WO2015125472A1 - レーザ加工装置 - Google Patents

レーザ加工装置 Download PDF

Info

Publication number
WO2015125472A1
WO2015125472A1 PCT/JP2015/000751 JP2015000751W WO2015125472A1 WO 2015125472 A1 WO2015125472 A1 WO 2015125472A1 JP 2015000751 W JP2015000751 W JP 2015000751W WO 2015125472 A1 WO2015125472 A1 WO 2015125472A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
time
time point
laser beam
signal
Prior art date
Application number
PCT/JP2015/000751
Other languages
English (en)
French (fr)
Inventor
雅史 石黒
学 西原
義典 佐々木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016503976A priority Critical patent/JPWO2015125472A1/ja
Priority to US15/113,782 priority patent/US20170008128A1/en
Priority to CN201580009595.XA priority patent/CN106029289B/zh
Priority to EP15751429.0A priority patent/EP3108992A4/en
Publication of WO2015125472A1 publication Critical patent/WO2015125472A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems

Definitions

  • the present disclosure relates to a laser processing apparatus that performs drilling or the like on a substrate using laser light, and particularly relates to prevention of processing defects due to deterioration of characteristics of a laser oscillator used in the laser processing apparatus.
  • the drilling of base materials is becoming more and more precise, and therefore drilling using laser light is increasing.
  • the laser oscillator used in the laser processing apparatus is provided as a part of the laser processing apparatus.
  • the laser oscillator also deteriorates the characteristics of the laser beam to be output due to deterioration of the laser medium due to long-time use. Since severe deterioration of the output characteristics of the laser beam hinders precise laser drilling, it is necessary to know the output state of the laser beam from the laser oscillator.
  • FIG. 15 is a block diagram showing a schematic configuration of a conventional laser processing apparatus 100.
  • FIG. 16 is a graph showing detection values of the photodetector 103 of the conventional laser processing apparatus 100.
  • the conventional laser processing apparatus 100 includes a laser oscillator 101, a beam splitter 102, a photodetector 103, a counter 104, a main controller 105, and a display 106.
  • the main controller 105 outputs a pulse emission command signal to the laser oscillator 101.
  • the laser oscillator 101 Upon receiving the pulse emission command signal, the laser oscillator 101 emits the laser r, and a part of the laser r is divided as a determination laser ra by the beam splitter 102 installed in the optical path of the laser r and guided to the photodetector 103. It is burned.
  • the photodetector 103 measures the energy intensity of the determination laser ra.
  • the laser r separated from the determination laser ra is irradiated on the substrate by changing the irradiation direction by a galvanometer. After laser hole machining is performed by irradiating one divided region of the substrate with laser r for one or a plurality of pulses, the irradiation direction of laser r is changed to the divided region to be laser drilled next by a galvanometer.
  • the photodetector 103 measures the energy intensity by converting the light energy of the divided determination laser ra into electric energy.
  • FIG. 16 shows the voltage of the laser pulse P1, which is the maximum voltage value V1, the voltage of the laser pulse P2, which is the maximum voltage value V2, and the reference value Vx, which are measured by the photodetector 103.
  • the counter 104 is connected to the photodetector 103, measures the number of determination laser ra indicating a voltage value equal to or higher than the reference value Vx necessary for laser drilling, and sends the measured number to the main controller 105.
  • the main controller 105 controls the laser oscillator 101 and the counter 104, and compares the number of measurements from the counter 104 with the number of lasers r emitted. That is, if the voltage value detected by the photodetector 103 is equal to or greater than the reference value Vx (the maximum voltage value V1 of the laser pulse P1), the main controller 105 determines that laser drilling has been performed satisfactorily. If the voltage value detected by the photodetector 103 is lower than the reference value Vx (maximum voltage value V2 of the laser pulse P2), the main controller 105 determines that the laser hole machining is defective.
  • the main controller 105 determines the quality of the laser drilling and outputs the determination result to the outside or displays it on the display unit 106. As a result, it is possible to know the divided region where the processing defect has occurred and the progress of the laser hole processing.
  • the irradiation direction of the hole laser light is moved by a galvanometer.
  • the time until the output of the laser beam decreases to near zero is extended due to the deterioration of the falling characteristics of the laser oscillator, the laser beam is irradiated even while the galvano scanner moves in the laser beam irradiation direction. The Therefore, the hole shape by laser hole processing becomes an ellipse or a teardrop shape.
  • the laser processing apparatus of the present disclosure monitors the falling characteristics of the laser pulse energy to warn or prevent the occurrence of laser processing defects.
  • a laser processing apparatus includes a laser oscillator, a spectroscope, a photodetector, an irradiation unit, and a control unit.
  • the laser oscillator outputs laser light.
  • the spectroscope receives a laser beam, and separates the laser beam into a processing laser beam and a measurement laser beam and emits the laser beam.
  • the photodetector receives the measurement laser beam and transmits a detection signal indicating the intensity of the measurement laser beam.
  • the irradiation unit receives the processing laser beam and irradiates the workpiece with the processing laser beam.
  • the control unit is connected to the laser oscillator, the photodetector, and the irradiation unit.
  • control unit starts output of the laser light at the first time point, and transmits an output signal to stop the output of the laser light to the laser oscillator at the second time point after the first time point. Further, the control unit receives a detection signal indicating a first detection intensity larger than the first set intensity from the photodetector at a third time point after the second time point. Furthermore, a control part transmits the drive signal which controls the drive of an irradiation part to an irradiation part at the 4th time after the 3rd time. Further, the control unit transmits a warning signal at a fifth time after the third time.
  • a laser processing apparatus includes a laser oscillator, a spectroscope, a photodetector, an irradiation unit, and a control unit.
  • the laser oscillator outputs laser light.
  • the spectroscope receives a laser beam, and separates the laser beam into a processing laser beam and a measurement laser beam and emits the laser beam.
  • the photodetector receives the measurement laser beam and transmits a detection signal indicating the intensity of the measurement laser beam.
  • the irradiation unit receives the processing laser beam and irradiates the workpiece with the processing laser beam.
  • the control unit is connected to the laser oscillator, the photodetector, and the irradiation unit.
  • control unit starts output of the laser light at the first time point, and transmits an output signal to stop the output of the laser light to the laser oscillator at the second time point after the first time point. Further, the control unit periodically receives the detection signal from the photodetector after the second time point. Furthermore, the control unit receives a detection signal indicating a third detection intensity smaller than the third set intensity from the photodetector at a seventh time point after the second time point. Further, the control unit transmits a drive signal for operating the irradiation unit to the irradiation unit at an eighth time point after the seventh time point.
  • the laser processing apparatus monitors the deterioration of the falling characteristics of the laser pulse energy and warns or prevents the occurrence of laser processing defects.
  • FIG. 1 is a perspective view showing a schematic configuration of the laser processing apparatus according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a detailed configuration of the control unit according to the first embodiment.
  • FIG. 3 is a time chart showing the states of (a) laser pulse output command signal, (b) detection signal, and (c) galvano operation command signal of the laser processing apparatus according to the first embodiment.
  • FIG. 4 is a time chart showing the states of (a) laser pulse output command signal, (b) detection signal, and (c) galvano operation command signal of the laser processing apparatus according to the first embodiment.
  • FIG. 5 is a flowchart showing the operation of the laser processing apparatus according to the first embodiment.
  • FIG. 6 is a time chart showing the states of (a) laser pulse output command signal, (b) detection signal, and (c) galvano operation command signal of the laser processing apparatus according to Modification 1 of Embodiment 1.
  • FIG. 7 is a time chart showing the states of (a) a laser pulse output command signal, (b) a detection signal, and (c) a galvano operation command signal of the laser processing apparatus according to the second modification of the first embodiment.
  • FIG. 8 is a flowchart showing the operation of the laser processing apparatus according to the second modification of the first embodiment.
  • FIG. 9 is a time chart showing the states of (a) laser pulse output command signal, (b) detection signal, and (c) galvano operation command signal of the laser processing apparatus according to Modification 3 of Embodiment 1.
  • FIG. 9 is a time chart showing the states of (a) laser pulse output command signal, (b) detection signal, and (c) galvano operation command signal of the laser processing apparatus according to Modification 3 of Embodiment 1.
  • FIG. 10 is a time chart showing the states of (a) laser pulse output command signal, (b) detection signal, and (c) galvano operation command signal of the laser machining apparatus according to Modification 4 of Embodiment 1.
  • FIG. 11 is a flowchart showing the operation of the laser processing apparatus according to the fourth modification of the first embodiment.
  • FIG. 12 is a time chart showing the states of (a) laser pulse output command signal, (b) detection signal, and (c) galvano operation command signal of the laser processing apparatus according to the second embodiment.
  • FIG. 13 is a flowchart showing the operation of the laser processing apparatus according to the second embodiment.
  • FIG. 14 is a perspective view illustrating a schematic configuration of another laser processing apparatus of the present disclosure.
  • FIG. 15 is a block diagram showing a schematic configuration of a conventional laser processing apparatus.
  • FIG. 16 is a graph showing detection values of a photodetector of a conventional laser processing apparatus.
  • the same components are denoted by the same reference numerals, and the description thereof may be omitted.
  • the X axis, the Y axis, and the Z axis shown in the drawings are orthogonal to each other.
  • the direction of the Z-axis is a vertical direction corresponding to the top and bottom, and the coordinate axes in each figure are drawn so as to correspond to the directions of the respective fields of view.
  • FIG. 1 is a perspective view showing a schematic configuration of a laser processing apparatus 1 according to the present embodiment.
  • the laser processing apparatus 1 includes a laser oscillator 2, a spectroscope 3, a photodetector 4, an optical adjustment unit 5, a galvano scanner 6, a condenser lens 7, and a processing table 8.
  • the control unit 9 and the warning display unit 10 are provided.
  • the galvano scanner 6 and the condenser lens 7 are collectively used as an irradiation unit.
  • the laser oscillator 2 receives the laser pulse output command signal 11 output from the control unit 9 and emits a laser beam 21.
  • an appropriate system such as a YAG laser or a carbon dioxide gas laser may be selected from energy necessary for processing, a laser wavelength, and the like.
  • a description will be given using a sealed RF (Radio Frequency) excited carbon dioxide laser as the laser oscillator 2. This is because it is possible to obtain a laser beam having a high peak output with a short pulse, which is necessary when drilling a substrate as a workpiece at a high speed.
  • the laser beam 21 emitted from the laser oscillator 2 is guided to the spectroscope 3 immediately after emission or after being reflected by a mirror depending on the installation location of the laser oscillator 2.
  • the spectroscope 3 is a laser splitter that separates incident laser light into reflected light and transmitted light.
  • the spectroscope 3 reflects about 0.5% to 1% of the energy equivalent to about 0.5% to 1% of the laser light 21 as the measurement laser light 22, and about 99 which is the majority of the laser light 21.
  • the energy equivalent to about 99.5% is transmitted as the machining laser beam 23.
  • the measurement laser beam 22 is incident on the photodetector 4 and energy is measured.
  • the processing laser beam 23 is guided to the optical adjustment unit 5 for laser processing.
  • the spectroscope 3 may transmit a part of the laser light 21 to be the measurement laser light 22 and reflect most of the laser light 21 to be the processing laser light 23.
  • the photodetector 4 detects the measurement laser beam 22 and outputs (transmits) a detection signal 12 indicating the energy (detection intensity) of the measurement laser beam 22 to the control unit 9.
  • the photodetector 4 includes a light amount measuring element such as a photodiode or a phototransistor, an amplifier circuit, and an analog / digital (A / D) converter.
  • the photodetector 4 converts it into a voltage value indicating the detected intensity of the measurement laser beam 22, and converts it into digital data by an A / D converter.
  • the A / D converter receives (receives) the sampling command signal 13 from the control unit 9 as a latch clock, detects the voltage value, and outputs (transmits) the digital data as the detection signal 12 to the control unit 9. .
  • the processing laser beam 23 is guided to the optical adjustment unit 5.
  • the optical adjustment unit 5 includes optical elements such as a collimator lens, a diaphragm, and an iris, and shapes the processing laser beam 23 into a substantially parallel beam bundle having an output (energy) and profile (energy distribution) suitable for laser processing.
  • the iris has a shaping hole for shaping the beam shape of the processing laser beam 23.
  • the shaped processing laser beam 23 is guided to the galvano scanner 6 which is an irradiation unit.
  • the galvano scanner 6 includes a galvano controller 61, motors 62 and 64, and galvanometer mirrors 63 and 65.
  • the galvano scanner 6 operates such that the galvano operation command signal 14 is input (received) from the control unit 9 and the machining laser beam 23 is irradiated to the machining position P of the workpiece 99.
  • the machining position P by the machining laser beam 23 is scanned in the X-axis direction by the galvano mirror 63 installed in the motor 62, and the machining position P by the machining laser beam 23 is scanned by the galvano mirror 65 installed in the motor 64. Scan in the Y-axis direction.
  • the galvano controller 61 controls the galvanometer mirrors 63 and 65 via the motors 62 and 64 according to the data of the machining position P by the machining program.
