WO2015129697A1 - 4輪駆動車のクラッチ制御装置 - Google Patents
4輪駆動車のクラッチ制御装置 Download PDFInfo
- Publication number
- WO2015129697A1 WO2015129697A1 PCT/JP2015/055253 JP2015055253W WO2015129697A1 WO 2015129697 A1 WO2015129697 A1 WO 2015129697A1 JP 2015055253 W JP2015055253 W JP 2015055253W WO 2015129697 A1 WO2015129697 A1 WO 2015129697A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clutch
- wheel drive
- wheel
- drive mode
- brake
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 59
- 230000000994 depressogenic effect Effects 0.000 claims description 32
- 238000012546 transfer Methods 0.000 claims description 14
- 230000007246 mechanism Effects 0.000 claims description 11
- 230000001172 regenerating effect Effects 0.000 claims description 11
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 abstract description 90
- 238000010168 coupling process Methods 0.000 abstract description 90
- 238000005859 coupling reaction Methods 0.000 abstract description 90
- 238000000034 method Methods 0.000 description 33
- 230000008569 process Effects 0.000 description 32
- 230000007704 transition Effects 0.000 description 17
- 230000000694 effects Effects 0.000 description 10
- 230000004044 response Effects 0.000 description 10
- 230000000881 depressing effect Effects 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000013019 agitation Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K23/00—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
- B60K23/08—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/34—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
- B60K17/344—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K23/00—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
- B60K23/08—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
- B60K23/0808—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/38—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
- B60K6/387—Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/52—Driving a plurality of drive axles, e.g. four-wheel drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/119—Conjoint control of vehicle sub-units of different type or different function including control of all-wheel-driveline means, e.g. transfer gears or clutches for dividing torque between front and rear axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/12—Conjoint control of vehicle sub-units of different type or different function including control of differentials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/12—Conjoint control of vehicle sub-units of different type or different function including control of differentials
- B60W10/16—Axle differentials, e.g. for dividing torque between left and right wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/02—Control of vehicle driving stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/02—Control of vehicle driving stability
- B60W30/045—Improving turning performance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18072—Coasting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18109—Braking
- B60W30/18127—Regenerative braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/101—Side slip angle of tyre
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/114—Yaw movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D11/00—Clutches in which the members have interengaging parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D13/00—Friction clutches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D21/00—Systems comprising a plurality of actuated clutches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D23/00—Details of mechanically-actuated clutches not specific for one distinct type
- F16D23/02—Arrangements for synchronisation, also for power-operated clutches
- F16D23/04—Arrangements for synchronisation, also for power-operated clutches with an additional friction clutch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/06—Control by electric or electronic means, e.g. of fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/34—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
- B60K17/348—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
- B60K17/35—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
- B60K17/3515—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with a clutch adjacent to traction wheel, e.g. automatic wheel hub
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K2006/4825—Electric machine connected or connectable to gearbox input shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K23/00—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
- B60K23/08—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
- B60K2023/085—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles automatically actuated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0604—Throttle position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0638—Engine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/10—Change speed gearings
- B60W2510/1015—Input shaft speed, e.g. turbine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/10—Change speed gearings
- B60W2510/104—Output speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
- B60W2520/105—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/28—Wheel speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/10—Accelerator pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/10—Accelerator pedal position
- B60W2540/103—Accelerator thresholds, e.g. kickdown
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/12—Brake pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/18—Steering angle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present invention relates to a clutch control device for a four-wheel drive vehicle having a meshing clutch and a friction clutch in a driving force transmission system to auxiliary driving wheels.
- a front-wheel drive-based four-wheel drive vehicle having a meshing clutch and a friction clutch as a driving force transmission system to the rear wheels is known (see, for example, Patent Document 1).
- the meshing clutch is fastened.
- the friction clutch is released and then the meshing clutch is released.
- the present invention has been made paying attention to the above-mentioned problem.
- the accelerator is released in the low vehicle speed range in which the connected four-wheel drive mode is selected, the four-wheel drive performance is ensured during re-acceleration and the brake operation. It is an object of the present invention to provide a clutch control device for a four-wheel drive vehicle capable of achieving both reduction in driving force transmission system friction at the time.
- the present invention provides a main drive wheel connected to a drive source among the left and right front wheels and the left and right rear wheels, and the other drive wheel connected to the drive source via a clutch.
- a clutch As the clutch, a meshing clutch and a friction clutch arranged separately in a driving branch side transmission system path and a sub driving wheel side transmission system path sandwiching a differential among the driving force transmission system to the sub driving wheel, respectively.
- the meshing clutch disengages the driving force transmission system to the auxiliary driving wheel from the driving force transmission system to the main driving wheel by releasing the clutch, and the friction clutch is driven from the driving source according to the clutch fastening capacity. A part of the force is distributed to the auxiliary drive wheels.
- clutch control means for performing engagement / release control of the meshing clutch and engagement / release control of the friction clutch.
- the four-wheel drive vehicle has a disconnect two-wheel drive mode for releasing the mesh clutch and the friction clutch, and a connect four-wheel drive mode for fastening the mesh clutch and the friction clutch.
- the clutch control means maintains the connect four-wheel drive mode if the brake is not depressed during an accelerator release operation in a low vehicle speed range where the connect four-wheel drive mode is selected. Transition to the disconnect two-wheel drive mode.
- the connected four-wheel drive mode is maintained if the brake is not depressed, and the disconnected two-wheel drive mode is activated if the brake is depressed. It is moved to. That is, the “connect four-wheel drive mode” is a four-wheel drive mode with high drive performance that distributes the drive force from the drive source to the four wheels when acceleration is requested.
- the “disconnect two-wheel drive mode” is a two-wheel drive mode in which the rotation of the driving force transmission system from the meshing clutch to the friction clutch to the auxiliary driving wheel is stopped to reduce friction loss and the like.
- FIG. 1 is a drive system configuration diagram showing a drive system configuration of a front wheel drive-based four-wheel drive hybrid vehicle to which a clutch control device of Example 1 is applied.
- 1 is a control system configuration diagram showing a control system configuration of a front wheel drive-based four-wheel drive hybrid vehicle to which a clutch control device of Example 1 is applied.
- FIG. It is a basic map figure which shows the drive mode switching map according to the vehicle speed and accelerator opening used by clutch control when the "auto mode" of Example 1 is selected.
- FIG. 6 is a drive mode transition diagram showing a switching transition of drive modes (disconnect two-wheel drive mode, standby two-wheel drive mode, and connect four-wheel drive mode) by clutch control when “auto mode” of the first embodiment is selected. .
- FIG. 3 is a flowchart illustrating a flow of clutch control processing executed by the 4WD control unit according to the first embodiment.
- Accelerator opening (ACC), brake operating status, engine torque, vehicle speed (VSP), coupling transmission torque (TETS) when the brake is depressed temporarily during coasting in "Connect 4-wheel drive mode" -It is a time chart which shows each characteristic of a dog clutch release / engagement state. It is a drive system block diagram which shows the drive system structure of the four-wheel drive vehicle of the rear-wheel drive base to which the clutch control apparatus of Example 2 was applied.
- the configuration of the clutch control device of the front wheel drive-based four-wheel drive hybrid vehicle (an example of a four-wheel drive vehicle) in the first embodiment is referred to as “four-wheel drive hybrid vehicle drive system configuration”, “four-wheel drive hybrid vehicle control system”.
- the description is divided into “configuration”, “drive mode switching configuration”, and “clutch control configuration”.
- FIG. 1 shows a drive system configuration of a front-wheel drive-based four-wheel drive hybrid vehicle to which a clutch control device is applied.
- the drive system configuration of the four-wheel drive hybrid vehicle will be described with reference to FIG.
- the front-wheel drive system of the four-wheel drive hybrid vehicle includes a horizontally mounted engine 1 (drive source), an engine clutch 26, a motor / generator 27 (drive source), and a transmission 2.
- the front differential 3, the left front wheel drive shaft 4, the right front wheel drive shaft 5, the left front wheel 6 (main drive wheel), and the right front wheel 7 (main drive wheel) are provided on the downstream side of the transmission 2. Yes. That is, it is possible to switch between a hybrid vehicle mode (hereinafter referred to as “HEV mode”) by engagement of the engine clutch 26 and an electric vehicle mode (hereinafter referred to as “EV mode”) by release of the engine clutch 26.
- HEV mode hybrid vehicle mode
- EV mode electric vehicle mode
- the “HEV mode” is selected in the high accelerator opening region, and the “EV mode” is selected in the low accelerator opening region.
- the motor / generator 27 when the motor / generator 27 is powered in the “EV mode”, the driving force that has passed through the motor / generator 27 and the transmission 2 is transmitted to the left and right front wheel drive shafts 4, 5 via the front differential 3. The left and right front wheels 6 and 7 are always driven while allowing the differential. Further, during regeneration of the motor / generator 27 in the “EV mode”, drive energy from the left and right front wheels 6, 7 is transferred to the motor / motor via the left and right front wheel drive shafts 4, 5, the front differential 3 and the transmission 2. Input to the generator 27. Then, the motor / generator 27 converts the electric energy into electric energy and charges the battery 57 (see FIG. 2).
- the rear wheel drive system of the four-wheel drive hybrid vehicle includes a dog clutch 8 (meshing clutch), a bevel gear 9, an output pinion 10, a rear wheel output shaft 11, and a propeller shaft 12.
