提案している。
 本発明の第一態様によれば、医療用システムは、生体に対して処置をする処置部、前記処置部を移動させる関節部、前記関節部に接続された可撓管部、及び前記可撓管部に接続され前記関節部を変位させる駆動部を備えた処置具と、遠位端と近位端とを有し前記処置部が前記遠位端から突出可能となるように前記処置具を保持する可撓性の外套管、及び少なくとも前記関節部を撮像視野に含む少なくとも1つの画像を取得可能な撮像部を備えた内視鏡装置と、前記処置具の動作を前記画像に基づいて制御する制御部と、を備え、前記制御部は、前記関節部を動作させるためのパラメータを有するテーブルと、前記パラメータに基づいて前記駆動部を制御する指令を前記駆動部に対して発する制御器と、前記関節部の位置と姿勢との少なくともいずれかを前記画像に基づいて算出する画像処理部と、前記画像処理部により算出された前記関節部の位置と姿勢との少なくともいずれかに基づいて前記関節部の変位を検出し前記指令と前記関節部の変位との差分を補償する補償値を生成して前記パラメータに前記補償値を繰り入れる補償量演算部と、を備える。
 本発明の第二態様によれば、上記第一態様に係る医療用システムにおいて、前記画像処理部は前記画像を用いたパターンマッチングにより前記関節部の関節角度を算出してもよい。
 本発明の第三態様によれば、上記第一態様に係る医療用システムにおいて、前記画像処理部は前記画像において、最新の画像と時系列で直前に取得された画像との差分から前記関節部の変位を算出してもよい。
 本発明の第四態様によれば、上記第一態様から第三態様のいずれか一態様に係る医療用システムにおいて、前記制御部は、前記画像において前記関節部が特定できない場合に、前記画像に前記関節部が表示されるまで前記関節部を変位させてもよい。
 本発明の第五態様によれば、上記第一態様から第三態様に係るいずれか一態様に係る医療用システムにおいて、前記画像を表示可能な表示装置をさらに備え、
 前記制御部は、前記画像において前記関節部が特定できない場合に前記関節部が前記撮像部の撮像視野の外に位置していると判定し、前記関節部の特定可能領域を前記画像に重ねた指示画像を前記画像に代えて前記表示装置へ出力し、前記表示装置は、前記画像に代えて前記指示画像を受信したときには前記指示画像を表示し、前記画像処理部は、前記関節部の特定可能領域内に前記関節部が位置した画像を用いて前記関節部の位置と姿勢との少なくともいずれかを算出してもよい。
 本発明の第六態様によれば、上記第一態様から第五態様に係るいずれか一態様に係る医療用システムにおいて、前記処置具は、前記処置具の構成を特定するための標識部を処置部と関節部との少なくともいずれかに有し、前記制御部は、前記標識部に基づいて前記処置具を判別してもよい。
 本発明の第七態様によれば、上記第一態様から第六態様に係るいずれか一態様に係る医療用システムにおいて、前記補償量演算部は、前記指令が発せられてから前記関節部の変位が開始するまでの間に前記駆動部が駆動された量に基づくヒステリシス幅を算出して前記補償値としてもよい。
 本発明の第八態様によれば、上記第六態様に係る医療用システムにおいて、前記制御部は、前記標識部に基づいて判別された前記処置具に対応してパラメータを変更してもよい。
 本発明の第九態様によれば、処置具のキャリブレーション方法は、関節部を備えた処置具を取り付け可能な医療用システムにおける前記処置具のキャリブレーション方法であって、前記医療用システムに前記処置具が取り付けられた状態で取得され前記関節部を含む画像から前記関節部の位置と姿勢との少なくともいずれかを算出し、算出された前記関節部の位置と姿勢との少なくともいずれかに基づいて前記関節部の変位を検出し、前記関節部を動作させるための指令と前記関節部の変位との差分を補償する補償値を生成し、前記関節部を動作させるための指令に用いられるパラメータに対して前記補償値を繰り入れる。
 上記各態様に係る医療用システム及び処置具のキャリブレーション方法によれば、ワイヤの特性変動があったとしても、キャリブレーションを行うことができる。
第1実施形態の医療用システムの全体構成の概略を示す斜視図である。 第1実施形態の医療用システムにおける内視鏡装置の斜視図である。 第1実施形態の医療用システムにおける処置具の一部破断斜視図である。 第1実施形態の医療用システムの一例のブロック構成図である。 第1実施形態の医療用システムの表示装置の画像の一例を示す図である。 第1実施形態の医療用システムのキャリブレーションを説明するフローチャートである。 第1実施形態の医療用システムのヒステリシス幅を測定する一例のフローチャートである。 第1実施形態の医療用システムの処置具先端角度情報を検出する一例のフローチャートである。 第1実施形態の医療用システムの処置具先端角度情報を検出する他例のフローチャートである。 第2実施形態の医療用システムのキャリブレーションを説明するフローチャートである。 第3実施形態の医療用システムのキャリブレーションを説明するフローチャートである。 第4実施形態の医療用システムのキャリブレーションを説明するフローチャートである。 第5実施形態の医療用システムのキャリブレーションを行う場合の先端部の斜視図である。 第5実施形態の医療用システムのキャリブレーションを行う場合の一例のフローチャートである。 第5実施形態の医療用システムのキャリブレーションを行う場合の他例のフローチャートである。 第6実施形態の医療用システムのキャリブレーションを行う場合の先端部の斜視図である。 第6実施形態の医療用システムのキャリブレーションを行う場合の一例のフローチャートである。 第6実施形態の医療用システムのキャリブレーションを行う場合の他例のフローチャートである。
 以下、実施形態の医療用システムを図面を用いて説明する。以下の図面においては、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
(第1実施形態)
 図1は、第1実施形態の医療用システムの全体構成の概略を示す斜視図である。本実施形態の医療用システムは、いわゆるマスタスレーブ方式のシステムである。すなわち、図1に示すように、医療用システム1は、操作者Opが処置のための操作をするマスタマニピュレータ2と、内視鏡装置3が設けられたスレーブマニピュレータ4と、マスタマニピュレータ2に対する操作に応じてスレーブマニピュレータ4を制御する制御部50(図4参照)とを持つ。
 マスタマニピュレータ2は、操作者Opによって動かされるマスタアーム5と、内視鏡装置3を用いて撮影した映像等の画像情報(図4参照)59を表示するための表示装置6と、後述する制御部50の制御器7とを持つ。
 マスタアーム5は、内視鏡装置3を動作させるために設けられた操作部である。また、詳細は図示しないが、マスタマニピュレータ2に設けられたマスタアーム5は、操作者Opの右手と左手とのそれぞれに対応して2つ設けられている。マスタアーム5は、少なくとも1自由度で体内に配される器具である処置具21に有する関節部22を動作させるために多関節構造を有している。
 表示装置6は、内視鏡装置3に取り付けられた観察装置(図2参照)23によって撮影された処置対象部位の映像が表示される装置である。表示装置6には、処置対象部位とともに、処置具21の関節部22も表示される。
 制御器7は、マスタアーム5の動作に基づいてスレーブマニピュレータ4を動作させるための操作指令を生成する。
 スレーブマニピュレータ4は、患者が載置される載置台8と、載置台8の近傍に配置された多関節ロボット9と、多関節ロボット9に取り付けられた内視鏡装置3とを有する。多関節ロボット9は、マスタマニピュレータ2から発せられた操作指令に従って動作する。
 図2は、第1実施形態の医療用システムにおける内視鏡装置の斜視図である。図2に示すように、内視鏡装置3は、挿入部24と、外套管駆動部(駆動部)25とを持つ。
 挿入部24は、外套管26と、観察装置23と、を持つ。
 外套管26は、患者の体内に挿入される軟性の長尺の部材である。外套管26は、遠位端と近位端とを有し、処置具21が挿通可能な処置具チャンネル29を有している。
 観察装置23は、外套管26の遠位端から遠位側へ向けられた撮像視野が設定された装置であり、処置対象部位及び処置具21の画像を取得して表示装置6へと出力可能である。本実施形態では、観察装置23は、外套管26の遠位端部分の内部に配されている。観察装置23は、撮像部30および照明部31を有する。
 撮像部30は、少なくとも関節部22を撮像視野に含む少なくとも1の画像を取得可能である。
