WO2015125742A1 - 細胞培養容器 - Google Patents

細胞培養容器 Download PDF

Info

Publication number
WO2015125742A1
WO2015125742A1 PCT/JP2015/054172 JP2015054172W WO2015125742A1 WO 2015125742 A1 WO2015125742 A1 WO 2015125742A1 JP 2015054172 W JP2015054172 W JP 2015054172W WO 2015125742 A1 WO2015125742 A1 WO 2015125742A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
cell
cell culture
cells
culture container
Prior art date
Application number
PCT/JP2015/054172
Other languages
English (en)
French (fr)
Inventor
智瑛 倉員
大島 康弘
義雄 木村
加川 健一
慎一 五味
成則 尾▲崎▼
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2016504090A priority Critical patent/JP6199479B2/ja
Priority to EP15752598.1A priority patent/EP3109312B1/en
Publication of WO2015125742A1 publication Critical patent/WO2015125742A1/ja
Priority to US15/240,284 priority patent/US10351811B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/10Perfusion

Definitions

  • the present invention relates to a cell culture container.
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • open culture containers such as dishes and flasks
  • Liquid such as cell suspension or culture medium is introduced into the container by pipetting performed, or liquid or cells are collected from the container.
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • there is a risk of contamination from the outside such as bacteria and viruses because the space in the container communicates with the outside air when the lid is opened.
  • a closed-type culture vessel is known to compensate for the drawbacks of such an open-type culture vessel (see, for example, US Pat. No. 6,479,252 and JP-A 2010-11747).
  • an access port for accessing the space inside the container from the outside is provided in the closed culture container.
  • a syringe is inserted into each access port at the time of injecting or discharging the liquid, thereby allowing contamination from the outside world. National risk is reduced.
  • An object of the present invention is to provide a closed cell culture container for culturing a plurality of cell masses at the same time, which can uniformize the size of the cell mass to be cultured and control the cell culture position. There is.
  • the present invention includes a container main body and a flat plate attached to one surface of the container main body, the container main body including an inflow port through which liquid flows and a passage through which the liquid flowing in from the inflow port passes.
  • a plurality of cell seeding regions in which cells passing through the passage are seeded are arranged along the passage on the bottom surface of the passage.
  • a cell culture container characterized by being provided.
  • the cell seeding regions are provided at equal intervals along the passage.
  • the passage has a meandering portion.
  • the passage has a portion branched into a plurality of passage components and a portion where the plurality of passage components merge.
  • a recess is provided concentrically with the cell seeding region on the bottom surface of the passage.
  • the depression has a pyramid shape or a cone shape.
  • the recess may have a flat bottom.
  • an extracellular matrix is preferably applied to a portion of the flat plate facing the depression.
  • an extracellular matrix (ECM) is applied to the inside of the recess, and an extracellular matrix (ECM) is not applied to the outside of the recess. Also good.
  • the bottom surface of the passage is flat, and an extracellular matrix (ECM) is applied to the inside of the cell seeding region, and an extracellular matrix (ECM) is applied to the outside of the cell seeding region. It does not have to be.
  • the outer surface roughness of the cell seeding region is greater than the inner surface roughness of the cell seeding region.
  • the bottom surface of the passage and the flat plate are light transmissive.
  • the flat plate has gas permeability.
  • FIG. 1A is a schematic plan view showing a cell culture container according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view taken along line AA of the cell culture container shown in FIG. 1A.
  • FIG. 1C is a cross-sectional view taken along line BB of the cell culture container shown in FIG. 1A.
  • FIG. 2A is a schematic diagram for explaining an example of a method for using the cell culture container according to the first embodiment of the present invention.
  • FIG. 2B is a schematic diagram for explaining an example of a method for using the cell culture container according to the first embodiment of the present invention.
  • FIG. 2C is a schematic diagram for explaining an example of a method for using the cell culture container according to the first embodiment of the present invention.
  • FIG. 1A is a schematic plan view showing a cell culture container according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view taken along line AA of the cell culture container shown in FIG. 1A.
  • FIG. 2D is a schematic diagram for explaining an example of a method for using the cell culture container according to the first embodiment of the present invention.
  • FIG. 2E is a schematic diagram for explaining an example of a method for using the cell culture container according to the first embodiment of the present invention.
  • FIG. 3A is a schematic plan view showing a cell culture container according to the second embodiment of the present invention.
  • FIG. 3B is a cross-sectional view taken along the line CC of the cell culture container shown in FIG. 3A.
  • FIG. 3C is a cross-sectional view taken along line DD of the cell culture container shown in FIG. 3A.
  • FIG. 4 is an enlarged schematic view showing a portion surrounded by a one-dot chain line to which the symbol E of the cell culture container shown in FIG.
  • FIG. 5A is a schematic diagram for explaining an example of a method for using the cell culture container according to the second embodiment of the present invention.
  • FIG. 5B is a schematic diagram for explaining an example of a method for using the cell culture container according to the second embodiment of the present invention.
  • FIG. 5C is a schematic diagram for explaining an example of a method for using the cell culture container according to the second embodiment of the present invention.
  • FIG. 5D is a schematic diagram for explaining an example of a method for using the cell culture container according to the second embodiment of the present invention.
  • FIG. 5E is a schematic diagram for explaining an example of a method for using the cell culture container according to the second embodiment of the present invention.
  • FIG. 5A is a schematic diagram for explaining an example of a method for using the cell culture container according to the second embodiment of the present invention.
  • FIG. 5B is a schematic diagram for explaining an example of a method for using the cell culture container according to the second embodiment of the present invention.
  • FIG. 5C is a schematic diagram
  • FIG. 6A is a schematic diagram for explaining another example of the method of using the cell culture container according to the second embodiment of the present invention.
  • FIG. 6B is a schematic diagram for explaining another example of the method of using the cell culture container according to the second embodiment of the present invention.
  • FIG. 6C is a schematic diagram for explaining another example of the method of using the cell culture container according to the second embodiment of the present invention.
  • FIG. 7A is a schematic plan view showing a cell culture container according to the third embodiment of the present invention.
  • FIG. 7B is a cross-sectional view taken along line FF of the cell culture container shown in FIG. 7A.
  • FIG. 7C is a cross-sectional view taken along line GG of the cell culture container shown in FIG. 7A.
  • FIG. 7A is a schematic plan view showing a cell culture container according to the third embodiment of the present invention.
  • FIG. 7B is a cross-sectional view taken along line FF of the cell culture container shown in FIG. 7A.
  • FIG. 8A is a schematic diagram for explaining an example of a method of using the cell culture container according to the third embodiment of the present invention.
  • FIG. 8B is a schematic diagram for explaining an example of a method for using the cell culture container according to the third embodiment of the present invention.
  • FIG. 8C is a schematic diagram for explaining an example of a method for using the cell culture container according to the third embodiment of the present invention.
  • FIG. 9 is a schematic plan view showing a cell culture container according to the fourth embodiment of the present invention.
  • FIG. 1A is a schematic plan view showing a cell culture container according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view taken along line AA of the cell culture container shown in FIG. 1A.
  • FIG. 1C is a cross-sectional view taken along line BB of the cell culture container shown in FIG. 1A.
  • the cell culture container 10a of the present embodiment contains various adhesive (adhesive) cells such as pluripotent stem cells such as iPS cells and ES cells, chondrocytes such as bone marrow stromal cells (MSC), and dendritic cells. It can be used for culturing purposes. In the present embodiment, the following description will be given mainly assuming the use of culturing iPS cells, but this is only an example.
  • the cell culture container 10a includes a container body 31a and a flat plate 32 attached to one surface of the container body 31a.
  • a resin having optical transparency is used, for example, polystyrene. Since the container main body 31a and the flat plate 32 have optical transparency, it is easy to optically observe the cells in culture from the outside.
  • the container body 31a has a substantially rectangular shape in plan view. Specifically, the dimensions of the container body 31a are, for example, 130 mm in length, 85 mm in width, and 10 mm in height.
  • the container body 31a includes an inlet 11 into which liquids (liquid in which cells are dispersed, culture solution, release agent, phosphate buffered saline (PBS), etc.) are introduced, and the inlet 11 A passage 12 through which the liquid flowing in from the passage passes, and an outlet 13 through which the liquid passing through the passage 12 flows out.
  • the inflow port 11, the passage 12, and the outflow port 13 are integrally formed by, for example, injection molding.
  • the passage 12 of the container body 31a is formed in a groove shape on the one surface side to which the flat plate 32 of the container body 31a is attached.
  • the diameter of the passage 12 (that is, the depth and width of the groove) is preferably 2 mm or more.
  • path 12 is 4 mm or less.
  • the passage 12 of the container body 31a has a meandering portion in a plan view, that is, a portion in which straight portions and folded portions are alternately connected. Thereby, the full length of the channel
  • a plurality of cell seeding regions 20 a in which cells passing through the passage 12 are seeded are arranged along the passage 12 on the bottom surface of the passage 12.
  • the pitch (center interval) of the cell seeding region 20a is 2 mm to 3 mm depending on the growth limit size within the range where the colony edges do not overlap. It is preferable to set in the range. Thereby, a wide sowing area can be secured without bonding adjacent colony ends.
  • what is necessary is just to have a minimum boundary between the two adjacent cell seeding regions 20a, and the interval between the edges of the two adjacent cell seeding regions 20a is, for example, 2 mm or less.
  • the outer surface roughness of the cell seeding region 20a is preferably larger than the inner surface roughness of the cell seeding region 20a.
  • the inner surface roughness of the cell seeding region 20a is Ra 0.2 or less
  • the outer surface roughness of the cell seeding region 20a is Ra 0.8 or less.
  • “Ra” indicates arithmetic mean roughness, and is in accordance with JIS B0601. Such a difference in surface roughness can be realized, for example, by adjusting the surface roughness of a mold used at the time of injection molding of the container body 31a. The larger the surface roughness on the outside of the cell seeding region 20a, the more difficult the cells adhere to the outside of the cell seeding region 20a.
  • a recess 21 is formed in the bottom surface of the passage 12 concentrically with the cell seeding region 20a.
  • the recess 21 has a quadrangular pyramid shape, but is not limited thereto, and may have an n pyramid shape (n is a natural number of 3 or 5 or more) or a conical shape.
  • the apex angle of the recess 21 is preferably 90 ° or less.
  • the apex angle of the depression 21 is larger than 90 °, the cells are unlikely to slide down the slope of the depression 21.
  • the vertex angle of the hollow 21 is 30 ° or more.
  • the apex angle of the depression 21 is smaller than 30 °, the cells are unlikely to fall from the inside of the depression 21 when the container is inverted as described later.
  • the apex angle of the recess 21 is more preferably 30 ° to 90 °.
  • the inflow port 11 and the outflow port 13 of the container main body 31a are provided on the same side surface of the container main body 31a.
  • the inflow port 11 communicates with one end of the passage 12, and the outflow port 13 communicates with the other end of the passage 12.
  • the inlet 11 and outlet 13 are used for medical purposes such as a rubber stopper with a slit into which the tip of a syringe can be inserted, an elastic membrane that can be inserted with an injection needle, or a luer lock.
  • a structure having an open / close valve Thereby, the risk of contamination from the outside world can be reduced at the time of liquid injection and recovery.
  • the flat plate 32 of the present embodiment is thinly formed so as to have appropriate gas permeability.
  • the thickness of the flat plate 32 is, for example, 50 ⁇ m to 200 ⁇ m. This makes it easy to supply a gas such as oxygen gas to the cells being cultured.
  • the flat plate 32 is preferably gas-impermeable, and in this case, the thickness of the flat plate 32 is, for example, 2000 ⁇ m to 3000 ⁇ m.
  • the flat plate 32 is disposed on one surface of the container main body 31a where the passage 12 is formed so as to cover the entire ceiling of the passage 12, and the outer portion of the passage 12 (that is, the tip of the wall portion defining the passage 12). It is affixed to and fixedly supported on the part).