  • the machining laser beam 23 positioned by the galvano scanner 6 is condensed at the machining position P of the workpiece 99 by the condenser lens 7 (f ⁇ lens).
  • the workpiece 99 is a sheet-like member such as a substrate, a green sheet, a film, or a thin metal plate.
  • the workpiece 99 is placed on the processing table 8.
  • the machining table 8 can move the workpiece 99 in the X-axis direction and the Y-axis direction, and can move the workpiece 99 out of the machining area from a machining area that can be scanned by the galvano scanner 6.
  • the control unit 9 sends a warning signal 15 to the warning display unit 10 from the operation of the laser oscillator 2, the energy (detection intensity) of the measurement laser beam 22 received from the photodetector 4, and the operation of the galvano scanner 6. Send.
  • the time when the warning signal 15 is transmitted to the warning display unit 10 is set as the fifth time point.
  • the control unit 9 is connected to at least the laser oscillator 2, the photodetector 4, and the galvano scanner 6, and controls the laser oscillator 2, the photodetector 4, and the galvano scanner 6.
  • FIG. 2 is a block diagram illustrating a detailed configuration of the control unit 9 according to the present embodiment.
  • FIG. 3 is a time chart showing the states of (a) laser pulse output command signal, (b) detection signal, and (c) galvano operation command signal of the laser processing apparatus according to the present embodiment.
  • 3A to 3C are time charts with the horizontal axis at time t, and the scale is not constant, but the context of each time is correct.
  • control unit 9 includes a main software processing unit 91, a parameter storage unit 92, a laser output command unit 93, a sampling command unit 94, a detection level receiving unit 95, a comparison unit 96, and a galvano command unit. 97 and a warning signal output unit 98.
  • these components visualize the functions of the control unit 9. Therefore, these components may be configured by independent hardware, or may be configured by a combination of an interface and software. Further, these components are for explaining the characteristic configuration and operation of the present disclosure among the functions of the control unit 9, and further have other control functions of the laser processing apparatus 1.
  • the parameter storage unit 92 stores various parameters set in advance before the operation of the laser processing apparatus 1 in a format that can be compared with other signal levels.
  • the laser output command unit 93 outputs a laser pulse output command signal 11 to the laser oscillator 2 in accordance with the machining program.
  • FIG. 3A shows a time chart of the laser pulse output command signal 11.
  • the laser pulse output command signal 11 turns from OFF to ON at time t1 (first time point), and time t2 (second time). From time on) to time off.
  • the laser pulse output command signal 11 is a pulse signal
  • the RF excitation pulse width TP time from time t1 to time t2 is several tens of microseconds to several hundreds of microseconds.
  • the optimum RF excitation pulse width TP is determined based on the relationship between the laser power and the material and thickness of the workpiece. In this embodiment, the RF excitation pulse width TP is about 100 ⁇ sec.
  • the sampling command unit 94 outputs a sampling command signal 13 to the photodetector 4, commands the photodetector 4 to measure the energy of the measurement laser beam 22 and output the detection signal 12 to the detection level receiving unit 95. .
  • the output detection signal 12 is received by the detection level receiving unit 95.
  • (B) of FIG. 3 is the detection signal 12 which the detection level receiving part 95 receives from the photodetector 4.
  • FIG. the graph of the detection signal 12 is drawn on the assumption that the detection signal is continuously sampled. Since the detection signal 12 is an electric signal proportional to the light amount of the measurement laser beam 22, (b) in FIG. 3 is the same as the energy intensity transition of the laser beam 21. As shown in FIG. 3B, the detection signal 12 starts increasing from time t1 and starts decreasing from time t2.
  • the galvano command unit 97 outputs a galvano operation command signal 14 to the galvano scanner 6 according to the machining program.
  • FIG. 3C shows a time chart of the galvano operation command signal 14.
  • a time t4 fourth time point
  • a predetermined galvano operation waiting time TG has elapsed from the time t2, which is the final stage of the laser pulse output command signal 11.
  • the warning signal output unit 98 outputs a warning signal 15 when an alarm is required.
  • the warning display unit 10 that has received the warning signal 15 displays a warning to the worker.
  • the alarm may be displayed on the screen as characters or graphics, or may be notified by sound. Further, it may be displayed on an operation screen without providing an independent alarm display section.
  • the main software processing unit 91 controls the above components according to the machining program, and also has a timer function inside, and simultaneously performs control with the passage of time.
  • FIG. 3 shows one cycle in which laser processing is performed on one processing region of the workpiece 99 with one pulse, and the processing laser light 23 is moved to the next processing region by the galvano scanner 6.
  • laser processing may be performed on one processing region of the workpiece 99 with a plurality of pulses, and the processing laser light 23 may be moved to the next processing region by the processing table 8 as one cycle.
  • FIG. 3 shows the last pulse in one cycle.
  • the laser oscillator 2 is sufficiently warmed up as necessary, and the workpiece 99 is placed and fixed on the processing table 8 and moved to a predetermined processing area.
  • the galvano scanner 6 is positioned so that the processing laser beam 23 is irradiated to a predetermined processing position P. In this state, the machining laser beam 23 is irradiated as a pulse, and the workpiece 99 is machined. An example of processing of the workpiece 99 is drilling.
  • the galvano scanner 6 is positioned so that the processing laser beam 23 is irradiated to the next processing position P.
  • the machining laser beam 23 is irradiated as a pulse, and the workpiece 99 is machined. By repeating the above cycle, the entire workpiece 99 is processed.
  • FIG. 4 is a time chart showing the states of (a) laser pulse output command signal, (b) detection signal, and (c) galvano operation command signal of the laser processing apparatus according to the present embodiment.
  • symbol is used and description is abbreviate
  • the control unit 9 When the galvano scanner 6 is positioned so that the processing laser beam 23 is irradiated at a predetermined position, the control unit 9 outputs a laser pulse output command signal 11 to the laser oscillator 2 at time t1, and the laser pulse at time t2.
  • the output command signal 11 is stopped.
  • the laser pulse output command signal 11 is a pulse-like signal for turning on the laser oscillator 2 for a predetermined RF excitation pulse width TP.
  • the laser oscillator 2 excites the laser medium when the laser pulse output command signal 11 is turned on.
  • the energy intensity of the laser light 21 takes time to rise until it reaches the peak intensity as shown by the characteristic A (solid line part) in FIG.
  • the energy change of the measurement laser beam 22 measured by the photodetector 4 is the same as the energy change of the laser beam 21 output from the laser oscillator 2.
  • the rise and fall times of the laser light 21 are determined by the characteristics of the laser oscillator 2 and are on the order of several tens of microseconds for the RF-excited carbon dioxide laser used in the present embodiment. This characteristic is shown as part of the specification in catalogs and the like. As a manufacturer guarantee, it is presented with a margin, and for example, it is presented in the maximum time such as “ ⁇ 60 ⁇ s”.
  • FIG. 4C is a timing chart showing the output of the galvano operation command signal 14.
  • the galvano operation command signal 14 is turned on at time t4 when the galvano operation waiting time TG has elapsed from time t2 when the laser pulse output command signal 11 is turned off from on.
  • the galvano operation waiting time TG is set to the maximum value of the fall time of the laser beam 21 or a time with a margin longer than the maximum value. For example, if the fall time in the specification of the laser oscillator 2 is “ ⁇ 60 ⁇ sec”, examples include 60 ⁇ sec, 80 ⁇ sec, and 100 ⁇ sec with a margin. However, if the galvano operation waiting time TG is increased, the processing time becomes longer and the processing cost increases. Therefore, it is desirable that the galvano operation waiting time TG is small within a range that does not cause machining defects.
  • the following control is performed in order to prevent processing defects caused by the deterioration of the energy characteristics of the laser beam 21.
  • FIG. 5 is a flowchart showing the operation of the laser processing apparatus 1 according to the present embodiment.
  • the flowchart shown in FIG. 5 mainly describes the operation of the control unit 9.
  • the galvano scanner 6 is positioned so that the processing laser beam 23 is irradiated to a predetermined processing position P.
  • the control unit 9 outputs a laser pulse output command signal 11 that is turned on at time t1 and turned off at time t2.
  • the laser oscillator 2 starts excitation of the laser medium at time t1, outputs the laser light 21, and stops the excitation power at time t2 (S10).
  • control unit 9 starts measuring time from time t2, and determines whether or not a determination time T1 preset and stored in the parameter storage unit 92 has elapsed (S11).
  • the time when the determination time T1 has elapsed from time t2 is defined as time t3 (third time point).
  • the control unit 9 outputs a sampling command signal 13 to the photodetector 4, and the photodetector 4 detects the detection signal 12 indicating the energy of the measurement laser beam 22 measured at time t3 when the sampling command signal 13 is received.
  • the (first detection intensity) is output to the control unit 9 (S12).
  • the control unit 9 compares the detection signal 12 at the time t3 with the comparison allowable value L1 (first set intensity). For example, as shown in the characteristic A (solid line part) of FIG. 4B, when the energy of the measurement laser beam 22 indicated by the detection signal 12 at time t3 is smaller than the comparison allowable value L1, the laser oscillator 2 It is determined that the oscillation of the laser beam 21 is normal. As shown in the characteristic B (broken line part) of FIG. 4B, when the energy of the measurement laser beam 22 indicated by the detection signal 12 is larger than the comparison allowable value L1, the oscillation of the laser beam 21 by the laser oscillator 2 is performed. Is determined to be abnormal.
  • the control unit 9 When it is determined to be normal, the control unit 9 outputs the galvano operation command signal 14 at time t4 when the galvano operation waiting time TG has elapsed without transmitting the warning signal 15. If it is determined that there is an abnormality, the control unit 9 transmits a warning signal 15 to the warning display unit 10, and then outputs a galvano operation command signal 14 at time t4 when the galvano operation waiting time TG has elapsed (S13).
  • FIG. 6 is a time chart showing the states of (a) a laser pulse output command signal, (b) a detection signal, and (c) a galvano operation command signal of the laser processing apparatus in this modification.
  • a laser pulse output command signal (b) a detection signal, and (c) a galvano operation command signal of the laser processing apparatus in this modification.
  • a detection signal (b) a detection signal
  • symbol is abbreviate
  • the control unit 9 does not transmit the warning signal 15, and the laser processing apparatus 1 continuously performs laser processing of the workpiece 99.
  • the control unit 9 transmits a warning signal 15, but laser processing is performed.
  • the apparatus 1 continues to perform laser processing on the workpiece 99.
  • the comparative allowable value L1 which is a reference for transmitting the warning signal 15, may be set low (strict) so as not to cause a problem in laser processing in this cycle. Thereby, the galvano operation waiting time TG can be reduced, and the tact time can be shortened, so that productivity is improved. Further, the warning signal 15 indicates that the operator has deteriorated the falling characteristics of the laser oscillator 2.
  • FIG. 7 is a time chart showing the states of (a) a laser pulse output command signal, (b) a detection signal, and (c) a galvano operation command signal of the laser processing apparatus in this modification.
  • a laser pulse output command signal (b) a detection signal, and (c) a galvano operation command signal of the laser processing apparatus in this modification.
  • FIG. 8 is a flowchart showing the operation of the laser processing apparatus 1 in this modification.
  • the difference between this modification and the first embodiment is that the galvano scanner 6 stops its operation when a warning signal 15 is transmitted, as shown in FIG. 7C and S14 in FIG. .
  • the control unit 9 does not transmit the warning signal 15, and the laser processing apparatus 1 continuously performs laser processing of the workpiece 99.
  • the control unit 9 transmits a warning signal 15 and further performs a galvano operation. Even at the time t4 when the waiting time TG elapses, the galvano operation command signal 14 is not output and the galvano scanner 6 is stopped (S14). Along with this, the laser oscillator 2 is also stopped.
  • the comparative allowable value L1 serving as a reference for transmitting the warning signal 15 is set as high as to cause a problem in laser processing in this cycle.
  • the galvano scanner 6 is not driven in a state where the fall of the machining laser beam 23 is insufficient, machining defects can be prevented.
  • the warning signal 15 allows the operator to know that the laser oscillator 2 has stopped.
  • the comparison allowable value L1 can be set large, the warning signal 15 which does not have a problem in laser processing is not transmitted.
  • FIG. 9 is a time chart showing the states of (a) a laser pulse output command signal, (b) a detection signal, and (c) a galvano operation command signal of the laser processing apparatus in this modification.
  • a laser pulse output command signal a laser pulse output command signal
  • a detection signal a detection signal
  • symbol a galvano operation command signal of the laser processing apparatus in this modification.
  • FIG. 8 used for the modification 2 is also a flowchart showing the operation of the laser processing apparatus 1 according to this modification.
  • description is abbreviate
  • the difference between the present modification and the first modification of the first embodiment is that the galvano scanner 6 stops operating when a warning signal 15 is transmitted, as shown in FIG. 9C and S14 in FIG. It is a point to do.
  • the common point between the present modification and the first modification of the first embodiment is that the determination time T1 and the galvano operation waiting time TG are simultaneous as shown in FIG. That is, time t3 and time t4 are simultaneous.
  • the control unit 9 does not transmit the warning signal 15, and the laser processing apparatus 1 continuously performs laser processing of the workpiece 99.
