WO2015125789A1 - 内面改質管、内面改質管の製造方法及び内面改質管の製造装置 - Google Patents

内面改質管、内面改質管の製造方法及び内面改質管の製造装置 Download PDF

Info

Publication number
WO2015125789A1
WO2015125789A1 PCT/JP2015/054326 JP2015054326W WO2015125789A1 WO 2015125789 A1 WO2015125789 A1 WO 2015125789A1 JP 2015054326 W JP2015054326 W JP 2015054326W WO 2015125789 A1 WO2015125789 A1 WO 2015125789A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
fine particles
reforming
inner face
functional substance
Prior art date
Application number
PCT/JP2015/054326
Other languages
English (en)
French (fr)
Inventor
康充 小粥
カーロ 和重 河邉
Original Assignee
株式会社ソフセラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソフセラ filed Critical 株式会社ソフセラ
Priority to JP2016504114A priority Critical patent/JP6640714B2/ja
Priority to US15/119,451 priority patent/US10435777B2/en
Priority to CN201580007958.6A priority patent/CN106133425B/zh
Priority to EP15751557.8A priority patent/EP3109533B1/en
Publication of WO2015125789A1 publication Critical patent/WO2015125789A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2254/00Tubes
    • B05D2254/04Applying the material on the interior of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid

Definitions

  • the present invention relates to an inner surface reforming tube whose inner surface is modified.
  • the adhesion between the resin film coated on the inner surface of the tube and the inner surface of the tube may be insufficient.
  • This lack of adhesion is particularly noticeable when different materials are used for the tube material and the material for coating it, such as a metal tube and a resin coating.
  • the adhesion is insufficient, there is a problem that the resin film is easily peeled off.
  • a material that can exhibit strong adhesion is used to improve the adhesion. It is necessary to select, and the freedom degree of the material of a pipe
  • there is a method of increasing the adhesion by physically or chemically roughening the inner surface of the tube, but in this case, the mechanical properties of the tube may change.
  • the particles are simply dispersed in a liquid that assists adhesion to the inner surface of the tube and applied to the inner surface between them. It is difficult to ensure a sufficient amount of adhesion. Even if a sufficient amount of adhesion can be ensured, the adhesion of the particles to the inner surface of the tube is low, so that the adhered particles may easily fall off from the inner surface of the tube.
  • the particles are adhered to the inner surface of the tube by heating and melting the particles after the particles are adhered to the inner surface of the tube.
  • the amount of adhered particles is small in the first place.
  • the function of the particles cannot be fully exhibited.
  • the particles are welded to the inner surface of the tube, after all, only the functional material (particles) is coated on the inner surface of the tube, and the contact area between the inner surface of the tube and the particles is small. Lack of power.
  • the present invention has been made in view of the above circumstances, and in the inner surface reforming tube in which the inner surface of the tube is subjected to surface reforming treatment in order to impart a predetermined function, the function imparted sufficiently
  • the purpose is to maintain the function for a long time.
  • the present inventors have embedded fine particles on the inner surface of the tube in a state where a part of the surface is exposed, and the fine particles are arranged in the thickness direction of the tube.
  • the function of the fine particles can be sufficiently exerted and maintained for a long time by being unevenly distributed in the region from the center of the tube to the inner surface of the tube rather than the region from the center of the tube to the outer surface of the tube. Based on this finding, the present invention has been completed.
  • the present invention provides an inner surface modified tube in which fine particles are embedded on the inner surface of a tube in a state in which a part of the surface is exposed, and the fine particles are formed on the tube with respect to the thickness direction of the tube.
  • the fine particles are unevenly distributed in a region from the center of the tube toward the inner surface of the tube rather than a region from the center toward the outer surface of the tube, and the arithmetic average roughness Ra of the inner surface of the tube is 1 nm or more and 100 ⁇ m or less.
  • the material constituting the fine particles may be a material that does not covalently or ionically bond with the material constituting the inner surface of the tube.
  • the fine particles may be an inorganic material or a composite material containing the inorganic material and other components. In this case, the inorganic material may be hydroxyapatite.
  • the fine particles may be a photocatalytically active material. The photocatalytically active material may be titanium oxide.
  • the material constituting the inner surface of the tube may be a thermoplastic resin.
  • a functional substance may be adsorbed on the surface of the fine particles.
  • the functional substance may be heparin, warfarin, ethylenediaminetetraacetic acid (EDTA), citric acid or 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer.
  • the present invention is the above-described method for manufacturing an inner surface modified tube, wherein the fine particles are sprayed on the inner surface of the molten or semi-molten tube so that a part of the surface is exposed on the inner surface of the tube.
  • a method for manufacturing an inner surface reforming pipe comprising a burying step of burying the fine particles in a wet state.
  • the method for manufacturing an inner surface reforming tube may further include an adsorption step of adsorbing a functional substance on the surface of the fine particles after the embedding step.
  • the method further includes an additional adsorption step of additionally adsorbing the functional substance on the surface of the fine particles in order to replenish the functional substance dropped from the surface of the fine particles after a predetermined time after the adsorption step. You may go out.
  • the present invention is an apparatus for manufacturing an inner surface reforming tube used in the manufacturing method described above, wherein the tube is made of a resin, a die that becomes a mold of the tube, and a fine particle that supplies the fine particle to the die
  • An inner surface modification comprising: a supply unit; and a fine particle spraying unit that sprays the fine particles supplied from the fine particle supply unit onto an inner surface of the tube when the tube is extruded from the die by an extruder.
  • This is a pipe manufacturing device.
  • the fine particles are embedded in the inner surface of the tube with a part of the surface exposed.
  • the function of the fine particles can be sufficiently obtained.
  • the function can be maintained for a long time.
  • the inner surface reforming pipe according to the present invention will be described in the following order. 1 First Embodiment 1-1 Configuration of Inner Surface Reforming Pipe 1-2 Manufacturing Method and Manufacturing Apparatus of Inner Surface Modification Tube Second Embodiment 1-1 Configuration of Inner Surface Modification Tube 1-2 Manufacturing of Inner Surface Modification Tube Method and production apparatus 3 Use of inner surface reforming pipe according to the present invention
  • FIG. 1 is a cross-sectional view showing a configuration of an inner surface reforming tube 100 according to the present embodiment.
  • FIG. 2 is a schematic diagram illustrating a configuration of a manufacturing method and a manufacturing apparatus of the inner surface reforming tube 100 according to the present embodiment.
  • a method for manufacturing the inner surface reforming tube 100 and an example of an apparatus used for the manufacturing method will be described.
  • the inner surface reforming tube 100 is one in which fine particles 120 are embedded in an inner surface 111 of a tube 110. Since the fine particles 120 have a predetermined function (for example, an antithrombotic function, a photocatalytic function, etc.), the inner surface 111 of the tube 110 can be modified to give the predetermined function.
  • a predetermined function for example, an antithrombotic function, a photocatalytic function, etc.
  • the predetermined function is not limited to the antithrombotic function and the photocatalytic function described above, and includes, for example, antibacterial activity, physiological activity, biocompatibility, bioactivity, waterproofness, hydrophobicity, water repellency, hydrophilicity, corrosion resistance, It may be a function of imparting heat resistance, insulation, wear resistance, lubricity, adhesion to other materials, or the like.
  • the fine particles 120 are “embedded” in the inner surface 111 of the tube 110 when the fine particles 120 expose a part of the surface thereof, and other portions of the surface of the fine particles 120 are exposed to the tube 110.
  • the fine particles 120 are simply attached to the inner surface 111 of the tube 110 (including cases where the fine particles 120 are attached directly or via an adhesive or the like), or the fine particles 120 are attached to the inner surface 111 of the tube 110. It is different from the state in which the containing film or layer is coated.
  • the fine particles 120 are placed in the tube 110 while the material constituting the tube 110 is melted during the forming process of the tube 110.
  • the inner surface 111 of the tube 110 may be sprayed toward the surface, and thereby the surface modification (for example, provision of a predetermined function) of the inner surface 111 of the tube 110 can be performed.
  • the fine particles 120 have the exposed region and the buried region, the following effects can be obtained. For example, even if the function of the fine particles 120 is deteriorated by corrosion of the exposed region of the surface of the fine particles 120, the buried region of the inner surface of the exposed area (direction of arrow W O in FIG. 1), the function is degraded Since there is a non-exposed portion, the function of the fine particles 120 can be maintained for a long time by exposing the portion to the surface.
  • the pipe 110 is a pipe that is a base material of the inner surface reforming pipe 100.
  • the cross-sectional shape of the tube 110 is not particularly limited, and may be an arbitrary shape such as a circle, an ellipse, or a polygon.
  • the material of the tube 110 is not particularly limited, and as the tube 110, for example, an arbitrary material such as metal or resin can be used.
  • the metal that can be used for the tube 110 include iron, steel, stainless steel, aluminum, copper, nickel, titanium, tantalum, niobium, and alloys thereof. Various plating and surface treatments may be applied to the outer surface of the pipe made of such metal or alloy.
  • the resin that can be used for the tube 110 may be a thermoplastic resin or a thermosetting resin. Examples of the thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin, polyurethane, thermosetting polyimide, and the like.
  • thermoplastic resin examples include general-purpose plastics such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, ABS resin, and acrylic resin, polyacetal, polyamide, polycarbonate, modified polyphenylene ether, polyethylene terephthalate, polytetrafluoroethylene, and the like.
  • bioabsorbable polymers such as engineering plastics, polylactic acid, polyglycolic acid, and copolymers thereof.
  • a thermoplastic resin as the tube 110 from the viewpoint of facilitating the manufacture of the inner surface modified tube 100 according to the present embodiment.
  • the material of the tube 110 as described above may be appropriately determined according to the use of the inner surface modification tube 100, the adhesion force of the fine particles 120 to the inner surface 111, and the like.
  • the inner diameter r T of the tube 110 is 0.01mm or less than 100mm.
  • the inner diameter r T of the tube 110 and the range, and, as will be described later, the surface roughness of the inner surface 111 to a predetermined range, by the particle size of the fine particles 120 within a predetermined range, the fluid on the inner surface reforming tube 110 It is possible to suppress the occurrence of turbulent flow when conducting the.
  • the arithmetic average roughness Ra of the inner surface 111 of the tube 110 is 1 nm or more and 100 ⁇ m or less.
  • the lower limit of Ra of the inner surface 111 is preferably 5 nm or more, and more preferably 10 nm or more.
  • the upper limit of Ra of the inner surface 111 is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the arithmetic average roughness Ra in the present embodiment means the arithmetic average roughness defined by JIS B0601: 2013, and the measured value is, for example, the Ra of the inner surface 111 of the pipe 110. After cutting (circular) in a cross-section so that it has a predetermined length, cut along the longitudinal direction to make it flat and measure it according to the measurement method specified in JIS B0659-1: 2002 The selected value shall be adopted.
