WO2015125610A1 - リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池 Download PDF

Info

Publication number
WO2015125610A1
WO2015125610A1 PCT/JP2015/053179 JP2015053179W WO2015125610A1 WO 2015125610 A1 WO2015125610 A1 WO 2015125610A1 JP 2015053179 W JP2015053179 W JP 2015053179W WO 2015125610 A1 WO2015125610 A1 WO 2015125610A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
mass
secondary battery
ion secondary
lithium ion
Prior art date
Application number
PCT/JP2015/053179
Other languages
English (en)
French (fr)
Inventor
信秋 濱中
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to CN201811331403.9A priority Critical patent/CN110098376B/zh
Priority to EP15752260.8A priority patent/EP3109929B1/en
Priority to CN201580009460.3A priority patent/CN106030863B/zh
Priority to US15/119,016 priority patent/US20160351902A1/en
Publication of WO2015125610A1 publication Critical patent/WO2015125610A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present embodiment relates to a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery using the positive electrode.
  • Lithium ion secondary batteries are small and have a large capacity, and are widely used as power sources for mobile phones, notebook computers and the like. Along with such expansion of applications, lithium ion secondary batteries are desired to have a further improved capacity retention rate in charge / discharge cycles. Examples of the technology related to the lithium ion secondary battery include the inventions described in Patent Documents 1 to 12.
  • An object of the present embodiment is to provide a lithium ion secondary battery having a high capacity retention rate in a charge / discharge cycle.
  • a positive electrode active material comprising: Content of the alkali metal hydroxide in the said positive electrode active material is 0.15 mass% or less.
  • the lithium ion secondary battery according to this embodiment includes a positive electrode for a lithium ion secondary battery according to this embodiment and a negative electrode.
  • the positive electrode for a lithium ion secondary battery a mixture of the compound represented by the formula (1) and the compound represented by the formula (2) is used as the positive electrode active material, and the alkali in the positive electrode active material is used.
  • the metal hydroxide content is set to 0.15% by mass or less.
  • alkali metal hydroxides such as lithium hydroxide contained as impurities in the positive electrode active material are eluted, and the surfaces of the positive electrode and the negative electrode To accumulate.
  • Accumulated alkali metal hydroxide is an insulator and inhibits contact between the active material and the electrolytic solution, so that the resistance of the electrode increases. For this reason, the active material whose entire surface is covered with the alkali metal hydroxide does not contribute to the battery reaction.
  • only the active material whose entire surface is not covered with the alkali metal hydroxide contributes to charge and discharge, and the performance deterioration of the active material is promoted. Therefore, rapid performance deterioration is caused in a certain number of cycles.
  • the present inventors have found this phenomenon.
  • the phenomenon becomes remarkable.
  • the operating voltage differs between the compound represented by the formula (1) and the compound represented by the formula (2), and only the charge / discharge of the compound represented by the formula (1) contributes to the lower voltage side.
  • the apparent charge / discharge rate of the compound represented by the formula (1) is increased, and the resistance due to the alkali metal hydroxide is higher. It is thought that it becomes easy to be affected by the change.
  • the inventors have made resistance to the alkali metal hydroxide by setting the content of the alkali metal hydroxide in the positive electrode active material to 0.15% by mass or less. It was found that a lithium ion secondary battery showing a high capacity retention rate can be obtained even when the charge / discharge cycle is repeated.
  • this embodiment is not limited to these.
  • the positive electrode active material according to the present embodiment includes a compound represented by the formula (1) and a compound represented by the formula (2).
  • x is 0.95 ⁇ x ⁇ 1.05 and 0.97 ⁇ x ⁇ 1.0 from the viewpoint of the balance between the initial charge / discharge capacity of the positive electrode active material and the capacity retention ratio after charge / discharge. 1.04 is preferable, and 0.98 ⁇ x ⁇ 1.03 is more preferable.
  • y is 0.70 ⁇ y ⁇ 0.85 from the viewpoint of the balance between the initial charge / discharge capacity of the positive electrode active material, the safety of the secondary battery, and the capacity retention ratio after charge / discharge, and 0.77 ⁇ y ⁇ 0.83 is preferable, and 0.79 ⁇ y ⁇ 0.81 is more preferable.
  • z is 0.05 ⁇ z ⁇ 0.20 and 0.10 ⁇ z ⁇ 0.20 from the viewpoint of the balance between the initial charge / discharge capacity of the positive electrode active material and the capacity retention ratio after charge / discharge.
  • w is 0.00 ⁇ w ⁇ 0.10, preferably 0.02 ⁇ w ⁇ 0.07, and 0.04 ⁇ w ⁇ 0.06 from the viewpoint of the capacity retention rate after charging and discharging. It is more preferable that
  • u is 0 ⁇ u ⁇ 0.05 and 0 ⁇ u ⁇ 0.05 from the viewpoint of the balance between the initial charge / discharge capacity of the positive electrode active material and the capacity retention ratio after charge / discharge.
  • the composition ratio of each element in the formula (1) and the formula (2) was measured by oxidation-reduction titration method for Mn of the formula (2) and by inductively coupled plasma emission spectrometry for other elements. It is the value.
  • the mass of the compound represented by the formula (1) contained in the positive electrode active material is the sum of the compound represented by the formula (1) and the compound represented by the formula (2) contained in the positive electrode active material. From the viewpoint of obtaining the effects of the present embodiment more preferably, the content is 5% by mass or more and 50% by mass or less with respect to the mass. This proportion is more preferably 10% by mass or more and 45% by mass or less, further preferably 15% by mass or more and 40% by mass or less, and particularly preferably 20% by mass or more and 35% by mass or less. preferable. Moreover, this ratio can be 30 mass% or more and 50 mass% or less.
  • the positive electrode active material according to the present embodiment may include a compound other than the compound represented by the formula (1) and the compound represented by the formula (2).
  • the ratio of the compound represented by the formula (1) and the compound represented by the formula (2) contained in the positive electrode active material is preferably 80% by mass or more, and 90% by mass or more. More preferably, 100% by mass, that is, the positive electrode active material is particularly preferably composed of the compound represented by the formula (1) and the compound represented by the formula (2).
  • the content of the alkali metal hydroxide in the positive electrode active material is 0.15% by mass or less.
  • the content is preferably 0.13% by mass or less, more preferably less than 0.10% by mass, and 0.09% by mass or less from the viewpoint of improving the capacity retention rate in the charge / discharge cycle. It is more preferable that it is 0.07% by mass or less.
  • the content may be 0% by mass, but is preferably 0.01% by mass or more from the viewpoint of securing a capacity retention rate when stored in a charged state.
  • content of the alkali metal hydroxide in the said positive electrode active material is the value measured by the acid-base titration method.
  • the content of the alkali metal hydroxide contained as an impurity in the compound represented by the formula (1) is preferably 0.45% by mass or less.
  • the compound represented by the formula (1) contains an alkali metal hydroxide, particularly lithium hydroxide, as an impurity in the production process.
  • the alkali metal hydroxide is present between primary particles of the compound represented by the formula (1), and binds the primary particles.
  • the compound represented by the formula (1) contains a large amount of alkali metal hydroxide, the alkali metal hydroxide, particularly lithium hydroxide has deliquescent properties, and thus has a strong binding force. External force is required. When the external force is applied not to the alkali metal hydroxide but to the compound represented by the formula (1), the secondary particles of the compound represented by the formula (1) are cracked and a new section is generated. Since the positive electrode active material deteriorates faster as the area of the interface exposed to the electrolytic solution is larger, the capacity retention rate of the compound represented by the formula (1) in which the secondary particles are cracked is reduced in the charge / discharge cycle.
  • the content of the alkali metal hydroxide contained as an impurity in the compound represented by the formula (1) when the content of the alkali metal hydroxide contained as an impurity in the compound represented by the formula (1) is 0.45% by mass or less, the binding force between the primary particles can be weakened. Further, since the secondary particles can be prevented from cracking in the pulverization treatment, the capacity retention rate is improved.
  • the content of the alkali metal hydroxide contained as an impurity in the compound represented by the formula (1) is more preferably 0.40% by mass or less, and further preferably 0.35% by mass or less. It is especially preferable that it is 0.30 mass% or less.
  • content of the alkali metal hydroxide contained as an impurity in the compound represented by the formula (1) is a value measured by an acid-base titration method.
  • alkali metal hydroxide examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide and the like. These may be contained independently and 2 or more types may be contained. As described above, lithium hydroxide is preferable as the alkali metal hydroxide because it is often contained as an impurity in the compound represented by the formula (1) in the production process.
  • the alkali metal hydroxide may be contained in at least one of the compound represented by the formula (1) and the compound represented by the formula (2), and should be added separately to these compounds. May be included.