 照明部30は、撮像部30の撮像視野に向けて照明光を発する。
 観察装置23は、外套管26に対して着脱可能であってよい。たとえば、観察装置として公知の内視鏡装置が適用され、外套管26にこの公知の内視鏡装置を挿入可能な内視鏡チャンネルが形成されていてもよい。
 処置具チャンネル29は、処置具21の処置部27が挿入部24の遠位端から突出可能となるように処置具21を保持する。
 外套管駆動部25は、外套管26の近位側に設置されており、駆動により外套管26の遠位側を湾曲動作させることによって体内で観察装置23および処置具21に有する処置部27を所望の向きに向けることができる。
 図3は、第1実施形態の医療用システムにおける処置具の一部破断斜視図である。図3に示すように、処置具21は、処置具駆動部(駆動部)32と、可撓管部である軟性部33と、先端部34と、を持つ。
 処置具駆動部32は、モータ35と、エンコーダ36と駆動側回転体37と、ワイヤ38と、従動側回転体39とを備える。
 モータ35は、関節部22および処置部27の自由度に対して1つずつ配されている。本実施形態では、一つの関節部22を湾曲動作させるための1つのモータ35についてのみ説明する。処置具駆動部32は、不図示の他のモータによって不図示の他の関節部22および不図示の他の処置部27を独立して駆動させることができる。
 モータ35のモータ軸は、不図示の減速機構を介して駆動側回転体37に接続されている。モータ35としては、ステッピングモータ等が採用されてもよい。
 エンコーダ36(図4参照)は、モータ35の不図示のモータ軸に非接触で取り付けられている。エンコーダ36は、制御部50に電気的に接続される。
 駆動側回転体37は、モータ35が発する駆動力により回転するたとえばプーリ等である。駆動側回転体37にはワイヤ38の一端部が架け渡されている。
 ワイヤ38は、一端部がワイヤ38に架け渡され、中間部が軟性部33内に移動可能に収容され、他端部が従動側回転体39に架け渡された環状のワイヤである。
 軟性部33は、柔軟な筒形状に形成されている。軟性部33の近位側には処置具駆動部32が配され、軟性部33の遠位側には処置部27が配されている。
 処置具21の先端部34は、関節部22と、腕部40と、処置部27と、を持つ。
 関節部22は、腕部40に連結されている。関節部22は、従動側回転体39から力量が伝達されることにより、腕部40を変位させる。関節部22が湾曲動作する構造は、関節構造に限られない。例えば、複数の湾曲コマが互いに回動自在に連接された関節構造であっても良い。
 処置部27は、処置対象に対して処置をするための鉗子や切開ナイフである。
 また、本実施形態では、処置具21の先端部34は、処置具21の種類を特定するための標識部Xを有する。標識部Xは、たとえば印刷や刻印として腕部40に配されている。
 処置具21では、モータ35の回転に伴い、駆動側回転体37が回転され、ワイヤ38を介して従動側回転体39が回転される。そのため、従動側回転体39の回転によって関節部22が湾曲動作を行う。このとき、エンコーダ36からの回転信号は、制御部50によって処理され、モータ駆動量の情報として取り込まれる。
 図4は、第1実施形態の医療用システムの一例のブロック構成図である。このブロック図は、以下の各実施形態に援用される。
 図4に示すように、医療用システム1の制御部50は、マスタ制御部51と、スレーブ制御部52と、キャリブレーション部53と、画像処理部54と、補償量演算部55と、処置具情報記憶部56と、パラメータテーブル57と、制御器7と、を持つ。
 マスタ制御部51は、マスタマニピュレータ2における操作入力(入力)58を受け付けて処理する。
 スレーブ制御部52は、マスタ制御部51からの指令に基づいて多関節ロボット9と内視鏡装置3と処置具21とに対する駆動信号を出力する。
 キャリブレーション部53は、処置具21の動作における補償用のパラメータを生成する。なお、キャリブレーション部53は、マスタ制御部51とスレーブ制御部52とのどちらに属していてもよく、マスタ制御部51とスレーブ制御部52とから独立していてもよい。
 画像処理部54は、撮像部30が取得した画像情報59の解析を行う。ここで、画像処理部54は、関節部22の位置と姿勢との少なくともいずれかを画像情報59に基づいて算出する。本実施形態における画像処理部54は、画像情報59を用いた画像認識により関節部22の関節角度を算出する。
 補償量演算部55は、画像処理部54により算出された関節部22の位置と姿勢との少なくともいずれかに基づいて関節部22の変位を検出し、入力(指令)58と関節部22の変位との差分を補償する補償値を生成してパラメータに補償値を繰り入れる。具体的には、本実施形態の補償量演算部55は、後述するヒステリシス幅を補償値としてパラメータに繰り入れる。補償量演算部55は、指令が発せられてから関節部22の変位が開始するまでの間に、処置具駆動部32が駆動された量に基づくヒステリシス幅を算出し、関節部22の変位が開始した後に補償値を確定してパラメータに繰り入れる。
 処置具情報記憶部56は、処置具21の個体情報やパターンマッチング画像など、キャリブレーションに必要な個別データを保持する。
 パラメータテーブル57は、制御器7が参照するパラメータを有する。パラメータテーブル57には、医療用システム1の立ち上げ時に初期パラメータがロードされる。パラメータテーブル57にロードされた初期パラメータは、補償量演算部55によりキャリブレーションごとに更新され、制御器7に参照されるパラメータとなる。
 制御器7は、キャリブレーション部53において更新されパラメータテーブル57に記憶されたパラメータを利用してモータ35に出力を出す。
 制御部50は、撮像部30によって得られた画像情報59を利用してキャリブレーション部53を介してキャリブレーションを行う。ここで、撮像部30の撮像視野に処置具21が写っていない場合には、処置具21に対して好適にキャリブレーションを行うことができる位置まで処置具21を移動させるように制御部50は処置具21の位置を制御する。たとえば、制御部50は、画像情報59において関節部22が特定できない場合に、画像情報59に関節部22が表示されるまで関節部22を変位させる。
 また、別の制御方法として、制御部50は、画像情報59において関節部22が特定できない場合に、関節部22が撮像部30の撮像視野の外に位置していると判定し、関節部22の特定可能領域を画像情報59に重ねた指示画像情報を画像情報59に代えて表示装置6へ出力してもよい。すなわち、この制御方法では、医療用システム1の使用者に対して処置具21の移動を促すことで、処置具21がキャリブレーション可能な範囲内に入るように制御部50が使用者の操作を支援する。画像情報59に代えて指示画像情報を受信したときには、表示装置6によって指示画像情報が表示される。処置具21の関節部22が撮像部30の撮像視野内における上記特定可能領域に配された後、画像処理部54は、関節部22の特定可能領域内に関節部22が位置した画像情報59を用いて関節部22の位置と姿勢との少なくともいずれかを算出する。
 図5は、第1実施形態の医療用システムの表示装置の画像の一例を示す図である。図5に示すように、表示装置6に表示されている画像情報59に基づいて、キャリブレーション部53がキャリブレーションを行う。たとえば、制御部50は、関節部22における屈曲点を仮想的な特徴点として画像情報59から画像認識により設定し、各関節部22における屈曲角度を算出する。
 図6は、第1実施形態の医療用システムのキャリブレーションを説明するフローチャートである。図6に示すように、処置具先端キャリブレーションでは、まず、ヒステリシス幅Δθが計測される(ヒステリシス幅計測、ステップST101)。ここで、ヒステリシス幅Δθの測定とは、指令が発せられてから関節部22の変位が開始するまでの間に、処置具駆動部32が駆動された量に基づいた値である。
 次に、パラメータテーブル57に記憶されたパラメータを参照(テーブル参照、(ステップST102))し、ヒステリシス値が更新される(パラメータ更新、ステップST103)。ここで、ヒステリシス値とは、ヒステリシス幅Δxを変数に含む関数からなるパラメータ要素として定義されている。たとえば、ヒステリシス値は、以下の数式(1)によって表される。
Figure JPOXMLDOC01-appb-M000001