- the dog clutch 8 and the electric coupling 16 By releasing the dog clutch 8 and the electric coupling 16, the drive system rotation (rotation of the propeller shaft 12 and the like) on the downstream side of the dog clutch 8 is stopped. Improvement is achieved.
- the dog clutch 8 is provided at a driving branch position from the left and right front wheels 6, 7 to the left and right rear wheels 19, 20, and a driving force transmission system to the left and right rear wheels 19, 20 is provided to the left and right front wheels 6, 7 by releasing the clutch.
- This is a meshing clutch that is disconnected from the driving force transmission system.
- the input side meshing member of the dog clutch 8 is coupled to the differential case of the front differential 3, and the output side meshing member of the dog clutch 8 is coupled to the bevel gear 9.
- the dog clutch 8, the bevel gear 9, the output pinion 10, and a part of the rear wheel output shaft 11 are built in a transfer case 23 fixed at a position adjacent to the front differential housing 22.
- one of a pair of meshing members is a fixed member and the other is a movable member.
- a spring that biases in the fastening direction is provided between the fixed member and the movable member, and a solenoid is provided on the outer periphery of the movable member.
- a screw groove that can be fitted with a pin is used.
- the electric control coupling 16 is a friction clutch that is provided downstream of the dog clutch 8 and distributes a part of the driving force from the horizontally mounted engine 1 to the left and right rear wheels 19 and 20 in accordance with the clutch fastening capacity.
- the input side clutch plate of the electric control coupling 16 is connected to the left side gear of the rear differential 15, and the output side clutch plate is connected to the left rear wheel drive shaft 17.
- the electric control coupling 16 is built in a coupling case 25 fixed at a position adjacent to the rear differential housing 24.
- this electric control coupling 16 for example, a multi-plate friction clutch in which a plurality of plates on the input side and the output side are alternately arranged, a fixed cam piston and a movable cam piston having opposing cam surfaces, and an interval between the opposing cam surfaces And a cam member interposed between them.
- the electric control coupling 16 When the electric control coupling 16 is engaged, if the movable cam piston is rotated by an electric motor, the movable cam piston strokes in the clutch engagement direction according to the rotation angle by the cam action that enlarges the piston interval, and the multi-plate friction clutch This is done by increasing the frictional fastening force.
- FIG. 2 shows a control system configuration of a front wheel drive-based four-wheel drive hybrid vehicle to which the clutch control device is applied.
- the control system configuration of the four-wheel drive hybrid vehicle will be described below with reference to FIG.
- the control system of the four-wheel drive hybrid vehicle includes an engine control module 31, a transmission control module 32, an ABS actuator control unit 33, and a 4WD control unit 34, as shown in FIG.
- the engine control module 31 is a control device for the horizontal engine 1 and receives detection signals from the engine speed sensor 35, the accelerator opening sensor 36, and the like. From the engine control module 31, engine speed information and accelerator opening information (ACC information) are input to the 4WD control unit 34 via the CAN communication line 37.
- the transmission control module 32 is a control device for the transmission 2, and receives detection signals from the transmission input rotational speed sensor 38, the transmission output rotational speed sensor 39, and the like.
- Gear ratio information (gear ratio information) is input from the transmission control module 32 to the 4WD control unit 34 via the CAN communication line 37.
- the ABS actuator control unit 33 is a control device for an ABS actuator that controls the brake fluid pressure of each wheel.
- the detection signal from is input.
- yaw rate information, lateral G information, front and rear G information, and wheel speed information of each wheel are input to the 4WD control unit 34 via the CAN communication line 37.
- steering angle information is input from the steering angle sensor 47 to the 4WD control unit 34 via the CAN communication line 37.
- the average value of the left and right rear wheel speed information is used as vehicle speed information (VSP information).
- the 4WD control unit 34 is an engagement / release control device for the dog clutch 8 and the electric control coupling 16, and performs arithmetic processing based on various input information. Then, a drive control command is output to the dog clutch actuator 48 (solenoid) and the electric coupling actuator 49 (electric motor).
- a drive control command is output to the dog clutch actuator 48 (solenoid) and the electric coupling actuator 49 (electric motor).
- input information sources other than the CAN communication line 37 a drive mode selection switch 50, a brake switch 51 for detecting the presence or absence of a brake operation, a ring gear rotation speed sensor 52, a dog clutch stroke sensor 53, a motor rotation angle sensor 54, and the like.
- the drive mode selection switch 50 is a switch for the driver to select and select “2WD mode”, “lock mode”, and “auto mode”.
- “2WD mode” the front-wheel drive 2WD state in which the dog clutch 8 and the electric coupling 16 are released is maintained.
- the “lock mode” the complete 4WD state in which the dog clutch 8 and the electric coupling 16 are engaged is maintained.
- the “auto mode” the engagement / release of the dog clutch 8 and the electric coupling 16 is automatically controlled according to the vehicle state (vehicle speed VSP, accelerator opening ACC).
- the “auto mode” has options of “eco-auto mode” and “sport auto mode”, and “standby two-wheel drive mode” in which the dog clutch 8 is engaged and the electric coupling 16 is released depends on the options. Different. That is, when the “eco-auto mode” is selected, the electronic control coupling 16 is in a fully released state and waits. However, when the “sports auto mode” is selected, the electronic control coupling 16 is in a released state immediately before fastening and waits. .
- the ring gear rotation speed sensor 52 is a sensor for acquiring the output rotation speed information of the dog clutch 8, and by considering the rear side gear ratio and the front side gear ratio in the calculation for the ring gear rotation speed detection value, The output rotational speed of the dog clutch 8 is calculated.
- the input rotation speed information of the dog clutch 8 is acquired by calculating the average value of the left front wheel speed from the left wheel speed sensor 43 and the right front wheel speed from the right wheel speed sensor 44.
- a motor controller 55 that controls the motor / generator 27 is connected to the CAN communication line 37.
- the motor controller 55 converts the direct current from the battery 57 into a three-phase alternating current to the motor / generator 27 by a powering instruction to the inverter 56, and charges the battery 57 with the three-phase alternating current generated by the motor / generator 27 by the regenerative instruction. Convert to direct current.
- the regenerative command for the inverter 56 is output when performing regenerative cooperative control that takes the required braking force request for regenerative braking (priority) and hydraulic braking during brake operation.
- FIG. 3 shows a drive mode switching map according to the vehicle speed VSP and the accelerator opening ACC used in the clutch control when the “auto mode” is selected
- FIG. 4 shows the drive mode (disconnect two-wheel drive mode / (2) Transition transition of standby 2-wheel drive mode / connect 4-wheel drive mode).
- a drive mode switching configuration will be described with reference to FIGS. 3 and 4.
- the drive mode switching map includes a disconnect two-wheel drive mode (Disconnect), a standby two-wheel drive mode (Stand-by), and a connect 4 according to the vehicle speed VSP and the accelerator opening ACC.
- the wheel drive mode (Connect) is set separately.
- the three drive modes are: the zone demarcation line A in which the accelerator depressing amount ACC increases in proportion to the increase in the vehicle speed VSP from the base point a of the set vehicle speed VSP0 with the accelerator depressing point zero, and the intersection b between the region demarcation line A and It is divided by a region dividing line B of a constant accelerator opening ACC0 drawn toward the vehicle speed side.
- the accelerator opening degree ACC is equal to or less than the set opening degree ACC0, and the accelerator opening degree ACC is zero.
- the area is set. In other words, since the accelerator opening ACC is equal to or less than the set opening ACC0, the frequency of occurrence of differential rotation between the left and right front wheels 6 and 7 and the left and right rear wheels 19 and 20 due to driving slip is extremely small, and slip occurs even when driving slip occurs. It is set in the low 4WD request area.
- the accelerator opening ACC exceeds the set opening ACC0 and is set to a high vehicle speed region defined by the region dividing line A and the region dividing line B. That is, since the vehicle speed VSP is in the high vehicle speed range, the 4WD request is low, but the accelerator opening ACC exceeds the set opening ACC0, so the difference between the left and right front wheels 6 and 7 and the left and right rear wheels 19 and 20 due to driving slip. When rotation occurs, it is set in a region where there is a high possibility that the slip will increase rapidly.
- the connect four-wheel drive mode (Connect) is set in a low vehicle speed region surrounded by an accelerator opening axis line where the vehicle speed VSP is zero, a vehicle speed axis line where the accelerator opening ACC is zero, and a region division line A. . That is, it is set in a region where the 4WD request is high, such as when the vehicle starts or when the vehicle speed VSP is low but the accelerator opening degree ACC is high and the load is high.
- the dog clutch 8 and the electric coupling 16 are both released (WD) traveling (Disconnect).
- the front wheel drive 2WD running (Disconnect) is basically maintained by transmitting the drive force only to the left and right front wheels 6 and 7.
- the electric coupling 16 is frictionally engaged.
- the dog clutch 8 is engaged and fastened, and the driving force is distributed to the left and right rear wheels 19 and 20, thereby performing differential rotation control of the front and rear wheels to suppress driving slip.
- the 4WD running (Connect) is performed in which the dog clutch 8 and the electric coupling 16 are both fastened.
- the optimal driving force distribution according to the road surface condition is basically applied to the left and right front wheels 6 and 7 and the left and right rear wheels 19 and 20 (for example, start control and accelerator opening correspondence) Driving force distribution control is performed.
