WO2015123918A1 - 700℃等级超超临界燃煤电站用镍基高温合金及其制备 - Google Patents

700℃等级超超临界燃煤电站用镍基高温合金及其制备 Download PDF

Info

Publication number
WO2015123918A1
WO2015123918A1 PCT/CN2014/075474 CN2014075474W WO2015123918A1 WO 2015123918 A1 WO2015123918 A1 WO 2015123918A1 CN 2014075474 W CN2014075474 W CN 2014075474W WO 2015123918 A1 WO2015123918 A1 WO 2015123918A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
alloy
fired power
power station
Prior art date
Application number
PCT/CN2014/075474
Other languages
English (en)
French (fr)
Inventor
谢锡善
林富生
赵双群
Original Assignee
上海发电设备成套设计研究院
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海发电设备成套设计研究院, 北京科技大学 filed Critical 上海发电设备成套设计研究院
Priority to BR112015031328A priority Critical patent/BR112015031328B1/pt
Priority to EP14883147.2A priority patent/EP3109331B1/en
Priority to KR1020157032332A priority patent/KR101764755B1/ko
Publication of WO2015123918A1 publication Critical patent/WO2015123918A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the invention belongs to the technical field of nickel-based superalloy materials, in particular to a super-supercritical of 700 ° C grade.
  • Nickel-based alloy material for coal-fired power stations suitable for the manufacture of advanced ultra-supercritical combustion with a steam temperature of 700 ° C
  • the high-temperature components of the coal power station are used for a long time under the actual use temperature of about 800 °C.
  • the EU first started in 1998.
  • the research plan will increase the steam parameters to 700 ° C / 720 ° C / 35 MPa, and the power generation efficiency is expected to increase from the current 45% to more than 50%.
  • the United States and Japan subsequently launched similar research projects in the early 2000s.
  • China began to develop advanced ultra-supercritical coal-fired power generation technology at 700 °C.
  • thermal power generation accounts for more than 80%, while the average coal consumption of power stations in China is much higher than that of the world's economically developed countries. Therefore, the steam parameters of coal-fired power stations are increased, thereby reducing coal consumption, saving coal resources and reducing Emissions such as CO 2 are important for the sustainable development of the economy, society and the environment.
  • the power station off Key high temperature components, such as high and medium pressure rotors and cylinders and valve housings in steam turbines, superheaters and reheating in boilers Tubes, as well as materials such as headers and steam pipes, place higher demands on strength and corrosion resistance. It is generally believed that the temperature of the outer wall of the boiler internal superheater and reheater tube is 50 °C higher than the steam temperature inside the tube. about. Therefore, when the steam temperature in the superheater and reheater tubes reaches 700 ° C and 720 ° C, the outer wall of the tube The maximum temperature may reach 770 ° C or even higher.
  • the steam pressure inside the tube is also increased.
  • the ultra-supercritical coal-fired power originally at 600 ° C level 9 ⁇ 12Cr% steel and austenitic heat-resistant steel widely used in the station, such as Super304H and HR3C are no longer full.
  • Nickel-based superalloys must be used for foot strength and corrosion resistance.
  • Nickel-based alloys used today in the civil (eg petrochemical) field usually need to be considered in an oxidizing or reducing environment. Corrosion resistance and high temperature performance, some age hardening type nickel-based alloys used in aviation, high temperature The strength requirement is more important, but the running time is short. Because these uses are quite different, especially Ultra-supercritical power station has outstanding features of long running time (30-40 years), making existing nickel-base high temperature Gold, usually can not meet high temperature strength, maximum use temperature and tissue stability, oxidation resistance / vulcanization resistance The requirements of energy can not meet the long-term application of high temperature parts of 700°C ultra-supercritical coal-fired power station Claim.
  • the present invention relates to the organization and properties of elements such as Co, Cr, Mo, W, Al, Ti, Nb and C.
  • Research comprehensive consideration of the reasonable combination of solid solution strengthening and precipitation strengthening of the alloy, supplemented by good grain boundary strengthening
  • the application prospect is broad.
  • the object of the present invention is to provide a nickel-based high-temperature alloy material for 700 ° C grade ultra-supercritical coal-fired power station Material and preparation method thereof, reasonable composition design, good hot working plasticity, high temperature performance and corrosion resistance It has the advantages of superiority and long-term structural stability at high temperatures.
  • the present invention provides a nickel base for a super-supercritical coal-fired power station of 700 ° C grade.
  • a superalloy comprising: C0.01 to 0.07 wt%, Cr 23 to 25.5 wt%, Co 10 to 14.6 wt%, Mo 0.3 to 3.5 wt%, W 0.5 to 2.5 wt%, Nb 0.8 to 2.2 wt%, Ti 1.0 to 2.5 wt%, Al 1.0 to 2.5 wt%, B 0.001 to 0.005 wt%, Zr 0.01 to 0.3 wt%, Mg 0.002 to 0.015 wt%, V 0.01 to 0.5 wt%, La 0.001 to 0.005 wt%, the balance is Ni and unavoidable impurity elements, and S, P, Si and impurity elements
  • the range of Mn is: S ⁇ 0.010 wt%, P ⁇ 0.015 wt%, Si ⁇ 0.3 wt%, and Mn ⁇ 0.5
  • the sum of the atomic percentages of Al, Ti and Nb is 5.5-6.2 at%, the atomic number of Cr and Mo and W
  • the ratio of the sum of the atomic numbers (Cr/(Mo+W)) is greater than 12, and the atomic percentages of Cr, Mo, and W And no more than 30at%.
  • the ⁇ ′ aging precipitation of the nickel-based superalloy for the 700° C grade ultra-supercritical coal-fired power station The amount of the strengthening phase is 14 to 19% by weight.
  • the invention also provides a preparation method of the nickel base superalloy for the above-mentioned 700 ° C grade ultra-supercritical coal-fired power station
  • the method is characterized in that the specific steps are:
  • First step 0.01 to 0.07 parts by weight of C, 23 to 25.5 parts by weight of Cr, 10 to 14.6 parts by weight of Co, 0.3 to 3.5 parts by weight of Mo, 0.5 to 2.5 parts by weight of W, and 0.8 to 2.2 parts by weight.
  • Nb 1.0 to 2.5 parts by weight of Ti, 1.0 to 2.5 parts by weight of Al, 0.001 to 0.005 parts by weight of B, 0.01 to 0.3 parts by weight of Zr, 0.01 to 0.5 part by weight of V, and 48 to 58 parts by weight.
  • Ni is charged into the vacuum induction furnace.
  • the ratio of the atomic number of Al in the raw material to the sum of the number of atoms of Ti and Nb (Al/(Ti+Nb)) should be between 1.0 and 1.3.
  • the sum of the percentages is 5.5 to 6.2 at%, the ratio of the atomic number of Cr to the sum of the atomic numbers of Mo and W (Cr/(Mo+W)) is greater than 12, and the sum of the atomic percentages of Cr, Mo and W does not exceed 30at%, simultaneously loading 3-6 parts by weight of the dry auxiliary material with a purity greater than 99.5% into a vacuum induction furnace, the auxiliary material consisting of CaF 2 40wt%, CaO40wt% and Al 2 O 3 20wt%, not less than 10 -3 Bar vacuum is smelted in a vacuum induction furnace; after the raw materials are completely dissolved, the vacuum condition is not lower than 10 -3 Bar, and the refining time is not less than 30 min to remove the gas; the refining is completed.
  • the argon (Ar) shielding gas is charged at a pressure of 0.4 bar, and 0.3 to 0.6 parts by weight of the Ni-20Ca alloy is added to remove the harmful impurity element S.
  • the molten steel temperature before tapping is not lower than 1500 ° C, and Ni is successively added.
  • -20Mg alloy 0.01-0.025 parts by weight and metal La 0.001-0.005 parts by weight for desulfurization and purification, after being fully melted and stirred uniformly, filtered, and cast into an alloy ingot under argon atmosphere;
  • Step 2 After the alloy ingot is subjected to diffusion annealing, blank forging, solid solution and aging treatment, 700 ° C is obtained. Nickel-based superalloys for grade super-supercritical coal-fired power stations.
  • the temperature of the diffusion annealing in the second step is 1150 to 1220 ° C, and the time is 16 to 48 h.
  • the temperature of the blank forging in the second step is not lower than 1050 °C.
  • the temperature of the solution treatment in the second step is 1100 to 1200 ° C, and the time is 0.5 to 2 h.
  • the aging treatment in the second step has a temperature of 800 ° C and a time of 4 to 16 h.
  • the alloy ingot is first used before the diffusion annealing of the alloy ingot is performed.
  • the alloy ingot is subjected to secondary refining by an empty consumable remelting method or an electroslag remelting method having a protective atmosphere.
  • the melting rate should be strictly controlled. Keep the melting rate per hour no more than 300kg.
  • a complex five-dimensional purification slag system when the second step adopts an electroslag remelting method with a protective atmosphere, a complex five-dimensional purification slag system is used, and the complex five-dimensional purification slag system includes CaF 2 40 to 45 wt%, Al 2 O. 3 20-30 wt%, CaO 15-20 wt%, MgO 5-10 wt%, and TiO 2 5-10 wt%, the complex five-component purification slag is purified before use to ensure SiO 2 ⁇ 0.5%, and Bake at 800 ° C for 4 h.
  • the use of (40 to 45% CaF 2 + 20 to 30% Al 2 O 3 + 15 to 20% CaO + 5 to 10% MgO + 5 to 10% TiO 2 ) ensures stable composition of Al, Ti and Mg.
  • the main alloying elements of the nickel-base superalloy of the present invention are Ni, Cr, Co, Mo, W, Nb, Ti, Al, B, Zr, Mg, V, La and some impurity elements S, P, Si, which are unavoidable in industrial production.
  • the content control range of Mn or the like is as described above.
  • Strictly control the content of trace harmful impurity elements such as Pb, Sn, As, Sb, Bi, etc. Forging processing and alloy durability or high temperature plasticity are harmful.
  • the invention will be described below for the limitation of the composition range of the nickel-based alloy for the 700 ° C grade ultra-supercritical coal-fired power station. s reason.
  • M 23 C 6 carbide at the grain boundary as a strengthening element is advantageous for the high temperature endurance of the alloy.
  • C content is less than 0.01%, it is insufficient to form a certain amount of M 23 C 6 at the grain boundary.
  • C can form a primary carbide MC together with Ti and Nb, which helps to control the grain size.
  • Ti and Nb are excessively consumed, and should be kept below 0.06%. Further, C also has an effect of ensuring the fluidity of the molten metal at the time of pouring.
  • Cr is an important element for improving the oxidation resistance, corrosion resistance and high temperature strength of nickel-based alloys, and is also the main forming element of grain boundary carbides. Studies have shown that in the high-temperature steam environment inside the boiler pipe, when the Cr content in the alloy is more than 23%, it can ensure the formation of a protective Cr 2 O 3 oxide film on the inner wall of the pipe, and also ensure that the outer wall of the pipe is sufficient. Resistance to smoke corrosion. When the Cr content is too high, the microstructure stability and processing property of the alloy are affected, and the content thereof is preferably not more than 25.5%.
  • Co is beneficial to the improvement of the heat strength of the nickel-based alloy in the high temperature range, and is beneficial for resisting high temperature hot corrosion. Co can reduce the stacking fault energy in the Ni-Cr solid solution and play a good solid solution strengthening effect. When Co contains When the amount is less than 10%, the high temperature strength is lowered. However, Co is a strategically scarce element with a high price. The amount of Co promotes the formation of the ⁇ phase which is unfavorable in the alloy and affects the forgeability of the alloy. therefore, The Co content is limited to between 10.0 and 14.5%. It is the invention that reasonable control of strengthening elements and reduction of alloy cost An important factor.
  • solid solution strengthening effect is relatively weakened, it is necessary to supplement the solid solution strengthening of Mo.
  • the Mo content is controlled at 0.3 to 3.5%. between.
  • W is half in each of the ⁇ matrix and the strengthening phase ⁇ '.
  • W atom radius is relatively large, larger than the radius of the base Ni More than 10%, the solid solution strengthening effect is obvious, especially when W and Mo are added together to form a solid solution. The effect is more favorable.
  • W is an element that accelerates hot corrosion. For this reason, its content is controlled at Between 0.5 and 2.5%.
  • the Nb is controlled between 0.8 and 2.2%.
  • the difference between the atomic radii of Nb and Ni is different from that of Mo and W and Ni
  • a strengthening element of the ⁇ ' phase is necessary to control Nb in an appropriate amount, and excessive Nb will not only promote the formation of ⁇ phase. It will reduce the protective properties of the oxide film and deteriorate the soldering performance, resulting in liquefaction cracks.
  • Ti is controlled between 1.0 and 2.5% and is an important strengthening element for forming the ⁇ ' phase.
  • Ti element is also It is an important grain size stabilizer that forms a primary carbide (Ti, Nb) C together with Nb. But Ti content When it is too high, it promotes the formation of harmful ⁇ phase, and is prone to internal oxidation, which leads to the reduction of the alloy matrix. Sex.
  • Al is beneficial for oxidation resistance, improves the structure of the oxide film, and forms ⁇ ' strong with Ni together with Ti and Nb. Phase.
  • Al is an important element for stabilizing the ⁇ ' phase and inhibiting the formation of the ⁇ phase.
  • the Al content is too low, the strengthening effect If the fruit is not obvious, the high temperature strength will decrease.
  • the content is too high, the plasticity and toughness of the alloy will be significantly reduced.
  • the processing temperature range of gold At the same time, in high temperature vulcanization environment, high Al content will lead to internal oxidation and internal sulfur. Increased corrosion. Therefore, Al is limited to between 1.0 and 2.5%.
  • B is a microalloying element, and B is enriched at the grain boundary to increase the grain boundary bonding force.
  • Grain boundary borides can Preventing grain boundary slip and void connection and expansion, it is very obvious to improve the creep durability of the alloy.
  • An optimum range of content is controlled between 0.001 and 0.005% in the alloy of the invention.
  • Zr is controlled between 0.01-0.3%, which helps to purify the grain boundary and enhance the grain boundary bonding force. Helps maintain the high temperature strength and long-lasting plasticity of the alloy. Excessive addition will reduce the thermal processing capacity. Another of Zr The effect is to significantly increase the adhesion of the protective oxide film on the surface of the alloy.
  • Mg is added as a microalloying element, and an appropriate amount of Mg is beneficial to improve the durability and plasticity of the alloy.
  • the segregation of Mg at grain boundaries and phase boundaries can reduce the grain boundary energy and phase boundary energy, improve the precipitation morphology of the second phase, and reduce Local stress concentration. It can also be combined with impurity elements to purify the grain boundaries. It can be controlled at 0.004 to 0.015%.