  • the fine particles 120 are embedded in the inner surface 111 of the tube 110 (see the above definition), and have a predetermined function (for example, antithrombogenicity, photocatalytic activity, waterproofness, corrosion resistance, heat resistance, insulation, wear resistance, lubricity). And fine particles having a function of imparting adhesion to other materials.
  • the shape of the fine particles 120 is not particularly limited, and may be an arbitrary shape such as a spherical shape, a spheroid shape, a geometric shape such as a cube, a rectangular parallelepiped, or a pyramid, a needle shape, a column shape, or an indefinite shape.
  • the material of the fine particles 120 is not particularly limited.
  • the material constituting the fine particles 120 is a material constituting the inner surface 111 of the tube 110 (for example, a predetermined surface treatment such as surface oxidation or silane coupling, or fine particles. 120, which is not subjected to a predetermined treatment such as a coating treatment for coating the inner surface 111 with a layer composed of a material capable of chemically bonding to 120, and a material that does not covalently bond or ionically bond. Good.
  • the fine particles 120 are particles that cannot be chemically bonded to the material constituting the inner surface 111 of the tube 110, so that the fine particles 120 are embedded in the inner surface 111. Can be firmly fixed.
  • the material of the fine particles 120 may be appropriately selected depending on the application, and may be an organic material or an inorganic material.
  • an inorganic material or a composite material containing the inorganic material and other components is used.
  • a biocompatible material such as hydroxyapatite as the fine particles 120 as the inorganic material, it can be used in applications where biocompatibility is required inside the inner surface modified tube 100.
  • nanometer-order hydroxyapatite fired by a specific method exhibits high biocompatibility, and when using the fired hydroxyapatite or the composite material containing the fired hydroxyapatite, high biocompatibility and antithrombosis are obtained. It can be expected that the property is imparted to the inner wall of the inner surface reforming tube 100.
  • the fine particles 120 may be, for example, a material having photocatalytic activity (photocatalytic active material).
  • photocatalytic active material a material having photocatalytic activity
  • the inner surface modification tube 100 can be used for applications that require removal of contaminants, bacteria, and the like attached to the inner surface modification tube 100.
  • limit especially as a photocatalytic active material For example, a titanium oxide is mentioned, The thing which has a crystal structure of an anatase type is especially suitable also for a titanium oxide.
  • the particle size r P of the fine particles 120 in the present embodiment is 10 nm or more and 100 ⁇ m or less.
  • the particle size r P of the fine particles 120 and the range and the inner diameter r T of the tube 110 to a predetermined range, the arithmetic mean roughness Ra of the inner surface 111 of the tube 110 by a predetermined range, the inner surface reforming tube 110 It is possible to suppress the occurrence of turbulent flow when the fluid is made to pass through.
  • the particle size of the fine particles 120 in the present embodiment means the number average particle size of the primary particles. Further, as the particle diameter of each particle, a value measured as the length of the tube 110 in the thickness direction is used. The particle size of the fine particles 120 is measured by measuring the particle size (length in the thickness direction of the tube 110 in this embodiment) of at least 100 primary particles using an electron microscope, and calculating an average value thereof. Should be calculated.
  • the fluid is conducted into the inner surface reforming tube 110. It is possible to suppress the occurrence of turbulent flow when performing. This is because a laminar flow is not formed in the rough surface flow path, and most of the inside of the tube becomes a turbulent flow region, and therefore, the smooth inner surface 111 of the tube 110 is advantageous for forming a laminar flow region.
  • small particle size r P of the fine particles 120 with respect to the inner diameter r T of the tube 110 since the arithmetic mean roughness Ra is small, it is possible to effectively suppress the generation of turbulence. In this way, by suppressing the occurrence of turbulent flow in the inner surface reforming tube 110, it is possible to suppress the dropping of the fine particles 120 from the inner surface 111 of the tube 110. Further, in the inner surface reforming tube 100, even in the region where the fine particles 120 are embedded, the fluid can be conducted in the same manner as in the case where the particles 120 are not embedded. There is no impediment to conduction.
  • the fine particles 120 are located in the tube 110 rather than the region A1 from the center C of the tube 110 toward the outer surface of the tube 110 (in the direction of arrow W O in FIG. 1) with respect to the thickness direction of the tube 110. towards the inner surface of the tube 110 from the center it is unevenly distributed (arrow W direction I in Figure 1) region A2. As described above, since the fine particles 120 are unevenly distributed in the region A2, the mechanical properties of the material (base material) of the tube 110 are ensured (the mechanical properties of the tube 110 in a state where the inner surface 111 is not modified). Maintenance).
  • the fine particles 120 exist only in the region A2 in the tube 110, a part of the fine particles 120 may exist in the region A1 (in this case, the fine particles 120). Is naturally present in the region A2, but the volume existing in the region A2 is larger than the volume existing in the region A1).
  • Uneven distribution of values, using an electron microscope to measure the thickness L B of the embedded portion for at least 100 or more fine particles 120 may be the value obtained by dividing the thickness LT of the tube 110 and the average value.
  • the inner surface reforming pipe 100 uses an inner surface reforming pipe manufacturing apparatus 10 (hereinafter referred to as “manufacturing apparatus 10”) as shown in FIG. Can be manufactured.
  • the manufacturing apparatus 10 includes a die 11, a fine particle supply port 12 as an example of a fine particle supply unit according to the present embodiment, and a fine particle as an example of a fine particle spray unit according to the present embodiment.
  • a spray nozzle 13 is an inner surface reforming pipe manufacturing apparatus 10 as shown in FIG. Can be manufactured.
  • the manufacturing apparatus 10 includes a die 11, a fine particle supply port 12 as an example of a fine particle supply unit according to the present embodiment, and a fine particle as an example of a fine particle spray unit according to the present embodiment.
  • a spray nozzle 13 is an inner surface reforming pipe manufacturing apparatus 10 as shown in FIG. Can be manufactured.
  • the manufacturing apparatus 10 includes a die 11, a fine particle supply port 12 as an example of a fine particle supply unit according to the present embodiment, and a fine particle as an example of a fine particle spray unit according
  • the die 11 serves as a mold for molding the resin pipe 110. After filling the resin which is the material of the pipe 110 into the die 11, the pipe 110 can be formed by extruding the resin from the die 11 with an extruder (not shown).
  • the temperature (elution temperature) at the time of extruding the resin constituting the tube 110 from the die 11 is not particularly limited, and may be any temperature above the melting point or softening point of the resin.
  • the fine particle supply port 12 is an input port for supplying the fine particles 120 into the die 11.
  • the fine particle supply port 12 communicates with the fine particle spray nozzle 13, and the fine particles 120 reach the fine particle spray nozzle 13 installed in the die 11 by inputting the fine particles 120 from the fine particle supply port 12.
  • the fine particle spray nozzle 13 is installed in the die 11 and is directed from the fine particle supply port 12 toward the inner surface 111 of the tube 110 in a molten state (including a semi-molten state; the same applies hereinafter) extruded from the die 11 by the extruder.
  • the supplied fine particles 120 are sprayed.
  • the fine particle spray nozzle 13 mixes and sprays the fine particles 120 with a gas having a predetermined pressure and a predetermined flow rate.
  • the gas pressure and flow rate may be appropriately set according to the extrusion speed of the resin from the die 11.
  • the inner surface reforming tube 100 in which the fine particles 120 are embedded in the inner surface 111 of the resin tube 110 can be manufactured by the following method. Specifically, as shown in FIG. 2B, the method of manufacturing the inner surface reforming tube 100 according to the present embodiment is applied to the inner surface of the molten or semi-molten tube 110 extruded from the die 11 by the extruder. The method includes an embedding step of embedding the fine particles 120 in a state where a part of the surface is exposed on the inner surface of the tube 110 by spraying the fine particles 120 by the fine particle spray nozzle 13.
  • the entire tube 110 may be in a molten state, or at least the inner surface 111 of the tube 110 may be in a molten state.
  • the “molten state (or semi-molten state)” in the present embodiment means that when the fine particles 120 are sprayed on the inner surface 111 using a gas (air, inert gas, etc.) having a predetermined pressure and flow rate, It is sufficient that the surface of the tube 110 is soft enough to be embedded (embedded) in a state where a part of the surface is exposed.
  • the resin constituting the tube 110 is not necessarily limited to the melting point or the softening point. It is not necessary to be at the above temperature.
  • Method of spraying fine particles 120 Further, as a method of spraying the fine particles 120 onto the inner surface 111 of the tube 110, the material constituting the tube 110 is in a molten state in the manufacturing or forming process of the tube 110, and the fine particles 120 are manufactured in the manufacturing or forming process of the tube 110. May be sprayed onto the inner surface 111, and the microparticles 120 may be sprayed in a state where at least the inner surface 111 is melted by heating the tube 110 after the tube 110 is manufactured or molded.
  • the elution temperature when extruding the resin constituting the pipe 110 from the die 11, the air pressure and the air flow rate by the fine particle spray nozzle 13 when spraying the fine particles 120 onto the inner surface 111 are not particularly limited.
  • the elution temperature is preferably set to 100 to 500 ° C. in order to realize the preferable range of the embedded state of the fine particles 120, the uneven distribution amount, and the arithmetic average roughness Ra of the inner surface 111 of the tube 110.
  • the air pressure is preferably 0 to 1 MPa, more preferably 0.001 to 1 MPa.
  • the air flow rate is preferably 0 to 500 L / min, and more preferably 0.0001 to 500 L / min.
  • tube 100 when the pipe
  • the tube 110 when the tube 110 is made of a material other than resin (for example, metal), it is naturally manufactured by an apparatus other than the manufacturing apparatus 10. Even in this case, as long as at least the inner surface 111 of the tube 110 can be in a molten state, and the device can spray the fine particles 120 onto the inner surface 111 in this molten state, it is used as a manufacturing device for the inner surface reforming tube 100. be able to.