  • the control unit 9 transmits a warning signal 15 and generates a galvano operation command.
  • the signal 14 is not output and the galvano scanner 6 is stopped. Along with this, the laser oscillator 2 is also stopped.
  • the comparative allowable value L1 that is a reference for transmitting the warning signal 15 may be set high enough to cause a problem in laser processing in this cycle.
  • the time t3 and the time t4 are almost the same, the time t4 is delayed from the time t3 by the calculation time for receiving the detection signal 12 by the control unit 9 and comparing with the comparison allowable value L1. This time is at the nanosecond level and is defined as “simultaneous” in this disclosure.
  • the galvano scanner 6 is not driven in a state where the falling of the processing laser beam 23 is insufficient, processing defects can be prevented. Further, the warning signal 15 allows the operator to know that the laser oscillator 2 has stopped. In ordinary laser processing, the galvano operation waiting time TG can be reduced, and the tact time can be shortened, so that productivity is improved.
  • the first determination method is a method using the maximum value of the fall time presented as the specification of the laser oscillator.
  • the characteristics presented in the specifications are often somewhat superior.
  • a margin is provided for the maximum value to be guaranteed in consideration of variations between models. Therefore, if the characteristics deteriorate to such an extent that the margin disappears, the possibility of occurrence of a defect has occurred, and is subject to warning.
  • the comparison allowable value L1 is set to the value of the detection signal 12 corresponding to 5% of the peak energy, and the determination time T1 Is set to the guaranteed value of 50 ⁇ sec.
  • the determination time T1 Is set to the guaranteed value of 50 ⁇ sec.
  • the second determination method is a method of receiving the detection signal 12 simultaneously with the galvano operation waiting time TG. If the galvano scanner 6 is driven in a state where the energy of the laser beam 21 is not sufficiently lowered, a processing defect occurs. However, the energy of the processing laser beam 23 that does not cause processing defects does not have to be completely zero, but has a limit value. This limit value is determined by the material of the workpiece 99 and the like. The value of the detection signal 12 indicating the energy of the measurement laser beam 22 having a margin slightly from the limit value is set as a comparison allowable value L1, and the determination time T1 and the galvano operation waiting time TG are made the same.
  • the warning signal 15 is not output, the energy of the machining laser beam 23 does not cause a machining defect when the galvano scanner 6 starts to operate. It is within the limit value.
  • the warning signal 15 is output, there is a possibility that processing failure may occur if laser processing is continued. Therefore, the operator may immediately stop the laser processing apparatus 1 and perform maintenance.
  • the third method is to determine whether or not the galvano scanner 6 is in an abnormal state before starting operation.
  • the comparison allowable value L1 is a value of the detection signal 12 corresponding to the limit value of the energy of the processing laser beam 23 that does not become defective even when the galvano scanner 6 operates.
  • the galvano operation waiting time TG is set to be longer than the determination time T1.
  • the energy of the laser beam 21 is further lowered by the amount that the galvano operation waiting time TG is longer than the determination time T1, even when it is determined that the falling characteristic is abnormal, the operator performs laser processing as soon as possible. If interrupted, processing defects of the workpiece 99 can be prevented in advance.
  • FIG. 10 is a time chart showing the states of (a) a laser pulse output command signal, (b) a detection signal, and (c) a galvano operation command signal of the laser processing apparatus according to this modification.
  • a laser pulse output command signal (b) a detection signal, and (c) a galvano operation command signal of the laser processing apparatus according to this modification.
  • FIG. 11 is a flowchart which shows operation
  • description is abbreviate
  • the difference between the first embodiment and its modifications 1 to 3 and the present modification is that, as shown in FIGS. 10B and 10C and S15 of FIG.
  • the determination time T2 and the comparison allowable value L2 are stored as parameters.
  • the control unit 9 does not transmit the warning signal 15 because the comparison allowable value L1 is not reached. Further, at the time t6 (sixth time point) when the determination time T2 longer than the determination time T1 has elapsed, the control unit 9 transmits the galvano operation command signal 14 because it is below the comparison allowable value L2. As a result, the galvano scanner 6 operates at time t4. This is control of laser processing when the falling characteristic of the laser beam 21 is normal.
  • the control unit 9 transmits a warning signal 15 because the comparison allowable value L1 is exceeded at the time t3 when the determination time T1 has elapsed. Since the comparison allowable value L2 is exceeded at time t6 when the determination time T2 longer than the determination time T1 has elapsed, the control unit 9 performs a galvano operation command signal as indicated by a broken line in FIG. 14 is not transmitted and the galvano scanner 6 does not operate. This is control of laser processing when the falling characteristic of the laser beam 21 is abnormal. In this case, the warning signal 15 is not transmitted and the galvano scanner 6 stops (S15).
  • the control unit 9 If the comparison allowable value L1 is exceeded at the time t3 when the determination time T1 has elapsed and the comparison allowable value L2 is below the comparison allowable value L2 at the time t6 when the determination time T2 has elapsed, the control unit 9 outputs only the warning signal 15. The galvano scanner 6 continues to operate. In this way, the laser oscillator 2 can be prepared for maintenance before the laser processing apparatus 1 is stopped.
  • the value of the detection signal 12 has been described as an example in which the detection signal 12 is used only once at the times t3 and t6 when the determination times T1 and T2 have elapsed.
  • a plurality of sampling command signals 13 may be output so as to include the times t3 and t6, the values of the detection signals 12 received a plurality of times may be averaged, and the average value may be used as the value of the detection signals 12.
  • a plurality of detection signals 12 are received during a period whose final timing is time t3 when the determination time T1 has elapsed. Specifically, a method of receiving the detection signal 12 a total of 11 times every 1 ⁇ sec from 10 ⁇ sec before the time t3 may be performed. Alternatively, the plurality of detection signals 12 are received during a period having the time t3 as the central timing. Specifically, a method of receiving the detection signal 12 a total of 11 times every 1 ⁇ sec from 5 ⁇ sec before the time t3 to 5 ⁇ sec later can be adopted.
  • the number of times that the detection signal 12 becomes greater than the comparison allowable value L1 may be counted, and the abnormality may be determined when the predetermined number of times is exceeded. That is, laser processing abnormality may be determined across a plurality of processing cycles. Also in this case, it is possible to prevent erroneous determination due to variations in measured values due to disturbances and the like.
  • the detection signal 12 becomes larger than the comparison allowable value L1
  • movement of the laser processing apparatus 1 when the predetermined frequency is exceeded can also be taken. That is, the stop of the operation of the laser processing apparatus 1 may be determined across a plurality of processing cycles. Also in this case, it is possible to prevent the influence of erroneous determination due to variations in measured values due to disturbances or the like.
  • the output of the sampling command signal 13 and the reception of the detection signal 12 are not limited to the comparison / determination timing, and may be performed at a predetermined period after the laser processing apparatus 1 has been operated for a certain period. In this case, since the detection signal 12 is constantly received, the comparison / determination may be performed using the value of the detection signal 12 at a predetermined timing.
  • Embodiment 2 A second embodiment of the laser processing apparatus of the present disclosure will be described with reference to FIGS. 12 and 13. Points that overlap with the description of Embodiment 1 and Modifications 1 to 4 are simplified or omitted, and different portions will be described. Further, the same reference numerals are assigned to the same components.
  • FIGS. 1 to 3 showing the configuration are the same as those in the first embodiment.
  • the control in laser processing, particularly the operation of the control unit 9 is different.
  • FIG. 12 is a time chart showing the states of (a) laser pulse output command signal, (b) detection signal, and (c) galvano operation command signal of the laser processing apparatus according to the present embodiment.
  • FIG. 13 is a flowchart showing the operation of the laser processing apparatus according to the present embodiment. In particular, the flowchart shown in FIG. 5 mainly describes the operation of the control unit 9.
  • a laser pulse output command signal 11 is output from the control unit 9 (S20). This is the same as (a) in FIGS. 3 and 4 described in the first embodiment and S10 in FIG.
  • the control unit 9 starts measuring time from time t2, and determines whether or not the sampling period TS set in advance and stored in the parameter storage unit 92 has elapsed (S21).
  • the control unit 9 When the sampling period TS elapses, the control unit 9 outputs a sampling command signal 13 to the photodetector 4, and the photodetector 4 calculates the energy of the measurement laser beam 22 measured at the timing when the sampling command signal 13 is received.
  • the detection signal 12 shown is output (S22).
  • the sampling period TS is an interval at which a transitional change in the fall of the laser pulse output can be measured. For example, if the fall time of the laser pulse is several tens of microseconds, it is about 1 microsecond.
  • the control unit 9 compares the detection signal 12 with the allowable allowable value L3 set and stored in advance.
  • the permissible operable value L3 is set to a value corresponding to the energy of the processing laser beam 23 that does not cause processing defects due to laser processing even when the galvano scanner 6 operates. Specifically, it is set to a value corresponding to one energy of 1% to 3% of the peak energy depending on the material of the workpiece 99.
  • the detection signal 12 is received again after waiting for the sampling period TS, Make a comparison. This sampling of the detection signal 12 is repeated until the value of the detection signal 12 becomes equal to or less than the operable allowable value L3.
  • the control unit 9 outputs the galvano operation command signal 14 (S23a). As shown in the characteristic A (solid line part) in FIG. 12B, time t7 corresponds to the timing when the value of the detection signal 12 falls below the operable allowable value L3 for the first time.
  • the control unit 9 turns on the galvano operation command signal 14 at time t8 (eighth time) after time t7.
  • time t8 is described at the same time as the time t7, but the time t8 may be after the time t7.
  • the operation of the laser processing apparatus 1 when the characteristics of the laser beam 21 from the laser oscillator 2 change, particularly when the energy falling characteristics of the laser beam 21 are significantly deteriorated will be described.
  • the characteristic B (broken line) in FIG. 12B when the falling characteristic of the energy of the laser beam 21 is deteriorated, it takes a long time for the detection signal 12 to become equal to or less than the operable allowable value L3. Take it.
  • a determination time T2 for determining an abnormality is set in a loop that repeats reception of the detection signal 12 at the sampling period TS.
  • the control unit 9 If the detection signal 12 does not fall below the allowable operating value L3 even at time t9 (the ninth time) when the determination time T2 has elapsed from time t7, it is determined that an abnormality has occurred in the laser oscillator 2. In this case, the control unit 9 outputs a warning signal 15 to the warning display unit 10 (S23b). The time when the warning signal 15 is transmitted to the warning display unit 10 is defined as a tenth time point. Further, as indicated by a broken line in FIG. 12C, the control unit 9 stops driving the entire laser processing apparatus 1 including the laser oscillator 2 without outputting the galvano operation command signal 14.
  • the determination time T2 may be set to be long, the laser processing takes a long time. Therefore, it may be set to a time at which it can be determined that the falling characteristic of the laser light 21 by the laser oscillator 2 has deteriorated. For example, since the galvano operation waiting time TG is set as a time when no failure occurs unless the falling characteristic of the laser beam 21 is deteriorated, the determination time T2 may be set to the same level as the galvano operation waiting time TG.
  • the detection signal 12 received for each sampling period TS is compared with the allowable operation value L3.
  • the value calculated from the detection signal 12 received a plurality of times is compared with the allowable operation value L3. Also good.
  • the output of the sampling command signal 13 and the reception of the detection signal 12 at the sampling period TS are not necessarily started from the time t2 when the laser pulse output command signal 11 is turned off, and the laser processing apparatus 1 operates. You may start when a certain amount of time has passed.
  • the configuration in which the spectroscope 3 is provided between the laser oscillator 2 and the optical adjustment unit 5 has been described with reference to FIG. Thereby, the state of the laser beam 21 before the profile and the light amount are adjusted by the optical adjustment unit 5 can be detected, and the deterioration of the output characteristics of the laser beam 21 from the laser oscillator 2 can be directly determined.
  • FIG. 14 is a perspective view showing a schematic configuration of another laser processing apparatus of the present disclosure.
  • an optical adjustment unit may be provided between the spectrometer 3 and the laser oscillator 2.
  • the profile and the light amount are already adjusted by the optical adjustment unit 5, the state of the laser light 21 closer to the galvano scanner 6 can be detected, and the characteristics of the laser light 21 contributing to laser processing can be determined.
  • the parameter to be compared with the detection signal 12 is that of the laser light 21 used for laser processing after passing through the optical adjustment unit 5. It is set according to the intensity.
  • the laser processing apparatus can monitor the deterioration of the falling characteristics of the energy of the laser pulse and warn or prevent the occurrence of defects in the laser processing, and performs drilling or the like on the substrate using a laser. This is useful in a laser processing apparatus or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laser Beam Processing (AREA)