  • the pH of the aqueous dispersion containing 2% by mass of the compound represented by the formula (1) is preferably 11.0 or more and 11.5 or less.
  • the pH of the aqueous dispersion containing 2% by mass of the compound represented by the formula (1) is 11.0 or more, the acid is neutralized and elution of Mn is suppressed.
  • the resistance increase of the secondary battery can be prevented.
  • the electrolyte contains a compound that can form a film having a Lewis acid on the negative electrode by charge and discharge described later, a film and an acid having a Lewis acid such as a sulfonic acid group that covers the negative electrode with hydroxide ions when the pH is high. Due to the base reaction, the coating effect of the negative electrode is lost, and the capacity retention rate decreases.
  • the acid-base reaction can be suppressed when the pH of the aqueous dispersion containing 2% by mass of the compound represented by the formula (1) is 11.5 or less, the negative electrode film A sufficient effect is obtained. Furthermore, when using polyvinylidene fluoride (PVDF) as a binder as will be described later, PVDF reacts with hydroxide ions and gels, so an aqueous dispersion containing 2% by mass of the compound represented by the formula (1) The said gelatinization can be suppressed because pH of this is 11.5 or less.
  • PVDF polyvinylidene fluoride
  • the pH of the aqueous dispersion containing 2% by mass of the compound represented by the formula (1) is more preferably 11.0 or more and 11.4 or less, and preferably 11.0 or more and 11.2 or less. More preferably, it is more preferably more than 11.0 and 11.2 or less.
  • the pH of the aqueous dispersion containing 2% by mass of the compound represented by the formula (1) is the pH value measured with a pH meter by dispersing 2% by mass of the compound represented by the formula (1) in water. is there.
  • the raw material of the compound represented by the formula (1) and the compound represented by the formula (2) is not particularly limited.
  • the Li raw material for example, Li 2 CO 3 , LiOH, Li 2 O, Li 2 SO 4 or the like can be used.
  • NiO, Ni (OH), NiSO 4 , Ni (NO 3 ) 2 or the like can be used as the Ni raw material.
  • the Co raw material for example, CoO, Co (OH) 2 , CoCO 3 or the like can be used.
  • Al raw material for example, Al 2 O 3 , Al (OH) 3 or the like can be used.
  • Mn raw material for example, various Mn oxides such as electrolytic manganese dioxide (EMD), Mn 2 O 3 , Mn 3 O 4 , and CMD (chemical manganese dioxide), MnCO 3 , MnSO 4 and the like can be used. These may use 1 type and may use 2 or more types together.
  • the method for producing the compound represented by the formula (1) and the compound represented by the formula (2) is not particularly limited.
  • the raw materials are weighed and mixed so as to have a target metal composition ratio.
  • Mixing can be performed by pulverizing and mixing with a ball mill, a jet mill or the like.
  • the compound is obtained by calcining the obtained mixed powder at a temperature of, for example, 400 ° C. to 1200 ° C. in air or oxygen.
  • the positive electrode for a lithium ion secondary battery according to this embodiment includes the positive electrode active material.
  • the positive electrode for a lithium ion secondary battery can be produced, for example, by applying the positive electrode active material onto a positive electrode current collector.
  • the positive electrode active material, binder, and conductive additive are dispersed in a solvent to prepare a slurry, and the slurry is applied onto a positive electrode current collector and dried.
  • the binder for example, polyvinylidene fluoride (PVDF), acrylic resin, polytetrafluoroethylene, or the like can be used. Among these, PVDF is preferable as the binder from the viewpoint of obtaining the effects of the present embodiment.
  • a carbon material for example, a metal substance such as aluminum, a conductive oxide powder, or the like can be used.
  • a metal thin film mainly containing aluminum or the like can be used.
  • the solvent for example, N-methyl-2-pyrrolidone (NMP) can be used.
  • the amount of binder added can be 1 to 10% by mass. By making the addition amount 1% by mass or more, peeling of the positive electrode can be prevented. Moreover, since the ratio of positive electrode active material mass can be enlarged by making this addition amount into 10 mass% or less, the capacity
  • the addition amount of the conductive assistant can be 1 to 10% by mass. By making the addition amount 1% by mass or more, sufficient conductivity can be maintained. Moreover, since the ratio of positive electrode active material mass can be enlarged by making this addition amount into 10 mass% or less, the capacity
  • the lithium ion secondary battery according to the present embodiment includes the positive electrode for a lithium ion secondary battery according to the present embodiment and a negative electrode.
  • the positive electrode for lithium ion secondary batteries which concerns on this embodiment, and the negative electrode provided with the negative electrode active material which can occlude-release lithium are provided.
  • a separator is sandwiched between the positive electrode and the negative electrode so as not to cause an electrical connection.
  • the positive electrode and the negative electrode are immersed in a lithium ion conductive electrolyte, and these are sealed in the outer package. Has been.
  • FIG. 1 An example of the configuration of the lithium ion secondary battery according to the present embodiment is shown in FIG.
  • a positive electrode active material layer 1 containing the positive electrode active material is formed on the positive electrode current collector 3, and the positive electrode for a lithium ion secondary battery according to this embodiment is configured.
  • the negative electrode active material layer 2 containing a negative electrode active material is formed on the negative electrode collector 4, and the negative electrode is comprised.
  • the positive electrode and the negative electrode are disposed to face each other with the separator 5 in a state of being immersed in the electrolytic solution. These are accommodated in the exterior bodies 6 and 7.
  • the positive electrode is connected to one end of the positive electrode tab 9, and the negative electrode is connected to one end of the negative electrode tab 8.
  • the other end of the positive electrode tab 9 and the negative electrode tab 8 is drawn out of the secondary battery, respectively. It is.
  • lithium ions When a voltage is applied to the positive electrode and the negative electrode, lithium ions are desorbed from the positive electrode active material, and the lithium ions are occluded in the negative electrode active material, resulting in a charged state.
  • lithium ions are released from the negative electrode active material, contrary to during charging, and discharge occurs due to insertion of lithium ions into the positive electrode active material. .
  • the negative electrode active material a material capable of inserting and extracting lithium can be used.
  • the negative electrode active material include carbon materials such as graphite, hard carbon, soft carbon, and amorphous carbon, Li metal, Si oxide such as Si, Sn, Al, and SiO, Sn oxide, and Li 4 Ti 5 O. 12 , Ti oxide such as TiO 2 , V-containing oxide, Sb-containing oxide, Fe-containing oxide, Co-containing oxide and the like can be used. These negative electrode active materials may be used alone or in combination of two or more.
  • graphite is preferable from the viewpoint of capacity retention and safety.
  • the negative electrode active material is preferably graphite having no film on the surface or graphite having a film on the surface, and the amount of the film is less than 10% by mass with respect to graphite.
  • the film does not sufficiently cover the graphite, and when the electrolyte contains an additive described later, the film having a Lewis acid is formed. Covers the negative electrode.
  • this film having Lewis acid is eluted by reaction with an alkali metal hydroxide, the Li intercalation reaction proceeds greatly, and Li remains trapped in the negative electrode. May decrease.
  • the effect of the present embodiment can be obtained more greatly.
  • the initial capacity increases, and thus the voltage applied to the positive electrode tends to increase from the beginning of the charge / discharge cycle.
  • the time required for charge / discharge on the low voltage side contributed by the compound represented by the above formula (1) is increased. The effect of high resistance due to oxides increases.
  • the effect by this embodiment is acquired more largely.
  • graphite having a coating amount of 8% by mass or less with respect to graphite is preferable, graphite having 6% by mass or less is more preferable, and graphite having 4% by mass or less is more preferable.
  • Examples of the film provided on the surface of graphite include pitch. These may use 1 type and may use 2 or more types together.
  • membrane is a film
  • the negative electrode can be produced, for example, by applying the negative electrode active material onto a negative electrode current collector.
  • the negative electrode active material, the binder, and the conductive additive are dispersed in a solvent to prepare a slurry, and the slurry is applied onto the negative electrode current collector and dried.
  • the binder for example, PVDF, acrylic resin, styrene butadiene rubber, imide resin, imidoamide resin, polytetrafluoroethylene, or the like can be used.
  • the conductive assistant for example, a carbon material, a metal substance such as aluminum, a conductive oxide powder, or the like can be used.
  • the negative electrode current collector for example, a metal thin film mainly containing aluminum, copper, or the like can be used. For example, NMP or the like can be used as the solvent.
  • the amount of binder added can be 1 to 10% by mass. By making the addition amount 1% by mass or more, peeling of the negative electrode can be prevented. Moreover, since the ratio of negative electrode active material mass can be enlarged by making this addition amount into 10 mass% or less, the capacity
  • the addition amount of the conductive assistant can be 1 to 10% by mass. By making the addition amount 1% by mass or more, sufficient conductivity can be maintained. Moreover, since the ratio of negative electrode active material mass can be enlarged by making this addition amount into 10 mass% or less, the capacity
  • a solution in which a lithium salt as a supporting salt is dissolved in a solvent can be used.
