WO2015123902A1 - 一种高强高塑性医用镁合金及其制备工艺和应用 - Google Patents

一种高强高塑性医用镁合金及其制备工艺和应用 Download PDF

Info

Publication number
WO2015123902A1
WO2015123902A1 PCT/CN2014/073574 CN2014073574W WO2015123902A1 WO 2015123902 A1 WO2015123902 A1 WO 2015123902A1 CN 2014073574 W CN2014073574 W CN 2014073574W WO 2015123902 A1 WO2015123902 A1 WO 2015123902A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
ingot
strength
alloy
preparing
Prior art date
Application number
PCT/CN2014/073574
Other languages
English (en)
French (fr)
Inventor
李扬德
李卫荣
李军雷
万鹏
谭丽丽
Original Assignee
东莞宜安科技股份有限公司
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞宜安科技股份有限公司, 中国科学院金属研究所 filed Critical 东莞宜安科技股份有限公司
Publication of WO2015123902A1 publication Critical patent/WO2015123902A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the invention relates to the technical field of magnesium alloy materials, in particular to a high-strength and high-plastic medical magnesium alloy and a preparation process and application thereof, the magnesium alloy being used as a degradable metal implant material.
  • magnesium alloys have become a frontier topic in the research of biomaterials as a new generation of biodegradable biomedical materials.
  • traditional inert metal implant materials such as stainless steel, cobalt-chromium alloy, titanium alloy, etc.
  • magnesium alloy can be completely degraded after the patient's treatment and rehabilitation, without the need for secondary surgery, reducing the pain and cost of the patient.
  • Magnesium alloy has good mechanical properties and processing properties of metal materials.
  • magnesium is a trace element necessary for human body and participates in many physiological activities of the human body, so magnesium exhibits excellent biocompatibility.
  • Many studies have shown that magnesium alloys also have a variety of biological functionalization. Therefore, magnesium alloy is expected to be an ideal degradable metal implant material due to its excellent comprehensive properties.
  • magnesium alloys are used as degradable cardiovascular scaffolds.
  • the stents undergo large plastic deformation during use.
  • the stents need to provide sufficient and sufficient support for the blood vessels in the stenotic lesions.
  • Magnesium alloy must have sufficient strength; as a degradable suture material, the knotting process of the suture also requires the magnesium alloy to have excellent plastic deformation ability, and the suture must also have high strength to the wound.
  • magnesium alloy as a degradable bone nail, bone plate or bone filling material
  • the magnesium alloy strength requirements are also relatively high.
  • the close-packed hexagonal crystal structure makes the deformation and deformation properties of the magnesium alloy very limited, and the strength is low. It is necessary to improve the plastic deformation ability and strength of the magnesium alloy through reasonable alloying design and heat treatment system, as well as optimized processing techniques. .
  • the object of the present invention is to provide a high-strength and high-plasticity medical magnesium alloy and a preparation process and application thereof, which have good plastic deformation ability, high strength and no toxicity.
  • a high-strength, high-plasticity medical magnesium alloy having a chemical composition of Zn 0.2-6.0% by weight, Mn 0.15-0.5% (preferably 0.5%), Nd 0.5-2.0%, the content of the impurity element is limited: Fe ⁇ 0.006%, Cu ⁇ 0.005%, Ni ⁇ 0.006%, and the balance is Mg.
  • the preparation process of the alloy of the invention comprises the following steps:
  • (1) Homogenization treatment the magnesium alloy ingot is subjected to homogenization heat treatment at 400 to 550 ° C for 10 hours in a vacuum heat treatment furnace to homogenize the composition and structure of the ingot, and then water-cooled to form a supersaturated solid solution. ;
  • the preparation steps of the magnesium alloy ingot described in the above step (1) are as follows:
  • ingredients For different ingredients, the ingredients are firstly formulated.
  • the ingredients include a Mg ingot with a purity of 99.99%, a Zn ingot with a purity of 99.99%, a Mg-30Nd intermediate alloy with a purity of 99.99%, and an electrolytic Mn powder;
  • alloy smelting and casting adding preheated Mg ingot, Zn ingot and electrolytic Mn powder in the melting furnace, the alloy melting temperature is 700 ° C; After all the components are melted, add Mg-30Nd master alloy, increase the temperature to 720 ° C and continue to smelt for 30 minutes, during which the mixture is stirred twice to make the melt uniform; during the alloy melting process, continuous introduction of protective gas Cool down to 700 ° C for 15-30 minutes, so that the inclusions settle, then remove the surface scum, cast into the graphite mold, the graphite mold slightly with a bell mouth to prevent the appearance of larger shrinkage holes, and finally obtain high purity Medical magnesium alloy ingots.
  • the medical magnesium alloy is used as a degradable metal implant material, such as a degradable cardiovascular scaffold material, a degradable suture material, a degradable bone nail, a bone plate or a bone filling material.
  • a degradable metal implant material such as a degradable cardiovascular scaffold material, a degradable suture material, a degradable bone nail, a bone plate or a bone filling material.
  • the design principle of the magnesium alloy of the invention is as follows:
  • the invention relates to a novel high-strength and high-plastic deformation magnesium alloy containing Zn, Mn and a rare earth element Nd, which is formed by adding a metal element Zn, Mn and a rare earth element Nd as an alloying element to magnesium.
  • Zn has higher solubility in magnesium matrix, and has obvious solid solution strengthening effect, which can significantly improve the strength of the material.
  • the addition of a small amount of Mn helps to eliminate the influence of impurity Fe on the corrosion resistance of magnesium alloy; Nd element one
  • the recrystallized grains of the wrought magnesium alloy can be refined, and the texture strength of the wrought magnesium alloy can be weakened.
