WO2015125772A1 - 電極リードおよび半導体装置 - Google Patents

電極リードおよび半導体装置 Download PDF

Info

Publication number
WO2015125772A1
WO2015125772A1 PCT/JP2015/054275 JP2015054275W WO2015125772A1 WO 2015125772 A1 WO2015125772 A1 WO 2015125772A1 JP 2015054275 W JP2015054275 W JP 2015054275W WO 2015125772 A1 WO2015125772 A1 WO 2015125772A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor element
electrode lead
electrode
lead
semiconductor
Prior art date
Application number
PCT/JP2015/054275
Other languages
English (en)
French (fr)
Inventor
大輔 片桐
紀彦 葉名
紘一 位田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2015125772A1 publication Critical patent/WO2015125772A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49572Lead-frames or other flat leads consisting of thin flexible metallic tape with or without a film carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • H01L2224/37599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10254Diamond [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an electrode lead joined to a main electrode on the surface side of a semiconductor element, and a semiconductor device using the same.
  • a semiconductor element that functions as a switching element or a rectifying element is mounted on a circuit surface of an insulating substrate, and an electrode lead or other wiring member for electrical connection with an external circuit is bonded to the mounted semiconductor element, and then the insulating device It is sealed with a resin (sealing body).
  • semiconductor elements used for power control such as inverters, it is necessary to reduce power loss.
  • semiconductor elements using wide band gap semiconductor materials such as silicon carbide (SiC) and gallium nitride have been developed. ing.
  • Such a semiconductor element has a higher operating temperature than conventional silicon, for example, it is said that the operable temperature is 200 ° C. or more and 300 ° C. or higher. In that case, the thermal stress between the semiconductor element and the wiring member inside the sealing body is further increased. Therefore, a semiconductor device that joins an electrode lead and a semiconductor element via a stress relaxation layer and a semiconductor device that forms an E-shaped tip portion for joining the electrode lead to the semiconductor element have been proposed (for example, (See Patent Document 1 or 2.)
  • JP 2002-141454 A (paragraph 0019, figure) JP 2003-234447 A (paragraphs 0020 to 0027, FIGS. 2 to 8)
  • the present inventor in the heat cycle in the semiconductor device, at the boundary surface with the sealing body at the corner portion of the semiconductor element rather than the joint portion between the semiconductor element and the electrode lead, which has been a problem in the above-described patent document. I realized that it was more important to control the damage. And about the thermal stress in a boundary surface, the influence of the thermal deformation of the electrode lead in the vicinity of a corner part is larger than the influence of the linear expansion coefficient difference of the sealing body and semiconductor element which are in contact with a semiconductor element I found out.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a highly reliable semiconductor device that can cope with high temperatures and is suitable for power control.
  • the electrode lead of the present invention is a plate-shaped electrode lead having one end joined to the main electrode on the surface side of the semiconductor element, straddling the end of the semiconductor element, and the other end connected to another semiconductor element or an external circuit.
  • the distance from the end of the junction that joins the main electrode in any cross section orthogonal to the surface of the semiconductor element to the surface end of the semiconductor element is from the center of the surface of the semiconductor element in the cross section.
  • the width of the portion where the end of the junction is farther from the surface end of the semiconductor element than the position having a predetermined ratio to the distance to the surface end and straddles the end of the semiconductor element Is narrower than the width of the joint.
  • the semiconductor device of the present invention includes an insulating substrate, a semiconductor element for controlling power bonded to the insulating substrate, the electrode lead described above having one end bonded to the main electrode of the semiconductor element, and the electrode.
  • a sealing body that includes a portion of the lead joined to the semiconductor element and seals the semiconductor element.
  • the electrode lead of the present invention since the thermal stress acting on the boundary between the sealing body and the semiconductor element at the corner portion of the semiconductor element can be suppressed, the highly reliable semiconductor device suitable for power control corresponding to high temperature Can be obtained.
  • FIGS. 1A and 1B are a plan view and a cross-sectional view for explaining a configuration of an electrode lead according to a first embodiment of the present invention and a semiconductor device using the electrode lead. It is the elements on larger scale for demonstrating the structure of the electrode terminal concerning Embodiment 1 of this invention. It is a cross-sectional schematic diagram for demonstrating the thermal stress which generate
  • FIG. 6 is a plan view and a cross-sectional view for explaining the positional relationship between the end portion of the semiconductor element and the end portion of the direct lead in the semiconductor element. It is a graph which shows the relationship between the dimensional ratio of a direct lead, and the thermal stress which generate
  • FIG. 1 to 4 are diagrams for explaining the configuration of an electrode lead according to a first embodiment of the present invention and a semiconductor device using the electrode lead
  • FIG. FIG. 1B is a cross-sectional view corresponding to line BB in FIG. 1A
  • FIG. 2 is an enlarged plan view of the tip portion of the electrode terminal joined to the semiconductor element
  • FIG. FIG. 3A is for explaining thermal stress generated at the interface between the semiconductor element and the sealing body at the corner portion of the semiconductor element
  • FIG. 3A is a schematic cross-sectional view when there is no electrode lead
  • FIG. FIG. 4 is a schematic cross-sectional view when an electrode lead is present. 4 is a diagram for explaining the effect of stress relaxation by the electrode terminal according to the first embodiment.
  • FIGS. 5 and 6 are diagrams for explaining the configuration of the electrode terminal according to the modification, and are enlarged views of the tip portion of the electrode terminal joined to the semiconductor element.
  • the semiconductor device 1 includes an insulating substrate 3 in which wiring patterns 3a and 3b are formed on both surfaces of an insulating base 3i, and one surface of the insulating substrate 3 (wiring pattern). 3a side) and rectangular plate-like semiconductor elements 4A and 4B (collectively semiconductor element 4) joined via the joining material 7, and one end side joined to the main electrode formed on the surface of each semiconductor element 4 respectively.
  • a copper (Cu) electrode lead 5 is provided which is joined via a material 8 and the other end is electrically connected to an external circuit.
  • the base plate 2 is bonded to the other surface (wiring pattern 3 b side) of the insulating substrate 3 via a bonding material 6.
  • the sealed body 9 is provided.
  • an IGBT Insulated Gate Bipolar Transistor
  • a diode or the like can be used as a rectifying element.
  • a control electrode is also formed on the surface of the switching element described above in the semiconductor element 4, but only the main electrode seems to be formed in order to simplify the explanation. It is described in.
  • the feature of the semiconductor device 1 according to the first embodiment is that, as shown in FIG. 2, a recess 5n is formed in a portion of the electrode lead 5 that straddles the semiconductor element 4.
  • the operation of the semiconductor device that requires the structure will be described.
  • symbol similar to the semiconductor device 1 concerning this Embodiment is attached
  • the electrode lead 5 is referred to as a direct lead 5C when it includes one used in a general semiconductor device.
  • a member such as the insulating substrate 3 or the semiconductor element 4 has a lower coefficient of linear expansion than the sealing body 9, and a metal member such as the base plate 2 or the direct lead 5 ⁇ / b> C is more linear than the sealing body 9.
  • Members having different linear expansion coefficients such as a high expansion coefficient are gathered. Therefore, when a temperature change occurs due to start-stop or the like, the difference between the deformation amounts (deformation difference) causes the boundary between the insulating substrate 3 and the semiconductor element 4 and the sealing body 9, the base plate 2 and the direct lead 5C, and the sealing. Thermal stress is generated at the boundary with the stationary body 9. These are repeated with the start and stop, so that the semiconductor element 4 and the insulating substrate 3 are destroyed, and the sealing member 9 is peeled off at the boundary surface with the circuit member. Damage at the interface may occur.
  • the linear expansion coefficient of the mold resin constituting the sealing body 9 is determined by the linear expansion coefficient of the semiconductor element 4 or the insulating substrate 3 (the insulating base material 3i thereof) and the linear expansion coefficient of the base plate 2 or the direct lead 5C.
  • the thermal deformation difference generated at the boundary surface between the sealing body 9 and the circuit member is reduced, and damage to the sealing body 9 at the boundary surface is prevented.
  • the linear expansion coefficient of the semiconductor element 4 using silicon (Si), silicon carbide (SiC), or the like as a semiconductor material is 3 to 5 ppm / K.
  • the linear expansion of the insulating substrate 3 when silicon nitride (SiN), aluminum nitride (AlN), alumina (Al 2 O 3 ), high-strength alumina (Al 2 O 3 + ZrO 2 ) or the like is used for the insulating base material 3i.
  • the coefficient is 2 to 9 ppm / K.
  • the linear expansion coefficient of the direct lead 5C using a material such as copper (Cu) is 17 ppm / K. In that case, the linear expansion coefficient of the mold resin constituting the sealing body 9 is adjusted to a value within the range of 2 to 17 ppm / K.
  • a member having a low linear expansion coefficient (close to the semiconductor element 4) is used as the material of the direct lead 5C or the base plate 2, the thermal deformation difference can be reduced.
  • a material has a lower thermal conductivity than copper, such as a molybdenum-based copper alloy (CuMo: 7 to 13 ppm / K), and costs increase. Therefore, when such a material is applied to the direct lead 5C, there is a concern that not only the cost increase but also the efficiency is lowered, the heat radiation amount is lowered, and the thermal deformation difference is conversely increased.
  • such a subject is not restricted to the structure using the insulating substrate 3 as a circuit board.
  • a semiconductor device that uses a base plate 2 or the like made of copper, a copper alloy (CuMo), or a copper laminate material as a circuit board without using the insulating substrate 3 and the semiconductor element 4 is joined in the same manner. Needless to say.
  • FIG. 3A shows a sealing body in the case where a wiring member such as the direct lead 5C is not bonded to the semiconductor element 4 bonded to the insulating substrate 3 and is sealed with the sealing body 9 as it is (assumed).
  • 9 is a schematic view taken along a diagonal line of the semiconductor element 4 for representing a deformation difference with respect to the semiconductor element 4 of FIG.
  • a straight line on the semiconductor element 4 indicates a portion (region) corresponding to the position of the semiconductor element 4 of the sealing body 9 in contact with the semiconductor element 4.
  • the central portion Pcc corresponding to the center of the semiconductor element 4, the end portion Pce corresponding to the corner portion 4c, and the intermediate portion Pcm corresponding to the intermediate portion between the central portion Pcc and the end portion Pce.
  • the number of arrows having the straight line as the root indicates the magnitude of the thermal deformation difference ⁇ R of the sealing body 9 with respect to the semiconductor element 4 in that region.
  • FIG. 3B is a diagram showing thermal deformation in the semiconductor device using the direct leads 5C.
  • the mold resin in contact with the direct lead 5C follows the thermal deformation difference ⁇ L of the direct lead 5C having a larger shrinkage than the sealing body 9. Therefore, the substantial thermal deformation difference ⁇ Rp with respect to the semiconductor element 4 at the end portion Pce is larger than the thermal deformation difference ⁇ R when there is no direct lead 5C. Therefore, the relative displacement of the mold resin toward the center of the semiconductor element 4 at the corner portion 4c of the semiconductor element 4 increases, and the surface of the semiconductor element 4 and the sealing body 9 such as destruction of the semiconductor element 4 or separation from the semiconductor element 4 occur. Damage at the interface.