  • the solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl Linear carbonates such as carbonate (DEC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2- Chain ethers such as diethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, ace
  • lithium salt examples include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, and the like. These may use 1 type and may use 2 or more types together.
  • LiPF 6 is preferable from the viewpoint of obtaining the effect of the present embodiment.
  • the concentration of the lithium salt as the supporting salt is preferably 0.5 to 1.5 mol / L.
  • concentration of the lithium salt 0.5 mol / L or more, sufficient electric conductivity can be obtained.
  • density of a lithium salt shall be 1.5 mol / L or less, and the increase in a density and a viscosity can be suppressed.
  • the electrolytic solution preferably contains an additive in order to form a high-quality SEI (Solid Electrolyte Interface) film on the surface of the negative electrode by charging and discharging.
  • SEI Solid Electrolyte Interface
  • the SEI film functions to suppress the reactivity with the electrolytic solution or to smooth the desolvation reaction accompanying the insertion and desorption of lithium ions to prevent structural deterioration of the negative electrode active material.
  • the additive include cyclic disulfonates such as methylenemethane disulfonate (MMDS), ethylenemethane disulfonate, propanemethane disulfonate, and cyclic sulfones such as 1,3-propane sultone, propene sultone, and butane sultone.
  • Cyclic sulfones such as acid esters and sulfolanes, cyclic halogenated carbonates such as fluorinated ethylene carbonate (FEC), trifluoromethyl propylene carbonate, and chloroethylene carbonate, vinylene carbonate (VC), vinyl ethylene carbonate, phenylene carbonate, and allyl methyl carbonate ( AMC), unsaturated carbonates such as maleic anhydride, succinic anhydride, phthalic anhydride, cyclic imides such as succinimide, lithium bis Kisa borate (LiBOB), difluoro [oxalato--O, O '] lithium borate (LiBF 2 (C 2 O 4 )), ethylene sulfite (ES), vinyl ethylene sulfite, butylene sulfite, dimethyl sulfite, Examples thereof include sulfites such as diethyl sulfite, unsaturated esters such as vinyl acetate and divinyl
  • the additive is preferably a compound that can form a film having a Lewis acid such as a sulfonic acid group on the negative electrode by charge and discharge.
  • the compound include the cyclic disulfonic acid ester and the cyclic sulfonic acid ester. These may use 1 type and may use 2 or more types together.
  • the amount of the additive contained in the electrolytic solution is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 3% by mass or less.
  • the amount of the additive is 0.1% by mass or more, a high-quality SEI film can be formed.
  • the amount of the additive is 10% by mass or less, the resistance is low and gas generation can be suppressed.
  • a polymer electrolyte obtained by adding a polymer or the like to the solvent of the electrolytic solution and solidifying the electrolytic solution into a gel may be used.
  • separator examples include a microporous film containing polyethylene, polypropylene, polyimide, polyamide and the like.
  • Examples of the exterior body include a battery can and a laminate film made of a laminate of a synthetic resin and a metal foil.
  • the lithium ion secondary battery according to the present embodiment can be manufactured by assembling using the lithium ion secondary battery positive electrode according to the present embodiment.
  • the positive electrode and the negative electrode for a lithium ion secondary battery according to the present embodiment are arranged to face each other with no electrical contact through a separator.
  • a structure in which the positive electrode and the negative electrode are arranged to face each other with a separator interposed therebetween is formed into a cylindrical shape or a laminated shape. This is accommodated in the exterior body and immersed in the electrolytic solution so that both the positive electrode active material and the negative electrode active material are in contact with the electrolytic solution.
  • a lithium ion secondary battery can be manufactured by connecting a positive electrode tab and a negative electrode tab to the positive electrode and the negative electrode, respectively, and sealing the outer package so that these electrode tabs communicate with the exterior of the outer package.
  • the positive electrode and the negative electrode arranged opposite to each other with the separator interposed therebetween can take a form such as a wound type or a laminated type.
  • a coin type, a laminate type, etc. are mentioned as a format of a lithium ion secondary battery.
  • Examples of the shape of the lithium ion secondary battery include a rectangular shape and a cylindrical shape.
  • Example 1 (Preparation of positive electrode) Li 1.01 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 not containing alkali metal hydroxide and Li 1.03 Mn 1.99 O 4 were mixed at a mass ratio of 1: 3. A positive electrode active material was prepared. In addition, content of the alkali metal hydroxide in this positive electrode active material was 0 mass%. The pH of the aqueous dispersion containing 2% by mass of Li 1.01 (Ni 0.80 Co 0.15 Al 0.05 O 2 was 10.8.
  • Graphite as a negative electrode active material, styrene butadiene rubber (trade name: SBR, manufactured by Nippon Zeon) as a binder, carboxymethyl cellulose (CMC, manufactured by Nippon Paper Industries) as a thickener, and acetylene black as a conductive auxiliary agent (Trade name: super-C65, manufactured by Timcal) was dispersed in NMP at a mass ratio of 96.5: 1.5: 1: 1 to prepare a slurry. The slurry was applied to both sides of a negative electrode current collector that was a copper foil and dried. This obtained the negative electrode. A film having a pitch of 4% by mass with respect to graphite is formed on the surface of the graphite.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • acetylene black as a conductive auxiliary agent
  • Example 2 A mass ratio of Li 1.01 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 containing 0.29% by mass of lithium hydroxide and Li 1.03 Mn 1.99 O 4 in a mass ratio of 1: 3.
  • a positive electrode active material content of the alkali metal hydroxide in this positive electrode active material was 0.07 mass%.
  • the pH of the aqueous dispersion containing 2% by mass of Li 1.01 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 was 11.2.
  • a lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 except that a positive electrode was produced using the positive electrode active material.
  • Example 3 A mass ratio of Li 1.01 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 containing 0.36% by mass of lithium hydroxide and Li 1.03 Mn 1.99 O 4 in a mass ratio of 1: 3.
  • a positive electrode active material content of the alkali metal hydroxide in this positive electrode active material was 0.09 mass%.
  • the pH of the aqueous dispersion containing 2% by mass of Li 1.01 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 was 11.4.
  • a lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 except that a positive electrode was produced using the positive electrode active material.
  • Example 4 A mass ratio of Li 1.01 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 containing 0.43% by mass of lithium hydroxide and Li 1.03 Mn 1.99 O 4 in a mass ratio of 1: 3.
  • a positive electrode active material content of the alkali metal hydroxide in this positive electrode active material was 0.11 mass%.
  • the pH of the aqueous dispersion containing 2% by mass of Li 1.01 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 was 11.5.
  • a lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 except that a positive electrode was produced using the positive electrode active material.
  • Example 5 A mass ratio of Li 0.98 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 containing 0.43% by mass of lithium hydroxide and Li 1.03 Mn 1.99 O 4 in a mass ratio of 1: 3.
  • a positive electrode active material content of the alkali metal hydroxide in this positive electrode active material was 0.11 mass%.
  • the pH of the aqueous dispersion containing 2% by mass of Li 0.98 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 was 11.4.
  • a lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 except that a positive electrode was produced using the positive electrode active material.
  • Example 6 A mass ratio of Li 1.03 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 containing 0.43% by mass of lithium hydroxide and Li 1.03 Mn 1.99 O 4 in a mass ratio of 1: 3.
  • a positive electrode active material content of the alkali metal hydroxide in this positive electrode active material was 0.11 mass%.
  • the pH of the aqueous dispersion containing 2% by mass of Li 1.03 (Ni 0.80 Co 0.15 Al 0.05 ) O 2 was 11.5.
  • a lithium ion secondary battery was produced and evaluated in the same manner as in Example 1 except that a positive electrode was produced using the positive electrode active material.
  • Comparative Example 8 A lithium ion secondary battery was prepared and evaluated in the same manner as in Comparative Example 1 except that vinylene carbonate (VC) was used instead of MMDS as an additive.
  • VC vinylene carbonate
  • Comparative Example 9 A lithium ion secondary battery was prepared and evaluated in the same manner as in Comparative Example 1 except that fluorinated ethylene carbonate (FEC) was used instead of MMDS as an additive.
  • FEC fluorinated ethylene carbonate
  • a negative electrode was produced in the same manner as in Comparative Example 1 except that graphite having no film formed on the surface was used as the negative electrode active material.
  • a lithium ion secondary battery was prepared and evaluated in the same manner as in Comparative Example 1 except that the negative electrode was used.
  • a negative electrode was produced in the same manner as in Comparative Example 1 except that graphite having a film formed with a pitch of 10% by mass with respect to graphite was used as the negative electrode active material.
  • a lithium ion secondary battery was prepared and evaluated in the same manner as in Comparative Example 1 except that the negative electrode was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 充放電サイクルにおける容量維持率の高いリチウムイオン二次電池を提供する。下記式(1) Li(NiCoAl)O(式(1)において、0.95≦x≦1.05、0.70≦y≦0.85、0.05≦z≦0.20、0.00≦w≦0.10であり、y+z+w=1である)で示される化合物と、下記式(2) Li1+uMn2-u/3(式(2)において、0≦u≦0.05である)で示される化合物と、を含む正極活物質を含み、前記正極活物質中のアルカリ金属水酸化物の含有量が0.15質量%以下であるリチウムイオン二次電池用正極。