  • the flat plate 32 is bonded to the outer portion of the passage 12 with an adhesive, but the fixing method is not limited to the adhesive, and may be, for example, thermal fusion or ultrasonic fusion. Since the flat plate 32 is fixedly supported by the outer portion of the passage 12, the curvature of the flat plate 32 can be suppressed.
  • the surface of the passage 12 is formed in front of the container body 31a of the flat plate 32 is attached is O 2 plasma treatment.
  • O 2 gas having a flow rate of 40 mL / min is converted into plasma by 27 kW of power, and the surface on which the passage 12 of the container body 31a is formed is exposed to the O 2 plasma for 5 minutes.
  • a cell non-adhesive coating solution is applied to the passage 12 of the container body 31a. Specifically, for example, 10 mL of the cell non-adhesive coating solution is flowed into the passage 12 and left at 37 ° C. for 2 hours. Thereafter, the cell non-adhesive coating solution is discharged from the passage 12, and the passage 12 is washed with sterilized water.
  • a flat plate 32 is attached to one surface of the container main body 31a where the passage 12 is formed. Specifically, for example, after an adhesive (not shown) is applied to an outer portion of the passage 12, the flat plate 32 is placed on one surface of the container body 31a so as to cover the entire ceiling of the passage 12. And bonded by an adhesive. The adhesive is then solidified for 16 hours with a 40 ° C. dryer.
  • an extracellular matrix (hereinafter referred to as ECM) 41 is applied to the portion of the flat plate 32 that faces the recess 21.
  • ECM extracellular matrix
  • 25 mL of ECM for example, Vitronectin XF manufactured by Stem cell technologies
  • PBS in the passage 12 is swept away by the ECM and flows out from the outlet 13. In this state, it is left still for 1 hour.
  • the ECM 41 is attached to a portion of the passage 12 where the cell non-adhesive coating liquid is not applied, that is, the entire region of the flat plate 32 corresponding to the ceiling surface of the passage 12.
  • a 25 mL cell suspension in which cells 40 are dispersed (for example, iPS cells are dispersed) in a state where a 1 mL air plug is inserted into the inflow port 11.
  • the cell suspension is introduced from the inlet 11 into the passage 12 at a flow rate of 10 mL / min to 20 mL / min, for example.
  • the cells 40 in the cell suspension may be dispersed in the form of single cells or in the form of cell clumps (clamps).
  • the ECM that has not adhered to the flat plate 32 is pushed away by the cell suspension and flows out from the outlet 13.
  • the movement direction of each liquid molecule constituting the liquid in the passage 12 is parallel to the passage 12. That is, the occurrence of turbulent flow between the inlet 11 and the outlet 13 is suppressed. Thereby, the occurrence of unevenness in the cell density in the cell suspension is suppressed, and the cells 40 are controlled to fall (precipitate) at a practically uniform density on the bottom surface of the passage 12.
  • the surface roughness of the outside of the cell seeding region 20a is relatively large, it is possible to prevent the cells from attaching to the outside of the cell seeding region 20a.
  • vibration for example, frequency 180 Hz
  • the cells 40 that have fallen outside the depression 21 in the bottom surface of the passage 12 are guided to the inside of the depression 21, that is, the cells 40 are effectively aggregated inside the cell seeding region 20a.
  • the depression 21 of the present embodiment has a pyramid shape or a cone shape
  • the cells 40 that have fallen inside the depression 21 slide down along the slope of the pyramid shape or the cone shape depression 21.
  • the cells 40 can be aggregated with a high density around the top of the depression 21. Specifically, for example, about 100 to 1000 cells 40 are aggregated inside each depression 21.
  • the cell culture vessel 10a is turned upside down as shown in FIG. 2E.
  • the cells 40 aggregated inside the recess 21 fall on a portion of the flat plate 32 facing the recess 21.
  • the ECM 41 is applied to the portion of the flat plate 32 that faces the depression 21, the cells 40 that have fallen on the flat plate 32 can be cultured on the spot using the ECM 41 as a scaffold.
  • the cultured cells 40 are optically observed from the outside.
  • a medium for example, ReproFF2 manufactured by Reprocell
  • ReproFF2 manufactured by Reprocell
  • the old medium in the passage 12 is swept away by the new medium and flows out from the outlet 13.
  • the new culture medium and the old culture medium are not easily mixed, and the old culture medium is pushed out by the new culture medium so that the new culture medium does not continue to flow. Even old media can be replaced easily and effectively.
  • a medium for example, ReproFF2 manufactured by Reprocell
  • ReproFF2 manufactured by Reprocell
  • the cells 40 are cultured until 3000 to 20000 cells per colony.
  • a release agent for example, TryLE Select manufactured by Life technologies
  • a release agent for example, TryLE Select manufactured by Life technologies
  • the old culture medium in the passage 12 is washed away by the release agent and flows out from the outlet 13.
  • the colonies of the cells 40 cultured on the flat plate 32 are detached from the ECM 41 with a release agent.
  • a medium for example, ReproFF2 manufactured by Reprocell
  • a medium for example, ReproFF2 manufactured by Reprocell
  • the colonies of the cultured cells 40 detached from the ECM 41 are washed away with a new medium and flowed out (collected) from the outlet 13.
  • a flow along the passage 12 is formed in the passage 12, shear stress is uniformly applied to the bottom surface of the passage 12. Thereby, the missing of the cultured cells 40 is reduced.
  • the cells 40 in the liquid passing through the passage 12 are seeded inside the plurality of cell seeding regions 20a provided side by side along the passage 12, culture is performed.
  • the size of the cell mass can be made uniform, and the culture position can be controlled at a predetermined position corresponding to each cell seeding region 20a.
  • the traveling direction of each liquid molecule constituting the liquid in the passage 12 is the passage 12. That is, the generation of turbulent flow between the inlet 11 and the outlet 13 is suppressed. This suppresses unevenness in the cell density in the liquid at the time of cell seeding, and the size of the cell mass to be seeded becomes uniform.
  • the new medium and the old medium are not easily mixed, and the old medium is pushed out by the new medium, so that the old medium can be easily put out without having to keep flowing the new medium, and the medium can be effectively replaced. (In other words, there is no loss during liquid exchange).
  • the shear stress is uniformly applied to the bottom surface of the passage 12 at the time of cell recovery, dropping of the cultured cells 40 is reduced.
  • the culture position of the cells 40 can be controlled along the passage 12 so as to be equally spaced. it can. Thereby, the cell density during culture becomes uniform along the passage 12, and quality control of the cultured cells 40 becomes easy.
  • the passage 12 since the passage 12 has a meandering portion, the entire length of the passage 12 can be extended without increasing the size of the container body 31a. As a result, the number of culture positions can be increased without increasing the width of the flow path 12, and as a result, a larger number of cell masses can be simultaneously cultured in one container 10a.
  • the hollow 21 is provided concentrically with the cell seeding
  • the container 10a when the container 10a is vibrated, it falls to the outer side of the hollow 21
  • the cells 40 thus induced are induced inside the depression 21, that is, the cells 40 can be effectively seeded inside the cell seeding region 20 a.
  • the outer surface roughness of the cell seeding region 20a is larger than the inner surface roughness of the cell seeding region 20a, it is suppressed that cells adhere to the outer side of the cell seeding region 20a. The Thereby, the cells in the liquid can be seeded more efficiently inside the cell seeding region 20a.
  • the depression 21 has a pyramid shape or a cone shape
  • the cells 40 slide down along the slope of the pyramid or cone shape depression 21. Thereby, the cells 40 can be densely aggregated around the top of the recess 21.
  • the ECM 41 is applied to the portion of the flat plate 32 that faces the recess 21.
  • the cells 40 aggregated inside the respective depressions 21 are dropped onto the portion where the ECM 41 is applied. Thereby, culture
  • FIG. 3A is a schematic plan view showing a cell culture vessel 10b according to the second embodiment of the present invention.
  • FIG. 3B is a cross-sectional view taken along the line CC of the cell culture container shown in FIG. 3A.
  • FIG. 3C is a cross-sectional view taken along line DD of the cell culture container shown in FIG. 3A.
  • a recess 22 is provided concentrically on the bottom surface of the passage 12 so as to be concentric with the cell seeding region 20b. Has a flat bottom.
  • the recess 22 has a circular shape in plan view, but is not limited thereto, and may be, for example, a plan view elliptical shape or a plan view polygonal shape.
  • the depth of the recess 22 is, for example, 0.1 mm to 1.0 mm.
  • the thickness of the bottom of the recess 22 is preferably 0.05 mm to 0.3 mm. As a result of actual verification using the silicone rubber film having a hardness of A30 by the present inventor, when the bottom of the recess 22 is thinner than 0.05 mm, it is easily broken due to insufficient strength, and liquid leakage may occur.
  • FIG. 4 is an enlarged schematic view showing a portion surrounded by an alternate long and short dash line with the symbol E of the cell culture vessel 10b shown in FIG. 3C.
  • the outer surface roughness of the cell seeding region 20b is larger than the inner surface roughness of the cell seeding region 20b (depression 22).
  • the inner surface roughness of the cell seeding region 20b is Ra 0.2 or less
  • the outer surface roughness of the cell seeding region 20b is Ra 0.8 or less.
  • Such a difference in surface roughness is realized, for example, by adjusting the surface roughness of a mold used at the time of injection molding of the container body 31b. The larger the surface roughness of the outer side of the cell seeding region 20b (depression 22), the more difficult the cells adhere to the outer side of the cell seeding region 20b (depression 22).
  • FIGS. 1A to 1C Other configurations are substantially the same as those of the first embodiment shown in FIGS. 1A to 1C. 3A to 3C and FIG. 4, the same parts as those in the first embodiment shown in FIGS. 1A to 1C are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the surface of the passage 12 is formed in front of the container body 31b which flat 32 is attached is O 2 plasma treatment.
  • O 2 gas at a flow rate of 40 mL / min is converted into plasma by 27 kW of power, and the surface on which the passage 12 of the container body 31b is formed is exposed to the O 2 plasma for 5 minutes.
  • a cell non-adhesive coating solution is applied to the passage 12 of the container body 31b. Specifically, for example, 10 mL of the cell non-adhesive coating solution is flowed into the passage 12 and left at 37 ° C. for 2 hours. Thereafter, the cell non-adhesive coating solution is discharged from the passage 12, and the passage 12 is washed with sterilized water.
  • a flat plate 32 is attached to one surface of the container body 31b where the passage 12 is formed. Specifically, for example, after an adhesive (not shown) is applied to the outer portion of the passage 12, the flat plate 32 is placed on one surface of the container body 31b so as to cover the entire ceiling of the passage 12. And bonded by an adhesive. The adhesive is then solidified for 16 hours with a 40 ° C. dryer.
  • the ECM 41 is applied to the portion of the flat plate 32 that faces the recess 22. Specifically, for example, in a state where a 1 mL air plug is inserted into the inlet 11, 25 mL of ECM (for example, Vitronectin XF manufactured by Stem cell technologies) flows into the passage 12 from the inlet 11. PBS in the passage 12 is swept away by the ECM and flows out from the outlet 13. In this state, it is left still for 1 hour. As a result, the ECM 41 is attached to a portion of the passage 12 where the cell non-adhesive coating liquid is not applied, that is, the entire region of the flat plate 32 corresponding to the ceiling surface of the passage 12.
  • ECM for example, Vitronectin XF manufactured by Stem cell technologies
  • a 25 mL cell suspension in which cells 40 are dispersed (for example, iPS cells are dispersed) with a 1 mL air plug inserted into the inflow port 11.
  • the cell suspension is introduced from the inlet 11 into the passage 12 at a flow rate of 10 mL / min to 20 mL / min, for example.
  • the cells 40 in the cell suspension may be dispersed in the form of single cells or in the form of cell clumps (clamps).
  • the ECM that has not adhered to the flat plate 32 is pushed away by the cell suspension and flows out from the outlet 13.
  • the traveling direction of each liquid molecule constituting the liquid in the passage 12 is parallel to the passage 12. That is, the occurrence of turbulent flow between the inlet 11 and the outlet 13 is suppressed. Thereby, the occurrence of unevenness in the cell density in the cell suspension is suppressed, and the cells 40 are controlled so as to drop to the bottom surface of the passage 12 at a practically uniform density.
  • the surface roughness of the outer side of the cell seeding region 20b is relatively large, it is possible to prevent the cells from attaching to the outer side of the cell seeding region 20b.
  • vibration for example, frequency 180 Hz
  • vibration for example, frequency 180 Hz
  • the cells 40 that have fallen outside the depression 22 in the bottom surface of the passage 12 are guided to the inside of the depression 22, that is, the cells 40 are effectively seeded inside the cell seeding region 20b.
  • about 500 to 5000 cells 40 are seeded inside each depression 22.