Abstract

 本開示のレーザ加工装置は、レーザ発振器と、分光器と、光検出器と、照射部と、制御部とを有する。制御部は、レーザ発振器と光検出器と照射部とに接続されている。さらに制御部は、第1の時点にレーザ光の出力を開始し、第1の時点よりも後の第2の時点にレーザ光の出力を停止する出力信号をレーザ発振器に発信する。さらに制御部は、第2の時点よりも後である第3の時点に、第1の設定強度よりも大きい第1の検出強度を示す検出信号を光検出器から受信する。さらに制御部は、第3の時点以降の第4の時点に、照射部の駆動を制御する駆動信号を照射部に発信する。さらに制御部は、第3の時点以降の第5の時点に、警告信号を発信する。

Description

レーザ加工装置
 本開示は、レーザ光を用いて基板に穴あけ加工などを施すレーザ加工装置に関し、特に、レーザ加工装置に用いられるレーザ発振器の特性劣化による加工不良の防止に関する。
 近年、部品の小型化、高集積化、複合モジュール化に伴い、基材の穴あけ加工もますます精密化しているために、レーザ光を用いた穴あけ加工が増えてきている。レーザ加工装置に用いられるレーザ発振器はレーザ加工装置の一部として設けられているが、レーザ発振器は、長時間使用によるレーザ媒質の劣化等により、出力するレーザ光の特性も劣化する。レーザ光の出力特性の激しい劣化は精密なレーザ穴加工の妨げとなるため、レーザ発振器によるレーザ光の出力状態を知る必要である。
 図15および図16を用いて、特許文献1に記載された、従来のレーザ加工装置について説明する。図15は、従来のレーザ加工装置100の概略構成を示すブロック図である。図16は、従来のレーザ加工装置100の光検出器103の検出値を表すグラフである。
 従来のレーザ加工装置100は、レーザ発振器101と、ビームスプリッタ102と、光検出器103と、カウンタ104と、メインコントローラ105と、表示器106とを有する。メインコントローラ105は、レーザ発振器101に対しパルス発射の指令信号を出力する。パルス発射の指令信号を受けたレーザ発振器101はレーザrを照射し、レーザrの光路に設置されたビームスプリッタ102によってレーザrの一部が判定用レーザraとして分割され、光検出器103に導かれる。光検出器103は判定用レーザraのエネルギー強度を測定する。また、判定用レーザraを分離したレーザrは、ガルバノメータによって照射方向を変えられ、基板に照射される。基板における1つの分割領域に1または複数のパルス分のレーザrを照射してレーザ穴加工をおこなった後、ガルバノメータによって次にレーザ穴加工すべき分割領域にレーザrの照射方向が変更される。
 光検出器103は、分割された判定用レーザraの光エネルギーを電気エネルギーに変換してエネルギー強度を測定する。
 図16は、光検出器103で測定された、最大電圧値V1であるレーザパルスP1の電圧と、最大電圧値V2であるレーザパルスP2の電圧と、基準値Vxとを示している。
 カウンタ104は、光検出器103と接続され、レーザ穴加工に必要な基準値Vx以上の電圧値を示した判定用レーザraの数を計測し、計測数をメインコントローラ105に送る。メインコントローラ105は、レーザ発振器101およびカウンタ104を制御し、カウンタ104からの計測数とレーザrの発射数とを比較演算する。すなわち、メインコントローラ105は、光検出器103で検出された電圧値が、基準値Vx以上であれば(レーザパルスP1の最大電圧値V1)、レーザ穴加工が良好に行われたと判定する。メインコントローラ105は、光検出器103で検出された電圧値が、基準値Vxを下回れば(レーザパルスP2の最大電圧値V2)レーザ穴加工が不良であると判定する。
 そして、メインコントローラ105は、レーザ穴加工の良否判定を行い、判定結果を外部に出力したり、表示器106に表示する。これにより、加工不良が発生した分割領域やレーザ穴加工の進行状況を知ることができる。
特開平11-77355号公報
 しかしながら、従来技術のレーザ加工装置では、レーザ発振器の出力低下による加工不良の判定はできても、レーザパルスのエネルギーの立ち下がり特性の劣化による加工不良の判定や予見はできない。
 レーザ加工装置では、1つの分割領域において複数のレーザ穴加工を行うために、ガルバノメータによって穴レーザ光の照射方向を移動させる。しかし、レーザ発振器の立ち下がり特性の劣化により、レーザ光の出力がゼロ近辺に低下するまでの時間が延びた場合には、ガルバノスキャナによるレーザ光の照射方向の移動中にもレーザ光が照射される。そのため、レーザ穴加工による穴の形状が楕円や涙滴型になってしまう。
 そこで、本開示のレーザ加工装置では、レーザパルスのエネルギーの立ち下がり特性を監視し、レーザ加工の不良発生を警告、あるいは、防止する。
 上記課題を解決するために、本開示の一実施形態に係るレーザ加工装置は、レーザ発振器と、分光器と、光検出器と、照射部と、制御部とを有する。レーザ発振器は、レーザ光を出力する。分光器は、レーザ光が入射され、レーザ光を加工レーザ光と測定レーザ光とに分離して出射する。光検出器は、測定レーザ光が入射され、測定レーザ光の強度を示す検出信号を発信する。照射部は、加工レーザ光が入射され、加工レーザ光を加工物に照射する。制御部は、レーザ発振器と光検出器と照射部とに接続されている。さらに制御部は、第1の時点にレーザ光の出力を開始し、第1の時点よりも後の第2の時点にレーザ光の出力を停止する出力信号をレーザ発振器に発信する。さらに制御部は、第2の時点よりも後である第3の時点に、第1の設定強度よりも大きい第1の検出強度を示す検出信号を光検出器から受信する。さらに制御部は、第3の時点以降の第4の時点に、照射部の駆動を制御する駆動信号を照射部に発信する。さらに制御部は、第3の時点以降の第5の時点に、警告信号を発信する。
 また、本開示の別の実施形態に係るレーザ加工装置は、レーザ発振器と、分光器と、光検出器と、照射部と、制御部とを有する。レーザ発振器は、レーザ光を出力する。分光器は、レーザ光が入射され、レーザ光を加工レーザ光と測定レーザ光とに分離して出射する。光検出器は、測定レーザ光が入射され、測定レーザ光の強度を示す検出信号を発信する。照射部は、加工レーザ光が入射され、加工レーザ光を加工物に照射する。制御部は、レーザ発振器と光検出器と照射部とに接続されている。さらに制御部は、第1の時点にレーザ光の出力を開始し、第1の時点よりも後の第2の時点にレーザ光の出力を停止する出力信号をレーザ発振器に発信する。さらに制御部は、第2の時点以降は、検出信号を周期的に光検出器から受信する。さらに制御部は、第2の時点よりも後である第7の時点に、第3の設定強度よりも小さい第3の検出強度を示す検出信号を光検出器から受信する。さらに制御部は、第7の時点以降の第8の時点に、照射部を動作させる駆動信号を照射部に発信する。
 上記の構成により、本開示に係るレーザ加工装置では、レーザパルスのエネルギーの立ち下がり特性の劣化を監視し、レーザ加工の不良発生を警告、あるいは、防止する。
図1は、実施の形態1に係るレーザ加工装置の概略構成を示す斜視図である。 図2は、実施の形態1に係る制御部の詳細構成を説明するブロック図である。 図3は、実施の形態1に係るレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。 図4は、実施の形態1に係るレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。 図5は、実施の形態1に係るレーザ加工装置の動作を示すフローチャートである。 図6は、実施の形態1の変形例1に係るレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。 図7は、実施の形態1の変形例2に係るレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。 図8は、実施の形態1の変形例2に係るレーザ加工装置の動作を示すフローチャートである。 図9は、実施の形態1の変形例3に係るレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。 図10は、実施の形態1の変形例4に係るレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。 図11は、実施の形態1の変形例4に係るレーザ加工装置の動作を示すフローチャートである。 図12は、実施の形態2に係るレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。 図13は、実施の形態2に係るレーザ加工装置の動作を示すフローチャートである。 図14は、本開示の別のレーザ加工装置の概略構成を示す斜視図である。 図15は、従来のレーザ加工装置の概略構成を示すブロック図である。 図16は、従来のレーザ加工装置の光検出器の検出値を表すグラフである。
 以下、本開示の実施の形態について、図面を参照しながら説明する。以下の図面においては、同じ構成要素については同じ符号を付しているので説明を省略する場合がある。また、図面中に示されるX軸、Y軸およびZ軸はそれぞれが互いに直交する。ここで、Z軸の方向は上下にあたる鉛直方向であり、各図の座標軸はそれぞれの視野の方向に対応するように描いている。
 (実施の形態1)
 <レーザ加工装置1の構成>
 図1は、本実施の形態に係るレーザ加工装置1の概略構成を示す斜視図である。図1に示すように、レーザ加工装置1は、レーザ発振器2と、分光器3と、光検出器4と、光学調整部5と、ガルバノスキャナ6と、集光レンズ7と、加工テーブル8と、制御部9と、警告表示部10とを有している。ガルバノスキャナ6と集光レンズ7とをまとめて照射部とする。
 レーザ発振器2は、制御部9から出力されるレーザパルス出力指令信号11を受けてレーザ光21を出射する。レーザ発振器2の方式としては、YAGレーザや炭酸ガスレーザなど、加工に必要なエネルギーやレーザ波長等から適切な方式のものを選べばよい。本実施の形態では、レーザ発振器2として、封じ切り型のRF(Radio Frequency)励起炭酸ガスレーザを用いて説明する。これは、加工物である基板に対して高速で穴あけ加工をする場合に必要となる、短パルスで高いピーク出力のレーザ光を得られるからである。
 レーザ発振器2から出射されたレーザ光21は、出射直後、または、レーザ発振器2の設置場所によってはミラーで反射された後に、分光器3に導かれる。
 分光器3は、入射するレーザ光を反射光および透過光に分離するレーザスプリッタである。本実施の形態では、分光器3は、レーザ光21の一部である約0.5%~1%程度のエネルギー相当分を測定レーザ光22として反射し、レーザ光21の大半である約99~99.5%程度のエネルギー相当分を加工レーザ光23として透過する。
 測定レーザ光22は光検出器4に入射し、エネルギーが測定される。加工レーザ光23はレーザ加工のために光学調整部5に導かれる。なお、分光器3は、レーザ光21の一部を透過して測定レーザ光22とし、レーザ光21の大半を反射して加工レーザ光23としてもよい。
 光検出器4は、測定レーザ光22を検知し、測定レーザ光22のエネルギー(検出強度)を示す検出信号12を制御部9に出力(送信)する。具体的には、光検出器4は、フォトダイオードやフォトトランジスタなどの光量測定素子と、増幅回路と、アナログ/デジタル(A/D)変換器とを有している。光検出器4は、測定レーザ光22の検出強度を示す電圧値に変換し、A/D変換器でデジタルデータに変換する。A/D変換器は、サンプリング指令信号13をラッチクロックとして制御部9から入力され(受信し)、電圧値を検知し、そのデジタルデータを検出信号12として制御部9に出力する(送信する)。
 一方、加工レーザ光23は光学調整部5に導かれる。光学調整部5はコリメータレンズ、絞り、アイリス等の光学素子を有し、加工レーザ光23をレーザ加工に適した出力(エネルギー)やプロファイル(エネルギー分布)を持ったほぼ平行な光線束に整形する。なお、アイリスは、加工レーザ光23のビーム形状を整形するための整形穴を有する。