  • FIG. 3 is a cross-sectional view showing a configuration of the inner surface reforming pipe 200 according to the present embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of a method for manufacturing the inner surface reforming tube 200 and the configuration of the manufacturing apparatus according to the present embodiment.
  • 5A and 5B are schematic diagrams illustrating another example of the method for manufacturing the inner surface reforming tube 200 according to the present embodiment and the configuration of the manufacturing apparatus.
  • FIG. 6 is a schematic diagram showing an additional adsorption step in the method for manufacturing the inner surface reforming tube 200 according to the present embodiment.
  • a method for manufacturing the inner surface reforming tube 200 and an example of an apparatus used for the manufacturing method will be described.
  • the inner surface modification tube 200 is one in which the fine particles 220 are embedded in the inner surface 111 of the tube 110 and the functional substance 230 is adsorbed on the surfaces of the fine particles 220.
  • the functional substance 230 fixed to the inner surface 111 of the tube 110 via the fine particles 220 has a predetermined function (for example, an antithrombotic function, a photocatalytic function, etc.), thereby modifying the inner surface 111 of the tube 110,
  • the predetermined function can be given.
  • a predetermined function it is the same as that of die
  • the inner surface modification tube 200 according to the present embodiment is different from the inner surface modification tube 100 according to the first embodiment in that the inner surface 111 of the tube 110 is modified by the functional material 230 instead of the fine particles 220.
  • the difference from the first embodiment in the configuration of the inner surface reforming pipe 200 will be described, and the other configurations are the same as those in the first embodiment, and thus detailed description thereof will be omitted.
  • the fine particles 220 are basically the same as the fine particles 120 described above, but differ from the fine particles 120 in that the fine particles 220 do not necessarily have a predetermined function. That is, in the first embodiment, since the functional substance 230 is not included, the fine particles 120 themselves have to have a predetermined function for modifying the inner surface 111. In the present embodiment, in addition, since a predetermined function for modifying the inner surface 111 can be imparted by the functional substance 230, the fine particles 220 themselves may not have the predetermined function.
  • the fine particle 220 needs to have a property capable of physically or chemically adsorbing the functional substance 230 on the surface thereof.
  • the functional substance 230 is fixed to the inner surface 111 of the pipe 110 through the fine particles 220, and the inner surface 111 can be modified to give a predetermined function.
  • the functional substance 230 is a substance having a predetermined function such as an antithrombotic function or a photocatalytic function, and the shape thereof is not particularly limited, and an arbitrary shape such as a granular shape, a needle shape, or an indefinite shape. It can be. Further, the size of the functional substance 230 is not particularly limited, but it is necessary that the functional substance 230 has such a size that the functional substance 230 is not easily desorbed by being adsorbed on the fine particles 220. The function of the functional substance 230 may be the same function as that of the fine particles 120 described above.
  • the functional substance 230 are not particularly limited.
  • the fine particles 220 are the hydroxyapatite or the composite material containing hydroxyapatite, for example, heparin, warfarin, ethylenediaminetetraacetic acid. (EDTA), citric acid, 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, or the like can be used.
  • EDTA ethylenediaminetetraacetic acid.
  • MPC 2-methacryloyloxyethyl phosphorylcholine
  • the inner surface modification tube 200 is used for applications such as a tube that conducts blood (for example, a catheter for artificial dialysis or heart-lung machine). Can do.
  • the inner surface modified tube 200 provided with an antithrombotic function is used for such applications, blood coagulation in the tube can be remarkably suppressed.
  • the inner surface reforming pipe 200 can be manufactured using the same manufacturing apparatus 10 as in the first embodiment described above.
  • the detailed description of the manufacturing apparatus 10 is omitted because it overlaps with the first embodiment.
  • the inner surface modified tube 200 in which the fine particles 220 are embedded in the inner surface 111 of the resin tube 110 and the functional substance 230 is adsorbed on the surfaces of the fine particles 220 is formed by the following method. Can be manufactured. Specifically, the method for manufacturing the inner surface reforming tube 200 according to the present embodiment further includes an adsorption process for adsorbing the functional substance 230 on the surfaces of the fine particles 220 after the embedding process in the first embodiment described above.
  • the functional material 230 is adsorbed on the surface of the fine particles 220 in advance, and then the fine particles 220 adsorbed by the functional material 230 are sprayed onto the inner surface 111 of the molten or semi-molten tube 110.
  • the functional material 230 is adsorbed on the fine particles 220 embedded in the inner surface 111.
  • FIG. The adsorption step may be a method other than the production method 1 and the production method 2.
  • the inner surface reforming tube 200 cannot be produced in one step, but there are advantages in the following points. That is, in the case of manufacturing method 1, when embedding the fine particles 220 in the inner surface 111 of the tube 110, the functional substance 230 exists at the interface 111 with the inner surface 110, and the Although there is a possibility that the adhesion force is reduced, in the case of production method 2, since this is not the case, the adhesion force of the fine particles 220 to the inner surface 111 can be further increased. Further, when the functional substance 230 is a rare substance, there is an advantage that the functional substance 230 can be efficiently immobilized only on the exposed surface of the fine particles 220 necessary for imparting the function.
  • the manufacturing method of the inner surface reforming tube 200 according to the present embodiment is such that the surface of the fine particle 220 is replenished in order to replenish the functional material 230 that has fallen from the surface of the fine particle 220 after a predetermined time has elapsed after the adsorption step described above.
  • An additional adsorption step of additionally adsorbing the functional substance 230 may be further included. Referring to the drawing, for example, as shown in FIG. 6A, while using the inner surface reforming pipe 200 manufactured through the embedding process and the adsorption process, as shown in FIG. 6B.
  • the functional substance 230 (for example, heparin) is dropped from the surface of the fine particles 220 and the function (for example, the antithrombotic function) of the inner surface modification tube 200 is lowered.
  • the inner surface reforming tube 200 from which the functional substance 230 is dropped is removed from the solution of the functional substance 230 (for example, heparin solution).
  • the functional substance 230 can be adsorbed again on the surface of the fine particles 220 from which the functional substance 230 has fallen off by a simple method of circulating the inside again. Function can be restored.
  • the method of the additional adsorption step is not limited to the method of the production method 2 of the adsorption step as described above, and the functional material 230 is adsorbed again on the surface of the fine particles 220 from which the functional material 230 has dropped.
  • the method is not particularly limited as long as it can be used.
  • the inner surface reforming tube 200 can retain the function of the functional substance 230 for a long time (in some cases, semipermanently).
  • an inner surface modification tube 200 using a substance such as heparin having antithrombotic properties as the functional substance 230 and a material such as hydroxyapatite capable of adsorbing the functional substance 230 as the fine particles 220 is used for artificial dialysis or cardiopulmonary bypass. The case where it uses as a catheter used for the above etc. is assumed.
  • the heparin is inserted in the body while the inner surface modification tube 200 is inserted into the body.
  • the antithrombotic function of heparin or the like can be returned to the original state by a simple method of circulating a solution of the functional substance 230 such as a solution.
  • the use of the inner surface modification tube according to the present invention including the first and second embodiments described above includes a catheter and an extracorporeal circulation tube used for artificial dialysis, cardiopulmonary bypass, tube feeding, and the like as described above.
  • an extracorporeal circulation tube used for artificial dialysis, cardiopulmonary bypass, tube feeding, and the like as described above.
  • antithrombogenicity and infection control of catheters, drain tubes, artificial blood vessels, stent grafts, etc. used in digestive treatment, cardiovascular treatment, surgical treatment, respiratory treatment, neurosurgical treatment, biofilm formation, etc. It can be used for various purposes such as inhibition and removal of formed biofilm.
  • the manufacturing method of the inner surface reforming tube 100 according to the first embodiment described above and the manufacturing method 1 and the manufacturing method 2 of the inner surface reforming tube 200 according to the second embodiment described above are used, respectively.
  • the inner surface modified tubes of Examples 1 to 3 were produced. Specifically, a tube made of polyvinyl chloride (inner diameter: 12 mm) is used as the tube, hydroxyapatite fine particles (“SHAp” manufactured by Sofcera Corporation, average particle size: 42 nm) as fine particles, and heparin sodium as a functional substance.
  • the inner surface modification tube shown in Table 1 below was produced.
  • an untreated polyvinyl chloride tube (same as that used in Examples 1 to 3) was used as Comparative Example 1.
  • the arithmetic average roughness Ra (nm) and the uneven distribution amount L B / L T were measured on the inner surfaces of the inner surface modified tubes of Examples 1 to 3 and Comparative Example 1 manufactured as described above.
  • Each measuring method is as described above, and detailed conditions of the measuring method of the arithmetic average roughness Ra are as follows.
  • the inner surface modified pipes of Examples 1 to 3 and Comparative Example 1 were cut (round cut) in a cross section to obtain a pipe sample having a length of 20 mm.
  • the tube sample was cut along the longitudinal direction, and a thin section was prepared by a microtome.
  • the inner surface of the tube was photographed with a scanning electron microscope at a magnification of 50,000 times, and the arithmetic average roughness Ra was calculated from the obtained image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials For Medical Uses (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】所定の機能を付与するために管の内面に表面改質処理が施された内面改質管において、付与された機能を十分に発揮させるとともに、当該機能を長期間維持させる。 【解決手段】管110の内面に、微粒子120が表面の一部を露出させた状態で埋設された内面改質管100において、微粒子120を、管110の厚み方向を基準として、管110の中央Cから管110の外面に向かう領域A1よりも管110の中央Cから管110の内面に向かう領域A2に偏在させ、微粒子120を構成する材料を、管110の内面を構成する材料と共有結合及びイオン結合し得ない材料とし、管110の内面の算術平均粗さRaを、1nm以上100μm以下とし、微粒子120の粒径を、10nm以上100μm以下とし、管110の内径を、0.01mm以上100mm以下とした。