- the turning state of the vehicle is determined based on information from the steering rudder angle sensor 47, the yaw rate sensor 40, the lateral G sensor 41, and the longitudinal G sensor 42 during 4WD traveling, the fastening capacity of the electric control coupling 16 is increased. Control is performed to reduce the tight corner braking phenomenon.
- the switching transition between the 2WD travel (Disconnect), the 2WD travel (Stand-by), and the 4WD travel (Connect) is determined by the operating point determined by the vehicle speed VSP and the accelerator opening ACC. This is performed by a drive mode switching request output when crossing B.
- the transition speed to the drive mode that responds to the 4WD request is determined to have priority over the transition speed to the disconnect two-wheel drive mode that responds to the fuel efficiency request. That is, the switching transition speed (arrow F in FIG. 4) of 2WD traveling (Disconnect) ⁇ 2WD traveling (Stand-by) is increased, and the switching transition speed of 2WD traveling (Stand-by) ⁇ 2WD traveling (Disconnect) (FIG. 4).
- Arrow G is delayed. Similarly, the switching transition speed of 2WD traveling (Disconnect) ⁇ 4WD traveling (Connect) (arrow H in FIG. 4) is increased, and the switching transition speed of 4WD traveling (Connect) ⁇ 2WD traveling (Disconnect) (arrow I in FIG. 4). ) On the other hand, the switching transition speed of 2WD traveling (Stand-by) ⁇ 4WD traveling (Connect) (arrow J in FIG. 4) and the switching transition speed of 4WD traveling (Connect) ⁇ 2WD traveling (Stand-by) (FIG. 4). The arrow K) shows the same high speed.
- FIG. 5 shows a flow of clutch control processing executed by the 4WD control unit 34 (clutch control means).
- the 4WD control unit 34 clutch control means
- step S1 it is determined whether or not the “connected four-wheel drive mode” is set. If YES (“connect four-wheel drive mode”), the process proceeds to step S2, and if NO (“disconnect two-wheel drive mode”), the process proceeds to step S8.
- step S2 following the determination that the “connect four-wheel drive mode” is set in step S1, it is determined whether or not it is during an accelerator release operation. If YES (accelerator OFF), the process proceeds to step S3. If NO (accelerator ON), the process proceeds to return. Here, whether or not the accelerator release operation is being performed is determined based on the accelerator opening information from the accelerator opening sensor 36. When the process proceeds to return, the “connect four-wheel drive mode” is maintained.
- step S3 following the determination that the accelerator is OFF in step S2, it is determined whether or not the brake is being depressed. If YES (brake ON), the process proceeds to step S4. If NO (brake OFF), the process proceeds to return. Here, whether or not the brake is being depressed is determined based on brake switch information from the brake switch 51. If it is determined that the brake is ON, it is determined that the shift is from the “connect four-wheel drive mode” to the “disconnect two-wheel drive mode”, and a release request is issued to the dog clutch 8. When the process proceeds to return, the “connect four-wheel drive mode” is maintained.
- step S4 following the determination that the brake is ON in step S3 or the determination that the electric control coupling 16 is not yet completed in step S5, first, based on the release request to the dog clutch 8, the electric control is started. A release command is output to the coupling actuator 49 of the coupling 16, and the process proceeds to step S5.
- step S5 it is determined whether or not the release of the electric control coupling 16 is completed following the release command output of the electric control coupling 16 in step S4. If YES (electric control coupling release complete), the process proceeds to step S6. If NO (electric control coupling release complete), the process returns to step S4.
- the completion of release of the electric control coupling 16 is determined when the motor rotation angle information from the motor rotation angle sensor 54 reaches the release completion angle of the electric control coupling 16.
- step S6 a release command is output to the clutch actuator 48 of the dog clutch 8 following the determination that the electric coupling release is complete in step S5 or the determination that the dog clutch release is not complete in step S7. Then, the process proceeds to step S7.
- step S7 following the release command output of the dog clutch 8 in step S6, it is determined whether the dog clutch 8 has completed the mesh release. If YES (dog clutch release complete), the process proceeds to return, and if NO (dog clutch release incomplete), the process returns to step S6.
- whether or not the dog clutch 8 has completed the mesh release is determined based on the stroke information from the dog clutch stroke sensor 53. Further, when the process proceeds to the return, it is treated as an exceptional “disconnect two-wheel drive mode” thereafter, although it is in the “connect four-wheel drive mode” area, depending on the operating point determination of FIG.
- step S8 it is determined whether or not it is during the brake foot release operation following the determination that the "disconnect two-wheel drive mode" is set in step S1. If YES (brake off), the process proceeds to step S9. If NO (brake ON), the process proceeds to return.
- whether or not the brake release operation is being performed is determined based on the brake switch information from the brake switch 51. When it is determined that the brake is OFF, it is determined that the transition is from the “disconnect two-wheel drive mode” to the “connect four-wheel drive mode”, and an engagement request is issued to the dog clutch 8. When the process proceeds to return, the “disconnect two-wheel drive mode” is maintained.
- step S9 following the determination that the brake is OFF in step S8 or ⁇ N> ⁇ in step S11, first, based on the engagement request for the dog clutch 8, the coupling actuator 49 of the electric control coupling 16 is first selected.
- a fastening command is outputted to step S10.
- the fastening command for the coupling actuator 49 is a steep slope command in which the electric coupling 16 is in a completely fastened state in a short time when returning to the “connect four-wheel drive mode”.
- step S10 following the engagement command output of the electric control coupling 16 in step S9, a clutch differential rotation ⁇ N which is a differential rotation of the dog clutch 8 is calculated, and the process proceeds to step S11.
- the clutch differential rotation ⁇ N is calculated by subtracting the output rotation speed (calculated value based on the detected value of the ring gear rotation speed) from the input rotation speed (left and right front wheel speed average value) of the dog clutch 8.
- step S11 following the calculation of the clutch differential rotation ⁇ N in step S10, it is determined whether or not the clutch differential rotation ⁇ N is equal to or less than the rotation synchronization determination threshold value ⁇ . If YES ( ⁇ N ⁇ ⁇ ), the process proceeds to step S12. If NO ( ⁇ N> ⁇ ), the process returns to step S9.
- the rotation synchronization determination threshold value ⁇ is a clutch differential rotation value for determining a rotation synchronization state in which the dog clutch 8 can be engaged and engaged, and may be given as a fixed value or a variable value according to the vehicle speed VSP or the like. May be.
- step S12 following the determination that ⁇ N ⁇ ⁇ in step S11 or the determination that dog clutch engagement is not complete in step S13, an engagement command is output to the clutch actuator 48 of the dog clutch 8, Proceed to S13.
- step S13 following the engagement command output of the dog clutch 8 in step S12, it is determined whether or not the dog clutch 8 has completed meshing engagement. If YES (dog clutch engagement complete), the process proceeds to return, and if NO (clutch engagement incomplete), the process returns to step S12.
- whether or not the dog clutch 8 has completed meshing engagement is determined based on the stroke information from the dog clutch stroke sensor 53. Further, when the process proceeds to return, it is treated as “connect four-wheel drive mode” thereafter.
- the functions of the clutch control device for the four-wheel drive hybrid vehicle of the first embodiment are as follows: “Driving clutch engagement / release control action”, “Driving mode switching control action by brake operation”, “Other driving mode switching control features” This will be described separately in “Operation”.
- step S1 the process proceeds from step S1 to step S2 to return in the flowchart of FIG. That is, the “connect four-wheel drive mode” in which the dog clutch 8 and the electric coupling 16 are both fastened is maintained.
- step S1 the process proceeds from step S1 to step S2 to step S3 to return in the flowchart of FIG. That is, the “connect four-wheel drive mode” in which the dog clutch 8 and the electric coupling 16 are both fastened is maintained.
- step S1 when the brake depressing operation is performed during the low vehicle speed coasting by releasing the accelerator pedal in which the “connect four-wheel drive mode” is selected, step S1 ⁇ step S2 ⁇ step S3 ⁇ step in the flowchart of FIG.
- the process proceeds from S4 to step S5.
- step S4 when the operating point moves from the L point in FIG. 3 to the N point via the M point (the time when the brake is depressed), in step S4, if there is a brake depressing operation, the electric coupling 16 A release command is output to the coupling actuator 49.
- step S5 it is determined whether or not the electric control coupling 16 has completed the release. While it is determined that the electric control coupling 16 has not been released, the flow proceeds from step S4 to step S5.
- step S5 determines whether or not the electrical coupling 16 has completed the release.
- step S6 when the release of the electric control coupling 16 is completed, a mesh release command is immediately output to the clutch actuator 48 of the dog clutch 8.
- step S7 it is determined whether or not the dog clutch 8 has been disengaged, and while it is determined that the dog clutch 8 has not been released, the flow from step S6 to step S7 is repeated. If it is determined in step S7 that the dog clutch 8 has completed the mesh release, the process proceeds from step S7 to return. As described above, when the brake is depressed during low-speed coast driving, the operating point is in the “connect four-wheel drive mode” but the “disconnect two-wheel drive” from the “connect four-wheel drive mode”. Switch to "mode”.