 整形された加工レーザ光23は、照射部であるガルバノスキャナ6に導かれる。ガルバノスキャナ6は、ガルバノコントローラ61と、モータ62,64と、ガルバノミラー63,65とを有する。ガルバノスキャナ6は、ガルバノ動作指令信号14が制御部9から入力され(受信し)、加工物99の加工位置Pに加工レーザ光23が照射されるように動作する。具体的には、モータ62に設置されたガルバノミラー63で加工レーザ光23による加工位置PをX軸方向にスキャンし、モータ64に設置されたガルバノミラー65で加工レーザ光23による加工位置PをY軸方向にスキャンする。ガルバノコントローラ61は、加工プログラムによる加工位置Pのデータに従い、モータ62,64を介して、ガルバノミラー63、65を制御している。
 ガルバノスキャナ6で位置決めされた加工レーザ光23は、集光レンズ7(fθレンズ)によって加工物99の加工位置Pに集光される。加工物99は、基板、グリーンシート、フィルム、薄板金属板などのシート状の部材である。加工物99は、加工テーブル8に載置されている。加工テーブル8は、加工物99をX軸方向およびY軸方向に移動させることができ、ガルバノスキャナ6によるスキャン可能な加工エリアから、加工物99を加工エリアの外に移動させることができる。
 そして、制御部9は、レーザ発振器2の動作と、光検出器4から受信した測定レーザ光22のエネルギー(検出強度)と、ガルバノスキャナ6の動作とから、警告信号15を警告表示部10に送信する。警告信号15を警告表示部10に送信する時刻を第5の時点とする。
 <制御部9の詳細な構成>
 制御部9は、少なくともレーザ発振器2、光検出器4及びガルバノスキャナ6に接続され、レーザ発振器2、光検出器4およびガルバノスキャナ6を制御する。
 図2は、本実施の形態に係る制御部9の詳細構成を説明するブロック図である。図3は、本実施の形態に係るレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。なお、図3の(a)~(c)は、横軸が時刻tのタイムチャートであり、尺度は一定ではないが、各時刻の前後関係は正しい。
 図2において、制御部9は、メインソフト処理部91と、パラメータ記憶部92と、レーザ出力指令部93と、サンプリング指令部94と、検知レベル受信部95と、比較部96と、ガルバノ指令部97と、警告信号出力部98とを有する。
 なお、これらの構成要素は制御部9の有する機能を可視化したものである。よって、これらの構成要素は、個々に独立したハードウェアで構成してもよく、あるいは、インターフェースとソフトウェアの組合せで構成してもよい。また、これらの構成要素は、制御部9の機能の内、本開示の特徴的な構成や動作を説明するもので、レーザ加工装置1のその他の制御機能をさらに有する。
 パラメータ記憶部92は、レーザ加工装置1の動作の前に予め定められた各種のパラメータを、その他の信号レベルと比較可能な形式で記憶している。
 レーザ出力指令部93は、加工プログラムに従い、レーザ発振器2にレーザパルス出力指令信号11を出力する。図3の(a)は、レーザパルス出力指令信号11のタイムチャートを示しており、レーザパルス出力指令信号11は時刻t1(第1の時点)にオフからオンになり、時刻t2(第2の時点)にオンからオフになる。レーザパルス出力指令信号11はパルス状の信号であり、RF励起パルス幅TP(時刻t1から時刻t2までの時間)は数十μ秒~数百μ秒である。実際の加工では、レーザパワーと、加工物の材質や厚さとの関係で最適なRF励起パルス幅TPが決定される。本実施の形態では、RF励起パルス幅TPは、約100μ秒前後とする。
 サンプリング指令部94は、光検出器4にサンプリング指令信号13を出力し、測定レーザ光22のエネルギーを測定して検出信号12を検知レベル受信部95に出力するように光検出器4に指令する。出力された検出信号12は検知レベル受信部95で受信する。
 図3の(b)は、検知レベル受信部95が、光検出器4から受信する検出信号12である。ただし、説明のため、連続して検出信号をサンプリングすると仮定して、検出信号12のグラフは描かれている。検出信号12は測定レーザ光22の光量に比例した電気信号であるので、図3の(b)は、レーザ光21のエネルギー強度の変移と同じである。図3の(b)に示すように、検出信号12は時刻t1から増加を始め、時刻t2から減少を始める。
 ガルバノ指令部97は、加工プログラムに従い、ガルバノスキャナ6にガルバノ動作指令信号14を出力する。図3の(c)は、ガルバノ動作指令信号14のタイムチャートを示している。加工物99へのレーザ照射終了後にガルバノスキャナ6の動作を開始させるために、レーザパルス出力指令信号11の終期である時刻t2から所定のガルバノ動作待ち時間TGが経過した時刻t4(第4の時点)に、ガルバノ動作指令信号14が出力される。
 警告信号出力部98は、警報が必要となった場合に警告信号15を出力する。警告信号15を受信した警告表示部10は作業者に警報を表示する。なお、警報は画面に文字や図形で表示してもよいし、音によって知らせるようにしても良い。また、独立した警報表示部を設けず、操作用の画面に表示しても良い。
 メインソフト処理部91は、以上の構成要素を加工プログラムに従って制御するとともに、内部にタイマー機能も有して時間経過に伴う制御も同時に行う。
 図3は、1つのパルスで加工物99の1つの加工領域にレーザ加工を行い、ガルバノスキャナ6によって次の加工領域に加工レーザ光23を移動させるという1サイクル分を示している。ただし、複数のパルスで加工物99の1つの加工領域にレーザ加工を行い、加工テーブル8によって次の加工領域に加工レーザ光23を移動させることを1サイクルとしても構わない。その場合、図3は、1サイクルのうちの最後のパルスについて示すものである。
 <レーザ加工装置1の動作>
 以上のように構成された本開示のレーザ加工装置の動作について図4、図5を用いて説明する。
 レーザ発振器2は、必要に応じて十分にウォーミングアップされ、加工物99は加工テーブル8に載置・固定され、所定の加工エリアに移動される。加工プログラムに従い、ガルバノスキャナ6は所定の加工位置Pに加工レーザ光23が照射されるように位置決めされる。この状態で、加工レーザ光23がパルスとして照射され、加工物99が加工される。加工物99の加工としては、例えば、穴あけである。ガルバノスキャナ6は次の加工位置Pに加工レーザ光23が照射されるように位置決めされる。加工レーザ光23がパルスとして照射され加工物99が加工される。以上のサイクルを繰り返し、加工物99全体を加工する。
 以下、加工物99の1つの加工領域を1つのレーザパルスで加工を行うレーザ加工の1サイクル分について図面を用いて説明する。図4は、本実施の形態に係るレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。なお、図3と同じ構成については同じ符号を用い、説明を省略する。
 所定の位置に加工レーザ光23が照射されるようにガルバノスキャナ6が位置決めされると、制御部9は、時刻t1にレーザパルス出力指令信号11をレーザ発振器2に出力し、時刻t2にレーザパルス出力指令信号11を停止する。レーザパルス出力指令信号11は図4の(a)に示すように、所定のRF励起パルス幅TPの時間だけレーザ発振器2をオンにするパルス状の信号である。
 レーザ発振器2はレーザパルス出力指令信号11がオンになったことを受けてレーザ媒質を励起する。しかしながら、レーザ光21のエネルギーの強度は、図4の(b)の特性A(実線部)に示すようにピーク強度になるまでの立ち上がりに時間を要する。立ち下がりに関しても同様に、レーザパルス出力指令信号11がオンからオフになってもレーザ光21のエネルギーがほぼゼロになるまでの立ち下がりに時間を要している。なお、前述したように、光検出器4によって測定される測定レーザ光22のエネルギー変化は、レーザ発振器2から出力されるレーザ光21のエネルギー変化と同じである。レーザ光21の立ち上がり・立ち下がりの時間は、レーザ発振器2の特性で決まり、本実施の形態で用いるRF励起の炭酸ガスレーザでは数十μ秒のオーダである。この特性はカタログ等で仕様の一部として示される。メーカ保証としては余裕を持って提示されており、例えば、「<60μ秒」というように最大時間で提示されている。
 1つのレーザパルスで加工物99の1つの加工位置でのレーザ加工を行った後に、次の加工位置に加工レーザ光23を移動させるためにガルバノスキャナ6を駆動する。ガルバノスキャナ6の駆動には、上述のレーザパルスの立ち下がり時間を考慮して、ガルバノ動作待ち時間TGが設定されている。これは、加工レーザ光23が出力(照射)されている間にガルバノスキャナ6を駆動すると、加工が不要な部分まで加工レーザ光23が照射され、加工不良になるからである。図4の(c)はガルバノ動作指令信号14の出力を示すタイミングチャートである。レーザパルス出力指令信号11がオンからオフとなる時刻t2からガルバノ動作待ち時間TGが経過した時刻t4に、ガルバノ動作指令信号14をオンにする。
 ガルバノ動作待ち時間TGは、レーザ光21の立ち下がり時間の最大値、あるいは、最大値よりも長い、余裕を持った時間設定を行う。例えば、レーザ発振器2の仕様における立ち下がり時間が「<60μ秒」であるなら、60μ秒、80μ秒、さらに余裕を持つ100μ秒等が例としてあげられる。しかしながら、ガルバノ動作待ち時間TGを大きくすると加工時間が長くなり加工コストが増加する。そのため、加工不良を生じない範囲で、ガルバノ動作待ち時間TGは小さいことが望ましい。
 ところが、図4の(b)の特性B(破線部)に示すように、レーザ発振器2を使用しているうちにレーザ光21のエネルギーの立ち上がり・立ち下がり特性が劣化することがわかった。すなわち、レーザ光21のエネルギーの立ち上がり時間と立ち下がり時間が大きくなっている。これにより、ガルバノ動作待ち時間TGが経過した時刻t4においても、レーザ光21が十分に立ち下がらずに、出力が残存する状態になる。
 そこで本開示では、レーザ光21のエネルギーの特性劣化で発生する加工不良を未然に防止するため以下の様な制御を行っている。
 図5は、本実施の形態に係るレーザ加工装置1の動作を示すフローチャートである。特に、図5に示すフローチャートは、主として制御部9の動作を記載している。
 まず、所定の加工位置Pに加工レーザ光23が照射されるようにガルバノスキャナ6が位置決めされる。次に、制御部9から、時刻t1にオンとなり時刻t2にオフとなるレーザパルス出力指令信号11が出力される。レーザパルス出力指令信号11を受けたレーザ発振器2は、時刻t1にレーザ媒質の励起を始めてレーザ光21を出力し、時刻t2に励起電力を止める(S10)。
 次に、制御部9は、時刻t2から時間の計測を開始し、予め設定しパラメータ記憶部92に格納している判定時間T1が経過したかどうかを判定する(S11)。時刻t2から判定時間T1が経過した時刻を、時刻t3(第3の時点)とする。
 時刻t3に、制御部9は光検出器4にサンプリング指令信号13を出力し、光検出器4は、サンプリング指令信号13を受信した時刻t3において測定した測定レーザ光22のエネルギーを示す検出信号12(第1の検出強度)を制御部9に出力する(S12)。
 次に、制御部9は、時刻t3における検出信号12と比較許容値L1(第1の設定強度)とを比較する。例えば、図4の(b)の特性A(実線部)に示すように、時刻t3における検出信号12が示す測定レーザ光22のエネルギーの方が比較許容値L1より小さい場合は、レーザ発振器2からのレーザ光21の発振は正常であると判断する。図4の(b)の特性B(破線部)に示すように、検出信号12が示す測定レーザ光22のエネルギーの方が比較許容値L1より大きい場合は、レーザ発振器2によるレーザ光21の発振は異常であると判断する。正常と判断された場合は、制御部9は、警告信号15を発信することなくガルバノ動作待ち時間TGが経過した時刻t4にガルバノ動作指令信号14を出力する。異常と判断された場合は、制御部9は、警告信号15を警告表示部10に発信した上で、ガルバノ動作待ち時間TGが経過した時刻t4にガルバノ動作指令信号14を出力する(S13)。