  • the sealing body 9 follows ⁇ L, and the substantial thermal deformation difference ⁇ Rp increases. Thereby, in the corner part 4c of the semiconductor element 4, the thermal stress between the sealing body 9 and the semiconductor element 4 becomes large, and damage at the boundary surface between the semiconductor element 4 and the sealing body 9 rather than the joint part itself. Is more of a problem.
  • FIG. 4 shows the result of study on the semiconductor element 4 having a diagonal length of 10 mm.
  • the horizontal axis indicates the shortest distance Gc (in the direction parallel to the main electrode) from the corner portion 4c of the semiconductor element 4
  • the vertical axis indicates the shear stress applied between the semiconductor element 4 and the sealing body 9 (mold resin).
  • FIG. 4 shows the results for the semiconductor element 4 having a diagonal length of 10 mm, but a semiconductor having a size of 7 to 15 mm square (diagonal length of 10 to 20 mm), which is a size using the direct lead 5C. Similarly, it has been found that the effect is also obtained for the element 4 at 2 mm or more.
  • the recessed portion 5n is formed so that the portion straddling the side surface 4s of the semiconductor element 4 is recessed from both sides in the width direction.
  • the recessed portion 5n is provided so that the shortest distance Gc from the corner portion 4c near the end portion that does not reach the side surface 4s is larger than the distance between the corner portion 4c and the corner portion Rjc of the bonding region Rj.
  • the recess 5n may be formed by cutting out a plate material. However, if a shape that looks like a recess when viewed from a direction perpendicular to the main electrode is realized, for example, FIG. As shown in FIG. 4, the upper surface may be bent to form an L shape or U shape by folding upward, or folded and overlapped.
  • 5 (a) to 5 (c) are partial enlarged views in which a tip portion joined to the semiconductor element of the electrode terminal according to the modification of the first embodiment of the present invention is enlarged, and FIG. FIG. 5B is a plan view, FIG. 5B is a side view seen from the E direction, and FIG. 5C is a cross-sectional view taken along the line DD in FIG.
  • vertical to the main electrode of the hollow part 5n is not restricted to a rectangle as shown in FIG. 2,
  • circular arc shape may be sufficient.
  • the shortest distance Gc from the corner part 4c can be ensured by minimizing the recessed area.
  • the shortest distance Gc is greater than “the distance between the corner portion Rjc and the corner portion 4c of the junction region Rj. "Become long.”
  • the junction region Rj may be set (main electrode is formed) so as to have a corner portion Rjc that is 2 mm or more away from the corner portion 4c of the semiconductor element 4.
  • the shortest distance Gc that is equal to or greater than the predetermined value can be secured.
  • the example in which the recessed portion 5n is provided from both sides in the width direction has been described. However, if the distance from the corner portion 4c can be secured, it may be provided only on one side.
  • the semiconductor element 4 and the semiconductor element 4 are bonded so as to relieve stress at the bonded portion. You may make it provide the through-hole 5h in the part performed.
  • FIG. 7A is a plan view of the semiconductor element 4 to which the direct lead 5C is bonded
  • FIG. 7B is a cross-sectional view corresponding to the line AA in FIG. 7A
  • 4 is an explanatory diagram showing the relationship between the distance Lc from the center Pac of the semiconductor element 4 to the end part Pae1 and the distance Gc from the end part Pam1 of the direct lead 5C to the end part Pae1 of the semiconductor element 4 in the cross section (AA cross section) at It is.
  • the inventor has a ratio of the distance Lc from the center Pac to the end portion Pae1 of the semiconductor element 4 and the distance Gc from the end portion Pam1 of the direct lead 5C to the end portion Pae1 of the semiconductor element 4 in the cross section of the semiconductor element 4 (direct lead).
  • the magnitude of the thermal stress at the end Pae was further examined.
  • FIG. 8 shows a result of investigation on a cross section in which one side of the semiconductor element 4 passes through the diagonal of the semiconductor element 4 of 15 mm, 10 mm, and 5 mm and the semiconductor element 4 of the direct lead 5C.
  • the vertical axis indicates the shear stress applied between the semiconductor element 4 and the sealing body 9 (mold resin).
  • the shear stress is shown as a ratio in which one side of the semiconductor element 4 is 15 mm and the shear stress when the direct lead 5C is not provided is 1.
  • the shear stress greatly decreased with an increase in the dimensional ratio of the direct lead, and when the ratio exceeded 0.3, the decrease amount decreased. That is, it was found that the shear stress can be effectively reduced by adjusting the direct lead 5C so that the dimensional ratio of the direct lead is 0.3 or more.
  • FIG. 8 shows the result of the cross section passing through the diagonal of the semiconductor element 4, but there is a similar tendency regardless of the size of the semiconductor element 4. Therefore, even when passing through an arbitrary cross section of the semiconductor element 4, it can be seen that the shear stress can be effectively reduced by adjusting the dimensional ratio of the direct leads in the cross section of the semiconductor element 4 to 0.3 or more.
  • FIG. 9 shows a distance Lc from the center Pac to the end portion Pae1 of the semiconductor element 4 in the cross section of the semiconductor element 4 that satisfies the allowable value of the shear stress and the end portion Pam1 of the direct lead 5C to the end portion Pae1 of the semiconductor element 4.
  • the relationship of the shortest distance Gc is shown.
  • the allowable value of the shear stress is a value determined by the combination of the semiconductor element 4 and the sealing body 9 (mold resin) and the use conditions of the product, and is not a value uniquely determined.
  • the shear stress is an allowable value of the shear stress when one side of the semiconductor element 4 is 15 mm and the dimensional ratio of the direct lead is 0.3.
  • the distance Lc from the center Pac of the semiconductor element 4 to the end part Pae1 (Pce1) in the cross section of the semiconductor element 4 is the longest with respect to the end part Pae1 (here Pce1) of the semiconductor element 4.
  • the cross section is a diagonal direction of the semiconductor element 4.
  • the angle ⁇ formed between the cross section and the end face of the semiconductor element 4 decreases, the distance Lc from the center Pac of the semiconductor element 4 to the end portion Pae1 (Pce1) in the cross section of the semiconductor element 4 decreases.
  • the arrangement position of the direct lead 5C that keeps the shear stress in the end portion Pae1 of the semiconductor element 4, that is, the corner portion Pce1 within an allowable value is inside the outer periphery Rj1 (thick line) shown in FIG.
  • the Gc will be described.
  • the cross section where the distance Lc from the center Pac of the semiconductor element 4 to the end portion Pae1 (Pcn1) in the cross section of the semiconductor element 4 passing through the center Pcn1 of the side surface 4s of the semiconductor element 4 is the end that is the corner of the semiconductor element 4 It is the cross section which went to the part Pce2.
  • the arrangement position of the direct lead 5C that keeps the shear stress at the center Pcn1 of the side surface 4s of the semiconductor element 4 within an allowable value is inside the outer periphery Rj2 (thick line) shown in FIG.
  • the joint region Rj of the direct lead 5C where the stress can be made below the allowable value is inside the outer periphery Rjs (thick line) shown in FIG.
  • the maximum region of the joint region Rj of the direct lead 5C that can reduce the shear stress to an allowable value or less has been described.
  • the minimum region of the joint region is described.
  • the joint area between the direct lead 5C and the semiconductor element 4 is larger than the joint area such as wire bonding, so that the thermal stress caused by the operation of the semiconductor device 1 can be prevented.
  • the minimum region of the bonding region for maintaining this highly reliable feature is determined by the durability against the thermal stress of the material used for bonding and the amount of heat generated due to the amount of current during operation of the semiconductor element.
  • the bonding area may be small.
  • the bonding area is 25 mm 2 or more. It is desirable that
  • FIG. 13A is a plan view when the direct lead 5C straddles the side surface 4s which is one side of the semiconductor element 4, and FIG. 13B is a cross-sectional view corresponding to the line CC in FIG. 13A. Show.
  • the direct lead 5C is indicated by a broken line.
  • the end of the semiconductor element 4 and the direct lead 5C in the thickness direction shown in FIG. It is necessary to reduce the shear stress by setting the distance Gh in the thickness direction to an appropriate dimension.
  • the thickness direction distance Gh between the end of the semiconductor element 4 and the direct lead 5C needs to be equal to or greater than Gc (Gh ⁇ Gc) where the direct lead 5C straddles the end of the semiconductor element 4. is there.
  • the edge of the semiconductor element 4 is obtained.
  • the shortest distance Gc from the end of the direct lead 5C to the end of the semiconductor element 4 that makes the shear stress in the side surface 4s below the allowable value is narrow, that is, the distance in the thickness direction between the end of the semiconductor element 4 and the direct lead 5C. Since Gh can be reduced and the thickness of the semiconductor device 1 can be reduced, an effect of reducing the size can be expected.
  • the direct lead 5C straddling the side surface 4s that is the end of the semiconductor element 4, since the semiconductor element 4 and the direct lead 5C are not joined, the direct lead is provided even if the width of the central part 5Cn of the direct lead 5C is reduced. Since the junction area between 5C and the semiconductor element 4 does not decrease, the reliability of the junction does not decrease.
  • the width W2 of the central portion 5Cn of the portion where the direct lead 5C straddles the side surface 4s which is the end portion of the semiconductor element 4 becomes narrower the effect of suppressing peeling becomes higher. Therefore, the width W2 of the central portion 5Cn of the direct lead 5C is a value determined by a factor different from the effect of suppressing peeling, such as the current density flowing through the direct lead 5C, but in the case where the effect on peeling is assumed, the semiconductor The lower limit value of the width W1 of the junction region Rj between the element 4 and the direct lead 5C may be considered when the width W2 of the central portion 5Cn of the direct lead 5C becomes zero as much as possible.
  • the thickness direction distance Gh between the end portion of the semiconductor element 4 and the direct lead 5C when the width W2 of the central portion 5Cn of the direct lead 5C straddling the side surface 4s that is the end portion of the semiconductor element 4 is zero.
  • the lower limit value is equal to Gc at the center Pcn1 of the side surface 4s that is the end side of the semiconductor element 4.
  • FIG. 15 is an explanatory diagram of the lower limit value of the thickness direction distance Gh between the end portion of the semiconductor element 4 and the direct lead 5C.
  • the shape shown in FIG. 16 is the best shape of the electrode lead 5 for ensuring a wide bonding area between the main electrode on the semiconductor element 4 and the electrode lead 5.
  • FIG. 17 shows the relationship between the shape of the electrode lead 5 in the first embodiment (see FIG. 2) and the best shape for ensuring a large bonding area between the main electrode on the semiconductor element 4 and the electrode lead 5.
  • the electrode lead 5 by providing the electrode lead 5 with the recess 5n, the electrode lead 5 and the semiconductor element 4 can be joined to the best shape of the electrode lead 5 in a small region, and the peeling can be suppressed.
  • the shape is realized.
  • the electrode lead 5 according to the first embodiment in which notches are provided in the four corners of the electrode lead 5 it is possible to easily perform the processing of the shape of the electrode lead that can suppress the peeling.
  • the electrode lead 5 with the recess 5n, in the direction parallel to the main electrode of the semiconductor element 4, there is an electrode within a range less than a certain distance (for example, 2 mm) from the corner portion 4c of the semiconductor element 4. Lead 5 no longer exists. As a result, the shortest distance Gc between the corner portion 4c of the semiconductor element 4 and the electrode lead 5 is increased, and the substantial thermal deformation difference ⁇ Rp following the electrode lead 5 at the end portion Pce of the sealing body 9 is reduced. Therefore, damage at the interface between the semiconductor element 4 and the sealing body 9 does not occur.
  • a certain distance for example, 2 mm
  • the bonding area between the electrode lead 5 and the semiconductor element 4 is reduced, there is a concern that the reliability of the bonding portion of the electrode lead 5 is lowered.