Description

リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池
 本実施形態は、リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、小型で大容量である特徴を有しており、携帯電話、ノート型パソコン等の電源として広く用いられている。このような用途の拡大と共に、リチウムイオン二次電池は更なる充放電サイクルにおける容量維持率の向上が望まれている。リチウムイオン二次電池に関連する技術としては、例えば特許文献1から12に記載された発明が挙げられる。
特開平10-265224号公報 特開2000-208148号公報 特開2002-279986号公報 特開2003-282140号公報 特開2006-173049号公報 国際公開第2010/082261号 特開2007-080583号公報 特開2002-319435号公報 特開2010-155775号公報 特開2012-230898号公報 特開平10-208728号公報 特開2000-003724号公報
 しかしながら、特許文献1~12に記載された発明では、充放電サイクルにおける容量維持率が不十分であり、さらなる改善が望まれている。
 本実施形態は、充放電サイクルにおける容量維持率の高いリチウムイオン二次電池を提供することを目的とする。
 本実施形態に係るリチウムイオン二次電池用正極は、下記式(1)
  Li(NiCoAl)O  (1)
(式(1)において、0.95≦x≦1.05、0.70≦y≦0.85、0.05≦z≦0.20、0.00≦w≦0.10であり、y+z+w=1である)
で示される化合物と、下記式(2)
  Li1+uMn2-u/3  (2)
(式(2)において、0≦u≦0.05である)
で示される化合物と、を含む正極活物質を含み、
 前記正極活物質中のアルカリ金属水酸化物の含有量が0.15質量%以下である。
 本実施形態に係るリチウムイオン二次電池は、本実施形態に係るリチウムイオン二次電池用正極と、負極とを備える。
 本実施形態によれば、充放電サイクルにおける容量維持率の高いリチウムイオン二次電池を提供することができる。
本実施形態に係るリチウムイオン二次電池の一例の断面図である。 本実施例および/または本比較例におけるサイクル回数に対する容量維持率を示したグラフである。 本実施例および/または本比較例におけるサイクル回数に対する容量維持率を示したグラフである。 本実施例および/または本比較例におけるサイクル回数に対する容量維持率を示したグラフである。 本実施例および/または本比較例におけるサイクル回数に対する容量維持率を示したグラフである。 本実施例および/または本比較例におけるサイクル回数に対する容量維持率を示したグラフである。 本実施例および/または本比較例におけるサイクル回数に対する容量維持率を示したグラフである。 本実施例および/または本比較例におけるサイクル回数に対する容量維持率を示したグラフである。
 [リチウムイオン二次電池用正極]
 本実施形態に係るリチウムイオン二次電池用正極は、下記式(1)
  Li(NiCoAl)O  (1)
(式(1)において、0.95≦x≦1.05、0.70≦y≦0.85、0.05≦z≦0.20、0.00≦w≦0.10であり、y+z+w=1である)
で示される化合物と、下記式(2)
  Li1+uMn2-u/3  (2)
(式(2)において、0≦u≦0.05である)
で示される化合物と、を含む正極活物質を含み、前記正極活物質中のアルカリ金属水酸化物の含有量が0.15質量%以下である。
 本実施形態に係るリチウムイオン二次電池用正極では、前記式(1)で示される化合物と前記式(2)で示される化合物との混合物を正極活物質として用い、該正極活物質中のアルカリ金属水酸化物の含有量を0.15質量%以下とする。
 リチウムイオン二次電池の充放電サイクルにより正極活物質の膨張収縮が促進されると、正極活物質中に不純物として含まれる水酸化リチウム等のアルカリ金属水酸化物が溶出し、正極および負極の表面に蓄積する。蓄積したアルカリ金属水酸化物は絶縁物である上、活物質と電解液との接触を阻害するため、電極の抵抗が増大する。このため、アルカリ金属水酸化物により全面を覆われた活物質は、電池反応に寄与しなくなる。一方、アルカリ金属水酸化物により全面を覆われていない活物質のみが充放電に寄与するようになり、活物質の性能劣化が促進される。したがって、ある一定のサイクル回数において急速な性能劣化を引き起こす。
 本発明者らは当該現象を見出し、特に、前記式(1)で示される化合物と前記式(2)で示される化合物との混合物を正極活物質として用いる場合に、当該現象が顕著となることを見出した。前記式(1)で示される化合物と前記式(2)で示される化合物とでは動作電圧が異なり、より低電圧側では前記式(1)で示される化合物の充放電のみが寄与している。このとき、二次電池としては高電圧側と同じ動作電圧で電圧を印加する場合、前記式(1)で示される化合物の見かけの充放電レートは高くなり、よりアルカリ金属水酸化物による高抵抗化の影響を受けやすくなると考えられる。
 本発明者らは、前記混合物を正極活物質として用いる場合にも、正極活物質中のアルカリ金属水酸化物の含有量を0.15質量%以下とすることにより、アルカリ金属水酸化物による抵抗の増加を大幅に抑制することができ、充放電サイクルを繰り返しても高い容量維持率を示すリチウムイオン二次電池が得られることを見出した。以下、本実施形態の詳細について説明するが、本実施形態はこれらに限定されない。
 本実施形態に係る正極活物質は、前記式(1)で示される化合物と、前記式(2)で示される化合物とを含む。
 前記式(1)において、xは、正極活物質の初期充放電容量および充放電後の容量維持率のバランスの観点から、0.95≦x≦1.05であり、0.97≦x≦1.04であることが好ましく、0.98≦x≦1.03であることがより好ましい。yは、正極活物質の初期充放電容量、二次電池の安全性および充放電後の容量維持率のバランスの観点から、0.70≦y≦0.85であり、0.77≦y≦0.83であることが好ましく、0.79≦y≦0.81であることがより好ましい。zは、正極活物質の初期充放電容量および充放電後の容量維持率のバランスの観点から、0.05≦z≦0.20であり、0.10≦z≦0.20であることが好ましく、0.13≦z≦0.17であることがより好ましく、0.14≦z≦0.16であることがさらに好ましい。wは、充放電後の容量維持率の観点から、0.00≦w≦0.10であり、0.02≦w≦0.07であることが好ましく、0.04≦w≦0.06であることがより好ましい。
 前記式(2)において、uは、正極活物質の初期充放電容量および充放電後の容量維持率のバランスの観点から、0≦u≦0.05であり、0<u≦0.05であることが好ましく、0.02≦u≦0.04であることがより好ましく、0.03≦u≦0.04であることがさらに好ましい。なお、前記式(1)および前記式(2)における各元素の組成比は、前記式(2)のMnについては酸化還元滴定法、それ以外の元素については誘導結合プラズマ発光分光分析法により測定した値である。
 前記正極活物質中に含まれる前記式(1)で示される化合物の質量は、前記正極活物質中に含まれる前記式(1)で示される化合物と前記式(2)で示される化合物の合計の質量に対し、5質量%以上、50質量%以下であることが、本実施形態の効果をより得られる観点から好ましい。この割合は、10質量%以上、45質量%以下であることがより好ましく、15質量%以上、40質量%以下であることがさらに好ましく、20質量%以上、35質量%以下であることが特に好ましい。また、該割合は、30質量%以上、50質量%以下とすることができる。
 なお、本実施形態に係る正極活物質は、前記式(1)で示される化合物および前記式(2)で示される化合物以外の他の化合物を含んでもよい。しかしながら、正極活物質中に含まれる前記式(1)で示される化合物および前記式(2)で示される化合物の割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%、すなわち正極活物質が前記式(1)で示される化合物および前記式(2)で示される化合物からなることが特に好ましい。
 本実施形態では、前記正極活物質中のアルカリ金属水酸化物の含有量は0.15質量%以下である。該含有量は、充放電サイクルにおいてより容量維持率が向上する観点から、0.13質量%以下であることが好ましく、0.10質量%未満であることがより好ましく、0.09質量%以下であることがさらに好ましく、0.07質量%以下であることが特に好ましい。なお、該含有量は0質量%であってもよいが、充電状態にて保存した場合に容量維持率を確保する観点から、0.01質量%以上であることが好ましい。なお、前記正極活物質中のアルカリ金属水酸化物の含有量は、酸塩基滴定法により測定した値である。
 前記式(1)で示される化合物に不純物として含まれるアルカリ金属水酸化物の含有量は、0.45質量%以下であることが好ましい。前記式(1)で示される化合物は、その製造過程において、不純物としてアルカリ金属水酸化物、特に水酸化リチウムが含まれるようになる。該アルカリ金属水酸化物は、前記式(1)で示される化合物の一次粒子間に存在し、該一次粒子同士を結着する。前記式(1)で示される化合物と前記式(2)で示される化合物とを混合する際、また、正極活物質を含むスラリーを正極集電体に塗布する際に、大きな粒子が混在していると、所謂ダマが発生し、フィルタの詰まりや、塗布後の正極上にシミやスジが発生する。そのため、予め前記式(1)で示される化合物を粉砕処理しておく必要がある。しかし、前記式(1)で示される化合物にアルカリ金属水酸化物が多く含まれると、アルカリ金属水酸化物、特に水酸化リチウムは潮解性を有するため、強い結着力があり、粉砕処理において大きな外力が必要となる。該外力がアルカリ金属水酸化物ではなく、前記式(1)で示される化合物に掛かった場合には、前記式(1)で示される化合物の二次粒子が割れ、新生断面が発生する。正極活物質は電解液に曝される界面の面積が大きいほど劣化が速いため、二次粒子が割れた前記式(1)で示される化合物は充放電サイクルにおいて容量維持率が低下する。本実施形態では、前記式(1)で示される化合物に不純物として含まれるアルカリ金属水酸化物の含有量が0.45質量%以下であることにより、一次粒子同士の結着力を弱めることができ、粉砕処理においても二次粒子の割れを防ぐことができるため、容量維持率が向上する。前記式(1)で示される化合物に不純物として含まれるアルカリ金属水酸化物の含有量は、0.40質量%以下であることがより好ましく、0.35質量%以下であることがさらに好ましく、0.30質量%以下であることが特に好ましい。なお、前記式(1)で示される化合物に不純物として含まれるアルカリ金属水酸化物の含有量は、酸塩基滴定法により測定した値である。
 前記アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等が挙げられる。これらは単独で含まれていてもよく、二種以上が含まれていてもよい。前述したように、製造過程において前記式(1)で示される化合物に不純物として含まれることが多いことから、前記アルカリ金属水酸化物としては水酸化リチウムが好ましい。なお、前記アルカリ金属水酸化物は、前記式(1)で示される化合物および前記式(2)で示される化合物の少なくとも一方に含まれていてもよく、これらの化合物に対し別途添加されることで含まれていてもよい。
 前記式(1)で示される化合物を2質量%含む水分散液のpHは、11.0以上、11.5以下であることが好ましい。電解液中に電解質としてLiPFが含まれる場合、充放電においてLiPFの一部が分解し、この分解物が水と反応すると酸が発生する。該酸は、ルイス塩基である前記式(2)で示される化合物のMn骨格を攻撃し、Mnが溶出する。溶出したMnは負極側で絶縁物として析出するため、二次電池の抵抗が上昇する。本実施形態においては、前記式(1)で示される化合物を2質量%含む水分散液のpHが11.0以上であることにより、前記酸が中和され、Mnの溶出が抑制されるため、二次電池の抵抗上昇を防ぐことができる。また、電解液が、後述する充放電により負極にルイス酸を有する皮膜を形成できる化合物を含む場合、pHが高いと水酸化物イオンが負極を覆うスルホン酸基等のルイス酸を有する皮膜と酸塩基反応するため、負極の皮膜効果がなくなり、容量維持率が低下する。本実施形態においては、前記式(1)で示される化合物を2質量%含む水分散液のpHが11.5以下であることにより、前記酸塩基反応を抑制することができるため、負極の皮膜効果が十分に得られる。さらに、後述するようにバインダとしてポリフッ化ビニリデン(PVDF)を用いる場合、PVDFは水酸化物イオンと反応してゲル化するため、前記式(1)で示される化合物を2質量%含む水分散液のpHが11.5以下であることにより、前記ゲル化を抑制することができる。前記式(1)で示される化合物を2質量%含む水分散液のpHは、11.0以上、11.4以下であることがより好ましく、11.0以上、11.2以下であることがさらに好ましく、11.0を超えて、11.2以下であることが特に好ましい。なお、前記式(1)で示される化合物を2質量%含む水分散液のpHとは、前記式(1)で示される化合物を水中に2質量%分散させ、pHメーターで測定したpH値である。