  • V In the V distribution and the solid solution, the lattice distortion can be effectively increased and the solid solution strengthening effect can be enhanced. At the same time, one Part V also enters the strengthening phase ⁇ ' to displace Al. V also tends to form a precipitate, fine and diffuse during solidification. VC is beneficial for refining grains. In addition, V can improve the hot workability of the alloy, controlled at 0.001 to 0.5 wt%. between.
  • La is added as a microalloying element and can be combined with an impurity element, particularly a harmful element S. Purifying and strengthening the role of grain boundaries, on the other hand, La is advantageous for oxidation resistance, and La is controlled at 0.001 to 0.005%. between.
  • Alloy S Segregation at the grain boundary and phase boundary has a serious impact on the thermoplasticity and high temperature durability of the alloy, not only controlled Below 0.010%, and should be as low as possible.
  • P has a dual function of promoting element segregation and harmful phase precipitation during solidification.
  • the right amount of P can be changed Good long-lasting creep performance, when it is excessive, it will be segregated seriously at the grain boundary, which will lower the grain boundary connection strength and affect the toughness. Control is below 0.015%.
  • Si is a common impurity element, enriched in grain boundaries, reduces grain boundary strength, and promotes the shape of the TCP phase.
  • the results of the present invention clearly indicate that a high Si content promotes the precipitation of a brittle Si-rich G phase at the grain boundary. As a result, the plasticity, toughness and processability of the alloy are significantly affected and must be controlled below 0.3%.
  • Mn is segregated at the grain boundary, weakening the grain boundary bonding force and reducing the permanent strength. Promote the formation of harmful phases in the grain boundary and should be controlled below 0.5%.
  • Ni is the most important matrix constituent element and the formation element of the precipitation strengthening phase ⁇ ', in order to ensure the stability of the tissue sexuality and sufficient high temperature strength, toughness and plasticity, as well as good processing ability of the alloy, the content must be Keep at around 50%.
  • the control principle of the precipitation strengthening elements Al, Ti and Nb is: Al/(Ti+Nb) ratio is 1.0 Between 1.3 and the sum of Al+Ti+Nb is 5.5-6.2at%, which can make the precipitation of ⁇ ' strengthening phase in the alloy Between 14 and 19% by weight, the formation of an appropriate precipitation strengthening effect is the primary guarantee for obtaining appropriate high strength. Moreover, there is no transition of the ⁇ ' phase to the ⁇ phase, and the alloy strengthens the structure of the precipitated phase.
  • the ⁇ ' phase in the alloy of the present invention is of the Ni 3 (Al, Ti, Nb) type, and although Nb and Ti have good strengthening effects at 700-800 ° C, large coherence is generated due to large ⁇ '/ ⁇ misalignment.
  • the strain field makes the ⁇ ' phase unstable and tends to precipitate the Ni 3 (Ti, Nb) type ⁇ phase.
  • the alloy Under the reasonable control composition, smelting process, blank forming method and heat treatment system, the alloy can make the ⁇ ' phase precipitate at a favorable position in the grain boundary at high temperature aging, exhibiting a discontinuous distribution characteristic, which can prevent the alloy along the crystal crack.
  • the expansion improves the impact properties and high temperature creep properties of the alloy, which is a feature of the design of the invention for improving the stability of the ⁇ ' phase and optimizing the ⁇ ' phase strengthening effect.
  • Fig. 2 it is a microstructure diagram of the high temperature aging of the alloy of the present invention.
  • the control principle of Mo and Cr elements is: Cr/(Mo+W) atomic ratio
  • the value is greater than 12, and the total amount of Mo+Cr+W does not exceed 30 at%, and the temperature in the alloy and at 700-800 ° C
  • the range is long-term aging, there will be no ⁇ phase or ⁇ equal generation, and the content of the impurity element Si is controlled at Below 0.3 wt%, the precipitation of the G phase is suppressed.
  • the original structure of the alloy and the high temperature long-term aging structure are shown in Figure 2. Show.
  • the alloy of the present invention takes into account the complex solid solution strengthening of an appropriate amount of W in the complex multi-austenite of Ni-Cr-Co-Mo and the reasonable combination of Al, Ti, and Nb precipitation strengthening elements, and a small amount of vanadium reinforcement is added.
  • Optimize the microalloying elements B, Zr and Mg strictly control the content of conventional harmful impurity elements S, P, Si and Mn, especially adding a small amount of La during the smelting process to purify the grain boundary and strengthen the grain boundary. .
  • the composition design of the alloy is more reasonable, and the long-term microstructure stability at high temperature is good, and 14 to 19 wt% of the ⁇ ' phase is precipitated and strengthened, and the precipitation of the ⁇ phase, the G phase and the ⁇ equivalent harmful phase during the aging process is suppressed.
  • the ⁇ ' phase in the alloy is Ni 3 (Al, Ti, Nb) type, and the ratio of the total amount of Al, Ti and Nb and the ratio of Al/(Ti+Nb) is reasonably controlled to ensure that a proper amount and a stable ⁇ ' strengthening phase are obtained.
  • the ⁇ ' phase can be precipitated at favorable positions in the grain boundary, which can effectively prevent the expansion of the alloy along the crystal failure crack and improve the impact toughness and high temperature and long-term creep of the alloy. performance.
  • Figure 1 is a graph showing the results of a test study on the relationship between the amount of ⁇ ' precipitated and the content of Al+Ti+Nb;
  • Figure 2 is a microstructure diagram of the high temperature aging of the alloy of the present invention.
  • Nickel-based superalloy for 700°C grade super-supercritical coal-fired power station including C, Cr, Co, Mo, W, Nb, Ti, Al, B, Zr, Mg, V, La, Ni and inevitable impurity elements, measured The weight percentage of each component and the weight percentage of S, P, Si and Mn in the impurities are shown in Table 1.
  • the ratio of the atomic number of Al to the sum of the number of atoms of Ti and Nb Al/(Ti+Nb)), Al, Ti and Nb
  • the ratio of the sum of atomic percentages (Nb + Ti + Al), the number of atoms of Cr to the sum of the atomic numbers of Mo and W (Cr/(Mo+W)) and the sum of atomic percentages of Cr, Mo and W (Cr+Mo+W) are shown in Table 1.
  • a high quality alloy raw material 0.05 parts by weight of C, 24.3 parts by weight of Cr, 14.2 parts by weight of Co, 0.32 parts by weight of Mo, 1.05 parts by weight of W, 1.48 parts by weight of Nb, 1.52 parts by weight of Ti, 1.61 Parts by weight of Al, 0.003 parts by weight of B, 0.02 parts by weight of Zr, 0.18 parts by weight of V and 55 parts by weight of Ni, and 5 parts by weight of a dry auxiliary having a purity of 99.5% are charged into a vacuum induction furnace, the auxiliary materials It consists of 40% by weight of CaF 2 , 40% by weight of CaO and 20% by weight of Al 2 O 3 , and is smelted in a vacuum induction furnace under vacuum of 10 -3 Bar; after all the raw materials are melted, the vacuum condition is maintained at not less than 10 -3 Bar.
  • the refining time is 10 min to remove the gas; after the refining is completed, the argon shielding gas is charged, the pressure is 0.4 bar, and 0.5 parts by weight of the Ni-20Ca alloy is added to remove the harmful impurity element S, and the molten steel temperature before tapping is 1520 °C, successively added 0.015 parts by weight of Ni-20Mg alloy and 0.005 parts by weight of metal La for desulfurization and purification, after being fully melted and stirred uniformly, filtered, and cast into an alloy ingot under argon atmosphere;
  • the alloy ingot was diffusion-annealed at 1190 ° C for 24 h, and then forged at 1200 ° C. After three fires, it was forged.
  • the bar was solution treated at 1150 ° C for 1 h, water-cooled, and the bar was aged at 800 ° C for 16 h, and air-cooled to obtain a nickel-based superalloy for a super-supercritical coal-fired power station of 700 ° C grade.
  • the amount of the ⁇ ' aging precipitation strengthening phase of the nickel-based superalloy for the 700 ° C grade ultra-supercritical coal-fired power station is 16.8 wt%.
  • Nickel-based superalloy for 700°C grade super-supercritical coal-fired power station including C, Cr, Co, Mo, W, Nb, Ti, Al, B, Zr, Mg, V, La, Ni and inevitable impurity elements, measured The weight percentage of each component and the weight percentage of S, P, Si and Mn in the impurities are shown in Table 1.
  • the ratio of the atomic number of Al to the sum of the number of atoms of Ti and Nb Al/(Ti+Nb)), Al, Ti and Nb
  • the ratio of the sum of atomic percentages (Nb + Ti + Al), the number of atoms of Cr to the sum of the atomic numbers of Mo and W (Cr/(Mo+W)) and the sum of atomic percentages of Cr, Mo and W (Cr+Mo+W) are shown in Table 1.
  • a high-quality alloy raw material 0.05 parts by weight of C, 24.5 parts by weight of Cr, 10.2 parts by weight of Co, 1.35 parts by weight of Mo, 1.05 parts by weight of W, 1.67 parts by weight of Nb, 1.49 parts by weight of Ti, 1.72 Parts by weight of Al, 0.003 parts by weight of B, 0.02 parts by weight of Zr, 0.17 parts by weight of V, and 57 parts by weight of Ni and 5 parts by weight of a dry auxiliary having a purity of 99.5% are charged into a vacuum induction furnace,
  • the auxiliary material is composed of CaF 2 40wt%, CaO40wt% and Al 2 O 3 20wt%, and is smelted in a vacuum induction furnace under a vacuum condition of 10 -3 Bar; after the raw materials are completely melted, the vacuum is maintained at not less than 10 -3 Bar.
  • the refining time is 10 min to remove the gas; after the refining is completed, the argon shielding gas is charged at a pressure of 0.4 bar, and 0.5 part by weight of the Ni-20Ca alloy is added to remove the harmful impurity element S, and the molten steel temperature before the tapping is 1520 ° C, successively added 0.015 parts by weight of Ni-20Mg alloy and 0.005 parts by weight of metal La for desulfurization and purification, after fully melting and stirring uniformly, filtering, casting into an alloy ingot under argon atmosphere;
  • the alloy ingot was diffusion-annealed at 1190 ° C for 24 h, and then forged at 1200 ° C. After three fires, it was forged.
  • the bar was solution treated at 1150 ° C for 1 h, water-cooled, and the bar was aged at 800 ° C for 16 h, and air-cooled to obtain a nickel-based superalloy for a super-supercritical coal-fired power station of 700 ° C grade.
  • the amount of the ⁇ ' aging precipitation strengthening phase of the nickel-based superalloy for the 700 ° C grade ultra-supercritical coal-fired power station is 18.5 wt%.
  • Nickel-based superalloy for 700°C grade super-supercritical coal-fired power station including C, Cr, Co, Mo, W, Nb, Ti, Al, B, Zr, Mg, V, La, Ni and inevitable impurity elements, measured The weight percentage of each component and the weight percentage of S, P, Si and Mn in the impurities are shown in Table 1.
  • the ratio of the atomic number of Al to the sum of the number of atoms of Ti and Nb Al/(Ti+Nb)), Al, Ti and Nb
  • the sum of the atomic percentages (Nb + Ti + Al), the number of atoms of Cr and the sum of the atomic numbers of Mo and W (Cr / (Mo+W)) and the sum of atomic percentages of Cr, Mo and W (Cr+Mo+W) are shown in Table 1.
  • It consists of 40% by weight of CaF 2 , 40% by weight of CaO and 20% by weight of Al 2 O 3 , and is smelted in a vacuum induction furnace under vacuum of 10 -3 Bar; after all the raw materials are melted, the vacuum condition is maintained at not less than 10 -3 Bar.
  • the refining time is 10 min to remove the gas; after the refining is completed, the argon shielding gas is charged, the pressure is 0.4 bar, and 0.5 parts by weight of the Ni-20Ca alloy is added to remove the harmful impurity element S, and the molten steel temperature before tapping is 1520 °C, successively added 0.015 parts by weight of Ni-20Mg alloy and 0.005 parts by weight of metal La for desulfurization and purification, after being fully melted and stirred uniformly, filtered, and cast into an alloy ingot under argon atmosphere;
  • the alloy ingot was diffusion-annealed at 1190 ° C for 24 h, and then forged at 1200 ° C. After three fires, it was forged.
  • the bar was solution treated at 1150 ° C for 1 h, water-cooled, and the bar was aged at 800 ° C for 16 h, and air-cooled to obtain a nickel-based superalloy for a super-supercritical coal-fired power station of 700 ° C grade.
  • the amount of the ⁇ ' aging precipitation strengthening phase of the nickel-based superalloy for the 700 ° C grade ultra-supercritical coal-fired power station is 17 wt%.
  • Nickel-based superalloy for 700°C grade super-supercritical coal-fired power station including C, Cr, Co, Mo, W, Nb, Ti, Al, B, Zr, Mg, V, La, Ni and inevitable impurity elements, measured The weight percentage of each component and the weight percentage of S, P, Si and Mn in the impurities are shown in Table 1.
  • the ratio of the atomic number of Al to the sum of the number of atoms of Ti and Nb Al/(Ti+Nb)), Al, Ti and Nb
  • the ratio of the sum of atomic percentages (Nb + Ti + Al), the number of atoms of Cr to the sum of the atomic numbers of Mo and W (Cr/(Mo+W)) and the sum of atomic percentages of Cr, Mo and W (Cr+Mo+W) are shown in Table 1.
  • a high-quality alloy raw material 0.07 parts by weight of C, 25.0 parts by weight of Cr, 14.6 parts by weight of Co, 2.87 parts by weight of Mo, 1.20 parts by weight of W, 1.56 parts by weight of Nb, 1.60 parts by weight of Ti, 1.58 Parts by weight of Al, 0.002 parts by weight of B, 0.04 parts by weight of Zr, 0.15 parts by weight of V and 51 parts by weight of Ni, and 5 parts by weight of a dry auxiliary having a purity of 99.5% are charged into a vacuum induction furnace, the auxiliary materials It consists of 40% by weight of CaF 2 , 40% by weight of CaO and 20% by weight of Al 2 O 3 , and is smelted in a vacuum induction furnace under vacuum of 10 -3 Bar; after all the raw materials are melted, the vacuum condition is maintained at not less than 10 -3 Bar.
  • the refining time is 10 min to remove the gas; after the refining is completed, the argon shielding gas is charged, the pressure is 0.4 bar, and 0.5 parts by weight of the Ni-20Ca alloy is added to remove the harmful impurity element S, and the molten steel temperature before tapping is 1520 °C, successively added 0.015 parts by weight of Ni-20Mg alloy and 0.005 parts by weight of metal La for desulfurization and purification, after being fully melted and stirred uniformly, filtered, and cast into an alloy ingot under argon atmosphere;
  • the alloy ingot was diffusion-annealed at 1190 ° C for 24 h, and then forged at 1200 ° C. After three fires, it was forged.
  • the bar was solution treated at 1150 ° C for 1 h, water-cooled, and the bar was aged at 800 ° C for 16 h, and air-cooled to obtain a nickel-based superalloy for a super-supercritical coal-fired power station of 700 ° C grade.
  • the amount of the ⁇ ' aging precipitation strengthening phase of the nickel-based superalloy for the 700 ° C grade ultra-supercritical coal-fired power station is 17.3 wt%.
  • Nickel-based superalloy for 700°C grade super-supercritical coal-fired power station including C, Cr, Co, Mo, W, Nb, Ti, Al, B, Zr, Mg, V, La, Ni and inevitable impurity elements, measured The weight percentage of each component and the weight percentage of S, P, Si and Mn in the impurities are shown in Table 1.