  • the electrode lead 5 and the semiconductor device 1 using the electrode lead 5 according to the first exemplary embodiment of the present invention since the portion near the corner portion 4c of the semiconductor element 4 is selectively recessed, the reliability of the joint portion is improved. Degradation can be minimized.
  • the switching element may be a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), for example.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • diode various types of elements such as a Schottky (barrier) diode (Schottky Diode) can be used. Also, the number of elements is not limited to two, and may be more or one.
  • FIG. 18A and 18B are views for explaining the configuration of the electrode terminal according to the second embodiment of the present invention, and are respectively plan views in which the tip portions joined to the semiconductor elements of the electrode terminals are enlarged. It is.
  • the configuration other than the electrode lead is the same as that described in the first embodiment, the description thereof is omitted.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and a detailed description of overlapping portions is omitted.
  • the end 5e of the electrode lead 5 on the semiconductor element 4 side is a recess 5n.
  • a recess 5n is provided in the portion straddling the side surface 4s of the semiconductor element 4 as in the first embodiment.
  • the recess 5n is formed so as to form an arc centered on the corner 4c. According to this structure, the processing of the electrode lead 5 is facilitated, which has an effect of reducing the cost.
  • the configuration in which “the end portion 5e is retracted from the outer periphery Rjs of the junction region Rj” is shown on the assumption that the junction region Rj is set almost on the entire surface of the element.
  • the end 5e may be made to coincide with the outer periphery Rjs.
  • one end is bonded to the main electrode (bonding region Rj) on the surface side of the semiconductor element 4 (which is rectangular), and the other A plate-like electrode lead 5 whose end is connected to an external circuit (for example, a distance (shortest distance Gc) from the corner portion 4c of the semiconductor element 4 is between the corner portion 4c and the main electrode (of the junction region Rj)).
  • portion straddling the end portion (side surface 4s) is recessed from both sides in the width direction, a distance can be secured with respect to the corner portions 4c at both ends of the straddling side surface.
  • the portion straddling the end portion (side surface 4s) is narrowed by the notch (the recessed portion 5n is formed), the distance to the corner portion 4c can be easily secured.
  • the portion straddling the end portion is narrowed by bending away from the semiconductor element 4 (the recessed portion 5n is formed), so that it is easily distanced from the corner portion 4c without wasting material. Can be secured.
  • the portion straddling the end portion (side surface 4s) is narrowed (the recessed portion 5n is formed) so that the shortest distance Gc between the electrode lead 5 and the corner portion 4c of the semiconductor element 4 becomes 2 mm or more, the corner of the semiconductor element 4 Thermal stress acting on the boundary between the sealing body 9 and the semiconductor element 4 in the portion 4c can be reliably suppressed.
  • the electrode lead 5 is notched at a position corresponding to the corner portion 4c of the semiconductor element 4, it is possible to easily process the shape of the electrode lead that can suppress peeling.
  • the semiconductor device 1 includes a circuit board (insulating substrate 3), a semiconductor element 4 for controlling power bonded to the circuit board (insulating board 3), and the semiconductor element 4
  • An electrode lead 5 having one end bonded to the main electrode (bonding region Rj), and a sealing body 9 including the portion bonded to the semiconductor element 4 of the electrode lead 5 and sealing the semiconductor element 4. Since it is provided, it is possible to obtain a highly reliable semiconductor device 1 that can cope with high temperatures and is suitable for power control.
  • Embodiment 3 In the first or second embodiment, the example in which the recessed portion is provided in the portion of the electrode lead straddling the side surface of the semiconductor element has been described.
  • the tip of the portion joined to the main electrode is branched in addition to the recess.
  • 19 (a) and 19 (b) and FIGS. 20 (a) and 20 (b) are for explaining the configuration of the electrode terminal according to the third embodiment of the present invention. It is the top view which expanded the front-end
  • the configuration other than the electrode lead is the same as that described in the first embodiment, the description thereof is omitted.
  • the same components as those described in the first or second embodiment are denoted by the same reference numerals, and detailed description of the overlapping portions is omitted.
  • the electrode lead 5 has a portion across the side surface 4s. Not only the recess 5n is formed, but also a branching portion 5b is formed at the tip of the portion joined to the main electrode.
  • the branch portion 5b is provided at the end portion 5e that is retracted from the outer periphery Rjs as described in the second embodiment. According to the configuration in which such a branch portion 5b is provided, since the load acting on the joint portion that joins the electrode lead 5 and the semiconductor element 4 is reduced, the reliability of the joint portion can also be improved.
  • the tip is branched at the portion joined to the main electrode (joining region Rj) (the branching portion 5b is formed).
  • the load acting on the joint where the electrode lead 5 and the semiconductor element 4 are joined is reduced, and the reliability of the joint can be improved.
  • the notch is provided in the electrode lead 5 at a position corresponding to the corner portion 4c of the semiconductor element 4, it is possible to easily process the shape of the electrode lead that can suppress peeling.
  • FIG. 21 (a) to (c) are partial enlarged views in which the tip portion joined to the semiconductor element of the electrode terminal according to the fourth embodiment of the present invention is enlarged, and FIG. 21 (a) is a plan view; FIG. 21B is a side view, and FIG. 21C is a cross-sectional view taken along the line CC in FIG.
  • the configuration other than the electrode lead is the same as that described in the first embodiment, the description thereof is omitted.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and a detailed description of overlapping portions is omitted.
  • the electrode lead 5 only has a recess 5n formed in a portion straddling the side surface 4s. Instead, a bent portion 5 s that is bent in a plane perpendicular to the bonding surface of the semiconductor element 4 is provided in front of the side surface 4 s. That is, the electrode lead 5 was bent in the longitudinal direction.
  • the distance from the corner portion 4c is set to a distance Gca that is further widened than the distance Gc secured by the recessed portion 5n. Can be further relaxed.
  • the electrode lead 5 according to the fourth embodiment is bonded to the main electrode (bonding region Rj) so that the portion straddling the end (side surface 4s) of the semiconductor element 4 is separated from the main electrode. Since the bent portion reaches the side surface 4s, the substantial distance Gca from the corner portion 4c further spreads more than the shortest distance Gc (in the horizontal direction) secured by the recess portion 5n. Stress relaxation is possible. Further, it is possible to alleviate the transmission of the external force applied to the other end of the electrode lead 5 exposed to the outside of the sealing body 9 to the joint portion side, and to deform the sealing body 9 in the vicinity of the corner portion 4c of the semiconductor element 4. Can be suppressed.
  • the electrode lead 5 is notched at a position corresponding to the corner portion 4c of the semiconductor element 4, it is possible to easily process the shape of the electrode lead that can suppress peeling.
  • FIG. 5 In the fourth embodiment, the example in which the portion corresponding to the semiconductor element of the electrode lead is bent has been described.
  • the thickness of the part joined to the semiconductor element and the part connected to the outside are changed.
  • 22 (a) to 22 (c) are partial enlarged views in which a tip portion joined to the semiconductor element of the electrode terminal according to the fifth embodiment of the present invention is enlarged, and FIG. 22 (a) is a plan view, 22B is a side view, and FIG. 22C is a cross-sectional view taken along the line CC of FIG. 22A.
  • the configuration other than the electrode lead is the same as that described in the first embodiment, the description thereof is omitted.
  • the same components as those described in the first or fourth embodiment are denoted by the same reference numerals, and detailed description of overlapping portions is omitted.
  • the electrode lead 5 is not only formed with the recess 5n, but also with the semiconductor element 4 and
  • the thickness of the part 5j to be joined is made thicker than the thickness of the part 5u straddling the side surface 4s.
  • the portion 5u straddling the side surface 4s is separated from the bonding surface of the semiconductor element 4.
  • the portion 5u connected to the outside is shown extremely to show that it is separated from the bonding surface of the semiconductor element 4.
  • the height of the electrode lead 5 can be reduced as compared with the case of manufacturing by bending as in the fourth embodiment, and thus there is an advantage that the semiconductor device 1 can be downsized.
  • the portion straddling the side surface 4s so that the portion straddling the end portion (side surface 4s) of the semiconductor element 4 is separated from the main electrode (joining region Rj).
  • the thickness of 5u was made thinner than the portion 5j joined to the main electrode.
  • the substantial distance Gca from the corner portion 4c further spreads more than the distance Gc secured by the recessed portion 5n, and the stress can be further relaxed.
  • the height of the electrode lead 5 can be reduced, and the semiconductor device 1 can be downsized.
  • the electrode lead 5 according to the fifth embodiment in which notches are provided in the four corners of the electrode lead 5 it is possible to easily process the shape of the electrode lead that can suppress the peeling.
  • Embodiment 6 FIG.
  • the electrode lead straddles one end portion of the semiconductor element 4 has been described.
  • the electrode lead may straddle a plurality of end portions of the semiconductor element.
  • FIGS. 23A and 23B are diagrams for explaining the configuration of the electrode terminal according to the sixth embodiment of the present invention, and are respectively joined to the semiconductor element of the electrode terminal according to the sixth embodiment of the present invention. It is the elements on larger scale which expanded the tip part made.
  • the configuration other than the electrode lead is the same as that described in the first embodiment, and thus the description thereof is omitted.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and a detailed description of overlapping portions is omitted.
  • the electrode lead 5 is joined across the side surface 4s which is a plurality of ends of the semiconductor element 4.
  • the electrode lead 5 is provided with a notch (a recessed portion 5n is formed) in the electrode lead 5 at a position corresponding to the corner portion 4c of the semiconductor element 4. According to the electrode lead 5 according to the sixth embodiment, since the electrode lead 5 can be connected regardless of the arrangement of the semiconductor element 4, the semiconductor device can be further downsized.
  • the electrode lead 5 is configured to be joined across the side surfaces 4 s which are a plurality of end portions of the semiconductor element 4. Since the electrode leads 5 can be connected regardless of the arrangement, the semiconductor device can be further downsized.
  • the electrode lead 5 is notched at a position corresponding to the corner portion 4c of the semiconductor element 4, it is possible to easily process the shape of the electrode lead that can suppress peeling.
  • SiC which is a wide bandgap semiconductor material
  • GaN gallium nitride
  • the present invention can also be applied to a general element using silicon.
  • GaN gallium nitride
  • GaN gallium nitride
  • the recess 5n is provided at least in the semiconductor element 4 and a portion connected to the outside of the element so as to secure the shortest distance Gc from the corner portion 4c of the semiconductor element 4 of the electrode lead 5 is provided.
  • the effect of obtaining a highly reliable semiconductor device 1 corresponding to high temperatures and suitable for power control can be further exhibited. That is, by using the electrode lead 5 according to each embodiment of the present invention, it is possible to obtain a high-performance semiconductor device 1 utilizing the characteristics of a wide band gap semiconductor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 電極リードを半導体素子の主電極に接合する半導体装置であって、高温に対応し、電力制御に適した信頼性の高い半導体装置を得ることを目的としている。 半導体素子4の表面側の主電極(接合領域Rj)に一端が接合され、他端が外部回路と接続される板状の電極リード5であって、半導体素子4のコーナー部4cとの間隔(最短距離Gc)が、所定以上になるように、半導体素子4の端部(側面4s)をまたぐ部分の幅が狭くなっている。

Description

電極リードおよび半導体装置
 本発明は、半導体素子の表面側の主電極に接合される電極リード、およびこれを用いた半導体装置に関する。
 半導体装置は、絶縁基板の回路面にスイッチング素子や整流素子として機能する半導体素子を実装し、実装した半導体素子に外部回路と電気接続を行うための電極リード等の配線部材を接合後、絶縁性の樹脂(封止体)で封止したものである。一方、インバーターなどの電力の制御に用いられる半導体素子では、電力損失を低減する必要があり、例えば、炭化ケイ素(SiC)、窒化ガリウムのようなワイドバンドギャップ半導体材料を用いた半導体素子が開発されている。
 このような半導体素子は、従来のシリコンと較べ、動作温度が高く、例えば、動作可能温度が200℃とも300℃以上とも言われている。その場合、封止体内部での半導体素子や配線部材との間の熱応力はさらに大きくなる。そこで、応力緩和層を介して電極リードと半導体素子とを接合する半導体装置や、電極リードの半導体素子と接合するための先端部分をE字状に形成する半導体装置が提案されている(例えば、特許文献1または2参照。)。
特開2002-141454号公報(段落0019、図) 特開2003-234447号公報(段落0020~0027、図2~図8)
 しかしながら、本発明者は、半導体装置におけるヒートサイクルでは、上述した特許文献で課題とされた半導体素子と電極リードとの接合部よりも、半導体素子のコーナー部での封止体との境界面での損傷を抑制する方が、重要であることに気付いた。そして、境界面での熱応力については、半導体素子に接している封止体と半導体素子の線膨張係数差の影響よりも、コーナー部の近傍にある電極リードの熱変形の影響の方が大きいことを見出した。
 そのため、応力緩和層を設ける構造では、電極リードと半導体素子の接合部での熱応力を低減できても、電極リードの熱変形が大きくなるので、却って半導体素子のコーナー部での境界面の熱応力を増大させることになる。また、電極リードの先端部分をE字状に形成するだけでは、コーナー部での境界面の熱応力を抑制することは困難である。
 本発明は、上記のような課題を解決するためになされたもので、高温に対応し、電力制御に適した信頼性の高い半導体装置を得ることを目的としている。
 本発明の電極リードは、半導体素子の表面側の主電極に一端が接合され、前記半導体素子の端部をまたいで、他端が他の半導体素子または外部回路と接続される板状の電極リードであって、前記半導体素子の表面と直交する任意の断面における前記主電極と接合する接合部の端部から前記半導体素子の表面端部までの距離が、前記断面における前記半導体素子の表面中央から表面端部までの距離に対し所定の比率となる位置よりも、前記接合部の端部が前記半導体素子の表面端部から離れた位置にあり、かつ前記半導体素子の端部をまたぐ部分の幅が前記接合部の幅よりも狭くなっていることを特徴とする。
 また、本発明の半導体装置は、絶縁基板と、前記絶縁基板に接合された電力を制御するための半導体素子と、前記半導体素子の主電極に一端が接合された上述した電極リードと、前記電極リードの前記半導体素子に接合された部分を含み、前記半導体素子を封止する封止体と、を備えたことを特徴とする。
 本発明の電極リードによれば、半導体素子のコーナー部における封止体と半導体素子との境界に作用する熱応力を抑制できるので、高温に対応し、電力制御に適した信頼性の高い半導体装置を得ることができる。
本発明の実施の形態1にかかる電極リードおよびそれを用いた半導体装置の構成を説明するための平面図と断面図である。 本発明の実施の形態1にかかる電極端子の構成を説明するための部分拡大図である。 半導体素子のコーナー部における半導体素子と封止体の境界面に発生する熱応力について説明するための断面模式図である。 半導体素子のコーナー部から電極リードまでの距離とコーナー部における半導体素子と封止体の境界面に発生する熱応力との関係を示すグラフである。 本発明の実施の形態1の変形例にかかる電極端子の構成を説明するための部分拡大図である。 本発明の実施の形態1の変形例にかかる電極端子の構成を説明するための部分拡大図である。 半導体素子における半導体素子の端部とダイレクトリードの端部との位置関係を説明するための平面図と断面図である。 ダイレクトリードの寸法比とコーナー部における半導体素子と封止体の境界面に発生する熱応力との関係を示すグラフである。 半導体素子の端部とダイレクトリードの端部との位置関係を示すグラフである。 半導体素子のコーナー部におけるダイレクトリードの配置位置についての説明をする平面図である。 半導体素子の端辺に対応するダイレクトリードの配置位置についての説明をする平面図である。 ダイレクトリードの接合領域を説明する平面図である。 ダイレクトリードが半導体素子の一辺をまたぐ構成を説明するための平面図と断面図である。 ダイレクトリードが半導体素子の一辺をまたぐ部分の構成を説明するための平面図である。 ダイレクトリードが半導体素子の一辺をまたぐ部分の厚み方向の距離を説明するための平面図である。 半導体素子の一辺をまたぐ電極リードの最良の形状を示す平面図である。 本発明の実施の形態1にかかる電極リードと最良の形状とを比較する平面図である。 本発明の実施の形態2にかかる電極端子の構成を説明するための部分拡大図である。 本発明の実施の形態3にかかる電極端子の構成を説明するための部分拡大図である。 本発明の実施の形態3の他の例にかかる電極端子の構成を説明するための部分拡大図である。 本発明の実施の形態4にかかる電極端子の構成を説明するための部分拡大図であって、平面図と側面図と断面図である。 本発明の実施の形態5にかかる電極端子の構成を説明するための部分拡大図であって、平面図と側面図と断面図である。 本発明の実施の形態6にかかる電極端子の構成を説明するための部分拡大図である。
実施の形態1.
 図1~図4は、本発明の実施の形態1にかかる電極リードとそれを用いた半導体装置の構成について説明するための図であり、図1(a)は半導体装置から封止樹脂を除いた状態の平面図、図1(b)は図1(a)のB-B線に対応する断面図、図2は電極端子の半導体素子に接合された先端部分を拡大した平面図、図3は半導体素子のコーナー部における半導体素子と封止体の境界面に発生する熱応力について説明するためのもので、図3(a)は電極リードが無い場合の断面模式図、図3(b)は電極リードが存在する場合の断面模式図である。また、図4は本実施の形態1にかかる電極端子による応力緩和の効果を説明するための図で、半導体素子のコーナー部から電極リードまでの距離とコーナー部における半導体素子と封止体の境界面に発生する熱応力との関係を示すグラフである。また、図5と図6は、変形例にかかる電極端子の構成を説明するためのもので、それぞれ、電極端子の半導体素子に接合された先端部分を拡大した図である。
 本実施の形態1にかかる半導体装置1は、図1に示すように、絶縁基材3iの両面に配線パターン3a、3bが形成された絶縁基板3と、絶縁基板3の一方の面(配線パターン3a側)に、接合材7を介して接合された矩形板状の半導体素子4A、4B(まとめて半導体素子4)と、一端側が、各半導体素子4の表面に形成された主電極にそれぞれ接合材8を介して接合され、他端が外部回路と電気的に接続される銅(Cu)製の電極リード5とを備えている。なお、絶縁基板3の他方の面(配線パターン3b側)には、接合材6を介してベース板2が接合されている。そして、半導体素子4と電極リード5の少なくとも半導体素子4と接合された一端部を含み、絶縁基板3に形成された回路部材を包むように、ベース板2側の面を封止するモールド樹脂で形成された封止体9とを備えている。
 半導体素子4は、例えば、スイッチング素子としては、IGBT(Insulated Gate Bipolar Transistor)、整流素子としては、ダイオードなどを用いることができる。なお、半導体素子4のうち、上述したスイッチング素子の表面には、主電極の他に、制御電極も形成されることになるが、説明を簡略化するため、主電極のみが形成されているように記載している。
 なお、本実施の形態1にかかる半導体装置1の特徴は、図2に示すように、電極リード5の半導体素子4をまたぐ部分に窪み部5nが形成されていることにある。しかし、その特徴的な構造自体の説明の前に、その構造を必要とする、半導体装置の動作について説明する。なお、半導体装置内の部材については、一般的な半導体装置についてのものでも、説明をわかりやすくするため、本実施の形態にかかる半導体装置1と同様の符号を付している。ただし、電極リード5については、一般的な半導体装置に用いられているものも含む場合は、ダイレクトリード5Cと称することとする。
 半導体装置では、例えば、絶縁基板3や半導体素子4のような部材は封止体9よりも線膨張係数が低く、ベース板2やダイレクトリード5Cのような金属部材は封止体9よりも線膨張係数が高い、というように線膨張係数が異なる部材が集合したものである。そのため、起動停止等に伴い、温度変化が生ずると、変形量の差(変形差)により、絶縁基板3および半導体素子4と封止体9との境界や、ベース板2およびダイレクトリード5Cと封止体9との境界で熱応力が発生する。そして、これらが起動停止に伴い、繰り返されることにより、半導体素子4や絶縁基板3の破壊や、封止体9の回路部材との境界面でのはく離といった、封止体9の回路部材との界面での損傷が生じる場合がある。
 そのため、封止体9を構成するモールド樹脂の線膨張係数を半導体素子4や絶縁基板3(の絶縁基材3i)などの線膨張係数と、ベース板2やダイレクトリード5Cなどの線膨張係数の間の値に調整することで、封止体9の回路部材との境界面で生じる熱変形差を小さくして、境界面での封止体9の損傷を防止している。
 例えば、シリコン(Si)や炭化珪素(SiC)などを半導体材料として用いた半導体素子4の線膨張係数は3~5ppm/Kになる。また、窒化珪素(SiN)、窒化アルミニウム(AlN)、アルミナ(Al)、高強度アルミナ(Al+ZrO)等を絶縁基材3iに用いた場合の絶縁基板3の線膨張係数は2~9ppm/Kになる。そして、銅(Cu)等の材料を用いたダイレクトリード5Cの線膨張係数は17ppm/Kとなる。その場合、封止体9を構成するモールド樹脂の線膨張係数は2~17ppm/Kの範囲内の値に調整することになる。
 しかし、上述した範囲内の値に調整しても、物理的に絶縁基板3、半導体素子4、ダイレクトリード5Cおよびベース板2と封止体9間の熱変形差をすべて同時にゼロにすることはできず、封止体9といずれかの部材との境界面には必ず熱変形差が生じることになる。そのため、SiCからなる半導体素子4を用いるなどして、温度変化が大きくなる場合には、モールド樹脂の線膨張係数を調整しても損傷が生じる場合がある。
 このとき、ダイレクトリード5Cやベース板2の材料に、線膨張係数が低い(半導体素子4に近い)部材を用いれば、熱変形差を小さくすることができる。しかし、そのような材料は、例えば、モリブデン系の銅合金(CuMo:7~13ppm/K)のように、熱伝導率が銅に比べて低く、コストも増加する。そのため、ダイレクトリード5Cにそのような材料を適用すると、コスト増に限らず、効率が低下し、放熱量が低下して、逆に熱変形差が大きくなるといった弊害も懸念される。なお、このような課題は、回路基板として絶縁基板3を用いた構造に限ることはない。例えば、絶縁基板3を用いず、銅や銅合金(CuMo)、銅積層体の材料を用いたベース板2等を回路基板として用い、半導体素子4を接合する半導体装置についても同様に生ずることは言うまでもない。
 そこで、本発明者は上述した課題を解決するため、ダイレクトリード5Cを用いた半導体装置における封止体9の損傷の原因について検討を行った。
 図3(a)は、絶縁基板3に接合された半導体素子4に、ダイレクトリード5Cのような配線部材を接合せず、そのまま封止体9で封止した場合(仮定)の、封止体9の半導体素子4に対する変形差を表すための半導体素子4の対角線で切断した模式図である。図中、半導体素子4上の直線は、半導体素子4に接している封止体9の、半導体素子4の位置に対応する部分(領域)を示している。例えば、半導体素子4の中央に対応する中央部Pcc、コーナー部4cに対応する端部Pce、および中央部Pccと端部Pceの中間部分に対応する中間部Pcmである。そして、上述した直線を根元とする矢印の数は、その領域における封止体9の半導体素子4に対する熱変形差ΔRの大きさを示すものである。
 このような半導体装置が動作を停止すると、発熱がなくなって温度が下がり、半導体素子4上の封止体9を構成するモールド樹脂が、半導体素子4の中央部Pcc方向に向かって収縮する。このとき、半導体素子4とモールド樹脂の熱変形差ΔRは、中央部Pccからの距離に比例して大きくなり、中央部Pccから最も遠い端部Pceでの熱変形差ΔRが最大になる。
 一方、図3(b)は、ダイレクトリード5Cを用いた半導体装置における熱変形を示した図である。このような半導体装置が動作を停止し、温度が下がった場合、封止体9よりも収縮量が大きいダイレクトリード5Cの熱変形差ΔLに、ダイレクトリード5Cに接するモールド樹脂が追従する。そのため、端部Pceでの半導体素子4に対する実質的な熱変形差ΔRpは、ダイレクトリード5Cがない場合の熱変形差ΔRと比較して、大きくなる。そのため、半導体素子4のコーナー部4cにおいて、モールド樹脂が半導体素子4の中央に向かう相対変位が大きくなり、半導体素子4の破壊や半導体素子4からのはく離といった、半導体素子4表面と封止体9との境界面での損傷が生じる。
 つまり、半導体素子4の表面側の主電極と外部回路とを電気接続するために、ダイレクトリード5Cを用いた半導体装置の半導体素子4上では、ダイレクトリード5C(および接合材8)の熱変形差ΔLに封止体9が追従して実質的な熱変形差ΔRpが増大する。これにより、半導体素子4のコーナー部4cにおいて、封止体9と半導体素子4間の熱応力が大きくなり、接合部自体よりも、むしろ半導体素子4と封止体9との境界面での損傷の方が問題となってくる。
 そこで、本発明者は、端部Pceでの熱応力を低減するため、ダイレクトリード5Cと半導体素子4のコーナー部4cとの最短距離Gcをパラメータとして、端部Pceでの熱応力の大きさについて検討を行った。対角長が10mmの半導体素子4に対して検討した結果を図4に示す。図中横軸は半導体素子4のコーナー部4cからの(主電極に平行な方向における)最短距離Gc、縦軸は半導体素子4と封止体9(モールド樹脂)間にかかるせん断応力を示す。なお、せん断応力としては、ダイレクトリード5Cを半導体素子4に垂直に投影した範囲が、半導体素子4の主電極の接合領域Rjの範囲全体にわたるように構成した際(最短距離Gc=0.5mm)に生ずる、せん断応力を1とした比で示している。
 その結果、コーナー部4cからの最短距離Gcが2mmになるまでは、最短距離Gcの増加に対してせん断応力が大きく減少し、2mmを超えると減少量が小さくなることがわかった。つまり、コーナー部4cからの最短距離Gcが2mm以上になるように、ダイレクトリード5Cを調整すれば、せん断応力を効果的に低減できることが分かった。なお、図4では、対角長が10mmの半導体素子4に対しての結果を示したものであるが、ダイレクトリード5Cを用いるサイズである7~15mm角(対角長10~20mm)の半導体素子4に対しても、同様に2mm以上で効果があることが分かっている。
 ここで、最短距離Gcを長くする構成としては、ダイレクトリード5Cの幅を狭くすることが考えられるが、幅全体を単純に狭くすると、接合部の面積や電流経路における断面積が減少して電気抵抗が増加することになる。そこで、本実施の形態1にかかる電極リード5では、図2に示すように、半導体素子4の側面4sをまたぐ部分が、幅方向の両側から窪むように、窪み部5nを形成するようにした。さらに、側面4sに達しない端部についても、近傍のコーナー部4cから最短距離Gcがコーナー部4cと接合領域Rjの角部Rjc間の距離より広くなるように窪み部5nを設けた。
 なお、窪み部5nとしては、板材を切り欠くようにして形成してもよいが、主電極に垂直な方向から見たときに窪んだように見える形状を実現するのであれば、例えば、図5に示すように、上方に折り曲げてL字状やU字状にする、あるいは折り返して重ねるなど、折り曲げによって形成してもよい。図5(a)~(c)は、本発明の実施の形態1の変形例にかかる電極端子の半導体素子に接合された先端部分を拡大した部分拡大図であって、図5(a)は平面図、図5(b)はE方向から見た側面図、そして図5(c)は、図5(a)のD-D線による断面図である。そして、窪み部5nの主電極に垂直な方向から見たときの形状は、図2に示すような矩形に限ることはなく、例えば円弧状でもよい。その場合、コーナー部4cを中心とする円弧状に形成すれば、窪む面積を最小限にして、コーナー部4cからの最短距離Gcを確保することができる。
 また、本実施の形態1では、接合領域Rjが素子表面のほぼ全面に設定された場合を想定して、最短距離Gcが、「接合領域Rjの角部Rjcとコーナー部4c間の距離よりも長くなるように」と記載した。しかし、半導体素子4によっては、半導体素子4のコーナー部4cから2mm以上離れた角部Rjcを有するように接合領域Rjが設定(主電極が形成)される場合もある。そのようなコーナー部4cから一定以上の距離を有する角部Rjcに対しては、必ずしも、接合領域Rjの角部Rjcとコーナー部4c間の距離よりも長くなる必要はなく、コーナー部4cに対して所定以上の最短距離Gcを確保できればよい。また、本実施の形態1では、幅方向の両側から窪み部5nを設ける例を示したが、コーナー部4cからの距離が確保できるのであれば、片側のみに設けるようにしてもよい。
 なお、図6(a)と(b)に示す変形例のように、封止体9の損傷を防止する窪み部5nに加え、接合部での応力を緩和するように、半導体素子4と接合される部分に貫通孔5hを設けるようにしてもよい。
 次に、半導体素子端部での熱応力の大きさについての説明をする。図7(a)はダイレクトリード5Cを接合した半導体素子4の平面図、図7(b)は図7(a)のA-A線に対応する断面図であり、半導体素子4の任意の位置での断面(A-A断面)における半導体素子4の中央Pacから端部Pae1までの距離Lcとダイレクトリード5Cの端部Pam1から半導体素子4の端部Pae1までの距離Gcの関係を示す説明図である。
 本発明者は、半導体素子4の断面における半導体素子4の中央Pacから端部Pae1までの距離Lcとダイレクトリード5Cの端部Pam1から半導体素子4の端部Pae1までの距離Gcの比(ダイレクトリード5Cの端部Pam1から半導体素子4の端部Pae1部までの最短距離Gc/半導体素子4の断面における半導体素子4の中央Pacから端部Pac1までの距離Lc、以降「ダイレクトリードの寸法比」とする)をパラメータとして、端部Paeでの熱応力の大きさについて、さらに検討を行なった。
 図8に、半導体素子4の1辺が、15mm、10mm、5mmの半導体素子4およびダイレクトリード5Cの半導体素子4の対角を通る断面に対して検討した結果を示す。縦軸は、半導体素子4と封止体9(モールド樹脂)間にかかるせん断応力を示す。なお、せん断応力としては、半導体素子4の1辺が15mmで、ダイレクトリード5Cがない場合のせん断応力を1とした比で示している。
 その結果、ダイレクトリードの寸法比が0.3になるまでは、ダイレクトリードの寸法比の増加に対してせん断応力が大きく減少し、0.3を上回ると減少量が小さくなることがわかった。つまり、ダイレクトリードの寸法比が0.3以上になるようにダイレクトリード5Cを調整すれば、せん断応力を効果的に低減できることがわかった。
 図8には半導体素子4の対角を通る断面についての結果を示したが、半導体素子4の大きさによらず同様の傾向がある。そのため、半導体素子4の任意の断面を通る場合についても、同様に半導体素子4の断面におけるダイレクトリードの寸法比を0.3以上に調整すれば、せん断応力を効果的に低減できることがわかる。
 図9に、せん断応力の許容値を満足する半導体素子4の断面における半導体素子4の中央Pacから端部Pae1までの距離Lcとダイレクトリード5Cの端部Pam1から半導体素子4の端部Pae1までの最短距離Gcの関係を示す。なお、せん断応力の許容値は、半導体素子4と封止体9(モールド樹脂)の組み合わせおよび製品の使用条件によって決まる値であり、一意に決まる値ではない。本検討では、半導体素子4の1辺が15mmで、ダイレクトリードの寸法比が0.3の場合おける、せん断応力をせん断応力の許容値とした例を記載している。
 次に、図10によって、半導体素子4の角部Pce1におけるせん断応力を許容値以下にするダイレクトリードの寸法比についての説明をする。矩形の半導体素子4においては、半導体素子4の端部Pae1(ここではPce1)に対して半導体素子4の断面における半導体素子4の中央Pacから端部Pae1(Pce1)までの距離Lcが最も長くなる断面は半導体素子4の対角方向である。同断面と半導体素子4の端面がなす角度θが小さくなるに従って、半導体素子4の断面における半導体素子4の中央Pacから端部Pae1(Pce1)までの距離Lcは短くなり、半導体素子4の端辺に平行な方向において最も短くなる。そのため、半導体素子4の端部Pae1つまり角部Pce1におけるせん断応力を許容値以内に収めるダイレクトリード5Cの配置位置は、図10に示す外周Rj1(太線)の内側になる。