Description

内面改質管、内面改質管の製造方法及び内面改質管の製造装置
 本発明は、管の内面が改質された内面改質管に関する。
 従来から、防水性、耐食性、耐熱性、絶縁性、耐摩耗性、潤滑性、密着性、装飾性、美観等の機能の付与を目的として、金属や樹脂等の板材、管材等の各種材料に対して、その表面を改質する表面改質処理が施されている。これらの表面改質が管の内面に施される場合もあるが、管内面を表面改質する方法としては、例えば、金属製や樹脂製等の管の内面に所定の機能を有する樹脂被膜をコーティングする技術(例えば、特許文献1及び2を参照)や、金属製や樹脂製等の管の内面に所定の機能を有する粒子を付着させる技術(例えば、特許文献3及び4を参照)がある。
特開平3-186695号公報 特開平6-117581号公報 特開昭62-63679号公報 特開2013-96797号公報
 しかしながら、上記特許文献1及び2に記載された技術では、管の内面にコーティングした樹脂被膜と管内面との密着力が不足する場合がある。この密着力の不足は、特に、金属製の管と樹脂被膜のように、管の材料とそれをコーティングする材料とで異種材料を用いた場合に顕著である。このように密着力が不足すると、樹脂被膜が剥離し易いという問題があった。また、密着力を向上させるために接着剤等を用いて、管の内面と樹脂被膜とを接着させた場合には、接着力の向上を図るために、強い密着性を発揮できるような材料を選択する必要があり、管やコーティングする被膜の材料の自由度が狭くなる。さらに、管の内面に物理的又は化学的に粗面化処理等を行うことで密着力を高める方法もあるが、この場合には、管の機械的性質が変化するおそれがある。
 また、上記特許文献3及び4に記載された技術では、単に、粒子を管内面への付着を補助する液体に分散させて間の内面に塗布するだけであるので、管内面の単位面積に対する十分な付着量を担保することが困難である。また、十分な付着量を担保できたとしても、粒子の管内面への付着力が低いため、付着した粒子が管の内面から容易に脱落するおそれがある。
 なお、上記特許文献3に記載された技術では、粒子を管内面に付着させた後に、粒子を加熱溶融させることで、粒子を管内面に溶着させているが、そもそも粒子の付着量が少ないため、粒子が有する機能を十分に発揮させることができない。また、粒子を管内面に溶着させたとしても、結局は、管内面に機能性の物質(粒子)がコーティングされているだけであり、管内面と粒子との間の接触面積が小さいため、密着力が不足する。
 このように、上記特許文献1~4に記載されたようなこれまでの技術では、表面改質によって所定の機能を付与しようとしても、当該機能を十分に発揮させることができず、発揮させることができたとしても、機能性を有する樹脂被膜が剥離したり、機能性を有する粒子が脱落したりすることで、その機能を長期間維持することが困難であった。また、管内面を表面改質した場合、剥離した樹脂被膜や脱落した粒子が管内部に残存してしまうことも問題であった。
 そこで、本発明は、上記事情に鑑みてなされたものであり、所定の機能を付与するために管の内面に表面改質処理が施された内面改質管において、付与された機能を十分に発揮させるとともに、当該機能を長期間維持させることを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、管の内面に、微粒子を表面の一部を露出させた状態で埋設し、且つ、微粒子を、管の厚み方向を基準として、管の中央から管の外面に向かう領域よりも管の中央から管の内面に向かう領域に偏在させることにより、微粒子が有する機能を十分に発揮させるとともに、当該機能を長期間維持できることを見出し、この知見に基づいて本発明を完成するに至った。
 すなわち、本発明は、管の内面に、微粒子が表面の一部を露出させた状態で埋設された内面改質管であって、前記微粒子が、前記管の厚み方向を基準として、前記管の中央から前記管の外面に向かう領域よりも前記管の中央から前記管の内面に向かう領域に偏在しており、前記管の内面の算術平均粗さRaが、1nm以上100μm以下であり、前記微粒子の粒径が、10nm以上100μm以下であり、前記管の内径が、0.01mm以上100mm以下であることを特徴とする、内面改質管である。
 前記内面改質管において、前記管の肉厚に対する前記微粒子の前記埋設された部分の厚みの比が、1/1,000,000以上1/4以下であることが好ましい。
 前記内面改質管において、前記微粒子を構成する材料が、前記管の内面を構成する材料と共有結合及びイオン結合しない材料であってもよい。
 前記内面改質管において、前記微粒子が、無機材料又は当該無機材料と他の成分とを含む複合材料であってもよい。
 この場合に、前記無機材料が、ハイドロキシアパタイトであってもよい。
 前記内面改質管において、前記微粒子が、光触媒活性材料であってもよい。
 前記光触媒活性材料が、酸化チタンであってもよい。
 この場合に、前記管の内面を構成する材料が、熱可塑性樹脂であってもよい。
 前記微粒子の表面に機能性物質が吸着されていてもよい。
 この場合に、前記機能性物質が、ヘパリン、ワルファリン、エチレンジアミン四酢酸(EDTA)、クエン酸又は2-メタクリロイルオキシエチルホスホリルコリン(MPC)ポリマーであってもよい。
 また、本発明は、上述した内面改質管の製造方法であって、溶融又は半溶融状態の前記管の内面に前記微粒子を吹き付けることで、前記管の内面に、表面の一部を露出させた状態で前記微粒子を埋設する埋設工程を含むことを特徴とする、内面改質管の製造方法である。
 前記内面改質管の製造方法において、前記埋設工程後に、前記微粒子の表面に機能性物質を吸着させる吸着工程を更に含んでいてもよい。
 この場合に、前記吸着工程後に、所定時間の経過後に前記微粒子の表面から脱落した前記機能性物質を補充するために、前記微粒子の表面に前記機能性物質を追加吸着させる追加吸着工程を更に含んでいてもよい。
 また、本発明は、上述した製造方法に用いる内面改質管の製造装置であって、前記管が樹脂製であり、前記管の金型となるダイと、前記ダイに前記微粒子を供給する微粒子供給部と、押出機により前記ダイから前記管を押し出す際に、前記微粒子供給部により供給された前記微粒子を前記管の内面に吹き付ける微粒子吹付部と、を備えることを特徴とする、内面改質管の製造装置である。
 本発明によれば、所定の機能を付与するために管の内面に表面改質処理が施された内面改質管において、管の内面に、微粒子を表面の一部を露出させた状態で埋設し、且つ、微粒子を、管の厚み方向を基準として、管の中央から管の外面に向かう領域よりも管の中央から管の内面に向かう領域に偏在させることにより、微粒子が有する機能を十分に発揮させるとともに、当該機能を長期間維持することが可能となる。
本発明の第1の実施形態に係る内面改質管の構成を示す断面図である。 同実施形態に係る内面改質管の製造方法及び製造装置の構成を示す模式図である。 本発明の第2の実施形態に係る内面改質管の構成を示す断面図である。 同実施形態に係る内面改質管の製造方法の一例及び製造装置の構成を示す模式図である。 同実施形態に係る内面改質管の製造方法の他の例及び製造装置の構成を示す模式図である。 同実施形態に係る内面改質管の製造方法の他の例及び製造装置の構成を示す模式図である。 同実施形態に係る内面改質管の製造方法における追加吸着工程を示す模式図である。 本発明の実施例における抗血栓性試験の試験方法を示す模式図である。 本発明の実施例における抗血栓性試験の試験結果を示す写真である。
 以下、図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面においては、同一の符号が付された構成要素は、実質的に同一の構造または機能を有するものとする。
 なお、本発明に係る内面改質管については、以下の順序で説明する。
1 第1実施形態
1-1 内面改質管の構成
1-2 内面改質管の製造方法及び製造装置
2 第2実施形態
1-1 内面改質管の構成
1-2 内面改質管の製造方法及び製造装置
3 本発明に係る内面改質管の用途
≪第1実施形態≫
 まず、図1及び図2を参照しながら、本発明の第1実施形態に係る内面改質管100について説明する。図1は、本実施形態に係る内面改質管100の構成を示す断面図である。図2は、本実施形態に係る内面改質管100の製造方法及び製造装置の構成を示す模式図である。以下、内面改質管100の構成について説明した後に、当該内面改質管100の製造方法及びこの製造方法に用いる装置例について説明する。
<内面改質管100の構成>
 図1に示すように、内面改質管100は、管110の内面111に微粒子120が埋設されたものである。この微粒子120が、所定の機能(例えば、抗血栓機能、光触媒機能等)を有することで、管110の内面111を改質して、上記所定の機能を付与することができる。なお、所定の機能としては、上記の抗血栓機能や光触媒機能に限られず、例えば、抗菌性、生理活性、生体親和性、生体不活性、防水性、疎水性、撥水性、親水性、耐食性、耐熱性、絶縁性、耐摩耗性、潤滑性、他の材料との密着性等を付与する機能等であってもよい。
[埋設の意義]
 ここで、微粒子120が管110の内面111に「埋設されている」とは、微粒子120がその表面の一部を露出させた状態で、且つ、微粒子120の表面の他の部分が、管110の内面111に埋没された状態、すなわち、管110の内壁の内部に存在する状態であることを意味している。すなわち、微粒子120が管110の内面111に埋設された状態においては、微粒子120には、管110の内面111から外部(管110の内部空間)に露出した露出領域と、管110の内壁の内部に存在する埋設領域とが存在する。従って、管110の内面111に微粒子120が単に付着した状態(直接付着している場合、接着剤等を介して付着している場合を共に含む。)や、管110の内面111に微粒子120を含む膜や層がコーティングされている状態とは異なる。
 このように、微粒子120を管110に埋設させるためには、詳しくは後述するが、例えば、管110の成形加工中に、管110を構成する材料が溶融している状態で、微粒子120を管110の内面111になる面に向けて吹き付ければよく、これにより、管110の内面111の表面改質(例えば、所定機能の付与)が可能となる。
 また、微粒子120が露出領域と埋設領域を有することで、以下のような効果を奏する。例えば、微粒子120の表面のうち露出領域の腐食等により微粒子120の機能が劣化したとしても、露出領域の内面側(図1の矢印Wの方向側)の埋設領域には、機能が劣化していない部分があるため、その部分を表面に露出させることで、微粒子120の機能を長期間維持させることができる。
[管110]
 管110は、内面改質管100の基材となる管である。管110の断面形状は特に制限されるものではなく、例えば、円形、楕円形、多角形等の任意の形状とすることができる。
(材質)
 管110の材質も特に制限されるものではなく、管110としては、例えば、金属製、樹脂等の任意の材質のものを用いることができる。管110に使用可能な金属としては、例えば、鉄、鋼、ステンレス、アルミニウム、銅、ニッケル、チタン、タンタル、ニオブ、又はこれらの合金等が挙げられる。これらの金属や合金等の管の外面には、各種めっきや表面処理が施されていてもよい。また、管110に使用可能な樹脂としては、熱可塑性樹脂でも熱硬化性樹脂でもよい。熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、ポリウレタン、熱硬化性ポリイミド等が挙げられる。また、熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ABS樹脂、アクリル樹脂等の汎用プラスチックや、ポリアセタール、ポリアミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリテトラフルオロエチレン等のエンジニアリングプラスチックやポリ乳酸、ポリグリコール酸、又はこれらの共重合体など生体吸収性高分子が挙げられる。これらの樹脂の中でも、本実施形態に係る内面改質管100の製造を容易にするという観点からは、管110として熱可塑性樹脂を用いることが好ましい。上述したような管110の材質は、内面改質管100の用途や微粒子120の内面111への密着力等に応じて適宜決定すればよい。
(内径)
 管110の内径rは、0.01mm以上100mm以下である。管110の内径rを上記範囲とし、且つ、後述するように、内面111の表面粗さを所定範囲とし、微粒子120の粒径を所定範囲とすることで、内面改質管110内に流体を導通させる際に、乱流の発生を抑制することが可能となる。乱流の発生をより効果的に抑制するためには、管110の内径rの下限を0.1mm以上とすることが好ましく、0.5mm以上とすることがより好ましい。また、管110の内径の上限rを80mm以下とすることが好ましく、50mm以下とすることがより好ましい。