  • the ratio of the atomic number of Al to the sum of the number of atoms of Ti and Nb Al/(Ti+Nb)), Al, Ti and Nb
  • the ratio of the sum of atomic percentages (Nb + Ti + Al), the number of atoms of Cr to the sum of the atomic numbers of Mo and W (Cr/(Mo+W)) and the sum of atomic percentages of Cr, Mo and W (Cr+Mo+W) are shown in Table 1.
  • a high-quality alloy raw material 0.06 parts by weight of C, 24.4 parts by weight of Cr, 13.6 parts by weight of Co, 3.04 parts by weight of Mo, 1.16 parts by weight of W, 1.51 parts by weight of Nb, 1.51 parts by weight of Ti, 1.51 Parts by weight of Al, 0.003 parts by weight of B, 0.05 parts by weight of Zr, 0.16 parts by weight of V and 52 parts by weight of Ni, and 0.5 parts by weight of a dry auxiliary having a purity of 99.5% are charged into a vacuum induction furnace, the auxiliary material It consists of 40% by weight of CaF 2 , 40% by weight of CaO and 20% by weight of Al 2 O 3 , and is smelted in a vacuum induction furnace under vacuum of 10 -3 Bar; after all the raw materials are melted, the vacuum condition is maintained at not less than 10 -3 Bar.
  • the refining time is 10 min to remove the gas; after the refining is completed, the argon shielding gas is charged, the pressure is 0.4 bar, and 0.5 parts by weight of the Ni-20Ca alloy is added to remove the harmful impurity element S, and the molten steel temperature before tapping is 1520 °C, successively added 0.020 parts by weight of Ni-20Mg alloy and 0.005 parts by weight of metal La for desulfurization and purification, after being fully melted and stirred uniformly, filtered, and cast into an alloy ingot under argon atmosphere;
  • the vacuum inductively smelted alloy ingot was subjected to secondary remelting by vacuum self-consumption method: the electrode was annealed at 900 ° C for 1 h; the surface oxide scale was removed, and the electrode was welded under a vacuum of 10 -3 mmHg; smelting was performed using a voltage of 25 volts.
  • the degree of vacuum was controlled to be 10 -3 mmHg; the melting rate was maintained at 250 kg per hour; finally, the alloy ingot was annealed at 900 ° C for 1 h.
  • the remelted alloy ingot is diffusion-annealed at 1190 ° C for 24 h, and then forged at 1200 ° C, and forged after three fires.
  • the bar was solution treated at 1150 ° C for 1 h, water-cooled, and the bar was aged at 800 ° C for 16 h, and air-cooled to obtain a nickel-based superalloy for a super-supercritical coal-fired power station of 700 ° C grade.
  • the amount of the ⁇ ' aging precipitation strengthening phase of the nickel-based superalloy for the 700 ° C grade ultra-supercritical coal-fired power station is 15 wt%.
  • Nickel-based superalloy for 700°C grade super-supercritical coal-fired power station including C, Cr, Co, Mo, W, Nb, Ti, Al, B, Zr, Mg, V, La, Ni and inevitable impurity elements, measured The weight percentage of each component and the weight percentage of S, P, Si and Mn in the impurities are shown in Table 1.
  • the ratio of the atomic number of Al to the sum of the number of atoms of Ti and Nb Al/(Ti+Nb)), Al, Ti and Nb
  • the ratio of the sum of atomic percentages (Nb + Ti + Al), the number of atoms of Cr to the sum of the atomic numbers of Mo and W ((Cr/Mo+W)) and the sum of atomic percentages of Cr, Mo and W (Cr+Mo+W) are shown in Table 1.
  • a high-quality alloy raw material 0.06 parts by weight of C, 24.7 parts by weight of Cr, 12.9 parts by weight of Co, 0.53 parts by weight of Mo, 2.23 parts by weight of W, 1.59 parts by weight of Nb, 1.62 parts by weight of Ti, 1.54 Parts by weight of Al, 0.004 parts by weight of B, 0.005 parts by weight of Zr, 0.15 parts by weight of V and 54 parts by weight of Ni, and 5 parts by weight of a dry auxiliary having a purity of 99.5% are charged into a vacuum induction furnace, the auxiliary material It consists of 40% by weight of CaF 2 , 40% by weight of CaO and 20% by weight of Al 2 O 3 , and is smelted in a vacuum induction furnace under vacuum of 10 -3 Bar; after all the raw materials are melted, the vacuum condition is maintained at not less than 10 -3 Bar.
  • the alloy ingot after vacuum induction melting is subjected to secondary remelting by electroslag remelting method with protective atmosphere: firstly remove the surface oxide scale of the alloy ingot and solder the electrode; use (40% CaF 2 + 25% Al 2 O 3 +15% CaO+10%MgO+10%TiO 2 ) Complex five-component purification slag system for electroslag remelting, slag material purification to ensure SiO 2 ⁇ 0.5%, and after 800 ° C / 4h baking; keep the furnace mouth
  • the smelting voltage is 50 volts, and the smelting rate is maintained at 250 kg per hour; finally, the slag ingot is annealed at 900 ° C for 1 h.
  • the remelted alloy ingot is diffusion-annealed at 1190 ° C for 24 h, and then forged at 1200 ° C, and forged after three fires.
  • the bar was solution treated at 1150 ° C for 1 h, water-cooled, and the bar was aged at 800 ° C for 16 h, and air-cooled to obtain a nickel-based superalloy for a super-supercritical coal-fired power station of 700 ° C grade.
  • the amount of the ⁇ ' aging precipitation strengthening phase of the nickel-based superalloy for the 700 ° C grade ultra-supercritical coal-fired power station is 17.2 wt%.
  • Nickel-based superalloy for 700°C grade super-supercritical coal-fired power station including C, Cr, Co, Mo, W, Nb, Ti, Al, B, Zr, Mg, V, La, Ni and inevitable impurity elements, measured The weight percentage of each component and the weight percentage of S, P, Si and Mn in the impurities are shown in Table 1.
  • the ratio of the atomic number of Al to the sum of the number of atoms of Ti and Nb Al/(Ti+Nb)), Al, Ti and Nb
  • the ratio of the sum of atomic percentages (Nb + Ti + Al), the number of atoms of Cr to the sum of the atomic numbers of Mo and W (Cr/(Mo+W)) and the sum of atomic percentages of Cr, Mo and W (Cr+Mo+W) are shown in Table 1.
  • a high quality alloy raw material 0.05 parts by weight of C, 24.98 parts by weight of Cr, 14.6 parts by weight of Co, 1.36 parts by weight of Mo, 1.19 parts by weight of W, 1.54 parts by weight of Nb, 1.53 parts by weight of Ti, 1.51 Parts by weight of Al, 0.002 parts by weight of B, 0.04 parts by weight of Zr and 53 parts by weight of Ni and 0.5 parts by weight of a dry auxiliary material having a purity of 99.5% are charged into a vacuum induction furnace, the auxiliary material being 40% by weight of CaF 2 , CaO40wt% and Al 2 O 3 20wt% composition, smelting in vacuum induction furnace under vacuum condition of 10 -3 Bar; after all the raw materials are melted, keep the vacuum condition of not less than 10 -3 Bar for 10min Refining to remove the gas; after refining, filling with argon shielding gas, the pressure is 0.4 bar, while adding 0.5 parts by weight of Ni-20Ca alloy to remove harmful impurity
  • the vacuum inductively smelted alloy ingot is subjected to secondary remelting by a vacuum self-consumption method.
  • First electrode annealed at 900 °C for IH the surface oxide is removed and, under vacuum at 10 -3 mmHg good welding electrode; using 25 volts was melted, the degree of vacuum is controlled to 10 -3 mmHg; remains molten in the melting rate of 250kg per hour
  • the alloy ingot was annealed at 900 ° C for 1 h.
  • the remelted alloy ingot is diffusion-annealed at 1190 ° C for 24 h, and then forged at 1200 ° C, and forged after three fires.
  • the bar was solution treated at 1150 ° C for 1 h, water-cooled, and the bar was aged at 800 ° C for 16 h, and air-cooled to obtain a nickel-based superalloy for a super-supercritical coal-fired power station of 700 ° C grade.
  • the amount of the ⁇ ' aging precipitation strengthening phase of the nickel-based superalloy for the 700 ° C grade ultra-supercritical coal-fired power station is 16 wt%.
  • Nickel-based superalloy for 700°C grade super-supercritical coal-fired power station including C, Cr, Co, Mo, W, Nb, Ti, Al, B, Zr, Mg, V, La, Ni and inevitable impurity elements, measured The weight percentage of each component and the weight percentage of S, P, Si and Mn in the impurities are shown in Table 1.
  • the ratio of the atomic number of Al to the sum of the number of atoms of Ti and Nb Al/(Ti+Nb)), Al, Ti and Nb
  • the ratio of the sum of atomic percentages (Nb + Ti + Al), the number of atoms of Cr to the sum of the atomic numbers of Mo and W (Cr/(Mo+W)) and the sum of atomic percentages of Cr, Mo and W (Cr+Mo+W) are shown in Table 1.
  • It consists of 40% by weight of CaF 2 , 40% by weight of CaO and 20% by weight of Al 2 O 3 , and is smelted in a vacuum induction furnace under vacuum of 10 -3 Bar; after all the raw materials are melted, the vacuum condition is maintained at not less than 10 -3 Bar.
  • the refining time is 10 min to remove the gas; after the refining is completed, the argon shielding gas is charged, the pressure is 0.4 bar, and 0.5 parts by weight of the Ni-20Ca alloy is added to remove the harmful impurity element S, and the molten steel temperature before tapping is 1520 °C, successively added 0.020 parts by weight of Ni-20Mg alloy and 0.005 parts by weight of metal La for desulfurization and purification, after being fully melted and stirred uniformly, filtered, and cast into an alloy ingot under argon atmosphere;
  • the vacuum inductively smelted alloy ingot is subjected to secondary remelting by a vacuum self-consumption method.
  • the alloy ingot was annealed at 900 ° C for 1 h.
  • the remelted alloy ingot is diffusion-annealed at 1190 ° C for 24 h, and then forged at 1200 ° C, and forged after three fires.
  • the bar was solution treated at 1150 ° C for 1 h, water-cooled, and the bar was aged at 800 ° C for 16 h, and air-cooled to obtain a nickel-based superalloy for a super-supercritical coal-fired power station of 700 ° C grade.
  • the amount of the ⁇ ' aging precipitation strengthening phase of the nickel-based superalloy for the 700 ° C grade ultra-supercritical coal-fired power station is 13.4 wt%.
  • Nickel-based superalloy for 700°C grade super-supercritical coal-fired power station including C, Cr, Co, Mo, W, Nb, Ti, Al, B, Zr, Mg, V, La, Ni and inevitable impurity elements, measured The weight percentage of each component and the weight percentage of S, P, Si and Mn in the impurities are shown in Table 1.
  • the ratio of the atomic number of Al to the sum of the number of atoms of Ti and Nb Al/(Ti+Nb)), Al, Ti and Nb
  • the ratio of the sum of atomic percentages (Nb + Ti + Al), the number of atoms of Cr to the sum of the atomic numbers of Mo and W ((Cr/Mo+W)) and the sum of atomic percentages of Cr, Mo and W (Cr+Mo+W) are shown in Table 1.
  • a high-quality alloy raw material 0.06 parts by weight of C, 24.4 parts by weight of Cr, 12.91 parts by weight of Co, 3.41 parts by weight of Mo, 2.33 parts by weight of W, 1.59 parts by weight of Nb, 1.63 parts by weight of Ti, 1.53 Parts by weight of Al, 0.004 parts by weight of B, 0.005 parts by weight of Zr, 0.15 parts by weight of V and 51 parts by weight of Ni, and 5 parts by weight of a dry auxiliary material having a purity of 99.5% are charged into a vacuum induction furnace, the auxiliary material It consists of 40% by weight of CaF 2 , 40% by weight of CaO and 20% by weight of Al 2 O 3 , and is smelted in a vacuum induction furnace under vacuum of 10 -3 Bar; after all the raw materials are melted, the vacuum condition is maintained at not less than 10 -3 Bar.
  • the vacuum inductively smelted alloy ingot is subjected to secondary remelting by an electroslag remelting method having a protective atmosphere.
  • the surface of the alloy ingot is descaled and the electrode is welded; using (40% CaF 2 + 25% Al 2 O 3 +15% CaO + 10% MgO + 10% TiO 2 ) complex five-dimensional purification slag system for electroslag Remelting, slag purification to ensure SiO 2 ⁇ 0.5%, and after 800 ° C / 4h baking; keep the furnace mouth smelting voltage 50 volts, the smelting rate is maintained at 250kg per hour; finally the electroslag ingot is annealed at 900 ° C for 1h.
  • the remelted alloy ingot is diffusion-annealed at 1190 ° C for 24 h, and then forged at 1200 ° C, and forged after three fires.
  • the bar was solution treated at 1150 ° C for 1 h, water-cooled, and the bar was aged at 800 ° C for 16 h, and air-cooled to obtain a nickel-based superalloy for a super-supercritical coal-fired power station of 700 ° C grade.
  • the amount of the ⁇ ' aging precipitation strengthening phase of the nickel-based superalloy for the 700 ° C grade ultra-supercritical coal-fired power station is 18.2 wt%.
  • Table 1 shows the measured chemical composition of the alloys 1 to 6 of the examples and the alloys 1 to 3 of the comparative examples.
  • Nickel-based high temperature combination of 700 ° C grade ultra-supercritical coal-fired power stations in Examples 1 to 6 and Comparative Examples 1 to 3 The gold was processed into a round bar tensile test specimen, and subjected to tensile properties at room temperature, 700 ° C, and 800 ° C, respectively. Pull The tensile performance test results are shown in Table 2.
  • the elongation is greater than 24.0%, the reduction of the section is greater than 32.0%; when the tensile is high at 700 °C, the yield strength is greater than 640MPa, tensile strength is greater than 980Mpa, elongation is greater than 23.0%, and the area shrinkage is greater than 30.0%; When tensile at 800 °C, the yield strength is greater than 600 MPa, the tensile strength is greater than 800 MPa, and the elongation is greater than 17.0%, the area shrinkage is greater than 25.0%; both have high strength at room temperature and high temperature stretching. Tough and ductile it is good.
  • Comparative Alloy 1 because it does not contain V and La, it not only affects the strength, but In addition, the S content in the alloy is higher, and the influence on the ductile plasticity is large, and the tensile ductility is reduced by 35% to 50% compared with the embodiment;
  • the composition of Nb, Ti and Al in the alloy of Comparative Example 2 does not meet the restriction conditions, and its strength is relatively low, and the tensile strength is strong. The degree is reduced by 15% to 20% compared with the embodiment, and the equilibrium phase of the alloy contains the ⁇ phase, as shown in FIG.
  • the durability of 750 ° C / 205 MPa of Examples 1 to 6 is greater than 5000 h, and the elongation is greater than 12.0%.
  • the area shrinkage is greater than 16.0%; the permanent life of 800 °C / 125MPa is greater than 5000h, and the elongation is greater than 14.0%, the area shrinkage is greater than 18.0%; the 850 °C / 100MPa longevity is greater than 1500h, elongation More than 20.0%, the area shrinkage is greater than 25.0%.
  • the durability of 750 ° C / 205 MPa of the comparative alloys 1 to 3 is less than 3000 h, and the elongation is less than 8.0%.
  • the reduction of the section is less than 11.0%; the durability of 800 °C / 125MPa is less than 2500h, and the elongation is less than 10.0%, the area shrinkage is less than 14.0%; the 850 °C / 100MPa long life is less than 750h, the elongation is small At 12.0%, the reduction in area was less than 17.0%.
  • the nickel base alloy of the invention has good forging performance and can be used for manufacturing ultra-supercritical coal-fired power of 700 ° C grade.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一种700℃等级超超临界燃煤电站用镍基高温合金,含有:C为0.01~0.07wt%、Cr为23~25.5wt%、Co为10~14.6wt%、Mo为0.3~3.5wt%、W为0.5~2.5wt%、Nb为0.8~2.2wt%、Ti为1.0~2.5wt%、Al为1.0~2.5wt%、B为0.001~0.005wt%、Zr为0.01~0.3wt%、Mg为0.002~0.015wt%、V为0.01~0.5wt%、La为0.001~0.005wt%,余量为Ni和不可避免的杂质元素,其中,Al的原子数与Ti和Nb原子数之和的比值(Al/(Ti+Nb))为在1.0到1.3之间,Al、Ti和Nb的原子百分数之和为5.5~6.2at%,Cr的原子数与Mo和W的原子数之和的比值(Cr/(Mo+W))大于12,且Cr、Mo和W的原子百分数之和不超过30at%。