  • one side of the cell culture container 10b (for example, the right side in FIG. 3A) is the other.
  • the entire cell culture container 10b may be inclined so as to be lower than the side (left side in FIG. 3A).
  • the cells 40 that have fallen on the bottom surface of the passage 12 can be slid down toward the one side along the inclination, and can be aggregated at a high density on the edge on the one side (right side) of the inside of the recess 22.
  • the cell culture container 10b is turned upside down.
  • the cells 40 aggregated inside the recess 22 fall on a portion of the flat plate 32 facing the recess 22.
  • the ECM 41 is applied to the portion of the flat plate 32 that faces the recess 22, the cells 40 that have fallen on the flat plate 32 can be cultured on the spot using the ECM 41 as a scaffold.
  • the cultured cells 40 are optically observed from the outside.
  • a medium for example, ReproFF2 manufactured by Reprocell
  • ReproFF2 manufactured by Reprocell
  • the old medium in the passage 12 is swept away by the new medium and flows out from the outlet 13.
  • the new culture medium and the old culture medium are not easily mixed, and the old culture medium is pushed out by the new culture medium so that the new culture medium does not continue to flow. Even old media can be replaced easily and effectively.
  • a medium for example, ReproFF2 manufactured by Reprocell
  • ReproFF2 manufactured by Reprocell
  • the cells 40 are cultured until 3000 to 20000 cells per colony.
  • a release agent for example, TryLE Select manufactured by Life technologies
  • a release agent for example, TryLE Select manufactured by Life technologies
  • the old culture medium in the passage 12 is washed away by the release agent and flows out from the outlet 13.
  • the colonies of the cells 40 cultured on the flat plate 32 are detached from the ECM 41 with a release agent.
  • a medium for example, ReproFF2 manufactured by Reprocell
  • a medium for example, ReproFF2 manufactured by Reprocell
  • the colonies of the cultured cells 40 detached from the ECM 41 are washed away with a new medium and flowed out (collected) from the outlet 13.
  • a flow along the passage 12 is formed in the passage 12, shear stress is uniformly applied to the bottom surface of the passage 12. Thereby, the missing of the cultured cells 40 is reduced.
  • the ECM 41 is applied to the inside of the recess 22 in the container body 31 b before the flat plate 32 is attached, but the ECM 41 is not applied to the outside of the recess 22.
  • Vitronectin XF manufactured by Stem cell technologies as ECM is dropped only inside the recess 22 of the container main body 31a using a droplet dropping device or the like. Thereafter, the dropped ECM 41 is dried. Thereby, the consumption of the ECM 41 is significantly reduced (for example, the consumption is 1 mL or less).
  • a flat plate 32 is attached to one surface of the container body 31b where the passage 12 is formed. Specifically, for example, after an adhesive (not shown) is applied to the outer portion of the passage 12, the flat plate 32 is placed on one surface of the container body 31b so as to cover the entire ceiling of the passage 12. And bonded by an adhesive. The adhesive is then solidified for 16 hours with a 40 ° C. dryer.
  • a 25 mL cell suspension in which cells 40 are dispersed (for example, iPS cells are dispersed) with a 1 mL air plug inserted into the inflow port 11.
  • the cell suspension is introduced from the inlet 11 into the passage 12 at a flow rate of 10 mL / min to 20 mL / min, for example.
  • the cells 40 in the cell suspension may be dispersed in the form of single cells or in the form of cell clumps (clamps).
  • the PBS in the passage 12 is swept away by the cell suspension and flows out from the outlet 13.
  • the traveling direction of each liquid molecule constituting the liquid in the passage 12 is parallel to the passage 12. That is, the occurrence of turbulent flow between the inlet 11 and the outlet 13 is suppressed. Thereby, the occurrence of unevenness in the cell density in the cell suspension is suppressed, and the cells 40 are controlled so as to drop to the bottom surface of the passage 12 at a practically uniform density.
  • the surface roughness of the outer side of the cell seeding region 20b is relatively large, it is possible to prevent the cells from attaching to the outer side of the cell seeding region 20b.
  • vibration for example, frequency 180 Hz
  • vibration for example, frequency 180 Hz
  • the cells 40 that have fallen to the outside of the recess 21 in the bottom surface of the passage 12 are guided to the inside of the recess 21, that is, the cells 40 are effectively seeded inside the cell seeding region 20 b.
  • about 500 to 1000 cells 40 are seeded inside each depression 22.
  • one side of the cell culture container 10b (for example, the right side in FIG. 3A) is the other.
  • the entire cell culture container 10b may be inclined so as to be lower than the side (left side in FIG. 3A).
  • the cells 40 that have fallen on the bottom surface of the passage 12 can be slid down toward the one side along the inclination, and can be aggregated at a high density on the edge on the one side (right side) of the inside of the recess 22.
  • the cells 40 seeded inside the depression 22 can be cultured on the spot using the ECM 41 as a scaffold.
  • a medium for example, ReproFF2 manufactured by Reprocell
  • ReproFF2 manufactured by Reprocell
  • the old medium in the passage 12 is swept away by the new medium and flows out from the outlet 13.
  • the new culture medium and the old culture medium are not easily mixed, and the old culture medium is pushed out by the new culture medium so that the new culture medium does not continue to flow.
  • the old medium can be easily removed and the medium can be effectively replaced.
  • a medium for example, ReproFF2 manufactured by Reprocell
  • ReproFF2 manufactured by Reprocell
  • Cells 40 are cultured until there are 10,000 to 20,000 cells per colony.
  • a release agent for example, TryLE Select manufactured by Life technologies
  • a release agent for example, TryLE Select manufactured by Life technologies
  • the old culture medium in the passage 12 is washed away by the release agent and flows out from the outlet 13.
  • the colonies of the cells 40 cultured in each depression 22 are detached from the ECM 41 by the release agent.
  • a medium for example, ReproFF2 manufactured by Reprocell
  • ReproFF2 manufactured by Reprocell
  • the ECM 41 is applied to the inside of the recess 22, but the ECM 41 is not applied to the outside of the recess 22.
  • the culture can be performed on the spot without turning the container upside down.
  • the ECM 41 is not applied to the outside of the depression 22, the consumption amount of ECM is remarkably reduced, and the culture position of the cells 40 can be effectively controlled inside the depression 22.
  • FIG. 7A is a schematic plan view showing a cell culture container 10c according to the third embodiment of the present invention.
  • FIG. 7B is a cross-sectional view taken along line FF of the cell culture container shown in FIG. 7A.
  • FIG. 7C is a cross-sectional view taken along line GG of the cell culture container shown in FIG. 7A.
  • the bottom surface of the passage 12 is flat and is located inside the cell seeding region 20c provided side by side along the passage 12.
  • the ECM 41 is applied, and the ECM 41 is not applied outside the cell seeding region 20c.
  • the application method of the ECM 41 will be described.
  • Vitronectin XF manufactured by Stem cells technologies as ECM is dropped only inside the cell seeding region 20c on the bottom surface of the passage 12 using a droplet dropping device or the like. Thereafter, the dropped ECM 41 is dried. Thereby, the consumption amount of ECM is remarkably reduced, and the culture position of the cells can be effectively controlled inside the cell seeding region 20c.
  • the outer surface roughness of the cell seeding region 20c is larger than the inner surface roughness of the cell seeding region 20c.
  • the inner surface roughness of the cell seeding region 20c is Ra 0.2 or less
  • the outer surface roughness of the cell seeding region 20c is Ra 0.8 or less.
  • Such a difference in surface roughness can be realized, for example, by adjusting the surface roughness of a mold used at the time of injection molding of the container body 31c. The larger the surface roughness of the outside of the cell seeding region 20c, the more difficult the cells adhere to the outside of the cell seeding region 20c.
  • the ECM 41 is preliminarily applied to the cell seeding region 20c provided side by side along the passage 12 in the container body 31c before the flat plate 32 is pasted, and the cell seeding region 20c.
  • the ECM 41 is not applied to the outside of the substrate.
  • a flat plate 32 is attached to one surface of the container body 31c where the passage 12 is formed. Specifically, for example, after an adhesive (not shown) is applied to the outer portion of the passage 12, the flat plate 32 is placed on one surface of the container body 31c so as to cover the entire ceiling of the passage 12. And bonded by an adhesive. The adhesive is then solidified for 16 hours with a 40 ° C. dryer.
  • a 25 mL cell suspension in which cells 40 are dispersed (for example, iPS cells are dispersed) with a 1 mL air plug inserted into the inflow port 11.
  • the cell suspension is introduced from the inlet 11 into the passage 12 at a flow rate of 10 mL / min to 20 mL / min, for example.
  • the cells 40 in the cell suspension may be dispersed in the form of single cells or in the form of cell clumps (clamps).
  • the PBS in the passage 12 is swept away by the cell suspension and flows out from the outlet 13.
  • the traveling direction of each liquid molecule constituting the liquid in the passage 12 is parallel to the passage 12. That is, the occurrence of turbulent flow between the inlet 11 and the outlet 13 is suppressed. Thereby, the occurrence of unevenness in the cell density in the cell suspension is suppressed, and the cells 40 are controlled so as to drop to the bottom surface of the passage 12 at a practically uniform density.
  • the ECM 41 is applied to the inside of the cell seeding region 20c, but the ECM 41 is not applied to the outside of the cell seeding region 20c, so that cells adhere to the outside of the cell seeding region 20c. Is suppressed. Thereby, the cells 40 are effectively seeded inside the cell seeding region 20c. Specifically, for example, about 500 to 5000 cells 40 are seeded inside each cell seeding region 20c.
  • the cells 40 aggregated inside the cell seeding region 20c can be cultured on the spot using the ECM41 as a scaffold.
  • the cultured cells 40 are optically observed from the outside.
  • a medium for example, ReproFF2 manufactured by Reprocell
  • ReproFF2 manufactured by Reprocell
  • the old medium in the passage 12 is swept away by the new medium and flows out from the outlet 13.
  • the new culture medium and the old culture medium are not easily mixed, and the old culture medium is pushed out by the new culture medium so that the new culture medium does not continue to flow.
  • the old medium can be easily removed and the medium can be effectively replaced.
  • a medium for example, ReproFF2 manufactured by Reprocell
  • ReproFF2 manufactured by Reprocell
  • the cells 40 are cultured until 10,000 to 20000 cells per colony.
  • a release agent for example, TryLE Select manufactured by Life technologies
  • a release agent for example, TryLE Select manufactured by Life technologies
  • the old culture medium in the passage 12 is washed away by the release agent and flows out from the outlet 13.
  • the colonies of the cells 40 cultured on the bottom surface of the passage 12 are detached from the ECM 41 by the release agent.
  • a medium for example, ReproFF2 manufactured by Reprocell
  • ReproFF2 manufactured by Reprocell
  • the ECM 41 is not applied to the outside of the cell seeding region 20c, the consumption amount of ECM is remarkably reduced, and the culture position of the cells 40 is the cell seeding. It can be effectively controlled inside the region 20c.
  • the bottom surface of the passage 12 is flat, so that the visibility of the cells 40 being cultured is good.
  • FIG. 9 is a schematic plan view showing a cell culture vessel 10d according to the fourth embodiment of the present invention.
  • the passage 12 ′ has a portion 129a branched into a plurality (eight in the illustrated example) of passage components 121 to 128, and And a portion 129b where a plurality of passage components 121 to 128 merge.
  • the branching portion 129a and the joining portion 129b each have a tree shape as illustrated, that is, 2 n pieces by repeating two branches n times. It is preferable to have a shape that branches equally to the passage components.
  • the cell seeding region 20d of the present embodiment is provided on the bottom surface of each passage component 121-128 along the passage component 121-128.
  • FIGS. 1A to 1C Other configurations are substantially the same as those of the first embodiment shown in FIGS. 1A to 1C.
  • FIG. 9 the same parts as those of the first embodiment shown in FIGS. 1A to 1C are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the method of using the cell culture container 10d according to the fourth embodiment is substantially the same as the method of using the cell culture container 10a according to the first embodiment, and detailed description thereof is omitted.
  • the entire length of the passage 12 ' can be extended without increasing the size of the container body 31d.
  • the number of culture positions can be increased without increasing the width of the flow path 12 ′.
  • a larger number of cell masses can be cultured in one container at the same time.
  • a recess 21a is formed concentrically with the cell seeding region 20d on the bottom surface of the passage 12 ′, and the recess 21a has a pyramid shape or a cone shape. (In the illustrated example, it has a quadrangular pyramid shape), but is not limited thereto.
  • a recess is formed concentrically with the cell seeding region 20d on the bottom surface of the passage 12 ′, and the recess may have a flat bottom.
  • the bottom surface of the passage 12 ' is flat and ECM is applied to the inside of the cell seeding region 20d, but ECM is applied to the outside of the cell seeding region 20d. It does not have to be.