  • the as-cast magnesium alloy was homogenized at 400 to 550 ° C for 10 hours, and then water-cooled to obtain a magnesium alloy extruded billet having uniform composition and structure. Before extrusion, the magnesium alloy was preheated at 390 °C for 2 hours, the extrusion temperature was 380 °C, the extrusion ratio was 36:1, and the extrusion exit speed was 4 m/min. The magnesium alloy rod with a diameter of 10 mm was obtained, which had extremely high plasticity. Deformation performance and high tensile strength, as well as very good corrosion resistance.
  • the invention adds Zn, Nd and Mn as alloying elements in a magnesium matrix, and extrudes the magnesium alloy, so that the plastic deformation ability of the magnesium alloy is remarkably improved, and by increasing the content of Zn in the alloy, The tensile strength of magnesium alloys has been greatly improved.
  • the novel high-strength and high-plastic deformation magnesium alloy containing Zn, Mn and rare earth element Nd prepared by the invention has a tensile strength of 300 MPa at room temperature and a maximum elongation at break of 37%.
  • the magnesium alloy of the invention is used as a degradable cardiovascular scaffold material, and the stent can withstand large plastic deformation during use.
  • the magnesium alloy stent has sufficient strength to provide sufficient continuous supply of blood vessels in the stenosis site. Supporting force; as a degradable suture material, the excellent plastic deformation ability of the magnesium alloy meets the requirements of the suture in the knotting process, and the suture also has a high strength, and provides sufficient tension to the wound to fix the wound;
  • the strength of the magnesium alloy is such that it meets the strength requirements as a degradable bone nail, bone plate or bone filler material.
  • the composition design (weight percentage) of the magnesium alloy is 0.2 Zn, 0.5 Mn, 2.0 Nd, and the weight percentage of the impurity element is limited to Fe ⁇ 0.006%, Cu ⁇ 0.005%, Ni ⁇ 0.006%, and the balance is Mg.
  • the alloy was prepared according to the above composition, and a preheated Mg ingot, a Zn ingot, and an electrolytic Mn powder were added to the melting furnace, and the alloy melting temperature was 700 °C. After all the components were melted, a Mg-30Nd master alloy was added, and the temperature was raised to 720 ° C to continue the smelting for 30 minutes, during which the mixture was stirred twice to make the melt uniform while continuously protecting the gas.
  • the wrought magnesium alloy immersion test sample was prepared by wire cutting.
  • the sample diameter was 10 mm and the thickness was 3 mm.
  • the surface of the sample was ground to bright with 2000# sandpaper, and the immersion test was carried out in Hank's solution.
  • the immersion ratio was 1.25 ml/cm2, and the Hank's solution was changed every day.
  • the surface of the sample after soaking was ultrasonically cleaned with a 200 g/L chromic acid solution for 3 minutes.
  • the corrosion rate of the magnesium alloy was calculated to be 0.09 mm/year by comparing the weight changes of the samples before and after the immersion.
  • the cytotoxicity test showed that the survival rate of the experimental cell L929 reached 82%, which was higher than the 75% cytotoxic primary standard, indicating that the material was non-toxic.
  • the composition design (weight percentage) of the alloy is: 1.0 Zn, 0.5 Mn, 2.0 Nd, and the weight percentage of the impurity element is limited to Fe ⁇ 0.006%, Cu ⁇ 0.005%, Ni ⁇ 0.006%, and the balance is Mg.
  • the alloy is prepared according to the above composition, and the preheated Mg ingot, Zn ingot and electrolytic Mn powder are added to the melting furnace, and the melting temperature of the alloy is 700 ° C. After all the alloys were melted, a Mg-30Nd master alloy was added, and the temperature was raised to 720 ° C to continue the smelting for 30 minutes, during which the mixture was stirred twice to make the melt uniform while continuously protecting the gas.
  • the alloy has a room temperature tensile strength of 225 MPa and an elongation at break of 33%.
  • the wrought magnesium alloy immersion test sample was prepared by wire cutting.
  • the sample diameter was 10 mm and the thickness was 3 mm.
  • the surface of the sample was ground to bright with 2000# sandpaper, and the immersion test was carried out in Hank's solution.
  • the immersion ratio was 1.25 ml/cm2, and the Hank's solution was changed every day.
  • the surface of the sample after soaking was ultrasonically cleaned with a 200 g/L chromic acid solution for 3 minutes.
  • the corrosion rate of the magnesium alloy was calculated to be 0.15 mm/year by comparing the change in the weight of the sample before and after the immersion.
  • the cytotoxicity test showed that the survival rate of the experimental cell L929 reached 83%, which was higher than the cytotoxic primary standard of 75%, indicating that the material was non-toxic.
  • the composition design (weight percentage) of the alloy is: 2.0 Zn, 0.5 Mn, 2.0 Nd, and the weight percentage of the impurity element is limited to Fe ⁇ 0.006%, Cu ⁇ 0.005%, Ni ⁇ 0.006%, and the balance is Mg.
  • the alloy is prepared according to the above composition, and the preheated Mg ingot, Zn ingot and electrolytic Mn powder are added to the melting furnace, and the melting temperature of the alloy is 700 ° C. After all the alloys were melted, a Mg-30Nd master alloy was added, and the temperature was raised to 720 ° C to continue the smelting for 30 minutes, during which the mixture was stirred twice to make the melt uniform while continuously protecting the gas.
  • the alloy has a room temperature tensile strength of 240 MPa and an elongation at break of 35%.
  • the wrought magnesium alloy immersion test sample was prepared by wire cutting.
  • the sample diameter was 10 mm and the thickness was 3 mm.
  • the surface of the sample was ground to bright with 2000# sandpaper, and the immersion test was carried out in Hank's solution.
  • the immersion ratio was 1.25 ml/cm2, and the Hank's solution was changed every day.
  • the surface of the immersed sample was ultrasonically cleaned with a 200 g/L chromic acid solution for 3 minutes.
  • the corrosion rate of the magnesium alloy was calculated to be 0.21 mm/year by comparing the weight changes of the sample before and after immersion.
  • the cytotoxicity test showed that the survival rate of the experimental cell L929 reached 82%, which was higher than the 75% cytotoxic primary standard, indicating that the material was non-toxic.