Description

700℃等级超超临界燃煤电站用镍基高温合金及其制备 技术领域
本发明属于镍基高温合金材料技术领域,尤其涉及一种700℃等级超超临界 燃煤电站用镍基合金材料,适用于制造蒸汽温度为700℃等级的先进超超临界燃 煤电站高温部件,在实际使用温度800℃左右以下长期使用。
背景技术
能源供应紧张和环境保护问题已经成为当今世界各国经济、社会和环境可持 续发展的主要制约因素。电力作为二次能源在今后相当长的时期内仍将在能源消 费市场中占据主要地位。在电力生产结构中,除少数国家外,火力发电在绝大多 数国家占据主导地位,并且在今后相当长时期内不会改变。现阶段世界上燃煤电 站仍然是以蒸汽参数为538℃/18.5MPa等级的亚临界电站为主。但是,自上个世 纪末以来,蒸汽参数为566℃/24MPa等级的超临界电站和蒸汽参数为 600℃/27MPa等级的超超临界电站的发展在燃煤电站的发展中占据了主要地位。 电站的热效率已经由亚临界机组的35%左右提高到了超超临界机组的45%左右。 对节约燃煤和降低污染物SOx、NOx和CO2等的排放发挥了重要作用。同时, 十余年来,世界主要经济发达国家和组织,如欧盟、美国和日本,陆续开展700℃ (或760℃)等级先进超超临界燃煤发电技术的研发,欧盟最先于1998年开始 此项研究计划,将蒸汽参数提高到了700℃/720℃/35MPa,预计发电效率从目前 的45%提高到超过50%。美国和日本则随后于21世纪初启动了类似的研究项目。 2011年,我国也开始开展700℃等级先进超超临界燃煤发电技术的研发。在我国 的电力结构中,火力发电占到了80%以上,而我国的电站平均煤耗则远高于世界 上经济发达的国家,因此提高燃煤电站的蒸汽参数,从而降低煤耗,节约煤炭资 源和减少CO2等排放,对经济、社会和环境的可持续发展具有重要意义。
随着燃煤发电机组的温度和压力提高到700℃/720℃/35MPa等级,对电站关 键高温部件,如汽轮机中的高、中压转子和汽缸与阀壳,锅炉中的过热器和再热 器管,以及集箱和蒸汽管道等材料,在强度和耐腐蚀性能方面提出了更高的要求。 一般认为,锅炉内部过热器和再热器管的外壁温度要比管内的蒸汽温度高50℃ 左右。因此,当过热器和再热器管内的蒸汽温度达到700℃和720℃时,管外壁 的最高温度可能达到770℃左右,甚至还要更高一些。同时,管内的蒸汽压力也 提高了。在这样的蒸汽温度和压力条件下,原来在600℃等级的超超临界燃煤电 站中广泛使用的9~12Cr%钢和奥氏体耐热钢,如Super304H和HR3C已不能满 足强度和耐蚀性能的要求,必须使用镍基高温合金。
现今在民用(如石化)领域使用的镍基合金,通常需考虑在氧化或还原环境 下的耐腐蚀性能和高温性能,在航空领域使用的一些时效硬化型镍基合金,高温 强度的要求则显得更重要一些,但运行时间短。由于这些用途区别较大,特别是 超超临界电站具有运行时间长(30~40年)的突出特点,使得现有的镍基高温合 金,通常不能同时满足高温强度、最高使用温度和组织稳定性、耐氧化/硫化性 能的要求,以致于不能满足700℃等级超超临界燃煤电站高温部件长时间应用的 要求。欧盟在700℃等级超超临界发电计划中研究了Inconel617和Nimonic263 镍基合金,并通过对617合金的成分优化得到了617B合金,目前也在对263合 金进行优化。日本Sumitomo金属公司发展了Fe-Ni基合金HR6W,瑞典Sandvik 公司也发展了Fe-Ni基的Sanicro25合金,这些合金都不能满足在最高温度段部 件的要求。美国SMC为欧盟的700℃超超临界计划发展了Inconel740合金,兼 具强度高和耐蚀性能良好的明显特点,成为机组高温部件主要的候选材料。中国 也正在原用作舰船锅炉过热器的、镍-铁基合金GH2984的基础上,积极发展可 以在更高温度应用的合金。迄今为止,上述合金仍然处在发展和研究之中。
本发明通过对Co、Cr、Mo、W、Al、Ti、Nb和C等元素对组织和性能的 研究,综合考虑合金固溶强化和析出强化的合理搭配,并辅以良好的晶界强化得 到一种可以在800℃以下高温范围内长期使用的镍基合金,室温和高温拉伸及持 久性能好,抗腐蚀性优越,在蒸汽温度为700℃等级超超临界燃煤电站装备中的 应用前景广阔。
发明内容
本发明的目的在于提供一种700℃等级超超临界燃煤电站用镍基高温合金材 料及其制备方法,成分设计合理,具有热加工塑性好、高温性能好和耐蚀腐蚀性 能优越以及高温长期组织稳定等优点。
为了达到上述目的,本发明提供了一种700℃等级超超临界燃煤电站用镍基 高温合金,其特征在于,包括:C0.01~0.07wt%、Cr23~25.5wt%、Co10~14.6wt%、 Mo0.3~3.5wt%、W0.5~2.5wt%、Nb0.8~2.2wt%、Ti1.0~2.5wt%、Al1.0~2.5wt%、 B0.001~0.005wt%、Zr0.01~0.3wt%、Mg0.002~0.015wt%、V0.01~0.5wt%,La 0.001~0.005wt%,余量为Ni和不可避免的杂质元素,杂质元素中S、P、Si和 Mn的范围为:S<0.010wt%、P<0.015wt%、Si<0.3wt%和Mn<0.5wt%,;其中, 所述的Al的原子数与Ti和Nb原子数之和的比值(Al/(Ti+Nb))为在1.0到1.3 之间,Al、Ti和Nb的原子百分数之和为5.5-6.2at%,Cr的原子数与Mo和W 的原子数之和的比值(Cr/(Mo+W))大于12,且Cr、Mo和W的原子百分数之 和不超过30at%。
进一步地,所述的700℃等级超超临界燃煤电站用镍基高温合金的γ′时效析出 强化相的量在14~19wt%。
本发明还提供了上述700℃等级超超临界燃煤电站用镍基高温合金的制备方 法,其特征在于,具体步骤为:
第一步:将0.01~0.07重量份的C、23~25.5重量份的Cr、10~14.6重量份的 Co、0.3~3.5重量份的Mo、0.5~2.5重量份的W、0.8~2.2重量份的Nb、1.0~2.5 重量份的Ti、1.0~2.5重量份的Al、0.001~0.005重量份的B、0.01~0.3重量份的 Zr、0.01~0.5重量份的V,和48~58重量份的Ni装入真空感应炉中,应保持原 料中Al的原子数与Ti和Nb原子数之和的比值(Al/(Ti+Nb))为在1.0到1.3之 间,Al、Ti和Nb的原子百分数之和为5.5~6.2at%,Cr的原子数与Mo和W的 原子数之和的比值(Cr/(Mo+W))大于12,且Cr、Mo和W的原子百分数之和不 超过30at%,同时装入纯度大于99.5%的干燥辅料3~6重量份装入真空感应炉 中,所述的辅料由CaF240wt%、CaO40wt%和Al2O320wt%组成,在不低于10-3Bar 的真空条件下,于真空感应炉内熔炼;原料全部溶化后,保持不低于10-3Bar的 真空条件,进行时间不低于30min的精炼以去除气体;精炼完毕后,充入氩(Ar) 保护气体,压力为0.4bar,同时加入Ni-20Ca合金0.3~0.6重量份进行去除有害 杂质元素S,出钢前钢液温度不低于1500℃,相继加入Ni-20Mg合金0.01~0.025 重量份和金属La0.001~0.005重量份进行脱硫和纯净化,经充分熔化和搅拌均匀 后,过滤,在氩气环境下浇注成合金锭;
第二步:将合金锭进行扩散退火、开坯锻造、固溶和时效处理后,得到700℃ 等级超超临界燃煤电站用镍基高温合金。
优选地,所述第二步中扩散退火的温度为1150~1220℃,时间为16~48h。
优选地,所述第二步中的开坯锻造的温度为不低于1050℃。
优选地,所述第二步中的固溶处理的温度为1100~1200℃,时间为0.5~2h。
优选地,所述第二步中的时效处理的温度为800℃,时间为4~16h。
优选地,所述第二步中,在对合金锭进行扩散退火之前,先将合金锭采用真 空自耗重熔方法或有保护气氛的电渣重熔方法将合金锭进行二次精炼。
更优选地,所述的第二步采用真空自耗重熔方法时,应严格控制熔化速率, 保持每小时熔速不大于300kg。
更优选地,所述的第二步采用有保护气氛的电渣重熔方法时,采用复杂五元 提纯渣系,所述的复杂五元提纯渣系包括CaF240~45wt%、Al2O320~30wt%、CaO 15~20wt%、MgO5~10wt%和TiO25~10wt%,所述的复杂五元提纯渣系在使用前 需经过提纯,保证其中SiO2<0.5%,且经过800℃烘烤4h。采用 (40~45%CaF2+20~30%Al2O3+15~20%CaO+5~10%MgO+5~10%TiO2)可保证稳 定的Al、Ti和Mg的成分。
本发明镍基高温合金的主要合金元素Ni、Cr、Co、Mo、W、Nb、Ti、Al、 B、Zr、Mg、V、La和一些在工业化生产过程中不可避免的杂质元素S、P、Si、 Mn等的含量控制范围如上所述。除此之外,还应当按照现有工业化生产技术, 严格控制Pb、Sn、As、Sb、Bi等微量有害微量杂质元素的含量,他们对合金的 锻造加工和合金的持久性能或高温塑性有害。
下面将描述本发明用于700℃等级超超临界燃煤电站镍基合金组分范围限定 的原因。
C作为强化元素在晶界形成M23C6碳化物对合金高温持久强度有利,当C含 量小于0.01%时,不足以在晶界形成一定量的M23C6。C可与Ti和Nb一起形成 一次碳化物MC,有助于控制晶粒尺寸,含量过高时会过多消耗掉Ti和Nb,应 当保持在0.06%以下。此外,C也具有在浇注时保证熔融金属的流动性的作用。
Cr是提高镍基合金的抗氧化性能、抗腐蚀性能和高温强度的重要元素,也是 晶界碳化物的主要形成元素。研究表明,在锅炉管道内部所处的高温水蒸气环境 中,当合金中Cr含量大于23%时,可以保证在管道内壁形成保护性的Cr2O3氧 化膜,同时也可以保证管道外壁有足够的抗烟气腐蚀性能。Cr含量过高时会影 响合金的组织稳定性和加工性能,其含量以不超过25.5%为宜。
Co有益于镍基合金在高温范围内热强性的提高,而且对抗高温热腐蚀有益。 Co在Ni-Cr固溶体中可以降低堆垛层错能,起到良好的固溶强化作用。当Co含 量低于10%时,高温强度降低。然而Co为一种价格偏高的战略性稀缺元素,过 量的Co会促进合金中不利其性能的η相形成,同时会影响合金的可锻性。因此, Co含量限制在10.0~14.5%之间。是本发明对强化元素合理控制,降低合金成本 的一个重要因素。
Mo进入镍基合金的基体,起重要的固溶强化作用,特别是在降低Co含量 相对减弱固溶强化作用时,必须辅以Mo的固溶强化也是本发明强化元素控制特 点之一。但是,当过量Mo加入时,不仅对合金在燃煤环境中抗烟气腐蚀明显有 害,而且会促进σ相形成,并使得高温加工性不好。因此,Mo含量控制在0.3~3.5% 之间。
W在γ基体和强化相γ′中各占一半。W原子半径比较大,比基体Ni的半径大 百分之十几,固溶强化作用明显,特别是W与Mo同时加入起到复合的固溶强 化作用更为有利。但是W是加速热腐蚀的一种元素,为此,其含量控制在 0.5~2.5%之间。
Nb控制在0.8-2.2%之间。Nb与Ni的原子半径差别比Mo和W与Ni的差别 还大,是本发明合金中重要的析出强化和固溶强化元素,和Al与Ti一起作为析 出γ′相的强化元素。但是必须适量控制Nb,过量的Nb不仅会促进η相的形成也 会降低氧化膜的保护性能,并使焊接性能变坏,产生液化裂纹。
Ti控制在1.0~2.5%之间,是一种重要的形成γ′相的强化元素。Ti元素同时也 是重要的晶粒尺寸稳定剂,与Nb一起形成一次碳化物(Ti,Nb)C。但是Ti含量 过高时会促进有害的η相的形成,并容易发生内氧化而导致降低合金基体的塑 性。
Al有益于抗氧化,可改善氧化膜的结构,且与Ti和Nb一起与Ni形成γ′强 化相。Al是稳定γ′相和抑制η相形成的一个重要元素,Al含量过低时,强化效 果不明显,高温强度会降低,含量过高时将显著降低合金的塑性和韧性,降低合 金的加工温度范围。同时,在高温硫化环境中,高Al含量会导致内氧化和内硫 化腐蚀增加。因此,Al限制在1.0~2.5%之间。
B是一种微合金化元素,B在晶界富集,增加晶界结合力。晶界硼化物可以 阻止晶界滑移和空洞的连接与扩展,对提高合金的蠕变持久性能非常明显,存在 一个最佳的含量范围,本发明合金中控制在0.001~0.005%之间。
Zr控制在0.01-0.3%之间,有助于净化晶界,增强晶界结合力,和B一起有 助于保持合金的高温强度和持久塑性。过量加入会降低热加工能力。Zr的另一 个作用是可以明显增加合金表面保护性氧化膜的粘附能力。
Mg作为微合金化元素加入,适量的Mg有利于提高合金持久寿命和塑性。 Mg在晶界和相界偏聚可以降低晶界能和相界能,改善第二相的析出形态,降低 局部应力集中。还可以和杂质元素结合,净化晶界。控制在0.004~0.015%即可。
V分布与固溶体中,能有效地增大晶格畸变,增强固溶强化作用。同时,一 部分V也进入强化相γ′中置换Al。V也易在凝固时形成一次析出的、细小且弥散 的VC,对细化晶粒有益。另外,V可改善合金的热加工塑性,控制在0.001~0.5wt% 之间。
La作为微合金化元素加入,可以和杂质元素特别是有害元素S的结合起到 净化和强化晶界的作用,另一方面La对抗氧化性能有利,La控制在0.001~0.005% 之间。
S是一种有害杂质元素,凝固过程中促进元素偏析和有害相形成。合金中S 偏聚于晶界和相界,对合金的热塑性和高温持久性能有严重的影响,不仅控制在 0.010%以下,而且应当尽可能降低。
P具有双重作用,凝固过程中促进元素偏析和有害相析出。适量的P可以改 善持久蠕变性能,过量时会在晶界偏析严重,使晶界连接强度降低,影响韧性应 控制在0.015%以下。