 上記の数式(1)における記号uは、ヒステリシス値であり、本実施形態における補償値である。ヒステリシス値は、パラメータテーブル57に記憶されることにより、更新後のパラメータとして制御器7の動作時に読み込まれる。sgnは、引数の正、0、負に応じて、それぞれ+1、0、-1を取る符号関数である。
 そして、更新されたヒステリシス値を用いてキャリブレーションが行われることになる。なお、ヒステリシス幅は、図7に示すフローチャートによって得られる。
 図7は、第1実施形態の医療用システムのヒステリシス幅を測定する一例を示すフローチャートである。
 図7に示すように、ヒステリシス幅の計測においては、撮像部30によって、少なくとも関節部22を撮像視野に含む少なくとも1の画像が取得される(画像取得開始、ステップST201)。たとえば、撮像部30により取得された画像は、関節部22を画像内に含んだ状態で表示装置6に表示される。
 撮像部30による撮像が行われている状態で、処置具駆動部32のモータ35が駆動を開始される(モータ駆動開始、ステップST202)。モータ35の駆動に伴い、関節部22は、移動を開始される。しかしながら、ワイヤ38の伸びやたるみ、あるいはワイヤ38の外面に対する摩擦力等によって、モータ35の駆動と関節部22の屈曲との間に遅れその他の差異が生じることがある。たとえば、モータ35が駆動されても、モータ35が一定の回転角に達するまで関節部22が全く動作しない場合もある。
 モータ35の駆動が開始された時点から、処置具先端角度情報の検出が開始される(処置具先端角度情報を検出、ステップST203)。すなわち、移動中の関節部22の動きが検出される。処置具先端角度情報は、後述するパターンマッチングやオプティカルフローにより検出可能である。
 ここで、関節部22に動きがあったか否かが検出される(処置先端部が動いた、ステップST204)。
 このとき、関節部22に動きがない場合、処置具先端角度情報が繰り返し検出される(処置具先端角度情報を検出、ステップST203)。
 これに対して、関節部22に動きがあった場合、モータ35の駆動が一旦停止される(モータ駆動停止、ステップST205)。
 先端部34の初期値が既知である場合には、先端部34を一方向へ移動させることでヒステリシス幅を算出可能である。先端部34の初期値が不明である場合には、対向する2方向(たとえば左右方向)へ先端部34を往復移動させることで初期値不明のままヒステリシス幅を算出可能である。たとえば、先端部34を所定の一方向に移動させるためにモータ35を動作させ、先端部34の微小動作が検出されたときのモータ35の動作量を記憶し、続いて上記所定の一方向と反対方向に移動させるためにモータ35を動作させ、先端部34の微小動作が検出されたときのモータ35の動作量を記憶する。この過程で取得された2つの動作量の情報から、ヒステリシス幅を算出できる。
 そして、補償量演算部55によって、指令が発せられてから関節部22の変位が開始するまでの間に、処置具駆動部32が駆動された量に基づくヒステリシス幅を算出して、ヒステリシス値を確定し、補償値uとする(ヒステリシス幅を算出、ステップST206)。このように、関節部22が微小動作するまでモータ35が駆動され、処置具駆動部32が駆動された量に基づいてヒステリシス幅が算出される。
 図8は、第1実施形態の医療用システムの処置具先端角度情報を検出する一例のフローチャートである。
 図8に示すように、まず、内視鏡装置3の撮像部30によって画像情報59が取得される(内視鏡画像を取得、ステップST301)。
 次に、標識部Xに基づいてあらかじめ設定されているパターンを参照したパターンマッチングにより、取得された画像情報59から処置具21の画像情報59が抽出される(パターンマッチにより画像から処置具を抽出、ステップST302)。
 続いて、抽出された画像情報59から特徴点が抽出される(特徴点を抽出、ステップST303)。
 そして、抽出された特徴点から処置具21の先端部34の角度情報が算出される(処置具先端角度情報を算出、ステップST304)。
 図9は、第1実施形態の医療用システムの処置具先端角度情報を検出する他例のフローチャートである。図9に示すように、内視鏡装置3により取得された画像情報59をオプティカルフロー方式で処理する。つまり、画像処理部54によって、画像情報59において、最新の画像情報59と時系列で直前に取得された画像情報59との差分から関節部22の変位を算出する。すなわち、まず、内視鏡装置3の最新の画像情報59が取得される。その後に、直前の内視鏡装置3の画像情報59が取得され、両画像情報59の偏差が算出されることにより、内視鏡先端の移動方向と移動距離が算出される(最新の内視鏡画像情報と直前の内視鏡画像情報の差分から内視鏡先端の移動方向と移動距離を算出、ステップST401)。
 次に、処置具21の先端部34の角度の変位量が算出される(処置具先端部の角度の変位量を算出、ステップST402)。
 以上に説明した第1実施形態によれば、制御部50が、パラメータテーブル57と、制御器7と、画像処理部54と、補償量演算部55と、を持つので、ワイヤ38の特性変動によって生じる処置具21の先端部34の動作の変化を考慮したキャリブレーションができる。これにより、軟性である本実施形態の内視鏡装置3において処置対象部位に処置具21の先端部34が案内されたときに適切なキャリブレーションを行うことができる。
 また、第1実施形態によれば、画像処理部54によって、パターンマッチングあるいはオプティカルフローを使用して処置具21の関節部22の屈曲角度を算出できるので、処置対象部位を観察するために必須な撮像部30をキャリブレーションのための構成として利用できる。このため、関節部22の関節角度を検出するエンコーダ等を必要とせず、簡易な構成で精度の高いキャリブレーションができる。
 また、第1実施形態によれば、制御部50は、画像情報59において関節部22が特定できない場合に、画像情報59に関節部22が表示されるまで関節部22を変位させるために、キャリブレーションができないという事態を回避できる。
 また、関節部22の特定可能領域を画像情報59に重ねた指示画像を画像情報59に代えて表示装置6へ出力して使用者による処置具21の移動を促す場合には、処置具21の操作が処置具21の使用者に委ねられているので、処置具21の移動を安定して行える。なお、処置具21が使用者によって適切な位置に移動されたときに自動的にキャリブレーションが開始されてもよく、この場合には、使用者に求める操作が簡略化できる。
 また、第1実施形態によれば、制御部50は、処置具21を標識部Xに基づいて判別するために、簡単な画像処理によって処置具21を検出することができる。
 上記実施形態では、パターンマッチングとオプティカルフローとのいずれかが採用される例を示したが、パターンマッチングとオプティカルフローとの両方の画像処理が可能な構成を有していてもよい。たとえば、標識部Xが識別可能でありパターンマッチング画像がある場合にはパターンマッチングが採用され、標識部Xが識別不能である場合や適切なパターンマッチング画像がない場合にはオプティカルフローが採用されてよい。すなわち、パターンマッチングとオプティカルフローとのどちらを採用するかが状況に応じて選択される構成を有していてもよい。
 また、第1実施形態によれば、補償量演算部55は、指令が発せられてから関節部22の変位が開始するまでの間に処置具駆動部32が駆動された量に基づくヒステリシス幅を算出して補償値を設定するために、処置具21の先端部34における実測値を利用した適切な補償値を取得することができる。
 また、第1実施形態によれば、制御部50は、標識部Xに基づいて判別された処置具21に対応してパラメータを変更するために、処置具21の正確な検出を行うことができる。
(第2実施形態)
 次に、本発明の第2実施形態について説明する。
 図10は、第2実施形態の医療用システムのキャリブレーションを説明するフローチャートである。以下の各実施形態において、第1実施形態と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図10に示すように、本実施形態では、制御部50におけるキャリブレーション手順が上記実施形態と異なっている。本実施形態におけるキャリブレーションでは、処置具21の先端部34の切り返しの指令が発生してから、この指令に応じて処置具21の先端部34が切り返しを始めた遅れ時間を用いている。本実施形態において、「切り返し」とは、所定の一方向に先端部34が変位している状態から先端部34が逆方向に変位するように変位方向が切り替わることをいう。
 本実施形態におけるキャリブレーションでは、まず、切り返しの指令が発生された時のカウント値が取得される(切り返し入力発生時カウント取得、ステップST501)。カウント値の取得は、たとえば、不図示のタイマーをゼロにリセットしてカウントアップを開始することで切り返しの指令が発生された時点をゼロとする。
 次に、切り返しの指令によって処置具21の先端部34が切り返しを始めた時のカウント値が取得される(処置具切り返し時カウント取得、ステップST502)。処置具21の先端部34が切り返しを始めたことは、上記第1実施形態で説明したパターンマッチングやオプティカルフローを用いて先端部34の変位を検出することで検出可能である。
 続いて、切り返しの指令が発生してから、処置具21の先端部34が切り返しを始めた時までの遅れ時間が取得される(遅れ時間取得、ステップST503)。本実施形態では、切り返しの指令が発生されたときにゼロでリセットされたタイマーにおけるカウント値が遅れ時間として取得される。
 そして、パラメータテーブル57が参照され(テーブル参照、ステップST504)、続いて遅れ時間に対する補償値が更新される(遅れ時間に対する補償値を更新、ステップST505)。ここで、遅れ時間は、以下の数式(2)によって表される位相進みフィルタ、数式(3)によって表される制御補償によって補償することができる。数式(2)において、ΔTは時定数であり、sはラプラス演算子である。なお、時定数から位相進みフィルタを設定してもよい。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 上記の数式(3)において、uは補償値となる。
 第2実施形態によれば、切り返しの指令が発生してから、処置具21の先端部34が切り返しを始めた時までの遅れ時間がパラメータテーブル57によって参照されて、遅れ時間に対する補償値が更新されることにより、ワイヤ38の特性変動があったとしても、キャリブレーションを行うことができる。
(第3実施形態)
 次に、本発明の第3実施形態について説明する。
 図11は、第3実施形態の医療用システムのキャリブレーションを説明するフローチャートである。本実施形態では、制御部50におけるキャリブレーション手順が上記実施形態と異なっている。図11に示すように、本実施形態におけるキャリブレーションでは、指令により処置具21の先端部34を変位させる振幅と、実際に処置具21の先端部34が変位した振幅(角度応答)との比に基づいて補償量が変更される。
 本実施形態では、まず、入力値が参照される(入力値参照、ステップST601)。
 次に、処置具21の先端部34の振幅量が計測される(処置具先端部振幅計測、ステップST602)。
 続いて、計測された振幅量がパラメータテーブル57で参照され(テーブル参照、ステップ603)、補償係数が更新される(補償係数を更新、ステップST604)。補償係数に基づいた補償値は、下記の数式(4)に定義された式におけるuとして表される。
Figure JPOXMLDOC01-appb-M000004
 上記の数式(4)におけるαは、補償係数であり、以下の数式(5)によって表される。また、θrefは、先端部34に対し、変位させる指令に含まれる角度の指令値であり、θoutは先端部34が前述の指令に対する角度の応答値である。例えば、指令による振幅に対する実際の先端部34の振幅が1/2であれば、補償係数αは2となり、補償値uは上記の数式(4)から2θrefとなる。
Figure JPOXMLDOC01-appb-M000005
 第3実施形態によれば、指令と処置具21の先端部34の角度応答の振幅比に基づいて補償量が変更されることにより、ワイヤ38の特性変動があったとしても、キャリブレーションを行うことができる。
(第4実施形態)
 次に、本発明の第4実施形態について説明する。
 図12は、第4実施形態の医療用システムのキャリブレーションを説明するフローチャートである。本実施形態では、制御部50におけるキャリブレーション手順が上記実施形態と異なっている。
 図12に示すように、この場合のキャリブレーションでは、入力と角度応答から弾性を有するモデルを仮定し、このモデルを用いてパラメータテーブル57が変更される。ここで、先端部34は、軟性部33に蓄積されている弾性復元力やワイヤ38に有する弾性反発力によって弾性特性を有する。そのため、軟性部33およびワイヤ38に有する弾性特性によって振幅が減少する。すなわち、まず、エンコーダ36によるモータ35の駆動量が参照される(モータ駆動量参照、ステップST701)。
 次に、処置具21の先端部34の応答が検出される(処置具先端の応答検出、ステップST702)。
 続いて、あらかじめ用意されているモデルとの比較が行われる(モデルと比較、ステップST703)。ここで、モデルとしては、以下の数式(6)、数式(7)によって表される。以下の数式(6)、数式(7)において、θは先端部34の角度、θmはモータ35の角度、θ’は先端部34の角速度、Jは先端部34の慣性モーメント、Jmはモータ35の慣性モーメント、Fはモータ35が発生するトルク、keは先端部34の回転方向の環境剛性、cは回転方向の粘性摩擦係数、fdは先端部34にかかる摩擦トルク、kは回転方向に換算したワイヤ38の剛性を示す。
 また、先端部34の検出が位置の場合もあり、この場合、以下の数式(6)、数式(7)において、θは先端部3の位置、θmはモータ35の位置、θ’は先端部34の速度、Jは先端部34の質量、Jmはモータ35の質量、Fはモータ35が発生する力、keは先端部34の並進方向の環境剛性、cは並進方向の粘性摩擦係数、fdは先端部34にかかる摩擦力、kはワイヤ38の剛性を示す。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 そして、モデル内のパラメータが更新される(モデル内パラメータを更新、ステップST704)。
 モデル内のパラメータは、画像情報から得た先端角度情報と、モデル出力とを一致させるように繰り返し計算を行うことで得ることができる。
 補償値uは、モデル内のパラメータを用いて、下記の数式(8)、数式(9)により求めることができる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 上記数式(8)において、fdは先端部34にかかる摩擦トルク、kは回転方向に換算したワイヤ38の剛性を示す。
 この場合、モデルの出力と指令出力とを一致させることにより、補償量を決定することができる。
 第4実施形態によれば、入力と角度応答から仮定されたモデルを用いてパラメータテーブル57が変更されることにより、ワイヤ38の特性変動があったとしても、キャリブレーションを行うことができる。
 上記数式(6),数式(7)により表されるモデルは一例であり、他の関数によりモデルが定義されてもよい。
(第5実施形態)
 次に、本発明の第5実施形態について説明する。
 図13は、第5実施形態の医療用システムのキャリブレーションを行う場合の先端部の斜視図である。本実施形態では、処置具チャンネル29の中心線方向における先端部34の進退量に対するキャリブレーションを制御部50が行う点で上記実施形態と異なっている。
 図13に示すように、処置部27は、処置具駆動部32によって位置A1と位置A2との間のストローク長さL1で進退移動される。
 図14は、第5実施形態の医療用システムのキャリブレーションを行う場合の一例のフローチャートである。図14に示すように、まず、内視鏡装置3の画像情報59が取得される(内視鏡画像を取得、ステップST801)。
 次に、パターンマッチングにより内視鏡装置3の画像情報59から処置具21が検出される(パターンマッチングにより画像から処置具を検出、ステップST802)。
 続いて、検出された処置具21において識別部(特徴点)Xが抽出される(特徴点を抽出、ステップST803)。
 そして、抽出された識別部Xを用いて処置具21の進退量が算出される(処置具進退量を算出、ステップST804)。
 図15は、第5実施形態の医療用システムのキャリブレーションを行う場合の他例のフローチャートである。
 本実施形態におけるキャリブレーションは、上記第1実施形態で説明したオプティカルフローを利用してもよい。すなわち、図15に示すように、まず、内視鏡装置3の最新の画像情報59が取得される。その後に、直前の内視鏡装置3の画像情報59が取得され、両画像情報59の偏差が算出されることにより、内視鏡先端の移動方向と移動距離が算出される(最新の内視鏡画像情報と直前の内視鏡画像情報の差分から内視鏡先端の移動方向と移動距離を算出、ステップST901)。