  • the composition design (weight percentage) of the magnesium alloy is: 4.0 Zn, 0.5 Mn, 2.0 Nd, and the weight percentage of the impurity element is limited to Fe ⁇ 0.006%, Cu ⁇ 0.005%, Ni ⁇ 0.006%, and the balance is Mg.
  • the alloy is prepared according to the above composition, and the preheated Mg ingot, Zn ingot and electrolytic Mn powder are added to the melting furnace, and the melting temperature of the alloy is 700 ° C. After all the components were melted, a Mg-30Nd master alloy was added, and the temperature was raised to 720 ° C to continue the smelting for 30 minutes, during which the mixture was stirred twice to make the melt uniform while continuously protecting the gas.
  • the wrought magnesium alloy immersion test sample was prepared by wire cutting.
  • the sample diameter was 10 mm and the thickness was 3 mm.
  • the surface of the sample was ground to bright with 2000# sandpaper, and the immersion test was carried out in Hank's solution.
  • the immersion ratio was 1.25 ml/cm2, and the Hank's solution was changed every day.
  • the surface of the sample after soaking was ultrasonically cleaned with a 200 g/L chromic acid solution for 3 minutes.
  • the corrosion rate of the magnesium alloy was calculated to be 0.25 mm/year by comparing the change in the weight of the sample before and after the immersion.
  • the cytotoxicity test showed that the survival rate of the experimental cell L929 reached 84%, which was higher than the cytotoxic primary standard of 75%, indicating that the material was non-toxic.
  • the composition design (% by weight) of the magnesium alloy is: 2Zn, 0.5Mn, 0.5Nd, and the weight percentage of the impurity element is limited to Fe ⁇ 0.006%, Cu ⁇ 0.005%, Ni ⁇ 0.006%, and the balance is Mg.
  • the alloy is prepared according to the above composition, and the preheated Mg ingot, Zn ingot and electrolytic Mn powder are added to the melting furnace, and the melting temperature of the alloy is 700 ° C. After all the components were melted, a Mg-30Nd master alloy was added, and the temperature was raised to 720 ° C to continue the smelting for 30 minutes, during which the mixture was stirred twice to make the melt uniform while continuously protecting the gas.
  • the wrought magnesium alloy immersion test sample was prepared by wire cutting.
  • the sample diameter was 10 mm and the thickness was 3 mm.
  • the surface of the sample was ground to bright with 2000# sandpaper, and the immersion test was carried out in Hank's solution.
  • the immersion ratio was 1.25 ml/cm2, and the Hank's solution was changed every day.
  • the surface of the sample after soaking was ultrasonically cleaned with a 200 g/L chromic acid solution for 3 minutes.
  • the corrosion rate of the magnesium alloy was calculated to be 0.06 mm/year by comparing the change in the weight of the sample before and after the immersion.
  • the cytotoxicity test showed that the survival rate of the experimental cell L929 reached 88%, which was higher than the cytotoxic primary standard of 75%, indicating that the material was non-toxic.
  • the composition design (weight percentage) of the magnesium alloy is: 4.0 Zn, 0.5 Mn, 0.5 Nd, and the weight percentage of the impurity element is limited to Fe ⁇ 0.006%, Cu ⁇ 0.005%, Ni ⁇ 0.006%, and the balance is Mg.
  • the alloy is prepared according to the above composition, and the preheated Mg ingot, Zn ingot and electrolytic Mn powder are added to the melting furnace, and the melting temperature of the alloy is 700 ° C. After all the components were melted, a Mg-30Nd master alloy was added, and the temperature was raised to 720 ° C to continue the smelting for 30 minutes, during which the mixture was stirred twice to make the melt uniform while continuously protecting the gas.
  • the alloy has a room temperature tensile strength of 270 MPa and an elongation at break of 23%.
  • the wrought magnesium alloy immersion test sample was prepared by wire cutting.
  • the sample diameter was 10 mm and the thickness was 3 mm.
  • the surface of the sample was ground to bright with 2000# sandpaper, and the immersion test was carried out in Hank's solution.
  • the immersion ratio was 1.25 ml/cm2, and the Hank's solution was changed every day.
  • the surface of the sample after soaking was ultrasonically cleaned with a 200 g/L chromic acid solution for 3 minutes.
  • the corrosion rate of the magnesium alloy was calculated to be 0.12 mm/year by comparing the change in the weight of the sample before and after the immersion.
  • the cytotoxicity test showed that the survival rate of the experimental cell L929 reached 86%, which was higher than the 75% cytotoxic primary standard, indicating that the material was non-toxic.
  • the composition design (weight percentage) of the magnesium alloy is: 6.0 Zn, 0.5 Mn, 0.5 Nd, and the weight percentage of the impurity element is limited to Fe ⁇ 0.006%, Cu ⁇ 0.005%, Ni ⁇ 0.006%, and the balance is Mg.
  • the alloy is prepared according to the above composition, and the preheated Mg ingot, Zn ingot and electrolytic Mn powder are added to the melting furnace, and the melting temperature of the alloy is 700 ° C. After all the components were melted, a Mg-30Nd master alloy was added, and the temperature was raised to 720 ° C to continue the smelting for 30 minutes, during which the mixture was stirred twice to make the melt uniform while continuously protecting the gas.
  • the wrought magnesium alloy immersion test sample was prepared by wire cutting.
  • the sample diameter was 10 mm and the thickness was 3 mm.
  • the surface of the sample was ground to bright with 2000# sandpaper, and the immersion test was carried out in Hank's solution.
  • the immersion ratio was 1.25 ml/cm2, and the Hank's solution was changed every day.
  • the surface of the sample after soaking was ultrasonically cleaned with a 200 g/L chromic acid solution for 3 minutes.
  • the corrosion rate of the magnesium alloy was calculated to be 0.35 mm/year by comparing the weight changes of the samples before and after the immersion.
  • the cytotoxicity test showed that the survival rate of the experimental cell L929 reached 81%, which was higher than the cytotoxic primary standard of 75%, indicating that the material was non-toxic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种高强度高塑性医用镁合金及其制备方法。该镁合金的组成为(重量%):0.2-6.0%Zn,0.5-2.0%Nd,0.5%Mn,杂质含量为Fe<0.006%,Cu<0.005%,Ni<0.006%,其余为Mg。该镁合金的制备方法包括,将合金铸锭在400-550°C,10小时均匀化处理后,在380°C挤压,挤压比为36:1。