Si是一种常见的杂质元素,富集于晶界,降低晶界强度,促进TCP相的形 成,本发明的研究结果明确指出高Si含量会促进脆性富Si的G相在晶界析出, 以致显著影响合金的塑性、韧性和加工性能,必须控制在0.3%以下。
Mn和其他杂质一样,偏聚于晶界,消弱晶界结合力,降低持久强度,也会 促进晶界有害相的形成,应控制在0.5%以下。
Ni最重要的基体组成元素和析出强化相γ′的形成元素,为了保证组织的稳定 性和获得足够的高温强度、韧塑性以及使合金具有良好的加工能力,其含量必须 保持在50%左右。
如图1所示,为γ′析出量与Al+Ti+Nb含量的关系试验研究结果图,本发明合 金成分设计中,析出强化元素Al、Ti和Nb的控制原则为:Al/(Ti+Nb)比值在1.0 到1.3之间,Al+Ti+Nb之和为5.5~6.2at%,可以使得合金中γ′强化相析出量在 14~19wt%之间,形成适当的析出强化效应,是获得适当高强度的首要保证因素, 而且没有γ′相向η相的转变,合金强化析出相的组织稳定。
本发明合金中的γ′相为Ni3(Al,Ti,Nb)型,虽然Nb和Ti在700-800℃具有 良好的强化效果,但由于γ′/γ失调度大而产生大的共格应变场,使得γ′相不稳定 而易于析出Ni3(Ti,Nb)型η相。本合金在合理控制成分,以及冶炼工艺、开坯 成型方法及热处理制度下,可以使得γ′相在高温时效时晶界有利位置析出,呈现 出不连续分布的特征,可以阻止合金沿晶裂纹的扩展,提高了合金的冲击性能和 高温蠕变性能,这是本发明提高γ′相稳定性,优化γ′相强化作用的组织设计上的 一个特点。如图2所示,为本发明合金高温时效的显微组织图。
本发明合金成分设计中,Mo和Cr元素的控制原则为:Cr/(Mo+W)原子比 值大于12,且Mo+Cr+W的总量不超过30at%,在该合金中以及在700-800℃温 度范围长期时效时不会有σ相或μ相等生成,而且,杂质元素Si的含量控制在 0.3wt%之下,以抑制G相析出。合金的原始组织和高温长期时效组织如图2所 示。
总之,本发明合金考虑了Ni-Cr-Co-Mo复杂多元奥氏体中添加适量W的复 合固溶强化以及Al、Ti、和Nb析出强化元素的合理组合,并加入少量的钒加强 强化,对微合金化元素B、Zr和Mg进行优化,严格控制常规有害杂质元素S、 P、Si和Mn的含量,尤其是冶炼过程中加入微量的La,起到净化晶界和强化晶 界的作用。合金成分设计更加合理,高温长期组织稳定性良好,形成14~19wt% 的γ′相析出强化,且抑制了时效过程中η相、G相和σ相等有害相的析出。合金 中的γ′相为Ni3(Al,Ti,Nb)型,Al、Ti和Nb总量以及Al/(Ti+Nb)的比例合理控 制以保证获得适当数量及稳定的γ′强化相,配合以相应的纯净化冶炼工艺、开坯 成型方法和热处理制度,可以使得γ′相在晶界有利位置析出,能够有效阻止合金 沿晶失效裂纹的扩展,提高合金的冲击韧性和高温持久蠕变性能。
附图说明
图1为γ′析出量与Al+Ti+Nb含量的关系试验研究结果图;
图2为本发明合金高温时效的显微组织图;
图3为比较例合金2的η相析出的TTT图;
图4为比较例合金3的σ相析出的TTT图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,作详细说明如下。实施例1~6 和比较例1~3中的Ni-20Ca合金和Ni-20Mg合金购自北京北冶功能材料有限公 司。
实施例1
一种700℃等级超超临界燃煤电站用镍基高温合金,包括C、Cr、Co、Mo、 W、Nb、Ti、Al、B、Zr、Mg、V,La,Ni和不可避免的杂质元素,实测得到的 各成分的重量百分比以及杂质中S、P、Si和Mn的重量百分比见表1,合金中所 述的Al的原子数与Ti和Nb原子数之和的比值(Al/(Ti+Nb))、Al、Ti和Nb的 原子百分数之和(Nb+Ti+Al)、Cr的原子数与Mo和W的原子数之和的比值 (Cr/(Mo+W))以及Cr、Mo和W的原子百分数之和(Cr+Mo+W)见表1。
上述700℃等级超超临界燃煤电站用镍基高温合金的制备方法为:
选取优质的合金原料,将0.05重量份的C、24.3重量份的Cr、14.2重量份 的Co、0.32重量份的Mo、1.05重量份的W、1.48重量份的Nb、1.52重量份的 Ti、1.61重量份的Al、0.003重量份的B、0.02重量份的Zr、0.18重量份的V和 55重量份的Ni以及纯度为99.5%的干燥辅料5重量份装入真空感应炉中,所述 的辅料由CaF240wt%、CaO40wt%和Al2O320wt%组成,在10-3Bar的真空条件 下,于真空感应炉内熔炼;原料全部溶化后,保持不低于10-3Bar的真空条件, 进行时间为10min的精炼以去除气体;精炼完毕后,充入氩保护气体,压力为 0.4bar,同时加入Ni-20Ca合金0.5重量份进行去除有害杂质元素S,出钢前钢液 温度为1520℃,相继加入Ni-20Mg合金0.015重量份和金属La0.005重量份进 行脱硫和纯净化,经充分熔化和搅拌均匀后,过滤,在氩气环境下浇注成合金锭;
将合金锭在1190℃进行扩散退火24h,在1200℃开坯锻造,经三火后锻造成 为
Figure PCTCN2014075474-appb-000001
棒材,将棒材在1150℃进行固溶处理1h,水冷,将棒材在800℃进行 时效处理16h,空冷,得到700℃等级超超临界燃煤电站用镍基高温合金。所述 的700℃等级超超临界燃煤电站用镍基高温合金的γ′时效析出强化相的量在 16.8wt%。
实施例2
一种700℃等级超超临界燃煤电站用镍基高温合金,包括C、Cr、Co、Mo、 W、Nb、Ti、Al、B、Zr、Mg、V,La,Ni和不可避免的杂质元素,实测得到的 各成分的重量百分比以及杂质中S、P、Si和Mn的重量百分比见表1,合金中所 述的Al的原子数与Ti和Nb原子数之和的比值(Al/(Ti+Nb))、Al、Ti和Nb的 原子百分数之和(Nb+Ti+Al)、Cr的原子数与Mo和W的原子数之和的比值 (Cr/(Mo+W))以及Cr、Mo和W的原子百分数之和(Cr+Mo+W)见表1。
上述700℃等级超超临界燃煤电站用镍基高温合金的制备方法为:
选取优质的合金原料,将0.05重量份的C、24.5重量份的Cr、10.2重量份 的Co、1.35重量份的Mo、1.05重量份的W、1.67重量份的Nb、1.49重量份的 Ti、1.72重量份的Al、0.003重量份的B、0.02重量份的Zr、0.17重量份的V, 和57重量份的Ni以及纯度为99.5%的干燥辅料5重量份装入真空感应炉中, 所述的辅料由CaF240wt%、CaO40wt%和Al2O320wt%组成,在10-3Bar的真空 条件下,于真空感应炉内熔炼;原料全部溶化后,保持不低于10-3Bar的真空条 件,进行时间为10min的精炼以去除气体;精炼完毕后,充入氩保护气体,压力 为0.4bar,同时加入Ni-20Ca合金0.5重量份进行去除有害杂质元素S,出钢前 钢液温度为1520℃,相继加入Ni-20Mg合金0.015重量份和金属La0.005重量 份进行脱硫和纯净化,经充分熔化和搅拌均匀后,过滤,在氩气环境下浇注成合 金锭;
将合金锭在1190℃进行扩散退火24h,在1200℃开坯锻造,经三火后锻造成 为
Figure PCTCN2014075474-appb-000002
棒材,将棒材在1150℃进行固溶处理1h,水冷,将棒材在800℃进行 时效处理16h,空冷,得到700℃等级超超临界燃煤电站用镍基高温合金。所述 的700℃等级超超临界燃煤电站用镍基高温合金的γ′时效析出强化相的量在 18.5wt%。
实施例3
一种700℃等级超超临界燃煤电站用镍基高温合金,包括C、Cr、Co、Mo、 W、Nb、Ti、Al、B、Zr、Mg、V,La,Ni和不可避免的杂质元素,实测得到都 各成分的重量百分比以及杂质中S、P、Si和Mn的重量百分比见表1,合金中所 述的Al的原子数与Ti和Nb原子数之和的比值(Al/(Ti+Nb))、Al、Ti和Nb的 原子百分数之和(Nb+Ti+Al)、Cr的原子数与Mo和W的原子数之和的比值(Cr/ (Mo+W))以及Cr、Mo和W的原子百分数之和(Cr+Mo+W)见表1。
上述700℃等级超超临界燃煤电站用镍基高温合金的制备方法为:
选取优质的合金原料,将0.05重量份的C、24.7重量份的Cr、14.5重量份 的Co、2.43重量份的Mo、1.15重量份的W、1.62重量份的Nb、1.56重量份的 Ti、1.56重量份的Al、0.002重量份的B、0.04重量份的Zr、0.10重量份的V和 52重量份的Ni以及纯度为99.5%的干燥辅料5重量份装入真空感应炉中,所述 的辅料由CaF240wt%、CaO40wt%和Al2O320wt%组成,在10-3Bar的真空条件 下,于真空感应炉内熔炼;原料全部溶化后,保持不低于10-3Bar的真空条件, 进行时间为10min的精炼以去除气体;精炼完毕后,充入氩保护气体,压力为 0.4bar,同时加入Ni-20Ca合金0.5重量份进行去除有害杂质元素S,出钢前钢液 温度为1520℃,相继加入Ni-20Mg合金0.015重量份和金属La0.005重量份进 行脱硫和纯净化,经充分熔化和搅拌均匀后,过滤,在氩气环境下浇注成合金锭;
将合金锭在1190℃进行扩散退火24h,在1200℃开坯锻造,经三火后锻造成 为
Figure PCTCN2014075474-appb-000003
棒材,将棒材在1150℃进行固溶处理1h,水冷,将棒材在800℃进行 时效处理16h,空冷,得到700℃等级超超临界燃煤电站用镍基高温合金。所述 的700℃等级超超临界燃煤电站用镍基高温合金的γ′时效析出强化相的量在 17wt%。
实施例4
一种700℃等级超超临界燃煤电站用镍基高温合金,包括C、Cr、Co、Mo、 W、Nb、Ti、Al、B、Zr、Mg、V,La,Ni和不可避免的杂质元素,实测得到的 各成分的重量百分比以及杂质中S、P、Si和Mn的重量百分比见表1,合金中所 述的Al的原子数与Ti和Nb原子数之和的比值(Al/(Ti+Nb))、Al、Ti和Nb的 原子百分数之和(Nb+Ti+Al)、Cr的原子数与Mo和W的原子数之和的比值 (Cr/(Mo+W))以及Cr、Mo和W的原子百分数之和(Cr+Mo+W)见表1。
上述700℃等级超超临界燃煤电站用镍基高温合金的制备方法为:
选取优质的合金原料,将0.07重量份的C、25.0重量份的Cr、14.6重量份 的Co、2.87重量份的Mo、1.20重量份的W、1.56重量份的Nb、1.60重量份的 Ti、1.58重量份的Al、0.002重量份的B、0.04重量份的Zr、0.15重量份的V和 51重量份的Ni以及纯度为99.5%的干燥辅料5重量份装入真空感应炉中,所述 的辅料由CaF240wt%、CaO40wt%和Al2O320wt%组成,在10-3Bar的真空条件 下,于真空感应炉内熔炼;原料全部溶化后,保持不低于10-3Bar的真空条件, 进行时间为10min的精炼以去除气体;精炼完毕后,充入氩保护气体,压力为 0.4bar,同时加入Ni-20Ca合金0.5重量份进行去除有害杂质元素S,出钢前钢液 温度为1520℃,相继加入Ni-20Mg合金0.015重量份和金属La0.005重量份进 行脱硫和纯净化,经充分熔化和搅拌均匀后,过滤,在氩气环境下浇注成合金锭;
将合金锭在1190℃进行扩散退火24h,在1200℃开坯锻造,经三火后锻造成 为
Figure PCTCN2014075474-appb-000004
棒材,将棒材在1150℃进行固溶处理1h,水冷,将棒材在800℃进行 时效处理16h,空冷,得到700℃等级超超临界燃煤电站用镍基高温合金。所述 的700℃等级超超临界燃煤电站用镍基高温合金的γ′时效析出强化相的量在 17.3wt%。
实施例5
一种700℃等级超超临界燃煤电站用镍基高温合金,包括C、Cr、Co、Mo、 W、Nb、Ti、Al、B、Zr、Mg、V,La,Ni和不可避免的杂质元素,实测得到的 各成分的重量百分比以及杂质中S、P、Si和Mn的重量百分比见表1,合金中所 述的Al的原子数与Ti和Nb原子数之和的比值(Al/(Ti+Nb))、Al、Ti和Nb的 原子百分数之和(Nb+Ti+Al)、Cr的原子数与Mo和W的原子数之和的比值 (Cr/(Mo+W))以及Cr、Mo和W的原子百分数之和(Cr+Mo+W)见表1。
上述700℃等级超超临界燃煤电站用镍基高温合金的制备方法为:
选取优质的合金原料,将0.06重量份的C、24.4重量份的Cr、13.6重量份 的Co、3.04重量份的Mo、1.16重量份的W、1.51重量份的Nb、1.51重量份的 Ti、1.51重量份的Al、0.003重量份的B、0.05重量份的Zr、0.16重量份的V和 52重量份的Ni以及纯度为99.5%的干燥辅料0.5重量份装入真空感应炉中,所 述的辅料由CaF240wt%、CaO40wt%和Al2O320wt%组成,在10-3Bar的真空条 件下,于真空感应炉内熔炼;原料全部溶化后,保持不低于10-3Bar的真空条件, 进行时间为10min的精炼以去除气体;精炼完毕后,充入氩保护气体,压力为 0.4bar,同时加入Ni-20Ca合金0.5重量份进行去除有害杂质元素S,出钢前钢液 温度为1520℃,相继加入Ni-20Mg合金0.020重量份和金属La0.005重量份进 行脱硫和纯净化,经充分熔化和搅拌均匀后,过滤,在氩气环境下浇注成合金锭;
采用真空自耗方法将真空感应熔炼后的合金锭进行二次重熔:先将电极在 900℃退火1h;去除表面氧化皮,在10-3mmHg真空下焊接好电极;使用25伏电 压进行熔炼,真空度控制为10-3mmHg;保持熔化速率在每小时熔炼250kg;最 后将合金锭在900℃退火1h。将重熔后的合金锭在1190℃进行扩散退火24h,在 1200℃开坯锻造,经三火后锻造成为
Figure PCTCN2014075474-appb-000005
棒材,将棒材在1150℃进行固溶处 理1h,水冷,将棒材在800℃进行时效处理16h,空冷,得到700℃等级超超临 界燃煤电站用镍基高温合金。所述的700℃等级超超临界燃煤电站用镍基高温合 金的γ′时效析出强化相的量在15wt%。
实施例6
一种700℃等级超超临界燃煤电站用镍基高温合金,包括C、Cr、Co、Mo、 W、Nb、Ti、Al、B、Zr、Mg、V,La,Ni和不可避免的杂质元素,实测得到的 各成分的重量百分比以及杂质中S、P、Si和Mn的重量百分比见表1,合金中所 述的Al的原子数与Ti和Nb原子数之和的比值(Al/(Ti+Nb))、Al、Ti和Nb的 原子百分数之和(Nb+Ti+Al)、Cr的原子数与Mo和W的原子数之和的比值 ((Cr/Mo+W))以及Cr、Mo和W的原子百分数之和(Cr+Mo+W)见表1。
上述700℃等级超超临界燃煤电站用镍基高温合金的制备方法为:
选取优质的合金原料,将0.06重量份的C、24.7重量份的Cr、12.9重量份 的Co、0.53重量份的Mo、2.23重量份的W、1.59重量份的Nb、1.62重量份的 Ti、1.54重量份的Al、0.004重量份的B、0.005重量份的Zr、0.15重量份的V 和54重量份的Ni以及纯度为99.5%的干燥辅料5重量份装入真空感应炉中, 所述的辅料由CaF240wt%、CaO40wt%和Al2O320wt%组成,在10-3Bar的真空 条件下,于真空感应炉内熔炼;原料全部溶化后,保持不低于10-3Bar的真空条 件,进行时间为10min的精炼以去除气体;精炼完毕后,充入氩保护气体,压力 为0.4bar,同时加入Ni-20Ca合金0.5重量份进行去除有害杂质元素S,出钢前 钢液温度为1520℃,相继加入Ni-20Mg合金0.025重量份和金属La0.005重量 份进行脱硫和纯净化,经充分熔化和搅拌均匀后,过滤,在氩气环境下浇注成合 金锭;
采用有保护气氛的电渣重熔方法将真空感应熔炼后的合金锭进行二次重熔: 先将合金锭去除表面氧化皮,并焊接好电极;采用 (40%CaF2+25%Al2O3+15%CaO+10%MgO+10%TiO2)复杂五元提纯渣系进行电 渣重熔,渣料提纯要保证SiO2<0.5%,且经过800℃/4h烘烤;保持炉口冶炼电压 50伏,冶炼速率保持每小时250kg;最后电渣锭在900℃退火1h。将重熔后的合 金锭在1190℃进行扩散退火24h,在1200℃开坯锻造,经三火后锻造成为
Figure PCTCN2014075474-appb-000006
棒材,将棒材在1150℃进行固溶处理1h,水冷,将棒材在800℃进行时效处理 16h,空冷,得到700℃等级超超临界燃煤电站用镍基高温合金。所述的700℃等 级超超临界燃煤电站用镍基高温合金的γ′时效析出强化相的量在17.2wt%。
比较例1
一种700℃等级超超临界燃煤电站用镍基高温合金,包括C、Cr、Co、Mo、 W、Nb、Ti、Al、B、Zr、Mg、V,La,Ni和不可避免的杂质元素,实测得到的 各成分的重量百分比以及杂质中S、P、Si和Mn的重量百分比见表1,合金中所 述的Al的原子数与Ti和Nb原子数之和的比值(Al/(Ti+Nb))、Al、Ti和Nb的 原子百分数之和(Nb+Ti+Al)、Cr的原子数与Mo和W的原子数之和的比值 (Cr/(Mo+W))以及Cr、Mo和W的原子百分数之和(Cr+Mo+W)见表1。
上述700℃等级超超临界燃煤电站用镍基高温合金的制备方法为:
选取优质的合金原料,将0.05重量份的C、24.98重量份的Cr、14.6重量份 的Co、1.36重量份的Mo、1.19重量份的W、1.54重量份的Nb、1.53重量份的 Ti、1.51重量份的Al、0.002重量份的B、0.04重量份的Zr和53重量份的Ni 以及纯度为99.5%的干燥辅料0.5重量份装入真空感应炉中,所述的辅料由CaF2 40wt%、CaO40wt%和Al2O320wt%组成,在10-3Bar的真空条件下,于真空感应 炉内熔炼;原料全部溶化后,保持不低于10-3Bar的真空条件,进行时间为10min 的精炼以去除气体;精炼完毕后,充入氩保护气体,压力为0.4bar,同时加入 Ni-20Ca合金0.5重量份进行去除有害杂质元素S,出钢前钢液温度为1520℃, 再加入Ni-20Mg合金0.015重量份,经充分熔化和搅拌均匀后,过滤,在氩气环 境下浇注成合金锭;
采用真空自耗方法将真空感应熔炼后的合金锭进行二次重熔。先将电极在 900℃退火1h,并去除表面氧化皮,在10-3mmHg真空下焊接好电极;使用25 伏电压进行熔炼,真空度控制为10-3mmHg;保持熔化速率在每小时熔炼250kg; 最后将合金锭在900℃退火1h。将重熔后的合金锭在1190℃进行扩散退火24h, 在1200℃开坯锻造,经三火后锻造成为
Figure PCTCN2014075474-appb-000007
棒材,将棒材在1150℃进行固溶 处理1h,水冷,将棒材在800℃进行时效处理16h,空冷,得到700℃等级超超 临界燃煤电站用镍基高温合金。所述的700℃等级超超临界燃煤电站用镍基高温 合金的γ′时效析出强化相的量在16wt%。
比较例2
一种700℃等级超超临界燃煤电站用镍基高温合金,包括C、Cr、Co、Mo、 W、Nb、Ti、Al、B、Zr、Mg、V,La,Ni和不可避免的杂质元素,实测得到的 各成分的重量百分比以及杂质中S、P、Si和Mn的重量百分比见表1,合金中所 述的Al的原子数与Ti和Nb原子数之和的比值(Al/(Ti+Nb))、Al、Ti和Nb的 原子百分数之和(Nb+Ti+Al)、Cr的原子数与Mo和W的原子数之和的比值 (Cr/(Mo+W))以及Cr、Mo和W的原子百分数之和(Cr+Mo+W)见表1。
上述700℃等级超超临界燃煤电站用镍基高温合金的制备方法为:
选取优质的合金原料,将0.05重量份的C、24.4重量份的Cr、13.6重量份 的Co、1.19重量份的Mo、1.06重量份的W、1.81重量份的Nb、1.73重量份的 Ti、1.14重量份的Al、0.003重量份的B、0.05重量份的Zr、0.16重量份的V和 54重量份的Ni以及纯度为99.5%的干燥辅料0.5重量份装入真空感应炉中,所 述的辅料由CaF240wt%、CaO40wt%和Al2O320wt%组成,在10-3Bar的真空条 件下,于真空感应炉内熔炼;原料全部溶化后,保持不低于10-3Bar的真空条件, 进行时间为10min的精炼以去除气体;精炼完毕后,充入氩保护气体,压力为 0.4bar,同时加入Ni-20Ca合金0.5重量份进行去除有害杂质元素S,出钢前钢液 温度为1520℃,相继加入Ni-20Mg合金0.020重量份和金属La0.005重量份进 行脱硫和纯净化,经充分熔化和搅拌均匀后,过滤,在氩气环境下浇注成合金锭;
采用真空自耗方法将真空感应熔炼后的合金锭进行二次重熔。先将电极在 900℃退火1h,并去除表面氧化皮,在10-3mmHg真空下焊接好电极;使用25 伏电压进行熔炼,真空度控制为10-3mmHg;保持熔化速率在每小时熔炼250kg; 最后将合金锭在900℃退火1h。将重熔后的合金锭在1190℃进行扩散退火24h, 在1200℃开坯锻造,经三火后锻造成为
Figure PCTCN2014075474-appb-000008
棒材,将棒材在1150℃进行固溶 处理1h,水冷,将棒材在800℃进行时效处理16h,空冷,得到700℃等级超超 临界燃煤电站用镍基高温合金。所述的700℃等级超超临界燃煤电站用镍基高温 合金的γ′时效析出强化相的量在13.4wt%。
比较例3
一种700℃等级超超临界燃煤电站用镍基高温合金,包括C、Cr、Co、Mo、 W、Nb、Ti、Al、B、Zr、Mg、V,La,Ni和不可避免的杂质元素,实测得到的 各成分的重量百分比以及杂质中S、P、Si和Mn的重量百分比见表1,合金中所 述的Al的原子数与Ti和Nb原子数之和的比值(Al/(Ti+Nb))、Al、Ti和Nb的 原子百分数之和(Nb+Ti+Al)、Cr的原子数与Mo和W的原子数之和的比值 ((Cr/Mo+W))以及Cr、Mo和W的原子百分数之和(Cr+Mo+W)见表1。
上述700℃等级超超临界燃煤电站用镍基高温合金的制备方法为:
选取优质的合金原料,将0.06重量份的C、24.4重量份的Cr、12.91重量份 的Co、3.41重量份的Mo、2.33重量份的W、1.59重量份的Nb、1.63重量份的 Ti、1.53重量份的Al、0.004重量份的B、0.005重量份的Zr、0.15重量份的V 和51重量份的Ni以及纯度为99.5%的干燥辅料5重量份装入真空感应炉中, 所述的辅料由CaF240wt%、CaO40wt%和Al2O320wt%组成,在10-3Bar的真空 条件下,于真空感应炉内熔炼;原料全部溶化后,保持不低于10-3Bar的真空条 件,进行时间为10min的精炼以去除气体;精炼完毕后,充入氩保护气体,压力 为0.4bar,同时加入Ni-20Ca合金0.5重量份进行去除有害杂质元素S,出钢前 钢液温度为1520℃,相继加入Ni-20Mg合金0.025重量份和金属La0.005重量 份进行脱硫和纯净化,经充分熔化和搅拌均匀后,过滤,在氩气环境下浇注成合 金锭;
采用有保护气氛的电渣重熔方法将真空感应熔炼后的合金锭进行二次重熔。 先将合金锭表面去除氧化皮,并焊接好电极;采用 (40%CaF2+25%Al2O3+15%CaO+10%MgO+10%TiO2)复杂五元提纯渣系进行电 渣重熔,渣料提纯要保证SiO2<0.5%,且经过800℃/4h烘烤;保持炉口冶炼电压 50伏,冶炼速率保持每小时250kg;最后电渣锭在900℃退火1h。将重熔后的合 金锭在1190℃进行扩散退火24h,在1200℃开坯锻造,经三火后锻造成为
Figure PCTCN2014075474-appb-000009
棒材,将棒材在1150℃进行固溶处理1h,水冷,将棒材在800℃进行时效处理 16h,空冷,得到700℃等级超超临界燃煤电站用镍基高温合金。所述的700℃等 级超超临界燃煤电站用镍基高温合金的γ′时效析出强化相的量在18.2wt%。
表1实施例合金1~6和比较例合金1~3的的实测化学成分
Figure PCTCN2014075474-appb-000010
实施例合金1~6的实测成分都符合本发明合金成分范围和限制条件的要求。 比较例合金1在冶炼时没有添加V和La,比较例合金2的Al/(Ti+Nb)原子比和 Nb+Ti+Al原子总量不符合本发明合金的限制条件,比较例3的Cr/(Mo+W)原子 比不符合本发明合金的限制条件。
室温和高温拉伸性能检验:
将实施例1~6和比较例1~3中的700℃等级超超临界燃煤电站用镍基高温合 金加工成圆棒状拉伸试样,分别进行室温、700℃和800℃的拉伸性能测试。拉 伸性能试验结果如表2所示。
表2实施例和比较例镍基合金的室温和高温拉伸性能
Figure PCTCN2014075474-appb-000011
Figure PCTCN2014075474-appb-000012
对比表2中的数据可以看出:实施例1~6中的700℃等级超超临界燃煤电站 用镍基高温合金的室温拉伸时屈服强度大于780MPa,抗拉强度大于1200Mpa, 延伸率大于24.0%,断面收缩率大于32.0%;700℃高温拉伸时,屈服强度大于 640MPa,抗拉强度大于980Mpa,延伸率大于23.0%,断面收缩率大于30.0%; 800℃高温拉伸时,屈服强度大于600MPa,抗拉强度大于800Mpa,延伸率大于 17.0%,断面收缩率大于25.0%;室温和高温拉伸时都具有高的强度。韧塑性良 好。
与之形成对比的是,比较例合金1中因不含V和La,不仅影响到强度,特 别是合金中的S含量较高,对韧塑性影响大,拉伸塑性比实施例降低35%~50%; 比较例合金2中Nb、Ti和Al的成分不符合限制条件,其强度相对较低,拉伸强 度比实施例降低15%~20%,且合金的平衡相中含有η相,如图3所示;比较例 合金3中的Cr、Mo和W的成分不符合限制条件,不仅影响到强度和韧塑性, 而且在合金的平衡相中存在脆性的σ相,见图4。本发明提出的成分范围和限制 条件为合金具备良好的拉伸性能提供了有力保证。
高温持久性能检验:
将实施例1~6中的700℃等级超超临界燃煤电站用镍基高温合金加工成圆棒 状持久试验试样,分别开展750℃、800℃和850℃的持久性能测试。
实施例1~6的750℃/205MPa的持久寿命大于5000h,延伸率大于12.0%, 断面收缩率大于16.0%;800℃/125MPa的持久寿命大于5000h,延伸率大于 14.0%,断面收缩率大于18.0%;850℃/100MPa的持久寿命大于1500h,延伸率 大于20.0%,断面收缩率大于25.0%。
比较例合金1~3的750℃/205MPa的持久寿命小于3000h,延伸率小于8.0%, 断面收缩率小于11.0%;800℃/125MPa的持久寿命小于2500h,延伸率小于 10.0%,断面收缩率小于14.0%;850℃/100MPa的持久寿命小于750h,延伸率小 于12.0%,断面收缩率小于17.0%。
本发明镍基合金的锻造性能良好,可以用于制造700℃等级超超临界燃煤电 站汽轮机和锅炉最高温度部件,以及其他需要抗高温氧化和腐蚀、抗蠕变和高强 度的领域。

Claims (9)

  1. 一种700℃等级超超临界燃煤电站用镍基高温合金,其特征在于,包括:C 0.01~0.07wt%、Cr23~25.5wt%、Co10~14.6wt%、Mo0.3~3.5wt%、W0.5~2.5wt%、 Nb0.8~2.2wt%、Ti1.0~2.5wt%、Al1.0~2.5wt%、B0.001~0.005wt%、Zr 0.01~0.3wt%、Mg0.002~0.015wt%、V0.01~0.5wt%,La0.001~0.005wt%,余量 为Ni和不可避免的杂质元素,杂质元素中S、P、Si和Mn的范围为:S<0.010wt%、 P<0.015wt%、Si<0.3wt%和Mn<0.5wt%,;其中,所述的Al的原子数与Ti和 Nb原子数之和的比值为在1.0到1.3之间,Al、Ti和Nb的原子百分数之和为 5.5-6.2at%,Cr的原子数与Mo和W的原子数之和的比值大于12,且Cr、Mo 和W的原子百分数之和不超过30at%。
  2. 权利要求1所述的700℃等级超超临界燃煤电站用镍基高温合金的制备方法, 其特征在于,具体步骤为:
    第一步:将0.01~0.07重量份的C、23~25.5重量份的Cr、10~14.6重量份的 Co、0.3~3.5重量份的Mo、0.5~2.5重量份的W、0.8~2.2重量份的Nb、1.0~2.5 重量份的Ti、1.0~2.5重量份的Al、0.001~0.005重量份的B、0.01~0.3重量份的 Zr、小于0.5重量份的V,和48~58重量份的Ni以及纯度大于99.5%的干燥辅 料3~6重量份装入真空感应炉中,所述的辅料由CaF240wt%、CaO40wt%和Al2O3 20wt%组成,在不低于10-3Bar的真空条件下,于真空感应炉内熔炼;原料全部 溶化后,保持不低于10-3Bar的真空条件,进行时间不低于30min的精炼以去除 气体;精炼完毕后,充入氩保护气体,压力为0.4bar,同时加入Ni-Ca合金0.3~0.6 重量份进行去除有害杂质元素S,出钢前钢液温度不低于1500℃,相继加入 Ni-Mg合金0.01~0.025重量份和金属La0~0.005重量份进行脱硫和纯净化,经 充分熔化和搅拌均匀后,过滤,在氩气环境下浇注成合金锭;
    第二步:将合金锭进行扩散退火、开坯锻造、固溶和时效处理后,得到700℃ 等级超超临界燃煤电站用镍基高温合金。
  3. 如权利要求2所述的700℃等级超超临界燃煤电站用镍基高温合金的制备方 法,其特征在于,所述第二步中扩散退火的温度为1150~1220℃,时间为16~48h。
  4. 如权利要求2所述的700℃等级超超临界燃煤电站用镍基高温合金的制备方 法,其特征在于,所述第二步中的不低于1050℃的温度为不低于1050℃。
  5. 如权利要求2所述的700℃等级超超临界燃煤电站用镍基高温合金的制备方 法,其特征在于,所述第二步中的固溶处理的温度为1100~1200℃,时间为0.5~2h。
  6. 如权利要求2所述的700℃等级超超临界燃煤电站用镍基高温合金的制备方 法,其特征在于,所述第二步中的时效处理的温度为800℃,时间为4~16h。
  7. 如权利要求2所述的700℃等级超超临界燃煤电站用镍基高温合金的制备方 法,其特征在于,所述第二步中,在对合金锭进行扩散退火之前,先将合金锭采 用真空自耗重熔方法或有保护气氛的电渣重熔方法将合金锭进行二次精炼。
  8. 如权利要求7所述的700℃等级超超临界燃煤电站用镍基高温合金的制备方 法,其特征在于,所述的第二步采用真空自耗重熔方法时,应严格控制熔化速率, 保持每小时熔速不大于300kg。
  9. 如权利要求7所述的700℃等级超超临界燃煤电站用镍基高温合金的制备方 法,其特征在于,所述的第二步采用有保护气氛的电渣重熔方法时,采用复杂五 元提纯渣系,所述的复杂五元提纯渣系包括CaF240~45wt%、Al2O320~30wt%、 CaO15~20wt%、MgO5~10wt%和TiO25~10wt%,所述的复杂五元提纯渣系在使 用前需经过提纯,保证其中SiO2<0.5%,且经过800℃烘烤4h。
PCT/CN2014/075474 2014-02-18 2014-04-16 700℃等级超超临界燃煤电站用镍基高温合金及其制备 WO2015123918A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112015031328A BR112015031328B1 (pt) 2014-02-18 2014-04-16 superliga à base de níquel para usina de energia de carvão queimado ultra supercrítico de 700ºc e método de fabricação
EP14883147.2A EP3109331B1 (en) 2014-02-18 2014-04-16 High-temperature nickel-based alloy for 700°c grade ultra-supercritical coal-fired power station and preparation thereof
KR1020157032332A KR101764755B1 (ko) 2014-02-18 2014-04-16 700℃ 레벨 초초임계 석탄 화력 발전소용 니켈계 고온 합금 및 그 제조

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410054132.2 2014-02-18
CN201410054132.2A CN103898371B (zh) 2014-02-18 2014-02-18 700℃等级超超临界燃煤电站用镍基高温合金及其制备

Publications (1)

Publication Number Publication Date
WO2015123918A1 true WO2015123918A1 (zh) 2015-08-27

Family

ID=50989937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075474 WO2015123918A1 (zh) 2014-02-18 2014-04-16 700℃等级超超临界燃煤电站用镍基高温合金及其制备

Country Status (5)