 同様に、図11によって、半導体素子4の端辺である側面4sにおけるせん断応力を許容値以下にするダイレクトリード5Cの端部Pam1から半導体素子4の端部Pae1(ここではPcn1)までの最短距離Gcについての説明をする。半導体素子4の側面4sの中央Pcn1を通る、半導体素子4の断面における半導体素子4の中央Pacから端部Pae1(Pcn1)までの距離Lcが最も長くなる断面は半導体素子4の角部である端部Pce2に向かった断面である。同断面と半導体素子4の側面4sのがなす角度θが小さくなるに従って、半導体素子4の中央Pcn1に対して半導体素子4の断面における半導体素子4の中央Pacから端部Pae1(Pcn1)までの距離Lcは短くなり、半導体素子4の側面4sに平行な方向において最も短くなる。そのため、半導体素子4の側面4sの中央Pcn1におけるせん断応力を許容値以内に収めるダイレクトリード5Cの配置位置は、図11に示す外周Rj2(太線)の内側になる。半導体素子4の角部である端部Pce1と半導体素子4の端辺である側面4sの中央Pcn1以外の端部についても各々ダイレクトリード5Cの配置位置がきまるので、半導体素子4の全周におけるせん断応力を許容値以下にできる、ダイレクトリード5Cの接合領域Rjは、図12に示す外周Rjs(太線)の内側になる。
 ここまでは、せん断応力を許容値以下にできるダイレクトリード5Cの接合領域Rjの最大領域について示したが、次に接合領域の最小領域について説明する。板状のダイレクトリード5Cを用いた構造では、ダイレクトリード5Cと半導体素子4の接合部はワイヤボンディング等の接合に比べて接合面積が広いので、半導体装置1の動作に起因する熱応力に対して高い信頼性を有する特徴がある。この高い信頼性を有する特徴を維持するための接合領域の最小領域は、接合に使用する材料の熱応力に対する耐久性と半導体素子が動作時の電流量に起因する発熱量よって決定される。つまり、接合に使用する材料の熱応力に対する耐久性が高く、電流量が小さければ接合面積は小さくてもよいことになる。本発明で対象とする半導体素子4とダイレクトリード5Cが、はんだ接合あるいは銀ナノ粒子を用いた接合により接続され、電流量が200A以上の半導体装置1の構成においては、接合領域は、25mm以上であることが望ましい。
 次に、ダイレクトリード5Cが半導体素子4の一辺である側面4sをまたぐ部分についての説明図をする。図13(a)は、ダイレクトリード5Cが半導体素子4の一辺である側面4sをまたぐ場合の平面図を、図13(b)は図13(a)のC-C線に対応する断面図を示す。図13(a)においてダイレクトリード5Cは破線で示している。ダイレクトリード5Cが半導体素子4の一辺である側面4sをまたいで接合する場合、接合領域Rjの外側においても半導体素子4上にダイレクトリード5Cが存在する領域Sjが存在することになる。そのため、ダイレクトリード5Cの接合領域Rjの外側においても半導体素子4上にダイレクトリード5Cが存在する領域Sjにおいては、図13(b)に示す厚み方向に半導体素子4の端部とダイレクトリード5Cとの間の厚み方向距離Ghを適正な寸法にすることによってせん断応力を低減する必要がある。このときの半導体素子4の端部とダイレクトリード5Cとの間の厚み方向距離Ghは、ダイレクトリード5Cが半導体素子4の端部をまたぐ箇所におけるGc以上(Gh≧Gc)になることが必要である。
 ここで、図14に示すように、半導体素子4とダイレクトリード5Cの接合領域Rjの幅W1に対して、ダイレクトリード5Cの中央部5Cnの幅W2が狭くなると、半導体素子4の端辺である側面4sにおけるせん断応力を許容値以下にするダイレクトリード5Cの端部から半導体素子4の端部までの最短距離Gcが狭く、すなわち半導体素子4の端部とダイレクトリード5Cとの間の厚み方向距離Ghを狭くして、半導体装置1の厚さを薄くできるので小型化できる効果が期待できる。なお、半導体素子4の端部である側面4sをまたぐダイレクトリード5Cにおいては、半導体素子4とダイレクトリード5Cが接合されていないため、ダイレクトリード5Cの中央部5Cnの幅を狭くしてもダイレクトリード5Cと半導体素子4間の接合面積は減少しないので接合部の信頼性は低下しない。
 前述の構成においては、ダイレクトリード5Cが半導体素子4の端部である側面4sをまたぐ部分の中央部5Cnの幅W2は狭くなるに従って、はく離を抑制する効果が高くなる。したがって、ダイレクトリード5Cの中央部5Cnの幅W2は、ダイレクトリード5Cを流れる電流密度等、はく離抑制の効果とは異なる要因によって決定される値であるが、はく離に対する効果を想定した場合では、半導体素子4とダイレクトリード5Cの接合領域Rjの幅W1の下限値はダイレクトリード5Cの中央部5Cnの幅W2が限りなくゼロになった場合を考えればよい。つまり、ダイレクトリード5Cが半導体素子4の端部である側面4sをまたぐ部分の中央部5Cnの幅W2がゼロの場合の半導体素子4の端部とダイレクトリード5Cとの間の厚み方向距離Ghの下限値は、すなわち半導体素子4の端辺である側面4sの中央Pcn1におけるGcに等しくなる。図15に、半導体素子4の端部とダイレクトリード5Cとの間の厚み方向距離Ghの下限値の説明図を示す。半導体素子4の端辺である側面4sの中央Pcn1におけるGcは、半導体素子4の1辺の長さの比率で表すと、Gc≧0.2であり(=0.56×0.3)、すなわち半導体素子4の端部とダイレクトリード5Cとの間の厚み方向距離Gh≧0.2となる。
 したがって、半導体素子4上の主電極と電極リード5の接合面積を広く確保するための電極リード5の形状は、図16に示す形が最良の形状となる。図17に、本実施の形態1における電極リード5の形状(図2参照)と、半導体素子4上の主電極と電極リード5の接合面積を広く確保するための最良の形状の関係を示す。本実施の形態1では、電極リード5に窪み部5nを設けることで、電極リード5の最良の形状に対して、電極リード5と半導体素子4を小さい領域で接合し、はく離を抑制できる電極リードの形状を実現している。このとき、電極リード5の4角に切欠きを設けた実施の形態1にかかる電極リード5によれば、はく離を抑制できる電極リードの形状の加工を容易に実施することができる。
 このように、電極リード5に窪み部5nを設けることで、半導体素子4の主電極に平行な方向において、半導体素子4のコーナー部4cから一定距離(例えば、2mm)未満の範囲には、電極リード5が存在しないようになった。これにより、半導体素子4のコーナー部4cと電極リード5間の最短距離Gcが長くなり、封止体9の端部Pceの、電極リード5に追随した実質的な熱変形差ΔRpが低減されるので、半導体素子4と封止体9との境界面での損傷が生じない。一方で、電極リード5と半導体素子4の接合面積が小さくなると、電極リード5の接合部の信頼性が低下する懸念がある。しかし、本発明の実施の形態1にかかる電極リード5およびそれを用いた半導体装置1では、半導体素子4のコーナー部4c近くの部分を選択的に窪ませているので、接合部の信頼性の低下も最小限にとどめることができる。
 なお、スイッチング素子としては、IGBT以外にも、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)でもよい。また、ダイオードとしては、ショットキー(バリア)ダイオード(Schottky Diode)など、様々な種類の素子を用いることができる。また、素子数も2個に限ることはなく、それ以上でも、1個でもよい。
 実施の形態2.
 上記実施の形態1では、半導体素子の4つのコーナー部のすべてに対応して窪み部を設ける例について説明した。本実施の形態2にかかる電極リードでは、端部に位置する部分を各コーナーではなく、半導体素子の辺から後退させるようにした。図18(a)と(b)は、本発明の実施の形態2にかかる電極端子の構成を説明するためのもので、それぞれ、電極端子の半導体素子に接合された先端部分を拡大した平面図である。なお、本実施の形態2においては、電極リード以外の構成については、実施の形態1で説明したものと同様であるので説明を省略する。また、図中、実施の形態1で説明したものと同様のものには同じ符号を付しており、重複する部分についての詳細な説明は省略する。
 図18(a)および図18(b)に示すように、本発明の実施の形態2による半導体装置1においては、電極リード5のうち、半導体素子4側の端部5eについては、窪み部5nを形成せず、半導体素子4の接合領域Rjの外周Rjsから後退させている。一方、半導体素子4の側面4sをまたぐ部分については、実施の形態1と同様に窪み部5nを設けている。また、図18(b)に示す電極リード5においては、実施の形態1で説明したように、コーナー部4cを中心とする円弧を形成するようにして窪み部5nを形成している。この構造によれば、電極リード5の加工が容易になるため、コスト低減の効果がある。
 なお、本実施の形態2でも、接合領域Rjが素子表面のほぼ全面に設定された場合を想定して、「端部5eを接合領域Rjの外周Rjsから後退させた」構成を示した。しかし、外周Rjs自体が、コーナー部4cから2mm以上離れるように、半導体素子4の外周から内側の位置に設定されている場合には、端部5eを外周Rjsに一致させるようにしてもよい。
 以上のように、本実施の形態1あるいは実施の形態2にかかる電極リード5によれば、(矩形をなす)半導体素子4の表面側の主電極(接合領域Rj)に一端が接合され、他端が外部回路と接続される板状の電極リード5であって、(例えば、半導体素子4のコーナー部4cとの間隔(最短距離Gc)が、コーナー部4cと主電極間(接合領域Rjの角部Rjc)の距離よりも広くなるように、)半導体素子4の端部(側面4s)をまたぐ部分の幅が狭くなっている(窪み部5nを形成している)ように構成したので、半導体素子4のコーナー部4cにおける封止体9と半導体素子4との境界に作用する熱応力を抑制でき、高温に対応し、電力制御に適した信頼性の高い半導体装置1を得ることができる。
 とくに、端部(側面4s)をまたぐ部分が、幅方向の両側から窪んでいるので、またいだ側面の両端のコーナー部4cに対して距離を確保できる。
 端部(側面4s)をまたぐ部分を、切欠きによって狭く(窪み部5nを形成)しているので、容易にコーナー部4cに対して距離を確保できる。
 あるいは、端部(側面4s)をまたぐ部分を、半導体素子4から離れるように折り曲げることによって狭く(窪み部5nを形成)しているので、材料の無駄なく、容易にコーナー部4cに対して距離を確保できる。