Description

一种高强高塑性医用镁合金及其制备工艺和应用 一种高强高塑性医用镁合金及其制备工艺和应用
技术领域
本发明涉及镁合金材料技术领域,具体涉及一种高强高塑性医用镁合金及其制备工艺和应用,该镁合金用作可降解金属植入材料。
背景技术
近年来,镁合金作为新一代可降解生物医用材料,已成为生物材料研究的前沿课题。与传统的惰性金属植入材料(如不锈钢、钴铬合金、钛合金等)相比,镁合金可以在患者治疗康复之后完全降解,不需二次手术取出,减少了患者的痛苦与费用。镁合金具有金属材料所具备的良好的机械性能和加工性能,同时镁是一种人体所必须的微量元素,参与人体多项生理活动,因此镁表现出优良的生物相容性。很多研究结果表明,镁合金还有多种生物功能化作用。因此镁合金以其优异的综合性能,有望成为理想的可降解金属植入材料。
随着镁合金作为生物材料研究应用领域中的不断拓展,对镁合金各方面的性能要求也越来越高,越来越多样化。例如,镁合金作为可降解心血管支架材料,支架在使用过程中要经历较大的塑性变形,在体内服役过程中,支架需要对发生病变狭窄部位的血管提供持续足够的支撑力,这就要求镁合金必须有足够的强度;作为可降解的缝合线材料,缝合线在使用时的打结过程也要求镁合金必须具备优良的塑性变形能力,同时缝合线还必须具备较高的强度,对伤口提供足够的张力固定伤口;镁合金作为可降解骨钉、骨板或骨填充材料使用时,对镁合金的强度要求也比较高。但是密排六方晶体结构使镁合金的塑形变形性能非常有限,而且强度较低,必须通过合理的合金化设计与热处理制度,以及优化的加工工艺等方式去提高镁合金的塑性变形能力和强度。
发明内容
本发明的目的在于提供一种高强高塑性医用镁合金及其制备工艺和应用,该合金既有良好的塑性变形能力,又有较高的强度,且无毒性。
本发明的技术方案是:
一种高强高塑性医用镁合金,按重量百分比计,其化学成分为:Zn 0.2-6.0%,Mn 0.15-0.5%(优选为0.5%),Nd 0.5-2.0%,限制杂质元素含量为:Fe<0.006%,Cu<0.005%,Ni<0.006%,其余为Mg。
本发明合金的制备工艺包括如下步骤:
(1)均质化处理:将镁合金铸锭在真空热处理炉中于400~550℃进行均质化热处理10个小时,从而使铸锭的成分与组织均匀化,然后水冷,形成过饱和固溶体;
(2)挤压处理:挤压前铸锭在炉中于390℃预热2个小时,然后在380℃挤压,挤压比36:1,挤压速度4m/min,采用动物油作为润滑油,从而获得所述医用镁合金。
上述步骤(1)中所述镁合金铸锭的制备步骤如下:
(a)配料:针对不同的成分设计,先进行配料,配料中包括纯度为99.99%的Mg锭,纯度为99.99%的Zn锭,纯度为99.99%的Mg-30Nd中间合金,电解Mn粉;
(b)合金熔炼及浇铸:在熔炼炉中加入预热的Mg锭、Zn锭、电解Mn粉,合金熔炼温度为 700℃;待各成分全部熔化后,加入Mg-30Nd中间合金,将温度升高至720℃继续熔炼30分钟,其间搅拌两次使熔体均匀;在合金熔炼过程中,持续通入保护性气体;降温至700℃静置15-30分钟,使夹杂物沉降,然后撇去表层浮渣,浇铸至石墨模具中,石墨模具略带喇叭口,防止较大的缩孔的出现,最后获得高纯净度的医用镁合金铸锭。
该医用镁合金用作可降解金属植入材料,如可降解心血管支架材料、可降解的缝合线材料、可降解骨钉、骨板或骨填充材料等。
本发明镁合金设计原理如下:
本发明涉及一种新型含Zn、Mn以及稀土元素Nd的高强高塑性变形镁合金,是将金属元素Zn、Mn和稀土元素Nd作为合金元素加入镁中形成。Zn元素在镁基体中有较高的溶解度,有明显的固溶强化作用,可显著提高材料的强度;少量Mn元素的加入有助于消除杂质Fe对镁合金耐蚀性能的影响;Nd元素一方面可以细化变形镁合金再结晶晶粒,而且还能减弱变形镁合金织构强度。通过Zn、Mn、Nd三种合金元素的共同作用,可提高镁合金的强度与塑性及其耐蚀性能。将铸态镁合金在400~550℃均匀化处理10个小时,然后水冷,获得成分与组织均匀的镁合金挤压坯料。挤压前镁合金于390℃预热2小时,挤压温度380℃,挤压比36:1,挤压出口速度4m/min,得到直径10mm的镁合金棒材,其既有极高的塑性变形性能和很高的抗拉伸强度,还有非常好的耐腐蚀性能。
本发明有益效果如下:
1、本发明通过在镁基体中复合添加Zn、Nd、Mn作为合金元素,并对镁合金进行挤压加工,使镁合金的塑性变形能力显著提高,并通过提高合金中Zn元素的含量,使镁合金的抗拉强度得到大幅度提高。
2、本发明制备的新型含Zn、Mn以及稀土元素Nd的高强高塑性变形镁合金,其棒材室温抗拉强度最高可达到300MPa,断裂延伸率最高可达到37%。
3、本发明镁合金作为可降解心血管支架材料,支架在使用过程中能够承受大的塑性变形,在体内服役过程中,镁合金支架具有足够的强度对发生病变狭窄部位的血管提供持续足够的支撑力;其作为可降解的缝合线材料时,镁合金的优良塑性变形能力符合缝合线在打结过程中的要求,同时缝合线还具备较高的强度,对伤口提供足够的张力固定伤口;该镁合金的强度使其符合作为可降解骨钉、骨板或骨填充材料时的强度要求。
具体实施方式
以下将结合实施例对本发明作进一步描述。
实施例1:
镁合金的成分设计(重量百分比)为:0.2Zn、0.5Mn、2.0Nd,限制杂质元素的重量百分比Fe<0.006%,Cu<0.005%,Ni<0.006%,其余为Mg。按上述成分配制合金,在熔炼炉中加入预热的Mg锭、Zn锭、电解Mn粉,合金熔炼温度为700℃。待各成分全部熔化后,加入Mg-30Nd中间合金,将温度升高至720℃继续熔炼30分钟,其间搅拌两次使熔体均匀,同时持续加保护气体保护。降温到 700℃静止20 分钟,使夹杂物沉降,撇去熔体表层浮渣,然后浇铸成铸锭,用车床将铸锭进一步切割直径60mm、长度150mm的圆柱形挤压坯料。将挤压坯料在500℃下置于真空热处理炉中进行均质化处理,水冷,然后在390℃预热2小时,在380℃挤压,挤压比36:1,挤压速度4m/min,采用动物油作为润滑油,获得直径为10mm的镁合金棒材。截取部分棒材加工为M10Φ5的标准拉伸试样,三个平行样,对材料的力学性能进行测试。该合金的室温抗拉强度为200MPa,断裂延伸率达到37%。
通过线切割制备变形镁合金浸泡实验样品,样品直径10mm,厚度3mm,用2000#砂纸把样品表面磨至光亮,在Hank’s溶液中进行浸泡实验,浸泡比例1.25ml/cm2,每天更换Hank’s溶液,经过3周的浸泡实验,利用200g/L的铬酸溶液超声清洗浸泡后的样品表面3分钟。通过比较浸泡前后样品重量变化,计算镁合金的腐蚀速率为0.09mm/year。另外细胞毒性试验表明,实验细胞L929的成活率达到82%,高于75%的细胞毒性一级标准,说明材料无毒性。
实施例2:
合金的成分设计(重量百分比)为:1.0Zn、0.5Mn、2.0Nd,限制杂质元素的重量百分比Fe<0.006%,Cu<0.005%,Ni<0.006%,其余为Mg。按上述成分配制合金,在熔炼炉中加入预热的Mg锭、Zn锭、电解Mn粉,合金熔炼温度为 700℃。待合金全部熔化后,加入Mg-30Nd中间合金,将温度升高至720℃继续熔炼30分钟,其间搅拌两次使熔体均匀,同时持续加保护气体保护。降温到 700℃静止20 分钟,使夹杂物沉降,撇去熔体表层浮渣,然后浇铸成铸锭,用车床将铸锭进一步切割直径60mm、长度150mm的圆柱形挤压坯料。将挤压坯料在500℃下置于真空热处理炉中进行均质化处理,水冷,然后在390℃预热2小时,在380℃挤压,挤压比36:1,挤压速度4m/min,采用动物油作为润滑油,获得直径为10mm的镁合金棒材。截取部分棒材加工为M10Φ5的标准拉伸试样,三个平行样,对材料的力学性能进行测试。该合金的室温抗拉强度为225MPa,断裂延伸率达到33%。
通过线切割制备变形镁合金浸泡实验样品,样品直径10mm,厚度3mm,用2000#砂纸把样品表面磨至光亮,在Hank’s溶液中进行浸泡实验,浸泡比例1.25ml/cm2,每天更换Hank’s溶液,经过3周的浸泡实验,利用200g/L的铬酸溶液超声清洗浸泡后的样品表面3分钟。通过比较浸泡前后样品重量变化,计算镁合金的腐蚀速率为0.15mm/year。另外细胞毒性试验表明,实验细胞L929的成活率达到83%,高于75%的细胞毒性一级标准,说明材料无毒性。
实施例3:
合金的成分设计(重量百分比)为:2.0Zn、0.5Mn、2.0Nd,限制杂质元素的重量百分比Fe<0.006%,Cu<0.005%,Ni<0.006%,其余为Mg。按上述成分配制合金,在熔炼炉中加入预热的Mg锭、Zn锭、电解Mn粉,合金熔炼温度为 700℃。待合金全部熔化后,加入Mg-30Nd中间合金,将温度升高至720℃继续熔炼30分钟,其间搅拌两次使熔体均匀,同时持续加保护气体保护。降温到 700℃静止20 分钟,使夹杂物沉降,撇去熔体表层浮渣,然后浇铸成铸锭,用车床将铸锭进一步切割直径60mm、长度150mm的圆柱形挤压坯料。将挤压坯料在500℃下置于真空热处理炉中进行均质化处理,水冷,然后在390℃预热2小时,在380℃挤压,挤压比36:1,挤压速度4m/min,采用动物油作为润滑油,获得直径为10mm的镁合金棒材。截取部分棒材加工为M10Φ5的标准拉伸试样,三个平行样,对材料的力学性能进行测试。该合金的室温抗拉强度240MPa,断裂延伸率达到35%。
通过线切割制备变形镁合金浸泡实验样品,样品直径10mm,厚度3mm,用2000#砂纸把样品表面磨至光亮,在Hank’s溶液中进行浸泡实验,浸泡比例1.25ml/cm2,每天更换Hank’s溶液,经过3周的浸泡实验,利用200g/L的铬酸溶液超声清洗浸泡后的样品表面3分钟,通过比较浸泡前后样品重量变化,计算镁合金的腐蚀速率为0.21mm/year。另外细胞毒性试验表明,实验细胞L929的成活率达到82%,高于75%的细胞毒性一级标准,说明材料无毒性。
实施例4:
镁合金的成分设计(重量百分比)为:4.0Zn、0.5Mn、2.0Nd,限制杂质元素的重量百分比Fe<0.006%,Cu<0.005%,Ni<0.006%,其余为Mg。按上述成分配制合金,在熔炼炉中加入预热的Mg锭、Zn锭、电解Mn粉,合金熔炼温度为 700℃。待各成分全部熔化后,加入Mg-30Nd中间合金,将温度升高至720℃继续熔炼30分钟,其间搅拌两次使熔体均匀,同时持续加保护气体保护。降温到 700℃静止20 分钟,使夹杂物沉降,撇去熔体表层浮渣,然后浇铸成铸锭,用车床将铸锭进一步切割直径60mm、长度150mm的圆柱形挤压坯料。将挤压坯料在500℃下置于真空热处理炉中进行均质化处理,水冷,然后在390℃预热2小时,在380℃挤压,挤压比36:1,挤压速度4m/min,采用动物油作为润滑油,获得直径为10mm的镁合金棒材。截取部分棒材加工为M10Φ5的标准拉伸试样,三个平行样,对材料的力学性能进行测试。该合金的室温抗拉强度为260MPa,断裂延伸率达到30%。