Landscapes

  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 容器本体と、前記容器本体の一面に貼り付けられた平板と、を備え、前記容器本体は、液体が流入される流入口と、前記流入口から流入した液体が通過する通路と、前記通路を通過した液体が流出される流出口と、を有し、前記通路の底面には、当該通路を通過する細胞が播種される複数の細胞播種領域が、当該通路に沿って並んで設けられていることを特徴とする細胞培養容器である。

Description

細胞培養容器
 本発明は、細胞培養容器に関する。
 近年、細胞培養により目的とする組織や臓器を人工的に作成する再生医療の研究開発が進められている。細胞の培養操作等を行うには所定の基準、例えばGMP(Good Manufacturing Practice)を充足した細胞培養施設が用いられる。
 従来、人工多能性幹細胞(以下、iPS細胞という)や胚性幹細胞(以下、ES細胞という)等の培養では、ディッシュやフラスコ等の開放系の培養容器が用いられ、人の手を介して行われるピペッティングにより当該容器内に細胞懸濁液や培地等の液体が導入され、または当該容器内から液体や細胞が回収されている。iPS細胞やES細胞等の培養においては、所定の大きさのコロニーを形成して培養を行う必要があり、培養により大きくなったコロニーはピペッティングにより細胞塊を適当な大きさに砕いて継代している。しかしながら、このような開放系の培養容器では、開蓋時に容器内の空間が外気と通じるため、細菌・ウィルス等の外界からのコンタミネーションのリスクがある。
 このような開放系の培養容器の欠点を補うものとして、閉鎖系の培養容器が知られている(例えば、米国特許第6479252号明細書、特開2010-11747号公報参照)。閉鎖系の培養容器には、例えば容器内部の空間に外部からアクセスするためのアクセスポートが設けられており、液体の注入または排出時に各アクセスポートにシリンジが挿し込まれることで、外界からのコンタミネーションのリスクが軽減されるようになっている。
 しかしながら、これらの閉鎖系の細胞培養容器では、密閉された容器内部の一面に形成された連続する培養面上に細胞が付着し培養が行われており、なおかつ、ピペッティング等によって細胞に直接アクセスすることができない。そのため、培養する細胞塊のサイズを均一にできず、また細胞の培養位置をコントロールすることができない。
 本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、複数の細胞塊を同時に培養するための閉鎖系の細胞培養容器であって、培養する細胞塊のサイズを均一にできると共に細胞の培養位置をコントロールできる細胞培養容器を提供することにある。
 本発明は、容器本体と、前記容器本体の一面に貼り付けられた平板と、を備え、前記容器本体は、液体が流入される流入口と、前記流入口から流入した液体が通過する通路と、前記通路を通過した液体が流出される流出口と、を有し、前記通路の底面には、当該通路を通過する細胞が播種される複数の細胞播種領域が、当該通路に沿って並んで設けられていることを特徴とする細胞培養容器である。
 好ましくは、前記細胞播種領域は、前記通路に沿って等間隔で設けられている。
 また、好ましくは、前記通路は、蛇行する部分を有する。
 また、好ましくは、前記通路は、複数の通路構成要素に分岐する部分と、当該複数の通路構成要素が合流する部分と、を有する。
 また、好ましくは、前記通路の底面には、前記細胞播種領域と同心状に窪みが凹設されている。
 この場合、更に好ましくは、前記窪みは、角錐状または円錐状を有する。
 あるいは、前記窪みは、平坦な底部を有してもよい。
 また、前記通路の底面に前記窪みが凹設されている場合、好ましくは、前記平板のうち前記窪みと向かい合う部分には、細胞外マトリックス(ECM)が塗布されている。
 あるいは、前記窪みが平坦な底部を有する場合、前記窪みの内側には、細胞外マトリックス(ECM)が塗布されており、前記窪みの外側には、細胞外マトリックス(ECM)が塗布されていなくてもよい。
 あるいは、前記通路の底面は、平坦であり、前記細胞播種領域の内側には、細胞外マトリックス(ECM)が塗布されており、前記細胞播種領域の外側には、細胞外マトリックス(ECM)が塗布されていなくてもよい。
 また、好ましくは、前記細胞播種領域の外側の表面粗さは、前記細胞播種領域の内側の表面粗さより大きい。
 また、好ましくは、前記通路の底面及び前記平板は、光透過性を有する。
 また、好ましくは、前記平板は、ガス透過性を有する。
図1Aは、本発明の第1の実施の形態による細胞培養容器を示す概略平面図である。 図1Bは、図1Aに示す細胞培養容器のA-A線に沿った断面図である。 図1Cは、図1Aに示す細胞培養容器のB-B線に沿った断面図である。 図2Aは、本発明の第1の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図2Bは、本発明の第1の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図2Cは、本発明の第1の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図2Dは、本発明の第1の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図2Eは、本発明の第1の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図3Aは、本発明の第2の実施の形態による細胞培養容器を示す概略平面図である。 図3Bは、図3Aに示す細胞培養容器のC-C線に沿った断面図である。 図3Cは、図3Aに示す細胞培養容器のD-D線に沿った断面図である。 図4は、図3Cに示す細胞培養容器の符号Eが付された一点鎖線で囲まれた部分を拡大して示す概略図である。 図5Aは、本発明の第2の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図5Bは、本発明の第2の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図5Cは、本発明の第2の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図5Dは、本発明の第2の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図5Eは、本発明の第2の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図6Aは、本発明の第2の実施の形態による細胞培養容器の使用方法の別例を説明するための概略図である。 図6Bは、本発明の第2の実施の形態による細胞培養容器の使用方法の別例を説明するための概略図である。 図6Cは、本発明の第2の実施の形態による細胞培養容器の使用方法の別例を説明するための概略図である。 図7Aは、本発明の第3の実施の形態による細胞培養容器を示す概略平面図である。 図7Bは、図7Aに示す細胞培養容器のF-F線に沿った断面図である。 図7Cは、図7Aに示す細胞培養容器のG-G線に沿った断面図である。 図8Aは、本発明の第3の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図8Bは、本発明の第3の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図8Cは、本発明の第3の実施の形態による細胞培養容器の使用方法の一例を説明するための概略図である。 図9は、本発明の第4の実施の形態による細胞培養容器を示す概略平面図である。
 以下に、添付の図面を参照して、本発明の実施の形態を詳細に説明する。なお、本明細書に添付する図面においては、図示の理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。
(第1の実施の形態)
 図1Aは、本発明の第1実施の形態による細胞培養容器を示す概略平面図である。図1Bは、図1Aに示す細胞培養容器のA-A線に沿った断面図である。図1Cは、図1Aに示す細胞培養容器のB-B線に沿った断面図である。
 本実施の形態の細胞培養容器10aは、iPS細胞、ES細胞等の多能性幹細胞、骨髄間質細胞(MSC)等の軟骨細胞、樹状細胞等の様々な接着性(付着性)細胞を培養する用途に用いることができる。本実施の形態では、以下、iPS細胞を培養する用途を主に想定して説明するが、これはあくまでも一例である。
 図1A~図1Cに示すように、本実施の形態による細胞培養容器10aは、容器本体31aと、容器本体31aの一面に貼り付けられた平板32と、を備えている。容器本体31a及び平板32の材質としては、光透過性を有する樹脂が用いられ、例えばポリスチレンが用いられる。容器本体31a及び平板32が光透過性を有することにより、培養中の細胞を外部から光学的に観察することが容易である。
 本実施の形態では、図1Aに示すように、容器本体31aは、平面視略長方形状を有している。容器本体31aの寸法は、具体的には、例えば縦130mm、横85mm、高さ10mmである。
 図1Aに示すように、容器本体31aは、液体(細胞が分散された液体、培養液、剥離剤、リン酸緩衝生理食塩水(PBS)など)が流入される流入口11と、流入口11から流入した液体が通過する通路12と、通路12を通過した液体が流出される流出口13と、を有している。流入口11と通路12と流出口13とは、例えば射出成形により一体に形成されている。
 図1B及び図1Cに示すように、容器本体31aの通路12は、容器本体31aの平板32が貼り付けられた一面側に溝状に形成されている。通路12の口径(すなわち溝の深さ及び幅)は、2mm以上であることが好ましい。iPS細胞のコロニーの成長限界サイズが2mm~3mmであり、通路12の口径が2mmより小さい場合、iPS細胞のコロニーの成長が通路12によって制限されてしまう。また、通路12の口径は、4mm以下であることが好ましい。通路12の口径が4mmより大きい場合、液体の流れの向きが通路12によって制限される効果が弱まり、乱流が発生しやすくなる。通路12の口径は、2mm~4mmであることがより好ましい。
 また、図1Aに示すように、容器本体31aの通路12は、平面視において蛇行する部分、すなわち直線部と折り返し部とが交互に接続された部分を有している。これにより、容器本体31aを大型化させることなく、通路12の全長を延伸することができる。通路12の幅と高さと通路長さとの比(アスペクト比)は、例えば幅:高さ:通路長さ=3:4:60~1800である。
 図1Aに示すように、通路12の底面には、通路12を通過する細胞が播種される複数の細胞播種領域20aが、当該通路12に沿って並んで設けられている。前述したようにiPS細胞のコロニーの成長限界サイズは2mm~3mmであることから、細胞播種領域20aのピッチ(中心間隔)は、コロニー端が重なり合わない範囲で成長限界サイズに応じて2mm~3mmの範囲に設定するのが好ましい。これにより、隣り合うコロニー端が結合することなく、かつ、広い播種面積を確保することができる。また、隣り合う2つの細胞播種領域20a間には最低限の境界があれば良く、隣り合う2つの細胞播種領域20aの縁の間隔は、例えば2mm以下である。
 図示されていないが、細胞播種領域20aの外側の表面粗さは、細胞播種領域20aの内側の表面粗さより大きいことが好ましい。例えば、細胞播種領域20aの内側の表面粗さは、Ra0.2以下であり、細胞播種領域20aの外側の表面粗さは、Ra0.8以下である。ここで、「Ra」は、算術平均粗さであることを示し、JIS B0601の規定による。このような表面粗さの違いは、例えば容器本体31aの射出成形時に使用される金型の表面粗さを調整することにより実現され得る。細胞播種領域20aの外側の表面粗さが大きいほど、細胞播種領域20aの外側に細胞が付着しにくい。