 前記式(1)で示される化合物および前記式(2)で示される化合物の原料は、特に限定されない。Li原料としては、例えばLiCO、LiOH、LiO、LiSO等を用いることができる。Ni原料としては、例えばNiO、Ni(OH)、NiSO、Ni(NO等を用いることができる。Co原料としては、例えばCoO、Co(OH)、CoCO等を用いることができる。Al原料としては、例えばAl、Al(OH)等を用いることができる。Mn原料としては、例えば電解二酸化マンガン(EMD)、Mn、Mn、CMD(chemical manganese dioxide)等の種々のMn酸化物、MnCO、MnSO等を用いることができる。これらは1種を用いてもよく、2種以上を併用してもよい。
 前記式(1)で示される化合物および前記式(2)で示される化合物の製造方法は、特に限定されない。例えば、前記原料を目的の金属組成比となるように秤量して混合する。混合は、ボールミル、ジェットミル等により粉砕混合することにより行うことができる。得られた混合粉を例えば400℃から1200℃の温度で、空気中又は酸素中で焼成することにより、前記化合物が得られる。
 本実施形態に係るリチウムイオン二次電池用正極は、前記正極活物質を含む。該リチウムイオン二次電池用正極は、例えば前記正極活物質を正極集電体上に付与することで作製することができる。具体的には、前記正極活物質、バインダ、および導電助剤を溶媒に分散させてスラリーを調製し、該スラリーを正極集電体上に塗布し、乾燥することで作製することができる。バインダとしては、例えばポリフッ化ビニリデン(PVDF)、アクリル系樹脂、ポリテトラフロロエチレン等を用いることができる。これらの中でも、本実施形態の効果がより得られる観点から、バインダとしてはPVDFが好ましい。導電助剤としては、例えば炭素材料、アルミニウム等の金属物質、導電性酸化物の粉末等を用いることができる。正極集電体としては、例えばアルミニウム等を主に含む金属薄膜等を用いることができる。溶媒としては、例えばN-メチル-2-ピロリドン(NMP)等を用いることができる。
 バインダの添加量は1~10質量%とすることができる。該添加量を1質量%以上とすることにより、正極の剥離を防ぐことができる。また、該添加量を10質量%以下とすることにより、正極活物質質量の割合を大きくすることができるため、質量あたりの容量を大きくすることができる。導電助剤の添加量は1~10質量%とすることができる。該添加量を1質量%以上とすることにより、十分な導電性を保つことができる。また、該添加量を10質量%以下とすることにより、正極活物質質量の割合を大きくすることができるため、質量あたりの容量を大きくすることができる。
 [リチウムイオン二次電池]
 本実施形態に係るリチウムイオン二次電池は、本実施形態に係るリチウムイオン二次電池用正極と、負極とを備える。例えば、本実施形態に係るリチウムイオン二次電池用正極と、リチウムを吸蔵放出可能な負極活物質を備える負極とを備える。該正極と該負極との間には電気的接続を起こさないようにセパレータが挟まれ、該正極と該負極とはリチウムイオン伝導性の電解液に浸った状態であり、これらが外装体内に密閉されている。
 本実施形態に係るリチウムイオン二次電池の構成の一例を図1に示す。正極集電体3上に前記正極活物質を含む正極活物質層1が形成され、本実施形態に係るリチウムイオン二次電池用正極が構成されている。また、負極集電体4上に負極活物質を含む負極活物質層2が形成され、負極が構成されている。これらの正極と負極とは、電解液に浸漬された状態でセパレータ5を介して対向配置されている。これらは外装体6、7内に収容されている。正極は正極タブ9の一方の端部と、負極は負極タブ8の一方の端部と接続されており、正極タブ9および負極タブ8の他方の端部は、それぞれ二次電池の外部に引き出されている。
 正極と負極に電圧を印加することにより正極活物質からリチウムイオンが脱離し、負極活物質にリチウムイオンが吸蔵され、充電状態となる。また、正極と負極の電気的接触を二次電池外部で起こすことにより、充電時とは逆に負極活物質からリチウムイオンが放出され、正極活物質にリチウムイオンが吸蔵されることにより放電が起こる。
 負極活物質としては、リチウムを吸蔵放出可能な材料を用いることができる。負極活物質としては、例えば、黒鉛、ハードカーボン、ソフトカーボン、非晶質炭素等の炭素材料、Li金属、Si、Sn、Al、SiO等のSi酸化物、Sn酸化物、LiTi12、TiO等のTi酸化物、V含有酸化物、Sb含有酸化物、Fe含有酸化物、Co含有酸化物等を用いることができる。これらの負極活物質は一種を用いてもよく、二種以上を併用してもよい。負極活物質としては、容量維持率と安全性の観点から黒鉛が好ましい。
 特に、負極活物質としては、表面に皮膜を備えない黒鉛、または、表面に皮膜を備える黒鉛であって、皮膜の量が黒鉛に対して10質量%未満である黒鉛が好ましい。皮膜の量が黒鉛に対して10質量%未満である黒鉛を用いる場合、該皮膜は黒鉛を十分に覆っておらず、電解液が後述する添加剤を含む場合には、ルイス酸を有する皮膜が負極を覆っている。このルイス酸を有する皮膜がアルカリ金属水酸化物との反応により溶出すると、Liのインターカレーション反応が大幅に進み、Liが負極中に捕捉されたままとなるため、充放電サイクルにおいて容量維持率が低下する場合がある。したがって、皮膜の量が黒鉛に対して10質量%未満である黒鉛を用いる場合、本実施形態による効果がより大きく得られる。また、皮膜の量が黒鉛に対して10質量%未満である黒鉛を用いる場合、初期容量が大きくなるため、充放電サイクルの当初から正極にかかる電圧が増加する傾向がある。この状態で、充放電サイクルに伴いアルカリ金属水酸化物が溶出すると、前述した前記式(1)で示される化合物が寄与する低電圧側での充放電にかかる時間が増加するため、アルカリ金属水酸化物による高抵抗化の影響が増加する。このため、皮膜の量が黒鉛に対して10質量%未満である黒鉛を用いる場合、本実施形態による効果がより大きく得られる。負極活物質としては、皮膜の量が黒鉛に対して8質量%以下である黒鉛が好ましく、6質量%以下である黒鉛がより好ましく、4質量%以下である黒鉛がさらに好ましい。
 黒鉛の表面に設けられる皮膜としては、ピッチ等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。なお、該皮膜は後述するSEI皮膜とは異なり、予め黒鉛表面に存在する皮膜である。
 負極は、例えば前記負極活物質を負極集電体上に付与することで作製することができる。具体的には、前記負極活物質、バインダ、および導電助剤を溶媒に分散させてスラリーを調製し、該スラリーを負極集電体上に塗布し、乾燥することで作製することができる。バインダとしては、例えばPVDF、アクリル系樹脂、スチレンブタジエンゴム、イミド系樹脂、イミドアミド系樹脂、ポリテトラフロロエチレン等を用いることができる。導電助剤としては、例えば炭素材料、アルミニウム等の金属物質、導電性酸化物の粉末等を用いることができる。負極集電体としては、例えばアルミニウム、銅等を主に含む金属薄膜等を用いることができる。溶媒としては、例えばNMP等を用いることができる。
 バインダの添加量は1~10質量%とすることができる。該添加量を1質量%以上とすることにより、負極の剥離を防ぐことができる。また、該添加量を10質量%以下とすることにより、負極活物質質量の割合を大きくすることができるため、質量あたりの容量を大きくすることができる。導電助剤の添加量は1~10質量%とすることができる。該添加量を1質量%以上とすることにより、十分な導電性を保つことができる。また、該添加量を10質量%以下とすることにより、負極活物質質量の割合を大きくすることができるため、質量あたりの容量を大きくすることができる。
 電解液としては、溶媒に支持塩としてのリチウム塩を溶解させた溶液を用いることができる。該溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。これらのうち、高電圧での安定性や、溶媒の粘度の観点から、溶媒としては環状カーボネートと鎖状カーボネートとの混合溶液が好ましい。
 前記リチウム塩としては、例えばLiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO、LiN(CSO、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。前記リチウム塩としては、本実施形態の効果がより得られる観点から、LiPFが好ましい。
 支持塩であるリチウム塩の濃度は、0.5~1.5mol/Lが好ましい。リチウム塩の濃度を0.5mol/L以上とすることにより、十分な電気伝導率を得ることができる。また、リチウム塩の濃度を1.5mol/L以下とすることにより、密度と粘度の増加を抑制することができる。
 電解液は、充放電により負極の表面に良質なSEI(Solid Electrolyte Interface)皮膜を形成させるために、添加剤を含むことが好ましい。SEI皮膜には、電解液との反応性を抑制したり、リチウムイオンの挿入脱離に伴う脱溶媒和反応を円滑にして負極活物質の構造劣化を防止したりする働きがある。該添加剤としては、例えば、メチレンメタンジスルホン酸エステル(MMDS)、エチレンメタンジスルホン酸エステル、プロパンメタンジスルホン酸エステル等の環状ジスルホン酸エステル、1,3-プロパンスルトン、プロペンスルトン、ブタンスルトン等の環状スルホン酸エステル、スルホラン等の環状スルホン、フッ素化エチレンカーボネート(FEC)、トリフルオロメチルプロピレンカーボネート、クロロエチレンカーボネート等の環状ハロゲン化カーボネート、ビニレンカーボネート(VC)、ビニルエチレンカーボネート、フェニレンカーボネート、アリルメチルカーボネート(AMC)等の不飽和カーボネート、無水マレイン酸、無水コハク酸、無水フタル酸等の酸無水物、コハク酸イミド等の環状イミド、リチウムビスオキサレートボレート(LiBOB)、ジフルオロ[オキソラト-O,O’]ホウ酸リチウム(LiBF(C))、エチレンサルファイト(ES)、ビニルエチレンサルファイト、ブチレンサルファイト、ジメチルサルファイト、ジエチルサルファイト等のサルファイト、ビニルアセテート、ジビニルアジペート(ADV)等の不飽和エステル、ジメチルグリコリド、テトラメチルグリコリド等のグリコリド、シアノフラン等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。これらの中でも、本実施形態の効果がより得られる観点から、該添加剤としては、充放電により負極にスルホン酸基等のルイス酸を有する皮膜を形成できる化合物が好ましい。該化合物としては、前記環状ジスルホン酸エステル、前記環状スルホン酸エステル、等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。
 電解液中に含まれる添加剤の量は、0.1質量%以上、10質量%以下が好ましく、0.5質量%以上、3質量%以下がより好ましい。添加剤の量が0.1質量%以上であることにより、良質なSEI皮膜を形成できる。また、添加剤の量が10質量%以下であることにより、抵抗が低く、ガス発生を抑制できる。
 なお、電解液の溶媒にポリマー等を添加して、電解液をゲル状に固化したポリマー電解質を用いてもよい。
 セパレータとしては、ポリエチレン、ポリプロピレン、ポリイミド、ポリアミド等を含む微多孔質膜が挙げられる。
 外装体としては、電池缶、合成樹脂と金属箔との積層体からなるラミネートフィルム等が挙げられる。
 本実施形態に係るリチウムイオン二次電池は、本実施形態に係るリチウムイオン二次電池用正極を用いて組み立てることで製造することができる。例えば、乾燥空気又は不活性ガス雰囲気下において、本実施形態に係るリチウムイオン二次電池用正極と負極とを、セパレータを介して電気的接触がない状態で対向配置させる。前記正極と負極とをセパレータを挟んで対向配置させたものを、円筒状又は積層状にする。これを外装体内に収納し、正極活物質、負極活物質の両方が電解液に接するように電解液に浸す。正極、負極それぞれに、正極タブ、負極タブを接続し、これらの電極タブが外装体外部に通ずるようにして、外装体を密閉することでリチウムイオン二次電池を作製することができる。
 セパレータを挟んで対向配置されている正極及び負極は、巻回型、積層型等の形態を取ることができる。また、リチウムイオン二次電池の形式としてはコイン型、ラミネート型等が挙げられる。リチウムイオン二次電池の形状としては、角型、円筒型等が挙げられる。
 以下、本実施形態の実施例を示すが、本実施形態はこれらに限定されない。
 [実施例1]
 (正極の作製)
 アルカリ金属水酸化物を含まないLi1.01(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:3の質量比で混合し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は0質量%であった。また、Li1.01(Ni0.80Co0.15Al0.05を2質量%含む水分散液のpHは10.8であった。
 前記正極活物質と、バインダとしてのPVDF(商品名:#7200、(株)クレハ製)と、導電助剤としてのアセチレンブラック(商品名:super-C65、ティムカル社製)とを、93:3:4の質量比でN-メチル-2-ピロリドン(NMP)中に分散させ、スラリーを調製した。該スラリーをアルミニウム箔である正極集電体の両面に塗布し、乾燥させた。これにより、正極を得た。
 (負極の作製)
 負極活物質としての黒鉛と、バインダとしてのスチレンブタジエンゴム(商品名:SBR、日本ゼオン製)と、増粘剤としてのカルボキシメチルセルロース(CMC、日本製紙社製)と、導電助剤としてのアセチレンブラック(商品名:super-C65、ティムカル社製)とを、96.5:1.5:1:1の質量比でNMP中に分散させ、スラリーを調製した。該スラリーを銅箔である負極集電体の両面に塗布し、乾燥させた。これにより、負極を得た。なお、前記黒鉛の表面には、黒鉛に対して4質量%のピッチからなる皮膜が形成されている。
 (リチウムイオン二次電池の作製)
 前記正極と前記負極との間に、ポリプロピレンからなるセパレータを配置し、負極、セパレータおよび正極の単位層を複数回積層した。得られた積層体をラミネートフィルムからなる外装体に挿入した。さらに、EC:DEC=30:70(体積%)の混合溶媒に、支持塩として1mol/LのLiPFを溶解し、さらに添加剤としてMMDSを1.6質量%混合した電解液を注入した。その後、外装体内部を真空状態として封止した。これにより、本実施例におけるリチウムイオン二次電池を得た。
 (サイクル試験)
 作製したリチウムイオン二次電池を45℃の恒温槽内に配置した。1C(5.0A)の定電流で4.20Vまで充電した後、4.20Vで定電圧充電を行うCCCV方式で充電を行い、1回の合計の充電時間を2.5時間とした。その後、1C(5.0A)の定電流で3.0Vまで放電した。この充放電サイクルを所定のサイクル数繰り返した。所定のサイクル数における放電容量と、初回の放電容量との比率を容量維持率として算出した。
 [実施例2]
 水酸化リチウムを0.29質量%含むLi1.01(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:3の質量比で混合し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は0.07質量%であった。また、Li1.01(Ni0.80Co0.15Al0.05)Oを2質量%含む水分散液のpHは11.2であった。該正極活物質を用いて正極を作製した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。
 [実施例3]
 水酸化リチウムを0.36質量%含むLi1.01(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:3の質量比で混合し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は0.09質量%であった。また、Li1.01(Ni0.80Co0.15Al0.05)Oを2質量%含む水分散液のpHは11.4であった。該正極活物質を用いて正極を作製した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。
 [実施例4]
 水酸化リチウムを0.43質量%含むLi1.01(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:3の質量比で混合し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は0.11質量%であった。また、Li1.01(Ni0.80Co0.15Al0.05)Oを2質量%含む水分散液のpHは11.5であった。該正極活物質を用いて正極を作製した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。
 [実施例5]
 水酸化リチウムを0.43質量%含むLi0.98(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:3の質量比で混合し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は0.11質量%であった。また、Li0.98(Ni0.80Co0.15Al0.05)Oを2質量%含む水分散液のpHは11.4であった。該正極活物質を用いて正極を作製した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。
 [実施例6]
 水酸化リチウムを0.43質量%含むLi1.03(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:3の質量比で混合し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は0.11質量%であった。またLi1.03(Ni0.80Co0.15Al0.05)Oを2質量%含む水分散液のpHは11.5であった。該正極活物質を用いて正極を作製した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。
 [比較例1]
 水酸化リチウムを0.64質量%含むLi1.01(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:3の質量比で混合し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は0.16質量%であった。また、Li1.01(Ni0.80Co0.15Al0.05)Oを2質量%含む水分散液のpHは11.7であった。該正極活物質を用いて正極を作製した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。
 [比較例2]
 水酸化リチウムを1.30質量%含むLi1.01(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:3の質量比で混合し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は0.33質量%であった。また、Li1.01(Ni0.80Co0.15Al0.05)Oを2質量%含む水分散液のpHは12.0であった。該正極活物質を用いて正極を作製した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。
 [比較例3]
 水酸化リチウムを1.20質量%含むLi1.01(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:3の質量比で混合し、さらに水酸化ナトリウムを正極活物質全体の0.10質量%となるように添加し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は1.30質量%であった。該正極活物質中の水酸化リチウムの含有量は0.30質量%であった。また、Li1.01(Ni0.80Co0.15Al0.05)Oを2質量%含む水分散液のpHは12.0であった。該正極活物質を用いて正極を作製した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。
 [比較例4]
 水酸化リチウムを0.64質量%含むLi0.98(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:3の質量比で混合し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は0.16質量%であった。また、Li0.98(Ni0.80Co0.15Al0.05)Oを2質量%含む水分散液のpHは11.6であった。該正極活物質を用いて正極を作製した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。
 [比較例5]
 水酸化リチウムを0.64質量%含むLi1.03(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:3の質量比で混合し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は0.16質量%であった。また、Li1.03(Ni0.80Co0.15Al0.05)Oを2質量%含む水分散液のpHは11.8であった。該正極活物質を用いて正極を作製した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。
 [比較例6]
 水酸化リチウムを0.80質量%含むLi1.01(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:4の質量比で混合し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は0.16質量%であった。また、Li1.01(Ni0.80Co0.15Al0.05)Oを2質量%含む水分散液のpHは11.7であった。該正極活物質を用いて正極を作製した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。
 [比較例7]
 水酸化リチウムを0.48質量%含むLi1.01(Ni0.80Co0.15Al0.05)Oと、Li1.03Mn1.99とを1:2の質量比で混合し、正極活物質を調製した。なお、該正極活物質中のアルカリ金属水酸化物の含有量は0.16質量%であった。また、Li1.01(Ni0.80Co0.15Al0.05)Oを2質量%含む水分散液のpHは11.6であった。該正極活物質を用いて正極を作製した以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。
 [比較例8]
 添加剤として、MMDSの代わりにビニレンカーボネート(VC)を用いた以外は比較例1と同様にリチウムイオン二次電池を作製し、評価した。
 [比較例9]
 添加剤として、MMDSの代わりにフッ素化エチレンカーボネート(FEC)を用いた以外は比較例1と同様にリチウムイオン二次電池を作製し、評価した。
 [比較例10]
 負極活物質として、表面に皮膜が形成されていない黒鉛を用いた以外は比較例1と同様に負極を作製した。該負極を用いた以外は比較例1と同様にリチウムイオン二次電池を作製し、評価した。
 [比較例11]
 負極活物質として、黒鉛に対して10質量%のピッチからなる皮膜が形成された黒鉛を用いた以外は比較例1と同様に負極を作製した。該負極を用いた以外は比較例1と同様にリチウムイオン二次電池を作製し、評価した。
 正極活物質中のアルカリ金属水酸化物の含有量の影響を確認するために、実施例1から4、並びに比較例1および2のサイクル試験の結果を図2に示す。アルカリ金属水酸化物の別途の添加の影響を確認するために、比較例2および3のサイクル試験の結果を図3に示す。式(1)で示される化合物のLi組成の影響を確認するために、比較例1、4および5のサイクル試験の結果を図4に、実施例4から6のサイクル試験の結果を図5にそれぞれ示す。式(1)で示される化合物と式(2)で示される化合物との混合割合の影響を確認するために、比較例1、6および7のサイクル試験の結果を図6に示す。添加剤の種類の影響を確認するために、比較例1、8および9のサイクル試験の結果を図7に示す。黒鉛表面の皮膜量の影響を確認するために、比較例1、10および11のサイクル試験の結果を図8に示す。
Figure JPOXMLDOC01-appb-T000001
 