 当該電極リード5と半導体素子4のコーナー部4cとの最短距離Gcが2mm以上になるように端部(側面4s)をまたぐ部分を狭く(窪み部5nを形成)したので、半導体素子4のコーナー部4cにおける封止体9と半導体素子4との境界に作用する熱応力を確実に抑制することができる。
 また、半導体素子4のコーナー部4cに対応する位置で電極リード5に切欠きを設けたので、はく離を抑制できる電極リードの形状の加工を容易に実施することができる。
 また、本実施の形態1あるいは2にかかる半導体装置1は、回路基板(絶縁基板3)と、回路基板(絶縁基板3)に接合された電力を制御するための半導体素子4と、半導体素子4の主電極(接合領域Rj)に一端が接合された上述した電極リード5と、電極リード5の半導体素子4に接合された部分を含み、半導体素子4を封止する封止体9と、を備えたので、高温に対応し、電力制御に適した信頼性の高い半導体装置1を得ることができる。
実施の形態3.
 上記実施の形態1または2では、電極リードの半導体素子の側面をまたぐ部分に窪み部を設ける例について説明した。本実施の形態3にかかる電極リードでは、窪み部に加え、主電極に接合された部分の先端が分岐するようにした。図19(a)と(b)、および図20(a)と(b)は、本発明の実施の形態3にかかる電極端子の構成を説明するためのもので、それぞれ、電極端子の半導体素子に接合された先端部分を拡大した平面図である。なお、本実施の形態3においては、電極リード以外の構成については、実施の形態1で説明したものと同様であるので説明を省略する。また、図中、実施の形態1あるいは2で説明したものと同様のものには同じ符号を付しており、重複する部分についての詳細な説明は省略する。
 図19(a)と(b)、図20(a)と(b)に示すように、本発明の実施の形態3による半導体装置1においては、電極リード5には、側面4sをまたぐ部分に窪み部5nが形成されているだけでなく、主電極に接合される部分の先端に分岐部5bを形成している。なお、図20(a)と(b)に示す例は、実施の形態2で説明したように外周Rjsから後退させた端部5eに、分岐部5bを設けたものである。このような分岐部5bを設けた構成によれば、電極リード5と半導体素子4を接合する接合部に作用する負荷が小さくなるので、接合部の信頼性をも向上させることができる。
 以上のように、本実施の形態3にかかる電極リードによれば、主電極(接合領域Rj)に接合される部分において、先端が分岐している(分岐部5bを形成している)ので、電極リード5と半導体素子4を接合する接合部に作用する負荷が小さくなり、接合部の信頼性をも向上させることができる。
 また、半導体素子4のコーナー部4cに対応する位置で電極リード5に切欠きを設けたので、はく離を抑制できる電極リードの形状の加工を容易に実施することができる。
実施の形態4.
 上記実施の形態1~3では、電極リードの半導体素子に対向する部分が平坦である場合について説明した。本実施の形態4にかかる電極リードでは、半導体素子に対向する部分が、接合面に垂直な面内で屈曲するようにした。図21(a)~(c)は、本発明の実施の形態4にかかる電極端子の半導体素子に接合された先端部分を拡大した部分拡大図であって、図21(a)は平面図、図21(b)は側面図、そして図21(c)は、図21(a)のC-C線による断面図である。なお、本実施の形態4においても、電極リード以外の構成については、実施の形態1で説明したものと同様であるので説明を省略する。また、図中、実施の形態1で説明したものと同様のものには同じ符号を付しており、重複する部分についての詳細な説明は省略する。
 図21(a)~(c)に示すように、本発明の実施の形態4による半導体装置1においては、電極リード5には、側面4sをまたぐ部分に窪み部5nが形成されているだけでなく、側面4sの手前の部分に半導体素子4の接合面に垂直な面内で屈曲する屈曲部5sを設けた。つまり、電極リード5を長尺方向で屈曲した形状になるようにした。この構造により、電極リード5の半導体素子4から離れる側の最短距離となる部分Pfについては、コーナー部4cからの距離を窪み部5nにより確保した距離Gcよりもさらに広げた距離Gcaにすることができ、より一層応力緩和が可能になる。また、封止体9の外部に露出した電極リード5の他端に加わる外力の接合部側への伝達を緩和することができ、半導体素子4のコーナー部4c近傍の封止体9の変形を抑制できる。
 以上のように、本実施の形態4にかかる電極リード5によれば、半導体素子4の端部(側面4s)をまたぐ部分が主電極から離れるように、主電極(接合領域Rj)に接合された部分から側面4sに達するまでの部分で屈曲しているので、コーナー部4cからの実質的な距離Gcaが、窪み部5nにより確保した(水平方向の)最短距離Gcよりもさらに広がり、より一層応力緩和が可能になる。また、封止体9の外部に露出した電極リード5の他端に加わる外力の接合部側への伝達を緩和することができ、半導体素子4のコーナー部4c近傍の封止体9の変形を抑制できる。
 また、半導体素子4のコーナー部4cに対応する位置で電極リード5に切欠きを設けたので、はく離を抑制できる電極リードの形状の加工を容易に実施することができる。
実施の形態5.
 上記実施の形態4では、電極リードの半導体素子に対応する部分を屈曲させる例について説明した。本実施の形態5にかかる電極リードでは、半導体素子に接合される部分と外部に連なる部分の厚みを変化させるようにした。図22(a)~(c)は、本発明の実施の形態5にかかる電極端子の半導体素子に接合された先端部分を拡大した部分拡大図であって、図22(a)は平面図、図22(b)は側面図、そして図22(c)は、図22(a)のC-C線による断面図である。なお、本実施の形態5においても、電極リード以外の構成については、実施の形態1で説明したものと同様であるので説明を省略する。また、図中、実施の形態1あるいは4で説明したものと同様のものには同じ符号を付しており、重複する部分についての詳細な説明は省略する。
 図22(a)~(c)に示すように、本発明の実施の形態5による半導体装置1においては、電極リード5には、窪み部5nが形成されているだけでなく、半導体素子4と接合される部分5jの厚みが、側面4sをまたぐ部分5uの厚みよりも厚くなるようにした。そして、側面4sをまたぐ部分5uが、半導体素子4の接合面から離れるようにした。この構造により、電極リード5の半導体素子4から離れる側の最短距離となる部分Pfについては、コーナー部4cからの距離を窪み部5nにより確保した距離Gcよりもさらに広げた距離Gcaにすることができ、より一層応力緩和が可能になる。また、図では外部に連なる部分5uが半導体素子4の接合面から離れていることを示すために極端に記載している。しかし、実際の加工において、実施の形態4のように、曲げ加工で作製する場合と比較して、電極リード5の高さを低くできるため、半導体装置1を小型化できる利点がある。
 以上のように、本実施の形態5にかかる電極リード5によれば、半導体素子4の端部(側面4s)をまたぐ部分が主電極(接合領域Rj)から離れるように、側面4sをまたぐ部分5uの厚みが主電極に接合される部分5jよりも薄くなるように構成した。これにより、コーナー部4cからの実質的な距離Gcaが、窪み部5nにより確保した距離Gcよりもさらに広がり、より一層応力緩和が可能になる。さらに、曲げ加工を用いないので、電極リード5の高さを低くでき、半導体装置1を小型化できる。
 また、電極リード5の4角に切欠きを設けた実施の形態5にかかる電極リード5によれば、はく離を抑制できる電極リードの形状の加工を容易に実施することができる。
実施の形態6.
 実施の形態1では、電極リードが半導体素子4の端部1辺をまたぐ場合について説明したが、電極リードは半導体素子の複数の端部をまたいでもよい。
 図23(a)と(b)は、本発明の実施の形態6にかかる電極端子の構成を説明するためのもので、それぞれ、本発明の実施の形態6にかかる電極端子の半導体素子に接合された先端部分を拡大した部分拡大図である。なお、本実施の形態6においても、電極リード以外の構成については、実施の形態1で説明したものと同様であるので説明を省略する。また、図中、実施の形態1で説明したものと同様のものには同じ符号を付しており、重複する部分についての詳細な説明は省略する。
 図23(a)と(b)において、電極リード5は半導体素子4の複数の端部である側面4sをまたいで接合する。電極リード5には、半導体素子4のコーナー部4cに対応する位置で電極リード5に切欠き(窪み部5nを形成)を設けている。本実施の形態6にかかる電極リード5によれば、半導体素子4の配置によらず電極リード5を接続できるため、さらに半導体装置の小型化が可能になる。
 以上のように、本実施の形態6にかかる電極リード5によれば、電極リード5は半導体素子4の複数の端部である側面4sをまたいで接合するように構成したので、半導体素子4の配置によらず電極リード5を接続できるため、さらに半導体装置の小型化が可能になる。
 また、半導体素子4のコーナー部4cに対応する位置で電極リード5に切欠きを設けたので、はく離を抑制できる電極リードの形状の加工を容易に実施することができる。
 なお、上記各実施の形態においては、半導体素子4には、ワイドバンドギャップ半導体材料であるSiCを用いることを想定しているが、一般的なシリコンを用いた素子にも適用できることは言うまでもない。しかし、SiCをはじめ、窒化ガリウム(GaN)系材料、あるいはダイヤモンドといったシリコンと較べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料を用い、電流許容量が高く、高温動作が想定される場合に、特に顕著な効果があらわれる。それは、電極リード5に必要とされる厚み(断面積)が厚くなるので、剛性が高くなるとともに、運転温度が高くなるため線膨張係数差による変位が大きくなる。そのため、上記のように、電極リード5の半導体素子4のコーナー部4cからの最短距離Gcを確保するように、少なくとも半導体素子4とその素子の外へ連なる部分に窪み部5nを設けた構成により、高温に対応し、電力制御に適した信頼性の高い半導体装置1を得るという効果をより発揮することができる。つまり、本発明の各実施の形態にかかる電極リード5を用いることで、ワイドバンドギャップ半導体の特性を生かした高性能な半導体装置1を得ることが可能になる。
1:半導体装置、2:ベース板、3:絶縁基板(回路基板)、3a,3b:導電層、3i:絶縁基材、4:半導体素子、4c:コーナー部、4s:半導体素子の側面(端部)、5:電極リード、5n:窪み部、6、7、8:はんだ(接合材)、9:封止体、Gc:電極リードとコーナー部との最短距離、Rj:接合領域、Rjc:接合領域の角部、Rjs:接合領域の外周。

Claims (14)

  1.  半導体素子の表面側の主電極に一端が接合され、前記半導体素子の端部をまたいで、他端が他の半導体素子または外部回路と接続される板状の電極リードであって、
     前記半導体素子の表面と直交する任意の断面における前記主電極と接合する接合部の端部から前記半導体素子の表面端部までの距離が、前記断面における前記半導体素子の表面中央から表面端部までの距離に対し所定の比率となる位置よりも、前記接合部の端部が前記半導体素子の表面端部から離れた位置にあり、かつ前記半導体素子の端部をまたぐ部分の幅が前記接合部の幅よりも狭くなっていることを特徴とする電極リード。
  2.  前記比率は、0.3以上であることを特徴とする請求項1に記載の電極リード。
  3.  前記接合部は、面積が25mm以上であることを特徴とする請求項1または2に記載の電極リード。
  4.  前記接合部の端部は、窪み部を設けることで、前記半導体素子の端部から離れた位置にあることを特徴とする請求項1から3のいずれか1項に記載の電極リード。
  5.  前記接合部の形状は矩形であって、前記窪み部が前記接合部の4角に設けられていることを特徴とする請求項4に記載の電極リード。
  6.  前記窪み部は、切欠きによって形成されていることを特徴とする請求項4または5に記載の電極リード。
  7.  前記接合部は、先端が分岐していることを特徴とする請求項1から6のいずれか1項に記載の電極リード。
  8.  前記半導体素子の端部をまたぐ部分は、前記半導体素子から離れるように折り曲げることによって狭くなっていることを特徴とする請求項1から7のいずれか1項に記載の電極リード。
  9.  前記半導体素子の端部をまたぐ部分は、前記主電極から離れるように、前記主電極に接合された部分から前記端部に達するまでの部分で屈曲していることを特徴とする請求項1から8のいずれか1項に記載の電極リード。
  10.  前記半導体素子の端部をまたぐ部分は、前記主電極から離れるように、前記端部をまたぐ部分の厚みが前記主電極に接合される部分よりも薄いことを特徴とする請求項1から8のいずれか1項に記載の電極リード。
  11.  前記半導体素子が正方形の板状である場合に、前記半導体素子の端部をまたぐ部分は、前記主電極から離れるように形成され、前記半導体素子の端部とまたぐ部分との間の厚み方向の距離が、前記半導体素子の幅に対する比率で、0.2以上であることを特徴とする請求項1から10のいずれか1項に記載の電極リード。
  12. 回路基板と、
     前記回路基板に接合された電力を制御するための半導体素子と、
     前記半導体素子の主電極に一端が接合された請求項1から11のいずれか1項に記載の電極リードと、
     前記電極リードの前記半導体素子に接合された部分を含み、前記半導体素子を封止する封止体と、
     を備えたことを特徴とする半導体装置。
  13.  前記半導体素子は、ワイドバンドギャップ半導体材料で形成されていることを特徴とする請求項12に記載の半導体装置。
  14.  前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム系材料、およびダイヤモンドのうちのいずれかであることを特徴とする請求項13に記載の半導体装置。
PCT/JP2015/054275 2014-02-24 2015-02-17 電極リードおよび半導体装置 WO2015125772A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-032467 2014-02-24
JP2014032467A JP2017073406A (ja) 2014-02-24 2014-02-24 電極リードおよび半導体装置

Publications (1)

Publication Number Publication Date
WO2015125772A1 true WO2015125772A1 (ja) 2015-08-27

Family

ID=53878274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054275 WO2015125772A1 (ja) 2014-02-24 2015-02-17 電極リードおよび半導体装置

Country Status (2)

Country Link
JP (1) JP2017073406A (ja)
WO (1) WO2015125772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019083296A (ja) * 2017-10-31 2019-05-30 トヨタ自動車株式会社 半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021000169T5 (de) * 2020-06-30 2022-07-28 Fuji Electric Co., Ltd. Halbleitermodul und verfahren zum herstellen eines halbleitermoduls
WO2023181957A1 (ja) * 2022-03-24 2023-09-28 ローム株式会社 半導体装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196765A (ja) * 2005-01-14 2006-07-27 Mitsubishi Electric Corp 半導体装置
JP2006202885A (ja) * 2005-01-19 2006-08-03 Mitsubishi Electric Corp 半導体装置
JP2007165714A (ja) * 2005-12-15 2007-06-28 Renesas Technology Corp 半導体装置
JP2007173703A (ja) * 2005-12-26 2007-07-05 Mitsubishi Electric Corp 半導体装置
JP2007184525A (ja) * 2005-12-07 2007-07-19 Mitsubishi Electric Corp 電子機器装置
JP2010010173A (ja) * 2008-06-24 2010-01-14 Denso Corp 電子装置およびその製造方法
JP2010010330A (ja) * 2008-06-26 2010-01-14 Mitsubishi Electric Corp 半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196765A (ja) * 2005-01-14 2006-07-27 Mitsubishi Electric Corp 半導体装置
JP2006202885A (ja) * 2005-01-19 2006-08-03 Mitsubishi Electric Corp 半導体装置
JP2007184525A (ja) * 2005-12-07 2007-07-19 Mitsubishi Electric Corp 電子機器装置
JP2007165714A (ja) * 2005-12-15 2007-06-28 Renesas Technology Corp 半導体装置
JP2007173703A (ja) * 2005-12-26 2007-07-05 Mitsubishi Electric Corp 半導体装置
JP2010010173A (ja) * 2008-06-24 2010-01-14 Denso Corp 電子装置およびその製造方法
JP2010010330A (ja) * 2008-06-26 2010-01-14 Mitsubishi Electric Corp 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019083296A (ja) * 2017-10-31 2019-05-30 トヨタ自動車株式会社 半導体装置
JP7052293B2 (ja) 2017-10-31 2022-04-12 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
JP2017073406A (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6316412B2 (ja) 電力用半導体装置
US10170433B2 (en) Insulated circuit board, power module and power unit
US10763240B2 (en) Semiconductor device comprising signal terminals extending from encapsulant
CN106952877B (zh) 半导体装置
JP2015056638A (ja) 半導体装置およびその製造方法
WO2021002132A1 (ja) 半導体モジュールの回路構造
US20170207179A1 (en) Semiconductor device
WO2015125772A1 (ja) 電極リードおよび半導体装置
JP6125089B2 (ja) パワー半導体モジュールおよびパワーユニット
JP2015115471A (ja) 電力用半導体装置
JP6129090B2 (ja) パワーモジュール及びパワーモジュールの製造方法
JP2015005623A (ja) 半導体装置
JP6643481B2 (ja) 半導体モジュールおよび半導体モジュールの製造方法
JP7106981B2 (ja) 逆導通型半導体装置
JP6327105B2 (ja) 半導体装置
US9620442B2 (en) Semiconductor device
US11302612B2 (en) Lead frame wiring structure and semiconductor module
US9355999B2 (en) Semiconductor device
JP6316221B2 (ja) 半導体装置
US20180145020A1 (en) Semiconductor device
JP2014041876A (ja) 電力用半導体装置
US20150179540A1 (en) Semiconductor device
US10804253B2 (en) Semiconductor device
JP2019009280A (ja) 半導体装置
WO2023021589A1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15751773

Country of ref document: EP

Kind code of ref document: A1