 本実施の形態では、図1B及び図1Cに示すように、通路12の底面には、前記細胞播種領域20aと同心状に窪み21が凹設されている。図示された例では、窪み21は、四角錐状を有しているが、これに限定されず、n角錐状(nは3または5以上の自然数)または円錐状を有していてもよい。
 窪み21の頂角は、90°以下であることが好ましい。窪み21の頂角が90°より大きい場合、窪み21の斜面を細胞が滑り落ちにくい。また、窪み21の頂角は、30°以上であることが好ましい。窪み21の頂角が30°より小さい場合、後述するように容器が反転される際に、窪み21の内側から細胞が落下しにくい。窪み21の頂角は、30°~90°であることがより好ましい。
 容器本体31aの流入口11及び流出口13は、容器本体31aの同一側面に設けられている。流入口11は通路12の一端に連通され、流出口13は通路12の他端に連通されている。図示されていないが、流入口11及び流出口13には、シリンジの先端を挿入可能なスリット付のゴム栓、注射針を刺すことが可能な弾性膜、またはルアーロック等の医療用に使用されている開閉弁を具備する構造が設けられている。これにより、液体の注入時及び回収時において、外界からのコンタミネーションのリスクが軽減され得る。
 本実施の形態の平板32は、適度なガス透過性を有するように薄く形成されている。平板32の厚みは、例えば50μm~200μmである。これにより、培養中の細胞に酸素ガス等のガスを供給することが容易である。なお、嫌気性の細胞を培養する場合には、平板32は、ガス不透過性を有することが好ましく、この場合、平板32の厚みは、例えば2000μm~3000μmである。
 平板32は、容器本体31aの通路12が形成された一面上に、通路12の天井全体を覆うように対向して配置され、通路12の外側の部分(すなわち通路12を規定する壁部の先端部分)に貼り付けられて固定支持されている。本実施の形態では、平板32は通路12の外側の部分に接着剤により接着されているが、固定方法は接着剤に限定されず、例えば熱融着または超音波融着であってもよい。平板32が通路12の外側の部分によって固定支持されていることで、平板32の湾曲が抑制され得る。
 次に、図2A~図2Eを参照し、本実施の形態による細胞培養容器10aの使用方法の一例について説明する。
 まず、図2Aに示すように、平板32が貼り付けられる前の容器本体31aの通路12が形成された面が、Oプラズマ処理される。具体的には、例えば、40mL/minの流量のOガスが27kWの電力によってプラズマ化され、当該Oプラズマに容器本体31aの通路12が形成された面が5分間曝される。
 次に、容器本体31aの通路12に細胞非接着コーティング液が塗布される。具体的には、例えば、通路12内に10mLの細胞非接着コーティング液が流入され、37℃で2時間静置される。その後、通路12から細胞非接着コーティング液が流出され、通路12が滅菌水により洗浄される。
 次に、図2Bに示すように、容器本体31aの通路12が形成された一面に、平板32が貼り付けられる。具体的には、例えば、通路12の外側の部分に接着剤(不図示)が塗布された後、平板32が容器本体31aの一面上に、通路12の天井全体を覆うように対向して載置され、接着剤により接着される。次いで、接着剤が40℃の乾燥機により16時間固化される。
 次に、流入口11から通路12にPBSが流入され、通路12がPBSにより満たされる。これにより、通路12から気泡が除かれる。その後、細胞培養容器10aは、容器本体31aが平板32より下方に位置する姿勢のまま静置される。
 次に、図2Cに示すように、平板32のうち窪み21と向かい合う部分に細胞外マトリックス(Extracellular Matrix、以下ECMという)41が塗布される。具体的には、例えば、流入口11に1mLのエアプラグが挿入された状態で、流入口11から通路12に25mLのECM(例えば、Stem cell technologies社製Vitronectin XF)が流入される。通路12内のPBSは、ECMにより押し流されて流出口13から流出される。この状態で、1時間静置される。これにより、通路12の細胞非接着コーティング液が塗布されていない部分、すなわち平板32のうち通路12の天井面に対応する領域全体に、ECM41が付着される。
 次に、細胞播種工程として、図2Dに示すように、流入口11に1mLのエアプラグが挿入された状態で、細胞40が分散された25mLの細胞懸濁液(例えば、iPS細胞が分散された細胞懸濁液)が流入口11から通路12に、例えば10mL/min~20mL/minの流量で流入される。細胞懸濁液中の細胞40は、単細胞の形態で分散されていてもよいし、細胞塊(クランプ)の形態で分散されていてもよい。平板32に付着しなかったECMは、細胞懸濁液により押し流されて流出口13から流出される。
 本実施の形態では、流入口11から流出口13までの液体の流れの向きが通路12によって制限されるため、通路12内において液体を構成する各液体分子の移動方向が通路12と平行な向きに揃えられ、すなわち流入口11と流出口13との間における乱流の発生が抑制される。これにより、細胞懸濁液中の細胞密度にムラが生じることが抑制され、細胞40は通路12の底面に実用上均一な密度で落下(沈殿)するように制御される。
 また、本実施の形態では、細胞播種領域20aの外側の表面粗さが相対的に大きいため、細胞播種領域20aの外側に細胞が付着することが抑制される。
 次に、細胞培養容器10a全体に振動(例えば、周波数180Hz)が30分間加えられる。これにより、通路12の底面のうち窪み21の外側に落下した細胞40が窪み21の内側に誘導され、すなわち、細胞播種領域20aの内側に効果的に細胞40が凝集される。更に、本実施の形態の窪み21は、角錐状または円錐状を有しているため、窪み21の内側に落下した細胞40は、角錐状または円錐状の窪み21の斜面に沿って滑り落ちる。これにより、細胞40は、窪み21の頂部を中心として高密度に凝集され得る。具体的には、例えば、各窪み21の内側に約100個~1000個ずつ細胞40が凝集される。
 次に、静置された後で、図2Eに示すように、細胞培養容器10aが上下反転される。これにより、窪み21の内側に凝集された細胞40が、平板32のうち窪み21と向かい合う部分に落下する。
 平板32のうち窪み21と向かい合う部分にはECM41が塗布されているため、平板32上に落下した細胞40は、ECM41を足場としてその場で培養され得る。
 次に、48時間静置された後で、培養細胞40が外部から光学的に観察される。
 次に、培地交換工程として、流入口11から通路12に培地(例えば、Reprocell社製ReproFF2)が、例えば10mL/min~20mL/minの流量で流入される。通路12内の古い培地は、新しい培地により押し流されて流出口13から流出される。本実施の形態では、通路12内において通路12に沿った流れが形成されるため、新しい培地と古い培地とが混ざりにくく、古い培地が新しい培地によって押し出されることで、新しい培地を流し続けなくても古い培地を容易に有効に交換できる。
 次に、更に48時間静置された後で、培養細胞40が外部から光学的に観察される。
 次に、培地交換工程として、流入口11から通路12に培地(例えば、Reprocell社製ReproFF2)が、例えば10mL/min~20mL/minの流量で流入される。通路12内の古い培地は、新しい培地により押し流されて流出口13から流出される。
 その後、更に48時間静置される。このようにして、細胞40は、1コロニーあたり3000個~20000個になるまで培養される。
 次に、細胞回収工程として、流入口11から通路12に剥離剤(例えば、Life technologies社製TrypLE Select)が、例えば10mL/min~20mL/minの流量で流入される。通路12内の古い培地は、剥離剤により押し流されて流出口13から流出される。平板32上で培養された細胞40のコロニーは、剥離剤によりECM41から剥離される。
 その後、流入口11から通路12に培地(例えば、Reprocell社製ReproFF2)が、例えば10mL/min~20mL/minの流量で流入される。ECM41から剥離された培養細胞40のコロニーは、新しい培地により押し流されて流出口13から流出(回収)される。本実施の形態では、通路12内において通路12に沿った流れが形成されるため、通路12の底面にずり応力が均一にかかる。これにより、培養細胞40の取りこぼしが低減する。
 以上のような本実施の形態によれば、通路12を通過する液体中の細胞40が、通路12に沿って並んで設けられた複数の細胞播種領域20aの内側に播種されるため、培養する細胞塊のサイズを均一にできると共に、各細胞播種領域20aに対応する所定の位置に培養位置をコントロールすることができる。
 また、本実施の形態によれば、流入口11から流出口13までの液体の流れの向きが通路12によって制限されるため、通路12内において液体を構成する各液体分子の進行方向が通路12と平行な向きに揃えられ、すなわち流入口11と流出口13との間における乱流の発生が抑制される。これにより、細胞播種時に液体中の細胞密度にムラが生じることが抑制され、播種する細胞塊のサイズが均一になる。また、培地交換時に新しい培地と古い培地とが混ざりにくく、古い培地が新しい培地によって押し出されることで、新しい培地を流し続けなくても古い培地を容易に出し切ることができ、培地を有効に交換できる(すなわち、液交換時のロスがない)。また、細胞回収時に通路12の底面にずり応力が均一にかかるため、培養細胞40の取りこぼしが低減する。
 また、本実施の形態によれば、細胞播種領域20aが通路12に沿って等間隔で設けられているため、細胞40の培養位置を通路12に沿って等間隔になるようにコントロールすることができる。これにより、培養中の細胞密度が通路12に沿って均等となり、培養細胞40の品質管理が容易となる。
 また、本実施の形態によれば、通路12が蛇行する部分を有するため、容器本体31aを大型化させることなく、通路12の全長を延伸することができる。これにより、流路12の幅を広げることなく培養位置の数を増やすことができ、結果的に、より多くの細胞塊を同時に1つの容器10aで培養することが可能である。
 また、本実施の形態によれば、通路12の底面には、細胞播種領域20aと同心状に窪み21が凹設されているため、容器10aが振動されることで、窪み21の外側に落下した細胞40が窪み21の内側に誘導され、すなわち、細胞播種領域20aの内側に効果的に細胞40が播種され得る。
 また、本実施の形態によれば、細胞播種領域20aの外側の表面粗さが細胞播種領域20aの内側の表面粗さより大きいことにより、細胞播種領域20aの外側に細胞が付着することが抑制される。これにより、液体中の細胞は、細胞播種領域20aの内側に一層効率的に播種され得る。
 また、本実施の形態によれば、窪み21が角錐状または円錐状を有するため、角錐状または円錐状の窪み21の斜面に沿って細胞40が滑り落ちる。これにより、窪み21の頂部を中心として細胞40が高密度に凝集され得る。
 また、本実施の形態によれば、平板32のうち窪み21と向かい合う部分にECM41が塗布されている。容器10aが上下反転されることで、各窪み21の内側に凝集された細胞40が、ECM41が塗布された部分に落下される。これにより、その場で細胞40の培養を行うことができる。
(第2の実施の形態)
 次に、図3A~図3Cを参照して、本発明の第2の実施の形態について説明する。
 図3Aは、本発明の第2の実施の形態による細胞培養容器10bを示す概略平面図である。図3Bは、図3Aに示す細胞培養容器のC-C線に沿った断面図である。図3Cは、図3Aに示す細胞培養容器のD-D線に沿った断面図である。
 図3A~図3Cに示すように、第2の実施の形態による細胞培養容器10bでは、通路12の底面には、細胞播種領域20bと同心状に窪み22が凹設されており、当該窪み22は、平坦な底部を有している。
 図示された例では、窪み22は平面視円形状を有しているが、これに限定されず、例えば平面視楕円形状や平面視多角形形状であってもよい。窪み22の深さは、例えば、0.1mm~1.0mmである。