 この出願は、2014年2月20日に出願された日本出願特願2014-30511を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 

Claims (13)

  1.  下記式(1)
      Li(NiCoAl)O  (1)
    (式(1)において、0.95≦x≦1.05、0.70≦y≦0.85、0.05≦z≦0.20、0.00≦w≦0.10であり、y+z+w=1である)
    で示される化合物と、下記式(2)
      Li1+uMn2-u/3  (2)
    (式(2)において、0≦u≦0.05である)
    で示される化合物と、を含む正極活物質を含み、
     前記正極活物質中のアルカリ金属水酸化物の含有量が0.15質量%以下であるリチウムイオン二次電池用正極。
  2.  前記式(1)で示される化合物に不純物として含まれるアルカリ金属水酸化物の含有量が0.45質量%以下である請求項1に記載のリチウムイオン二次電池用正極。
  3.  前記アルカリ金属水酸化物が水酸化リチウムである請求項1または2に記載のリチウムイオン二次電池用正極。
  4.  前記式(1)で示される化合物を2質量%含む水分散液のpHが11.0以上、11.5以下である請求項1から3のいずれか1項に記載のリチウムイオン二次電池用正極。
  5.  前記正極活物質中のアルカリ金属水酸化物の含有量が0.01質量%以上である請求項1から4のいずれか1項に記載のリチウムイオン二次電池用正極。
  6.  前記正極活物質中のアルカリ金属水酸化物の含有量が0.10質量%未満である請求項1から5のいずれか1項に記載のリチウムイオン二次電池用正極。
  7.  前記正極活物質中に含まれる前記式(1)で示される化合物の質量が、前記正極活物質中に含まれる前記式(1)で示される化合物と前記式(2)で示される化合物の合計の質量に対し、5質量%以上、50質量%以下である請求項1から6のいずれか1項に記載のリチウムイオン二次電池用正極。
  8.  バインダとしてポリフッ化ビニリデンを含む請求項1から7のいずれか1項に記載のリチウムイオン二次電池用正極。
  9.  請求項1から8のいずれか1項に記載のリチウムイオン二次電池用正極と、負極とを備えるリチウムイオン二次電池。
  10.  前記負極が、黒鉛を含む負極活物質を含む請求項9に記載のリチウムイオン二次電池。
  11.  前記黒鉛が表面に皮膜を備えない、または、前記黒鉛が表面に皮膜を備え、該皮膜の量が黒鉛に対して10質量%未満である請求項10に記載のリチウムイオン二次電池。
  12.  添加剤として、充放電により前記負極にルイス酸を有する皮膜を形成できる化合物を含む電解液を備える請求項9から11のいずれか1項に記載のリチウムイオン二次電池。
  13.  LiPFを含む電解液を備える請求項9から12のいずれか1項に記載のリチウムイオン二次電池。
     
PCT/JP2015/053179 2014-02-20 2015-02-05 リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池 WO2015125610A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201811331403.9A CN110098376B (zh) 2014-02-20 2015-02-05 锂离子二次电池用正极和使用其的锂离子二次电池
EP15752260.8A EP3109929B1 (en) 2014-02-20 2015-02-05 Lithium ion secondary battery cathode and lithium ion secondary battery using same
CN201580009460.3A CN106030863B (zh) 2014-02-20 2015-02-05 锂离子二次电池用正极和使用其的锂离子二次电池
US15/119,016 US20160351902A1 (en) 2014-02-20 2015-02-05 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-030511 2014-02-20
JP2014030511A JP5709231B1 (ja) 2014-02-20 2014-02-20 リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2015125610A1 true WO2015125610A1 (ja) 2015-08-27

Family

ID=53277171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053179 WO2015125610A1 (ja) 2014-02-20 2015-02-05 リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20160351902A1 (ja)
EP (1) EP3109929B1 (ja)
JP (1) JP5709231B1 (ja)
CN (2) CN110098376B (ja)
WO (1) WO2015125610A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826606A (zh) * 2016-05-16 2016-08-03 宁德时代新能源科技股份有限公司 一种电解液以及包含该电解液的锂离子电池
US20180076479A1 (en) * 2015-03-24 2018-03-15 Nec Corporation Lithium-ion secondary cell and method for manufacturing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985318B2 (en) * 2015-06-22 2018-05-29 Wildcat Discovery Technologies, Inc Electrolyte formulations
WO2017049471A1 (en) * 2015-09-23 2017-03-30 Basf Corporation Electrolyte for lto type lithium ion batteries
US10199687B2 (en) 2016-08-30 2019-02-05 Wildcat Discovery Technologies, Inc Electrolyte formulations for electrochemical cells containing a silicon electrode
CN108206281B (zh) * 2016-12-20 2020-06-19 比亚迪股份有限公司 一种三元材料及其制备方法以及电池浆料和正极与锂电池
JP7013876B2 (ja) * 2018-01-09 2022-02-01 トヨタ自動車株式会社 リチウムイオン二次電池の正極板、リチウムイオン二次電池、及びリチウムイオン二次電池の正極板の製造方法
US10950899B2 (en) 2018-05-31 2021-03-16 Nio Usa, Inc. Abuse tolerance in battery modules
US10756391B2 (en) * 2018-10-23 2020-08-25 Nio Usa, Inc. Method and system for secondary internal current mechanisms for a lithium-ion cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208728A (ja) * 1997-01-21 1998-08-07 Nippon Chem Ind Co Ltd リチウム二次電池用正極剤組成物及びリチウム二次電池
JP2000003724A (ja) * 1997-08-22 2000-01-07 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2002319435A (ja) * 2001-04-19 2002-10-31 Sony Corp 非水電解質二次電池及びその製造方法
JP2007080583A (ja) * 2005-09-12 2007-03-29 Nissan Motor Co Ltd 二次電池用電極と二次電池
JP2010155775A (ja) * 2008-12-04 2010-07-15 Toda Kogyo Corp リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池
JP2012230898A (ja) * 2011-04-14 2012-11-22 Toda Kogyo Corp Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2245354C (en) * 1997-08-22 2009-01-06 Ube Industries, Ltd. Lithium secondary battery and electrolyte thereof
JP5095090B2 (ja) * 2005-06-07 2012-12-12 日立マクセルエナジー株式会社 非水電解液二次電池
JP2009129747A (ja) * 2007-11-26 2009-06-11 Nec Corp 二次電池
JP5638542B2 (ja) * 2010-01-21 2014-12-10 住友金属鉱山株式会社 非水電解質二次電池用正極活物質、その製造方法及びそれを用いた非水電解質二次電池
WO2012077929A2 (ko) * 2010-12-08 2012-06-14 주식회사 엘지화학 음극 활물질 및 이를 이용한 이차전지
US20120064229A1 (en) * 2011-05-10 2012-03-15 International Battery, Inc. Polymer acids as binder and ph reducing agent for aqueous lithium-ion cells
US10340550B2 (en) * 2012-04-05 2019-07-02 Nec Energy Devices, Ltd. Lithium ion secondary cell
WO2013172133A1 (ja) * 2012-05-14 2013-11-21 Necエナジーデバイス株式会社 二次電池用正極電極、二次電池、及びそれらの製造方法
CN103247797B (zh) * 2013-05-20 2015-10-28 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池正极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208728A (ja) * 1997-01-21 1998-08-07 Nippon Chem Ind Co Ltd リチウム二次電池用正極剤組成物及びリチウム二次電池
JP2000003724A (ja) * 1997-08-22 2000-01-07 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2002319435A (ja) * 2001-04-19 2002-10-31 Sony Corp 非水電解質二次電池及びその製造方法
JP2007080583A (ja) * 2005-09-12 2007-03-29 Nissan Motor Co Ltd 二次電池用電極と二次電池
JP2010155775A (ja) * 2008-12-04 2010-07-15 Toda Kogyo Corp リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池
JP2012230898A (ja) * 2011-04-14 2012-11-22 Toda Kogyo Corp Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3109929A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180076479A1 (en) * 2015-03-24 2018-03-15 Nec Corporation Lithium-ion secondary cell and method for manufacturing same
CN105826606A (zh) * 2016-05-16 2016-08-03 宁德时代新能源科技股份有限公司 一种电解液以及包含该电解液的锂离子电池

Also Published As

Publication number Publication date
US20160351902A1 (en) 2016-12-01
CN106030863A (zh) 2016-10-12
CN110098376A (zh) 2019-08-06
CN110098376B (zh) 2022-08-26
CN106030863B (zh) 2018-11-16
JP5709231B1 (ja) 2015-04-30
EP3109929A1 (en) 2016-12-28
JP2015156290A (ja) 2015-08-27
EP3109929A4 (en) 2017-10-18
EP3109929B1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP5709231B1 (ja) リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池
JP4697382B2 (ja) 非水電解質二次電池
JP5582587B2 (ja) リチウムイオン二次電池
JP5278994B2 (ja) リチウム二次電池
JP5310711B2 (ja) 非水電解質二次電池
JP5999090B2 (ja) 二次電池用活物質
JP4288402B2 (ja) 二次電池用電解液、二次電池および二次電池の使用方法
JP2006344509A (ja) リチウム二次電池
JP2011181353A (ja) 非水電解質組成物、および非水電解質電池
CN110024198B (zh) 非水电解质二次电池
JP5298767B2 (ja) 二次電池用電極及びその製造方法並びにその電極を採用した二次電池
JP4304570B2 (ja) 非水電解液およびそれを用いた二次電池
WO2012073747A1 (ja) 非水電解質二次電池用正極、その製造方法及び非水電解質二次電池
JP5213011B2 (ja) リチウム二次電池用負極、およびそれを用いたリチウム二次電池
JP2012243461A (ja) 二次電池
JP6264297B2 (ja) リチウムイオン二次電池用電極およびこれを用いたリチウムイオン二次電池
JP4867161B2 (ja) 非水電解質二次電池
JP6072689B2 (ja) 非水電解質二次電池
JP4618404B2 (ja) 非水電解液二次電池
WO2014087922A1 (ja) 二次電池
JP6630059B2 (ja) リチウムイオン二次電池およびその製造方法
JP2011040333A (ja) 非水電解液二次電池
JP2004284845A (ja) リチウムニッケル銅酸化物及びその製造方法並びに非水電解質二次電池
JP7133776B2 (ja) 非水電解質二次電池
JP2006156234A (ja) 非水電解液二次電池及びその充電方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15119016

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015752260

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015752260

Country of ref document: EP