通过线切割制备变形镁合金浸泡实验样品,样品直径10mm,厚度3mm,用2000#砂纸把样品表面磨至光亮,在Hank’s溶液中进行浸泡实验,浸泡比例1.25ml/cm2,每天更换Hank’s溶液,经过3周的浸泡实验,利用200g/L的铬酸溶液超声清洗浸泡后的样品表面3分钟。通过比较浸泡前后样品重量变化,计算镁合金的腐蚀速率为0.25mm/year。另外细胞毒性试验表明,实验细胞L929的成活率达到84%,高于75%的细胞毒性一级标准,说明材料无毒性。
实施例5:
镁合金的成分设计(重量百分比)为:2Zn、0.5Mn、0.5Nd,限制杂质元素的重量百分比Fe<0.006%,Cu<0.005%,Ni<0.006%,其余为Mg。按上述成分配制合金,在熔炼炉中加入预热的Mg锭、Zn锭、电解Mn粉,合金熔炼温度为 700℃。待各成分全部熔化后,加入Mg-30Nd中间合金,将温度升高至720℃继续熔炼30分钟,其间搅拌两次使熔体均匀,同时持续加保护气体保护。降温到 700℃静止20 分钟,使夹杂物沉降,撇去熔体表层浮渣,然后浇铸成铸锭,用车床将铸锭进一步切割直径60mm、长度150mm的圆柱形挤压坯料。将挤压坯料在500℃下置于真空热处理炉中进行均质化处理,水冷,然后在390℃预热2小时,在380℃挤压,挤压比36:1,挤压速度4m/min,采用动物油作为润滑油,获得直径为10mm的镁合金棒材。截取部分棒材加工为M10Φ5的标准拉伸试样,三个平行样,对材料的力学性能进行测试。该合金的室温抗拉强度为230MPa,断裂延伸率达到25%。
通过线切割制备变形镁合金浸泡实验样品,样品直径10mm,厚度3mm,用2000#砂纸把样品表面磨至光亮,在Hank’s溶液中进行浸泡实验,浸泡比例1.25ml/cm2,每天更换Hank’s溶液,经过3周的浸泡实验,利用200g/L的铬酸溶液超声清洗浸泡后的样品表面3分钟。通过比较浸泡前后样品重量变化,计算镁合金的腐蚀速率为0.06mm/year。另外细胞毒性试验表明,实验细胞L929的成活率达到88%,高于75%的细胞毒性一级标准,说明材料无毒性。
实施例6:
镁合金的成分设计(重量百分比)为:4.0Zn、0.5Mn、0.5Nd,限制杂质元素的重量百分比Fe<0.006%,Cu<0.005%,Ni<0.006%,其余为Mg。按上述成分配制合金,在熔炼炉中加入预热的Mg锭、Zn锭、电解Mn粉,合金熔炼温度为 700℃。待各成分全部熔化后,加入Mg-30Nd中间合金,将温度升高至720℃继续熔炼30分钟,其间搅拌两次使熔体均匀,同时持续加保护气体保护。降温到 700℃静止20 分钟,使夹杂物沉降,撇去熔体表层浮渣,然后浇铸成铸锭,用车床将铸锭进一步切割直径60mm、长度150mm的圆柱形挤压坯料。将挤压坯料在500℃下置于真空热处理炉中进行均质化处理,水冷,然后在390℃预热2小时,在380℃挤压,挤压比36:1,挤压速度4m/min,采用动物油作为润滑油,获得直径为10mm的镁合金棒材。截取部分棒材加工为M10Φ5的标准拉伸试样,三个平行样,对材料的力学性能进行测试。该合金的室温抗拉强度为270MPa,断裂延伸率达到23%。
通过线切割制备变形镁合金浸泡实验样品,样品直径10mm,厚度3mm,用2000#砂纸把样品表面磨至光亮,在Hank’s溶液中进行浸泡实验,浸泡比例1.25ml/cm2,每天更换Hank’s溶液,经过3周的浸泡实验,利用200g/L的铬酸溶液超声清洗浸泡后的样品表面3分钟。通过比较浸泡前后样品重量变化,计算镁合金的腐蚀速率为0.12mm/year。另外细胞毒性试验表明,实验细胞L929的成活率达到86%,高于75%的细胞毒性一级标准,说明材料无毒性。
实施例7:
镁合金的成分设计(重量百分比)为:6.0Zn、0.5Mn、0.5Nd,限制杂质元素的重量百分比Fe<0.006%,Cu<0.005%,Ni<0.006%,其余为Mg。按上述成分配制合金,在熔炼炉中加入预热的Mg锭、Zn锭、电解Mn粉,合金熔炼温度为 700℃。待各成分全部熔化后,加入Mg-30Nd中间合金,将温度升高至720℃继续熔炼30分钟,其间搅拌两次使熔体均匀,同时持续加保护气体保护。降温到 700℃静止20 分钟,使夹杂物沉降,撇去熔体表层浮渣,然后浇铸成铸锭,用车床将铸锭进一步切割直径60mm、长度150mm的圆柱形挤压坯料。将挤压坯料在500℃下置于真空热处理炉中进行均质化处理,水冷,然后在390℃预热2小时,在380℃挤压,挤压比36:1,挤压速度4m/min,采用动物油作为润滑油,获得直径为10mm的镁合金棒材。截取部分棒材加工为M10Φ5的标准拉伸试样,三个平行样,对材料的力学性能进行测试。该合金的室温抗拉强度为300MPa,断裂延伸率达到20%。
通过线切割制备变形镁合金浸泡实验样品,样品直径10mm,厚度3mm,用2000#砂纸把样品表面磨至光亮,在Hank’s溶液中进行浸泡实验,浸泡比例1.25ml/cm2,每天更换Hank’s溶液,经过3周的浸泡实验,利用200g/L的铬酸溶液超声清洗浸泡后的样品表面3分钟。通过比较浸泡前后样品重量变化,计算镁合金的腐蚀速率为0.35mm/year。另外细胞毒性试验表明,实验细胞L929的成活率达到81%,高于75%的细胞毒性一级标准,说明材料无毒性。