 窪み22の底部の厚みは、0.05mm~0.3mmであることが好ましい。本件発明者が硬度A30のシリコーンゴム膜を使用して実際に検証した結果、窪み22の底部が0.05mmより薄い場合、強度不足のために破れ易く、液漏れが生じるおそれがある。
 図4は、図3Cに示す細胞培養容器10bの符号Eが付された一点鎖線で囲まれた部分を拡大して示す概略図である。
 図4に示すように、本実施の形態では、細胞播種領域20b(窪み22)の外側の表面粗さは、細胞播種領域20b(窪み22)の内側の表面粗さより大きい。例えば、細胞播種領域20bの内側の表面粗さは、Ra0.2以下であり、細胞播種領域20bの外側の表面粗さは、Ra0.8以下である。このような表面粗さの違いは、例えば容器本体31bの射出成形時に使用される金型の表面粗さを調整することで実現されている。細胞播種領域20b(窪み22)の外側の表面粗さが大きいほど、細胞播種領域20b(窪み22)の外側に細胞が付着しにくい。
 その他の構成は図1A~図1Cに示す第1の実施の形態と略同様である。図3A~図3C、及び、図4において、図1A~図1Cに示す第1の実施の形態と同一の部分には同一の符号を付して詳細な説明は省略する。
 次に、図5A~図5Eを参照し、第2の実施の形態による細胞培養容器10bの使用方法の一例について説明する。
 まず、図5Aに示すように、平板32が貼り付けられる前の容器本体31bの通路12が形成された面が、Oプラズマ処理される。具体的には、例えば、40mL/minの流量のOガスが27kWの電力によってプラズマ化され、当該Oプラズマに容器本体31bの通路12が形成された面が5分間曝される。
 次に、容器本体31bの通路12に細胞非接着コーティング液が塗布される。具体的には、例えば、通路12内に10mLの細胞非接着コーティング液が流入され、37℃で2時間静置される。その後、通路12から細胞非接着コーティング液が流出され、通路12が滅菌水により洗浄される。
 次に、図5Bに示すように、容器本体31bの通路12が形成された一面に、平板32が貼り付けられる。具体的には、例えば、通路12の外側の部分に接着剤(不図示)が塗布された後、平板32が容器本体31bの一面上に、通路12の天井全体を覆うように対向して載置され、接着剤により接着される。次いで、接着剤が40℃の乾燥機により16時間固化される。
 次に、流入口11から通路12にPBSが流入され、通路12がPBSにより満たされる。これにより、通路12から気泡が除かれる。その後、細胞培養容器10bは、容器本体31bが平板32より下方に位置する姿勢のまま静置される。
 次に、図5Cに示すように、平板32のうち窪み22と向かい合う部分にECM41が塗布される。具体的には、例えば、流入口11に1mLのエアプラグが挿入された状態で、流入口11から通路12に25mLのECM(例えば、Stem cell technologies社製Vitronectin XF)が流入される。通路12内のPBSは、ECMにより押し流されて流出口13から流出される。この状態で、1時間静置される。これにより、通路12の細胞非接着コーティング液が塗布されていない部分、すなわち平板32のうち通路12の天井面に対応する領域全体に、ECM41が付着される。
 次に、細胞播種工程として、図5Dに示すように、流入口11に1mLのエアプラグが挿入された状態で、細胞40が分散された25mLの細胞懸濁液(例えば、iPS細胞が分散された細胞懸濁液)が流入口11から通路12に、例えば10mL/min~20mL/minの流量で流入される。細胞懸濁液中の細胞40は、単細胞の形態で分散されていてもよいし、細胞塊(クランプ)の形態で分散されていてもよい。平板32に付着しなかったECMは、細胞懸濁液により押し流されて流出口13から流出される。
 本実施の形態では、流入口11から流出口13までの液体の流れの向きが通路12によって制限されるため、通路12内において液体を構成する各液体分子の進行方向が通路12と平行な向きに揃えられ、すなわち流入口11と流出口13との間における乱流の発生が抑制される。これにより、細胞懸濁液中の細胞密度にムラが生じることが抑制され、細胞40は通路12の底面に実用上均一な密度で落下するように制御される。
 また、本実施の形態では、細胞播種領域20bの外側の表面粗さが相対的に大きいため、細胞播種領域20bの外側に細胞が付着することが抑制される。
 次に、細胞培養容器10b全体に振動(例えば、周波数180Hz)が30分間加えられる。これにより、通路12の底面のうち窪み22の外側に落下した細胞40が窪み22の内側に誘導され、すなわち、細胞播種領域20bの内側に効果的に細胞40が播種される。具体的には、例えば、各窪み22の内側に約500個~5000個ずつ細胞40が播種される。
 ここで、細胞培養容器10b全体に振動が加えられる代わりに、または、細胞培養容器10b全体に振動が加えられることに加えて、細胞培養容器10bの一方側(例えば、図3Aにおける右側)が他方側(図3Aにおける左側)より低くなるように、細胞培養容器10b全体が傾斜されてもよい。この場合、通路12の底面に落下した細胞40は、傾斜に沿って前記一方側に滑り落ちることで、窪み22の内側のうち前記一方側(右側)の縁に高密度に凝集され得る。
 次に、静置された後で、図5Eに示すように、細胞培養容器10bが上下反転される。これにより、窪み22の内側に凝集された細胞40が、平板32のうち窪み22と向かい合う部分に落下する。
 平板32のうち窪み22と向かい合う部分にはECM41が塗布されているため、平板32上に落下した細胞40は、ECM41を足場としてその場で培養され得る。
 次に、48時間静置された後で、培養細胞40が外部から光学的に観察される。
 次に、培地交換工程として、流入口11から通路12に培地(例えば、Reprocell社製ReproFF2)が、例えば10mL/min~20mL/minの流量で流入される。通路12内の古い培地は、新しい培地により押し流されて流出口13から流出される。本実施の形態では、通路12内において通路12に沿った流れが形成されるため、新しい培地と古い培地とが混ざりにくく、古い培地が新しい培地によって押し出されることで、新しい培地を流し続けなくても古い培地を容易に有効に交換できる。
 次に、更に48時間静置された後で、培養細胞40が外部から光学的に観察される。
 次に、培地交換工程として、流入口11から通路12に培地(例えば、Reprocell社製ReproFF2)が、例えば10mL/min~20mL/minの流量で流入される。通路12内の古い培地は、新しい培地により押し流されて流出口13から流出される。
 その後、更に48時間静置される。このようにして、細胞40は、1コロニーあたり3000個~20000個になるまで培養される。
 次に、細胞回収工程として、流入口11から通路12に剥離剤(例えば、Life technologies社製TrypLE Select)が、例えば10mL/min~20mL/minの流量で流入される。通路12内の古い培地は、剥離剤により押し流されて流出口13から流出される。平板32上で培養された細胞40のコロニーは、剥離剤によりECM41から剥離される。
 その後、流入口11から通路12に培地(例えば、Reprocell社製ReproFF2)が、例えば10mL/min~20mL/minの流量で流入される。ECM41から剥離された培養細胞40のコロニーは、新しい培地により押し流されて流出口13から流出(回収)される。本実施の形態では、通路12内において通路12に沿った流れが形成されるため、通路12の底面にずり応力が均一にかかる。これにより、培養細胞40の取りこぼしが低減する。
 次に、図6A~図6Cを参照し、第2の実施の形態による細胞培養容器10bの使用方法の別例について説明する。
 まず、図6Aに示すように、平板32が貼り付けられる前の容器本体31bのうち、窪み22の内側にはECM41が塗布されるが、窪み22の外側にはECM41が塗布されない。具体的には、例えば、ECMとしてStem cell technologies社製Vitronectin XFが、液滴滴下装置等を用いて容器本体31aの窪み22の内側にのみ滴下される。その後、滴下されたECM41が乾燥される。これにより、ECM41の消費量が顕著に低減される(例えば、消費量は1mL以下で済む)。
 次に、図6Bに示すように、容器本体31bの通路12が形成された一面に、平板32が貼り付けられる。具体的には、例えば、通路12の外側の部分に接着剤(不図示)が塗布された後、平板32が容器本体31bの一面上に、通路12の天井全体を覆うように対向して載置され、接着剤により接着される。次いで、接着剤が40℃の乾燥機により16時間固化される。
 次に、流入口11から通路12にPBSが流入され、通路12がPBSにより満たされる。これにより、通路12から気泡が除かれる。その後、細胞培養容器10bは、容器本体31bが平板32より下方に位置する姿勢のまま静置される。
 次に、細胞播種工程として、図6Cに示すように、流入口11に1mLのエアプラグが挿入された状態で、細胞40が分散された25mLの細胞懸濁液(例えば、iPS細胞が分散された細胞懸濁液)が流入口11から通路12に、例えば10mL/min~20mL/minの流量で流入される。細胞懸濁液中の細胞40は、単細胞の形態で分散されていてもよいし、細胞塊(クランプ)の形態で分散されていてもよい。通路12内のPBSは、細胞懸濁液により押し流されて流出口13から流出される。
 本実施の形態では、流入口11から流出口13までの液体の流れの向きが通路12によって制限されるため、通路12内において液体を構成する各液体分子の進行方向が通路12と平行な向きに揃えられ、すなわち流入口11と流出口13との間における乱流の発生が抑制される。これにより、細胞懸濁液中の細胞密度にムラが生じることが抑制され、細胞40は通路12の底面に実用上均一な密度で落下するように制御される。
 また、本実施の形態では、細胞播種領域20bの外側の表面粗さが相対的に大きいため、細胞播種領域20bの外側に細胞が付着することが抑制される。
 次に、細胞培養容器10b全体に振動(例えば、周波数180Hz)が30分間加えられる。これにより、通路12の底面のうち窪み21の外側に落下した細胞40が窪み21の内側に誘導され、すなわち、細胞播種領域20bの内側に効果的に細胞40が播種される。具体的には、例えば、各窪み22の内側に約500個~1000個ずつ細胞40が播種される。
 ここで、細胞培養容器10b全体に振動が加えられる代わりに、または、細胞培養容器10b全体に振動が加えられることに加えて、細胞培養容器10bの一方側(例えば、図3Aにおける右側)が他方側(図3Aにおける左側)より低くなるように、細胞培養容器10b全体が傾斜されてもよい。この場合、通路12の底面に落下した細胞40は、傾斜に沿って前記一方側に滑り落ちることで、窪み22の内側のうち前記一方側(右側)の縁に高密度に凝集され得る。
 図6Cに示すように、窪み22の内側にはECM41が塗布されているため、窪み22の内側に播種された細胞40は、ECM41を足場としてその場で培養され得る。
 次に、48時間静置された後で、培養細胞が光学的に観察される。
 次に、培地交換工程として、流入口11から通路12に培地(例えば、Reprocell社製ReproFF2)が、例えば10mL/min~20mL/minの流量で流入される。通路12内の古い培地は、新しい培地により押し流されて流出口13から流出される。本実施の形態では、通路12内において通路12に沿った流れが形成されるため、新しい培地と古い培地とが混ざりにくく、古い培地が新しい培地によって押し出されることで、新しい培地を流し続けなくても古い培地を容易に出し切ることができ、培地を有効に交換できる。
 次に、更に48時間静置された後で、培養細胞が光学的に観察される。
 次に、培地交換工程として、流入口11から通路12に培地(例えば、Reprocell社製ReproFF2)が、例えば10mL/min~20mL/minの流量で流入される。通路12内の古い培地は、新しい培地により押し流されて流出口13から流出される。