 次に、処置具21の先端部34の進退量が算出される(処置具進退量を算出、ステップST902)。
 第5実施形態によれば、処置部27の内視鏡装置3の画像情報59における進退量を用いてキャリブレーションが行われることにより、ワイヤ38の特性変動があったとしても、キャリブレーションを行うことができる。
(第6実施形態)
 次に、本発明の第6実施形態について説明する。
 図16は、第6実施形態の医療用システムのキャリブレーションを行う場合の先端部の斜視図である。本実施形態では、処置具チャンネル29の中心線に直交する方向における先端部34の平行移動量に対するキャリブレーションを制御部50が行う点で上記実施形態と異なっている。
 図16に示すように、この場合、関節部22に代えて、処置部27の内視鏡装置3の画像情報59における平行移動量を用いてキャリブレーションが行われる。処置部27は、処置具駆動部32によって位置B1と位置B2との間のストローク長さL2で平行移動される。
 図17は、第6実施形態の医療用システムのキャリブレーションを行う場合の一例のフローチャートである。図17に示すように、まず、内視鏡装置3の画像情報59が取得される(内視鏡画像を取得、ステップST1101)。
 次に、パターンマッチングにより内視鏡装置3の画像情報59から処置具21が検出される(パターンマッチングにより画像から処置具を検出、ステップST1102)。
 続いて、検出された処置具21において識別部(特徴点)Xが抽出される(特徴点を抽出、ステップST1103)。
 そして、抽出された識別部Xを用いて処置具21の平行移動量が算出される(処置具平行移動を算出、ステップST1104)。
 図18は、第6実施形態の医療用システムのキャリブレーションを行う場合の他例のフローチャートである。本実施形態におけるキャリブレーションは、上記第1実施形態で説明したオプティカルフローを利用してもよい。すなわち、図18に示すように、まず、内視鏡装置3の最新の画像情報59が取得される。その後に、直前の内視鏡装置3の画像情報59が取得され、両画像情報59の偏差が算出されることにより、内視鏡先端の移動方向と移動距離が算出される(最新の内視鏡画像情報と直前の内視鏡画像情報の差分から内視鏡先端の移動方向と移動距離を算出、ステップST1201)。
 次に、処置具21の先端部34の平行移動量が算出される(処置平行移動量を算出、ステップST1202)。
 第6実施形態によれば、処置部27の内視鏡装置3の画像情報59における平行移動量を用いてキャリブレーションが行われることにより、ワイヤ38の特性変動があったとしても、キャリブレーションを行うことができる。
 以上、本発明の実施形態及びその変形例について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述の各実施形態において示した構成要素は適宜に組み合わせて構成することが可能である。本発明は前述した説明に限定されることはなく、添付のクレームの範囲によってのみ限定される。
 上記本発明の各実施形態によれば、ワイヤの特性変動があったとしても、キャリブレーションを行うことができる医療用システムおよび処置具のキャリブレーション方法を提供できる。
 1 医療用システム
 2 マスタマニピュレータ
 3 内視鏡装置
 4 スレーブマニピュレータ
 5 マスタアーム
 6 表示装置
 7 載置台
 8 多関節ロボット
 21 処置具
 22 関節部
 23 観察装置
 24 挿入部
 25 外套管駆動部(駆動部)
 26 外套管
 27 処置部
 29 処置具チャンネル
 30 撮像部
 31 照明部
 32 処置具駆動部(駆動部)
 33 軟性部
 34 先端部
 35 モータ
 36 エンコーダ
 37 駆動側回転体
 38 ワイヤ
 39 従動側回転体
 40 腕部
 50 制御部
 51 マスタ制御部
 52 スレーブ制御部
 53 キャリブレーション部
 54 画像処理部
 55 補償量演算部
 56 処置具情報記憶部
 57 パラメータテーブル(テーブル)
 58 入力(操作入力)
 59 画像情報
 Op 操作者
 X 標識部

Claims (9)

  1.  生体に対して処置をする処置部、前記処置部を移動させる関節部、前記関節部に接続された可撓管部、及び前記可撓管部に接続され前記関節部を変位させる駆動部を備えた処置具と、
     遠位端と近位端とを有し前記処置部が前記遠位端から突出可能となるように前記処置具を保持する可撓性の外套管、及び少なくとも前記関節部を撮像視野に含む少なくとも1つの画像を取得可能な撮像部を備えた内視鏡装置と、
     前記処置具の動作を前記画像に基づいて制御する制御部と、
     を備え、
     前記制御部は、
      前記関節部を動作させるためのパラメータを有するテーブルと、
      前記パラメータに基づいて前記駆動部を制御する指令を前記駆動部に対して発する制御器と、
      前記関節部の位置と姿勢との少なくともいずれかを前記画像に基づいて算出する画像処理部と、
      前記画像処理部により算出された前記関節部の位置と姿勢との少なくともいずれかに基づいて前記関節部の変位を検出し前記指令と前記関節部の変位との差分を補償する補償値を生成して前記パラメータに前記補償値を繰り入れる補償量演算部と、
     を備えた医療用システム。
  2.  前記画像処理部は前記画像を用いたパターンマッチングにより前記関節部の関節角度を算出する
     請求項1に記載の医療用システム。
  3.  前記画像処理部は前記画像において、最新の画像と時系列で直前に取得された画像との差分から前記関節部の変位を算出する
     請求項1に記載の医療用システム。
  4.  前記制御部は、前記画像において前記関節部が特定できない場合に、前記画像に前記関節部が表示されるまで前記関節部を変位させる
     請求項1から請求項3のいずれか一項に記載の医療用システム。
  5.  前記画像を表示可能な表示装置をさらに備え、
     前記制御部は、前記画像において前記関節部が特定できない場合に前記関節部が前記撮像部の撮像視野の外に位置していると判定し、前記関節部の特定可能領域を前記画像に重ねた指示画像を前記画像に代えて前記表示装置へ出力し、
     前記表示装置は、前記画像に代えて前記指示画像を受信したときには前記指示画像を表示し、
     前記画像処理部は、前記関節部の特定可能領域内に前記関節部が位置した画像を用いて前記関節部の位置と姿勢との少なくともいずれかを算出する
     請求項1から請求項3のいずれか一項に記載の医療用システム。
  6.  前記処置具は、前記処置具の構成を特定するための標識部を処置部と関節部との少なくともいずれかに有し、
     前記制御部は、前記標識部に基づいて前記処置具を判別する
     請求項1から請求項5のいずれか一項に記載の医療用システム。
  7.  前記補償量演算部は、前記指令が発せられてから前記関節部の変位が開始するまでの間に前記駆動部が駆動された量に基づくヒステリシス幅を算出して前記補償値とする
     請求項1から請求項6のいずれか一項に記載の医療用システム。
  8.  前記制御部は、前記標識部に基づいて判別された前記処置具に対応して前記パラメータを変更する
     請求項6に記載の医療用システム。
  9.  関節部を備えた処置具を取り付け可能な医療用システムにおける前記処置具のキャリブレーション方法であって、
     前記医療用システムに前記処置具が取り付けられた状態で取得され前記関節部を含む画像から前記関節部の位置と姿勢との少なくともいずれかを算出し、
     算出された前記関節部の位置と姿勢との少なくともいずれかに基づいて前記関節部の変位を検出し、
     前記関節部を動作させるための指令と前記関節部の変位との差分を補償する補償値を生成し、
     前記関節部を動作させるための指令に用いられるパラメータに対して前記補償値を繰り入れる
     処置具のキャリブレーション方法。
PCT/JP2015/055599 2014-02-27 2015-02-26 医療用システム及び処置具のキャリブレーション方法 WO2015129802A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580007642.7A CN105979848B (zh) 2014-02-27 2015-02-26 医疗用系统以及处置器具的校准方法