Claims (1)

  1. 1、一种高强高塑性医用镁合金,其特征在于:按重量百分比计,该镁合金化学成分为:Zn 0.2-6.0%,Nd 0.5-2.0%,Mn 0.5%,限制杂质元素含量为:Fe<0.006%,Cu<0.005%,Ni<0.006%,其余为Mg。
    2、根据权利要求1所述的高强高塑性医用镁合金的制备工艺,其特征在于:按重量百分比计,该镁合金中Mn含量为0.5%。
    3、根据权利要求1所述的高强高塑性医用镁合金的制备工艺,其特征在于:该工艺包括如下步骤:
    (1)均质化处理:将镁合金铸锭在真空热处理炉中于400~550℃进行均质化热处理10个小时,从而使铸锭的成分与组织均匀化,然后水冷,形成过饱和固溶体;
    (2)挤压处理:挤压前铸锭在炉中于390℃预热2个小时,然后在380℃挤压,挤压比36:1,挤压速度4m/min,从而获得所述医用镁合金。
    4、根据权利要求3所述的高强高塑性医用镁合金的制备工艺,其特征在于:步骤(2)挤压处理过程中,采用动物油作为润滑油。
    5、根据权利要求3所述的高强高塑性医用镁合金的制备工艺,其特征在于:步骤(1)中所述镁合金铸锭的制备步骤如下:
    (a)配料:针对所需的成分设计,先进行配料,配料中包括纯度为99.99%的Mg锭,纯度为99.99%的Zn锭,纯度为99.99%的Mg-30Nd中间合金,电解Mn粉;
    (b)合金熔炼及浇铸:在熔炼炉中加入预热的Mg锭、Zn锭、电解Mn粉,合金熔炼温度为 700℃;待各成分全部熔化后,加入Mg-30Nd中间合金,将温度升高至720℃继续熔炼30分钟,其间搅拌两次使熔体均匀;降温至700℃静置15-30分钟,使夹杂物沉降,然后撇去表层浮渣,浇铸至石墨模具中,获得高纯净度的医用镁合金铸锭。
    6、根据权利要求5所述的高强高塑性医用镁合金的制备工艺,其特征在于:在合金熔炼过程中,持续通入保护性气体。
    7、根据权利要求5所述的高强高塑性医用镁合金的制备工艺,其特征在于:所述石墨模具略带喇叭口,防止较大的缩孔的出现。
    8、根据权利要求1所述的高强高塑性医用镁合金的制备工艺,其特征在于:该镁合金用作可降解金属植入材料。
    9、根据权利要求8所述的高强高塑性医用镁合金的制备工艺,其特征在于:该镁合金用作可降解心血管支架材料、可降解的缝合线材料、可降解骨钉、骨板或骨填充材料等。
PCT/CN2014/073574 2014-02-21 2014-03-18 一种高强高塑性医用镁合金及其制备工艺和应用 WO2015123902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410060521.6A CN104862566A (zh) 2014-02-21 2014-02-21 一种高强高塑性医用镁合金及其制备工艺和应用
CN2014100605216 2014-02-21

Publications (1)

Publication Number Publication Date
WO2015123902A1 true WO2015123902A1 (zh) 2015-08-27

Family

ID=53877577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073574 WO2015123902A1 (zh) 2014-02-21 2014-03-18 一种高强高塑性医用镁合金及其制备工艺和应用

Country Status (2)

Country Link
CN (1) CN104862566A (zh)
WO (1) WO2015123902A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114411029A (zh) * 2022-01-21 2022-04-29 重庆大学 一种高塑性快速降解Mg-Li-Gd-Ni合金及其制备方法
CN114480930A (zh) * 2020-11-13 2022-05-13 烟台南山学院 客车车身骨架用铝合金型材及其制备方法
CN115449680A (zh) * 2022-08-17 2022-12-09 深圳市飞航精工科技有限公司 一种耐腐蚀镁合金材料及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105238976A (zh) * 2015-09-25 2016-01-13 苏州蔻美新材料有限公司 一种医用镁基合金材料及其制备方法
CN106756365B (zh) * 2015-11-24 2019-02-15 中国科学院金属研究所 一种低成本高速挤压镁合金材料及其制备工艺
CN107058838B (zh) * 2017-06-13 2019-01-25 济南大学 一种温压变形生物镁合金及其制备方法
CN107043880A (zh) * 2017-06-27 2017-08-15 佛山科学技术学院 一种稀土导热镁合金及其制备方法
CN108950335B (zh) * 2018-06-19 2020-10-13 北京科技大学 一种提高铸造zk21镁合金强度和耐蚀性的方法
CN109207825A (zh) * 2018-09-29 2019-01-15 江苏中科亚美新材料有限公司 一种高导热高强韧镁合金材料及其制备方法
CN111434791A (zh) * 2019-07-04 2020-07-21 四川镁合医疗器械有限责任公司 一种精控性能的镁合金吻合钉及其制备方法
CN111686299A (zh) * 2020-07-08 2020-09-22 东莞理工学院 一种医用镁合金及其制备方法与应用
CN116078848A (zh) * 2023-03-06 2023-05-09 兰州理工大学 一种室温超高塑性-高强镁合金的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466684A (ja) * 1990-07-05 1992-03-03 Sumitomo Metal Mining Co Ltd 流電陽極用マグネシウム合金
CN101177752A (zh) * 2007-12-12 2008-05-14 中国科学院长春应用化学研究所 镁-锌-稀土合金及其制备方法
CN101798651A (zh) * 2010-04-06 2010-08-11 重庆大学 一种高性能变形镁合金材料
CN102400071A (zh) * 2011-11-15 2012-04-04 中南大学 一种大直径高强耐热镁合金管材的挤压变形工艺
CN102433477A (zh) * 2011-12-22 2012-05-02 哈尔滨工程大学 生物医用Mg-Sn-Zn-Mn系镁合金及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039604B1 (zh) * 1964-09-05 1975-12-18
AUPS311202A0 (en) * 2002-06-21 2002-07-18 Cast Centre Pty Ltd Creep resistant magnesium alloy
KR100638342B1 (ko) * 2005-01-21 2006-10-25 학교법인연세대학교 고강도, 고인성의 기계적 특성이 우수한 마그네슘 합금
CN101586223A (zh) * 2009-05-14 2009-11-25 上海交通大学 含稀土变形镁合金的塑性成型方法
CN102296220B (zh) * 2011-09-15 2013-04-10 重庆大学 一种生物医用耐蚀镁合金及其制备方法
CN103225031B (zh) * 2013-05-24 2015-08-12 重庆大学 一种镁-锌-锰-锡-钕合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466684A (ja) * 1990-07-05 1992-03-03 Sumitomo Metal Mining Co Ltd 流電陽極用マグネシウム合金
CN101177752A (zh) * 2007-12-12 2008-05-14 中国科学院长春应用化学研究所 镁-锌-稀土合金及其制备方法
CN101798651A (zh) * 2010-04-06 2010-08-11 重庆大学 一种高性能变形镁合金材料
CN102400071A (zh) * 2011-11-15 2012-04-04 中南大学 一种大直径高强耐热镁合金管材的挤压变形工艺
CN102433477A (zh) * 2011-12-22 2012-05-02 哈尔滨工程大学 生物医用Mg-Sn-Zn-Mn系镁合金及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480930A (zh) * 2020-11-13 2022-05-13 烟台南山学院 客车车身骨架用铝合金型材及其制备方法
CN114411029A (zh) * 2022-01-21 2022-04-29 重庆大学 一种高塑性快速降解Mg-Li-Gd-Ni合金及其制备方法
CN115449680A (zh) * 2022-08-17 2022-12-09 深圳市飞航精工科技有限公司 一种耐腐蚀镁合金材料及其制备方法

Also Published As

Publication number Publication date
CN104862566A (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2015123902A1 (zh) 一种高强高塑性医用镁合金及其制备工艺和应用
CN107557632B (zh) 一种可降解生物医用Mg-Zn-Zr-Nd合金材料及其制备方法
CA2869459C (en) Magnesium-zinc-calcium alloy, method for production thereof, and use thereof
EP2764130B1 (en) Biodegradable metal alloys
US10604827B2 (en) Biodegradable metal alloys
WO2011160533A1 (zh) 体内可降解的骨内植物用镁合金及其制造方法
US11730857B2 (en) Magnesium single crystal for biomedical applications and methods of making same
CN104630587A (zh) 一种骨折内固定用可降解镁合金板、棒材及其制备方法
CN109602960B (zh) 一种具备超塑性的医用锌合金棒材制备方法
CN105401033B (zh) 一种可降解高强韧耐蚀生物医用镁合金及其制备方法
US20190201590A1 (en) Degradable corrosion-resistant high strength and ductility magnesium alloy for biomedical use and preparation method therefor
CN107435116A (zh) 一种镁合金生物植入材料及其制备方法
CN108236495B (zh) 低合金化可降解的微型内固定组件、镁合金制备方法
CN110241330A (zh) 一种可降解的Zn-Ag系锌合金及其制备方法与应用
CN102258806A (zh) 一种可降解镁基骨科植入生物医用材料及制备方法
CN115029584B (zh) 一种生物可降解医用锌合金及其制备方法和应用
CN113106312B (zh) 一种可降解医用合金及其制备方法和应用
CN103938125A (zh) 一种可降解生物镁基非晶合金及其制备方法
CN108642359B (zh) 一种高强度的快速降解生物医用Mg-Zn-Zr-Fe合金材料及其制备方法
JP2009046758A (ja) 生体用Co基合金及びその製造方法
WO2023165194A1 (zh) 一种不含稀土元素的生物可降解镁合金及其制备方法、应用
CN112472868B (zh) 一种可降解的Mg-Nd-Zn-Sc生物医用镁合金及其制备方法
CN116099031A (zh) 一种可降解吸收镁合金缝合线及其制备方法和应用
CN111020253B (zh) 一种生物医用镁合金加工方法
CN112126836B (zh) 一种生物可降解镁合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883498

Country of ref document: EP

Kind code of ref document: A1