Country Link
EP (1) EP3109331B1 (zh)
KR (1) KR101764755B1 (zh)
CN (1) CN103898371B (zh)
BR (1) BR112015031328B1 (zh)
WO (1) WO2015123918A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105925849A (zh) * 2016-05-04 2016-09-07 中国第重型机械股份公司 一种700℃超超临界汽轮机转子用镍基合金锻件的控制方法
CN111826553A (zh) * 2019-04-17 2020-10-27 江苏图南合金股份有限公司 一种铸造高温母合金及其生产方法
CN112275796A (zh) * 2020-09-03 2021-01-29 太原钢铁(集团)有限公司 提升镍基合金线材轧制表面质量的方法
CN112458326A (zh) * 2021-01-28 2021-03-09 北京科技大学 一种含Zr-Ce的变形高温合金及其制备方法
CN112518172A (zh) * 2020-11-24 2021-03-19 中国华能集团有限公司 一种镍钴基高温合金焊丝
CN113403503A (zh) * 2021-03-04 2021-09-17 江苏银环精密钢管有限公司 700℃先进超超临界锅炉用铁镍合金无缝管及制造方法
CN113444889A (zh) * 2021-05-19 2021-09-28 重庆材料研究院有限公司 一种使镍基合金电渣锭的铝钛分布均匀的方法
CN114752815A (zh) * 2021-01-08 2022-07-15 宝武特种冶金有限公司 一种镍基合金焊带及其制备方法、应用
CN114990386A (zh) * 2022-06-10 2022-09-02 上海交通大学 γ"相强化镍基多主元合金及设计方法和增材制造方法
CN115896470A (zh) * 2022-12-27 2023-04-04 二重(德阳)重型装备有限公司 一种核电用超纯净超低碳控氮奥氏体不锈钢电渣重熔方法
CN116240429A (zh) * 2021-12-07 2023-06-09 江苏新华合金有限公司 一种含锆钛铁铬铝合金材料制造工艺
CN116875844A (zh) * 2023-07-28 2023-10-13 北京钢研高纳科技股份有限公司 一种盘轴一体涡轮盘及其制备方法
CN117512403A (zh) * 2024-01-04 2024-02-06 北京北冶功能材料有限公司 一种易加工成形的镍基高温合金箔材及其制备方法
CN117926155A (zh) * 2024-03-25 2024-04-26 成都先进金属材料产业技术研究院股份有限公司 小规格gh4141高温合金棒材及其制备方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104988357A (zh) * 2015-06-17 2015-10-21 上海大学兴化特种不锈钢研究院 超超临界汽轮机用镍基合金材料
CN104928535A (zh) * 2015-06-26 2015-09-23 钢铁研究总院 一种火电汽轮机用gy200镍基高温合金
CN106244855A (zh) * 2016-08-11 2016-12-21 四川六合锻造股份有限公司 一种抗氧化高温合金材料、其制备方法及其应用
CN106048310A (zh) * 2016-08-11 2016-10-26 四川六合锻造股份有限公司 一种Ni‑Cr‑Mo‑W系高温合金材料、其制备方法及其应用
JP6772736B2 (ja) * 2016-10-04 2020-10-21 日本製鉄株式会社 Ni基耐熱合金
CN106636702B (zh) * 2016-12-05 2018-03-13 北京科技大学 一种低氧含量高合金化镍基母合金及粉末的制备方法
CN106756148B (zh) * 2016-12-05 2018-03-13 北京科技大学 一种低氧含量的母合金法制备mim418合金的方法
CN106636758B (zh) * 2016-12-29 2018-07-24 西部超导材料科技股份有限公司 一种小规格镍基高温合金fgh4097铸锭的冶炼工艺
CN107513641B (zh) * 2017-08-11 2019-04-05 东北大学 一种制备先进超超临界耐热合金的工艺
CN108165831A (zh) * 2017-12-30 2018-06-15 无锡隆达金属材料有限公司 一种高温合金挤压垫及其制备方法
CN108441704A (zh) * 2018-03-15 2018-08-24 江苏理工学院 一种镍基耐热合金材料及其制备工艺
CN108330334A (zh) * 2018-03-15 2018-07-27 江苏理工学院 一种火电机组用高温合金及其制造方法
CN108330335A (zh) * 2018-03-15 2018-07-27 江苏理工学院 一种高温耐热合金及其制造工艺
WO2019217905A1 (en) 2018-05-11 2019-11-14 Oregon State University Nickel-based alloy embodiments and method of making and using the same
CN108467973B (zh) * 2018-06-11 2020-04-10 江苏银环精密钢管有限公司 700℃超超临界锅炉用镍铬钨系高温合金无缝管及制造方法
CN109280788B (zh) * 2018-11-28 2020-12-01 陕西宝锐金属有限公司 一种防止gh625合金管材焊缝应力腐蚀开裂的工艺
CN111378847B (zh) * 2018-12-29 2021-12-14 有研稀土新材料股份有限公司 一种稀土金属提纯方法及其制得的稀土金属
CN109811197B (zh) * 2019-01-09 2020-09-01 河北五维航电科技股份有限公司 一种用于700℃汽轮机调节级叶根垫片材料的制备方法
CN110093520B (zh) * 2019-03-19 2021-04-30 江苏汉青特种合金有限公司 一种耐腐蚀合金的制造方法
CN110331301B (zh) * 2019-06-25 2021-03-09 河钢股份有限公司 一种电渣重熔哈氏合金的方法
EP4023779A4 (en) * 2019-08-28 2023-09-20 Gaona Aero Material Co., Ltd. MELTING PROCESS FOR NIO-RICH LARGE HIGH-TEMPERATURE ALLOY CASTING BLOCK AND NIO-RICH LARGE HIGH-TEMPERATURE ALLOY CASTING BLOCK
CN110551920B (zh) * 2019-08-30 2020-11-17 北京北冶功能材料有限公司 一种高性能易加工镍基变形高温合金及其制备方法
CN111187946B (zh) * 2020-03-02 2021-11-16 北京钢研高纳科技股份有限公司 一种高铝含量的镍基变形高温合金及制备方法
CN111519068B (zh) * 2020-05-06 2021-02-09 北京钢研高纳科技股份有限公司 一种难变形镍基高温合金gh4151合金的三联冶炼工艺
CN111471915B (zh) * 2020-05-08 2021-06-29 华能国际电力股份有限公司 一种复相强化镍钴基高铬耐磨高温合金及制备方法
CN111534713B (zh) * 2020-07-07 2020-10-16 北京钢研高纳科技股份有限公司 一种铸造高温合金返回料的净化处理方法及高温合金
CN112077166B (zh) * 2020-07-16 2022-05-20 河北五维航电科技股份有限公司 一种超超临界汽轮机用高温汽封弹簧的制备方法
CN113430406B (zh) * 2021-05-21 2022-01-14 中国科学院金属研究所 一种沉淀强化CoCrNiAlNb多主元合金及其制备方法
CN113579561B (zh) * 2021-06-25 2023-03-14 西安热工研究院有限公司 一种700℃级超超临界电站用镍基高温合金焊条
CN113897515B (zh) * 2021-09-24 2022-04-12 扬州亚光电缆有限公司 一种航空航天用耐高温抗氧化镍基合金材料及其制备方法和应用
CN117286382A (zh) * 2022-06-16 2023-12-26 北京钢研高纳科技股份有限公司 一种高抗蠕变性能镍基粉末高温合金及其制备方法
CN115433853B (zh) * 2022-09-13 2023-08-01 中国联合重型燃气轮机技术有限公司 一种抗氧化、抗裂纹镍基高温合金及其制备方法和应用
CN115505788B (zh) * 2022-09-20 2023-06-27 北京北冶功能材料有限公司 一种抗应变时效开裂的镍基高温合金及其制备方法和应用
CN115505790B (zh) * 2022-09-20 2023-11-10 北京北冶功能材料有限公司 一种焊缝强度稳定的镍基高温合金及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86108748A (zh) * 1986-12-27 1988-08-10 北京钢铁学院 提高高合金化铸造合金性能的新方法
US5855699A (en) * 1994-10-03 1999-01-05 Daido Tokushuko Kabushiki Kaisha Method for manufacturing welded clad steel tube
US6458318B1 (en) * 1999-06-30 2002-10-01 Sumitomo Metal Industries, Ltd. Heat resistant nickel base alloy
US20060157171A1 (en) * 2005-01-19 2006-07-20 Daido Steel Co., Ltd. Heat resistant alloy for exhaust valves durable at 900°C and exhaust valves made of the alloy
CN102084014A (zh) * 2008-04-10 2011-06-01 亨廷顿冶金公司 超超临界锅炉集箱合金及制备方法
CN102719683A (zh) * 2012-06-29 2012-10-10 山西太钢不锈钢股份有限公司 一种电渣炉冶炼镍基高温合金的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596430B2 (ja) * 1999-06-30 2004-12-02 住友金属工業株式会社 Ni基耐熱合金
ES2534346T3 (es) * 2007-11-19 2015-04-21 Huntington Alloys Corporation Aleación de resistencia ultraalta para entornos severos de petróleo y gas y método de preparación
US20090321405A1 (en) * 2008-06-26 2009-12-31 Huntington Alloys Corporation Ni-Co-Cr High Strength and Corrosion Resistant Welding Product and Method of Preparation
DE102010011609A1 (de) * 2010-03-16 2011-09-22 Thyssenkrupp Vdm Gmbh Nickel-Chrom-Kobalt-Molybdän-Legierung
US9399807B2 (en) * 2012-04-30 2016-07-26 Haynes International, Inc. Acid and alkali resistant Ni—Cr—Mo—Cu alloys with critical contents of chromium and copper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86108748A (zh) * 1986-12-27 1988-08-10 北京钢铁学院 提高高合金化铸造合金性能的新方法
US5855699A (en) * 1994-10-03 1999-01-05 Daido Tokushuko Kabushiki Kaisha Method for manufacturing welded clad steel tube
US6458318B1 (en) * 1999-06-30 2002-10-01 Sumitomo Metal Industries, Ltd. Heat resistant nickel base alloy
US20060157171A1 (en) * 2005-01-19 2006-07-20 Daido Steel Co., Ltd. Heat resistant alloy for exhaust valves durable at 900°C and exhaust valves made of the alloy
CN102084014A (zh) * 2008-04-10 2011-06-01 亨廷顿冶金公司 超超临界锅炉集箱合金及制备方法
CN102719683A (zh) * 2012-06-29 2012-10-10 山西太钢不锈钢股份有限公司 一种电渣炉冶炼镍基高温合金的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3109331A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105925849A (zh) * 2016-05-04 2016-09-07 中国第重型机械股份公司 一种700℃超超临界汽轮机转子用镍基合金锻件的控制方法
CN111826553A (zh) * 2019-04-17 2020-10-27 江苏图南合金股份有限公司 一种铸造高温母合金及其生产方法
CN112275796A (zh) * 2020-09-03 2021-01-29 太原钢铁(集团)有限公司 提升镍基合金线材轧制表面质量的方法
CN112275796B (zh) * 2020-09-03 2023-03-24 太原钢铁(集团)有限公司 提升镍基合金线材轧制表面质量的方法
CN112518172A (zh) * 2020-11-24 2021-03-19 中国华能集团有限公司 一种镍钴基高温合金焊丝
CN114752815A (zh) * 2021-01-08 2022-07-15 宝武特种冶金有限公司 一种镍基合金焊带及其制备方法、应用
CN114752815B (zh) * 2021-01-08 2023-11-14 宝武特种冶金有限公司 一种镍基合金焊带及其制备方法、应用
CN112458326A (zh) * 2021-01-28 2021-03-09 北京科技大学 一种含Zr-Ce的变形高温合金及其制备方法
CN113403503A (zh) * 2021-03-04 2021-09-17 江苏银环精密钢管有限公司 700℃先进超超临界锅炉用铁镍合金无缝管及制造方法
CN113444889A (zh) * 2021-05-19 2021-09-28 重庆材料研究院有限公司 一种使镍基合金电渣锭的铝钛分布均匀的方法
CN116240429A (zh) * 2021-12-07 2023-06-09 江苏新华合金有限公司 一种含锆钛铁铬铝合金材料制造工艺
CN114990386A (zh) * 2022-06-10 2022-09-02 上海交通大学 γ"相强化镍基多主元合金及设计方法和增材制造方法
CN115896470A (zh) * 2022-12-27 2023-04-04 二重(德阳)重型装备有限公司 一种核电用超纯净超低碳控氮奥氏体不锈钢电渣重熔方法
CN116875844A (zh) * 2023-07-28 2023-10-13 北京钢研高纳科技股份有限公司 一种盘轴一体涡轮盘及其制备方法
CN116875844B (zh) * 2023-07-28 2024-02-09 北京钢研高纳科技股份有限公司 一种盘轴一体涡轮盘及其制备方法
WO2024149404A1 (zh) * 2023-07-28 2024-07-18 北京钢研高纳科技股份有限公司 一种盘轴一体涡轮盘及其制备方法
CN117512403A (zh) * 2024-01-04 2024-02-06 北京北冶功能材料有限公司 一种易加工成形的镍基高温合金箔材及其制备方法
CN117512403B (zh) * 2024-01-04 2024-05-07 北京北冶功能材料有限公司 一种易加工成形的镍基高温合金箔材及其制备方法
CN117926155A (zh) * 2024-03-25 2024-04-26 成都先进金属材料产业技术研究院股份有限公司 小规格gh4141高温合金棒材及其制备方法

Also Published As

Publication number Publication date
KR20160013864A (ko) 2016-02-05
EP3109331A4 (en) 2017-10-11
KR101764755B1 (ko) 2017-08-03
EP3109331B1 (en) 2019-01-30
CN103898371B (zh) 2016-04-06
CN103898371A (zh) 2014-07-02
BR112015031328B1 (pt) 2020-01-28
EP3109331A1 (en) 2016-12-28
BR112015031328A2 (pt) 2017-07-25

Similar Documents

Publication Publication Date Title
WO2015123918A1 (zh) 700℃等级超超临界燃煤电站用镍基高温合金及其制备
JP7488423B2 (ja) 耐クリープ、長寿命ニッケル基変形高温合金、及び耐クリープ、長寿命ニッケル基変形高温合金の製造方法及び応用
CN111500917B (zh) 一种高强韧性中熵高温合金及其制备方法
CN102994809B (zh) 一种高强耐蚀镍铁铬基高温合金及其制备方法
WO2020249115A1 (zh) 一种复合强化型耐蚀高温合金及其制备工艺
CN105112728B (zh) 一种700℃超超临界汽轮机转子用耐热合金及其制备方法
TWI359870B (en) Ni-cr-co alloy for advanced gas turbine engines
CN104745992B (zh) 发动机涡轮用高温合金的热处理方法
WO2020249113A1 (zh) 一种低铬耐蚀高强多晶高温合金及其制备方法
CN110983111A (zh) 一种镍基高温合金板材及其制备方法
JP7342149B2 (ja) 析出強化型ニッケル基高クロム超合金およびその製造方法
CN110592432B (zh) 一种钴基变形高温合金及其制备方法
CN106756257A (zh) 一种抗高温氧化耐磨钴基合金丝材及其制备方法
CN106636848A (zh) 一种耐磨抗蚀镍基合金丝材的制备方法
CN114196854B (zh) 一种高强度难变形镍基高温合金及其制备方法
JP7009618B2 (ja) 超々臨界圧火力発電機群用鋼及びその製造方法
CN104630597A (zh) 一种铁镍铬基高温合金及其制造方法
JP5323162B2 (ja) 高温での機械的特性に優れた多結晶ニッケル基超耐熱合金
CN108715951B (zh) 一种多相组织的镍铬铁系高温合金及制备方法
JP2014070230A (ja) Ni基超耐熱合金の製造方法
JP4982539B2 (ja) Ni基合金、Ni基鋳造合金、蒸気タービン用高温部品及び蒸気タービン車室
CN111471897A (zh) 一种高强镍基高温合金制备成型工艺
CN103451559A (zh) 一种气阀合金材料及其制造方法
JP5791640B2 (ja) ニッケル・クロム・コバルト・モリブデン合金
CN107326303A (zh) 含钨不锈钢、含钨不锈钢焊丝及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157032332

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014883147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014883147

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015031328

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112015031328

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151214