 これにより、レーザ発振器2による立ち下がり特性の劣化を作業者に知らせることができる。
 (実施の形態1の変形例1)
 次に、図6を用いて、実施の形態1の変形例1について説明する。図6は、本変形例におけるレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。図4と同じ構成については同じ符号を用いて説明を省略する。
 本変形例と実施の形態1との相違点は、図6に示すように、判定時間T1とガルバノ動作待ち時間TGとが同時である点である。すなわち、時刻t3と時刻t4とが同時である。
 時刻t3において、検出信号12が示す測定レーザ光22のエネルギーの方が比較許容値L1より小さい場合(実線で示す特性A)は、制御部9は警告信号15を発信することなく、レーザ加工装置1は継続して加工物99のレーザ加工を行う。そして、時刻t3において、検出信号12が示す測定レーザ光22のエネルギーの方が比較許容値L1より大きい場合(破線で示す特性B)は、制御部9は警告信号15を発信するが、レーザ加工装置1は継続して加工物99のレーザ加工を行う。この場合、警告信号15を発信する基準となる比較許容値L1をこのサイクルでのレーザ加工においては問題ない程度に低く(厳しく)設定しておけばよい。これにより、ガルバノ動作待ち時間TGを小さくすることができ、タクト時間を短縮できるために生産性が向上する。さらに、警告信号15によって、作業者は、レーザ発振器2の立ち下がりの特性が劣化していることがわかる。
 (実施の形態1の変形例2)
 次に、図7、8を用いて、実施の形態1の変形例2について説明する。図7は、本変形例におけるレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。図4と同じ構成については同じ符号を用いて説明を省略する。また、図8は、本変形例におけるレーザ加工装置1の動作を示すフローチャートである。図5と同じ構成については同じ符号を用いて説明を省略する。
 本変形例と実施の形態1との相違点は、図7の(c)および図8のS14に示すように、警告信号15を発信した場合に、ガルバノスキャナ6が動作を停止する点である。
 時刻t3において、検出信号12が示す測定レーザ光22のエネルギーの方が比較許容値L1より小さい場合(実線で示す特性A)は、制御部9は警告信号15を発信することなく、レーザ加工装置1は継続して加工物99のレーザ加工を行う。そして、時刻t3において、検出信号12が示す測定レーザ光22のエネルギーの方が比較許容値L1より大きい場合(破線で示す特性B)は、制御部9は警告信号15を発信し、さらにガルバノ動作待ち時間TGが経過した時刻t4においても、ガルバノ動作指令信号14を出力せず、ガルバノスキャナ6の停止を継続させる(S14)。これに伴い、レーザ発振器2も停止させる。この場合、警告信号15を発信する基準となる比較許容値L1をこのサイクルでのレーザ加工に問題となる程度に高く設定しておくことができる。これにより、加工レーザ光23の立ち下がりが不十分な状態ではガルバノスキャナ6は駆動しないため、加工不良を防止できる。さらに、警告信号15によって、作業者は、レーザ発振器2が停止したことがわかる。また、比較許容値L1を大きく設定できるので、レーザ加工に問題がない警告信号15は発信されなくなる。
 (実施の形態1の変形例3)
 次に、図9を用いて、実施の形態1の変形例3について説明する。図9は、本変形例におけるレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。図6と同じ構成については同じ符号を用いて説明を省略する。また、変形例2に用いた図8は、本変形例におけるレーザ加工装置1の動作を示すフローチャートでもある。図5と同じ構成については同じ符号を用いて説明を省略する。
 本変形例と実施の形態1の変形例1との相違点は、図9の(c)および図8のS14に示すように、警告信号15を発信した場合に、ガルバノスキャナ6が動作を停止する点である。本変形例と実施の形態1の変形例1との共通点は、図9に示すように、判定時間T1とガルバノ動作待ち時間TGとが同時である点である。すなわち、時刻t3と時刻t4とが同時である。
 時刻t3において、検出信号12が示す測定レーザ光22のエネルギーの方が比較許容値L1より小さい場合(実線で示す特性A)は、制御部9は警告信号15を発信することなく、レーザ加工装置1は継続して加工物99のレーザ加工を行う。そして、時刻t3において、検出信号12が示す測定レーザ光22のエネルギーの方が比較許容値L1より大きい場合(破線で示す特性B)は、制御部9は警告信号15を発信し、ガルバノ動作指令信号14を出力せず、ガルバノスキャナ6を停止させる。これに伴い、レーザ発振器2も停止させる。この場合、警告信号15を発信する基準となる比較許容値L1をこのサイクルでのレーザ加工に問題となる程度に高く設定しておけばよい。なお、時刻t3と時刻t4についてはほぼ同時ではあるが、制御部9による検出信号12の受信と、比較許容値L1との比較を行う演算時間の分だけ時刻t4は時刻t3より遅れている。この時間は、ナノ秒レベルであり、本開示においては、「同時」と定義する。
 これにより、加工レーザ光23の立ち下がりが不十分な状態ではガルバノスキャナ6は駆動しないため、加工不良を防止できる。さらに、警告信号15によって、作業者は、レーザ発振器2が停止したことがわかる。そして、通常のレーザ加工においては、ガルバノ動作待ち時間TGを小さくすることができ、タクト時間を短縮できるために生産性が向上する。
 <パラメータの設定と受信のタイミングについて>
 前述のように、本開示においては、実施の形態1およびその変形例1~3のような制御が可能である。そして、それぞれにおいて、判定時間T1、ガルバノ動作待ち時間TG、および、比較許容値L1の設定が重要となる。ここで、ガルバノ動作待ち時間TGと比較許容値L1の決定方法をいくつが例示する。
 第1の決定方法は、レーザ発振器の仕様として提示されている立ち下がり時間の最大値を用いる方法である。一般に仕様書で提示される特性に対して、実際は多少優れていることが多い。特に、保証する最大値については機種間のバラつきを考慮してマージンを設けている。よって、このマージンが無くなる程度に特性劣化した場合は、不良発生の可能性が生じたとして警告の対象としている。
 例えば、レーザ光21のピークエネルギーの5%に立ち下がる時間が50μ秒未満であるという仕様では、比較許容値L1をピークエネルギーの5%に相当する検出信号12の値に設定し、判定時間T1を保証値の50μ秒に設定する。このようにすれば、保証レベルを超えるレーザ光21の立ち下がり特性の劣化が生じた場合、警告信号15で知ることができる。この場合は、ガルバノ動作待ち時間TGを少しでも余裕を持って判定時間T1よりも長く設定しておけば、ガルバノスキャナ6の動作までにさらにレーザ光21のエネルギーは低下する。これにより、警告信号15の発生時であっても、加工物99のレーザ加工を停止させる必要はない。そして、レーザ加工の終了後にレーザ加工装置1のメンテナンスを行うことで、レーザ加工装置1による加工不良を防止できる。
 第2の決定方法は、ガルバノ動作待ち時間TGと同時に検出信号12を受信する方法である。レーザ光21のエネルギーが十分に低下していない状態でガルバノスキャナ6を駆動してしまうと加工不良を生じる。しかし、加工不良を生じない加工レーザ光23のエネルギーは完全にゼロである必要はなく、限界値を有する。この限界値は加工物99の材質等で決まる。この限界値からわずかにマージンを持った測定レーザ光22のエネルギーを示す検出信号12の値を比較許容値L1とし、判定時間T1とガルバノ動作待ち時間TGとを同じにする。
 これにより、レーザ光21のエネルギーの立ち下がり特性が劣化しても、警告信号15が出力されないならば、ガルバノスキャナ6が動作を開始する時点では、加工レーザ光23のエネルギーは加工不良を生じさせない限界値以内である。警告信号15が出力された場合は、レーザ加工を続けると加工不良を発生する可能性があるので、作業者はすぐにレーザ加工装置1を停止してメンテナンスを行えば良い。
 第3は、ガルバノスキャナ6が動作を開始する前に異常状態でないかを判断する方法である。比較許容値L1は、ガルバノスキャナ6が動作しても不良とならない加工レーザ光23のエネルギーの限界値に相当する検出信号12の値とする。ガルバノ動作待ち時間TGは判定時間T1より長い時間を設定する。
 このようにすれば、ガルバノ動作指令信号14を出力する前に加工不良を起こすようなレーザ光21の立ち下がり特性の劣化を判定することができる。検出信号12の値と比較許容値L1を比較して立ち下がり特性が正常であると判断された場合には、ガルバノスキャナ6を動作させても加工不良が生じない。また、立ち下がり特性が異常であると判断された場合は、ガルバノ動作指令信号14を出力せずにレーザ加工を中断すれば、加工物99の加工不良を未然に防止できる。レーザ加工中断の理由は、警告信号15が出力されて警告表示部10に表示されているので、作業者も知ることができる。また、ガルバノ動作待ち時間TGが判定時間T1より長い分だけ、レーザ光21のエネルギーはさらに下がっているので、立ち下がり特性が異常であると判断された場合も、できるだけ早く作業者がレーザ加工を中断すれば、加工物99の加工不良を未然に防止できる。
 (実施の形態1の変形例4)
 なお、上述の第1から第3の比較方法と処置を組み合わせることもできる。例えば、第1の比較方法で警告を行うが加工は続け、第2の比較方法で異常と判断された場合には警告だけでなくレーザ加工装置1を停止させることができる。
 図10、11を用いて、実施の形態1の変形例4について説明する。図10は、本変形例におけるレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。図4と同じ構成については同じ符号を用いて説明を省略する。また、図11は、本変形例におけるレーザ加工装置1の動作を示すフローチャートである。図5と同じ構成については同じ符号を用いて説明を省略する。
 実施の形態1およびその変形例1~3と本変形例の異なる点は、図10の(b)、(c)および図11のS15に示すように、判定時間T1と比較許容値L1(第1の設定強度)に加えて、判定時間T2と比較許容値L2(第2の設定強度)をパラメータとして記憶しておくことである。
 図10の特性A(実線部)に示すように、第1の判定時間T1が経過した時刻t3において、比較許容値L1を下回っているため、制御部9は警告信号15を発信しない。また、判定時間T1よりも長い判定時間T2が経過した時刻t6(第6の時点)において、比較許容値L2を下回っているため、制御部9はガルバノ動作指令信号14を発信する。これにより、ガルバノスキャナ6は時刻t4に動作する。これは、レーザ光21の立ち下がり特性が正常である場合のレーザ加工の制御となる。
 これに対し、図10の特性B(破線部)に示すように、判定時間T1が経過した時刻t3において、比較許容値L1を上回っているため、制御部9は警告信号15を発信する。そして、判定時間T1よりも長い判定時間T2が経過した時刻t6において、比較許容値L2を上回っているため、制御部9は、図10の(c)に破線で示すように、ガルバノ動作指令信号14を発信せず、ガルバノスキャナ6は動作しない。これは、レーザ光21の立ち下がり特性が異常である場合のレーザ加工の制御となる。この場合は、警告信号15は発信されずにガルバノスキャナ6が停止することになる(S15)。