- step S1 After the shift to the “disconnect two-wheel drive mode”, while the brake depression operation is maintained, the flow of step S1 ⁇ step S8 ⁇ return is repeated in the flowchart of FIG. Thereafter, when the foot is released from the brake pedal, the process proceeds from step S8 to step S9 ⁇ step S10 ⁇ step S11. That is, if it is determined in step S8 that the brake is released, a fastening command is immediately output to the coupling actuator 49 of the electric control coupling 16 in step S9.
- step S10 a clutch differential rotation ⁇ N that is a differential rotation of the dog clutch 8 is calculated.
- step S11 it is determined whether or not the clutch differential rotation ⁇ N is equal to or less than the rotation synchronization determination threshold value ⁇ .
- step S11 while it is determined that ⁇ N> ⁇ , the flow of going from step S9 to step S10 to step S11 is repeated. Thereafter, when the rotation synchronization determination condition in step S11 is satisfied, the process proceeds from step S11 to step S12 to step S13, and in step S12, an engagement command is output to the clutch actuator 48 of the dog clutch 8.
- step S13 it is determined whether or not the dog clutch 8 has completed the mesh engagement, and while it is determined that the clutch engagement is not completed, the flow from step S12 to step S13 is repeated. If it is determined in step S13 that the dog clutch 8 has completed meshing engagement, the process proceeds from step S13 to return. As described above, when the brake release operation is performed after switching to the “disconnect two-wheel drive mode”, the “disconnect two-wheel drive mode” is switched to the “connect four-wheel drive mode” and returned.
- The“ disconnect two-wheel drive mode ” is maintained from time t3 to t4 when the brake depressing operation continues.
- the fastening of the electric control coupling 16 is started at the timing of time t4, and the propeller shaft 12 that has been stopped starts rotating.
- the clutch differential rotation ⁇ N of the dog clutch 8 starts to decrease, and when it is determined that the clutch differential rotation ⁇ N is rotationally synchronized at time t5, the dog clutch 8 is engaged and fastened.
- the front wheel driving force transmission system and the rear wheel driving force transmission system are connected to the dog clutch 8 to switch from the "disconnect two-wheel drive mode" to the "connect four-wheel drive mode”.
- the operating point is “connect four-wheel drive mode” at time t3 even though the operation point is “connect four-wheel drive mode”.
- “disconnect two-wheel drive mode” is changed to “connect four-wheel drive mode” at time t5. Switch back.
- the “connected four-wheel drive mode”, “disconnect two-wheel drive mode”, and “standby two-wheel drive mode” set regions selected by the vehicle speed VSP and the accelerator opening ACC. .
- the “connect four-wheel drive mode” is selected regardless of the accelerator opening ACC when the vehicle speed VSP is in the low vehicle speed range.
- the “connect four-wheel drive mode” is maintained if the brake is not depressed.
- the "connect four-wheel drive mode” is shifted to the "disconnect two-wheel drive mode".
- the “connect four-wheel drive mode” is a four-wheel drive mode with high drive performance that distributes the drive force from the drive source to the four wheels when acceleration is requested.
- the “disconnect two-wheel drive mode” is a two-wheel drive mode in which the rotation of the rear wheel driving force transmission system to the left and right rear wheels 19 and 20 from the dog clutch 8 to the electric control coupling 16 is stopped to reduce friction loss and the like. is there.
- the “connected four-wheel drive mode” is maintained, so that the four-wheel drive performance is ensured in response to the acceleration request during re-acceleration when the accelerator is released from the accelerator release.
- the transition is switched from the “connected four-wheel drive mode” to the “disconnect two-wheel drive mode”, so that the friction of the rear wheel driving force transmission system during brake operation is reduced.
- the accelerator release operation is performed in the low vehicle speed range in which the “connect four-wheel drive mode” is selected, the four-wheel drive performance is ensured during re-acceleration and the friction of the rear-wheel drive force transmission system during brake operation. It is possible to achieve both reduction.
- the drive source has the motor / generator 27 that performs regenerative control when the brake is depressed.
- the mode shifts to the “disconnect two-wheel drive mode”. The friction of the driving force transmission system is reduced.
- regenerative control is performed in which the energy input from the left and right front wheels 6 and 7 is converted into electric energy by the motor / generator 27 only after passing through the front wheel drive system.
- a release request is issued to the dog clutch 8 and the electric coupling 16 is turned on.
- the control is performed to release the dog clutch 8 in the engaged state. That is, when the dog clutch 8 is released, the load of the rear wheel drive system is applied to the output side of the dog clutch 8 when the dog clutch 8 is released while the electric control coupling 16 is kept engaged. For this reason, the dog clutch 8 in a state in which the meshing load is applied is forcibly released, and it is necessary to output an operating force exceeding the load as a clutch actuator, and the time required to complete the mesh clutch release. Also gets longer.
- the output rotation of the dog clutch 8 is immediately increased by fastening the electric control coupling 16, so that the rotation synchronization state can be obtained with good response. Therefore, when the dog clutch 8 is fastened, the electric coupling 16 is fastened first, and then the dog clutch 8 is fastened, so that the rotation synchronization state of the dog clutch 8 can be obtained with good response, and the brake foot release operation is quick with good response. The engagement of the dog clutch 8 can be completed.
- the dog clutch 8 is disposed upstream of the bevel gear 9 and the output pinion 10 provided at the driving branch position to the left and right front wheels 6, 7.
- the electric control coupling 16 drives the left rear wheel from the bevel gear 9 and the output pinion 10 to the left rear wheel 19 via the rear wheel output shaft 11, the propeller shaft 12 and the drive pinion 13, the ring gear 14, and the rear differential 15.
- the structure is arranged at the position of the shaft 17. With this configuration, when the “disconnect two-wheel drive mode” is selected, the differential case of the bevel gear 9, the output pinion 10, the rear wheel output shaft 11, the propeller shaft 12, the drive pinion 13, the ring gear 14, and the rear differential 15. The rotation stops.
- One of the left and right front wheels 6 and 7 and the left and right rear wheels 19 and 20 is a main drive wheel connected to a drive source (horizontal engine 1), and the other is a clutch to the drive source (horizontal engine 1). And a sub-drive wheel connected through Of the driving force transmission systems to the auxiliary driving wheels (left and right rear wheels 19, 20), the clutch is connected to the transmission branch path on the driving branch side and the transmission transmission path on the auxiliary driving wheel side across the differential (rear differential 15), respectively.
- a meshing clutch (dog clutch 8) and a friction clutch (electric coupling 16) arranged separately are provided,
- the meshing clutch (dog clutch 8) separates the driving force transmission system to the auxiliary driving wheels (left and right rear wheels 19 and 20) from the driving force transmission system to the main driving wheels (left and right front wheels 6 and 7) by releasing the clutch.
- the clutch (electric control coupling 16) is a four-wheel drive vehicle that distributes a part of the driving force from the drive source (horizontal engine 1) to the auxiliary drive wheels (left and right rear wheels 19, 20) according to the clutch engagement capacity.
- Clutch control means (4WD control unit 34, FIG.
- the four-wheel drive vehicle (four-wheel drive hybrid vehicle) has a “disconnect two-wheel drive mode” in which the mesh clutch (dog clutch 8) and the friction clutch (electric coupling 16) are released, and the mesh clutch (dog clutch 8) and the friction.
- a “connect four-wheel drive mode” for engaging the clutch (electric coupling 16) The clutch control means (4WD control unit 34, FIG. 5) is connected to the "connect four-wheel drive mode” if the brake is not depressed during the accelerator release operation in the low vehicle speed range in which the "connect four-wheel drive mode" is selected.
- the drive source has a motor / generator 27 that performs regenerative control when the brake is depressed (FIG. 1). For this reason, in addition to the effect of (1), when the accelerator is released in the low vehicle speed range where the “connect four-wheel drive mode” is selected, the regenerative amount is secured by the amount of friction reduction when the brake is depressed. be able to.
- the clutch control means (4WD control unit 34, FIG. 5) is engaged with the mesh clutch (dog clutch 8) when the brake foot release operation is performed after shifting to the “disconnect two-wheel drive mode” by the brake depression operation.
- an engagement request is issued, and after the engagement clutch (dog clutch 8) is brought into a rotation-synchronized state by engagement of the friction clutch (electric control coupling 16), the engagement clutch (dog clutch 8) in the released state is engaged (control). 5 S8 to S13).
- the meshing clutch (dog clutch 8) can be synchronized in rotation with good response, and the engagement of the meshing clutch (dog clutch 8) can be completed in a short time with good response from the brake foot release operation. Can do.
- the meshing clutch (dog clutch 8) is disposed upstream of the transfer mechanism (bevel gear 9, output pinion 10) provided at the driving branch position to the auxiliary driving wheels (left and right rear wheels 19, 20).
- the friction clutch (electric coupling 16) is connected to the drive shaft (left rear wheel 19) from the transfer mechanism (bevel gear 9, output pinion 10) via the propeller shaft 12 and the differential (rear differential 15). It is arranged at the position of the rear wheel drive shaft 17) (FIG. 1). For this reason, in addition to the effects (1) to (4), friction loss and oil agitation loss are effective when the “disconnect two-wheel drive mode” is selected in the four-wheel drive vehicle based on the front wheel drive. It can be suppressed, and fuel efficiency and electricity consumption can be improved.
- the second embodiment is an example in which a clutch control device is applied to a four-wheel drive vehicle based on a rear wheel drive, and the disposition relationship between the meshing clutch and the friction clutch sandwiching the differential is opposite to that of the first embodiment. .
- FIG. 7 shows a drive system configuration of a rear-wheel drive-based four-wheel drive vehicle to which the clutch control device is applied.
- the drive system configuration of the four-wheel drive vehicle will be described below with reference to FIG.
- the rear wheel drive system of the four-wheel drive vehicle includes a longitudinal engine 61 (drive source), a transmission 62, a rear propeller shaft 63, a rear differential 64, and a left rear wheel drive shaft. 65, a right rear wheel drive shaft 66, a left rear wheel 67 (main drive wheel), and a right rear wheel 68 (main drive wheel). That is, the driving force that has passed through the vertical engine 61 and the transmission 62 is transmitted to the left and right rear wheel drive shafts 65 and 66 via the rear propeller shaft 63 and the rear differential 64, and allows the left and right rear wheels 67 while allowing the differential. , 68 are always driven.
- the front wheel drive system of the four-wheel drive vehicle includes an electric control coupling 70 (friction clutch), an input side sprocket 71, an output side sprocket 72, a chain 73, in a transfer case 69. And a transfer mechanism is configured. Then, a front propeller shaft 74, a front differential 75, a left front wheel drive shaft 76, a right front wheel drive shaft 77, a left front wheel 78 (sub driving wheel), and a right front wheel 79 (sub driving wheel) connected to the output side sprocket 72. Drive wheel).
- the electric control coupling 70 is disposed in the transfer case 69 at an upstream position (main drive system side position) from the input side sprocket 71.
- the drive system rotation rotation of the front propeller shaft 74, etc.
- the electric coupling 70 stops, so that friction loss, oil agitation loss, etc. Suppressed and improved fuel efficiency.
- the dog clutch 8 is arranged on the transmission branch side transmission path between which the rear differential 15 is sandwiched, and the auxiliary driving wheel side
- the electric transmission coupling 16 is separately arranged in the transmission system path. For this reason, when there is a fastening request for the dog clutch 8 in the released state, if the fastening control of the electric coupling 16 is performed, the left side gear of the rear differential 15 is restrained by the rotational speed of the left rear wheel 19.
- the clutch differential rotation ⁇ N that has decreased with the passage of time becomes a limit when it reaches a certain differential rotation, and thereafter, the clutch differential rotation ⁇ N shifts to increase, As the time elapses, the clutch differential rotation ⁇ N increases.
- the electric coupling 70 is arranged on the transmission system on the driving branch side with the front differential 75 interposed therebetween.
- the dog clutch 80 is arranged separately on the transmission path on the auxiliary drive wheel side. For this reason, when there is an engagement request for the dog clutch 80 in the released state, if the engagement control of the electric coupling 70 is performed, the differential case of the front differential 75 is constrained by the rotational speed of the rear propeller shaft 63.
- the rotational speed of the right side gear (the right front wheel 79) and the differential case is constrained, so that the rotational speed of the left side gear becomes two rotational speeds. It will be decided by.
- the friction clutch (electric control coupling 70) is upstream of the transfer mechanism (input-side sprocket 71, output-side sprocket 72, chain 73) provided at the driving branch position to the auxiliary drive wheels (left and right front wheels 78, 79). Placed in position, The meshing clutch (dog clutch 80) is located at the position of the drive shaft (left front wheel drive shaft 76) from the transfer mechanism to the sub drive wheel (left front wheel 78) via the propeller shaft (front propeller shaft) and the differential (front differential 75). Deploy.
- the drive modes may include a “disconnect two-wheel drive mode” and a “connect four-wheel drive mode”.
- Example 1 an example in which the dog clutch 8 is arranged at the upstream position of the transfer mechanism as the meshing clutch is shown.
- the meshing clutch may be an example in which a dog clutch is disposed at a position downstream of the transfer mechanism and at the position of the propeller shaft.
- the electric control coupling 16 is disposed in the middle of the left rear wheel drive shaft 17 as a friction clutch.
- the friction clutch may be an example in which an electric control coupling is disposed in the middle of the right rear wheel drive shaft.
- Embodiment 1 shows an example in which the clutch control device of the present invention is applied to a front-wheel drive base four-wheel drive hybrid vehicle equipped with an engine and a motor / generator as drive sources.
- the clutch control device of the present invention is applied to a rear wheel drive-based four-wheel drive vehicle (4WD engine vehicle) in which the main drive wheels are the left and right rear wheels.
- the present invention can be applied to a rear wheel drive-based four-wheel drive vehicle in which the disposition relationship between the meshing clutch and the friction clutch is the relationship of the first embodiment.
- the present invention can be applied to a front wheel drive-based four-wheel drive vehicle in which the engagement relationship between the meshing clutch and the friction clutch is the relationship of the second embodiment.
- the present invention can also be applied to a 4WD engine vehicle in which only an engine is mounted as a drive source and a 4WD electric vehicle in which only a motor / generator is mounted as a drive source.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Fluid Mechanics (AREA)
- Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
- Arrangement And Driving Of Transmission Devices (AREA)
- Hybrid Electric Vehicles (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
Abstract
Description
前記クラッチとして、前記副駆動輪への駆動力伝達系のうち、デファレンシャルを挟んだ駆動分岐側の伝達系路と副駆動輪側の伝達系路にそれぞれ分けて配置される噛み合いクラッチと摩擦クラッチを備える。
前記噛み合いクラッチは、クラッチ解放により前記副駆動輪への駆動力伝達系を、前記主駆動輪への駆動力伝達系から切り離し、前記摩擦クラッチは、クラッチ締結容量に応じて前記駆動源からの駆動力の一部を前記副駆動輪へ配分する。
この4輪駆動車において、前記噛み合いクラッチの締結/解放制御と前記摩擦クラッチの締結/解放制御を行うクラッチ制御手段を設ける。
前記4輪駆動車は、前記噛み合いクラッチと前記摩擦クラッチを解放するディスコネクト2輪駆動モードと、前記噛み合いクラッチと前記摩擦クラッチを締結するコネクト4輪駆動モードと、を有する。
前記クラッチ制御手段は、前記コネクト4輪駆動モードが選択されている低車速域でのアクセル足放し操作のとき、ブレーキが踏み込まれないと前記コネクト4輪駆動モードを維持し、ブレーキが踏み込まれると前記ディスコネクト2輪駆動モードへ移行する。
すなわち、「コネクト4輪駆動モード」は、加速要求時等において駆動源からの駆動力を4輪に配分する駆動性能が高い4輪駆動モードである。「ディスコネクト2輪駆動モード」は、噛み合いクラッチから摩擦クラッチまでの副駆動輪への駆動力伝達系の回転を止めてフリクション損失等を抑えた2輪駆動モードである。
これに対し、アクセル足放し操作のときであって、ブレーキ操作無しのときは直後のアクセル踏み込みによる再加速要求に備えておく必要があるが、ブレーキ操作有りのときは再加速要求に備える必要性に乏しい点に着目した。したがって、ブレーキが踏み込まれないと「コネクト4輪駆動モード」が維持されるため、アクセル足放しからアクセル踏み込み操作へ移行する再加速時において加速要求に応え4輪駆動性能が確保される。一方、ブレーキが踏み込まれると「ディスコネクト2輪駆動モード」へ切り替え移行されるため、ブレーキ操作時における駆動力伝達系フリクションが低減される。
この結果、コネクト4輪駆動モードが選択されている低車速域でのアクセル足放し操作のとき、再加速時の4輪駆動性能の確保とブレーキ操作時の駆動力伝達系フリクションの低減との両立を図ることができる。
実施例1における前輪駆動ベースの4輪駆動ハイブリッド車(4輪駆動車の一例)のクラッチ制御装置の構成を、「4輪駆動ハイブリッド車の駆動系構成」、「4輪駆動ハイブリッド車の制御系構成」、「駆動モード切り替え構成」、「クラッチ制御構成」に分けて説明する。
図1は、クラッチ制御装置が適用された前輪駆動ベースの4輪駆動ハイブリッド車の駆動系構成を示す。以下、図1に基づき、4輪駆動ハイブリッド車の駆動系構成を説明する。
すなわち、エンジンクラッチ26の締結によるハイブリッド車モード(以下、「HEVモード」という。)と、エンジンクラッチ26の解放による電気自動車モード(以下、「EVモード」という。)と、を切り替え可能としている。「HEVモード」は、高アクセル開度領域にて選択され、「EVモード」は、低アクセル開度領域にて選択される。
例えば、「EVモード」でのモータ/ジェネレータ27の力行時には、モータ/ジェネレータ27及び変速機2を経過した駆動力が、フロントデァレンシャル3を介して左右前輪ドライブシャフト4,5に伝達され、差動を許容しながら左右前輪6,7を常時駆動する。また、「EVモード」でのモータ/ジェネレータ27の回生時には、左右前輪6,7からの駆動エネルギーが、左右前輪ドライブシャフト4,5、フロントデァレンシャル3及び変速機2を介してモータ/ジェネレータ27に入力される。そして、モータ/ジェネレータ27にて電気エネルギーに変換してバッテリ57(図2参照)を充電する。
すなわち、ドグクラッチ8と電制カップリング16を共に解放する2輪駆動モード(=ディスコネクト2輪駆動モード)を選択することが可能な駆動系構成としている。このドグクラッチ8と電制カップリング16を解放することにより、ドグクラッチ8より下流側の駆動系回転(プロペラシャフト12等の回転)が停止することで、フリクション損失やオイル攪拌損失などが抑えられ、燃費向上が達成される。
図2は、クラッチ制御装置が適用された前輪駆動ベースの4輪駆動ハイブリッド車の制御系構成を示す。以下、図2に基づき、4輪駆動ハイブリッド車の制御系構成を説明する。
図3は、「オートモード」が選択されたときのクラッチ制御で用いられる車速VSPとアクセル開度ACCに応じた駆動モード切り替えマップを示し、図4は、駆動モード(ディスコネクト2輪駆動モード・スタンバイ2輪駆動モード・コネクト4輪駆動モード)の切り替え遷移を示す。以下、図3及び図4に基づき、駆動モード切り替え構成を説明する。
すなわち、2WD走行(Disconnect)→2WD走行(Stand-by)の切り替え遷移速度(図4の矢印F)を早くし、2WD走行(Stand-by)→2WD走行(Disconnect)の切り替え遷移速度(図4の矢印G)を遅くしている。同様に、2WD走行(Disconnect)→4WD走行(Connect)の切り替え遷移速度(図4の矢印H)を早くし、4WD走行(Connect)→2WD走行(Disconnect)の切り替え遷移速度(図4の矢印I)を遅くしている。これに対し、2WD走行(Stand-by)→4WD走行(Connect)の切り替え遷移速度(図4の矢印J)と、4WD走行(Connect)→2WD走行(Stand-by)の切り替え遷移速度(図4の矢印K)は、同じ早い速度にしている。
図5は、4WDコントロールユニット34にて実行されるクラッチ制御処理流れを示す(クラッチ制御手段)。以下、クラッチ制御処理構成をあらわす図5の各ステップについて説明する。このフローチャートは、「オートモード」の選択時であり、かつ、図3の駆動モード切り替えマップに基づき、ドグクラッチ8と電制カップリング16が共に締結されている「コネクト4輪駆動モード」が選択されている低車速領域のときに実行される。
ここで、アクセル足放し操作時であるか否かは、アクセル開度センサ36からのアクセル開度情報により判断する。また、リターンへ進んだ場合、「コネクト4輪駆動モード」が維持される。
ここで、ブレーキ踏み込み操作時であるか否かは、ブレーキスイッチ51からのブレーキスイッチ情報により判断する。そして、ブレーキONと判断された場合、「コネクト4輪駆動モード」から「ディスコネクト2輪駆動モード」への移行であると判断し、ドグクラッチ8に対して解放要求を出す。また、リターンへ進んだ場合、「コネクト4輪駆動モード」が維持される。
ここで、電制カップリング16の解放完了は、モータ回転角度センサ54からのモータ回転角度情報が、電制カップリング16の解放完了角度に到達することで判断される。
ここで、ドグクラッチ8が噛み合い解放を完了したか否かは、ドグクラッチストロークセンサ53からのストローク情報に基づいて判断する。また、リターンへ進んだ場合、それ以降、図3の動作点判断によっては「コネクト4輪駆動モード」の領域にあるにもかかわらず、例外的に「ディスコネクト2輪駆動モード」として取り扱われる。
ここで、ブレーキ足放し操作時であるか否かは、ブレーキスイッチ51からのブレーキスイッチ情報により判断する。そして、ブレーキOFFと判断された場合、「ディスコネクト2輪駆動モード」から「コネクト4輪駆動モード」への移行であると判断し、ドグクラッチ8に対して締結要求を出す。また、リターンへ進んだ場合、「ディスコネクト2輪駆動モード」が維持される。
ここで、カップリングアクチュエータ49に対する締結指令は、「コネクト4輪駆動モード」へ復帰する場合、短時間にて電制カップリング16が完全締結状態となる急勾配指令としている。
ここで、クラッチ差回転ΔNは、ドグクラッチ8の入力回転数(左右前輪速平均値)から出力回転数(リングギア回転数検出値に基づく演算値)を差し引くことで演算される。
ここで、回転同期判定閾値αは、ドグクラッチ8の噛み合い締結が可能な回転同期状態を判定するクラッチ差回転値であり、固定値で与えても良いし、車速VSP等に応じた可変値で与えても良い。
ここで、ドグクラッチ8が噛み合い締結を完了したか否かは、ドグクラッチストロークセンサ53からのストローク情報に基づいて判断する。また、リターンへ進んだ場合、それ以降、「コネクト4輪駆動モード」として取り扱われる。
実施例1の4輪駆動ハイブリッド車のクラッチ制御装置における作用を、「駆動系クラッチの締結/解放制御作用」、「ブレーキ操作による駆動モード切り替え制御作用」、「駆動モード切り替え制御での他の特徴作用」に分けて説明する。
まず、図5のフローチャートに基づき、駆動系クラッチ(ドグクラッチ8、電制カップリング16)の締結/解放制御処理動作の流れを説明する。
このように、低車速コースト走行中にブレーキ踏み込み操作を行うと、動作点としては「コネクト4輪駆動モード」に存在するにもかかわらず、「コネクト4輪駆動モード」から「ディスコネクト2輪駆動モード」へ切り替え移行される。
このように、「ディスコネクト2輪駆動モード」へ切り替え移行した後、ブレーキ足放し操作を行うと、「ディスコネクト2輪駆動モード」から「コネクト4輪駆動モード」へと切り替え復帰される。
時刻t1にてアクセル開度ACCが急低下すると、時刻t1からエンジントルクが低下を開始すると共に、車速VSPの上昇勾配が低下する。そして、時刻t2にてブレーキ踏み込み操作が行われると、時刻t2のタイミングにて電制カップリング16の解放が開始され、車速VSPが減速勾配へと移行する。そして、時刻t3にて電制カップリング16の解放を完了すると、ドグクラッチ8の噛み合い締結が解放される。このドグクラッチ8の解放により、ドグクラッチ8より下流側の後輪駆動力伝達系が前輪駆動力伝達系から切り離され、「ディスコネクト2輪駆動モード」とされる。
「コネクト4輪駆動モード」と「ディスコネクト2輪駆動モード」と「スタンバイ2輪駆動モード」は、図3に示すように、車速VSPとアクセル開度ACCにより選択される領域を設定している。特に、「コネクト4輪駆動モード」は、車速VSPが低車速域にあると、アクセル開度ACCの大きさとは無関係に選択される。
この結果、「コネクト4輪駆動モード」が選択されている低車速域でのアクセル足放し操作のとき、再加速時の4輪駆動性能の確保とブレーキ操作時の後輪駆動力伝達系のフリクション低減との両立を図ることができる。
実施例1では、駆動源に、ブレーキの踏み込み操作時に回生制御を行うモータ/ジェネレータ27を有する構成とした。
すなわち、「コネクト4輪駆動モード」が選択されている低車速域でのアクセル足放し操作のとき、ブレーキが踏み込まれると「ディスコネクト2輪駆動モード」へ移行し、上記のように、後輪駆動力伝達系のフリクションが低減される。一方、ブレーキ操作による制動減速時、左右前輪6,7から入力されるエネルギーを、前輪駆動系のみを経過してモータ/ジェネレータ27により電気エネルギーに変換する回生制御が行われる。よって、ブレーキ操作時には、後輪駆動力伝達系から受けるフリクションが低減されることで、回生量がフリクション低減分だけ多く確保されることになる。
したがって、「コネクト4輪駆動モード」が選択されている低車速域でのアクセル足放し操作のとき、ブレーキが踏み込まれると回生量をフリクション低減分だけ多く確保することができる。
すなわち、ドグクラッチ8の解放時、電制カップリング16を締結したままで、ドグクラッチ8を解放しようとすると、後輪駆動系の負荷がドグクラッチ8の出力側に加わっている。このため、噛み合い負荷が加わっている状態のドグクラッチ8を強制的に解放することになり、クラッチアクチュエータとして負荷を上回る操作力を出す必要があるし、ドグクラッチ8の噛み合い解放を完了するのに要する時間も長くなる。
これに対し、ドグクラッチ8の解放時、先に電制カップリング16を解放し、その後、ドグクラッチ8を解放することで、ドグクラッチ8の噛み合い負荷が軽減され、ブレーキ踏み込み操作から応答良く短時間にてドグクラッチ8の解放を完了することができる。
すなわち、ドグクラッチ8は、摩擦クラッチである電制カップリング16とは異なり、噛み合いクラッチであるため、噛み合い締結する場合、クラッチ入力回転とクラッチ出力回転を同期状態にする必要がある。これに対し、ブレーキ足放し操作が行われると、直ちに電制カップリング16の締結によりドグクラッチ8の出力回転を上げることで、応答良く回転同期状態が得られる。
したがって、ドグクラッチ8の締結時、先に電制カップリング16を締結し、その後、ドグクラッチ8を締結することで、ドグクラッチ8の回転同期状態が応答良く得られ、ブレーキ足放し操作から応答良く短時間にてドグクラッチ8の締結を完了することができる。
この構成により、「ディスコネクト2輪駆動モード」が選択されているとき、ベベルギア9、出力ピニオン10、後輪出力軸11、プロペラシャフト12、ドライブピニオン13、リングギア14、リアデファレンシャル15のデフケースの回転が停止する。
したがって、「ディスコネクト2輪駆動モード」が選択されているとき、ドグクラッチ8から電制カップリング16までの駆動系回転が停止する作用を示し、フリクション損失やオイル攪拌損失などが有効に抑えられ、燃費向上や電費向上を達成することができる。
実施例1の4輪駆動ハイブリッド車のクラッチ制御装置にあっては、下記に列挙する効果を得ることができる。
クラッチとして、副駆動輪(左右後輪19,20)への駆動力伝達系のうち、デファレンシャル(リアデファレンシャル15)を挟んだ駆動分岐側の伝達系路と副駆動輪側の伝達系路にそれぞれ分けて配置される噛み合いクラッチ(ドグクラッチ8)と摩擦クラッチ(電制カップリング16)を備え、
噛み合いクラッチ(ドグクラッチ8)は、クラッチ解放により副駆動輪(左右後輪19,20)への駆動力伝系を、主駆動輪(左右前輪6,7)への駆動力伝達系から切り離し、摩擦クラッチ(電制カップリング16)は、クラッチ締結容量に応じて駆動源(横置きエンジン1)からの駆動力の一部を副駆動輪(左右後輪19,20)へ配分する4輪駆動車において、
噛み合いクラッチ(ドグクラッチ8)の締結/解放制御と摩擦クラッチ(電制カップリング16)の締結/解放制御を行うクラッチ制御手段(4WDコントロールユニット34、図5)を設け、
4輪駆動車(4輪駆動ハイブリッド車)は、噛み合いクラッチ(ドグクラッチ8)と摩擦クラッチ(電制カップリング16)を解放する「ディスコネクト2輪駆動モード」と、噛み合いクラッチ(ドグクラッチ8)と摩擦クラッチ(電制カップリング16)を締結する「コネクト4輪駆動モード」と、を有し、
クラッチ制御手段(4WDコントロールユニット34、図5)は、「コネクト4輪駆動モード」が選択されている低車速域でのアクセル足放し操作のとき、ブレーキが踏み込まれないと「コネクト4輪駆動モード」を維持し、ブレーキが踏み込まれると「ディスコネクト2輪駆動モード」へ移行する(図5)。
このため、「コネクト4輪駆動モード」が選択されている低車速域でのアクセル足放し操作のとき、再加速時の4輪駆動性能の確保とブレーキ操作時の駆動力伝達系フリクションの低減との両立を図ることができる。
このため、(1)の効果に加え、「コネクト4輪駆動モード」が選択されている低車速域でのアクセル足放し操作のとき、ブレーキが踏み込まれると回生量をフリクション低減分だけ多く確保することができる。
このため、(1)又は(2)の効果に加え、噛み合いクラッチ(ドグクラッチ8)の噛み合い負荷が軽減され、ブレーキ踏み込み操作から応答良く短時間にて噛み合いクラッチ(ドグクラッチ8)の解放を完了することができる。
このため、(3)の効果に加え、噛み合いクラッチ(ドグクラッチ8)の回転同期状態が応答良く得られ、ブレーキ足放し操作から応答良く短時間にて噛み合いクラッチ(ドグクラッチ8)の締結を完了することができる。
摩擦クラッチ(電制カップリング16)は、トランスファ機構(ベベルギア9、出力ピニオン10)からプロペラシャフト12及びデファレンシャル(リアデファレンシャル15)を経由した副駆動輪(左後輪19)へのドライブシャフト(左後輪ドライブシャフト17)の位置に配置する(図1)。
このため、(1)~(4)の効果に加え、前輪駆動ベースの4輪駆動車において、「ディスコネクト2輪駆動モード」が選択されているとき、フリクション損失やオイル攪拌損失などが有効に抑えられ、燃費向上や電費向上を達成することができる。
すなわち、電制カップリング70とドグクラッチ80を共に解放する2輪駆動モード(=ディスコネクト2輪駆動モード)を選択することが可能な駆動系構成としている。この電制カップリング70とドグクラッチ80を解放することにより、電制カップリング70より下流側の駆動系回転(フロントプロペラシャフト74等の回転)が停止することで、フリクション損失やオイル攪拌損失などが抑えられ、燃費向上が達成される。
実施例1では、副駆動輪である左右後輪19,20への駆動力伝達系のうち、リアデファレンシャル15を挟んだ駆動分岐側の伝達系路にドグクラッチ8を配置し、副駆動輪側の伝達系路に電制カップリング16にそれぞれ分けて配置した構成としている。
このため、解放状態のドグクラッチ8に対する締結要求があるとき、電制カップリング16の締結制御を行うと、リアデファレンシャル15の左側サイドギアが左後輪19の回転数により拘束される。したがって、リアデファレンシャル15の3つの回転メンバ(左右のサイドギアとデフケース)のうち、左右のサイドギアの回転数が拘束されることで、デフケースに連結されるプロペラシャフト12の回転数が、左右後輪19,20の平均回転数(従動輪回転数)になる。この結果、左右前輪6,7が非スリップ状態のときは、ドグクラッチ8のクラッチ差回転ΔNがΔN=0になる。しかし、左右前輪6,7がスリップ状態のときは、時間の経過と共に減少していたクラッチ差回転ΔNが、ある差回転になると限界になり、その後、クラッチ差回転ΔNは増加へ移行し、時間の経過と共にクラッチ差回転ΔNが拡大する。
このため、解放状態のドグクラッチ80に対する締結要求があるとき、電制カップリング70の締結制御を行うと、フロントデファレンシャル75のデフケースがリアプロペラシャフト63の回転数により拘束される。したがって、フロントデファレンシャル75の3つの回転メンバ(左右のサイドギアとデフケース)のうち、右サイドギア(右前輪79)とデフケースの回転数が拘束されることで、左サイドギアの回転数が、2つの回転数により決まることになる。この結果、左右後輪67,68が非スリップ状態のときは、ドグクラッチ80のクラッチ差回転ΔNがΔN=0になる。しかし、左右後輪67,68がスリップ状態のときは、時間の経過と共に減少していたクラッチ差回転ΔNが、ΔN=0(ゼロ)を跨いで逆転してしまい、その後、クラッチ差回転ΔNは逆転した状態で拡大してゆくことになる。なお、他の作用は、実施例1と同様であるので、説明を省略する。
実施例2の4輪駆動車のクラッチ制御装置にあっては、下記の効果を得ることができる。
噛み合いクラッチ(ドグクラッチ80)は、トランスファ機構からプロペラシャフト(フロントプロペラシャフト)及びデファレンシャル(フロントデファレンシャル75)を経由した副駆動輪(左前輪78)へのドライブシャフト(左前輪ドライブシャフト76)の位置に配置する。
このため、上記(1)~(4)の効果に加え、後輪駆動ベースの4輪駆動車において、「ディスコネクト2輪駆動モード」が選択されているとき、フリクション損失やオイル攪拌損失などが有効に抑えられ、燃費向上を達成することができる。
Claims (6)
- 左右前輪と左右後輪のうち、一方を駆動源に接続される主駆動輪とし、他方を前記駆動源にクラッチを介して接続される副駆動輪とし、
前記クラッチとして、前記副駆動輪への駆動力伝達系のうち、デファレンシャルを挟んだ駆動分岐側の伝達系路と副駆動輪側の伝達系路にそれぞれ分けて配置される噛み合いクラッチと摩擦クラッチを備え、
前記噛み合いクラッチは、クラッチ解放により前記副駆動輪への駆動力伝達系を、前記主駆動輪への駆動力伝達系から切り離し、前記摩擦クラッチは、クラッチ締結容量に応じて前記駆動源からの駆動力の一部を前記副駆動輪へ配分する4輪駆動車において、
前記噛み合いクラッチの締結/解放制御と前記摩擦クラッチの締結/解放制御を行うクラッチ制御手段を設け、
前記4輪駆動車は、前記噛み合いクラッチと前記摩擦クラッチを解放するディスコネクト2輪駆動モードと、前記噛み合いクラッチと前記摩擦クラッチを締結するコネクト4輪駆動モードと、を有し、
前記クラッチ制御手段は、前記コネクト4輪駆動モードが選択されている低車速域でのアクセル足放し操作のとき、ブレーキが踏み込まれないと前記コネクト4輪駆動モードを維持し、ブレーキが踏み込まれると前記ディスコネクト2輪駆動モードへ移行する
ことを特徴とする4輪駆動車のクラッチ制御装置。 - 請求項1に記載された4輪駆動車のクラッチ制御装置において、
前記駆動源に、ブレーキの踏み込み操作時に回生制御を行うモータ/ジェネレータを有する
ことを特徴とする4輪駆動車のクラッチ制御装置。 - 請求項1又は請求項2に記載された4輪駆動車のクラッチ制御装置において、
前記クラッチ制御手段は、ブレーキ踏み込み操作により前記コネクト4輪駆動モードから前記ディスコネクト2輪駆動モードへの移行が判断されると、前記噛み合いクラッチに対して解放要求を出し、前記摩擦クラッチを解放した後、締結状態の前記噛み合いクラッチを解放する制御を行う
ことを特徴とする4輪駆動車のクラッチ制御装置。 - 請求項1から請求項3までの何れか一項に記載された4輪駆動車のクラッチ制御装置において、
前記クラッチ制御手段は、ブレーキ踏み込み操作により前記ディスコネクト2輪駆動モードへ移行した後、ブレーキ足放し操作が行われると、前記噛み合いクラッチに対して締結要求を出し、前記摩擦クラッチの締結により前記噛み合いクラッチを回転同期状態にした後、解放状態の前記噛み合いクラッチを締結する制御を行う
ことを特徴とする4輪駆動車のクラッチ制御装置。 - 請求項1から請求項4までの何れか一項に記載された4輪駆動車のクラッチ制御装置において、
前記噛み合いクラッチは、前記副駆動輪への駆動分岐位置に設けたトランスファ機構より上流位置に配置し、
前記摩擦クラッチは、前記トランスファ機構からプロペラシャフト及びデファレンシャルを経由した前記副駆動輪へのドライブシャフトの位置に配置する
ことを特徴とする4輪駆動車のクラッチ制御装置。 - 請求項1から請求項4までの何れか一項に記載された4輪駆動車のクラッチ制御装置において、
前記摩擦クラッチは、前記副駆動輪への駆動分岐位置に設けたトランスファ機構より上流位置に配置し、
前記噛み合いクラッチは、前記トランスファ機構からプロペラシャフト及びデファレンシャルを経由した前記副駆動輪へのドライブシャフトの位置に配置する
ことを特徴とする4輪駆動車のクラッチ制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15755957.6A EP3112203B1 (en) | 2014-02-27 | 2015-02-24 | Clutch control device for four-wheel drive vehicle |
US15/117,950 US9758038B2 (en) | 2014-02-27 | 2015-02-24 | Clutch control device for four-wheel drive vehicle |
JP2016505237A JP6288242B2 (ja) | 2014-02-27 | 2015-02-24 | 4輪駆動車のクラッチ制御装置 |
CN201580009273.5A CN106029425B (zh) | 2014-02-27 | 2015-02-24 | 4轮驱动车的离合器控制装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-036447 | 2014-02-27 | ||
JP2014036447 | 2014-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015129697A1 true WO2015129697A1 (ja) | 2015-09-03 |
Family
ID=54009015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/055253 WO2015129697A1 (ja) | 2014-02-27 | 2015-02-24 | 4輪駆動車のクラッチ制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9758038B2 (ja) |
EP (1) | EP3112203B1 (ja) |
JP (1) | JP6288242B2 (ja) |
CN (1) | CN106029425B (ja) |
WO (1) | WO2015129697A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2538738A (en) * | 2015-05-26 | 2016-11-30 | Jaguar Land Rover Ltd | Control system and method of controlling a driveline |
EP3192690A1 (de) * | 2016-01-14 | 2017-07-19 | ZF Friedrichshafen AG | Verfahren zum überwachen einer differentialsperre |
JP2020032932A (ja) * | 2018-08-31 | 2020-03-05 | 株式会社Subaru | 動力伝達制御装置 |
JP2021187347A (ja) * | 2020-06-01 | 2021-12-13 | トヨタ自動車株式会社 | 四輪駆動車両 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201319641D0 (en) * | 2013-11-07 | 2013-12-25 | Jaguar Land Rover Ltd | Driveline and method of controlling a driveline |
EP3130502B1 (en) * | 2014-04-11 | 2018-09-12 | Nissan Motor Co., Ltd | Four-wheel-drive vehicle |
DE102014006898A1 (de) * | 2014-05-09 | 2015-11-12 | Audi Ag | Verfahren zum Betrieb eines Fahrzeugs |
CA2917373A1 (en) * | 2016-01-12 | 2017-07-12 | 2Low | Two wheel drive low range devices and systems |
CN110337551B (zh) * | 2017-03-03 | 2020-11-17 | Gkn汽车有限公司 | 用于运行传动系的方法和装置 |
US10889185B2 (en) * | 2018-11-30 | 2021-01-12 | Kawasaki Jukogyo Kabushiki Kaisha | Drive switching mechanism of utility vehicle |
KR20220005160A (ko) * | 2020-07-06 | 2022-01-13 | 현대자동차주식회사 | 사륜 구동 전동화 차량의 회생제동 제어 장치 |
US11371602B1 (en) * | 2021-01-26 | 2022-06-28 | Ford Global Technologies, Llc | Fault detection in an all-wheel-drive system |
CN214728144U (zh) * | 2021-03-15 | 2021-11-16 | 赛格威科技有限公司 | 混合动力全地形车 |
DE102023108791A1 (de) * | 2023-04-05 | 2024-10-10 | Hoerbiger Antriebstechnik Holding Gmbh | Fahrzeugantriebsstrang eines Fahrzeugs |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6243355A (ja) * | 1985-08-13 | 1987-02-25 | Mazda Motor Corp | 4輪駆動車のブレ−キ制御装置 |
JP2000043696A (ja) * | 1998-07-27 | 2000-02-15 | Toyota Motor Corp | 車両の制動トルク配分制御装置 |
JP2012061923A (ja) * | 2010-09-15 | 2012-03-29 | Jtekt Corp | 四輪駆動車及びその制御装置 |
WO2013093978A1 (ja) * | 2011-12-22 | 2013-06-27 | トヨタ自動車株式会社 | トランスファ装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4014016B2 (ja) * | 1997-10-24 | 2007-11-28 | 富士重工業株式会社 | 4輪駆動車の差動制限制御装置 |
DE602005003617T2 (de) * | 2004-08-19 | 2008-04-10 | Honda Motor Co., Ltd. | Verfahren zur Kontrolle eines Allradfahrzeugs |
US8958965B2 (en) * | 2007-09-13 | 2015-02-17 | Ford Global Technologies Llc | System and method for managing a powertrain in a vehicle |
KR101633143B1 (ko) * | 2009-01-21 | 2016-06-23 | 마그나 파워트레인 오브 아메리카, 인크. | 연결해제 시스템을 갖는 awd 차량 |
US8428838B2 (en) * | 2009-04-23 | 2013-04-23 | Univance Corporation | Driving-force transmitting apparatus for four-wheel-drive vehicle |
JP2010254058A (ja) | 2009-04-23 | 2010-11-11 | Univance Corp | 4輪駆動車用駆動力伝達装置 |
JP5672131B2 (ja) * | 2011-04-25 | 2015-02-18 | トヨタ自動車株式会社 | スタンバイ四輪駆動車 |
US20140051541A1 (en) * | 2011-04-28 | 2014-02-20 | Jaguar Land Rover Limited | Vehicle and method of controlling a vehicle |
JP2014019169A (ja) * | 2012-07-12 | 2014-02-03 | Nissan Motor Co Ltd | 駆動力配分装置 |
-
2015
- 2015-02-24 JP JP2016505237A patent/JP6288242B2/ja active Active
- 2015-02-24 US US15/117,950 patent/US9758038B2/en active Active
- 2015-02-24 EP EP15755957.6A patent/EP3112203B1/en active Active
- 2015-02-24 WO PCT/JP2015/055253 patent/WO2015129697A1/ja active Application Filing
- 2015-02-24 CN CN201580009273.5A patent/CN106029425B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6243355A (ja) * | 1985-08-13 | 1987-02-25 | Mazda Motor Corp | 4輪駆動車のブレ−キ制御装置 |
JP2000043696A (ja) * | 1998-07-27 | 2000-02-15 | Toyota Motor Corp | 車両の制動トルク配分制御装置 |
JP2012061923A (ja) * | 2010-09-15 | 2012-03-29 | Jtekt Corp | 四輪駆動車及びその制御装置 |
WO2013093978A1 (ja) * | 2011-12-22 | 2013-06-27 | トヨタ自動車株式会社 | トランスファ装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2538738A (en) * | 2015-05-26 | 2016-11-30 | Jaguar Land Rover Ltd | Control system and method of controlling a driveline |
US10744999B2 (en) | 2015-05-26 | 2020-08-18 | Jaguar Land Rover Limited | Control system and method of controlling a driveline |
EP3192690A1 (de) * | 2016-01-14 | 2017-07-19 | ZF Friedrichshafen AG | Verfahren zum überwachen einer differentialsperre |
JP2020032932A (ja) * | 2018-08-31 | 2020-03-05 | 株式会社Subaru | 動力伝達制御装置 |
JP7287763B2 (ja) | 2018-08-31 | 2023-06-06 | 株式会社Subaru | 動力伝達制御装置 |
JP2021187347A (ja) * | 2020-06-01 | 2021-12-13 | トヨタ自動車株式会社 | 四輪駆動車両 |
JP7392577B2 (ja) | 2020-06-01 | 2023-12-06 | トヨタ自動車株式会社 | 四輪駆動車両 |
Also Published As
Publication number | Publication date |
---|---|
CN106029425A (zh) | 2016-10-12 |
US20160347171A1 (en) | 2016-12-01 |
US9758038B2 (en) | 2017-09-12 |
EP3112203B1 (en) | 2020-08-05 |
EP3112203A1 (en) | 2017-01-04 |
CN106029425B (zh) | 2018-08-28 |
JPWO2015129697A1 (ja) | 2017-03-30 |
JP6288242B2 (ja) | 2018-03-07 |
EP3112203A4 (en) | 2017-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6288242B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
US9981552B2 (en) | Clutch control device for four-wheel drive vehicle | |
US9783053B2 (en) | Clutch control device for 4-wheel drive vehicle | |
JP6115682B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
JP6123942B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
JP6112256B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
JP6379691B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
JP6303822B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
JP6398360B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
JP6379685B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
JP6221830B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
EP4316897A1 (en) | Vehicle drive device | |
JP2016034812A (ja) | 4輪駆動車の噛み合いクラッチ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15755957 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016505237 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15117950 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015755957 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015755957 Country of ref document: EP |