(内面111の表面粗さ)
 また、管110の内面111の算術平均粗さRaは、1nm以上100μm以下である。内面111のRaを上記範囲とし、且つ、管110の内径rを所定範囲とし、微粒子120の粒径を所定範囲とすることで、内面改質管110内に流体を導通させる際に、乱流の発生を抑制することが可能となる。乱流の発生をより効果的に抑制するためには、内面111のRaの下限を5nm以上とすることが好ましく、10nm以上とすることがより好ましい。また、内面111のRaの上限を50μm以下とすることが好ましく、30μm以下とすることがより好ましい。
 ここで、本実施形態における算術平均粗さRaとは、JIS B0601:2013で定義される算術平均粗さを意味し、その測定値としては、管110の内面111のRaは、例えば、管110を所定長さとなるように横断面で切断(輪切り)した後に、その長手方向に沿って切断して切り開いて平坦な状態とした後に、JIS B0659-1:2002で規定する測定方法に準拠として測定した値を採用するものとする。
[微粒子120]
 微粒子120は、管110の内面111に埋設(上述した定義を参照)され、所定の機能(例えば、抗血栓性、光触媒活性、防水性、耐食性、耐熱性、絶縁性、耐摩耗性、潤滑性、他の材料との密着性等を付与する機能)を有する微粒子である。この微粒子120の形状は、特に制限されず、球状、回転楕円体状、立方体、直方体、角錐等の幾何学的形状、針状、柱状、不定形状等、任意の形状としてよい。
(材質)
 微粒子120の材質も特に制限されるものではなく、例えば、微粒子120を構成する材料が、管110の内面111を構成する材料(例えば、表面酸化、シランカップリング等の所定の表面処理や、微粒子120と化学結合可能な材料で構成される層を内面111に被覆するための塗装処理等の所定の処理が行われていない未処理状態のもの)と共有結合及びイオン結合しない材料であってもよい。このように、微粒子120が、管110の内面111を構成する材料と化学結合できない粒子であっても、本実施形態のように、微粒子120を内面111に埋設させることにより、内面111に微粒子120を強固に固定することが可能となる。
 微粒子120の材質は、用途に応じて適宜選択すればよく、有機材料であっても無機材料でもよいが、例えば、微粒子120として、無機材料又は当該無機材料と他の成分とを含む複合材料を用いることができる。特に、無機材料として、ハイドロキシアパタイトのような生体親和性を有する材料を微粒子120として用いることで、内面改質管100の内部に生体適合性が要求されるような用途に用いることができる。また、特定の方法により焼成したナノメートルオーダーのハイドロキシアパタイトは高い生体親和性を発現し、上記焼成ハイドロキシアパタイト又は当該焼成ハイドロキシアパタイトを含む複合材料を用いた場合には、高い生体親和性や抗血栓性を内面改質管100の内壁に付与することが期待できる。
 また、微粒子120としては、例えば、光触媒活性を有する材料(光触媒活性材料)であってもよい。このような材料を微粒子120として用いることで、内面改質管100の内部に付着した汚染物質や細菌等を除去することが必要な用途に内面改質管100を用いることができる。光触媒活性材料としては、特に制限されるものではないが、例えば、酸化チタンが挙げられ、酸化チタンでも特にアナターゼ型の結晶構造を有するものが好適である。
(粒径)
 本実施形態における微粒子120の粒径rは、10nm以上100μm以下である。微粒子120の粒径rを上記範囲とし、且つ、管110の内径rを所定範囲とし、管110の内面111の算術平均粗さRaを所定範囲とすることで、内面改質管110内に流体を導通させる際に、乱流の発生を抑制することが可能となる。乱流の発生をより効果的に抑制するためには、微粒子120の粒径rの下限を15nm以上とすることが好ましく、20nm以上とすることがより好ましい。また、微粒子120の粒径rの上限を50μm以下とすることが好ましく、10μm以下とすることがより好ましい。
 ここで、本実施形態における微粒子120の粒径とは、一次粒子の数平均粒子径を意味する。また、各粒子の粒径は、管110の厚み方向の長さとして測定された値を用いる。また、微粒子120の粒径の測定は、電子顕微鏡を用いて、少なくとも100個以上の一次粒子について粒子径(本実施形態では、管110の厚み方向の長さ)を測定して、その平均値を計算すればよい。
(乱流の発生抑制効果について)
 上述したように、管110の内径r、管110の内面111の算術平均粗さRa、微粒子120の粒径rを所定範囲内とすることで、内面改質管110内に流体を導通させる際に、乱流の発生を抑制することが可能となる。粗面流路では層流が形成されず、管内の大部分は乱流域となるため、管110の内面111は平滑である方が層流域の形成に有利となるためである。本実施形態では、管110の内径rに対して微粒子120の粒径rが小さく、算術平均粗さRaが小さいため、乱流の発生を効果的に抑制することができる。このように、内面改質管110内における乱流の発生を抑制することで、管110の内面111からの微粒子120の脱落を抑制することができる。また、内面改質管100内において、微粒子120が埋設されている領域においても、埋設されていない場合と遜色なく流体を導通させることが可能であるので、内面が改質されることにより流体の導通が阻害されるということもない。
(微粒子120の偏在)
 また、本実施形態では、微粒子120が、管110の厚み方向を基準として、管110の中央Cから管110の外面に向かう(図1の矢印Wの方向)領域A1よりも、管110の中央から管110の内面に向かう(図1の矢印Wの方向)領域A2に偏在している。このように、微粒子120が領域A2に偏在していることにより、管110の材料(基材)の機械的性質を担保(内面111を改質していない状態の管110が有する機械的性質を維持)することが可能となる。なお、図1では、微粒子120が、管110内の領域A2にのみ存在している例を示しているが、微粒子120の一部が領域A1に存在していてもよい(この場合、微粒子120は、当然領域A2にも存在しているが、領域A2に存在する体積の方が、領域A1に存在する体積よりも大きい)。
 上記機械的性質を担保する効果をより効果的に発現させるためには、管110の肉厚Lに対する微粒子120の埋設された部分(以下、「埋設部分」)の厚みLの比(=L/L、以下「偏在量」と称する。)が、1/1,000,000以上1/4以下であることが好適であり、1/500,000以上1/10以下であることより好適であり、1/10,000以上1/100以下であることが更に好適である。偏在量の値は、電子顕微鏡を用いて、少なくとも100個以上の微粒子120について埋設部分の厚みLを測定し、その平均値を管110の肉厚LTで除した値とすればよい。
<内面改質管100の製造方法及び製造装置>
 以上、本実施形態に係る内面改質管100の構成について説明したが、続いて、図2を参照しながら、かかる構成を有する内面改質管100の製造方法及びこの製造方法に用いる製造装置について詳細に説明する。
[製造装置10の構成]
 内面改質管100は、例えば、管110が樹脂製の場合には、図2(a)に示すような内面改質管製造装置10(以下、「製造装置10」と記載する。)を用いて製造することができる。製造装置10は、図2(a)に示すように、ダイ11と、本実施形態に係る微粒子供給部の一例としての微粒子供給口12と、本実施形態に係る微粒子吹付部の一例としての微粒子吹付ノズル13と、を備える。
(ダイ11)
 ダイ11は、樹脂製の管110を成形する際の金型となるものである。ダイ11内に管110の材料である樹脂を充填した後に、押出機(図示せず。)によりダイ11から樹脂を押し出すことで、管110を成形することができる。管110を構成する樹脂をダイ11から押し出す際の温度(溶出温度)は、特に制限されるものではなく、樹脂の融点又は軟化点以上の温度であればよい。
(微粒子供給口12)
 また、微粒子供給口12は、ダイ11内に微粒子120を供給するための投入口である。この微粒子供給口12は、微粒子吹付ノズル13と連通しており、微粒子供給口12から微粒子120を投入することで、微粒子120は、ダイ11内に設置された微粒子吹付ノズル13に到達する。
(微粒子吹付ノズル13)
 微粒子吹付ノズル13は、ダイ11内に設置され、押出機によりダイ11から押し出された溶融状態(半溶融状態を含む。以下同様。)の管110の内面111に向けて、微粒子供給口12から供給された微粒子120を吹き付ける。この微粒子吹付ノズル13は、所定圧力及び所定流量を有するガスに微粒子120を混合して吹き付ける。ガスの圧力と流量は、ダイ11からの樹脂の押出速度に応じて適宜設定すればよい。
[内面改質管100の製造方法]
 上述した製造装置10を用いれば、以下の方法により、樹脂製の管110の内面111に微粒子120が埋設された内面改質管100を製造することができる。具体的には、図2(b)に示すように、本実施形態に係る内面改質管100の製造方法は、押出機によりダイ11から押し出された溶融又は半溶融状態の管110の内面に、微粒子吹付ノズル13により微粒子120を吹き付けることで、管110の内面に、表面の一部を露出させた状態で微粒子120を埋設する埋設工程を含む。
(溶融状態について)
 ここで、上記埋設工程においては、微粒子吹付ノズル13から微粒子120を吹き付ける際に、管110全体が溶融状態であってもよいし、管110のうち少なくとも内面111が溶融状態であってもよい。また、本実施形態における「溶融状態(又は半溶融状態)」とは、所定の圧力及び流量のガス(エアや不活性ガス等)を用いて微粒子120を内面111に吹き付ける際に、微粒子120がその表面の一部が露出された状態で内面111に埋設される(埋め込まれる)程度の軟らかさを有している状態であればよく、必ずしも、管110を構成する樹脂が、融点又は軟化点以上の温度である必要は無い。
(微粒子120の吹き付け方法)
 また、管110の内面111に微粒子120を吹き付ける方法としては、管110の製造又は成形過程において管110を構成する材料が溶融状態であることを利用し、管110の製造又は成形過程で微粒子120を内面111に吹き付けてもよく、管110の製造又は成形後に管110を加熱し、少なくとも内面111を溶融させた状態で微粒子120を吹き付けてもよい。
(製造条件)
 ダイ11から管110を構成する樹脂を押し出す際の溶出温度、微粒子120を内面111に吹き付ける際の微粒子吹付ノズル13によるエアの圧力及びエア流量は、特に制限されるものではない。ただし、上述した微粒子120の埋設状態、偏在量、管110の内面111の算術平均粗さRaの好適範囲を実現するためには、溶出温度を100~500℃とすることが好ましい。また、エアの圧力は、0~1MPaとすることが好ましく、0.001~1MPaとすることがより好ましい。さらに、エア流量は、0~500L/分とすることが好ましく、0.0001~500L/分とすることがより好ましい。
(その他)
 なお、内面改質管100の製造装置としては、管110が樹脂製の場合、上述した製造装置10以外の製造装置であってもよく、上述した製造方法を実施可能な装置であれば特に制限はされるものではない。また、管110が樹脂以外の材質(例えば、金属製)の場合には、当然、製造装置10以外の装置で製造することとなる。この場合でも、管110の少なくとも内面111を溶融状態とするこができ、この溶融状態において、微粒子120を内面111に吹き付けることが可能な装置であれば、内面改質管100の製造装置として用いることができる。
≪第2実施形態≫
 次に、図3~図6を参照しながら、本発明の第2実施形態に係る内面改質管200について説明する。図3は、本実施形態に係る内面改質管200の構成を示す断面図である。図4は、本実施形態に係る内面改質管200の製造方法の一例及び製造装置の構成を示す模式図である。図5A及び図5Bは、本実施形態に係る内面改質管200の製造方法の他の例及び製造装置の構成を示す模式図である。図6は、本実施形態に係る内面改質管200の製造方法における追加吸着工程を示す模式図である。以下、内面改質管200の構成について説明した後に、当該内面改質管200の製造方法及びこの製造方法に用いる装置例について説明する。
<内面改質管200の構成>