 もし、判定時間T1が経過した時刻t3において、比較許容値L1を上回っており、判定時間T2が経過した時刻t6において、比較許容値L2を下回っていれば、制御部9は警告信号15だけを発信し、ガルバノスキャナ6は動作を続ける。このようにすれば、レーザ加工装置1を止める前にレーザ発振器2のメンテナンスの準備ができる。
 以上、本実施の形態および変形例1~4では検出信号12の値を判定時間T1やT2が経過した時刻t3やt6に1回だけ検出信号12を用いる例で説明した。しかし、時刻t3やt6を含むように複数のサンプリング指令信号13を出力し、複数回受信した検出信号12の値を平均して、平均値を検出信号12の値としてもよい。
 例としては、判定時間T1が経過した時刻t3を最終タイミングとする期間に複数の検出信号12を受信する。具体的には、時刻t3の10μ秒前から、1μ秒ごとに計11回、検出信号12を受信するという方法を行えば良い。あるいは、時刻t3を中央タイミングとする期間に複数の検出信号12を受信する。具体的には、時刻t3の5μ秒前から5μ秒後まで、1μ秒ごとに計11回、検出信号12を受信するという方法を取ることもできる。
 このようにすれば、外乱等による測定値のばらつきによる誤った判定を防止することができる。
 または、検出信号12が比較許容値L1より大きくなった回数をカウントしておき、所定の回数を超えた場合に異常と判定してもよい。すなわち、複数の加工サイクルをまたいで、レーザ加工の異常を判定しても良い。この場合も、外乱等による測定値のばらつきによる誤った判定を防止することができる。
 あるいは、検出信号12が比較許容値L1より大きくなった場合に異常と判定し警告信号15は出力するがレーザ加工は継続する。そして、異常と判定した回数をカウントしておき、所定の回数を超えた場合にレーザ加工装置1の動作を止めるという方法も取ることができる。すなわち、複数の加工サイクルをまたいで、レーザ加工装置1の動作の停止を判断しても良い。この場合も、外乱等による測定値のばらつきによる誤った判定の影響を防止することができる。
 なお、サンプリング指令信号13の出力、検出信号12の受信は、比較・判定のタイミングのみに限定されず、レーザ加工装置1が稼働して一定の期間後から、所定の周期で行っても良い。この場合は、常時、検出信号12を受信しているので、定められた所定のタイミングの検出信号12の値を使って、比較・判定を行えば良い。
 (実施の形態2)
 本開示のレーザ加工装置の第2の実施形態について、図12および図13を用いて説明する。実施の形態1および変形例1~4と説明が重複する点については簡略化、あるいは省略し、異なる箇所について説明するものとする。また、符号については同一構成については同一の番号を付している。
 本実施の形態では、構成を示す図1~図3については第1の実施の形態と共通である。しかしながら、レーザ加工における制御、特に、制御部9の動作が異なっている。
 <レーザ加工装置1の動作>
 以下説明する動作は、加工物99の加工の内、1つのレーザパルスで1つの加工領域のレーザ加工を行う1サイクル分である。
 図12は本実施の形態に係るレーザ加工装置の(a)レーザパルス出力指令信号、(b)検出信号および(c)ガルバノ動作指令信号の状態を示すタイムチャートである。図13は、本実施の形態に係るレーザ加工装置の動作を示すフローチャートである。特に、図5に示すフローチャートは、主として制御部9の動作を記載している。
 加工物99の加工位置Pに加工レーザ光23が照射されるようにガルバノスキャナ6が位置決めされると、制御部9からレーザパルス出力指令信号11が出力される(S20)。これについては、実施の形態1で説明した図3、4の(a)や図5のS10と同様である。
 制御部9は、時刻t2から時間の計測を開始し、予め設定しパラメータ記憶部92に格納しているサンプリング周期TSが経過したかどうかを判定する(S21)。
 サンプリング周期TSが経過した時点で、制御部9は光検出器4にサンプリング指令信号13を出力し、光検出器4は、サンプリング指令信号13を受信したタイミングで測定した測定レーザ光22のエネルギーを示す検出信号12を出力する(S22)。
 なお、サンプリング周期TSはレーザパルス出力の立ち下がりの過渡的な変化が計測できる程度の間隔であり、例えば、レーザパルスの立ち下がり時間が数十μ秒であるなら、1μ秒程度である。
 制御部9は、検出信号12と予め設定され格納されている動作可能許容値L3とを比較する。動作可能許容値L3は、ガルバノスキャナ6が動作してもレーザ加工による加工不良を起こさない加工レーザ光23のエネルギーに相当する値としておく。具体的には加工物99の材質によるがピークエネルギーの1%~3%のうちの一つのエネルギーに相当する値に設定しておく。
 レーザ光21のエネルギーがまだ十分に立ち下がることなく、検出信号12が動作可能許容値L3より大きい場合は、再度、サンプリング周期TSを待って検出信号12を受信し、動作可能許容値L3との比較を行う。この検出信号12のサンプリングを、検出信号12の値が動作可能許容値L3以下になるまで繰り返す。レーザ光21のエネルギー十分に立ち下がって、検出信号12が動作可能許容値L3以下になった時刻t7(第7の時点)で、制御部9はガルバノ動作指令信号14を出力する(S23a)。図12の(b)の特性A(実線部)に示すように、時刻t7は、検出信号12の値が動作可能許容値L3を初めて下回ったタイミングに相当する。図12の(c)に示すように、制御部9は時刻t7以降の時刻t8(第8の時点)にガルバノ動作指令信号14をオンにする。なお、図12の(c)では、時刻t8は時刻t7と同時に記載しているが、時刻t8は時刻t7より後であっても構わない。
 以上のようにすれば、レーザ光21のエネルギーが十分に立ち下がるよりも前にガルバノスキャナ6を駆動して不要な部分に加工レーザ光23を照射するという加工不良を防止できる。さらに、ガルバノスキャナ6の動作開始までに余裕のある待ち時間を設定する必要はなく、レーザ加工のタクト時間を短縮できる。
 次に、レーザ発振器2からのレーザ光21の特性が変化した場合、特にレーザ光21のエネルギーの立ち下がり特性の劣化が著しい場合のレーザ加工装置1の動作について説明する。図12の(b)の特性B(破線部)に示すように、レーザ光21のエネルギーの立ち下がり特性が劣化した場合は、検出信号12が動作可能許容値L3以下となるまでに長時間がかかる。そのために、サンプリング周期TSで検出信号12の受信を繰り返すループに、異常判定のための判定時間T2を設定する。そして、時刻t7から判定時間T2が経過した時刻t9(第9の時点)においても検出信号12が動作可能許容値L3以下にならない場合は、レーザ発振器2に異常が発生したと判断する。この場合、制御部9は、警告信号15を警告表示部10に出力する(S23b)。警告信号15を警告表示部10に送信する時刻を第10の時点とする。さらに、制御部9は、図12の(c)に破線で示すように、ガルバノ動作指令信号14を出力することもなく、レーザ発振器2も含めたレーザ加工装置1全体の駆動を停止する。
 以上のようにすれば、レーザ発振器2によるレーザ光21の出力の立ち下がり特性が劣化しても、レーザ光21のエネルギーが十分に立ち下がるよりも前にガルバノスキャナ6を駆動して不要な部分に加工レーザ光23を照射するという加工不良を防止できる。さらに、作業者はレーザ発振器2の異常を知ることができる。
 なお、判定時間T2を長く設定するとレーザ加工が長時間化するため、レーザ発振器2によるレーザ光21の立ち下がり特性が劣化したと判断できる時間に設定すれば良い。例えば、ガルバノ動作待ち時間TGはレーザ光21の立ち下がり特性の劣化がなければ不良を生じない時間として設定されるので、判定時間T2はガルバノ動作待ち時間TGと同程度に設定してもよい。
 以上、本実施の形態では、サンプリング周期TSごとに受信した検出信号12を動作可能許容値L3と比較したが、複数回受信した検出信号12から算出した値を動作可能許容値L3と比較してもよい。
 例として、サンプリング周期TSごとに受信した検出信号12と、それ以前の複数回、例えば10回の検出信号12との移動平均を求めて、検出信号12の移動平均と動作可能許容値L3とを比較してもよい。あるいは、サンプリング周期TSごとに受信した検出信号12と、それ以前の複数回を含めた重回帰計算で求めた値と動作可能許容値L3とを比較してもよい。
 このようにすれば、外乱等による測定レーザ光22の検出信号12のばらつきによる誤った判定を防止できる。
 なお、サンプリング周期TSでのサンプリング指令信号13の出力、検出信号12の受信は、必ずしもレーザパルス出力指令信号11がオフされた時刻t2から開始することに限定されず、レーザ加工装置1が稼働してから一定の時間が経過した時点で開始してもよい。
 実施の形態1およびその変形例1~4や実施の形態2では、図1を用いて、分光器3が、レーザ発振器2および光学調整部5の間に設けられた構成について説明した。これにより、光学調整部5でプロファイルや光量を調整される前のレーザ光21の状態を検知でき、レーザ発振器2からのレーザ光21の出力特性そのものの劣化を直接判定することができる。
 それに対して、図14は、本開示の別のレーザ加工装置の概略構成を示す斜視図である。図14に示すように、光学調整部を分光器3およびレーザ発振器2との間に設けても構わない。これにより、すでに光学調整部5でプロファイルや光量を調整され、よりガルバノスキャナ6に近いレーザ光21の状態を検知でき、レーザ加工に寄与しているレーザ光21の特性を判定することができる。
 さらに詳細に説明する。レーザパルス出力指令信号11がオフになった時刻t2では、レーザ媒質が連続的に励起されている状態と異なっている。よって、レーザビームのモード数も変化しており、ビームプロファイルも異なっている。そのため、光学調整部5で絞りやアイリスを通るビームの比率が異なり、見かけ上の立ち下がりの特性も異なっている。そのため、光学調整部5を分光器3とレーザ発振器2との間に設けることで、加工不良の防止をより精度高く行うことができる。
 なお、分光器3が、レーザ光21の光路内のガルバノスキャナ6の直前に位置する場合、検出信号12と比較するパラメータは、光学調整部5を通過後のレーザ加工に用いられるレーザ光21の強度に対応して設定される。
 本開示に係るレーザ加工装置は、レーザパルスのエネルギーの立ち下がり特性の劣化を監視し、レーザ加工の不良発生を警告、あるいは、防止できるものであり、レーザを用いて基板に穴あけ加工などを施すレーザ加工装置等において有用である。
 1 レーザ加工装置
 2 レーザ発振器
 3 分光器
 4 光検出器
 5 光学調整部
 6 ガルバノスキャナ
 7 集光レンズ
 8 加工テーブル
 9 制御部
 10 警告表示部
 11 レーザパルス出力指令信号
 12 検出信号
 13 サンプリング指令信号
 14 ガルバノ動作指令信号
 15 警告信号
 21 レーザ光
 22 測定レーザ光
 23 加工レーザ光
 61 ガルバノコントローラ
 62,64 モータ
 63,65 ガルバノミラー
 91 メインソフト処理部
 92 パラメータ記憶部
 93 レーザ出力指令部
 94 サンプリング指令部
 95 検知レベル受信部
 96 比較部
 97 ガルバノ指令部
 98 警告信号出力部
 99 加工物
 P 加工位置
 r レーザ
 ra 判定用レーザ
 t,t1,t2,t3,t4,t6,t7,t8,t9 時刻
 L1,L2 比較許容値
 L3 動作可能許容値
 P1,P2 レーザパルス
 T1,T2 判定時間
 TG ガルバノ動作待ち時間
 TP 励起パルス幅
 TS サンプリング周期
 V1,V2 最大電圧値
 Vx 基準値
 100 レーザ加工装置
 101 レーザ発振器
 102 ビームスプリッタ
 103 光検出器
 104 カウンタ
 105 メインコントローラ
 106 表示器