EP15754565.8A EP3111819B1 (en) 2014-02-27 2015-02-26 Medical system and treatment tool calibration method
US15/245,269 US10863883B2 (en) 2014-02-27 2016-08-24 Medical system and treatment tool calibrating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-036824 2014-02-27
JP2014036824A JP6270537B2 (ja) 2014-02-27 2014-02-27 医療用システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/245,269 Continuation US10863883B2 (en) 2014-02-27 2016-08-24 Medical system and treatment tool calibrating method

Publications (1)

Publication Number Publication Date
WO2015129802A1 true WO2015129802A1 (ja) 2015-09-03

Family

ID=54009116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055599 WO2015129802A1 (ja) 2014-02-27 2015-02-26 医療用システム及び処置具のキャリブレーション方法

Country Status (5)

Country Link
US (1) US10863883B2 (ja)
EP (1) EP3111819B1 (ja)
JP (1) JP6270537B2 (ja)
CN (1) CN105979848B (ja)
WO (1) WO2015129802A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026632A1 (ja) * 2021-08-23 2023-03-02 国立研究開発法人国立がん研究センター 内視鏡画像の処置具の先端検出装置、内視鏡画像の処置具の先端検出方法、及び内視鏡画像の処置具の先端検出プログラム

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8672837B2 (en) 2010-06-24 2014-03-18 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
US9452276B2 (en) 2011-10-14 2016-09-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
US20130303944A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Off-axis electromagnetic sensor
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US9057600B2 (en) 2013-03-13 2015-06-16 Hansen Medical, Inc. Reducing incremental measurement sensor error
US9271663B2 (en) 2013-03-15 2016-03-01 Hansen Medical, Inc. Flexible instrument localization from both remote and elongation sensors
US9014851B2 (en) 2013-03-15 2015-04-21 Hansen Medical, Inc. Systems and methods for tracking robotically controlled medical instruments
US9629595B2 (en) 2013-03-15 2017-04-25 Hansen Medical, Inc. Systems and methods for localizing, tracking and/or controlling medical instruments
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
EP3243476B1 (en) 2014-03-24 2019-11-06 Auris Health, Inc. Systems and devices for catheter driving instinctiveness
WO2016054256A1 (en) 2014-09-30 2016-04-07 Auris Surgical Robotics, Inc Configurable robotic surgical system with virtual rail and flexible endoscope
US10314463B2 (en) * 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
JP6348854B2 (ja) * 2015-02-03 2018-06-27 富士フイルム株式会社 内視鏡用プロセッサ装置、内視鏡システム及び内視鏡システムの非接触給電方法
JP6824967B2 (ja) 2015-09-18 2021-02-03 オーリス ヘルス インコーポレイテッド 管状網のナビゲーション
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
US11399901B2 (en) 2016-03-31 2022-08-02 Koninklijke Philips N.V. Image guided robotic system for tumor aspiration
US9931025B1 (en) 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
DE102016225613A1 (de) * 2016-12-20 2018-06-21 Kuka Roboter Gmbh Verfahren zum Kalibrieren eines Manipulators eines diagnostischen und/oder therapeutischen Manipulatorsystems
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
CN108990412B (zh) 2017-03-31 2022-03-22 奥瑞斯健康公司 补偿生理噪声的用于腔网络导航的机器人系统
EP3621520A4 (en) 2017-05-12 2021-02-17 Auris Health, Inc. BIOPSY APPARATUS AND SYSTEM
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks
WO2019005872A1 (en) 2017-06-28 2019-01-03 Auris Health, Inc. INSTRUMENT INSERTION COMPENSATION
WO2019005699A1 (en) 2017-06-28 2019-01-03 Auris Health, Inc. ELECTROMAGNETIC FIELD GENERATOR ALIGNMENT
EP3644886A4 (en) 2017-06-28 2021-03-24 Auris Health, Inc. ELECTROMAGNETIC DISTORTION DETECTION
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
CN110913749B (zh) * 2017-07-03 2022-06-24 富士胶片株式会社 医疗图像处理装置、内窥镜装置、诊断支持装置、医疗业务支持装置及报告书制作支持装置
CN107322589B (zh) * 2017-07-14 2020-06-19 西安交通大学 一种可变刚度的柔性手术臂的气动控制系统
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US10555778B2 (en) 2017-10-13 2020-02-11 Auris Health, Inc. Image-based branch detection and mapping for navigation
US11058493B2 (en) 2017-10-13 2021-07-13 Auris Health, Inc. Robotic system configured for navigation path tracing
EP3684282B1 (en) 2017-12-06 2024-02-21 Auris Health, Inc. Systems to correct for uncommanded instrument roll
JP7322026B2 (ja) 2017-12-14 2023-08-07 オーリス ヘルス インコーポレイテッド 器具の位置推定のシステムおよび方法
WO2019125964A1 (en) 2017-12-18 2019-06-27 Auris Health, Inc. Methods and systems for instrument tracking and navigation within luminal networks
EP3752085A4 (en) 2018-02-13 2021-11-24 Auris Health, Inc. SYSTEM AND METHOD FOR TRAINING A MEDICAL INSTRUMENT
WO2019191143A1 (en) 2018-03-28 2019-10-03 Auris Health, Inc. Systems and methods for displaying estimated location of instrument
WO2019191144A1 (en) 2018-03-28 2019-10-03 Auris Health, Inc. Systems and methods for registration of location sensors
US10932812B2 (en) * 2018-03-30 2021-03-02 Spectranetics Llc Calibrated power-driven surgical cutting device
CN110831486B (zh) 2018-05-30 2022-04-05 奥瑞斯健康公司 用于基于定位传感器的分支预测的系统和方法
EP3801348B1 (en) 2018-05-31 2024-05-01 Auris Health, Inc. Image-based airway analysis and mapping
WO2019231891A1 (en) 2018-05-31 2019-12-05 Auris Health, Inc. Path-based navigation of tubular networks
CN112236083A (zh) 2018-05-31 2021-01-15 奥瑞斯健康公司 用于导航检测生理噪声的管腔网络的机器人系统和方法
EP3856064A4 (en) 2018-09-28 2022-06-29 Auris Health, Inc. Systems and methods for docking medical instruments
US20210393349A1 (en) * 2018-10-04 2021-12-23 Inatuitive Surgical Operations, Inc. Systems and methods for device verification and sensor calibration
KR20220058569A (ko) 2019-08-30 2022-05-09 아우리스 헬스, 인코포레이티드 위치 센서의 가중치-기반 정합을 위한 시스템 및 방법
WO2021038495A1 (en) 2019-08-30 2021-03-04 Auris Health, Inc. Instrument image reliability systems and methods
EP4025921A4 (en) 2019-09-03 2023-09-06 Auris Health, Inc. ELECTROMAGNETIC DISTORTION DETECTION AND COMPENSATION
CN114901194A (zh) 2019-12-31 2022-08-12 奥瑞斯健康公司 解剖特征识别和瞄准
EP4084722A4 (en) 2019-12-31 2024-01-10 Auris Health Inc ALIGNMENT INTERFACES FOR PERCUTANE ACCESS
EP4084720A4 (en) 2019-12-31 2024-01-17 Auris Health Inc ALIGNMENT TECHNIQUES FOR PERCUTANE ACCESS
US20220110703A1 (en) * 2020-01-17 2022-04-14 Korea Advanced Institute Of Science And Technology Method of determining hysteresis of surgical robot, method of compensating for the same, and endoscopic surgical apparatus
CN112057171B (zh) * 2020-09-04 2021-08-17 北京科迈启元科技有限公司 机械臂与手术执行器连接件
EP4247290A1 (en) * 2020-11-20 2023-09-27 Auris Health, Inc. Automated procedure evaluation
KR102555196B1 (ko) * 2021-05-17 2023-07-14 주식회사 로엔서지컬 와이어 히스테리시스 보상 기능을 갖는 수술 도구 장치 및 그 제어방법
WO2022269797A1 (ja) * 2021-06-23 2022-12-29 オリンパス株式会社 マニピュレータシステム、計測装置およびマニピュレータの制御方法
WO2023021538A1 (ja) * 2021-08-16 2023-02-23 オリンパスメディカルシステムズ株式会社 マニピュレータシステム、制御装置及び形状推定方法
KR102616257B1 (ko) * 2021-10-18 2023-12-22 주식회사 로엔서지컬 가요성 튜브의 히스테리시스 보상 제어장치 및 그 방법
CN114378819B (zh) * 2022-01-18 2022-07-26 上海健康医学院 一种消化内镜微创手术机器人主从手控制方法和装置
KR102478344B1 (ko) * 2022-07-06 2022-12-16 주식회사 에어스메디컬 의료용 로봇의 제어를 모니터링 하기 위한 방법, 프로그램 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580842A (ja) * 1991-05-10 1993-04-02 Shinko Electric Co Ltd 移動ロボツトの制御方法
JP2004041538A (ja) * 2002-07-15 2004-02-12 Hitachi Ltd 牽引位置決め装置
JP2007260298A (ja) * 2006-03-29 2007-10-11 Univ Waseda 手術支援ロボットの動作制御システム及び位置検出装置
JP2009107074A (ja) * 2007-10-30 2009-05-21 Olympus Medical Systems Corp マニピュレータ装置および医療機器システム
JP2010214128A (ja) * 2010-05-19 2010-09-30 Olympus Medical Systems Corp 処置具システム及びマニピュレータシステム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217015A (ja) * 1982-06-11 1983-12-16 Fujitsu Ltd ロボツトのヒステリシスの補正方法