 図3に示すように、内面改質管200は、管110の内面111に微粒子220が埋設され、さらに、微粒子220の表面に機能性物質230が吸着されたものである。微粒子220を介して管110の内面111に固定された機能性物質230が、所定の機能(例えば、抗血栓機能、光触媒機能等)を有することで、管110の内面111を改質して、上記所定の機能を付与することができる。なお、所定の機能としては、上述したダイ1実施形態と同様である。このように、本実施形態に係る内面改質管200は、微粒子220ではなく機能性物質230により管110の内面111を改質する点で、第1実施形態に係る内面改質管100とは異なる。以下、内面改質管200の構成のうち、第1実施形態と異なる点について説明し、その他の構成については、第1実施形態と同様であるので、詳細な説明を省略する。
[微粒子220]
 微粒子220は、上述した微粒子120と基本的には同様であるが、微粒子220が所定の機能を必ずしも有している必要が無い点で微粒子120と異なる。すなわち、第1実施形態では、機能性物質230を有していないため、微粒子120自体が、内面111を改質するための所定の機能を有している必要があったが、本実施形態では、機能性物質230により内面111を改質するための所定の機能を付与することができるため、微粒子220自体が所定の機能を有していなくてもよい。
 また、微粒子220は、微粒子120と異なり、その表面に、機能性物質230を物理的又は化学的に吸着可能な性質を有している必要がある。これにより、機能性物質230が、微粒子220を介して管110の内面111に固定され、内面111を改質して、所定の機能を付与することができる。
[機能性物質230]
 機能性物質230は、上述したように、抗血栓機能、光触媒機能等の所定の機能を有する物質であり、その形状は特に制限されるものではなく、粒状、針状、不定形状等任意の形状とすることができる。また、機能性物質230の大きさも特に制限されるものではないが、微粒子220に吸着して簡単には脱離しない程度の大きさであることが必要である。機能性物質230が有する機能としては、上述した微粒子120と同様の機能であればよい。
 機能性物質230の具体例としては、特に制限されるものではないが、例えば、微粒子220が上述したハイドロキシアパタイト又はハイドロキシアパタイトを含む複合材料である場合には、例えば、ヘパリン、ワルファリン、エチレンジアミン四酢酸(EDTA)、クエン酸又は2-メタクリロイルオキシエチルホスホリルコリン(MPC)ポリマー等を用いることができる。このような物質は、ハイドロキシアパタイトに対する吸着性に優れ、抗血栓性を有する。従って、機能性物質230として、上記のような物質を用いた場合には、内面改質管200を、血液を導通させるチューブ(例えば、人工透析や人工心肺用のカテーテル)等の用途に用いることができる。このような用途に、抗血栓機能が付与された内面改質管200を用いると、チューブ内での血液の凝固を顕著に抑制することができる。
<内面改質管200の製造方法及び製造装置>
 以上、本実施形態に係る内面改質管200の構成について説明したが、続いて、図4~図6を参照しながら、かかる構成を有する内面改質管200の製造方法及びこの製造方法に用いる製造装置について詳細に説明する。
[製造装置10の構成]
 内面改質管200は、例えば、管110が樹脂製の場合には、上述した第1実施形態と同様の製造装置10を用いて製造することができる。なお、製造装置10の詳細な説明は、上記第1実施形態と重複するため省略する。
[内面改質管200の製造方法]
 上述した製造装置10を用いれば、以下の方法により、樹脂製の管110の内面111に微粒子220が埋設され、さらに、微粒子220の表面に機能性物質230が吸着された内面改質管200を製造することができる。具体的には、本実施形態に係る内面改質管200の製造方法は、上述した第1実施形態における埋設工程後に、微粒子220の表面に機能性物質230を吸着させる吸着工程を更に含む。この吸着工程としては、主に、予め微粒子220の表面に機能性物質230を吸着させた後に、機能性物質230が吸着した微粒子220を溶融状態又は半溶融状態の管110の内面111に吹き付ける方法(以下、「製法1」と称する。)と、微粒子220を溶融状態又は半溶融状態の管110の内面111に吹き付けた後に、機能性物質230を内面111に埋設された微粒子220に吸着させる方法(以下、「製法2」と称する。)の2通りが考えられる。以下、製法1、製法2の順に詳細な方法を説明する。なお、吸着工程は、製法1及び製法2以外の方法であっても差し支えない。
(吸着工程:製法1)
 製法1では、図4(a)に示すように、予め表面に機能性物質230(例えば、ヘパリン)が吸着(又はコーティング)された微粒子220(例えば、ハイドロキシアパタイト)を微粒子供給口12から投入し、図4(a)及び(b)に示すように、この微粒子220を微粒子吹付ノズル13により、ダイ11から押し出された溶融状態又は半溶融状態の管110の内面111に吹き付ける。これにより、1ステップで(管110の押し出し成形と同時に)内面改質管200を製造することができる。なお、図4では、機能性物質230が微粒子220の表面全体にコーティングされた状態を例示しているが、勿論このような状態には限られず、機能性物質230が微粒子220の表面の一部に吸着された状態であってもよい。
(吸着工程:製法2)
 製法2では、初めに、図5A(a)及び(b)に示すように、上述した第1実施形態と同様にして、微粒子220を管110の内面111に埋設させる。次に、内面111に微粒子220が埋設された管110の内部に、機能性物質230の溶液(例えば、ヘパリン等を水等の溶媒に分散させたヘパリン溶液)を流通させる。このようにして、管110内を機能性物質230が通過する際に、途中に存在する微粒子220に表面に物理的又は化学的に吸着されることで、内面改質管200を製造することができる。この製法2の場合には、製法1とは異なり、1ステップで内面改質管200を製造することはできないが、以下の点でメリットがある。すなわち、製法1の場合には、微粒子220を管110の内面111に埋設させる場合、内面110との界面111には機能性物質230が存在していることになり、微粒子220の内面111への密着力が低下する可能性があるが、製法2の場合には、このようなことが無いため、微粒子220の内面111への密着力をより高くすることができる。また、機能性物質230が希少物質である場合、機能付与に必要な微粒子220の露出面のみに効率よく機能性物質230を固定化できる、というメリットがある。
(追加吸着工程)
 また、本実施形態に係る内面改質管200の製造方法は、上述した吸着工程後、所定時間の経過後に、微粒子220の表面から脱落した機能性物質230を補充するために、微粒子220の表面に機能性物質230を追加吸着させる追加吸着工程を更に含んでいてもよい。図面を用いて説明すると、例えば、図6(a)に示すように、埋設工程及び吸着工程を経て製造された内面改質管200を使用している間に、図6(b)に示すように、機能性物質230(例えば、ヘパリン)が微粒子220の表面から脱落して、内面改質管200の機能(例えば、抗血栓機能)が低下したとする。この場合に、図6(c)に示すように、例えば、上記製法2と同様にして、機能性物質230の溶液(例えば、ヘパリン溶液)を、機能性物質230が脱落した内面改質管200内を再度流通させるという簡便な方法により、機能性物質230が脱落した微粒子220の表面に、機能性物質230を再度吸着させることができ、これにより、内面改質管200が製造時と同等の機能を復元することができる。なお、追加吸着工程の方法としては、上述したような吸着工程の製法2のような方法には限られず、機能性物質230が脱落した微粒子220の表面に、機能性物質230を再度吸着させることができるような方法であれば特に制限されるものではない。
 このような追加吸着工程を用いれば、内面改質管200が、機能性物質230が有する機能を長期的に(場合によっては半永久的に)保持することができる。例えば、機能性物質230として抗血栓性を有するヘパリン等の物質を用い、微粒子220として機能性物質230を吸着可能なハイドロキシアパタイト等の材料を用いた内面改質管200を、人工透析や人工心肺等に用いるカテーテルとして使用した場合を想定する。このケースでは、カテーテルとして用いる内面改質管200を使用する過程で、ヘパリン等の機能性物質230が微粒子220の表面から脱落したとしても、内面改質管200を体内に挿入した状態で、ヘパリン溶液等の機能性物質230の溶液を流通させるという簡易な方法で、ヘパリン等が有する抗血栓機能を元の状態に戻すことができる。
≪本発明に係る内面改質管の用途≫
 以上、説明した第1実施形態及び第2実施形態を含む本発明に係る内面改質管の用途としては、上述したような、人工透析や人工心肺、経管栄養等に用いるカテーテルや体外循環チューブ、血液回路の他にも、消化器治療、循環器治療、外科治療、呼吸器治療、脳神経外科治療等に用いるカテーテル、ドレーンチューブ、人工血管、ステントグラフト等の抗血栓性や感染制御、バイオフィルム形成阻害や形成されたバイオフィルム除去等のような様々な用途に用いることができる。
 次に、本発明を実施例及び比較例により、更に具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。
[内面改質管の作製]
 本実施例では、上述した第1実施形態に係る内面改質管100の製造方法、上述した第2実施形態に係る内面改質管200の製法1及び製法2のそれぞれの方法を用いて、それぞれ実施例1~3の内面改質管を作製した。具体的には、管としてポリ塩化ビニル製の管(内径:12mm)を用い、微粒子としてハイドロキシアパタイトの微粒子(株式会社ソフセラ製「SHAp」、平均粒径:42nm)、機能性物質としてヘパリンナトリウムを用いて、下記表1に示す内面改質管を作製した。また、対照用として、未処理の状態のポリ塩化ビニル製の管(実施例1~3で使用したものと同じもの)を比較例1として用いた。
Figure JPOXMLDOC01-appb-T000001
[表面粗さと偏在量の測定]
 上述したようにして作製した実施例1~3及び比較例1の内面改質管の内面に算術平均粗さRa(nm)及び偏在量L/Lの測定を行った。それぞれの測定方法は、上述した通りであるが、算術平均粗さRaの測定方法の詳細な条件は以下の通りである。まず、実施例1~3及び比較例1の内面改質管を横断面で切断(輪切り)し、長さ20mmの管サンプルを得た。その管サンプルを長手方向に沿って切断し、さらにミクロトームにより薄切片を作製した。作製した薄切片を走査型電子顕微鏡にて倍率50,000倍で管内面を撮影し、得られた画像から算術平均粗さRaを算出した。
[試験方法]
 上述したようにして作製した実施例1~3及び比較例1の内面改質管を用いて、抗血栓性試験を行った。具体的には、まず、図7(a)及び(b)に示すように、実施例1~3及び比較例1の内面改質管を長軸側に切り開き、37℃の恒温パッド上に保温した。次いで、図7(c)に示すように、保温した実施例1~3及び比較例1の内面改質管のそれぞれに、ウサギ(日本白色種、雄性、2.97kg)の血液を約0.2mLずつ静かに滴下し、図7(d)に示すように、37℃の恒温パッド上に放置した。15分間静置後、図7(e)に示すように、内面改質管を傾斜させて血液の流動性を観察した。以降、5分毎に観察した。
 観察開始35分経過後に血液中に血小板(血餅)を加えた実施例1~3及び比較例1の内面改質管をPBS(組織洗浄用0.01mol/L)溶液で洗浄し、1.5%グルタルアルデヒド含有PBS溶液に浸し、冷蔵(約4℃)保存した。各内面改質管上の血液の流動性が無くなった時間を記録した。
 上記試験は、実施例1~3及び比較例1の内面改質管のそれぞれに関し、2サンプルずつ(第1サンプルと第2サンプル)同様の方法で行った。
[測定結果・試験結果]
 上記測定及び試験の結果を以下の表2に示す。また、実施例1~3及び比較例1の内面改質管の第1サンプルの試験後の状態を写真撮影した結果を、参考までに図8に示した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例2及び3のように、機能性物質を微粒子に吸着させたものについては、抗血栓機能を有することがわかった。
 以上、図面を参照しながら本発明の好適な実施の形態について説明したが、本発明は上述した形態に限定されない。すなわち、特許請求の範囲に記載された発明の範囲内で当業者が想到し得る他の形態または各種の変更例についても本発明の技術的範囲に属するものと理解される。
10  内面改質管製造装置
11  ダイ
12  微粒子供給口
13  微粒子吹付ノズル
100  内面改質管
110  管
111  (管の)内面
120、220  微粒子
230  機能性物質
 