Claims (11)

  1.  レーザ光を出力するレーザ発振器と、
     前記レーザ光が入射され、前記レーザ光を加工レーザ光と測定レーザ光とに分離して出射する分光器と、
     前記測定レーザ光が入射され、前記測定レーザ光の強度を示す検出信号を発信する光検出器と、
     前記加工レーザ光が入射され、前記加工レーザ光を加工物に照射する照射部と、
     前記レーザ発振器と前記光検出器と前記照射部とに接続された制御部とを備え、
     前記制御部は、
      第1の時点に前記レーザ光の出力を開始し、前記第1の時点よりも後の第2の時点に前記レーザ光の出力を停止する出力信号を前記レーザ発振器に発信し、
      前記第2の時点よりも後である第3の時点に、第1の設定強度よりも大きい第1の検出強度を示す検出信号を前記光検出器から受信し、
      前記第3の時点以降の第4の時点に、前記照射部の駆動を制御する駆動信号を前記照射部に発信し、
      前記第3の時点以降の第5の時点に、警告信号を発信するレーザ加工装置。
  2.  前記第3の時点と前記第4の時点とが同時であり、
     前記駆動信号は前記照射部を動作させる信号である請求項1に記載のレーザ加工装置。
  3.  前記第4の時点は、前記第3の時点よりも後であり、
     前記駆動信号は前記照射部の停止を継続させる信号である請求項1に記載のレーザ加工装置。
  4.  前記第4の時点は、前記第3の時点よりも後であり、
     前記制御部は、
      前記第3の時点よりも後で、かつ、前記第4の時点以前の第6の時点に、第2の検出強度を示す検出信号を前記光検出器から受信する請求項1に記載のレーザ加工装置。
  5.  前記第2の検出強度は、第2の設定強度よりも小さく、
     前記駆動信号は前記照射部を動作させる信号である請求項4に記載のレーザ加工装置。
  6.  前記第4の時点と前記第6の時点とが同時である請求項5に記載のレーザ加工装置。
  7.  前記第6の時点は、前記第4の時点よりも前であり、
     前記第2の検出強度は、第2の設定強度よりも大きく、
     前記駆動信号は前記照射部の停止を継続させる信号である請求項4に記載のレーザ加工装置。
  8.  レーザ光を出力するレーザ発振器と、
     前記レーザ光が入射され、前記レーザ光を加工レーザ光と測定レーザ光とに分離して出射する分光器と、
     前記測定レーザ光が入射され、前記測定レーザ光の強度を示す検出信号を発信する光検出器と、
     前記加工レーザ光が入射され、前記加工レーザ光を加工物に照射する照射部と、
     前記レーザ発振器と前記光検出器と前記照射部とに接続された制御部とを備え、
     前記制御部は、
      第1の時点に前記レーザ光の出力を開始し、前記第1の時点よりも後の第2の時点に前記レーザ光の出力を停止する出力信号を前記レーザ発振器に発信し、
      前記第2の時点以降は、前記検出信号を周期的に前記光検出器から受信し、
      前記第2の時点よりも後である第7の時点に、第3の設定強度よりも小さい第3の検出強度を示す検出信号を前記光検出器から受信し、
      前記第7の時点以降の第8の時点に、前記照射部を動作させる駆動信号を前記照射部に発信するレーザ加工装置。
  9.  前記制御部は、
      前記第7の時点から所定時間が経過した第9の時点に、第4の設定強度よりも大きい第4の検出強度を示す検出信号を前記光検出器から受信し、
      前記第9の時点以降の第10の時点に、警告信号を発信する請求項8に記載のレーザ加工装置。
  10.  前記レーザ発振器と前記分光器との間に設けられ、前記レーザ光を調整する光学調整部をさらに備えた請求項1から9のいずれかに記載のレーザ加工装置。
  11.  前記分光器と前記照射部との間に設けられ、前記加工レーザ光を調整する光学調整部をさらに備えた請求項1から9のいずれかに記載のレーザ加工装置。
PCT/JP2015/000751 2014-02-21 2015-02-18 レーザ加工装置 WO2015125472A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016503976A JPWO2015125472A1 (ja) 2014-02-21 2015-02-18 レーザ加工装置
US15/113,782 US20170008128A1 (en) 2014-02-21 2015-02-18 Laser beam machine
CN201580009595.XA CN106029289B (zh) 2014-02-21 2015-02-18 激光加工装置
EP15751429.0A EP3108992A4 (en) 2014-02-21 2015-02-18 Laser beam machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-031349 2014-02-21
JP2014031349 2014-02-21

Publications (1)

Publication Number Publication Date
WO2015125472A1 true WO2015125472A1 (ja) 2015-08-27

Family

ID=53877991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000751 WO2015125472A1 (ja) 2014-02-21 2015-02-18 レーザ加工装置

Country Status (6)

Country Link
US (1) US20170008128A1 (ja)
EP (1) EP3108992A4 (ja)
JP (1) JPWO2015125472A1 (ja)
CN (1) CN106029289B (ja)
TW (1) TW201544222A (ja)
WO (1) WO2015125472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018895A (ja) * 2016-07-26 2018-02-01 ファナック株式会社 レーザ制御装置、方法及びプログラム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190134748A1 (en) * 2017-11-09 2019-05-09 General Electric Company Optic train monitoring for additive manufacturing
KR102496546B1 (ko) * 2017-12-19 2023-02-06 비아 메카닉스 가부시키가이샤 레이저 가공장치, 레이저 가공방법 및 이를 위한 프로그램을 기록한 기록매체
JP6987453B2 (ja) * 2018-01-29 2022-01-05 住友重機械工業株式会社 評価装置、及び評価方法
EP3817162A4 (en) * 2018-06-29 2021-08-25 Panasonic Intellectual Property Management Co., Ltd. LASER DEVICE AND DEHUMIDIFICATION MANAGEMENT METHOD FOR LASER DEVICES
US20220098121A1 (en) * 2019-01-30 2022-03-31 Denka Company Limited Method for manufacturing single sheet-type green sheet, method for manufacturing silicon nitride sintered body, single sheet-type green sheet, and silicon nitride sintered body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287056A (ja) * 2000-04-03 2001-10-16 Matsushita Electric Ind Co Ltd レーザ加工装置
US20010048701A1 (en) * 2000-06-06 2001-12-06 Kenji Kawazoe Laser processing apparatus
US7164099B2 (en) * 2002-12-17 2007-01-16 Hitachi Via Mechancis Ltd. Multi-axis laser machine, method for machining with the same, and recording medium recording computer program for controlling the same
JP2009065202A (ja) * 2001-10-16 2009-03-26 Kataoka Seisakusho:Kk レーザ加工装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302798A (en) * 1991-04-01 1994-04-12 Canon Kabushiki Kaisha Method of forming a hole with a laser and an apparatus for forming a hole with a laser
WO1993008877A1 (en) * 1991-11-06 1993-05-13 Lai Shui T Corneal surgery device and method
DE19534590A1 (de) * 1995-09-11 1997-03-13 Laser & Med Tech Gmbh Scanning Ablation von keramischen Werkstoffen, Kunststoffen und biologischen Hydroxylapatitmaterialien, insbesondere Zahnhartsubstanz
US6255619B1 (en) * 1996-03-08 2001-07-03 Nippon Aspherical Lens Co., Lens, semiconductor laser element, device for machining the lens and element, process for producing semiconductor laser element, optical element, and device and method for machining optical element
JPH10263859A (ja) * 1997-03-19 1998-10-06 Miyachi Technos Corp レーザモニタ装置及びレーザ装置
JPH1147965A (ja) * 1997-05-28 1999-02-23 Komatsu Ltd レーザ加工装置
CN1124917C (zh) * 1997-12-26 2003-10-22 三菱电机株式会社 激光加工装置
DE19831340C1 (de) * 1998-07-13 2000-03-02 Siemens Ag Verfahren und Anordnung zum Kalibrieren einer Laserbearbeitungsmaschine zum Bearbeiten von Werkstücken
JP2001278056A (ja) * 2000-04-04 2001-10-10 Yaskawa Electric Corp 移動台車
JP2001300750A (ja) * 2000-04-20 2001-10-30 Amada Eng Center Co Ltd レーザ加工機の加工不良検出方法およびその装置
US6875951B2 (en) * 2000-08-29 2005-04-05 Mitsubishi Denki Kabushiki Kaisha Laser machining device
US6696667B1 (en) * 2002-11-22 2004-02-24 Scimed Life Systems, Inc. Laser stent cutting
JP5324202B2 (ja) * 2008-12-12 2013-10-23 ファナック株式会社 レーザ発振器を備えたレーザ加工機
JP5252026B2 (ja) * 2011-05-10 2013-07-31 パナソニック株式会社 レーザ溶接装置及びレーザ溶接方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287056A (ja) * 2000-04-03 2001-10-16 Matsushita Electric Ind Co Ltd レーザ加工装置
US20010048701A1 (en) * 2000-06-06 2001-12-06 Kenji Kawazoe Laser processing apparatus
JP2009065202A (ja) * 2001-10-16 2009-03-26 Kataoka Seisakusho:Kk レーザ加工装置
US7164099B2 (en) * 2002-12-17 2007-01-16 Hitachi Via Mechancis Ltd. Multi-axis laser machine, method for machining with the same, and recording medium recording computer program for controlling the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3108992A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018895A (ja) * 2016-07-26 2018-02-01 ファナック株式会社 レーザ制御装置、方法及びプログラム
US10230209B2 (en) 2016-07-26 2019-03-12 Fanuc Corporation Laser control device, method and program

Also Published As

Publication number Publication date
CN106029289B (zh) 2017-09-01
JPWO2015125472A1 (ja) 2017-03-30
US20170008128A1 (en) 2017-01-12
EP3108992A4 (en) 2017-04-05
CN106029289A (zh) 2016-10-12
TW201544222A (zh) 2015-12-01
EP3108992A1 (en) 2016-12-28

Similar Documents

Publication Publication Date Title
WO2015125472A1 (ja) レーザ加工装置
US5986252A (en) Laser monitor apparatus and a laser apparatus
JP6234296B2 (ja) レーザ加工装置及びレーザ加工方法
JP2006247681A (ja) レーザ加工用モニタリング装置
US8461470B2 (en) Method of measuring degradation condition of output mirror in laser oscillator and laser machining apparatus
CN111048979B (zh) 激光振荡器的监视控制系统
JP2011240361A (ja) レーザ加工装置およびレーザ加工装置の異常監視方法
JP2011021980A (ja) 光測距装置
CN110091052B (zh) 评价装置、评价方法及显示装置
WO2019215793A1 (ja) レーザ加工機、制御装置および判定方法
US11385098B2 (en) Method and system for characterizing power in a high-power laser
JP4619146B2 (ja) レーザ発振器の出力補正方法およびレーザ発振器
JP2018158361A (ja) レーザ加工装置
JP2016087676A (ja) レーザ加工装置及びレーザ加工方法
JP4453407B2 (ja) レーザ加工装置
JP5995767B2 (ja) レーザ加工装置及びレーザ加工方法
US10811326B1 (en) Acoustic detection of laser failure mode in semiconductor environment
US9083146B1 (en) Solid state laser device
JP2010110796A (ja) レーザ加工モニタリング方法および装置
JP2001287056A (ja) レーザ加工装置
JP6370517B1 (ja) レーザ加工装置
KR100870710B1 (ko) 스캐너 오작동 감지방법
JP2009036706A (ja) 光学材料のレーザ損傷耐性推定方法及びレーザ損傷耐性推定装置
WO2024052998A1 (ja) レーザ発振器及びレーザ加工装置
JP2008128987A (ja) ビームプロファイル測定装置及びレーザ加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016503976

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15113782

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015751429

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015751429

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE