WO2015124109A1 - 辐射预交联聚烯烃胶膜及制法以及用于封装的方法和组件 - Google Patents

辐射预交联聚烯烃胶膜及制法以及用于封装的方法和组件 Download PDF

Info

Publication number
WO2015124109A1
WO2015124109A1 PCT/CN2015/073185 CN2015073185W WO2015124109A1 WO 2015124109 A1 WO2015124109 A1 WO 2015124109A1 CN 2015073185 W CN2015073185 W CN 2015073185W WO 2015124109 A1 WO2015124109 A1 WO 2015124109A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
crosslinked
radiation
radiation pre
crosslinked polyolefin
Prior art date
Application number
PCT/CN2015/073185
Other languages
English (en)
French (fr)
Inventor
李民
Original Assignee
上海海优威新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410061051.5A external-priority patent/CN103804774B/zh
Priority claimed from CN201410061030.3A external-priority patent/CN103819807B/zh
Priority claimed from CN201420092359.1U external-priority patent/CN203721748U/zh
Priority claimed from CN201510010023.5A external-priority patent/CN104558802B/zh
Application filed by 上海海优威新材料股份有限公司 filed Critical 上海海优威新材料股份有限公司
Priority to JP2016549359A priority Critical patent/JP6572225B2/ja
Priority to US15/113,799 priority patent/US9862865B2/en
Priority to EP15752805.0A priority patent/EP3112413B1/en
Publication of WO2015124109A1 publication Critical patent/WO2015124109A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/14Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/307Extrusion nozzles or dies having a wide opening, e.g. for forming sheets specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • B32B3/085Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/002Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising natural stone or artificial stone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/244Stepwise homogeneous crosslinking of one polymer with one crosslinking system, e.g. partial curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J131/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid, or of a haloformic acid; Adhesives based on derivatives of such polymers
    • C09J131/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C09J131/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0844Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using X-ray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/085Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using gamma-ray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0872Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using ion-radiation, e.g. alpha-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0877Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0883Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using neutron radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2331/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2331/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • C08J2331/04Homopolymers or copolymers of vinyl acetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a film and a preparation method thereof, and a method and a component thereof for applying the film, in particular to a polyolefin film used in the field of packaging, a preparation method thereof and a packaging method and assembly using the film.
  • the packaging process is widely used in the fields of semiconductor devices, crystalline silicon cells, light-emitting semiconductor LEDs, organic light-emitting semiconductor OLEDs, display screens, etc., wherein a film for packaging is used for blocking packaging and protecting the functions of the packaged body.
  • Polyolefin is a commonly used material for packaging films. Among them, ethylene-vinyl acetate resin and polyolefin elastomer are the two most commonly used materials in existing polyolefin packaging materials.
  • EVA resin can be used as a sole material, agricultural film and hot melt adhesive.
  • EVA with a high VA (vinyl acetate) content has a low melting point, generally below 90 °C.
  • the film as a hot melt adhesive is usually made into a glue stick or a film before use. Users purchase glue sticks or films and use them according to their own processes.
  • the content of vinyl acetate (i.e., VA) in the EVA resin is between 25% and 33%, the transparency is high, the light transmittance is higher than 90%, and it is also very soft.
  • This range of EVA resin is very suitable as a laminated film in double glazing or a packaging film in a solar module, which can buffer the impact of the glass, and can also protect the photovoltaic cell in the solar cell module which is very brittle on the back side of the glass.
  • this VA range of EVA resin has a melting point of 60-80 ° C, and its softening point is far below room temperature. It can not maintain dimensional stability and its own strength for a long time at room temperature, and must be cross-linked before long-term use.
  • a thermal crosslinker For the purpose of crosslinking, a thermal crosslinker must be added to the EVA film for this type of application, usually an organic peroxide such as dicumyl peroxide (DCP) or tert-butyl-2-ethylhexyl carbonate. Butyl ester (TBEC) and the like.
  • DCP dicumyl peroxide
  • TBEC Butyl ester
  • the EVA film with the cross-linking agent is placed between the glass of the double-glazing or the upper and lower sides of the cell after the solar module glass, and is heated to 135 ° C or higher while vacuuming, so that the EVA resin melts and fills the glass or the cell.
  • the gap between the peroxides and the peroxide decomposition leads to cross-linking of the EVA resin.
  • the degree of crosslinking of the EVA resin can be between 75% and 95%.
  • the EVA film becomes a thermosetting material by cross-linking, and it is elastic but no longer melts, and it can maintain shape and strength forever.
  • the commonly used EVA film has no cross-linking degree before use, and its dimensional stability is not good, and it is easy to overflow from the edge of the glass during heating to contaminate the processing equipment.
  • a colored EVA film and a transparent EVA film are used together at the same time, due to poor dimensional stability, the interface between the color film and the transparent film is often unclear and the appearance is affected.
  • a polyolefin elastomer that is, a POE resin, specifically refers to a copolymer of ethylene and butene, pentene, hexene or octene. It was originally invented by Dow Chemical Company of the United States and has a relatively narrow molecular weight distribution and uniform shortness. Branched-chain elastomeric copolymer of ethylene and octene.
  • the ethylene chain crystalline region in the polyolefin elastomer acts as a physical crosslinking point, long-chain butene, pentane
  • the olefin, hexene or octene forms an amorphous rubber phase which has both the elasticity of the rubber and the thermoplastic properties of the plastic; it is compatible with polyolefins, especially polyethylene and polypropylene, and is not unsaturated.
  • the key is good in weather resistance, and it is used in a large amount for processing modified polyolefins, such as automotive parts for modified polypropylene.
  • Polyolefin elastomers have a low melting temperature, usually between 50 ° C and 70 ° C, so they are rarely used alone.
  • Patented CN103289582A describes a polyolefin elastomer which is formed by adding an organic peroxide after silane grafting to form a film which, upon use, decomposes the peroxide by heating to initiate a crosslinking reaction to improve the heat resistance of the polyolefin elastomer. Since the melting point of the polyolefin elastomer is very low, even in the case of adding a high melting point polyethylene or a crosslinking agent, the melting point of the elastomer portion is still very low, and the elastomer melts rapidly during heating. Very inconvenient or due to the low melting point, the transportation and storage temperatures are demanding, which limits its use.
  • the melting point is low.
  • the heating temperature of the solar photovoltaic cell assembly lamination process is generally between 135 ° C and 150 ° C, which is much higher than the melting temperatures of both.
  • the film is gradually melted in the lamination, which is incapable of maintaining dimensional stability during the process, and the size and shape of the film before and after lamination are greatly changed.
  • the most obvious example is that two layers of film smaller than glass are spilled from the periphery of the glass after lamination; or when one of the two films is colored, the interface between the two layers of film is ambiguous after lamination. , mutual penetration.
  • Radiation crosslinking is a technical means for initiating a crosslinking reaction between long chains of high molecular polymer polymers by various radiations.
  • ionizing radiation refers to rays such as alpha (alpha), beta (beta), gamma (gamma), X, and neutrons, which can ionize the species directly or indirectly (ie, An atom or molecule acquires or loses electrons and becomes an ion
  • non-ionizing radiation such as visible light, ultraviolet light, sound radiation, heat radiation
  • the lack of a close bonding force between the polymer polymer molecular chain and the chain causes the overall material to be deformed or destroyed when subjected to external forces and ambient temperature, which limits its application.
  • a chemical bond or the like is formed between the long chains of the polymer polymer to improve the physical properties and chemical properties of the polymer, and is a very effective means for modifying the polymer.
  • the radiation crosslinks the polymer itself does not physically contact the radiation generating device, and the shape of the polymer does not change before and after the reaction, but a crosslinking reaction has occurred inside the polymer.
  • the polymer can directly crosslink the product in the radiation, and a crosslinking assistant can be added to the polymer to promote the efficiency of radiation crosslinking.
  • non-ionizing radiation such as ultraviolet light has weak penetrating ability, limited curing depth, and photo-initiator must be added for UV curing. Therefore, partial cross-linking operation for high molecular polymers Difficult or inoperable; however, using an irradiation energy source capable of directly inducing a cross-linking reaction of a high-molecular polymer, such as ⁇ -ray, ⁇ -ray, X-ray, etc., since a photoinitiator is not required, the operation is more convenient, and partial crosslinking is realized. The effect is better.
  • Radiation cross-linking is currently used in the production of heat-shrinkable tubes. It uses the plastic after radiation to have a shape-remembering ability due to cross-linking.
  • the expanded plastic tube is expanded at room temperature to make it under heat. The ability to retract to the original shape.
  • Another area that is used more is the production of automotive wires, which allow radiation to increase the temperature of use and meet the requirements for use in hot environments around automotive engines.
  • the present invention provides a preparation for packaging.
  • the method for irradiating a pre-crosslinked polyolefin film comprises the steps of: mixing a polyolefin raw material to form a film; and irradiating the film with an irradiation energy source capable of directly exciting the polyolefin raw material to undergo a crosslinking reaction; Adjusting the irradiation dose of the irradiation energy source so that the degree of crosslinking of the crosslinked portion in the film is 3% to 95%; adjusting the energy of the irradiation energy irradiation to make the crosslinking The portion accounts for 5 to 100% of the thickness of the film, and 100% of the film is completely crosslinked.
  • a portion of the film which undergoes pre-crosslinking constitutes a surface layer of the film.
  • the irradiation energy source is one of ⁇ rays, ⁇ rays, X rays, ⁇ rays or neutron rays.
  • the method for mixing a polyolefin raw material into a film includes, but is not limited to, T-shaped flat die extrusion film formation or Two calender rolls were formed into a film.
  • the film forming temperature is 70 to 200 ° C
  • the mold temperature is 70 to 200 ° C.
  • the energy for adjusting the irradiation energy of the irradiation energy may be irradiated or unrolled after laminating the polyolefin film. Irradiation is performed.
  • the polyolefin film is an ethylene-vinyl acetate resin film.
  • the weight component of the ethylene-vinyl acetate resin film is:
  • the irradiation dose is 0.2 to 100 KGY.
  • the method for preparing a radiation pre-crosslinked ethylene-vinyl acetate resin film for encapsulation according to the present invention, wherein the pre-crosslinked ethylene-vinyl acetate resin film is pre-crosslinked when the film is all pre-crosslinked
  • the degree of crosslinking is 5 to 74%.
  • the radiation pre-crosslinked ethylene-vinyl acetate resin film is a single layer, double layer or multi-layer co-extruded film.
  • the radiation pre-crosslinked ethylene-vinyl acetate resin film has a thickness of 0.01 to 2 mm; more preferably, the thickness is 0.3 to 0.7 mm.
  • the EVA resin is an EVA resin having a VA weight percentage of 20 to 35%; more preferably, the VA content is 25 to 33% EVA resin.
  • the organic peroxide crosslinking agent includes, but is not limited to, a dialkyl peroxide and an alkyl aryl group.
  • a dialkyl peroxide and an alkyl aryl group One or more of an oxide, a diaryl peroxide, a hydroperoxide, a diacyl peroxide, a peroxyester, a ketone peroxide, a peroxycarbonate, or a peroxyketal.
  • the co-crosslinking agent includes, but not limited to, acrylic acid, methacrylic acid, acrylamide, allyl group.
  • acrylic acid methacrylic acid, acrylamide, allyl group.
  • the antioxidant includes, but is not limited to, a light stabilizer, an ultraviolet absorber, and an anti-heat aging decomposition agent. One or more.
  • the silane coupling agent refers to an organosilicon compound containing two different chemical groups in the molecule.
  • the pigment refers to an additive which can change the color of the EVA film; it can be, but not limited to, carbon black, zinc antimony white, and vulcanization.
  • the polyolefin elastomer refers to a carbon-carbon chain resin which can be mixed with EVA, such as low density polyethylene, ethylene and At least one of a copolymer of butene or octene.
  • the polyolefin film may also be a polyolefin elastomer film.
  • the weight component of the polyolefin elastomer film is:
  • the irradiation dose is 10 to 200 KGY.
  • the degree of crosslinking of the radiation pre-crosslinked polyolefin elastomer film is 3 to 70%.
  • the radiation pre-crosslinked polyolefin elastomer film has a thickness of 0.2 to 1 mm; more preferably, the thickness is 0.3 to 0.7. Mm.
  • the polyolefin elastomer is one or more of ethylene and a copolymer of butene, pentene, hexene or octene Kind of mixture.
  • the polyolefin elastomer is grafted with or without a polar group, and is added at the time of film formation.
  • a polar group small molecule additive preferably, the polar group is a silane coupling agent; more preferably, the silane coupling agent is grafted onto the elastomer molecular chain before the elastomer is formed into a film, and the grafting thereof
  • the rate is less than 3%; preferably an ethylene-hexene copolymer having been grafted with vinyltrimethoxysilane, and the graft ratio is 0.6%.
  • the co-crosslinking agent refers to a polyfunctional monomer, which may be, but not limited to, triallyl isocyanurate.
  • a polyfunctional monomer which may be, but not limited to, triallyl isocyanurate.
  • triallyl cyanurate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate is one or more of triallyl cyanurate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate.
  • the antioxidant refers to a heat aging resistant agent and an ultraviolet absorber, which may be, but not limited to, a phenolic antioxidant.
  • hindered amine antioxidants for example: not limited to tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propanoic acid] Pentaerythritol ester, bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate and one or more of N,N'-di-sec-butyl-p-phenylenediamine.
  • the silane coupling agent refers to an organosilicon compound containing two different chemical groups in the molecule, preferably KH550.
  • the organic peroxide cross-linking agent refers to an organic peroxide cross-linking agent for thermal crosslinking which is commonly used in plastics, and may be But not limited to dicumyl peroxide, tert-butyl peroxy-2-ethylhexyl carbonate, 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexanekind.
  • the pigment refers to an additive which can change the color of the polyolefin elastomer film, and may be, but not limited to, carbon black, zinc white, Zinc sulfide, titanium dioxide, glass beads.
  • Another object of the invention is to provide a radiation pre-crosslinked polyolefin film for packaging.
  • the radiation pre-crosslinked polyolefin film improves the dimensional stability and heat resistance of the film without changing the physical and chemical properties of the film, so that it has a proper degree of crosslinking before use; When used, it can still reach the required cross-linking range of 75-95% by vacuuming and heat lamination.
  • it is required to use two layers of polyolefin film or two or more layers at the same time especially when a transparent polyolefin film and a colored polyolefin film are used at the same time, since the dimensional stability is good, the film and the film do not mutually interact with each other. Infiltration, the interface of the packaged component is very clear and has a good appearance, which is suitable for large-scale promotion and application.
  • the portion which crosslinks after irradiation through the irradiation energy source accounts for 5 to 100% of the thickness of the polyolefin film, wherein 100% is the film Crosslinking occurs in all, and the degree of crosslinking of the crosslinked portion is from 3% to 95%.
  • the portion where the cross-linking occurs in the film constitutes a surface layer of the film.
  • the polyolefin film is an ethylene-vinyl acetate resin film.
  • the weight component of the ethylene-vinyl acetate resin film is:
  • the pre-crosslinking degree of the radiation pre-crosslinked ethylene-vinyl acetate resin film is pre-crosslinked when the film is all pre-crosslinked It is 5 to 74%.
  • the radiation pre-crosslinked ethylene-vinyl acetate resin film for encapsulation proposed by the present invention the radiation pre-crosslinked ethylene
  • the vinyl acetate resin film is a single layer, double layer or multilayer coextruded film.
  • the radiation pre-crosslinked ethylene-vinyl acetate resin film for encapsulation proposed by the present invention, has a thickness of 0.01 to 2 mm; more preferably, the thickness is 0.3 to 0.7. Mm.
  • the EVA resin is an EVA resin having a VA weight percentage of 20 to 35%; more preferably, the VA content is 25 to 33. % EVA resin.
  • the organic peroxide crosslinking agent includes, but is not limited to, a dialkyl peroxide, an alkyl aryl peroxide, One or more of a diaryl peroxide, a hydroperoxide, a diacyl peroxide, a peroxyester, a ketone peroxide, a peroxycarbonate, and a peroxyketal.
  • the co-crosslinking agent includes, but not limited to, acrylic, methacrylic, acrylamide, allyl, and ring.
  • One or more of the oxygen compounds include, but not limited to, acrylic, methacrylic, acrylamide, allyl, and ring.
  • the antioxidant includes, but is not limited to, one of a light stabilizer, an ultraviolet absorber, and an anti-heat aging decomposition agent. A variety.
  • the silane coupling agent refers to an organosilicon compound containing two different chemical groups in the molecule.
  • the pigment refers to an additive which can change the color of the EVA film; it may be, but not limited to, carbon black, zinc antimony white, zinc sulfide, titanium One or more of white powder, ultrafine barium sulfate, and glass beads.
  • the polyolefin elastomer refers to a carbon-carbon chain resin which can be mixed with EVA, such as low density polyethylene, ethylene and butene or At least one of the copolymers of octene.
  • the polyolefin film may also be a polyolefin elastomer film.
  • the weight component of the polyolefin elastomer film is:
  • the radiation pre-crosslinked polyolefin elastomer film for encapsulation proposed by the present invention, when all the pre-crosslinking of the film occurs,
  • the radiation pre-crosslinked polyolefin elastomer film has a degree of crosslinking of from 3 to 70%.
  • the radiation pre-crosslinked polyolefin elastomer film for encapsulation proposed by the present invention, has a thickness of 0.2 to 1 mm; more preferably, the thickness is 0.3 to 0.7 mm.
  • the polyolefin elastomer is one or a mixture of ethylene and butene, pentene, hexene or octene copolymer. .
  • the polyolefin elastomer is grafted with or without a polar group, and a polar group is added during film formation.
  • a small molecule additive preferably, the polar group is a silane coupling agent; more preferably, the silane coupling agent has been grafted onto the elastomer molecular chain before the elastomer is formed into a film, and the graft ratio is less than 3 %; preferably an ethylene-hexene copolymer grafted with vinyltrimethoxysilane, the graft ratio is 0.6%.
  • the co-crosslinking agent refers to a polyfunctional monomer, which may be, but not limited to, triallyl isocyanurate, trimerization One or more of triallyl cyanate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate.
  • the antioxidant refers to a heat aging resistant decomposing agent and an ultraviolet absorbing agent, which may be, but not limited to, a phenolic antioxidant, a hindered amine.
  • Antioxidants, phosphorous acids, benzophenones, benzotriazoles for example, not limited to tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid] pentaerythritol ester, One or more of bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate and N,N'-di-sec-butyl-p-phenylenediamine.
  • the silane coupling agent refers to an organosilicon compound containing two different chemical groups in the molecule, preferably KH550.
  • the organic peroxide cross-linking agent refers to an organic peroxide cross-linking agent for thermal crosslinking which is commonly used in plastics, and may be, but not limited to, One or more of dicumyl peroxide, tert-butyl peroxy-2-ethylhexyl carbonate, and 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane.
  • the pigment refers to an additive which can change the color of the polyolefin elastomer film, and may be, but not limited to, carbon black, zinc antimony white, zinc sulfide, Titanium dioxide, glass beads.
  • a further object of the present invention is to provide a packaging method using the radiation pre-crosslinked polyolefin film, comprising the steps of: mixing a polyolefin raw material to form a film; and adopting a method capable of directly exciting the polyolefin raw material Irradiating the irradiated energy source to irradiate the film; adjusting the irradiation dose of the irradiated energy source so that the degree of crosslinking of the crosslinked portion in the film is 5% to 95%; adjusting the spoke The energy irradiated by the energy source, so that the cross-linked portion accounts for 5 to 100% of the thickness of the film, wherein 100% of the film is completely cross-linked; the film is placed on the front protective layer and Forming a package assembly between the package substrates and the packaged body, wherein the pre-crosslinked portion of the adhesive film is in contact with the packaged body; heating the package assembly to further crosslink the reaction film and complete Package.
  • a pre-crosslinked portion occurs in the film It is divided into a surface layer of the film.
  • the irradiation energy source is one of ⁇ rays, ⁇ rays, X rays, ⁇ rays or neutron rays.
  • the method of mixing the polyolefin raw materials into a film includes, but is not limited to, T-shaped flat die extrusion film formation or through two The calender roll is formed into a film.
  • the film formation temperature is 70 to 200 ° C
  • the mold temperature is 70 to 200 ° C.
  • the irradiation may be irradiating or unrolling the entire roll of the polyolefin film.
  • the polyolefin film is an ethylene-vinyl acetate resin film.
  • the weight component of the ethylene-vinyl acetate resin film is:
  • the irradiation dose is 0.2 to 100 KGY.
  • the pre-crosslinking degree of the radiation pre-crosslinked ethylene-vinyl acetate resin film is 5 ⁇ 74%.
  • the radiation pre-crosslinked ethylene-vinyl acetate resin film is a single-layer, double-layer or multi-layer co-extruded film.
  • the radiation pre-crosslinked ethylene-vinyl acetate resin film has a thickness of 0.01 to 2 mm; more preferably, the thickness is 0.3 to 0.7 mm.
  • the polyolefin film is a polyolefin elastomer film.
  • the weight of the polyolefin elastomer film in the packaging method of the radiation pre-crosslinked polyolefin film proposed by the present invention The components are:
  • the irradiation dose is 10 to 200 KGY.
  • the degree of crosslinking of the radiation pre-crosslinked polyolefin elastomer film is 3 to 70. %.
  • the radiation pre-crosslinked polyolefin elastomer film has a thickness of 0.2 to 1 mm; more preferably, the thickness is 0.3 to 0.7 mm.
  • the polyolefin elastomer is one or a mixture of ethylene and butene, pentene, hexene or octene copolymer. .
  • the package assembly when the package assembly is heated, the package assembly may be pressurized or evacuated for packaging.
  • the packaged body includes, but is not limited to, a crystalline silicon battery chip, a light emitting semiconductor LED, an organic light emitting semiconductor OLED, a display screen, and the like.
  • two layers of adhesive film are disposed between the front protective layer and the package substrate, and at least one of the adhesive films is The pre-crosslinked adhesive film is provided with a packaged body between the two layers of the adhesive film.
  • the front protective layer is a transparent protective layer, specifically transparent glass, transparent ceramic or transparent plastic.
  • the film comprises a layer of EVA (ethylene-vinyl acetate resin) film and a layer of pre-crosslinked EVA film, and
  • the EVA film is disposed at the near front protective layer.
  • the two layers of the film are pre-crosslinked POE (polyolefin elastomer) film.
  • the package substrate is glass, ceramic or plastic.
  • the present invention also provides a package assembly prepared by using the radiation pre-crosslinked polyolefin film packaging method, the package assembly comprising: a radiation pre-crosslinked polyolefin film disposed between the front protective layer and the package substrate And forming a package assembly with the packaged body, wherein the pre-crosslinked portion of the film is in contact with the packaged body.
  • the package body includes, but not limited to, a crystalline silicon battery chip, a light emitting semiconductor LED, an organic light emitting semiconductor OLED, a display screen, etc. .
  • two layers of adhesive film are disposed between the front protective layer and the package substrate, and the film is At least one layer is the pre-crosslinked adhesive film, and a packaged body is disposed between the two layers of the adhesive film.
  • the front protective layer is a transparent protective layer, specifically transparent glass, transparent ceramic or transparent plastic.
  • the film comprises a layer of EVA (ethylene-vinyl acetate resin) film and a layer of pre-crosslinked EVA glue. a film, and the EVA film is disposed at a near front protective layer.
  • EVA ethylene-vinyl acetate resin
  • the two layers of the film are pre-crosslinked POE (polyolefin elastomer) film.
  • the package substrate is glass, ceramic or plastic.
  • the invention adopts high energy ray radiation polyolefin film to make it have pre-crosslinking; the pre-crosslinked polyolefin film has cross-linking before the film is used, compared with the unpre-crosslinked polyolefin film.
  • the dimensional stability and heat resistance of the film are greatly improved, and the defects of large size and shape caused by heating when the film is not pre-crosslinked are used, which is more favorable for obtaining a clear interface of the packaged component. Packaging effect.
  • FIG. 1 is a schematic view showing an embodiment of a package assembly using a radiation pre-crosslinked polyolefin film in the present invention.
  • FIG. 2 is a schematic view showing another embodiment of a package assembly using a radiation pre-crosslinked polyolefin film in the present invention.
  • FIG 3 is a schematic view showing still another embodiment of a package assembly using a radiation pre-crosslinked polyolefin film in the present invention.
  • the above components are thoroughly mixed and then added to an extruder.
  • the temperature of the extruder is 110 ° C, and the mold temperature is 110 ° C.
  • the film is extruded through a T-shaped flat die, or can be directly formed by two calender rolls.
  • the film thickness was 0.3 mm and the length of the single roll was 100 m; the uncrosslinked film was wound using a three inch paper core.
  • the unwound film of the above-mentioned unwound film is placed in a roll or a plurality of rolls under the X-ray generating device, and the X-ray irradiation dose is 200 KGY.
  • the film thickness of the pre-crosslinked portion after irradiation is 100% of the total thickness of the film.
  • the degree of crosslinking of the film was measured and ranged from 60% to 70%.
  • the pre-crosslinked film is cut into the same size as the double glazing and placed between the double glazing, vacuumed and heated to 200 ° C for 10 minutes, and the final degree of crosslinking can reach 95% or more.
  • the pre-crosslinked film has a bond strength to the glass of greater than 75 Newtons/cm. This pre-crosslinked film overflows the double glazing edge by less than 5 mm.
  • the pre-crosslinked film and the uncrosslinked film of the same composition were each taken into five films of A4 size, respectively, and placed in an oven at 35 ° C, and placed on a weight of 1000 g, and placed for 24 hours, and then taken out.
  • the blocking condition was compared; it was found that the degree of adhesion of the radiation pre-crosslinked film was significantly smaller than that of the film which was not radiation-crosslinked with the same component.
  • the pre-crosslinked film and the uncrosslinked film of the same composition each took 5 strips each having a length of 15 cm and a length of 15 cm, and the tensile strength was compared; the tensile strength of all the radiation-crosslinked films was found. Both are higher than the un-radiated film of the same component.
  • the above components are thoroughly mixed and then added to an extruder, the temperature of the extruder is 90 ° C, and the mold temperature is 90 ° C; the film is extruded through a T-shaped flat die, or can be directly formed by two calender rolls, and wound up.
  • the film thickness was 0.6 mm and the length of the single roll was 100 m; the uncrosslinked film was wound using a six inch paper core.
  • the uncrosslinked film is placed in a roll or a plurality of rolls under the beta ray generating device, and the electron accelerator energy is 10 MeV; irradiation dose is 100KGY.
  • the film thickness of the pre-crosslinked portion after irradiation is 100% of the total thickness of the film.
  • the degree of crosslinking of the film was measured and ranged from 50% to 70%.
  • the pre-crosslinked film is cut into the same size as the double glazing and placed between the double glazing, vacuumed and heated to 200 ° C for 10 minutes, and the final degree of crosslinking can reach 95% or more.
  • the pre-crosslinked film has a bond strength to the glass of greater than 70 Newtons/cm.
  • the pre-crosslinked film and the uncrosslinked film of the same composition were each taken into five films of A4 size, respectively, and placed in an oven at 35 ° C, and placed on a weight of 1000 g, and placed for 24 hours, and then taken out.
  • the blocking condition was compared; it was found that the degree of adhesion of the radiation pre-crosslinked film was significantly smaller than that of the film which was not radiation-crosslinked with the same component.
  • the pre-crosslinked film and the uncrosslinked film of the same composition each took 5 strips each having a length of 15 cm and a length of 15 cm, and the tensile strength was compared; the tensile strength of all the radiation-crosslinked films was found. Both are higher than the un-radiated film of the same component.
  • Ethylene-octene copolymer 40 Ethylene-butene copolymer 40
  • Zinc sulfide 16.5
  • Triallyl isocyanurate (TAIC) 1 3-aminopropyltriethoxysilane (silane coupling agent KH550)
  • Dicumyl peroxide (peroxide crosslinker DCP) 1 N,N'-di-sec-butyl-p-phenylenediamine (antioxidant 4720) 0.5
  • the above components are thoroughly mixed and then added to an extruder, the temperature of the extruder is 90 ° C, and the mold temperature is 90 ° C; the film is extruded through a T-shaped flat die, or can be directly formed by two calender rolls, and wound up.
  • the film thickness was 0.7 mm and the length of the single roll was 20 m; the uncrosslinked film was wound using a three inch paper core.
  • the above uncrosslinked film was placed in a roll or a plurality of rolls under the beta ray generating device, the electron accelerator energy was 5 MeV, and the irradiation dose was 10 KGY.
  • the film thickness of the pre-crosslinked portion after irradiation is 100% of the total thickness of the film, and the degree of crosslinking of the film is measured, and the range is between 3% and 9%.
  • the pre-crosslinked film is cut into the same size as the double glazing and placed between the double glazing, vacuumed and heated to 200 ° C for 10 minutes, and the final degree of crosslinking can reach 95% or more.
  • the pre-crosslinked film has a bond strength to the glass of greater than 90 Newtons/cm.
  • the pre-crosslinked film and the uncrosslinked film of the same composition were each taken into five films of A4 size, respectively, and placed in an oven at 35 ° C, and placed on a weight of 1000 g, and placed for 24 hours, and then taken out.
  • the blocking condition was compared; it was found that the degree of adhesion of the radiation pre-crosslinked film was significantly smaller than that of the film which was not radiation-crosslinked with the same component.
  • the pre-crosslinked film and the uncrosslinked film of the same composition each took 5 strips each having a length of 15 cm and a length of 15 cm, and the tensile strength was compared; the tensile strength of all the radiation-crosslinked films was found. Both are higher than the un-radiated film of the same component.
  • the above components are thoroughly mixed and then added to an extruder.
  • the temperature of the extruder is 110 ° C, and the mold temperature is 110 ° C.
  • the film is extruded through a T-shaped flat die, or can be directly formed by two calender rolls.
  • the film thickness was 0.6 mm and the single roll length was 400 m; the uncrosslinked film was wound using a three inch paper core.
  • the unwound film unwound as described above was placed under the gamma ray generating device and then wound up to another three inch paper core to be wound.
  • the gamma ray irradiation dose is 200 KGY.
  • the film thickness of the pre-crosslinked portion after irradiation is 100% of the total thickness of the film.
  • the degree of crosslinking of the film was measured and ranged from 60% to 68%.
  • the pre-crosslinked film was placed on the back side of the double-glass solar module cell sheet, the cross-linking surface was placed on the side of the cell sheet, and the uncrosslinked surface was placed on the underlying glass and in contact with the glass.
  • the front side of the cell sheet is covered with a conventional transparent polyolefin elastomer film.
  • the pull-out force of the pre-crosslinked film and the glass is greater than 50 Newtons/cm.
  • the interface between the pre-crosslinked film and the transparent polyolefin elastomer film on the upper side of the cell sheet is clear, and the pre-crosslinked film does not have a phenomenon in which the underlying film migrates to the upper side of the cell sheet.
  • the formulation of the EVA film is as follows:
  • the above components are thoroughly mixed and then added to an extruder.
  • the temperature of the extruder is 110 ° C, and the mold temperature is 110 ° C;
  • the flat plate mold is extruded into a film, or can be directly formed into a film by two calender rolls, and the obtained uncrosslinked EVA film has a thickness of 0.1 mm and a single roll length of 100 m; the EVA film is wound with a three-inch paper core.
  • the wound EVA film was unrolled under the beta ray generating device and then wound onto another three inch paper core.
  • the radiation is an electron beam radiation method, the accelerator energy is 100 keV, and the radiation dose of the electron beam is 0.2 KGY, and the radiation pre-crosslinked film is obtained after irradiation.
  • the pre-crosslinked partial film thickness is 50% of the total thickness of the film.
  • the pre-crosslinked EVA film was placed on the back side of the double-glass solar module cell sheet, the cross-linking surface was placed on the side of the cell sheet, and the uncrosslinked surface was placed on the underlying glass and in contact with the glass.
  • the front side of the cell sheet is covered with a conventional transparent EVA film.
  • one layer of EVA is transparent and one layer of EVA is black.
  • the formulations of the two-layer EVA are as follows:
  • the above components were separately mixed and added to two barrels of a two-layer co-extruded extruder (two extruders).
  • the temperature of the extruder was 100 ° C
  • the temperature of the distributor was 100 ° C
  • the mold temperature was 102 ° C.
  • the mixture was melted by an extruder and then extruded through a dispenser into a T-shaped flat die to form a film, which was wound up.
  • the EVA film is deployed under the beta ray generating device, One side of the transparent layer faces the radiation generator for radiation. Then roll onto another three inch paper core. A radiation pre-crosslinked ethylene-vinyl acetate resin coextruded film was obtained.
  • the EVA film has a thickness of 0.7 mm and a single roll length of 300 m.
  • the accelerator energy is 500 keV and the radiant intensity is 50KGY.
  • the pre-crosslinked partial film thickness is 100% of the total thickness of the film.
  • the two layers of the pre-crosslinked EVA film were carefully cut with a blade, and the degree of crosslinking of the transparent layer was measured, and it was found that the degree of crosslinking was between 45% and 55%.
  • the film was cut to the size of the solar photovoltaic module, laminated in the order of glass/transparent EVA/cell sheet/double layer co-extruded EVA film/back sheet and vacuumed and laminated at 148 ° C for 5 minutes.
  • the lamination time is 12 minutes. After the lamination, a solar photovoltaic module having a black bottom surface and a white color viewed from the back side of the substrate was obtained. The interface between the black side and the transparent side is clear without flipping or other appearance defects.
  • the formulation of the EVA film is as follows:
  • the above components are thoroughly mixed and then added to an extruder.
  • the temperature of the extruder is 110 ° C, and the mold temperature is 110 ° C.
  • the film is extruded through a T-shaped flat die, or can be directly formed by two calender rolls.
  • the obtained uncrosslinked EVA film has a thickness of 2 mm and a single roll length of 200 m; the EVA film is wound using a three-inch paper core.
  • the EVA film was unrolled underneath the beta ray generating device and then rolled onto another three inch paper core.
  • the radiation is an electron beam radiation method, the accelerator energy is 300 keV, and the radiation dose of the electron beam is 30 KGY, and the radiation pre-crosslinked film is obtained after irradiation.
  • the pre-crosslinked partial film thickness was 30% of the total thickness of the film, and the degree of crosslinking of the film was measured, which ranged from 25% to 35%.
  • the pre-crosslinked EVA film was cut to the same size as the double glazing and placed between the double glazings, vacuumed and heated to 200 ° C for 10 minutes.
  • the adhesion of the EVA film to the glass is greater than 60 N/cm.
  • the EVA film overflows the double glazing edge to less than 5 mm.
  • the formulation of the EVA film is as follows:
  • EVA resin VA content 28% 78 Ultrafine barium sulfate (4000 mesh) 19.5
  • Triallyl cyanurate (TAC) 0.5 Tert-butyl peroxy-2-ethylhexyl carbonate (TBEC) 1 Bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (antioxidant 770) 0.5 3-methacryloxypropyltrimethoxysilane (A-174) 0.5
  • the above components were thoroughly mixed and then fed into an extruder at a temperature of 90 ° C and a mold temperature of 90 ° C; the film was extruded through a T-shaped flat die, and wound up to obtain an EVA film thickness of 0.1 mm, a single roll.
  • the length is 20 meters; the EVA film is wound with a three-inch paper core.
  • the EVA film is wound in a full roll or a multi-roll stack under a beta ray generating device, the accelerator energy is 500 keV, and the electron beam radiation dose is 100 KGY.
  • the pre-crosslinked partial film thickness is 100% of the total thickness of the film.
  • the degree of crosslinking of the EVA film was measured after irradiation, and the range was between 53% and 74%.
  • the pre-crosslinked EVA film was placed on the back of the solar module cell sheet, and the front side of the cell sheet was covered with a conventional transparent EVA film. It was then placed between two pieces of the same size glass and placed in a laminator for the manufacture of solar photovoltaic modules, evacuated for 6 minutes while heating to 150 ° C, and pressure lamination for 15 minutes.
  • the pre-crosslinked EVA film and glass have a pull force greater than 70 Newtons/cm.
  • the interface between the pre-crosslinked EVA film and the transparent EVA film on the upper side of the cell sheet is clear, and the pre-crosslinked EVA film does not have the phenomenon that the underlying film migrates to the upper side of the cell sheet.
  • the formulation of the EVA film is as follows:
  • EVA resin Ingredient Parts by weight EVA resin, VA content 33% 92.5 Carbon black 5
  • Triallyl isocyanurate (TAIC) 1 2,5-Dimethyl-2,5-bis(tert-butylperoxy)hexane (bi-five) 0.5 N,N'-di-sec-butyl-p-phenylenediamine (antioxidant 4720) 0.5 Vinyltrimethoxysilane (silane coupling agent A-171) 0.5
  • the above components were thoroughly mixed and then added to an extruder, the temperature of the extruder was 100 ° C, and the mold temperature was 102 ° C; the film was extruded through a T-shaped flat die, and wound up to obtain an EVA film thickness of 0.7 mm, a single roll.
  • the length is 300 meters; the EVA film is wound using a three-inch paper core.
  • the EVA film is stacked in a roll or a multi-roll under an ⁇ -ray generating device, and the radiation intensity is 100 KGY, and radiation is irradiated to obtain a radiation pre-crosslinked film.
  • the pre-crosslinked partial film thickness is 100% of the total thickness of the film.
  • the degree of crosslinking of the EVA film was measured and ranged from 35% to 55%.
  • the pre-crosslinked EVA film is cut to the same size as the double glazing and placed in double glazing Between the time, vacuuming and heating to 150 ° C for 10 minutes, it was found that the degree of crosslinking reached between 82% and 90%.
  • the pre-crosslinked EVA film five was laminated together, and a 1000 gram weight was placed thereon and placed in an oven at a temperature of 35 degrees for 40 hours. After removal, the five-layer EVA film can be layered very easily. EVA films that were not pre-crosslinked in the same formulation were severely stuck together under the same conditions.
  • the formulation of the EVA film is as follows:
  • EVA resin Ingredient Parts by weight EVA resin, VA content 28% 78 Ultrafine barium sulfate (4000 mesh) 19.5
  • Triallyl cyanurate (TAC) 0.5 Tert-butyl peroxy-2-ethylhexyl carbonate (TBEC) 1 Bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (antioxidant 770) 0.5 3-methacryloxypropyltrimethoxysilane (A-174) 0.5
  • the above components were thoroughly mixed and then added to an extruder, the temperature of the extruder was 90 ° C, and the mold temperature was 90 ° C; the film was extruded through a T-shaped flat die, and wound up to obtain an EVA film thickness of 0.1 mm; EVA The film was wound using a 3 inch paper core.
  • the wound EVA film is a roll film having a length of 100 meters.
  • the wound EVA film is unfolded under the ⁇ -ray generating device, and then wound onto another three-inch paper core, and the radiation is in the form of ⁇ -ray radiation, and the radiation dose is 0.2 KGY, and the radiation pre-crosslinked film is obtained after irradiation.
  • the pre-crosslinked partial film thickness is 80% of the total film thickness. Since the film was too thin to remove the surface layer, the overall degree of crosslinking was tested.
  • the overall pre-crosslinking degree of the measured EVA film is between 10% and 18%.
  • the pre-crosslinked EVA film was cut to the same size as the double glazing and placed between the double glazings, vacuumed and heated to 150 ° C for 10 minutes.
  • the adhesion of the EVA film to the glass is greater than 80 N/cm.
  • the EVA film overflows the double glazing edge to less than 2 mm.
  • the formulation of the EVA film is as follows:
  • the above components are thoroughly mixed and then added to an extruder.
  • the temperature of the extruder is 110 ° C, and the mold temperature is 110 ° C.
  • the film is extruded through a T-shaped flat die, or can be directly formed by two calender rolls.
  • the resulting uncrosslinked EVA film has a thickness of 0.5 mm and a single roll length of 20 m; the EVA film is wound using a three inch paper core.
  • the wound EVA film was unrolled under the X-ray generator and then rolled onto another three inch paper core.
  • the radiation is in the form of X-ray radiation, and the radiation dose is 0.2 KGY.
  • a radiation pre-crosslinked film is obtained.
  • the pre-crosslinked partial film thickness is 40% of the total film thickness.
  • a 0.2 mm surface layer was tested for cross-linking degree, and the degree of pre-crosslinking was between 11% and 18%.
  • the pre-crosslinked EVA film was placed on the back side of the double-glass solar module cell sheet, the cross-linking surface was placed on the side of the cell sheet, and the uncrosslinked surface was placed on the underlying glass and in contact with the glass.
  • the front side of the cell sheet is covered with a conventional transparent EVA film. It was then placed between two pieces of the same size glass and placed in a laminator for the manufacture of solar photovoltaic modules, evacuated for 6 minutes while heating to 150 ° C, and pressure lamination for 15 minutes. In the laminate, the pull-out force of the pre-crosslinked EVA film and glass is greater than 70 Newtons/cm. The interface between the pre-crosslinked EVA film and the transparent EVA film on the upper side of the cell sheet was clear, and the phenomenon that the underlying pre-crosslinked film migrated to the upper side of the cell sheet did not occur.
  • the formulation of the EVA film is as follows:
  • the above components are thoroughly mixed and then added to an extruder.
  • the temperature of the extruder is 110 ° C, and the mold temperature is 110 ° C.
  • the film is extruded through a T-shaped flat die, or can be directly formed by two calender rolls.
  • the resulting uncrosslinked EVA film has a thickness of 0.5 mm and a single roll length of 20 m; the EVA film is wound using a three inch paper core.
  • the wound EVA film was unrolled under the gamma ray generating device and then rolled onto another three inch paper core.
  • the radiation is a gamma ray radiation method, and the radiation dose is 0.2 KGY, and the radiation pre-crosslinked film is obtained after irradiation.
  • the pre-crosslinked partial film thickness is 50% of the total thickness of the film.
  • a 0.2 mm surface layer was tested for cross-linking degree, and the degree of pre-crosslinking was between 15% and 22%.
  • the pre-crosslinked EVA film was placed on the back side of the double-glass solar module cell sheet, the cross-linking surface was placed on the side of the cell sheet, and the uncrosslinked surface was placed on the underlying glass and in contact with the glass.
  • the front side of the cell sheet is covered with a conventional transparent EVA film. Then place it in two pieces of the same size
  • the glass was then placed in a laminator for the manufacture of solar photovoltaic modules, evacuated for 6 minutes, heated to 150 ° C, and pressure laminated for 15 minutes. In the laminate, the pull-out force of the pre-crosslinked EVA film and glass is greater than 70 Newtons/cm.
  • the interface between the pre-crosslinked EVA film and the transparent EVA film on the upper side of the cell sheet was clear, and the phenomenon that the underlying pre-crosslinked film migrated to the upper side of the cell sheet did not occur.
  • EVA resin Ingredient Parts by weight EVA resin, VA content 25% 93 Titanium dioxide 5 Trimethylolpropane trimethacrylate (TMPTMA) 1 Tert-butyl peroxy-2-ethylhexyl carbonate (TBEC) 0.8 Bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (antioxidant 770) 0.2
  • the above components are thoroughly mixed and then added to an extruder, the temperature of the extruder is 90 ° C, and the mold temperature is 90 ° C; the film is extruded through a T-shaped flat die, or can be directly formed by two calender rolls, and wound up.
  • the resulting uncrosslinked film had a thickness of 0.2 mm and a single roll length of 50 m; the uncrosslinked film was wound using a six inch paper core.
  • the above uncrosslinked film is unrolled or stacked in multiple layers under the beta ray generating device, and the electron accelerator energy is 5 MeV; the irradiation dose is 15 KGY, and radiation is pre-crosslinked.
  • the pre-crosslinked partial film thickness is 100% of the total thickness of the film.
  • the degree of crosslinking of the film was measured and ranged from 12% to 29%.
  • the pre-crosslinked film was cut to the same size as the double glazing and placed between the double glazings, vacuumed and heated to 150 ° C for 10 minutes.
  • the pre-crosslinked film has a bond strength to the glass of greater than 70 Newtons/cm.
  • the pre-crosslinked film and the uncrosslinked film of the same composition were each taken into five films of A4 size, respectively, and placed in an oven at 35 ° C, and placed on a weight of 1000 g, and placed for 24 hours, and then taken out.
  • the blocking condition was compared; it was found that the degree of adhesion of the radiation pre-crosslinked film was significantly smaller than that of the film which was not radiation-crosslinked with the same component.
  • the pre-crosslinked film and the uncrosslinked film of the same composition each took 5 strips each having a length of 15 cm and a length of 15 cm, and the tensile strength was compared; the tensile strength of all the radiation-crosslinked films was found. Both are higher than the un-radiated film of the same component.
  • EVA resin Ingredient Parts by weight EVA resin, VA content 28% 80 Zinc sulfide 16.5
  • Triallyl isocyanurate (TAIC) 3-aminopropyltriethoxysilane (silane coupling agent KH550) 1
  • the above components are thoroughly mixed and then added to an extruder, the temperature of the extruder is 90 ° C, and the mold temperature is 90 ° C; the film is extruded through a T-shaped flat die, or can be directly formed by two calender rolls, and wound up.
  • the resulting uncrosslinked film had a thickness of 0.5 mm and a single roll length of 30 m; the uncrosslinked film was wound using a three inch paper core.
  • the above uncrosslinked film is placed in a full roll or a multi-roll stack under the beta ray generating device, the electron accelerator energy is 10 MeV; the irradiation dose is 35 KGY, and radiation is pre-crosslinked.
  • the pre-crosslinked partial film thickness is 100% of the total thickness of the film.
  • the degree of crosslinking of the film was measured and ranged from 20% to 50%.
  • the pre-crosslinked film was cut to the same size as the double glazing and placed between the double glazings, vacuumed and heated to 155 ° C for 10 minutes.
  • the pre-crosslinked film has a bond strength to the glass of greater than 90 Newtons/cm.
  • the pre-crosslinked film and the uncrosslinked film of the same composition were each taken into five films of A4 size, respectively, and placed in an oven at 35 ° C, and placed on a weight of 1000 g, and placed for 24 hours, and then taken out.
  • the blocking condition was compared; it was found that the degree of adhesion of the radiation pre-crosslinked film was significantly smaller than that of the film which was not radiation-crosslinked with the same component.
  • the pre-crosslinked film and the uncrosslinked film of the same composition each took 5 strips each having a length of 15 cm and a length of 15 cm, and the tensile strength was compared; the tensile strength of all the radiation-crosslinked films was found. Both are higher than the un-radiated film of the same component.
  • the above components are thoroughly mixed and then added to an extruder.
  • the temperature of the extruder is 110 ° C, and the mold temperature is 110 ° C.
  • the film is extruded through a T-shaped flat die, or can be directly formed by two calender rolls, or flow.
  • the formed and uncrosslinked polyolefin elastomer film was stretched and wound to a thickness of 0.01 mm and a single roll length of 20 m; the uncrosslinked polyolefin elastomer film was wound using a six inch paper core.
  • the wound uncrosslinked polyolefin elastomer film was unrolled under the beta ray generating device and then wound onto another six inch paper core.
  • the radiation is an electron beam radiation method, the energy of the accelerator is 100 keV, and the radiation dose of the electron beam is 20 KGY, and the radiation pre-crosslinked film is obtained after irradiation.
  • the pre-crosslinked partial film thickness is 100% of the total thickness of the film.
  • the degree of crosslinking of the film was tested and ranged from 21% to 28%.
  • the counter substrate glass substrate, thickness: 150 ⁇ m
  • pre-crosslinked polyolefin elastomer film / organic EL device / substrate manufactured by Teijin DuPont Co., Ltd., trade name MelinexS, thickness: 100 ⁇ m
  • Teijin DuPont Co., Ltd., trade name MelinexS thickness: 100 ⁇ m
  • the crosslinked surface of the pre-crosslinked polyolefin elastomer film is placed on the side of the organic EL element, and the uncrosslinked surface is placed on the side of the opposite substrate and Board contact.
  • the laminate was then entirely placed in a vacuum laminator for manufacturing an organic EL display, heated to 100 ° C, and laminated for 1 hour.
  • the pull-out force of the pre-crosslinked polyolefin elastomer film and the glass substrate is greater than 70 N/cm.
  • the polyolefin elastomer film overflows the edge of the double substrate by less than 2 mm.
  • the above components are thoroughly mixed and then added to an extruder, the temperature of the extruder is 110 ° C, and the mold temperature is 110 ° C; the film is extruded through a T-shaped flat die, wound up, and irradiated to obtain radiation pre-crosslinked ethylene - Vinyl acetate resin film.
  • the EVA film has a thickness of 2 mm and a single roll length of 200 m; the EVA film is wound with a three-inch paper core.
  • the wound EVA film was unrolled under the electron beam generator and then rolled onto another three inch paper core.
  • the radiation is an electron beam radiation method, the accelerator energy is 200 keV, and the electron beam radiation dose is 30 KGY.
  • the pre-crosslinked partial film thickness after irradiation is 20% of the total film thickness, and the EVA thin layer having a depth of 0.3 mm is used to measure the degree of crosslinking, which ranges from 20% to 35%.
  • the pre-crosslinked EVA film described in the above Example 1 was placed on the back side of the double-glass solar module cell sheet, the cross-linking surface was placed on the side of the cell sheet, and the uncrosslinked surface was placed on the underlying glass and in contact with the glass.
  • the front side of the cell sheet is covered with a conventional transparent EVA film. It was then placed between two pieces of the same size glass and placed entirely in a laminator for manufacturing solar photovoltaic modules, evacuated for 6 minutes while heating to 200 ° C, and pressure lamination for 15 minutes. In the laminate, the pulling force of the EVA film of Example 1 and the glass was greater than 70 N/cm. The interface between the EVA film of Example 1 and the transparent EVA film on the upper side of the cell sheet was clear, and the EVA film of Example 1 did not cause migration of the underlayer film to the upper side of the cell sheet.
  • EVA resin Ingredient Parts by weight EVA resin, VA content 28% 78 Ultrafine barium sulfate (4000 mesh) 19.5 Triallyl cyanurate (TAC) 0.5 Tert-butyl peroxy-2-ethylhexyl carbonate (TBEC) 1
  • the above components are thoroughly mixed and then added to an extruder, the temperature of the extruder is 90 ° C, and the mold temperature is 90 ° C; the film is extruded through a T-shaped flat die, wound up, and irradiated to obtain radiation pre-crosslinked ethylene - Vinyl acetate resin film.
  • the EVA film thickness was 0.1 mm; the EVA film was wound using a 3 inch paper core.
  • the wound EVA film is a roll film having a length of 100 meters.
  • the EVA film was unrolled under the electron beam generating device and then wound onto another three-inch paper core.
  • the radiation was electron beam radiation, the accelerator energy was 50 keV, and the electron beam radiation dose was 30 KGY.
  • the pre-crosslinked partial film thickness after irradiation is 40% of the total film thickness. Since the film was too thin to remove the surface layer, the overall degree of crosslinking was tested.
  • the overall pre-crosslinking degree of the measured EVA film is between 10% and 15%.
  • the pre-crosslinked EVA film was cut to the same size as the double glazing and placed between the double glazings, vacuumed and heated to 150 ° C for 10 minutes.
  • the adhesion of the EVA film to the glass is greater than 80 N/cm.
  • the EVA film overflows the double glazing edge to less than 2 mm.
  • a preferred embodiment of the present invention for a package assembly prepared using a pre-crosslinked polyolefin film is exemplified by a solar photovoltaic cell module.
  • the solar photovoltaic cell assembly includes a front encapsulation layer of the front glass 1, a film is disposed between the front glass 1 and the encapsulation layer, and the film is two layers, and at least one of the films is provided.
  • the layer is a radiation pre-crosslinked film by electron beam, ⁇ -ray, X-ray, ⁇ -ray or neutron beam, and the pre-crosslinking film has a pre-crosslinking degree of 3% to 74%.
  • the thickness of the pre-crosslinked film is the same as that of the conventional photovoltaic module film, and the thickness is from 0.1 mm to 2 mm. Preferably, the thickness is between 0.3 mm and 0.7 mm.
  • the pre-crosslinked adhesive film Compared with the pre-crosslinked adhesive film, the pre-crosslinked adhesive film has formed a certain cross-linking network before use, which greatly improves the heat resistance and reduces the fluidity of the resin.
  • the melting temperature increases or disappears.
  • the phenomenon that the film overflows from the periphery of the glass is greatly reduced. If a transparent film and a colored film are used at the same time, the interface between the two films does not penetrate each other, and the interface is clear.
  • a crystalline silicon cell 2 or a CIGS cell is disposed between the layers of the film.
  • the film consists of a layer of EVA film and a layer of pre-crosslinked EVA film, and the EVA film is placed near the front glass. Both layers of film are pre-crosslinked POE film.
  • the rear encapsulation layer is a back or rear glass.
  • other materials with certain supporting functions such as PMMA film (polymethyl methacrylate film, polyacyl), can also be used.
  • PMMA film polymethyl methacrylate film, polyacyl
  • a photovoltaic module structure from front to back is: front glass 1, transparent EVA film 3 (not pre-crosslinked, VA content is 28%), crystalline silicon cell 2, white pre-crossing EVA film 5 (pre-crosslinking degree 74%, reflectivity 88%), rear glass 4.
  • the degree of crosslinking of the transparent EVA film 3 and the white pre-crosslinked EVA film 5 was more than 80%.
  • the interface between the transparent EVA film 3 and the white pre-crosslinked EVA film 5 is clear, and the underlying white pre-crosslinked EVA film 5 does not penetrate into the transparent EVA film 3 or is flipped onto the crystalline silicon cell sheet 2.
  • the structure of another photovoltaic module is from front to back: front glass 1, transparent pre-crosslinked POE film 6 (pre-crosslinking degree 3%), silicon crystal cell 2, transparent pre-crossing Union POE film 6 (pre-crosslinking degree 15%), rear glass 4.
  • front glass 1 transparent pre-crosslinked POE film 6 (pre-crosslinking degree 3%)
  • silicon crystal cell 2 transparent pre-crossing Union POE film 6 (pre-crosslinking degree 15%)
  • rear glass 4 After laminating the structure at 150 ° C, the transparent pre-crosslinked POE film 6 has good dimensional stability, and there is little spilled film from the periphery of the glass after lamination.
  • the structure of another photovoltaic module is from front to back: front glass 1, transparent EVA film 3, silicon crystal cell 2, black pre-crosslinked EVA film 7 (pre-crosslinking degree 35) %), back plate 8 (TPE structure back plate).
  • front glass 1 transparent EVA film 3
  • silicon crystal cell 2 silicon crystal cell 2
  • black pre-crosslinked EVA film 7 pre-crosslinking degree 35
  • back plate 8 TPE structure back plate
  • the solar photovoltaic cell module structure adopting the structure adopts a pre-crosslinked adhesive film in the structure of the photovoltaic component, and is applied to the solar photovoltaic cell module, and the effect of reducing the overflow of the film can be achieved. If the upper transparent film and the lower colored film are used, at least one of the layers is a pre-crosslinked film, the two films do not penetrate each other, and the interface can be kept clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本发明公开了一种用于封装领域的辐射预交联聚烯烃胶膜及其制备方法,以及进一步公开了应用该胶膜的封装方法及组件。其中,制备用于封装的辐射预交联聚烯烃胶膜的方法包括以下步骤:将聚烯烃原材料混合后制成胶膜;采用能够直接激发所述聚烯烃原材料发生交联反应的辐照能源辐照所述胶膜;调整所述辐照能源的辐照剂量,以使所述胶膜中发生交联部分的交联度为3%~95%;调整所述辐照能源辐照的能量,以使所述交联部分占所述胶膜厚度的5~100%,其中100%为所述胶膜全部发生交联。由于膜在使用前已经发生交联,大幅提高了膜的尺寸稳定性和耐热性,更利于被封装组件获得界面清晰的封装效果。

Description

辐射预交联聚烯烃胶膜及制法以及用于封装的方法和组件 技术领域
本发明涉及一种胶膜及其制备方法以及应用该胶膜的方法及组件,尤其是涉及用于封装领域的聚烯烃胶膜及其制备方法以及应用该胶膜的封装方法及组件。
背景技术
封装工艺被广泛应用于半导体器件、晶硅电池片、发光半导体LED、有机发光半导体OLED、显示屏等领域,其中封装用胶膜用于起到粘连封装及保护被封装体的功能。聚烯烃即是封装用胶膜常用的材料,其中乙烯-醋酸乙烯酯树脂、聚烯烃弹性体是现有聚烯烃封装材料中最常用的两种材料。
乙烯-醋酸乙烯酯树脂即EVA树脂,可以作为鞋底材料、农膜和热熔胶使用。用作热熔胶时,采用VA(醋酸乙烯酯)含量较高的EVA,其熔点较低,一般在90℃以下。作为热熔胶的胶膜在使用前,通常制成胶棒或者是胶膜。用户采购胶棒或胶膜,根据自己的工艺进行使用。当EVA树脂中醋酸乙烯酯(即VA)含量在25%至33%之间时,其透明度很高,透光率高于90%,同时也非常具有柔软性。这个范围的EVA树脂非常适合作为双层玻璃中的夹胶膜或者太阳能组件中的封装膜,其可以缓冲玻璃受到的冲击,也同样可以保护太阳能电池组件中处于玻璃后侧非常脆性的光伏电池片;但这个VA范围的EVA树脂熔点在60~80℃之间,其软化点远低于室温,其在室温下无法长期保持尺寸稳定性和自身的强度,必须交联后才能长时间使用。为达到交联的目的,该类用途的EVA膜中必须加有热交联剂,通常是有机过氧化物,如过氧化二异丙苯(DCP)、过氧化-2-乙基己基碳酸叔丁酯(TBEC)等。加有交联剂的EVA膜铺设在双层玻璃的玻璃间或者是太阳能组件玻璃后的电池片上下侧,抽真空同时加热至135℃以上,使EVA树脂融化而填满其与玻璃间或电池片之间的缝隙,同时过氧化物分解导致EVA树脂交联。此时EVA树脂的交联度能达到75%至95%之间。EVA膜通过交联后成为热固性材料,有弹性但不再融化,可以永久保持形状和强度。常用的EVA膜在使用前是没有交联度,其尺寸稳定性不好,加热使用中容易从玻璃边缘溢出而弄脏加工设备。当有颜色的EVA膜和透明的EVA膜上下铺设同时使用时,由于尺寸稳定性差,常常会导致有颜色膜与透明膜之间的界面不清楚而影响外观。
聚烯烃弹性体即POE树脂,具体指乙烯与丁烯、戊烯、己烯或辛烯的共聚物,最早由美国陶氏化学公司发明的以茂金属为催化剂具有相对较窄分子量分布和均匀短支链分布的弹性体乙烯和辛烯的共聚物。聚烯烃弹性体中的乙烯链结晶区作为物理交联点,长链的丁烯、戊 烯、己烯或辛烯形成无定形的橡胶相,使其同时具有橡胶的弹性和塑料的热塑性的双重特性;其与聚烯烃特别是聚乙烯和聚丙烯相容性好,同时因没有不饱和键而耐候性好,其被大量的用于加工改性聚烯烃,比如改性聚丙烯的汽车零配件。聚烯烃弹性体的熔融温度较低,通常在50℃~70℃之间,所以通常极少单独使用。国内外很少有单独使用聚烯烃弹性体或者是把聚烯烃弹性体作为主要成份使用的报道。陶氏公司曾推出用聚烯烃弹性体和聚乙烯混合的聚烯烃弹性体胶膜作为替代太阳能光伏组件中常用的EVA胶膜;其中主要成份是聚烯烃弹性体,依靠高熔点的聚乙烯和低熔点的聚烯烃弹性体混合而使混合物的熔点峰值在100℃以上。专利CN103289582A中描述了聚烯烃弹性体在硅烷接枝后加入有机过氧化物制成膜,在使用时通过加热使过氧化物分解引发交联反应而提高聚烯烃弹性体的耐热性。由于聚烯烃弹性体的熔点非常低,即使是在加入高熔点的聚乙烯或者是加入交联剂的情况下,其弹性体部分的熔点依然十分低,在加热过程中弹性体会很快融化导致使用非常不方便或者由于熔点低而导致运输、储存温度要求苛刻,从而限制了其使用。
无论EVA胶膜还是POE胶膜,其熔点都较低。太阳能光伏电池组件层压工序的加热温度一般在135℃至150℃之间,其大大高于两者的熔融温度。胶膜在层压中逐步融化,其在此过程中是无法保持尺寸稳定性的,胶膜在层压前后的尺寸、形状都会发生较大的变化。最明显的例子是尺寸小于玻璃的两层胶膜在层压后,从玻璃四周溢出;或者两层胶膜中的一层胶膜有颜色时,层压后两层胶膜的界面模糊不清,相互穿透。这些问题,都影响了组件的最终质量或者增加了组件生产工序。
如何提高作为热熔胶的EVA膜、POE膜等聚烯烃封装胶膜在封装组件制备过程中的耐热性从而获得界面更为清晰的封装效果是一个重要的课题。
辐射交联是利用各种辐射引发高分子聚合物高分子长链之间的交联反应的技术手段。辐射分为两类:一类是电离辐射,这是指α(阿尔法)、β(贝塔)、γ(伽马)、X和中子等射线,这些射线能够直接或间接地使物质电离(即原子或分子获得或失去电子而成为离子);另一类是非电离辐射,如可见光、紫外线、声辐射、热辐射和低能电磁辐射等。高分子聚合物分子链与链之间缺乏紧密的结合力,使得整体材料在经受外力及环境温度影响时产生变形或发生破坏,限制了其应用。通过交联反应,聚合物高分子长链之间形成化学键等结合点,使聚合物的物理性能、化学性能获得改善,是一种非常有效的对高分子聚合物的改性手段。辐射交联时,聚合物本身与辐射发生装置没有物理接触,反应前后聚合物的形状也没有改变,但其内部已经发生了交联反应。聚合物可以直接将制品置于辐射线中发生交联反应,也可以在聚合物中添加交联助剂来促进辐射交联的效率。但是,非电离辐射如紫外光等穿透能力弱,固化深度有限,而且紫外光固化必须添加光引发剂,因此,对于高分子聚合物的部分交联操作 困难或者无法操作;然而,采用能够直接激发高分子聚合物发生交联反应的辐照能源,如β射线、γ射线、X射线等,由于不需要光引发剂,操作更方便,实现部分交联的效果更好。
辐射交联目前较多的应用于热收缩管的生产,其利用辐射后的塑料因交联而有了对形状的记忆能力,在室温下扩张经过辐射的塑料管,使其在受热情况下有回缩到原来形状的能力。另外一个使用较多的领域是汽车电线的生产,通过辐射交联使电线能够提高使用温度而满足使用于汽车发动机周围较热环境的要求。
发明内容
为了克服所述EVA膜、POE膜等聚烯烃封装用胶膜在光伏、发光半导体LED、有机发光半导体OLED、显示屏等领域的组件封装过程中的缺陷,本发明提出一种制备用于封装的辐射预交联聚烯烃胶膜的方法,包括以下步骤:将聚烯烃原材料混合后制成胶膜;采用能够直接激发所述聚烯烃原材料发生交联反应的辐照能源辐照所述胶膜;调整所述辐照能源的辐照剂量,以使所述胶膜中发生交联部分的交联度为3%~95%;调整所述辐照能源辐照的能量,以使所述交联部分占所述胶膜厚度的5~100%,其中100%为所述胶膜全部发生交联。
本发明提出的制备用于封装的辐射预交联聚烯烃胶膜的方法中,所述胶膜中发生预交联的部分构成所述胶膜的一表层。
本发明提出的制备用于封装的辐射预交联聚烯烃胶膜的方法中,所述辐照能源为β射线、γ射线、X射线、α射线或中子射线中的一种。
本发明提出的制备用于封装的辐射预交联聚烯烃胶膜的方法中,所述将聚烯烃原材料混合后制成胶膜的方法包括但不限于:T形平板模具挤出成膜或通过两个压延辊成膜。
本发明提出的制备用于封装的辐射预交联聚烯烃胶膜的方法中,所述成膜温度为70~200℃,模具温度为70~200℃。
本发明提出的制备用于封装的辐射预交联聚烯烃胶膜的方法中,所述调整所述辐照能源辐照的能量可以是对聚烯烃胶膜叠层后进行辐照或是展开后进行辐照。
本发明提出的制备用于封装的辐射预交联聚烯烃胶膜的方法中,所述聚烯烃胶膜为乙烯-醋酸乙烯酯树脂膜。
本发明提出的制备用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜的方法中,所述乙烯-醋酸乙烯酯树脂膜的重量组分为:
Figure PCTCN2015073185-appb-000001
Figure PCTCN2015073185-appb-000002
本发明提出的制备用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜的方法中,所述辐照剂量为0.2~100KGY。
本发明提出的制备用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜的方法中,所述胶膜全部发生预交联时,所述辐射预交联乙烯-醋酸乙烯酯树脂膜的预交联度为5~74%。
本发明提出的制备用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜的方法中,所述的辐射预交联乙烯-醋酸乙烯酯树脂膜为单层、双层或多层共挤膜。
本发明提出的制备用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜的方法中,所述辐射预交联乙烯-醋酸乙烯酯树脂膜的厚度为0.01~2mm;更佳地,厚度为0.3~0.7mm。
本发明提出的制备用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜的方法中,所述EVA树脂为VA重量百分含量为20~35%的EVA树脂;更佳地,VA含量为25~33%的EVA树脂。
本发明提出的制备用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜的方法中,所述的有机过氧化物交联剂包括但不限于二烷基过氧化物、烷基芳基过氧化物、二芳基过氧化物、氢过氧化物、二酰基过氧化物、过氧酯、酮过氧化物、过氧化碳酸酯、过氧化缩酮中的一种或多种。
本发明提出的制备用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜的方法中,所述的助交联剂包括但不限于丙烯酸类、甲基丙烯酸类、丙烯酰胺类、烯丙基类、环氧化合物类中的一种或多种。
本发明提出的制备用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜的方法中,所述的抗氧剂包括但不限于光稳定剂、紫外吸收剂和抗热氧老化分解剂中的一种或多种。
本发明提出的制备用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜的方法中,所述硅烷偶联剂指在分子中同时含有两种不同化学性质基团的有机硅化合物。
本发明提出的制备用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜的方法中,所述颜料是指可以改变EVA膜颜色的添加剂;可以是但不限于碳黑、锌钡白、硫化锌、钛白粉、超细硫酸钡、玻璃微珠一种或几种。
本发明提出的制备用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜的方法中,所述聚烯烃弹性体指可以和EVA相混合的碳碳链树脂,比如低密度聚乙烯、乙烯和丁烯或辛烯的共聚物中的至少一种。
本发明提出的制备用于封装的辐射预交联聚烯烃胶膜的方法中,所述聚烯烃胶膜还可以是聚烯烃弹性体膜。
本发明提出的制备用于封装的辐射预交联聚烯烃弹性体膜的方法中,所述聚烯烃弹性体膜的重量组分为:
Figure PCTCN2015073185-appb-000003
本发明提出的制备用于封装的辐射预交联聚烯烃弹性体膜的方法中,所述辐照剂量为10~200KGY。
本发明提出的制备用于封装的辐射预交联聚烯烃弹性体膜的方法中,所述胶膜全部发生预交联时,所述辐射预交联的聚烯烃弹性体膜的交联度为3~70%。
本发明提出的制备用于封装的辐射预交联聚烯烃弹性体膜的方法中,所述辐射预交联的聚烯烃弹性体膜的厚度为0.2~1mm;更佳的,厚度为0.3~0.7mm。
本发明提出的制备用于封装的辐射预交联聚烯烃弹性体膜的方法中,所述聚烯烃弹性体为乙烯和丁烯、戊烯、己烯或辛烯共聚物中的一种或者几种的混合物。
本发明提出的制备用于封装的辐射预交联聚烯烃弹性体膜的方法中,所述聚烯烃弹性体为经过极性基团接枝过的或不经过接枝的,在成膜时添加极性基团小分子添加剂;较佳地,极性基团为硅烷偶联剂;更佳地,硅烷偶联剂在弹性体成膜前已经接枝到弹性体分子链上的,其接枝率小于3%;优选为已接枝过乙烯基三甲氧基硅烷的乙烯-己烯共聚物,接枝率为0.6%。
本发明提出的制备用于封装的辐射预交联聚烯烃弹性体膜的方法中,所述助交联剂是指多官能团的单体,可以是但不限于三烯丙基异氰脲酸酯、三聚氰酸三烯丙酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯一种或几种。
本发明提出的制备用于封装的辐射预交联聚烯烃弹性体膜的方法中,所述抗氧剂是指抗热老化分解剂和紫外吸收剂,其可以是但不限于酚类抗氧剂、受阻胺类抗氧剂、亚磷酸类、苯甲酮类、苯并三唑类,例如:不限于四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、癸二酸二(2,2,6,6-四甲基-4-哌啶)酯和N,N′-二仲丁基对苯二胺的一种或几种。
本发明提出的制备用于封装的辐射预交联聚烯烃弹性体膜的方法中,所述硅烷偶联剂指在分子中同时含有两种不同化学性质基团的有机硅化合物,优选为KH550。
本发明提出的制备用于封装的辐射预交联聚烯烃弹性体膜的方法中,所述有机过氧化物交联剂是指塑料常用的热交联用有机过氧化物交联剂,可以是但不限于过氧化二异丙苯、过氧化-2-乙基己基碳酸叔丁酯、2,5-二甲基-2,5-双(叔丁基过氧基)己烷一种或几种。
本发明提出的制备用于封装的辐射预交联聚烯烃弹性体膜的方法中,所述颜料是指可以改变聚烯烃弹性体膜颜色的添加剂,可以是但不限于碳黑、锌钡白、硫化锌、钛白粉、玻璃微珠。
本发明的另一个目的是提出一种用于封装的辐射预交联聚烯烃胶膜。该辐射预交联的聚烯烃胶膜在不改变胶膜的物理和化学性质前提下,使其在使用前已经有了适当的交联度而提高了膜的尺寸稳定性和耐热性;在使用时,经抽真空和加热层压,仍然可以达到需要的交联范围75~95%。当需要同时使用两层聚烯烃胶膜或两层以上胶膜时,特别是指同时使用透明聚烯烃膜与有颜色的聚烯烃膜时,因尺寸稳定性好,膜与膜之间不会相互渗透,被封装组件的界面非常清晰,外观良好,适于大规模推广应用。
本发明提出的用于封装的辐射预交联聚烯烃胶膜中,经由辐照能源辐照后发生交联的部分占聚烯烃胶膜厚度的5~100%,其中100%为所述胶膜全部发生交联,所述交联部分的交联度为3%~95%。
本发明提出的用于封装的辐射预交联聚烯烃胶膜中,所述胶膜中发生交联的部分构成所述胶膜的一表层。
本发明提出的用于封装的辐射预交联聚烯烃胶膜中,所述聚烯烃胶膜为乙烯-醋酸乙烯酯树脂膜。
本发明提出的用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜中,所述乙烯-醋酸乙烯酯树脂膜的重量组分为:
Figure PCTCN2015073185-appb-000004
本发明提出的用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜中,所述胶膜全部发生预交联时,所述辐射预交联乙烯-醋酸乙烯酯树脂膜的预交联度为5~74%。
本发明提出的用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜中,所述的辐射预交联乙烯 -醋酸乙烯酯树脂膜为单层、双层或多层共挤膜。
本发明提出的用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜中,所述辐射预交联乙烯-醋酸乙烯酯树脂膜的厚度为0.01~2mm;更佳地,厚度为0.3~0.7mm。
本发明提出的用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜中,所述EVA树脂为VA重量百分含量为20~35%的EVA树脂;更佳地,VA含量为25~33%的EVA树脂。
本发明提出的用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜中,所述的有机过氧化物交联剂包括但不限于二烷基过氧化物、烷基芳基过氧化物、二芳基过氧化物、氢过氧化物、二酰基过氧化物、过氧酯、酮过氧化物、过氧化碳酸酯、过氧化缩酮中的一种或多种。
本发明提出的用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜中,所述的助交联剂包括但不限于丙烯酸类、甲基丙烯酸类、丙烯酰胺类、烯丙基类、环氧化合物类中的一种或多种。
本发明提出的用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜中,所述的抗氧剂包括但不限于光稳定剂、紫外吸收剂和抗热氧老化分解剂中的一种或多种。
本发明提出的用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜中,所述硅烷偶联剂指在分子中同时含有两种不同化学性质基团的有机硅化合物。
本发明提出的用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜中,所述颜料是指可以改变EVA膜颜色的添加剂;可以是但不限于碳黑、锌钡白、硫化锌、钛白粉、超细硫酸钡、玻璃微珠一种或几种。
本发明提出的用于封装的辐射预交联乙烯-醋酸乙烯酯树脂膜中,所述聚烯烃弹性体指可以和EVA相混合的碳碳链树脂,比如低密度聚乙烯、乙烯和丁烯或辛烯的共聚物中的至少一种。
本发明提出的用于封装的辐射预交联聚烯烃胶膜中,所述聚烯烃胶膜还可以是聚烯烃弹性体膜。
本发明提出的用于封装的辐射预交联聚烯烃弹性体膜中,所述聚烯烃弹性体膜的重量组分为:
Figure PCTCN2015073185-appb-000005
本发明提出的用于封装的辐射预交联聚烯烃弹性体膜中,所述胶膜全部发生预交联时, 所述辐射预交联的聚烯烃弹性体膜的交联度为3~70%。
本发明提出的用于封装的辐射预交联聚烯烃弹性体膜中,所述辐射预交联的聚烯烃弹性体膜的厚度为0.2~1mm;更佳的,厚度为0.3~0.7mm。
本发明提出的用于封装的辐射预交联聚烯烃弹性体膜中,所述聚烯烃弹性体为乙烯和丁烯、戊烯、己烯或辛烯共聚物中的一种或者几种的混合物。
本发明提出的用于封装的辐射预交联聚烯烃弹性体膜中,所述聚烯烃弹性体为经过极性基团接枝过的或不经过接枝的,在成膜时添加极性基团小分子添加剂;较佳地,极性基团为硅烷偶联剂;更佳地,硅烷偶联剂在弹性体成膜前已经接枝到弹性体分子链上的,其接枝率小于3%;优选为已接枝过乙烯基三甲氧基硅烷的乙烯-己烯共聚物,接枝率为0.6%。
本发明提出的用于封装的辐射预交联聚烯烃弹性体膜中,所述助交联剂是指多官能团的单体,可以是但不限于三烯丙基异氰脲酸酯、三聚氰酸三烯丙酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯一种或几种。
本发明提出的用于封装的辐射预交联聚烯烃弹性体膜中,所述抗氧剂是指抗热老化分解剂和紫外吸收剂,其可以是但不限于酚类抗氧剂、受阻胺类抗氧剂、亚磷酸类、苯甲酮类、苯并三唑类,例如:不限于四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、癸二酸二(2,2,6,6-四甲基-4-哌啶)酯和N,N′-二仲丁基对苯二胺的一种或几种。
本发明提出的用于封装的辐射预交联聚烯烃弹性体膜中,所述硅烷偶联剂指在分子中同时含有两种不同化学性质基团的有机硅化合物,优选为KH550。
本发明提出的用于封装的辐射预交联聚烯烃弹性体膜中,所述有机过氧化物交联剂是指塑料常用的热交联用有机过氧化物交联剂,可以是但不限于过氧化二异丙苯、过氧化-2-乙基己基碳酸叔丁酯、2,5-二甲基-2,5-双(叔丁基过氧基)己烷一种或几种。
本发明提出的用于封装的辐射预交联聚烯烃弹性体膜中,所述颜料是指可以改变聚烯烃弹性体膜颜色的添加剂,可以是但不限于碳黑、锌钡白、硫化锌、钛白粉、玻璃微珠。
本发明的再一目的在于提供一种应用该辐射预交联聚烯烃胶膜的封装方法,包括以下步骤:将聚烯烃原材料混合后制成胶膜;采用能够直接激发所述聚烯烃原材料发生交联反应的辐照能源辐照所述胶膜;调整所述辐照能源的辐照剂量,以使所述胶膜中发生交联部分的交联度为5%~95%;调整所述辐照能源辐照的能量,以使所述交联部分占所述胶膜厚度的5~100%,其中100%为所述胶膜全部发生交联;将所述胶膜置于前保护层与封装基板之间,并与被封装体构成封装组件,其中所述胶膜的预交联部分与所述被封装体接触;加热所述封装组件以使所述胶膜进一步发生交联反应并完成封装。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述胶膜中发生预交联的部 分构成所述胶膜的一表层。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述辐照能源为β射线、γ射线、X射线、α射线或中子射线中的一种。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述将聚烯烃原材料混合后制成胶膜的方法包括但不限于:T形平板模具挤出成膜或通过两个压延辊成膜。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述成膜温度为70~200℃,模具温度为70~200℃。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述辐照可以是对整卷聚烯烃胶膜进行辐照或是展开进行辐照。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述聚烯烃胶膜为乙烯-醋酸乙烯酯树脂膜。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述乙烯-醋酸乙烯酯树脂膜的重量组分为:
Figure PCTCN2015073185-appb-000006
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述辐照剂量为0.2~100KGY。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述胶膜全部发生预交联时,所述辐射预交联乙烯-醋酸乙烯酯树脂膜的预交联度为5~74%。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述的辐射预交联乙烯-醋酸乙烯酯树脂膜为单层、双层或多层共挤膜。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述辐射预交联乙烯-醋酸乙烯酯树脂膜的厚度为0.01~2mm;更佳地,厚度为0.3~0.7mm。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述聚烯烃胶膜为聚烯烃弹性体膜。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述聚烯烃弹性体膜的重量 组分为:
Figure PCTCN2015073185-appb-000007
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述辐照剂量为10~200KGY。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述胶膜全部发生预交联时,所述辐射预交联的聚烯烃弹性体膜的交联度为3~70%。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述辐射预交联的聚烯烃弹性体膜的厚度为0.2~1mm;更佳的,厚度为0.3~0.7mm。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述聚烯烃弹性体为乙烯和丁烯、戊烯、己烯或辛烯共聚物中的一种或者几种的混合物。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述封装组件在加热封装时,还可以对所述封装组件进行加压或抽真空进行封装。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述被封装体包括但不限于:晶硅电池片、发光半导体LED、有机发光半导体OLED、显示屏等。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述前保护层与所述封装基板之间设置有两层胶膜,且所述的胶膜中的至少一层为所述预交联胶膜,两层所述的胶膜之间设置有被封装体。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述的前保护层为透明保护层,具体为透明玻璃、透明陶瓷或透明塑料等。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述的胶膜包括一层EVA(乙烯-醋酸乙烯酯树脂)胶膜和一层预交联EVA胶膜,且所述的EVA胶膜设置于近所述的前保护层处。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,两层所述的胶膜均为预交联POE(聚烯烃弹性体)胶膜。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法中,所述封装基板为玻璃、陶瓷或塑料等。
此外,本发明还提出一种应用该辐射预交联聚烯烃胶膜的封装方法制备的封装组件,该封装组件包括:前保护层与封装基板之间设置有辐射预交联的聚烯烃胶膜,并与被封装体构成封装组件,其中所述胶膜的预交联部分与所述被封装体接触。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法制备的封装组件中,所述被封装体包括但不限于:晶硅电池片、发光半导体LED、有机发光半导体OLED、显示屏等。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法制备的封装组件中,所述前保护层与所述封装基板之间设置有两层胶膜,且所述的胶膜中的至少一层为所述预交联胶膜,两层所述的胶膜之间设置有被封装体。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法制备的封装组件中,所述的前保护层为透明保护层,具体为透明玻璃、透明陶瓷或透明塑料等。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法制备的封装组件中,所述的胶膜包括一层EVA(乙烯-醋酸乙烯酯树脂)胶膜和一层预交联EVA胶膜,且所述的EVA胶膜设置于近所述的前保护层处。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法制备的封装组件中,两层所述的胶膜均为预交联POE(聚烯烃弹性体)胶膜。
本发明提出的应用该辐射预交联聚烯烃胶膜的封装方法制备的封装组件中,所述封装基板为玻璃、陶瓷或塑料等。
本发明同现有技术相比,具有下优点和有益效果:
本发明采用高能射线辐射聚烯烃胶膜而使其有了预交联;预交联的聚烯烃胶膜与未预交联的聚烯烃胶膜相比,由于膜在使用前已经发生交联,大幅度提高了膜的尺寸稳定性和耐热性,避免了无预交联的膜在用于封装时因加热而发生的尺寸、形状变化大的缺点,更有利于被封装组件获得界面清晰的封装效果。
附图说明
附图1为本发明中应用辐射预交联聚烯烃胶膜的封装组件的一种实施例示意图。
附图2为本发明中应用辐射预交联聚烯烃胶膜的封装组件的另一种实施例示意图。
附图3为本发明中应用辐射预交联聚烯烃胶膜的封装组件的再一种实施例示意图。
具体实施方式
为了能够更清楚地理解本发明的技术内容,特举以下实施例详细说明。
实施例1:
Figure PCTCN2015073185-appb-000008
将上述组分充分混合后加入挤出机,挤出机的温度为110℃,模具温度为110℃;通过T形平板模具挤出成膜,也可以直接通过两个压延辊成膜,收卷,膜厚度为0.3毫米,单卷长度100米;该未交联膜使用三英寸纸芯收卷。
将上述收卷的未交联膜整卷或者多卷展开叠放置于X射线发生装置的下方,X射线辐照剂量为200KGY。辐射后预交联部分膜厚度为膜总厚度的100%。测量该膜的交联度,其范围在60%~70%之间。将预交联过的膜切割成与双层玻璃相同的大小并置于双层玻璃之间,抽真空加压并加热到200℃10分钟,最终交联度可以达到95%以上。该预交联的膜与玻璃的粘结力大于75牛顿/厘米。此预交联的膜溢出双层玻璃边缘小于5毫米。
将此预交联的膜同未交联的同组分膜每种各取A4大小五张膜,分别叠好放入35℃的烘箱,上面放1000克的砝码,放置24小时后取出,比较粘连情况;发现辐射预交联过的膜的粘连程度明显小于同组分未辐射交联的膜。
将此预交联的膜同未交联的同组分膜每种各取1厘米宽长度为15厘米的样条5个,比较拉伸强度;发现所有经过辐射交联的膜的拉伸强度均比同组分未经辐射的膜高。
实施例2:
Figure PCTCN2015073185-appb-000009
将上述组分充分混合后加入挤出机,挤出机的温度为90℃,模具温度为90℃;通过T形平板模具挤出成膜,也可以直接通过两个压延辊成膜,收卷,膜厚度为0.6毫米,单卷长度100米;该未交联膜使用六英寸纸芯收卷。
将上述未交联膜整卷或者多卷展开叠放置于β射线发生装置的下方,电子加速器能量为 10MeV;辐照剂量在100KGY。辐射后预交联部分膜厚度为膜总厚度的100%。测量该膜的交联度,其范围在50%~70%之间。将预交联过的膜切割成与双层玻璃相同的大小并置于双层玻璃之间,抽真空加压并加热到200℃10分钟,最终交联度可以达到95%以上。该预交联的膜与玻璃的粘结力大于70牛顿/厘米。
将此预交联的膜同未交联的同组分膜每种各取A4大小五张膜,分别叠好放入35℃的烘箱,上面放1000克的砝码,放置24小时后取出,比较粘连情况;发现辐射预交联过的膜的粘连程度明显小于同组分未辐射交联的膜。
将此预交联的膜同未交联的同组分膜每种各取1厘米宽长度为15厘米的样条5个,比较拉伸强度;发现所有经过辐射交联的膜的拉伸强度均比同组分未经辐射的膜高。
实施例3:
成分 重量份数
乙烯-辛烯共聚物 40
乙烯-丁烯共聚物 40
硫化锌 16.5
三烯丙基异氰脲酸酯(TAIC) 1
3-氨丙基三乙氧基硅烷(硅烷偶联剂KH550) 1
过氧化二异丙苯(过氧化物交联剂DCP) 1
N,N′-二仲丁基对苯二胺(抗氧剂4720) 0.5
将上述组分充分混合后加入挤出机,挤出机的温度为90℃,模具温度为90℃;通过T形平板模具挤出成膜,也可以直接通过两个压延辊成膜,收卷,膜厚度为0.7毫米,单卷长度20米;该未交联膜使用三英寸纸芯收卷。
将上述未交联膜整卷或者多卷展开叠放置于β射线发生装置的下方,电子加速器能量为5MeV;辐照剂量在10KGY。辐射后预交联部分膜厚度为膜总厚度的100%,测量该膜的交联度,其范围在3%~9%之间。将预交联过的膜切割成与双层玻璃相同的大小并置于双层玻璃之间,抽真空加压并加热到200℃10分钟,最终交联度可以达到95%以上。该预交联的膜与玻璃的粘结力大于90牛顿/厘米。
将此预交联的膜同未交联的同组分膜每种各取A4大小五张膜,分别叠好放入35℃的烘箱,上面放1000克的砝码,放置24小时后取出,比较粘连情况;发现辐射预交联过的膜的粘连程度明显小于同组分未辐射交联的膜。
将此预交联的膜同未交联的同组分膜每种各取1厘米宽长度为15厘米的样条5个,比较拉伸强度;发现所有经过辐射交联的膜的拉伸强度均比同组分未经辐射的膜高。
实施例4:
Figure PCTCN2015073185-appb-000010
将上述组分充分混合后加入挤出机,挤出机的温度为110℃,模具温度为110℃;通过T形平板模具挤出成膜,也可以直接通过两个压延辊成膜,收卷,膜厚度为0.6毫米,单卷长度400米;该未交联膜使用三英寸纸芯收卷。
将上述收卷的未交联膜展开置于γ射线发生装置的下方,然后卷到另一个三英寸纸芯收卷。γ射线辐照剂量为200KGY。辐射后预交联部分膜厚度为膜总厚度的100%。测量该膜的交联度,其范围在60%~68%之间。将上述预交联膜置于双玻太阳能组件电池片的背面,交联面置于电池片侧,未交联面置于下层玻璃并与玻璃接触。电池片的正面覆盖常规透明的聚烯烃弹性体胶膜。然后将其置于两块大小相同的玻璃之间后再整体置于制造太阳能光伏组件的层压机中,抽真空6分钟,同时加热至200℃,加压层压15分钟,最终交联度可以达到95%以上。该层压件中,预交联膜与玻璃的拉拔力大于50牛顿/厘米。预交联膜与电池片上侧的透明聚烯烃弹性体胶膜的界面清晰,预交联膜没有发生下层膜迁移至电池片上侧的现象。
实施例5:
EVA膜的配方如下表:
Figure PCTCN2015073185-appb-000011
将上述组分充分混合后加入挤出机,挤出机的温度为110℃,模具温度为110℃;通过T 形平板模具挤出成膜,也可以直接通过两个压延辊成膜,收卷,得到的未交联EVA膜厚度为0.1毫米,单卷长度100米;EVA膜使用三英寸纸芯收卷。
将上述收卷的EVA膜展开β射线发生装置的下方,然后卷到另一个三英寸纸芯上。辐射为电子束辐射方式,加速器能量为100keV,电子束的辐射剂量为0.2KGY,进行辐射后得到辐射预交联膜。预交联部分膜厚度为膜总厚度的50%。将上述预交联EVA膜置于双玻太阳能组件电池片的背面,交联面置于电池片侧,未交联面置于下层玻璃并与玻璃接触。电池片的正面覆盖常规透明的EVA胶膜。然后将其置于两块大小相同的玻璃之间后再整体置于制造太阳能光伏组件的层压机中,抽真空6分钟,同时加热至150℃,加压层压15分钟。该层压件中,预交联的EVA膜与玻璃的拉拔力大于70牛顿/厘米。该预交联的EVA膜与电池片上侧的透明EVA胶膜的界面清晰,没有发生下层预交联膜迁移至电池片上侧的现象。
实施例6:
采用双层共挤EVA膜的方案,一层EVA为透明,一层EVA为黑色。两层EVA的配方分别如下表:
Figure PCTCN2015073185-appb-000012
将上述组分分别充分混合后加入双层共挤的挤出机组(两台挤出机)的两个料筒中,挤出机的温度为100℃,分配器的温度为100℃,模具温度为102℃。混合物经挤出机熔融后通过分配器进入T形平板模具挤出成膜,收卷。将EVA膜展开放置于β射线发生装置的下方, 透明层的一侧朝向辐射线发生器,进行辐射。然后卷到另一个三英寸纸芯上。得到辐射预交联乙烯-醋酸乙烯酯树脂共挤膜。EVA膜厚度为0.7毫米,单卷长度300米。加速器能量为500keV,辐射强度为50KGY。预交联部分膜厚度为膜总厚度的100%。将预交联过的EVA膜的两层用刀片仔细割开,测透明层的交联度,发现交联度在交联度达到45%~55%之间。将胶膜切割成与太阳能光伏组件大小,按玻璃/透明EVA/电池片/双层共挤EVA膜/背板的结构次序层叠并在148℃下抽真空并层压,抽真空时间为5分钟,层压时间为12分钟。层压结束后得到从玻璃侧看底面为黑色、从背板侧看为白色的太阳能光伏组件。黑色面和透明面的界面清楚没有翻层或其它外观缺陷。
实施例7:
EVA膜的配方如下表:
Figure PCTCN2015073185-appb-000013
将上述组分充分混合后加入挤出机,挤出机的温度为110℃,模具温度为110℃;通过T形平板模具挤出成膜,也可以直接通过两个压延辊成膜,收卷,得到的未交联EVA膜厚度为2毫米,单卷长度200米;EVA膜使用三英寸纸芯收卷。
将EVA膜展开置于β射线发生装置的下方,然后卷到另一个三英寸纸芯上。辐射为电子束辐射方式,加速器能量为300keV,电子束的辐射剂量为30KGY,进行辐射后得到辐射预交联膜。预交联部分膜厚度为膜总厚度的30%,测量该膜的交联度,其范围在25%~35%之间。将预交联过的EVA膜切割成与双层玻璃相同的大小并置于双层玻璃之间,抽真空加压并加热到200℃10分钟。EVA膜与玻璃的粘结力大于60牛顿/厘米。EVA膜溢出双层玻璃边缘小于5毫米。
实施例8:
EVA膜的配方如下表:
成分 重量份数
EVA树脂,VA含量28% 78
超细硫酸钡(4000目) 19.5
三聚氰酸三烯丙酯(TAC) 0.5
过氧化-2-乙基己基碳酸叔丁酯(TBEC) 1
癸二酸二(2,2,6,6-四甲基-4-哌啶)酯(抗氧剂770) 0.5
3-甲基丙烯酰氧基丙基三甲氧基硅烷(A-174) 0.5
将上述组分充分混合后加入挤出机,挤出机的温度为90℃,模具温度为90℃;通过T形平板模具挤出成膜,收卷,得到EVA膜厚度为0.1毫米,单卷长度20米;EVA膜使用三英寸纸芯收卷。
将EVA膜整卷或者多卷展开叠放于β射线发生装置下,加速器能量为500keV,电子束的辐射剂量为100KGY。预交联部分膜厚度为膜总厚度的100%。辐射后测量EVA膜的交联度,其范围在53%~74%之间。将上述预交联的EVA膜置于太阳能组件电池片的背面,电池片的正面覆盖常规透明的EVA胶膜。然后将其置于两块大小相同的玻璃之间后再整体置于制造太阳能光伏组件的层压机中,抽真空6分钟,同时加热至150℃,加压层压15分钟。该层压件中,预交联的的EVA膜与玻璃的拉拔力大于70牛顿/厘米。预交联的EVA膜与电池片上侧的透明EVA胶膜的界面清晰,预交联的EVA膜没有发生下层膜迁移至电池片上侧的现象。实施例9:
EVA膜的配方如下表:
成分 重量份数
EVA树脂,VA含量33% 92.5
碳黑 5
三烯丙基异氰脲酸酯(TAIC) 1
2,5-二甲基-2,5-双(叔丁基过氧基)己烷(双二五) 0.5
N,N′-二仲丁基对苯二胺(抗氧剂4720) 0.5
乙烯基三甲氧基硅烷(硅烷偶联剂A-171) 0.5
将上述组分充分混合后加入挤出机,挤出机的温度为100℃,模具温度为102℃;通过T形平板模具挤出成膜,收卷,得到EVA膜厚度为0.7毫米,单卷长度300米;EVA膜使用三英寸纸芯收卷。
将EVA膜整卷或者多卷展开叠放于α射线发生装置下,辐射强度为100KGY,进行辐射后得到辐射预交联膜。预交联部分膜厚度为膜总厚度的100%。测量该EVA膜的交联度,其范围在35%~55%之间。将预交联过的EVA膜切割成与双层玻璃相同的大小并置于双层玻璃 之间,抽真空加压并加热到150℃10分钟,发现交联度达到82%~90%之间。
将预交联过的EVA膜五层叠在一起,上面放置1000克的砝码后置于温度为35度的烘箱中40小时。取出后,五层EVA膜能够非常轻易的分层。而相同配方未预交联的EVA膜在相同情况下严重粘连在一起。
实施例10:
EVA膜的配方如下表:
成分 重量份数
EVA树脂,VA含量28% 78
超细硫酸钡(4000目) 19.5
三聚氰酸三烯丙酯(TAC) 0.5
过氧化-2-乙基己基碳酸叔丁酯(TBEC) 1
癸二酸二(2,2,6,6-四甲基-4-哌啶)酯(抗氧剂770) 0.5
3-甲基丙烯酰氧基丙基三甲氧基硅烷(A-174) 0.5
将上述组分充分混合后加入挤出机,挤出机的温度为90℃,模具温度为90℃;通过T形平板模具挤出成膜,收卷,得到的EVA膜厚度为0.1毫米;EVA膜使用3英寸纸芯收卷。
收卷后的EVA膜为长度100米的成卷膜。将收卷的EVA膜展开放置于α射线发生装置的下方,然后卷到另一个三英寸纸芯上,辐射为α射线辐射方式,辐射剂量为0.2KGY,进行辐射后得到辐射预交联膜。预交联部分膜厚度为膜总厚度的80%。由于该膜太薄,无法将表层取下,所以测试整体的交联度。测得的EVA膜的总体预交联度为10%~18%之间。将预交联过的EVA膜切割成与双层玻璃相同的大小并置于双层玻璃之间,抽真空加压并加热到150℃10分钟。EVA膜与玻璃的粘结力大于80牛顿/厘米。EVA膜溢出双层玻璃边缘小于2毫米。
实施例11:
EVA膜的配方如下表:
Figure PCTCN2015073185-appb-000014
Figure PCTCN2015073185-appb-000015
将上述组分充分混合后加入挤出机,挤出机的温度为110℃,模具温度为110℃;通过T形平板模具挤出成膜,也可以直接通过两个压延辊成膜,收卷,得到的未交联EVA膜厚度为0.5毫米,单卷长度20米;EVA膜使用三英寸纸芯收卷。
将收卷的EVA膜展开放置于X射线发生装置的下方,然后卷到另一个三英寸纸芯上。辐射为X射线辐射方式,辐射剂量为0.2KGY,进行辐射后得到辐射预交联膜。预交联部分膜厚度为膜总厚度的40%。取0.2毫米的表层测试其交联度,预交联度为11%~18%之间。将上述预交联EVA膜置于双玻太阳能组件电池片的背面,交联面置于电池片侧,未交联面置于下层玻璃并与玻璃接触。电池片的正面覆盖常规透明的EVA胶膜。然后将其置于两块大小相同的玻璃之间后再整体置于制造太阳能光伏组件的层压机中,抽真空6分钟,同时加热至150℃,加压层压15分钟。该层压件中,预交联的EVA膜与玻璃的拉拔力大于70牛顿/厘米。该预交联的EVA膜与电池片上侧的透明EVA胶膜的界面清晰,没有发生下层预交联膜迁移至电池片上侧的现象。
实施例12:
EVA膜的配方如下表:
Figure PCTCN2015073185-appb-000016
将上述组分充分混合后加入挤出机,挤出机的温度为110℃,模具温度为110℃;通过T形平板模具挤出成膜,也可以直接通过两个压延辊成膜,收卷,得到的未交联EVA膜厚度为0.5毫米,单卷长度20米;EVA膜使用三英寸纸芯收卷。
将收卷的EVA膜展开放置于γ射线发生装置的下方,然后卷到另一个三英寸纸芯上。辐射为γ射线辐射方式,辐射剂量为0.2KGY,进行辐射后得到辐射预交联膜。预交联部分膜厚度为膜总厚度的50%。取0.2毫米的表层测试其交联度,预交联度为15%~22%之间。将上述预交联EVA膜置于双玻太阳能组件电池片的背面,交联面置于电池片侧,未交联面置于下层玻璃并与玻璃接触。电池片的正面覆盖常规透明的EVA胶膜。然后将其置于两块大小相同 的玻璃之间后再整体置于制造太阳能光伏组件的层压机中,抽真空6分钟,同时加热至150℃,加压层压15分钟。该层压件中,预交联的EVA膜与玻璃的拉拔力大于70牛顿/厘米。该预交联的EVA膜与电池片上侧的透明EVA胶膜的界面清晰,没有发生下层预交联膜迁移至电池片上侧的现象。
实施例13:
成分 重量份数
EVA树脂,VA含量25% 93
钛白粉 5
三羟甲基丙烷三甲基丙烯酸酯(TMPTMA) 1
过氧化-2-乙基己基碳酸叔丁酯(TBEC) 0.8
癸二酸二(2,2,6,6-四甲基-4-哌啶)酯(抗氧剂770) 0.2
将上述组分充分混合后加入挤出机,挤出机的温度为90℃,模具温度为90℃;通过T形平板模具挤出成膜,也可以直接通过两个压延辊成膜,收卷,得到的未交联膜厚度为0.2毫米,单卷长度50米;该未交联膜使用六英寸纸芯收卷。
将上述未交联膜整卷或者多卷展开叠放于β射线发生装置的下方,电子加速器能量为5MeV;辐照剂量在15KGY,进行辐射后得到辐射预交联。预交联部分膜厚度为膜总厚度的100%。测量该膜的交联度,其范围在12%~29%之间。将预交联过的膜切割成与双层玻璃相同的大小并置于双层玻璃之间,抽真空加压并加热到150℃10分钟。该预交联的膜与玻璃的粘结力大于70牛顿/厘米。
将此预交联的膜同未交联的同组分膜每种各取A4大小五张膜,分别叠好放入35℃的烘箱,上面放1000克的砝码,放置24小时后取出,比较粘连情况;发现辐射预交联过的膜的粘连程度明显小于同组分未辐射交联的膜。
将此预交联的膜同未交联的同组分膜每种各取1厘米宽长度为15厘米的样条5个,比较拉伸强度;发现所有经过辐射交联的膜的拉伸强度均比同组分未经辐射的膜高。
实施例14:
成分 重量份数
EVA树脂,VA含量28% 80
硫化锌 16.5
三烯丙基异氰脲酸酯(TAIC) 1
3-氨丙基三乙氧基硅烷(硅烷偶联剂KH550) 1
过氧化二异丙苯(过氧化物交联剂DCP) 1
N,N′-二仲丁基对苯二胺(抗氧剂4720) 0.5
将上述组分充分混合后加入挤出机,挤出机的温度为90℃,模具温度为90℃;通过T形平板模具挤出成膜,也可以直接通过两个压延辊成膜,收卷,得到的未交联膜厚度为0.5毫米,单卷长度30米;该未交联膜使用三英寸纸芯收卷。
将上述未交联膜整卷或者多卷展开叠放置于β射线发生装置的下方,电子加速器能量为10MeV;辐照剂量在35KGY,进行辐射后得到辐射预交联。预交联部分膜厚度为膜总厚度的100%。测量该膜的交联度,其范围在20%~50%之间。将预交联过的膜切割成与双层玻璃相同的大小并置于双层玻璃之间,抽真空加压并加热到155℃10分钟。该预交联的膜与玻璃的粘结力大于90牛顿/厘米。
将此预交联的膜同未交联的同组分膜每种各取A4大小五张膜,分别叠好放入35℃的烘箱,上面放1000克的砝码,放置24小时后取出,比较粘连情况;发现辐射预交联过的膜的粘连程度明显小于同组分未辐射交联的膜。
将此预交联的膜同未交联的同组分膜每种各取1厘米宽长度为15厘米的样条5个,比较拉伸强度;发现所有经过辐射交联的膜的拉伸强度均比同组分未经辐射的膜高。
实施例15:
Figure PCTCN2015073185-appb-000017
将上述组分充分混合后加入挤出机,挤出机的温度为110℃,模具温度为110℃;通过T形平板模具挤出成膜,也可以直接通过两个压延辊成膜,或者流延法成型,收卷,得到的未交联聚烯烃弹性体膜厚度为0.01毫米,单卷长度20米;未交联的聚烯烃弹性体膜使用六英寸纸芯收卷。
将收卷的未交联的聚烯烃弹性体膜展开放置于β射线发生装置的下方,然后卷到另一个六英寸纸芯上。辐射为电子束辐射方式,加速器能量为100keV,电子束的辐射剂量为20KGY,进行辐射后得到辐射预交联膜。预交联部分膜厚度为膜总厚度的100%。测试该膜交联度,范围在为21%~28%之间。将对向基板(玻璃基材,厚度为150μm)/预交联聚烯烃弹性体膜/有机EL元件/基板(帝人杜邦株式会社制,商品名MelinexS,厚度为100μm)依次叠层成叠层体,预交联聚烯烃弹性体膜的交联面置于有机EL元件侧,未交联面置于对向基板侧并与基 板接触。然后将叠层体整体置于制造有机EL显示器的真空层压机中,加热至100℃,层压1小时。该层压件中,预交联聚烯烃弹性体膜与玻璃基材的拉拔力大于70牛顿/厘米。聚烯烃弹性体膜溢出双层基板边缘小于2毫米。
实施例16:
Figure PCTCN2015073185-appb-000018
将上述组分充分混合后加入挤出机,挤出机的温度为110℃,模具温度为110℃;通过T形平板模具挤出成膜,收卷,进行辐射后得到辐射预交联乙烯-醋酸乙烯酯树脂膜。EVA膜厚度为2毫米,单卷长度200米;EVA膜使用三英寸纸芯收卷。
将收卷的EVA膜展开放置于电子束发生装置的下方,然后卷到另一个三英寸纸芯上。辐射为电子束辐射方式,加速器能量为200keV,电子束的辐射剂量为30KGY。辐射后预交联部分膜厚度为膜总厚度的20%,取深度0.3毫米的EVA薄层测量交联度,其范围在20%~35%之间。将上述实施例1中描述的预交联EVA膜置于双玻太阳能组件电池片的背面,交联面置于电池片侧,未交联面置于下层玻璃并玻璃接触。电池片的正面覆盖常规透明的EVA胶膜。然后将其置于两块大小相同的玻璃之间后再整体置于制造太阳能光伏组件的层压机中,抽真空6分钟,同时加热至200℃,加压层压15分钟。该层压件中,实施例1的EVA膜与玻璃的拉拔力大于70牛顿/厘米。实施例1的EVA膜与电池片上侧的透明EVA胶膜的界面清晰,实施例1的EVA膜没有发生下层膜迁移至电池片上侧的现象。
实施例17:
成分 重量份数
EVA树脂,VA含量28% 78
超细硫酸钡(4000目) 19.5
三聚氰酸三烯丙酯(TAC) 0.5
过氧化-2-乙基己基碳酸叔丁酯(TBEC) 1
癸二酸二(2,2,6,6-四甲基-4-哌啶)酯(抗氧剂770) 0.5
3-甲基丙烯酰氧基丙基三甲氧基硅烷(A-174) 0.5
将上述组分充分混合后加入挤出机,挤出机的温度为90℃,模具温度为90℃;通过T形平板模具挤出成膜,收卷,进行辐射后得到辐射预交联乙烯-醋酸乙烯酯树脂膜。EVA膜厚度为0.1毫米;EVA膜使用3英寸纸芯收卷。
收卷后的EVA膜为长度100米的成卷膜。将EVA膜展开置于电子束发生装置的下方,然后卷到另一个三英寸纸芯上,辐射为电子束辐射方式,加速器能量为50keV,电子束的辐射剂量为30KGY。辐射后预交联部分膜厚度为膜总厚度的40%。由于膜太薄,无法将表层取下,所以测试整体的交联度。测得的EVA膜的总体预交联度为10%~15%之间。将预交联过的EVA膜切割成与双层玻璃相同的大小并置于双层玻璃之间,抽真空加压并加热到150℃10分钟。EVA膜与玻璃的粘结力大于80牛顿/厘米。EVA膜溢出双层玻璃边缘小于2毫米。
实施例18:
本发明对于使用预交联聚烯烃胶膜制备的封装组件的一较佳实施例以太阳能光伏电池组件为例。
由附图1至图3所示,该太阳能光伏电池组件包括前玻璃1后部封装层,前玻璃1后封装层之间设置有胶膜,胶膜为两层,且胶膜中的至少一层为由电子束、γ射线、X射线、α射线或者中子射线的一种辐射预交联胶膜,预交联胶膜的预交联度在3%~74%之间。预交联胶膜的厚度与常用的光伏组件胶膜一致,厚度从0.1毫米到2毫米。较佳的,厚度从0.3毫米至0.7毫米之间。
经预交联的胶膜与未预交联胶膜相比,由于预交联胶膜在使用前已经形成了一定的交联网络,使其耐热性大幅度提高、树脂的流动性降低,熔融温度提高或消失。其在组件制造的层压工序中,胶膜从玻璃四周溢出的现象大幅减少。如果同时使用透明胶膜和有颜色胶膜,两层胶膜之间的界面不相互渗透,界面清楚。
层胶膜之间设置有晶硅电池片2或者是CIGS电池片(太阳能薄膜电池片)。
胶膜包括一层EVA胶膜和一层预交联EVA胶膜,且EVA胶膜设置于近前玻璃处。两层胶膜均为预交联POE胶膜。
后部封装层为背板或后玻璃。后玻璃或背板,使用常规的较薄的光伏组件后玻璃或者是光伏组件背板外,还可以采用其它有一定支撑作用的材料,比如PMMA膜(聚甲基丙烯酸甲酯膜材、聚酰亚胺膜或片材、PVC(聚氯乙烯)型材、金属板材甚至石材等。
如附图1所示,一种光伏组件结构由前到后依次是:前玻璃1、透明EVA胶膜3(未预交联,VA含量为28%)、晶硅电池片2、白色预交联EVA胶膜5(预交联度74%,反射率 88%),后玻璃4。将此结构在145℃层压后,透明EVA胶膜3和白色预交联EVA胶膜5的交联度均大于80%。透明EVA胶膜3和白色预交联EVA胶膜5界面清楚,下层的白色预交联EVA胶膜5没有渗透到透明EVA胶膜3中或者是翻层到晶硅电池片2上。
如附图2所示,另一种光伏组件结构由前到后依次是:前玻璃1、透明预交联POE胶膜6(预交联度3%)、硅晶电池片2、透明预交联POE胶膜6(预交联度15%)、后玻璃4。将此结构在150℃层压后,透明预交联POE胶膜6的尺寸稳定性好,层压后从玻璃四周的溢出的胶膜很少。
如附图3所示,再一种光伏组件结构由前到后依次是:前玻璃1、透明EVA胶膜3、硅晶电池片2、黑色预交联EVA胶膜7(预交联度35%)、背板8(TPE结构背板)。此结构在145℃层压后,透明EVA胶膜3和黑色预交联EVA胶膜7界面清楚。下层的黑色预交联EVA胶膜7没有渗透到透明EVA胶膜3中或者是翻层到硅晶电池片2上。
采用了该结构的太阳能光伏电池组件结构,光伏组件结构中采用了预交联胶膜,将其应用在太阳能光伏电池组件中,可以达到四周胶膜溢出减少的效果。如果采用上层透明的胶膜与下层带颜色的胶膜时,其中至少一层为预交联胶膜时,两层胶膜不会相互渗透,可以保持界面清晰的效果。
以上所述仅为本发明的较佳实施例,并非用以限定本发明的实质技术内容范围,本发明的实质技术内容是广义地定义于申请的权利要求范围中,任何他人完成的技术实体或方法,若是与本申请的权利要求范围所定义的完全相同,也或是一种等效的变更,均将被视为涵盖于该权利要求范围之中。

Claims (88)

  1. 一种制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,包括以下步骤:
    将聚烯烃原材料混合后制成胶膜;
    采用能够直接激发所述聚烯烃原材料发生交联反应的辐照能源辐照所述胶膜;
    调整所述辐照能源的辐照剂量,以使所述胶膜中发生交联部分的交联度为3%~95%;
    调整所述辐照能源辐照的能量,以使所述交联部分占所述胶膜厚度的5~100%,其中100%为所述胶膜全部发生交联。
  2. 根据权利要求1所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述胶膜中发生预交联的部分至少构成所述胶膜的一表层。
  3. 根据权利要求1所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述辐照能源为β射线、γ射线、X射线、α射线或中子射线中的一种。
  4. 根据权利要求1所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述将聚烯烃原材料混合后制成胶膜的方法包括但不限于:T形平板模具挤出成膜或通过两个压延辊成膜。
  5. 根据权利要求4所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述成膜温度为70~200℃,模具温度为70~200℃。
  6. 根据权利要求1所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述调整所述辐照能源辐照的能量可以是对聚烯烃胶膜叠层后进行辐照或是展开后进行辐照。
  7. 根据权利要求1所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述聚烯烃胶膜为乙烯-醋酸乙烯酯树脂膜。
  8. 根据权利要求7所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述乙烯-醋酸乙烯酯树脂膜的重量组分为:
    Figure PCTCN2015073185-appb-100001
  9. 根据权利要求7所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述辐照剂量为0.2~100KGY。
  10. 根据权利要求7所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述胶膜全部发生预交联时,所述辐射预交联乙烯-醋酸乙烯酯树脂膜的预交联度为5~74%。
  11. 根据权利要求7所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述的辐射预交联乙烯-醋酸乙烯酯树脂膜为单层、双层或多层共挤膜。
  12. 根据权利要求7所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述辐射预交联乙烯-醋酸乙烯酯树脂膜的厚度为0.01~2mm;更佳地,厚度为0.3~0.7mm。
  13. 根据权利要求8所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述EVA树脂为VA重量百分含量为20~35%的EVA树脂;更佳地,VA含量为25~33%的EVA树脂。
  14. 根据权利要求8所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述的有机过氧化物交联剂包括但不限于二烷基过氧化物、烷基芳基过氧化物、二芳基过氧化物、氢过氧化物、二酰基过氧化物、过氧酯、酮过氧化物、过氧化碳酸酯、过氧化缩酮中的一种或多种。
  15. 根据权利要求8所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述的助交联剂包括但不限于丙烯酸类、甲基丙烯酸类、丙烯酰胺类、烯丙基类、环氧化合物类中的一种或多种。
  16. 根据权利要求8所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述的抗氧剂包括但不限于光稳定剂、紫外吸收剂和抗热氧老化分解剂中的一种或多种。
  17. 根据权利要求8所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述硅烷偶联剂指在分子中同时含有两种不同化学性质基团的有机硅化合物。
  18. 根据权利要求8所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述颜料是指可以改变EVA膜颜色的添加剂;可以是但不限于碳黑、锌钡白、硫化锌、钛白粉、超细硫酸钡、玻璃微珠一种或几种。
  19. 根据权利要求8所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述聚烯烃弹性体指可以和EVA相混合的碳碳链树脂,比如低密度聚乙烯、乙烯和丁烯或辛烯的共聚物中的至少一种。
  20. 根据权利要求1所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述聚烯烃胶膜为聚烯烃弹性体膜。
  21. 根据权利要求20所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于, 所述聚烯烃弹性体膜的重量组分为:
    Figure PCTCN2015073185-appb-100002
  22. 根据权利要求20所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述辐照剂量为10~200KGY。
  23. 根据权利要求20所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述胶膜全部发生预交联时,所述辐射预交联的聚烯烃弹性体膜的交联度为3~70%。
  24. 根据权利要求20所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述辐射预交联的聚烯烃弹性体膜的厚度为0.2~1mm;更佳的,厚度为0.3~0.7mm。
  25. 根据权利要求20所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述聚烯烃弹性体为乙烯和丁烯、戊烯、己烯或辛烯共聚物中的一种或者几种的混合物。
  26. 根据权利要求21所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述聚烯烃弹性体为经过极性基团接枝过的或不经过接枝的,在成膜时添加极性基团小分子添加剂;较佳地,极性基团为硅烷偶联剂;更佳地,硅烷偶联剂在弹性体成膜前已经接枝到弹性体分子链上的,其接枝率小于3%;优选为已接枝过乙烯基三甲氧基硅烷的乙烯-己烯共聚物,接枝率为0.6%。
  27. 根据权利要求21所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述助交联剂是指多官能团的单体,可以是但不限于三烯丙基异氰脲酸酯、三聚氰酸三烯丙酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯一种或几种。
  28. 根据权利要求21所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述抗氧剂是指抗热老化分解剂和紫外吸收剂,其可以是但不限于酚类抗氧剂、受阻胺类抗氧剂、亚磷酸类、苯甲酮类、苯并三唑类,例如:不限于四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、癸二酸二(2,2,6,6-四甲基-4-哌啶)酯和N,N′-二仲丁基对苯二胺的一种或几种。
  29. 根据权利要求21所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述硅烷偶联剂指在分子中同时含有两种不同化学性质基团的有机硅化合物,优选为KH550。
  30. 根据权利要求21所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于, 所述有机过氧化物交联剂是指塑料常用的热交联用有机过氧化物交联剂,可以是但不限于过氧化二异丙苯、过氧化-2-乙基己基碳酸叔丁酯、2,5-二甲基-2,5-双(叔丁基过氧基)己烷一种或几种。
  31. 根据权利要求21所述的制备用于封装的辐射预交联聚烯烃胶膜的方法,其特征在于,所述颜料是指可以改变聚烯烃弹性体膜颜色的添加剂,可以是但不限于碳黑、锌钡白、硫化锌、钛白粉、玻璃微珠。
  32. 一种由权利要求1所述方法制备的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述聚烯烃胶膜中经由辐照能源辐照后发生交联的部分占聚烯烃胶膜厚度的5~100%,其中100%为所述胶膜全部发生交联,所述交联部分的交联度为3%~95%。
  33. 根据权利要求32所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述胶膜中发生交联的部分构成所述胶膜的一表层。
  34. 根据权利要求32所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述聚烯烃胶膜为乙烯-醋酸乙烯酯树脂膜。
  35. 根据权利要求34所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述乙烯-醋酸乙烯酯树脂膜的重量组分为:
    Figure PCTCN2015073185-appb-100003
  36. 根据权利要求34所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述胶膜全部发生预交联时,所述辐射预交联乙烯-醋酸乙烯酯树脂膜的预交联度为5~74%。
  37. 根据权利要求34所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述的辐射预交联乙烯-醋酸乙烯酯树脂膜为单层、双层或多层共挤膜。
  38. 根据权利要求34所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述辐射预交联乙烯-醋酸乙烯酯树脂膜的厚度为0.01~2mm;更佳地,厚度为0.3~0.7mm。
  39. 根据权利要求35所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述EVA树脂为VA重量百分含量为20~35%的EVA树脂;更佳地,VA含量为25~33%的EVA树脂。
  40. 根据权利要求35所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述的有 机过氧化物交联剂包括但不限于二烷基过氧化物、烷基芳基过氧化物、二芳基过氧化物、氢过氧化物、二酰基过氧化物、过氧酯、酮过氧化物、过氧化碳酸酯、过氧化缩酮中的一种或多种。
  41. 根据权利要求35所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述的助交联剂包括但不限于丙烯酸类、甲基丙烯酸类、丙烯酰胺类、烯丙基类、环氧化合物类中的一种或多种。
  42. 根据权利要求35所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述的抗氧剂包括但不限于光稳定剂、紫外吸收剂和抗热氧老化分解剂中的一种或多种。
  43. 根据权利要求35所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述硅烷偶联剂指在分子中同时含有两种不同化学性质基团的有机硅化合物。
  44. 根据权利要求35所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述颜料是指可以改变EVA膜颜色的添加剂;可以是但不限于碳黑、锌钡白、硫化锌、钛白粉、超细硫酸钡、玻璃微珠一种或几种。
  45. 根据权利要求35所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述聚烯烃弹性体指可以和EVA相混合的碳碳链树脂,比如低密度聚乙烯、乙烯和丁烯或辛烯的共聚物中的至少一种。
  46. 根据权利要求32所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述聚烯烃胶膜为聚烯烃弹性体膜。
  47. 根据权利要求46所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述聚烯烃弹性体膜的重量组分为:
    Figure PCTCN2015073185-appb-100004
  48. 根据权利要求46所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述胶膜全部发生预交联时,所述辐射预交联的聚烯烃弹性体膜的交联度为3~70%。
  49. 根据权利要求46所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述辐射预交联的聚烯烃弹性体膜的厚度为0.2~1mm;更佳的,厚度为0.3~0.7mm。
  50. 根据权利要求46所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述聚烯 烃弹性体为乙烯和丁烯、戊烯、己烯或辛烯共聚物中的一种或者几种的混合物。
  51. 根据权利要求47所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述聚烯烃弹性体为经过极性基团接枝过的或不经过接枝的,在成膜时添加极性基团小分子添加剂;较佳地,极性基团为硅烷偶联剂;更佳地,硅烷偶联剂在弹性体成膜前已经接枝到弹性体分子链上的,其接枝率小于3%;优选为已接枝过乙烯基三甲氧基硅烷的乙烯-己烯共聚物,接枝率为0.6%。
  52. 根据权利要求47所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述助交联剂是指多官能团的单体,可以是但不限于三烯丙基异氰脲酸酯、三聚氰酸三烯丙酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯一种或几种。
  53. 根据权利要求47所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述抗氧剂是指抗热老化分解剂和紫外吸收剂,其可以是但不限于酚类抗氧剂、受阻胺类抗氧剂、亚磷酸类、苯甲酮类、苯并三唑类,例如:不限于四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、癸二酸二(2,2,6,6-四甲基-4-哌啶)酯和N,N′-二仲丁基对苯二胺的一种或几种。
  54. 根据权利要求47所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述硅烷偶联剂指在分子中同时含有两种不同化学性质基团的有机硅化合物,优选为KH550。
  55. 根据权利要求47所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述有机过氧化物交联剂是指塑料常用的热交联用有机过氧化物交联剂,可以是但不限于过氧化二异丙苯、过氧化-2-乙基己基碳酸叔丁酯、2,5-二甲基-2,5-双(叔丁基过氧基)己烷一种或几种。
  56. 根据权利要求47所述的用于封装的辐射预交联聚烯烃胶膜,其特征在于,所述颜料是指可以改变聚烯烃弹性体膜颜色的添加剂,可以是但不限于碳黑、锌钡白、硫化锌、钛白粉、玻璃微珠。
  57. 一种应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,包括以下步骤:
    将聚烯烃原材料混合后制成胶膜;
    采用能够直接激发所述聚烯烃原材料发生交联反应的辐照能源辐照所述胶膜;
    调整所述辐照能源的辐照剂量,以使所述胶膜中发生交联部分的交联度为5%~95%;
    调整所述辐照能源辐照的能量,以使所述交联部分占所述胶膜厚度的5~100%,其中100%为所述胶膜全部发生交联;
    将所述胶膜置于前保护层与封装基板之间,并与被封装体构成封装组件,其中所述胶膜的预交联部分与所述被封装体接触;
    加热所述封装组件以使所述胶膜进一步发生交联反应并完成封装。
  58. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述 胶膜中发生预交联的部分构成所述胶膜的一表层。
  59. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述辐照能源为β射线、γ射线、X射线、α射线或中子射线中的一种。
  60. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述将聚烯烃原材料混合后制成胶膜的方法包括但不限于:T形平板模具挤出成膜或通过两个压延辊成膜。
  61. 根据权利要求60所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述成膜温度为70~200℃,模具温度为70~200℃。
  62. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述辐照可以是对整卷聚烯烃胶膜进行辐照或是展开进行辐照。
  63. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述聚烯烃胶膜为乙烯-醋酸乙烯酯树脂膜。
  64. 根据权利要求63所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述乙烯-醋酸乙烯酯树脂膜的重量组分为:
    Figure PCTCN2015073185-appb-100005
  65. 根据权利要求63所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述辐照剂量为0.2~100KGY。
  66. 根据权利要求63所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述胶膜全部发生预交联时,所述辐射预交联乙烯-醋酸乙烯酯树脂膜的预交联度为5~74%。
  67. 根据权利要求63所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述的辐射预交联乙烯-醋酸乙烯酯树脂膜为单层、双层或多层共挤膜。
  68. 根据权利要求63所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述辐射预交联乙烯-醋酸乙烯酯树脂膜的厚度为0.01~2mm;更佳地,厚度为0.3~0.7mm。
  69. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述聚烯烃胶膜为聚烯烃弹性体膜。
  70. 根据权利要求69所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述聚烯烃弹性体膜的重量组分为:
    Figure PCTCN2015073185-appb-100006
  71. 根据权利要求69所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述辐照剂量为10~200KGY。
  72. 根据权利要求69所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述胶膜全部发生预交联时,所述辐射预交联的聚烯烃弹性体膜的交联度为3~70%。
  73. 根据权利要求69所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述辐射预交联的聚烯烃弹性体膜的厚度为0.2~1mm;更佳的,厚度为0.3~0.7mm。
  74. 根据权利要求69所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述聚烯烃弹性体为乙烯和丁烯、戊烯、己烯或辛烯共聚物中的一种或者几种的混合物。
  75. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述封装组件在加热封装时,还可以对所述封装组件进行加压或抽真空进行封装。
  76. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述被封装体包括但不限于:晶硅电池片、发光半导体LED、有机发光半导体OLED、显示屏等。
  77. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述前保护层与所述封装基板之间设置有两层胶膜,且所述的胶膜中的至少一层为所述预交联胶膜,两层所述的胶膜之间设置有被封装体。
  78. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述的前保护层为透明保护层,具体为透明玻璃、透明陶瓷或透明塑料等。
  79. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述的胶膜包括一层EVA(乙烯-醋酸乙烯酯树脂)胶膜和一层预交联EVA胶膜,且所述的EVA胶膜设置于近所述的前保护层处。
  80. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,两层所述的胶膜均为预交联POE(聚烯烃弹性体)胶膜。
  81. 根据权利要求57所述的应用辐射预交联聚烯烃胶膜的封装方法,其特征在于,所述 封装基板为玻璃、陶瓷或塑料等。
  82. 一种由权利要求57所述方法制备的封装组件,其特征在于,前保护层与封装基板之间设置有辐射预交联的聚烯烃胶膜,并与被封装体构成封装组件,其中所述胶膜的预交联部分与所述被封装体接触。
  83. 根据权利要求82所述的封装组件,其特征在于,所述被封装体包括但不限于:晶硅电池片、发光半导体LED、有机发光半导体OLED、显示屏等。
  84. 根据权利要求82所述的封装组件,其特征在于,所述前保护层与所述封装基板之间设置有两层胶膜,且所述的胶膜中的至少一层为所述预交联胶膜,两层所述的胶膜之间设置有被封装体。
  85. 根据权利要求82所述的封装组件,其特征在于,所述的前保护层为透明保护层,具体为透明玻璃、透明陶瓷或透明塑料等。
  86. 根据权利要求82所述的封装组件,其特征在于,所述的胶膜包括一层EVA(乙烯-醋酸乙烯酯树脂)胶膜和一层预交联EVA胶膜,且所述的EVA胶膜设置于近所述的前保护层处。
  87. 根据权利要求82所述的封装组件,其特征在于,两层所述的胶膜均为预交联POE(聚烯烃弹性体)胶膜。
  88. 根据权利要求82所述的封装组件,其特征在于,所述封装基板为玻璃、陶瓷或塑料等。
PCT/CN2015/073185 2014-02-24 2015-02-16 辐射预交联聚烯烃胶膜及制法以及用于封装的方法和组件 WO2015124109A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016549359A JP6572225B2 (ja) 2014-02-24 2015-02-16 放射線照射前架橋ポリオレフィン粘着フィルム及び作製方法並びにパッケージ用の方法及びアセンブリ
US15/113,799 US9862865B2 (en) 2014-02-24 2015-02-16 Radiation pre-crosslinked polyolefin film and preparation method, and related encapsulation method and encapsulation assembly
EP15752805.0A EP3112413B1 (en) 2014-02-24 2015-02-16 Radiation pre-crosslinked polyolefin adhesive film, preparation method therefor, encapsulating method and assembly with same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201410061051.5A CN103804774B (zh) 2014-02-24 2014-02-24 辐射预交联乙烯-醋酸乙烯酯树脂膜及其制备方法
CN201410061051.5 2014-02-24
CN201410061030.3A CN103819807B (zh) 2014-02-24 2014-02-24 辐射交联的聚烯烃弹性体膜及其制备方法
CN201410061030.3 2014-02-24
CN201420092359.1U CN203721748U (zh) 2014-03-03 2014-03-03 太阳能光伏电池组件结构
CN201420092359.1 2014-03-03
CN201510010023.5A CN104558802B (zh) 2015-01-08 2015-01-08 光伏组件用表面辐射预交联乙烯‑醋酸乙烯酯树脂膜及其制备方法
CN201510010023.5 2015-01-08

Publications (1)

Publication Number Publication Date
WO2015124109A1 true WO2015124109A1 (zh) 2015-08-27

Family

ID=53877642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073185 WO2015124109A1 (zh) 2014-02-24 2015-02-16 辐射预交联聚烯烃胶膜及制法以及用于封装的方法和组件

Country Status (4)

Country Link
US (1) US9862865B2 (zh)
EP (1) EP3112413B1 (zh)
JP (1) JP6572225B2 (zh)
WO (1) WO2015124109A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662041A (zh) * 2020-12-21 2021-04-16 青岛润兴塑料新材料有限公司 一种紫外光辐照交联poe透明软管及其制备方法
CN114891450A (zh) * 2021-06-30 2022-08-12 福斯特(嘉兴)新材料有限公司 多层反射封装胶膜及光伏组件
CN115873534A (zh) * 2022-12-14 2023-03-31 湖北工业大学 一种动态-静态交联型eva、poe热熔胶及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102221601B1 (ko) * 2014-10-17 2021-03-02 엘지이노텍 주식회사 발광 소자 패키지 및 이를 포함하는 발광 모듈
JP2018093048A (ja) * 2016-12-02 2018-06-14 三井化学東セロ株式会社 太陽電池裏面側封止材および太陽電池モジュール
CN110016170B (zh) * 2018-01-10 2020-12-01 杭州福斯特应用材料股份有限公司 一种低水汽透过率聚烯烃弹性体胶膜及制备方法
CN109852289A (zh) * 2018-12-22 2019-06-07 中智(泰兴)电力科技有限公司 一种单晶硅异质结太阳电池双面发电组件封装膜及封装工艺
CN109810639B (zh) * 2019-02-02 2021-08-20 上海海优威应用材料技术有限公司 抗电势诱导衰减的光伏封装材料poe胶膜
CN110791208A (zh) * 2019-07-01 2020-02-14 深圳市立昕光学材料科技有限公司 一种uv交联聚烯烃增强eva光学膜及其制备方法
CN113416495A (zh) * 2020-03-02 2021-09-21 上海海优威新材料股份有限公司 光伏组件封装用白色热熔胶胶膜
CN112251166A (zh) * 2020-10-21 2021-01-22 苏州赛伍应用技术股份有限公司 一种具有不同预交联度的封装胶膜及其制备方法
CN112662046A (zh) * 2020-12-22 2021-04-16 上海新上化高分子材料有限公司 一种紫外光交联低烟无卤阻燃聚烯烃电缆料及其制备方法
CN113563812A (zh) * 2021-06-03 2021-10-29 苏州赛伍应用技术股份有限公司 一种焊带载体膜、其制备方法及其应用
CN115537126A (zh) * 2021-06-29 2022-12-30 杭州福斯特应用材料股份有限公司 组合物、封装胶膜、电子元器件以及太阳能电池组件
CN115124947A (zh) * 2021-06-30 2022-09-30 福斯特(嘉兴)新材料有限公司 多层封装材料及光伏组件
CN115725244B (zh) * 2022-09-06 2023-11-07 晶科能源股份有限公司 一种封装胶膜及光伏组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119047A (ja) 1999-10-21 2001-04-27 Du Pont Mitsui Polychem Co Ltd 太陽電池封止材料及び太陽電池モジュール
CN102604557A (zh) * 2012-03-22 2012-07-25 中山大学 一种太阳能光伏组件用eva封装胶膜及其制备方法
CN102676068A (zh) * 2011-10-24 2012-09-19 浙江大东南包装股份有限公司 一种基于在线交联的eva胶膜的生产工艺
CN103013364A (zh) * 2013-01-08 2013-04-03 李民 多层共挤表面层预交联胶膜
CN103289582A (zh) * 2013-05-21 2013-09-11 上海海优威电子技术有限公司 交联型的poe太阳能光伏组件用封装胶膜
CN103804774A (zh) * 2014-02-24 2014-05-21 上海海优威电子技术有限公司 辐射预交联乙烯-醋酸乙烯酯树脂膜及其制备方法
CN103819807A (zh) * 2014-02-24 2014-05-28 上海海优威电子技术有限公司 辐射交联的聚烯烃弹性体膜及其制备方法
CN203721748U (zh) * 2014-03-03 2014-07-16 上海海优威电子技术有限公司 太阳能光伏电池组件结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283696A (ja) * 1995-04-14 1996-10-29 Haishiito Kogyo Kk 太陽電池封止用シート及びその製造方法
JP5625335B2 (ja) * 2009-11-27 2014-11-19 東ソー株式会社 エチレン−酢酸ビニル共重合体樹脂組成物及び発泡体
CN103339161A (zh) * 2010-12-16 2013-10-02 陶氏环球技术有限公司 含硅烷的热塑性聚烯烃共聚物树脂、膜、其制备方法以及包含此类树脂和膜的光伏模块层压结构
CN106364103B (zh) * 2011-06-30 2019-08-02 陶氏环球技术有限责任公司 具有一体化背部片材和封装性能且包括包含结晶嵌段共聚物复合物或嵌段共聚物复合物的层的基于聚烯烃的多层膜
JP5891745B2 (ja) * 2011-11-28 2016-03-23 大日本印刷株式会社 太陽電池モジュール用封止材シート及びそれを用いた太陽電池モジュール
JP2013177506A (ja) * 2012-02-28 2013-09-09 Asahi Kasei Corp 樹脂封止シート
JP6106945B2 (ja) * 2012-04-20 2017-04-05 大日本印刷株式会社 太陽電池モジュール用の封止材シートの製造方法
JP2014013790A (ja) * 2012-07-03 2014-01-23 Keiwa Inc 太陽電池モジュール用保護フィルム及びこれを用いた太陽電池モジュール
CN203048857U (zh) * 2013-01-08 2013-07-10 李民 多层共挤表面层预交联热熔胶胶膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119047A (ja) 1999-10-21 2001-04-27 Du Pont Mitsui Polychem Co Ltd 太陽電池封止材料及び太陽電池モジュール
CN102676068A (zh) * 2011-10-24 2012-09-19 浙江大东南包装股份有限公司 一种基于在线交联的eva胶膜的生产工艺
CN102604557A (zh) * 2012-03-22 2012-07-25 中山大学 一种太阳能光伏组件用eva封装胶膜及其制备方法
CN103013364A (zh) * 2013-01-08 2013-04-03 李民 多层共挤表面层预交联胶膜
CN103289582A (zh) * 2013-05-21 2013-09-11 上海海优威电子技术有限公司 交联型的poe太阳能光伏组件用封装胶膜
CN103804774A (zh) * 2014-02-24 2014-05-21 上海海优威电子技术有限公司 辐射预交联乙烯-醋酸乙烯酯树脂膜及其制备方法
CN103819807A (zh) * 2014-02-24 2014-05-28 上海海优威电子技术有限公司 辐射交联的聚烯烃弹性体膜及其制备方法
CN203721748U (zh) * 2014-03-03 2014-07-16 上海海优威电子技术有限公司 太阳能光伏电池组件结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3112413A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662041A (zh) * 2020-12-21 2021-04-16 青岛润兴塑料新材料有限公司 一种紫外光辐照交联poe透明软管及其制备方法
CN114891450A (zh) * 2021-06-30 2022-08-12 福斯特(嘉兴)新材料有限公司 多层反射封装胶膜及光伏组件
CN115873534A (zh) * 2022-12-14 2023-03-31 湖北工业大学 一种动态-静态交联型eva、poe热熔胶及其制备方法

Also Published As

Publication number Publication date
US20160340560A1 (en) 2016-11-24
JP2017512846A (ja) 2017-05-25
US9862865B2 (en) 2018-01-09
JP6572225B2 (ja) 2019-09-04
EP3112413A1 (en) 2017-01-04
EP3112413A4 (en) 2017-10-18
EP3112413B1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
WO2015124109A1 (zh) 辐射预交联聚烯烃胶膜及制法以及用于封装的方法和组件
CN110256977B (zh) 单层有色eva膜、其制备方法与应用、及太阳能电池组件
KR101595241B1 (ko) 라미네이트 유리/폴리올레핀 필름 구조물의 제조 방법
CN104558802B (zh) 光伏组件用表面辐射预交联乙烯‑醋酸乙烯酯树脂膜及其制备方法
JP2011073337A (ja) 樹脂封止シート
JP2010226044A (ja) 樹脂封止シートの製造方法
JP6303371B2 (ja) 太陽電池モジュール用の封止材シートの製造方法
WO2021253611A1 (zh) 胶膜、形成其的组合物及电子器件
EP2913358B1 (en) Resin composition for solar cell encapsulant materials
JP6106945B2 (ja) 太陽電池モジュール用の封止材シートの製造方法
JP6476967B2 (ja) 太陽電池モジュール用の封止材シート
JP2010226052A (ja) 太陽電池モジュール
JP2011119475A (ja) 太陽電池モジュールの製造方法
JP5226572B2 (ja) 太陽電池用樹脂封止シート
JPS60226589A (ja) 封止用組成物及び該組成物による封止方法
JP6303365B2 (ja) 太陽電池モジュール用の封止材シートの製造方法
JP2013080737A (ja) 太陽電池モジュール用裏面保護シート及びその製造方法
JP6427871B2 (ja) 太陽電池モジュール
WO2016121990A1 (ja) 太陽電池モジュール用の封止材シート及び太陽電池モジュール
JP6287006B2 (ja) 太陽電池モジュール用の封止材シートの製造方法
JP2011176261A (ja) 太陽電池封止シート及び太陽電池モジュール
JP2010226041A (ja) 太陽電池モジュール
KR101514028B1 (ko) 태양전지 모듈
JP6603994B2 (ja) 太陽電池モジュール用の封止材シート及び太陽電池モジュール
JP6540054B2 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752805

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15113799

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016549359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015752805

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015752805

Country of ref document: EP