JPH10174686A (ja) 1996-12-17 1998-06-30 Toshiba Corp ワイヤ駆動機構および超音波プローブ
US7386365B2 (en) 2004-05-04 2008-06-10 Intuitive Surgical, Inc. Tool grip calibration for robotic surgery
US10555775B2 (en) * 2005-05-16 2020-02-11 Intuitive Surgical Operations, Inc. Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery
JP4794934B2 (ja) 2005-07-22 2011-10-19 オリンパスメディカルシステムズ株式会社 内視鏡
US9718190B2 (en) * 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US8157793B2 (en) 2006-10-25 2012-04-17 Terumo Kabushiki Kaisha Manipulator for medical use
JP2008104854A (ja) 2006-10-25 2008-05-08 Terumo Corp 医療用マニピュレータ
EP2144571A2 (en) * 2007-04-11 2010-01-20 Forth Photonics Limited A supporting structure and a workstation incorporating the supporting structure for improving, objectifying and documenting in vivo examinations of the uterus
JP5237608B2 (ja) 2007-10-25 2013-07-17 オリンパスメディカルシステムズ株式会社 医療装置
JP4580973B2 (ja) * 2007-11-29 2010-11-17 オリンパスメディカルシステムズ株式会社 処置具システム
JP2010035768A (ja) * 2008-08-04 2010-02-18 Olympus Medical Systems Corp 能動駆動式医療機器
US9259274B2 (en) 2008-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Passive preload and capstan drive for surgical instruments
US8594841B2 (en) * 2008-12-31 2013-11-26 Intuitive Surgical Operations, Inc. Visual force feedback in a minimally invasive surgical procedure
JP5193401B2 (ja) * 2011-05-12 2013-05-08 オリンパスメディカルシステムズ株式会社 医療用制御装置
JP2014000301A (ja) * 2012-06-20 2014-01-09 Fujifilm Corp 光源装置及び内視鏡システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580842A (ja) * 1991-05-10 1993-04-02 Shinko Electric Co Ltd 移動ロボツトの制御方法
JP2004041538A (ja) * 2002-07-15 2004-02-12 Hitachi Ltd 牽引位置決め装置
JP2007260298A (ja) * 2006-03-29 2007-10-11 Univ Waseda 手術支援ロボットの動作制御システム及び位置検出装置
JP2009107074A (ja) * 2007-10-30 2009-05-21 Olympus Medical Systems Corp マニピュレータ装置および医療機器システム
JP2010214128A (ja) * 2010-05-19 2010-09-30 Olympus Medical Systems Corp 処置具システム及びマニピュレータシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3111819A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026632A1 (ja) * 2021-08-23 2023-03-02 国立研究開発法人国立がん研究センター 内視鏡画像の処置具の先端検出装置、内視鏡画像の処置具の先端検出方法、及び内視鏡画像の処置具の先端検出プログラム

Also Published As

Publication number Publication date
EP3111819A1 (en) 2017-01-04
JP2015160278A (ja) 2015-09-07
CN105979848A (zh) 2016-09-28
EP3111819A4 (en) 2017-11-29
US10863883B2 (en) 2020-12-15
JP6270537B2 (ja) 2018-01-31
CN105979848B (zh) 2018-02-13
US20160360947A1 (en) 2016-12-15
EP3111819B1 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
WO2015129802A1 (ja) 医療用システム及び処置具のキャリブレーション方法
JP7229319B2 (ja) 手術支援装置、その制御方法、プログラム並びに手術支援システム
JP6091410B2 (ja) 内視鏡装置の作動方法及び内視鏡システム
JP6278747B2 (ja) マニピュレータのキャリブレーション方法、マニピュレータ、およびマニピュレータシステム
KR20190054030A (ko) 견인 와이어를 사용한 내시경의 자동화된 교정
US11540699B2 (en) Medical manipulator system
WO2009084345A1 (ja) 医療機器システム
CN104394792A (zh) 手术支援装置
US20200187898A1 (en) A laparoscopic adapter, an echocardiography probe and a method for coupling the adapter to the probe
JP6149175B1 (ja) 手術支援装置、その制御方法、プログラム並びに手術支援システム
WO2017212474A1 (en) Endoscope -like devices comprising sensors that provide positional information
KR101284087B1 (ko) 시각센서를 이용한 수술용 로봇, 그 수술용 로봇의 위치 및 각도 분석방법, 그 수술용 로봇의 제어방법, 그 수술용 로봇의 위치 및 각도 분석시스템 및 그 수술용 로봇의 제어 시스템
WO2016136306A1 (ja) 医療用マスタースレーブマニピュレータシステム
JP6388686B2 (ja) 手術支援装置、その制御方法、プログラム並びに手術支援システム
JP7110351B2 (ja) 内視鏡システム及び制御装置
JP6385528B2 (ja) 医療システム及び医療システムの作動方法
WO2022241239A1 (en) Force estimation and visual feedback in surgical robotics
JP5829164B2 (ja) 医療機器システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015754565

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015754565

Country of ref document: EP