Claims (14)

  1.  管の内面に、微粒子が表面の一部を露出させた状態で埋設された内面改質管であって、
     前記微粒子が、前記管の厚み方向を基準として、前記管の中央から前記管の外面に向かう領域よりも前記管の中央から前記管の内面に向かう領域に偏在しており、
     前記管の内面の算術平均粗さRaが、1nm以上100μm以下であり、
     前記微粒子の粒径が、10nm以上100μm以下であり、
     前記管の内径が、0.01mm以上100mm以下である
    ことを特徴とする、内面改質管。
  2.  前記管の肉厚に対する前記微粒子の前記埋設された部分の厚みの比が、1/1,000,000以上1/4以下である、請求項1に記載の内面改質管。
  3.  前記微粒子を構成する材料が、前記管の内面を構成する材料と共有結合及びイオン結合しない材料である、請求項1又は2に記載の内面改質管。
  4.  前記微粒子が、無機材料又は当該無機材料と他の成分とを含む複合材料である、請求項1~3のいずれか一項に記載の内面改質管。
  5.  前記無機材料が、ハイドロキシアパタイトである、請求項4に記載の内面改質管。
  6.  前記微粒子が、光触媒活性材料である、請求項1~4のいずれか一項に記載の内面改質管。
  7.  前記光触媒活性材料が、酸化チタンである、請求項6に記載の内面改質管。
  8.  前記管の内面を構成する材料が、熱可塑性樹脂である、請求項1~7のいずれか一項に記載の内面改質管。
  9.  前記微粒子の表面に機能性物質が吸着されている、請求項1~8のいずれか一項に記載の内面改質管。
  10.  前記機能性物質が、ヘパリン、ワルファリン、エチレンジアミン四酢酸(EDTA)、クエン酸又は2-メタクリロイルオキシエチルホスホリルコリン(MPC)ポリマーである、請求項9に記載の内面改質管。
  11.  請求項1~10のいずれか一項に記載の内面改質管の製造方法であって、
     溶融又は半溶融状態の前記管の内面に前記微粒子を吹き付けることで、前記管の内面に、表面の一部を露出させた状態で前記微粒子を埋設する埋設工程を含むことを特徴とする、内面改質管の製造方法。
  12.  前記埋設工程後に、前記微粒子の表面に機能性物質を吸着させる吸着工程を更に含む、請求項11に記載の内面改質管の製造方法。
  13.  前記吸着工程後に、所定時間の経過後に前記微粒子の表面から脱落した前記機能性物質を補充するために、前記微粒子の表面に前記機能性物質を追加吸着させる追加吸着工程を更に含む、請求項12に記載の内面改質管の製造方法。
  14.  請求項11~13のいずれか一項に記載の製造方法に用いる内面改質管の製造装置であって、
     前記管が樹脂製であり、
     前記管の金型となるダイと、
     前記ダイに前記微粒子を供給する微粒子供給部と、
     押出機により前記ダイから前記管を押し出す際に、前記微粒子供給部により供給された前記微粒子を前記管の内面に吹き付ける微粒子吹付部と、
    を備えることを特徴とする、内面改質管の製造装置。
     
PCT/JP2015/054326 2014-02-18 2015-02-17 内面改質管、内面改質管の製造方法及び内面改質管の製造装置 WO2015125789A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016504114A JP6640714B2 (ja) 2014-02-18 2015-02-17 内面改質管、内面改質管の製造方法及び内面改質管の製造装置
US15/119,451 US10435777B2 (en) 2014-02-18 2015-02-17 Inner surface-modified tube, inner surface-modified tube manufacturing method, and inner surface-modified tube manufacturing device
CN201580007958.6A CN106133425B (zh) 2014-02-18 2015-02-17 内表面改性管、内表面改性管的制造方法及内表面改性管的制造装置
EP15751557.8A EP3109533B1 (en) 2014-02-18 2015-02-17 Inner face modified tube and inner face modified tube manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-028309 2014-02-18
JP2014028309 2014-02-18

Publications (1)

Publication Number Publication Date
WO2015125789A1 true WO2015125789A1 (ja) 2015-08-27

Family

ID=53878291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054326 WO2015125789A1 (ja) 2014-02-18 2015-02-17 内面改質管、内面改質管の製造方法及び内面改質管の製造装置

Country Status (5)

Country Link
US (1) US10435777B2 (ja)
EP (1) EP3109533B1 (ja)
JP (1) JP6640714B2 (ja)
CN (1) CN106133425B (ja)
WO (1) WO2015125789A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018047036A (ja) * 2016-09-21 2018-03-29 株式会社トプコン 非接触式眼圧計
WO2018061273A1 (ja) * 2016-09-29 2018-04-05 富士フイルム株式会社 チューブ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200071537A1 (en) * 2018-08-30 2020-03-05 Saudi Arabian Oil Company Method of providing a hydrophobic coating using non-functionalized nanoparticles
CN116271261A (zh) * 2023-05-24 2023-06-23 北京清瀚医疗科技有限公司 用于体外循环氧合装置的复合抗凝血涂层制作方法及涂层

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172278U (ja) * 1985-04-16 1986-10-25
JPH07378A (ja) * 1993-04-30 1995-01-06 Becton Dickinson & Co 一元的血液凝固活性化物質を有する管およびその製法
JPH0960768A (ja) * 1995-08-21 1997-03-04 Shinagawa Fuel Co Ltd 耐蝕性ヒューム管
JPH09173321A (ja) * 1995-09-29 1997-07-08 Becton Dickinson & Co 血漿分離用の採血器具および採血方法
JPH09317984A (ja) * 1996-05-30 1997-12-12 Toto Ltd 管内防汚性を維持する管体及びその製造方法
JP2001521604A (ja) * 1997-03-14 2001-11-06 ノボプラステイック 特に設備導管のような延長された管状製品
JP2005207565A (ja) * 2004-01-19 2005-08-04 Hokkaido Crest:Kk 断熱および内部汚染防止除去機能を有する管体
JP2008215618A (ja) * 2007-01-26 2008-09-18 Kwpt Co Ltd ナノ銀をコーティングさせた上水道用鉄管

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263679A (ja) * 1985-09-13 1987-03-20 Hitachi Cable Ltd 金属管材の内面処理方法
JPH02114963A (ja) * 1988-10-25 1990-04-27 Terumo Corp 血小板保存容器
JP2560499B2 (ja) * 1989-12-13 1996-12-04 日立電線株式会社 内面被覆金属管
JPH06117581A (ja) * 1992-10-08 1994-04-26 Sekisui Chem Co Ltd 内面樹脂ライニング金属管の製造方法
JPH1015061A (ja) * 1996-07-04 1998-01-20 Terumo Corp 腹腔内留置カテーテル
WO2008033867A2 (en) * 2006-09-11 2008-03-20 Enbio Limited Method of doping surfaces
JP5822385B2 (ja) * 2011-10-31 2015-11-24 積水メディカル株式会社 採血管

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172278U (ja) * 1985-04-16 1986-10-25
JPH07378A (ja) * 1993-04-30 1995-01-06 Becton Dickinson & Co 一元的血液凝固活性化物質を有する管およびその製法
JPH0960768A (ja) * 1995-08-21 1997-03-04 Shinagawa Fuel Co Ltd 耐蝕性ヒューム管
JPH09173321A (ja) * 1995-09-29 1997-07-08 Becton Dickinson & Co 血漿分離用の採血器具および採血方法
JPH09317984A (ja) * 1996-05-30 1997-12-12 Toto Ltd 管内防汚性を維持する管体及びその製造方法
JP2001521604A (ja) * 1997-03-14 2001-11-06 ノボプラステイック 特に設備導管のような延長された管状製品
JP2005207565A (ja) * 2004-01-19 2005-08-04 Hokkaido Crest:Kk 断熱および内部汚染防止除去機能を有する管体
JP2008215618A (ja) * 2007-01-26 2008-09-18 Kwpt Co Ltd ナノ銀をコーティングさせた上水道用鉄管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3109533A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018047036A (ja) * 2016-09-21 2018-03-29 株式会社トプコン 非接触式眼圧計
WO2018061273A1 (ja) * 2016-09-29 2018-04-05 富士フイルム株式会社 チューブ
JP2018054033A (ja) * 2016-09-29 2018-04-05 富士フイルム株式会社 チューブ
US11077605B2 (en) 2016-09-29 2021-08-03 Fujifilm Corporation Tube

Also Published As

Publication number Publication date
US10435777B2 (en) 2019-10-08
EP3109533A1 (en) 2016-12-28
CN106133425A (zh) 2016-11-16
CN106133425B (zh) 2019-03-22
JP6640714B2 (ja) 2020-02-05
EP3109533A4 (en) 2017-10-11
JPWO2015125789A1 (ja) 2017-03-30
US20170009327A1 (en) 2017-01-12
EP3109533B1 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
WO2015125789A1 (ja) 内面改質管、内面改質管の製造方法及び内面改質管の製造装置
US20200291246A1 (en) Slippery liquid-infused porous surfaces and biological applications thereof
Ontaneda et al. Novel surfaces in extracorporeal membrane oxygenation circuits
Jokinen et al. Superhydrophobic blood‐repellent surfaces
Moradi et al. Effect of extreme wettability on platelet adhesion on metallic implants: from superhydrophilicity to superhydrophobicity
Geyer et al. How to Coat the Inside of Narrow and Long Tubes with a Super‐Liquid‐Repellent Layer—A Promising Candidate for Antibacterial Catheters
CA2625638C (en) Ultra-thin photo-polymer coatings and uses thereof
Movafaghi et al. Hemocompatibility of super-repellent surfaces: current and future
WO2007046348A1 (ja) 医療用カテーテルチューブ及びその製造方法
US20140093572A1 (en) Active materials for prevention and treatment of fouled surfaces
JP2013192885A (ja) 医療用具およびその製造方法
WO2015045762A1 (ja) 生体インプラント
JP2010167388A (ja) ナノポーラス表面を有する製品の製造方法
Siebert et al. Perfect polymer interlocking by spherical particles: capillary force shapes hierarchical composite undercuts
JP4815496B2 (ja) ナノポーラス表面を有する立体製品の製造方法
JP5505299B2 (ja) 抗血栓性表面
Yahyaei et al. Superhydrophobic coatings for medical applications
JP7149346B2 (ja) 複合部材およびその製造方法
JP2010188426A (ja) 清拭シート
Qian et al. Titanium Dioxide Covalently Immobilized Citric Acid (TiO2‐CA) Nanohybrid Coating of Neurovascular Flow Diverter to Improve Antithrombogenic and Pro‐Endothelialization Properties
JPH04133732A (ja) 複層チューブ
JPWO2006109590A1 (ja) 医療用器具
JP2024057671A (ja) 被覆金属線及び積層チューブ
US20240133080A1 (en) Apparatus for continuous spinning of coagulative polymeric microfibers and method for continuous spinning of coagulative polymeric microfibers using the same
JP4526597B1 (ja) 細胞培養足場の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504114

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15119451

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015751557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015751557

Country of ref document: EP