 その後、更に48時間静置される。細胞40は、1コロニーあたり10000個~20000個になるまで培養される。
 次に、細胞回収工程として、流入口11から通路12に剥離剤(例えば、Life technologies社製TrypLE Select)が、例えば10mL/min~20mL/minの流量で流入される。通路12内の古い培地は、剥離剤により押し流されて流出口13から流出される。各窪み22において培養された細胞40のコロニーは、剥離剤によりECM41から剥離される。
 その後、流入口11から通路12に培地(例えば、Reprocell社製ReproFF2)が、例えば10mL/min~20mL/minの流量で流入される。ECM41から剥離された細胞40のコロニーは、新しい培地により押し流されて流出口13から流出(回収)される。本実施の形態では、通路12内において通路12に沿った流れが形成されるため、通路12の底面にずり応力が均一にかかる。これにより、培養細胞40の取りこぼしが低減する。
 以上のような第2の実施の形態によれば、図6A~図6Cに示すように、窪み22の内側にはECM41が塗布されているが、窪み22の外側にはECM41が塗布されていない場合、窪み22の内側に細胞が播種された後、容器を上下反転させることなく、その場で培養を行うことができる。また、窪み22の外側にはECM41が塗布されていないため、ECMの消費量が顕著に低減されると共に、細胞40の培養位置が窪み22の内側に効果的にコントロールされ得る。
(第3の実施の形態)
 次に、図7A~図7Cを参照して、本発明の第3の実施の形態について説明する。
 図7Aは、本発明の第3の実施の形態による細胞培養容器10cを示す概略平面図である。図7Bは、図7Aに示す細胞培養容器のF-F線に沿った断面図である。図7Cは、図7Aに示す細胞培養容器のG-G線に沿った断面図である。
 図7A~図7Cに示すように、第3の実施の形態による細胞培養容器10cでは、通路12の底面は、平坦であり、通路12に沿って並んで設けられた細胞播種領域20cの内側には、ECM41が塗布されており、細胞播種領域20cの外側には、ECM41が塗布されていない。ECM41の塗布方法について説明すると、例えば、ECMとしてStem cell technologies社製Vitronectin XFが、液滴滴下装置等を用いて通路12の底面の細胞播種領域20cの内側にのみ滴下される。その後、滴下されたECM41が乾燥される。これにより、ECMの消費量が顕著に低減されると共に、細胞の培養位置が細胞播種領域20cの内側に効果的にコントロールされ得る。
 図示されていないが、細胞播種領域20cの外側の表面粗さは、細胞播種領域20cの内側の表面粗さより大きいことが好ましい。例えば、細胞播種領域20cの内側の表面粗さは、Ra0.2以下であり、細胞播種領域20cの外側の表面粗さは、Ra0.8以下である。このような表面粗さの違いは、例えば容器本体31cの射出成形時に使用される金型の表面粗さを調整することにより実現され得る。細胞播種領域20cの外側の表面粗さが大きいほど、細胞播種領域20cの外側に細胞が付着しにくい。
 その他の構成は図3A~図3Cに示す第2の実施の形態と略同様である。図7A~図7Cにおいて、図3A~図3Cに示す第2の実施の形態と同一の部分には同一の符号を付して詳細な説明は省略する。
 次に、図8A~図8Cを参照し、第3の実施の形態による細胞培養容器10cの使用方法の一例について説明する。
 図8Aに示すように、平板32が貼り付けられる前の容器本体31cのうち、通路12に沿って並んで設けられた細胞播種領域20cには、ECM41が予め塗布されており、細胞播種領域20cの外側には、ECM41が塗布されていない。
 まず、図8Bに示すように、容器本体31cの通路12が形成された一面に、平板32が貼り付けられる。具体的には、例えば、通路12の外側の部分に接着剤(不図示)が塗布された後、平板32が容器本体31cの一面上に、通路12の天井全体を覆うように対向して載置され、接着剤により接着される。次いで、接着剤が40℃の乾燥機により16時間固化される。
 次に、流入口11から通路12にPBSが流入され、通路12がPBSにより満たされる。これにより、通路12から気泡が除かれる。その後、細胞培養容器10cは、容器本体31cが平板32より下方に位置する姿勢のまま静置される。
 次に、細胞播種工程として、図8Cに示すように、流入口11に1mLのエアプラグが挿入された状態で、細胞40が分散された25mLの細胞懸濁液(例えば、iPS細胞が分散された細胞懸濁液)が流入口11から通路12に、例えば10mL/min~20mL/minの流量で流入される。細胞懸濁液中の細胞40は、単細胞の形態で分散されていてもよいし、細胞塊(クランプ)の形態で分散されていてもよい。通路12内のPBSは、細胞懸濁液により押し流されて流出口13から流出される。
 本実施の形態では、流入口11から流出口13までの液体の流れの向きが通路12によって制限されるため、通路12内において液体を構成する各液体分子の進行方向が通路12と平行な向きに揃えられ、すなわち流入口11と流出口13との間における乱流の発生が抑制される。これにより、細胞懸濁液中の細胞密度にムラが生じることが抑制され、細胞40は通路12の底面に実用上均一な密度で落下するように制御される。
 本実施の形態では、細胞播種領域20cの内側にはECM41が塗布されているが、細胞播種領域20cの外側にはECM41が塗布されていないため、細胞播種領域20cの外側に細胞が付着することが抑制される。これにより、細胞40は細胞播種領域20cの内側に効果的に播種される。具体的には、例えば、各細胞播種領域20cの内側に約500個~5000個ずつ細胞40が播種される。
 細胞播種領域20cの内側にはECM41が塗布されているため、細胞播種領域20cの内側に凝集された細胞40は、ECM41を足場としてその場で培養され得る。
 次に、48時間静置された後で、培養細胞40が外部から光学的に観察される。
 次に、培地交換工程として、流入口11から通路12に培地(例えば、Reprocell社製ReproFF2)が、例えば10mL/min~20mL/minの流量で流入される。通路12内の古い培地は、新しい培地により押し流されて流出口13から流出される。本実施の形態では、通路12内において通路12に沿った流れが形成されるため、新しい培地と古い培地とが混ざりにくく、古い培地が新しい培地によって押し出されることで、新しい培地を流し続けなくても古い培地を容易に出し切ることができ、培地を有効に交換できる。
 次に、更に48時間静置された後で、培養細胞40が外部から光学的に観察される。
 次に、培地交換工程として、流入口11から通路12に培地(例えば、Reprocell社製ReproFF2)が、例えば10mL/min~20mL/minの流量で流入される。通路12内の古い培地は、新しい培地により押し流されて流出口13から流出される。
 その後、更に48時間静置される。このようにして、細胞40は、1コロニーあたり10000個~20000個になるまで培養される。
 次に、細胞回収工程として、流入口11から通路12に剥離剤(例えば、Life technologies社製TrypLE Select)が、例えば10mL/min~20mL/minの流量で流入される。通路12内の古い培地は、剥離剤により押し流されて流出口13から流出される。通路12の底面において培養された細胞40のコロニーは、剥離剤によりECM41から剥離される。
 その後、流入口11から通路12に培地(例えば、Reprocell社製ReproFF2)が、例えば10mL/min~20mL/minの流量で流入される。ECM41から剥離された細胞40のコロニーは、新しい培地により押し流されて流出口13から流出(回収)される。本実施の形態では、通路12内において通路12に沿った流れが形成されるため、通路12の底面にずり応力が均一にかかる。これにより、培養細胞40の取りこぼしが低減する。
 以上のような第3の実施の形態によれば、細胞播種領域20cの外側にはECM41が塗布されていないため、ECMの消費量が顕著に低減されると共に、細胞40の培養位置が細胞播種領域20cの内側に効果的にコントロールされ得る。
 また、本実施の形態によれば、通路12の底面が平坦であるため、培養中の細胞40の視認性がよい。
(第4の実施の形態)
 次に、図9を参照して、本発明の第4の実施の形態について説明する。
 図9は、本発明の第4の実施の形態による細胞培養容器10dを示す概略平面図である。
 図9に示すように、第4の実施の形態による細胞培養容器10dでは、通路12’は、複数(図示された例では8つ)の通路構成要素121~128に分岐する部分129aと、当該複数の通路構成要素121~128が合流する部分129bと、を有している。各通路構成要素121~128のコンダクタンスを均等に揃える観点から、分岐する部分129a及び合流する部分129bは、それぞれ、図示されたような樹形状、すなわち2分岐をn回繰り返すことで2個の通路構成要素に均等に分岐する形状を有することが、好ましい。
 本実施の形態の細胞播種領域20dは、各通路構成要素121~128の底面に、当該通路構成要素121~128に沿って並んで設けられている。
 流入口11から流入される液体は、通路12’を通過する際に、分岐する部分129aにおいて各通路構成要素121~128に分岐され、各通路構成要素121~128を通過する液体は、合流する部分129bにおいて合流されて、流出口13へと導かれる。このように、流入口11から流出口13までの液体の流れの向きが通路12’の各構成要素によって制限されるため、通路12内において液体を構成する各液体分子の進行方向が通路12と平行な向きに揃えられ、すなわち流入口11と流出口13との間における乱流の発生が抑制される。
 その他の構成は図1A~図1Cに示す第1の実施の形態と略同様である。図9において、図1A~図1Cに示す第1の実施の形態と同一の部分には同一の符号を付して詳細な説明は省略する。
 また、第4の実施の形態による細胞培養容器10dの使用方法は、第1の実施の形態による細胞培養容器10aの使用方法と略同様であり、詳細な説明は省略する。
 以上のような第4の実施の形態によっても、容器本体31dを大型化させることなく、通路12’の全長を延伸することができる。これにより、流路12’の幅を広げることなく培養位置の数を増やすことができ、結果的に、より多くの細胞塊を同時に1つの容器で培養することが可能である。
 なお、本実施の形態では、図9に示すように、通路12’の底面には、細胞播種領域20dと同心状に窪み21aが凹設されており、当該窪み21aは、角錐状または円錐状(図示された例では、四角錐状)を有しているが、これに限定されない。例えば、第2の実施の形態と同様に、通路12’の底面には、細胞播種領域20dと同心状に窪みが凹設されており、当該窪みは、平坦な底部を有していてもよい。あるいは、第3の実施の形態と同様に、通路12’の底面は、平坦であり、細胞播種領域20dの内側にはECMが塗布されているが、細胞播種領域20dの外側にはECMが塗布されていなくてもよい。
 最後になったが、上述した個々の実施の形態により開示する発明が限定されるものではない。各実施の形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
10a  細胞培養容器
10b  細胞培養容器
10c  細胞培養容器
10d  細胞培養容器
11   流入口
12   通路
12’  通路
121  通路構成要素
122  通路構成要素
123  通路構成要素
124  通路構成要素
125  通路構成要素
126  通路構成要素
127  通路構成要素
128  通路構成要素
129a 分岐する部分
129b 合流する部分
13   流出口
20a  細胞播種領域
20b  細胞播種領域
20c  細胞播種領域
20d  細胞播種領域
21   窪み
22   窪み
31a  容器本体
31b  容器本体
31c  容器本体
31d  容器本体
32   平板
40   細胞
41   細胞外マトリックス(ECM)

Claims (13)

  1.  容器本体と、
     前記容器本体の一面に貼り付けられた平板と、
    を備え、
     前記容器本体は、
     液体が流入される流入口と、
     前記流入口から流入した液体が通過する通路と、
     前記通路を通過した液体が流出される流出口と、
    を有し、
     前記通路の底面には、当該通路を通過する細胞が播種される複数の細胞播種領域が、当該通路に沿って並んで設けられている
    ことを特徴とする細胞培養容器。
  2.  前記細胞播種領域は、前記通路に沿って等間隔で設けられている
    ことを特徴とする請求項1に記載の細胞培養容器。
  3.  前記通路は、蛇行する部分を有する
    ことを特徴とする請求項1または2に記載の細胞培養容器。
  4.  前記通路は、複数の通路構成要素に分岐する部分と、当該複数の通路構成要素が合流する部分と、を有する
    ことを特徴とする請求項1乃至3のいずれかに記載の細胞培養容器。
  5.  前記通路の底面には、前記細胞播種領域と同心状に窪みが凹設されている
    ことを特徴とする請求項1乃至4のいずれかに記載の細胞培養容器。
  6.  前記窪みは、角錐状または円錐状を有する
    ことを特徴とする請求項5に記載の細胞培養容器。
  7.  前記窪みは、平坦な底部を有する
    ことを特徴とする請求項5に記載の細胞培養容器。
  8.  前記平板のうち前記窪みと向かい合う部分には、細胞外マトリックス(ECM)が塗布されている
    ことを特徴とする請求項5乃至7のいずれかに記載の細胞培養容器。
  9.  前記窪みの内側には、細胞外マトリックス(ECM)が塗布されており、
     前記窪みの外側には、細胞外マトリックス(ECM)が塗布されていない
    ことを特徴とする請求項7に記載の細胞培養容器。
  10.  前記通路の底面は、平坦であり、
     前記細胞播種領域の内側には、細胞外マトリックス(ECM)が塗布されており、
     前記細胞播種領域の外側には、細胞外マトリックス(ECM)が塗布されていない
    ことを特徴とする請求項1乃至4のいずれかに記載の細胞培養容器。
  11.  前記細胞播種領域の外側の表面粗さは、前記細胞播種領域の内側の表面粗さより大きいことを特徴とする請求項1乃至10のいずれかに記載の細胞培養容器。
  12.  前記通路の底面及び前記平板は、光透過性を有する
    ことを特徴とする請求項1乃至11のいずれかに記載の細胞培養容器。
  13.  前記平板は、ガス透過性を有する
    ことを特徴とする請求項1乃至12のいずれかに記載の細胞培養容器。
PCT/JP2015/054172 2014-02-20 2015-02-16 細胞培養容器 WO2015125742A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016504090A JP6199479B2 (ja) 2014-02-20 2015-02-16 細胞培養容器
EP15752598.1A EP3109312B1 (en) 2014-02-20 2015-02-16 Cell culture container
US15/240,284 US10351811B2 (en) 2014-02-20 2016-08-18 Cell culture container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-030515 2014-02-20
JP2014030515 2014-02-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/240,284 Continuation US10351811B2 (en) 2014-02-20 2016-08-18 Cell culture container

Publications (1)

Publication Number Publication Date
WO2015125742A1 true WO2015125742A1 (ja) 2015-08-27

Family

ID=53878245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054172 WO2015125742A1 (ja) 2014-02-20 2015-02-16 細胞培養容器

Country Status (4)

Country Link
US (1) US10351811B2 (ja)
EP (1) EP3109312B1 (ja)
JP (1) JP6199479B2 (ja)
WO (1) WO2015125742A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111054A1 (ja) * 2015-12-25 2017-06-29 東京エレクトロン株式会社 培養容器
WO2018070447A1 (ja) * 2016-10-13 2018-04-19 東京エレクトロン株式会社 培養容器連結装置、培養システムおよびニードルの洗浄方法
WO2019035462A1 (ja) * 2017-08-17 2019-02-21 東京エレクトロン株式会社 細胞培養容器において培養される多能性幹細胞の未分化状態を位置特異的に判定する方法、多能性幹細胞の継代培養方法およびそれら方法に使用される装置
WO2023153058A1 (ja) 2022-02-14 2023-08-17 富士フイルム株式会社 細胞の評価方法及び評価用デバイス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1593334S (ja) * 2017-05-02 2017-12-18
US11958050B2 (en) * 2018-05-24 2024-04-16 John Collins Fluidic devices for closed cell culture applications under current good manufacturing practice

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086329A1 (en) * 2000-12-29 2002-07-04 Igor Shvets Biological assays
JP2004173681A (ja) * 2002-11-14 2004-06-24 Atsushi Muraguchi 抗原特異的リンパ球検出用マイクロウェルアレイチップ、抗原特異的リンパ球の検出法及び製造方法
JP2005080607A (ja) * 2003-09-10 2005-03-31 National Food Research Institute 細胞培養プレートおよびその製造方法
JP2006055069A (ja) * 2004-08-20 2006-03-02 National Institute Of Advanced Industrial & Technology 細胞培養容器及び培養方法
JP2006094783A (ja) * 2004-09-29 2006-04-13 Fujitsu Ltd 細胞給排・捕捉装置及び細胞給排・捕捉方法
JP2006122012A (ja) * 2004-10-29 2006-05-18 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 細胞組織体マイクロデバイス
JP2007097407A (ja) * 2005-09-30 2007-04-19 Espec Corp 細胞製造方法及び細胞培養装置
JP2010063429A (ja) * 2008-09-12 2010-03-25 Univ Of Tokyo 構造体、細胞測定方法および細胞測定装置
WO2011083768A1 (ja) * 2010-01-08 2011-07-14 住友ベークライト株式会社 細胞凝集塊形成用培養容器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455310B1 (en) * 1999-03-23 2002-09-24 Biocrystal Ltd. Cell culture apparatus and method for culturing cells
JPWO2007125894A1 (ja) * 2006-04-26 2009-09-10 東洋合成工業株式会社 細胞培養容器の製造方法
JP2010011747A (ja) * 2008-07-01 2010-01-21 Canon Inc 細胞培養容器および細胞培養方法
EP2230014A1 (en) * 2009-03-20 2010-09-22 Mark Ungrin Devices and methods for production of cell aggregates
US9499789B2 (en) * 2011-02-23 2016-11-22 Kyoto University Method for producing dendritic cells from pluripotent stem cells

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086329A1 (en) * 2000-12-29 2002-07-04 Igor Shvets Biological assays
JP2004173681A (ja) * 2002-11-14 2004-06-24 Atsushi Muraguchi 抗原特異的リンパ球検出用マイクロウェルアレイチップ、抗原特異的リンパ球の検出法及び製造方法
JP2005080607A (ja) * 2003-09-10 2005-03-31 National Food Research Institute 細胞培養プレートおよびその製造方法
JP2006055069A (ja) * 2004-08-20 2006-03-02 National Institute Of Advanced Industrial & Technology 細胞培養容器及び培養方法
JP2006094783A (ja) * 2004-09-29 2006-04-13 Fujitsu Ltd 細胞給排・捕捉装置及び細胞給排・捕捉方法
JP2006122012A (ja) * 2004-10-29 2006-05-18 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 細胞組織体マイクロデバイス
JP2007097407A (ja) * 2005-09-30 2007-04-19 Espec Corp 細胞製造方法及び細胞培養装置
JP2010063429A (ja) * 2008-09-12 2010-03-25 Univ Of Tokyo 構造体、細胞測定方法および細胞測定装置
WO2011083768A1 (ja) * 2010-01-08 2011-07-14 住友ベークライト株式会社 細胞凝集塊形成用培養容器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111054A1 (ja) * 2015-12-25 2017-06-29 東京エレクトロン株式会社 培養容器
WO2018070447A1 (ja) * 2016-10-13 2018-04-19 東京エレクトロン株式会社 培養容器連結装置、培養システムおよびニードルの洗浄方法
JPWO2018070447A1 (ja) * 2016-10-13 2019-07-25 シンフォニアテクノロジー株式会社 培養容器連結装置、培養システムおよびニードルの洗浄方法
US11377631B2 (en) 2016-10-13 2022-07-05 Sinfonia Technology Co., Ltd. Culture container linkage device, culture system, and method for washing needle
WO2019035462A1 (ja) * 2017-08-17 2019-02-21 東京エレクトロン株式会社 細胞培養容器において培養される多能性幹細胞の未分化状態を位置特異的に判定する方法、多能性幹細胞の継代培養方法およびそれら方法に使用される装置
WO2023153058A1 (ja) 2022-02-14 2023-08-17 富士フイルム株式会社 細胞の評価方法及び評価用デバイス

Also Published As

Publication number Publication date
EP3109312A4 (en) 2017-10-04
US20160355773A1 (en) 2016-12-08
JPWO2015125742A1 (ja) 2017-03-30
US10351811B2 (en) 2019-07-16
EP3109312A1 (en) 2016-12-28
EP3109312B1 (en) 2019-08-28
JP6199479B2 (ja) 2017-09-20

Similar Documents

Publication Publication Date Title
JP6199479B2 (ja) 細胞培養容器
JP5950055B2 (ja) 細胞塊用培養容器
JP5578779B2 (ja) スフェロイド培養方法及びスフェロイド培養容器
JP2016202180A (ja) 細胞培養器、及び、細胞培養システム
KR101522120B1 (ko) 배양 기재 및 배양 시트
KR102353140B1 (ko) 배양용기
US9034636B2 (en) Microfluidic hanging drop chip
US20150284668A1 (en) Cyclic Microfluidic Chip and Method of Using the Same
WO2017127686A1 (en) Three-dimensional acoustic manipulation of cells
JP2016093149A (ja) 細胞培養装置および細胞培養方法
JP6459219B2 (ja) 細胞培養容器
JP7070401B2 (ja) 細胞培養用容器の使用方法
JP6942448B2 (ja) 細胞培養容器、これを用いた細胞培養システム、および細胞培養方法
KR101075032B1 (ko) 세포 배양기 및 이를 포함하는 세포 배양장치
TWI547694B (zh) 微流道生物反應器及其套組和使用方法
US20240091778A1 (en) Cell culture vessel
US20210292707A1 (en) Method for the culturing of cells
JP2005095165A (ja) 培養容器、培養装置および細胞の培養方法
JP2007110996A (ja) 細胞培養容器および細胞培養装置
JP2019041719A (ja) 細胞培養用構造体、細胞培養容器及び細胞培養用構造体の製造方法
Hashimoto et al. Tracings of Behavior of Myoblasts Cultured Under Couette Type of Shear Flow Between Parallel Disks
KR102134166B1 (ko) 진공 세포 배양장치
KR102019602B1 (ko) 3 차원 세포 배양용 미세유체칩 및 이를 이용한 3 차원 세포 배양방법
JP2019050734A (ja) 細胞培養容器、細胞集合体を有する細胞培養容器、細胞集合体培養方法、及び細胞集合体
JP6318843B2 (ja) 細胞培養容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752598

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015752598

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015752598

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016504090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE