WO2015122230A1 - 電流測定装置、その制御方法、制御プログラム、並びに記録媒体、および電力測定装置 - Google Patents

電流測定装置、その制御方法、制御プログラム、並びに記録媒体、および電力測定装置 Download PDF

Info

Publication number
WO2015122230A1
WO2015122230A1 PCT/JP2015/050826 JP2015050826W WO2015122230A1 WO 2015122230 A1 WO2015122230 A1 WO 2015122230A1 JP 2015050826 W JP2015050826 W JP 2015050826W WO 2015122230 A1 WO2015122230 A1 WO 2015122230A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
unit
power
measurement
measuring device
Prior art date
Application number
PCT/JP2015/050826
Other languages
English (en)
French (fr)
Inventor
ゆい 石田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US15/114,473 priority Critical patent/US9921247B2/en
Priority to CN201580005841.4A priority patent/CN105934679B/zh
Priority to EP15748753.9A priority patent/EP3109645B1/en
Publication of WO2015122230A1 publication Critical patent/WO2015122230A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/063Details of electronic electricity meters related to remote communication

Definitions

  • the present invention relates to a current measuring device that measures a current flowing through the power line using a current transformer attached to the power line, a control method thereof, a control program, a recording medium, and a power measuring device.
  • energy consumption energy consumption of various electric devices used in production
  • energy saving various home appliances (household electrical appliances) are required to save energy in order to reduce electricity charges.
  • the current measuring device described in Patent Document 1 measures system current using a CT (current transformer) installed in a power line.
  • the power supply unit of the current measurement calculation / monitoring unit provided on the secondary side of the CT is provided with a rectifier circuit, a constant voltage DC output circuit, and a backup power supply circuit from the upstream side.
  • a level conversion circuit for converting the output voltage of the constant voltage DC output circuit or the backup power supply circuit to a predetermined level and supplying power to the current measurement calculation / monitoring unit is provided.
  • the output voltage of the constant voltage DC output circuit decreases, power is supplied by the backup power supply circuit, thereby realizing current measurement and power supply by a single CT.
  • the power measurement device described in Patent Document 2 is incorporated in a measurement target device driven by a three-phase four-wire power source.
  • the voltage measuring circuit does not have a transformer and is configured by a resistance voltage dividing circuit, and is connected to three power lines of each phase excluding the neutral line of the three-phase four-wire power source.
  • the current measurement circuit is electromagnetically coupled to the three power supply lines by a current transformer.
  • the power generated by the power supply unit of the device is input to a power receiving circuit via an interface such as a connector, and power is supplied from the power receiving circuit to each unit of the power measuring device, so that the operation of the power measuring device is performed. Start.
  • the voltage measurement circuit measures the voltages of the neutral line and the three-phase power supply line
  • the current measurement circuit measures the three-phase currents by the current transformer.
  • the analog output which is the measurement result of the voltage measurement circuit and the current measurement circuit, is digitized by an A / D converter, and using the result of the A / D converter, a phase voltage, a phase current are calculated by an arithmetic unit. , Phase power, total power, etc. are calculated.
  • the result of the arithmetic unit is input to the communication circuit, and is transmitted from the communication circuit to the device via an interface such as a connector.
  • JP 2002-131344 Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-261852 (published on November 18, 2010)” Japanese Patent Publication “JP 2013-124864 (released on June 24, 2013)”
  • the present invention has been made in view of the above problems, and its purpose is to reduce the size of a current measuring device that measures the current flowing through the power line by means of a current transformer attached to the power line, and It is to operate reliably by the current from the current transformer.
  • a current measuring device is a current measuring device that measures a current flowing through the power line by a current transformer attached to the power line, and in order to solve the above problems, a plurality of the current measuring devices respectively attached to the plurality of power lines.
  • a power storage unit that stores power by current from the current transformer, a current measurement unit that measures current flowing through the power line to which the current transformer is attached based on the current from each current transformer, and a plurality of current measurement units
  • a control unit that controls the current measurement unit to measure based on the current from one of the current transformers and to repeat the measurement for each of the plurality of current transformers, and the current measurement unit. And the said control part operate
  • the current measuring device control method is a current measuring device for measuring a current flowing through the power line by a current transformer attached to the power line, wherein the current measuring device is attached to the plurality of power lines.
  • a current measurement device comprising: a power storage unit that stores power using a current from a current transformer; and a current measurement unit that measures a current flowing through the power line to which the current transformer is attached based on the current from each current transformer.
  • the current measurement unit performs measurement based on the current from one of the current transformers in order to operate the current measurement unit with electric power from the power storage unit.
  • the present invention acquires a current from any one of a plurality of current transformers, measures a current flowing through a power line to which the current transformer is attached based on the acquired current, and performs the measurement on the plurality of current transformers.
  • the current measuring device can be reduced in size, and power can be stored by current from a plurality of current transformers attached to a plurality of power lines, so that the device can be operated reliably. There is an effect that can be.
  • FIG. 2 is a block diagram showing a schematic configuration of the current measurement system according to the present embodiment.
  • the current measurement system 10 includes a plurality of power lines PL1 to PL4 by current transformers (transformers) CT1 to CT4 respectively attached to the plurality of power lines PL1 to PL4 installed in the distribution board PB.
  • the effective values I1e to I4e of the current flowing through are respectively measured and displayed.
  • the current measurement system 10 includes a current measurement unit (current measurement device) 11 and a reception unit 12.
  • the power lines PL1 to PL4 the current transformers CT1 to CT4
  • the effective current values I1e to I4e are generically referred to as “power line PL”, “current transformer CT”, and “current Effective value Ie "is described.
  • the current transformer CT is attached to a certain power line PL, and extracts a part of the alternating current (for example, 0A to 5A) flowing through the power line PL. Since the structure of the current transformer CT is well known, the description thereof is omitted.
  • the current measurement unit 11 is provided in the distribution board PB, and based on the currents from the current transformers CT1 to CT4 respectively attached to the plurality of power lines PL1 to PL4 that are also installed in the distribution board PB, the current line PL1 To measure the effective values I1e to I4e of the current flowing through PL4.
  • the current measurement unit 11 wirelessly transmits measurement data indicating the measured current effective values I1e to I4e to the reception unit 12.
  • the receiving unit 12 receives the measurement data from the current measurement unit 11 wirelessly, stores the received measurement data, and displays the measurement values (effective current values I1e to I4e) indicated by the measurement data. . Details of the receiving unit 12 will be described later.
  • FIG. 1 is a block diagram showing a schematic configuration of the current measurement unit 11.
  • the current measurement unit 11 includes a plurality of switching circuits (switching units) 20a to 20d, a power supply unit (power storage unit) 21, a measurement circuit 22, a microcomputer unit 23, and a wireless transmission unit (transmission unit) 24. It is a configuration.
  • the plurality of switching circuits 20a to 20d are electrically connected to the current transformers CT1 to CT4, respectively.
  • the plurality of switching circuits 20a to 20d are collectively referred to as “switching circuit 20”.
  • the switching circuit 20 switches whether the current from the current transformer CT flows to the power supply unit 21 or the measurement circuit 22 based on an instruction from the microcomputer unit 23.
  • the switching circuit 20 is configured by a switching element or the like.
  • the power supply unit 21 supplies power to each unit (particularly, the microcomputer unit 23 and the wireless transmission unit 24) in the current measurement unit 11 that is its own device. In the present embodiment, the power supply unit 21 performs power storage using a current flowing from the current transformer CT via the switching circuit 20.
  • the power supply unit 21 includes a rectifier circuit, a capacitor, a DC / DC conversion circuit, and the like. A secondary battery (storage battery) may be used instead of the capacitor (storage battery).
  • the power supply unit 21 may be a single capacitor (power storage unit) or a secondary battery (power storage unit), a plurality of capacitors or a plurality of secondary batteries, or a combination of a capacitor and a secondary battery. Good.
  • the measuring circuit 22 measures the current flowing from the current transformer CT via the switching circuit 20.
  • the measurement circuit 22 transmits a measurement signal indicating the measured current to the microcomputer unit 23.
  • the measurement circuit 22 includes a measurement resistor through which the current flows, an operational amplifier that amplifies the voltage of the measurement resistor, and the like.
  • the microcomputer unit 23 includes a microcomputer including a microprocessor and a memory, and controls the operation of various components in the current measurement unit 11 in an integrated manner. The operation control of the various configurations is performed by causing the microprocessor to execute a control program stored in the memory.
  • the microcomputer unit 23 measures the current flowing through the power line PL to which the current transformer CT is attached based on the measurement signal from the measurement circuit 22. Further, in the present embodiment, the microcomputer unit 23 selects any one of the plurality of switching circuits 20, and the selected switching circuit 20 causes the current from the current transformer CT to flow to the measurement circuit 22, while the remaining (non-selected) ) Switching circuit 20 is controlled so that the current from the current transformer CT flows to the power supply unit 21, and this is controlled so as to be sequentially performed on each of the plurality of switching circuits 20.
  • each of the measurement circuit 22 for measuring the current from the current transformer CT and the microcomputer unit 23 for measuring the current flowing through the power line PL to which the current transformer CT is attached may be one, and a plurality of them. There is no need to prepare. As a result, the size of the current measurement unit 11 can be reduced.
  • the power source unit 21 is charged with current from the plurality of current transformers CT1 to CT4 attached to the plurality of power lines PL1 to PL4, respectively.
  • a threshold that can be charged by the power supply unit p p (0 ⁇ p ⁇ 1)
  • the N power lines PL1 to PLN the value of the flowing current, all the probability is below the threshold, p N, and becomes smaller than the probability p if the single power line PL.
  • the expected value of power obtained from one power line PL is S
  • the expected value of power obtained from N power lines PL is N ⁇ S, which is larger than that of the single power line PL. Become.
  • the amount of electricity stored by the plurality of current transformers CT1 to CT4 respectively attached to the plurality of power lines PL1 to PL4, rather than the amount of electricity stored by the current transformer CT attached to one power line PL. Is expected to increase. Thereby, required electric power can be supplied from the power supply unit 21 to the microcomputer unit 23 and the wireless transmission unit 24, and the current measurement unit 11 which is the device itself can be operated reliably.
  • the wireless transmission unit 24 changes measurement data including a plurality of current measurement values measured by the microcomputer unit 23 into a format suitable for wireless transmission, and wirelessly transmits the data to the reception unit 12. This wireless transmission is performed using a wireless communication technology with low power consumption such as ZigBee (registered trademark) and Bluetooth (registered trademark).
  • the wireless transmission unit 24 includes a modulation / demodulation circuit, an RF (Radio Frequency) circuit, and the like.
  • the wireless transmission unit 24 wirelessly transmits the measured values of the currents flowing through the plurality of power lines PL1 to PL4 measured by the microcomputer unit 23.
  • the current measurement unit 11 which is the device itself can be operated more reliably.
  • the wireless transmission processing in the wireless transmission unit 24 can be roughly divided into start / end processing, connection / disconnection processing, and data transmission processing.
  • the data transmission processing is performed for data other than measurement values. It can be divided into a transmission process and a measurement value data transmission process.
  • the power consumption (energy consumption) in the activation / termination process, the connection / disconnection process, the transmission process of data other than the measurement value, and the transmission process of the data of the measurement value is E1, E2, E31, and E32.
  • the power consumption amount Es (E1 + E2 + E31 + E32) ⁇ N.
  • the microcomputer unit 23 includes a storage unit 30, a switching instruction unit (control unit) 31, a measurement unit (current measurement unit) 32, and a data transmission unit 33.
  • the storage unit 30 corresponds to the memory, and by causing the microprocessor to execute the program stored in the storage unit 30, the functions of the measurement unit 32, the switching instruction unit 31, and the data transmission unit 33 are performed. Realize.
  • the storage unit 30 includes a nonvolatile storage device such as a flash memory and a ROM (Read Only Memory), and a volatile storage device such as a RAM (Random Access Memory).
  • a nonvolatile storage device such as a flash memory and a ROM (Read Only Memory)
  • a volatile storage device such as a RAM (Random Access Memory).
  • Examples of the contents stored in the nonvolatile storage device include the above-described control program, OS (operating system) program, other various programs, and various setting values.
  • examples of the contents stored in the volatile storage device include a working file and a temporary file.
  • the switching instruction unit 31 instructs the switching circuit 20 so that the switching circuit 20 switches between the power source unit 21 and the measurement circuit 22 through which the current from the current transformer CT flows. Details of this switching instruction will be described later.
  • the measurement unit 32 measures the current flowing through the power line PL to which the corresponding current transformer CT is attached based on the measurement signal from the measurement circuit 22.
  • the measuring unit 32 sends the measured current value to the data sending unit 33.
  • Examples of the physical quantity of the current to be measured include a peak value, an instantaneous value, a phase, an effective value, and a frequency of the current, which are effective values in the embodiments.
  • a measurement signal indicating the current flowing from the current transformer CT is sampled, and by fitting this to a predetermined waveform (usually a sine wave), the amplitude and identification of the current are specified, and the current The effective value of the current is calculated from the amplitude of.
  • a predetermined waveform usually a sine wave
  • the current transformation is performed.
  • the effective value Ie of the current flowing through the power line PL to which the device CT is attached is calculated.
  • the data transmission unit 33 transmits the measured current value from the measurement unit 32 to the wireless transmission unit 24.
  • FIG. 3 shows switching operations in switching circuits 20a to 20d for current transformers CT1 to CT4 (hereinafter referred to as CT1 switching circuits 20a to CT4 switching circuit 20d), a microcomputer unit 23, and a wireless transmission unit. It is a time chart which shows a time change with 24 operation
  • the switching circuit 20 normally allows the current from the current transformer CT to flow to the power supply unit 21, and only when there is a switching instruction from the microcomputer unit 23, the current Is sent to the measurement circuit 22.
  • the switching instruction unit 31 of the microcomputer unit 23 selects the CT1 switching circuit 20a and issues a switching instruction to the selected switching circuit 20a.
  • the current from the current transformer CT1 flows to the measurement circuit 22 via the switching circuit 20a and is measured by the measurement circuit 22 (measurement 1).
  • the power line PL1 to which the current transformer CT1 is attached. Is measured by the microcomputer unit 23 (measurement 1).
  • currents from the other current transformers CT2 to CT4 flow to the power supply unit 21 via the switching circuits 20b to 20d and are stored (charged).
  • the switching instruction unit 31 of the microcomputer unit 23 selects the CT2 switching circuit 20b and issues a switching instruction to the selected switching circuit 20b.
  • the current from the current transformer CT2 flows to the measurement circuit 22 via the switching circuit 20b and is measured by the measurement circuit 22 (measurement 2).
  • the power line PL2 to which the current transformer CT2 is attached Is measured by the microcomputer 23 (measurement 2).
  • currents from the other current transformers CT1, CT3, and CT4 flow to the power source unit 21 through the switching circuits 20a, 20c, and 20d and are stored (charged).
  • the CT3 switching circuit 20c and the CT4 switching circuit 20d are selected in the same manner. Thereby, the effective values I1e to I4e of the currents flowing through the power lines PL1 to PL4 to which the current transformers CT1 to CT4 are respectively attached are measured (measurement 1 to measurement 4).
  • the wireless transmission unit 24 is activated, and the effective values I1e to I4e of the current measured by the microcomputer unit 23 are collectively transmitted wirelessly (transmission 1).
  • the switching instruction unit 31 since the switching instruction unit 31 does not instruct any switching circuit 20, the currents from all the current transformers CT1 to CT4 flow to the power source unit 21 via the switching circuits 20a to 20d. Is stored (charged).
  • the microcomputer unit 23 and the wireless transmission unit 24 stop operating until a predetermined period elapses (sleep mode). Thereby, power consumption can be reduced.
  • currents from all the current transformers CT1 to CT4 flow to the power source unit 21 through the switching circuits 20a to 20d and are stored (charged). Thereafter, the above operation is repeated.
  • the effective value of the current is measured.
  • any physical quantity related to the current such as the peak value, instantaneous value, phase, and frequency of the current may be measured.
  • an arbitrary waveform such as a sawtooth wave or a triangular wave can be used as the waveform to be fitted.
  • the receiving unit 12 includes a receiving unit 40, a logger unit 42, a recording unit 43, and a display unit 44.
  • the receiving unit 12 is supplied with power from the outside.
  • the receiving unit 40 receives measurement data wirelessly transmitted from the current measurement unit 11, and has a configuration including a modulation / demodulation circuit, an RF circuit, and the like.
  • the receiving unit 40 sends the received measurement data to the logger unit 42.
  • the operation unit 41 receives various inputs from the user by the user's operation, and includes an input button and other operation devices.
  • the operation unit 41 converts information operated by the user into operation data and sends the operation data to the logger unit 42.
  • Other examples of the operation device include a touch panel, a keyboard, a numeric keypad, and a pointing device such as a mouse.
  • the logger unit 42 writes measurement data from the receiving unit 40 to the recording unit 43 in time series.
  • the logger unit 42 desirably writes the measurement data in the recording unit 43 together with the measurement time.
  • the measurement time may be received together with the measurement data from the current measurement unit 11, or the time when the measurement data is received may be used as the measurement time.
  • the logger unit 42 displays and outputs the measurement values (effective current values I1e to I4e) indicated by the measurement data from the reception unit 40 via the display unit 44. Further, it is desirable that the logger unit 42 reads out measurement data from the recording unit 43 based on an instruction from the user through the operation unit 41 and outputs the measurement data through the display unit 44.
  • the recording unit 43 records measurement data from the logger unit 42, and includes, for example, a readable / writable nonvolatile memory such as an EEPROM (ElectricallyrErasable Programmable ROM) or a flash memory.
  • the recording unit 43 is preferably a detachable recording medium so that the recorded measurement data can be used by an external PC (Personal Computer) or the like.
  • the display unit 44 displays measurement data from the logger unit 42.
  • the display unit 44 includes a display element such as a segment type display element or a bitmap type display element.
  • the receiving unit 12 preferably includes a network I / F (interface) that can be connected to a LAN (Local Area Network).
  • a network I / F interface
  • LAN Local Area Network
  • FIGS. 2 Next, another embodiment of the present invention will be described with reference to FIGS.
  • the current measurement system 10 of the present embodiment is different in the configuration and operation of the current measurement unit 11 from the current measurement system 10 shown in FIG. 2, and the other configurations are the same.
  • FIG. 4 is a block diagram showing a schematic configuration of the current measurement unit 11 in the present embodiment.
  • the current measurement unit 11 shown in FIG. 4 differs from the current measurement unit 11 shown in FIG. 1 in that a measurement circuit 22 is provided for each switching circuit 20 and the operation of the microcomputer unit 23, and other configurations. Is the same.
  • the measurement circuit 22 can be provided for each switching circuit 20.
  • FIG. 5 is a circuit diagram showing details of the switching circuit 20, the power supply unit 21, and the measurement circuit 22 in the current measurement unit 11.
  • a noise removing coil L1, switching resistors R3 and R4, and switching elements TR1 and TR2 that are TFTs (Thin Film Transistors) constitute a switching circuit 20, and rectifier circuits D1 to D4 that are diode bridges.
  • the storage capacitor C constitutes the power supply unit 21, and the measurement resistors R 1 and R 2 constitute the measurement circuit 22. Components other than the storage capacitor C are provided for each of the current transformers CT1 to CT4.
  • the switching elements TR1 and TR2 are turned off, and the current from the current transformer CT is removed from the high frequency noise by the noise removing coil L1. After being rectified by the rectifier circuits D1 to D4, the electricity is stored in the storage capacitor C.
  • the switching elements TR1 and TR2 are turned on, and the current from the current transformer CT is removed from the high frequency noise by the noise removing coil L1, and the measurement resistance It is converted into a voltage by R1 and R2.
  • the voltages at both ends of the measurement resistors R1 and R2 are amplified by the differential amplifier circuit from the measurement output terminals Mesure + and Mesure ⁇ provided at both ends, and input to the microcomputer unit 23.
  • microcomputer unit 23 of the present embodiment differs from the microcomputer unit 23 shown in FIG. 1 in the operations of the storage unit 30, the switching instruction unit 31, and the measurement unit 32, and the other configurations are the same.
  • FIG. 6 is a table showing a correspondence table of measured current values and current transformer CT numbers stored in the storage unit 30 in a table format.
  • the switching instruction unit 31 of the present embodiment is different from the switching instruction unit 31 shown in FIG. 1 in the operation of the switching instruction, and the other configurations are the same.
  • the switching instruction unit 31 of the present embodiment refers to the correspondence table in the storage unit 30 and selects the switching circuit 20 from the smaller measured value measured last time. In the case of the example of FIG. 6, the switching instruction unit 31 selects the CT4 switching circuit 20d, the CT2 switching circuit 20b, the CT1 switching circuit 20a, and the CT3 switching circuit 20c in this order.
  • the power line PL having a small effective value Ie of the current measured last time is predicted to have a small effective value Ie of the current in this measurement.
  • the power line PL having a large current effective value Ie measured last time is predicted to have a large current effective value Ie in the current measurement.
  • the current from the current transformer CT (CT4 in the example of FIG. 6) attached to the power line PL that is predicted to have a small effective value Ie of current is measured via the switching circuit 20 through the measuring circuit.
  • the current from the current transformer CT (CT1 to CT3 in the example of FIG. 6) attached to the power line PL that is predicted to have a large current effective value Ie flows to the power supply unit 21.
  • the amount of electricity is quickly accumulated in the power supply unit 21.
  • required power can be reliably supplied from the power supply unit 21 to the microcomputer unit 23 and the wireless transmission unit 24, and the device itself can be operated more reliably.
  • FIG. 3 Next, still another embodiment of the present invention will be described with reference to FIGS.
  • the current measurement system 10 of this embodiment is different from the current measurement system 10 shown in FIG. 2 in the operations of the microcomputer unit 23 and the wireless transmission unit 24 in the current measurement unit 11, and the other operations are the same.
  • the current measurement unit 11 of the present embodiment is based on the voltage (output voltage) Vc of the storage capacitor C (FIG. 5) in the power supply unit 21. 23 and the operation of the wireless transmission unit 24 are different, and the other operations are the same.
  • FIG. 7 is a flowchart showing the flow of operation control processing in the microcomputer unit 23 of the present embodiment.
  • the voltage Vc of the storage capacitor C is measured (S10).
  • the voltage Vc is less than 2.5 V (first predetermined value) (S11)
  • the current measurement in the microcomputer unit 23 and the wireless transmission in the wireless transmission unit 24 are not executed, and the sleep mode is entered. (S16).
  • the power supplied from the storage capacitor C is insufficient, and the microcomputer unit 23 and the wireless transmission unit 24 are inoperable. Can be prevented.
  • the switching instruction by the switching instruction unit 31 of the microcomputer unit 23 is also stopped, all the currents from the plurality of current transformers CT1 to CT4 flow to the storage capacitor C. Therefore, since the amount of electricity is quickly accumulated in the storage capacitor C, the period until the operations of the microcomputer unit 23 and the wireless transmission unit 24 are restarted can be shortened.
  • the measurement data may be stored in the storage unit 30 of the microcomputer unit 23 or may be stored in a storage unit (not shown) of the wireless transmission unit 24.
  • the current measurement in the microcomputer unit 23 is performed (S14), and the wireless transmission of the measurement data is performed in the wireless transmission unit 24 (S15). At this time, the wireless transmission unit 24 also performs wireless transmission of untransmitted measurement data. Thereafter, the process shifts to the sleep mode (S16).
  • FIG. 8 is a time chart showing temporal changes of the operation of the microcomputer unit 23 and the wireless transmission unit 24 and the voltage Vc of the storage capacitor C in the present embodiment.
  • the first measurement cycle (M1) when the first measurement cycle (M1) is started, the voltage Vc is 3 V, so the microcomputer unit 23 performs current measurement (measurement 1 to measurement 4), and the wireless transmission unit 24 performs wireless transmission of measurement data (transmission), and then shifts to a sleep mode (Sleep).
  • the second measurement cycle (M2) since the voltage Vc is about 1.5 V, the microcomputer unit 23 does not perform current measurement, and the wireless transmission unit 24 performs measurement data.
  • the system shifts to sleep mode without performing wireless transmission (Sleep).
  • the wireless transmission unit 24 collectively transmits the measurement data measured in the third measurement cycle and the measurement data measured in the current (fifth) measurement cycle.
  • the microcomputer unit 23 of the present embodiment has a measured current value within a predetermined range from the previously wirelessly transmitted measured value, and is predetermined from the time of the previous wireless transmission.
  • the wireless transmission of the measured value of the measured current is omitted, and the other configurations are the same.
  • the measuring unit 12 can determine whether the measured value of the current flowing through the power line PL has not changed much, or has become too small to be measured.
  • FIG. 9 is a flowchart showing a flow of current measurement processing in the microcomputer unit 23 of the present embodiment.
  • the measurement unit 32 measures the current of a certain power line PL (S20), and determines whether or not the difference between the current measured value and the previously transmitted measured value is within a predetermined range ( S21). If it is within the predetermined range, the count of a counter (not shown) is incremented (S22), and it is determined whether or not the count is equal to or greater than a predetermined value (S23).
  • the data transmission unit 33 transmits the current measurement value to the wireless transmission unit 24, and The measured value in the storage unit 30 is updated (S24). Thereby, the current measurement value is wirelessly transmitted.
  • the count of the counter is reset (S25), and the process proceeds to step S26.
  • step S26 the wireless transmission of the current measurement value is omitted.
  • step S26 if the currents of all the power lines PL have not been measured, the process returns to step S20 and the above operation is repeated.
  • the microcomputer unit 23 of the present embodiment is different from the microcomputer unit 23 in that the frequency of measuring the current flowing through each power line PL is determined with reference to the correspondence table shown in FIG. 6.
  • the configuration is the same.
  • FIG. 10 is a graph showing the correspondence between the effective value (measured value) of current and the measurement frequency.
  • the measurement frequency is increased as the effective value of the current increases, and every time the effective value of the current exceeds a set value, the measurement is performed. For example, when the effective value of the current is 5 of the set value, the measurement frequency is 1 ⁇ 2, and one measurement is performed in two measurement cycles. Thereby, it becomes the measurement frequency according to the quantity of the electric current which flows into the power supply part 21.
  • FIG. As a result, the device itself can be operated more reliably.
  • the current measurement system 10 of the present embodiment is different from the current measurement system 10 shown in FIG. 2 in the configuration of the power supply unit 21 in the current measurement unit 11 and the operation of the microcomputer unit 23, and the other configurations and operations are the same. It is.
  • FIG. 11 is a block diagram showing a schematic configuration of the current measurement unit 11 in the present embodiment.
  • the power supply unit 21 includes a plurality of charging units 50, a plurality of charging voltage measuring circuits (voltage measuring units) 51, a switching circuit 52, and a DC / DC converter 53.
  • the plurality of charging units 50 each charge current from the plurality of switching circuits 20.
  • the charging unit 50 includes a capacitor or a secondary battery.
  • the plurality of charging voltage measuring circuits 51 measure the charging voltages (output voltages) of the plurality of charging units 50, respectively.
  • the charging voltage measuring circuit 51 sends the measured charging voltage to the microcomputer unit 23.
  • the switching circuit 52 switches so as to supply power from any of the plurality of charging units 50 to the DC / DC converter 53 based on an instruction from the microcomputer unit 23.
  • the DC / DC converter 53 converts the DC voltage from the switching circuit 52 into driving voltages for the microcomputer unit 23 and the wireless transmission unit 24 and applies them to the microcomputer unit 23 and the wireless transmission unit 24.
  • the microcomputer unit 23 acquires the charging voltage from the charging voltage measurement circuit 51.
  • the current transformer CT is not connected to the switching circuit 20 corresponding to the charging voltage measuring circuit 51 or the current transformer CT is connected. However, it is not attached to the power line PL, or the current transformer CT is connected and attached to the power line PL, but no current flows through the power line PL. In any case, it is not necessary to perform measurement based on the current from the switching circuit 20.
  • the switching instruction unit 31 omits the switching instruction for the switching circuit 20. Thereby, the measurement is not performed, and unnecessary power consumption and measurement time due to the measurement can be omitted. As a result, the device itself can be operated more reliably.
  • the microcomputer unit 23 selects the charging unit 50 to which power is to be supplied based on the charging voltage from the charging voltage measurement circuit 51, and power is supplied from the selected charging unit 50 to the DC / DC converter 53.
  • the switching circuit 52 is instructed to be supplied. Thereby, the electric power for operating each part of the electric current measurement unit 11 can be ensured reliably.
  • the switching instruction unit 31 determines whether or not to omit the switching instruction based on the charging voltage from the charging voltage measuring circuit 51, but the current transformer CT is connected to the switching circuit 20. Whether or not the switching instruction unit 31 omits the switching instruction may be determined based on whether or not the switching instruction is made. Further, in the present embodiment, in order to perform the operation control process as shown in FIG. 7, instead of measuring the voltage Vc of the storage capacitor C in step S10 of FIG. What is necessary is just to calculate the total value of charging voltage.
  • the microcomputer unit 23 of the current measurement unit 11 determines the timing of current measurement and wireless transmission of measurement data.
  • the reception unit 12 determines the timing, and the current measurement unit 11 11 may be transmitted.
  • the receiving unit 12 stores a log of measurement data, and since power is supplied from the outside, it can perform a detailed analysis of the measurement data and can determine the timing based on the analysis result. . As a result, the current measurement system 10 can be operated more reliably.
  • the current transformers CT1 to CT4 are attached to similar power lines PL1 to PL4.
  • any one of the current transformers CT may be attached to the main line. In this case, the amount of electricity stored in the power supply unit 21 can be increased, and the current measurement system 10 can be operated more reliably.
  • the receiving unit 12 analyzes the power consumption state of the power line PL and an operation program in a PLC (Programmable Logic Controller) connected to various electric devices, and estimates the electric device connected to the power line PL. May be.
  • PLC Programmable Logic Controller
  • the reception unit 12 uses a so-called “device separation technique” to estimate the electrical device connected to the power line PL from the time change of the measured value of the current of each power line PL and estimate You may estimate the time change of the power consumption of the electrical equipment.
  • the receiving unit 12 may calculate an approximate value of the power supplied via each power line PL from the effective value of the current from the current measuring unit 11 by setting the effective value and power factor of the voltage. Good.
  • the current measurement unit (voltage measurement unit, power measurement unit, power measurement device) 11 measures the voltage of the power line PL as described in Patent Document 2, thereby supplying power supplied through each power line PL.
  • the measured power, voltage, and power may be wirelessly transmitted to the receiving unit 12. That is, the present invention is also applicable to a power measurement system that measures the power supplied via each power line PL.
  • control blocks (particularly the microcomputer unit 23 and the logger unit 42) of the current measurement system 10 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or a CPU (Central Processing Unit). It may be realized by software using
  • the current measurement system 10 includes a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Memory) in which the program and various data are recorded so as to be readable by the computer (or CPU).
  • a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided.
  • the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • the switching circuit 20 may be omitted in the current measurement unit 11 of the above embodiment.
  • the microcomputer unit 23 measures the current flowing through the power line to which the current transformer is attached, based on the current from one of the current transformers CT, and uses this for each of the current transformers CT. What is necessary is just to control to repeat about. Specifically, the microcomputer unit 23 performs A / D conversion on a plurality of measurement signals from the measurement circuit 22 based on currents from the plurality of current transformers CT and transmits the measurement signals to the measurement unit 32. One of the A / D converters is turned on, while the remaining A / D converters are turned off, and this is repeated for each of the plurality of A / D converters.
  • the provision of the switching circuit 20 has the following merits rather than the omission of the switching circuit 20. That is, since current is prevented from flowing from the selected switching circuit 20 to the power supply unit 21, the current measurement accuracy in the measurement unit 32 is improved. Further, since current is prevented from flowing from the non-selection switching circuit 20 to the measurement circuit 22, the efficiency of power storage in the power supply unit 21 is improved.
  • the current measurement device is a current measurement device that measures the current flowing through the power line with a current transformer attached to the power line, and includes a plurality of the current transformers attached to the plurality of power lines.
  • a power storage unit that stores power using a current from a current transformer; a current measurement unit that measures a current flowing through the power line to which the current transformer is attached based on the current from each of the current transformers; and a plurality of the current transformers
  • a control unit that controls the current measurement unit to perform measurement based on a current from one of the transformers and to repeat the measurement for each of the plurality of current transformers, and includes the current measurement unit and the control unit.
  • the unit operates with electric power from the power storage unit.
  • the current measuring device control method is a current measuring device for measuring a current flowing through the power line by a current transformer attached to the power line, wherein the current measuring device is attached to the plurality of power lines.
  • a current measurement device comprising: a power storage unit that stores power using a current from a current transformer; and a current measurement unit that measures a current flowing through the power line to which the current transformer is attached based on the current from each current transformer.
  • a measurement step in which the current measurement unit performs measurement based on a current from one of the current transformers in order to operate the current measurement unit with electric power from the power storage unit, and the measurement step Is repeated for each of the plurality of current transformers.
  • the current measurement unit performs measurement based on the current from one of the plurality of current transformers, and controls this so as to be repeated for each of the plurality of current transformers.
  • the current measurement unit acquires a current from any of the plurality of current transformers, measures a current flowing through the power line to which the current transformer is attached based on the acquired current, and performs the measurement for the plurality of currents.
  • the power storage unit stores power using current from a plurality of current transformers attached to a plurality of power lines
  • the power storage unit stores power using current from one current transformer attached to one power line.
  • the amount of electricity stored is larger than Therefore, required power can be supplied from the power storage unit to the current measuring unit and the control unit, and the device itself can be operated reliably.
  • the measured value of the current includes the peak value, instantaneous value, phase, effective value, frequency, etc. of the current.
  • the power storage unit include a capacitor (capacitor) and a secondary battery (storage battery).
  • One power storage unit may be provided, or a plurality of power storage units may be provided for each current from the plurality of current transformers.
  • the current measuring device further includes a plurality of switching units for switching each of the current from the plurality of current transformers to flow through the power storage unit and the current measuring unit, the control unit, Selecting any one of the plurality of switching units, the selected switching unit causes the current to flow to the current measuring unit, while the non-selected switching unit causes the current to flow to the power storage unit, and the selection is performed to the plurality of the switching units. It is preferable to perform control so that each of the switching units is sequentially performed.
  • control unit may determine the frequency of selecting the switching unit corresponding to the power line according to the measured value of the current flowing through the power line measured by the current measuring unit. Good.
  • the frequency of selection when the measured value of the current is small the frequency of measurement of the current can be reduced, so that the measurement frequency according to the current flowing into the power storage unit can be set. it can. As a result, the device itself can be operated more reliably.
  • control unit may select the plurality of switching units in order from the smallest measured value of the current measured last time.
  • the power line with a small current measurement value measured last time is expected to have a small current measurement value in this measurement.
  • a power line with a large current measurement value measured last time is predicted to have a large current measurement value in the current measurement.
  • the current from the current transformer attached to the power line predicted to have a small current measurement value flows to the current measurement unit, while the current measurement value is predicted to be large to the power line. Since the current from the attached current transformer flows to the power storage unit, it is predicted that the amount of electricity is quickly accumulated in the power storage unit. As a result, required power can be reliably supplied from the power storage unit to the current measuring unit and the control unit, and the device can be operated more reliably.
  • the current measuring device further includes a voltage measuring unit that measures the value of the output voltage of the power storage unit, and the value of the output voltage measured by the voltage measuring unit is smaller than the first predetermined value.
  • the control unit may perform control so as to stop the measurement of the current measuring unit and stop the selection of the switching unit.
  • the measurement of the current measurement unit is stopped by the control unit, so that the current measurement unit performs measurement and the power storage It is possible to prevent the power supplied from the unit from becoming insufficient and the device itself from becoming inoperable. Furthermore, since the selection of the switching unit is stopped by the control unit, all the current from the plurality of current transformers flows to the power storage unit. Accordingly, since the amount of electricity is quickly accumulated in the power storage unit, it is possible to shorten the period until the measurement of the current measuring unit is restarted.
  • the current measurement device is a transmission unit that wirelessly transmits a measured value of the current flowing through the plurality of power lines measured by the current measurement unit to an external device, and operates with power from the power storage unit.
  • the output unit further includes a transmission unit, and the value of the output voltage measured by the voltage measurement unit is smaller than a second predetermined value that is larger than the first predetermined value, the control unit The wireless transmission may be controlled to stop.
  • the control unit stops the measurement of the current measurement unit and the wireless transmission of the transmission unit. Measurement is performed, and the transmission unit performs wireless transmission, so that it is possible to prevent the power supply from the power storage unit from being insufficient and the device itself from becoming inoperable.
  • the current measurement unit is measured by the control unit, while the transmission unit Wireless transmission is stopped. As a result, while the current measuring unit can perform measurement, the transmitter performs wireless transmission, so that the power supplied from the power storage unit becomes insufficient and the device itself becomes inoperable. Can be prevented.
  • the measured value of the current measured at this time is held in its own device, and when the value of the output voltage becomes equal to or higher than the second predetermined value, the current measured at this time What is necessary is just to radio-transmit a measured value and the measured value of the electric current measured and hold
  • a plurality of voltage measurement units are provided in each of the plurality of power storage units, and a total value of output voltages measured by the plurality of voltage measurement units is set to a first predetermined value and What is necessary is just to compare with a 2nd predetermined value.
  • control unit determines whether or not the current transformer is connected to each of the plurality of switching units, and the switching unit is not connected to the current transformer. The above selection may be omitted.
  • the power storage unit is a plurality of power storage units connected to the plurality of switching units, and a plurality of voltage measurement units that respectively measure the output voltage values of the plurality of power storage units.
  • the control unit omits the selection for the switching unit corresponding to the power storage unit whose output voltage value measured by the voltage measurement unit is zero or less than a predetermined value. Also good.
  • the current transformer When the output voltage of the power storage unit is zero or less than a predetermined value, the current transformer is not connected to the switching unit corresponding to the power storage unit or the current transformer is connected. Although not attached to the power line, or the current transformer is connected and attached to the power line, no current flows through the power line. In any case, it is not necessary to perform the measurement based on the current from the switching unit. Therefore, in the above case, since the selection of the switching unit corresponding to the corresponding power storage unit is omitted, the measurement based on the current from the switching unit is not performed, and wasteful power consumption and measurement time due to the measurement are reduced. Can be omitted. As a result, the device itself can be operated more reliably.
  • the current measurement device is a transmission unit that wirelessly transmits a measured value of the current flowing through the plurality of power lines measured by the current measurement unit to an external device, and operates with power from the power storage unit. It is preferable to further include a transmission unit.
  • the power storage unit can supply required power to the current measurement unit, the control unit, and the transmission unit.
  • the apparatus can be operated reliably.
  • the transmitting unit wirelessly transmits the measured values of the plurality of currents at once.
  • the power consumption can be suppressed compared to the case of individually transmitting by radio. Thereby, the own apparatus can be operated more reliably.
  • control unit may measure the current measurement value measured by the current measurement unit for each of the plurality of power lines, and the current measurement value wirelessly transmitted by the transmission unit immediately before. If the current value is within a predetermined range, the transmitter may be controlled so as to omit the wireless transmission of the current measured value.
  • the own apparatus can be operated more reliably.
  • the omission of the wireless transmission is performed for a long period, it is difficult to determine whether the measured value of the current flowing through the power line has not changed so much or becomes too small to be measured. Therefore, it is preferable to limit the period during which the wireless transmission is omitted to a predetermined period.
  • a power measuring device for measuring the power supplied via the power line the current measuring device having the above-mentioned configuration for measuring the current flowing through the power line by a plurality of current transformers respectively attached to the plurality of power lines. Based on the voltage measuring unit that measures the voltages of the plurality of power lines, the current measured by the current measuring device, and the voltage measured by the voltage measuring unit, the power supplied through the plurality of power lines is respectively If it is an electric power measurement apparatus provided with the electric power measurement part to measure, there can exist an effect similar to the above-mentioned.
  • the current measurement device may be realized by a computer.
  • a current that causes the computer to realize the current measurement device by operating the computer as each unit included in the current measurement device.
  • a control program for the measuring apparatus and a computer-readable recording medium on which the control program is recorded also fall within the scope of the present invention.
  • the present invention acquires a current from any one of a plurality of current transformers, measures a current flowing through a power line to which the current transformer is attached based on the acquired current, and performs the measurement on the plurality of current transformers.
  • the current measuring device can be reduced in size, and power can be stored by current from a plurality of current transformers attached to a plurality of power lines, so that the device can be operated reliably. Therefore, the present invention can be applied to any power measuring device that measures current with a current transformer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

 マイコン部(23)は、電源部(21)からの電力により動作する。マイコン部(23)は、複数の切替回路(20)の何れかを選択し、複数の変流器(CT)からの電流を、選択した切替回路(20)がマイコン部(23)に流す一方、非選択の切替回路(20)が電源部(21)に流し、当該選択を複数の切替回路(20)のそれぞれに対し次々に行うように制御する。

Description

電流測定装置、その制御方法、制御プログラム、並びに記録媒体、および電力測定装置
 本発明は、電力線に取り付けた変流器により上記電力線を流れる電流を測定する電流測定装置、その制御方法、制御プログラム、並びに記録媒体、および電力測定装置に関する。
 近時、産業界では、生産コストを削減するため、生産時に使用する各種電気機器の消費電力量(消費エネルギ)の削減(以下「省エネ」と略称する)が求められている。また、一般家庭においても、電気料金を削減するため、各種家電(家庭用電気機器)の省エネが求められている。
 一般に、省エネは、消費電力(使用電力)の実態を把握することから始まる。このため、工場、家屋などの建物における屋内配線または各種電気機器に電力計を設けて電力を測定することが考えられている。一般に、上記電力計における電流測定には、クランプ電流センサが利用されている。従来の電力測定装置または電流測定装置としては、特許文献1~3に記載のものが挙げられる。
 特許文献1に記載の電流計測装置は、電力線に設置されたCT(変流器)により系統電流を計測するものである。上記電流計測装置において、上記CTの二次側に設けられた電流計測演算・監視部の電源部には、上流側から、整流回路、定電圧DC出力回路、およびバックアップ電源回路が設けられ、上記定電圧DC出力回路または上記バックアップ電源回路の出力電圧を所定レベルに変換して上記電流計測演算・監視部に電力を供給するレベル変換回路が設けられている。上記定電圧DC出力回路の出力電圧の低下時には、上記バックアップ電源回路により電力が供給されることにより、単一のCTによる電流計測と電力供給とを実現している。
 また、特許文献2に記載の電力計測装置は、3相4線式電源で駆動される計測対象の機器に組み込まれるものである。上記電力計測装置において、電圧測定回路は、変圧器を持たず、抵抗分圧回路で構成されており、上記3相4線式電源の中性線を除く各相の3つの電源線へ接続される。一方、電流測定回路は、上記3つの電源線へカレントトランスで電磁結合している。上記機器の電源部にて生成された電力は、コネクタ等のインターフェースを介して受電回路に入力され、該受電回路から上記電力計測装置の各部に電力が供給されて、該電力計測装置の動作が開始する。
 上記電圧測定回路は、上記中性線と3相の上記電源線との各電圧を計測し、上記電流測定回路は、上記カレントトランスにより3相の各電流を計測する。上記電圧測定回路および上記電流測定回路の測定結果であるアナログ出力は、A/D変換器にてディジタル化され、該A/D変換器の結果を用いて演算部にて、相電圧、相電流、相電力、全電力等の演算が行われる。該演算部の結果は、通信回路に入力され、該通信回路からコネクタ等のインターフェースを介して上記機器に伝送する。
 また、特許文献3に記載の電力使用状況提供装置では、交流電力機器における1本の電力線に3つのコアコイルが設けられ、電力計測部は、第1のコアコイルが生成する誘導起電力を用いて、上記交流電力機器の使用電力を算出する。また、計測電力生成部は、第2のコアコイルが生成する誘導起電力、または一次電池により、上記電力計測部に電力を供給する。また、通信部は、第3のコアコイルが生成する誘導起電力、または上記一次電池を用いて、上記使用電力を他の通信機器へ送信する。上記使用電力の算出および送信を断続的に行うことによって、電磁誘導による電力供給であっても、長期間、安定した使用電力の算出および送信を実現することができる。
日本国公開特許公報「特開2002-131344号(2002年05月09日公開)」 日本国公開特許公報「特開2010-261852号(2010年11月18日公開)」 日本国公開特許公報「特開2013-124864号(2013年06月24日公開)」
 しかしながら、特許文献1の電流計測装置では、上記CTを設置した電力線を流れる電流が小さいと、上記バックアップ電源回路への充電速度が遅く、測定できなかったり、或いは、測定可能となるまでの期間が長くなったりする。また、特許文献2の電力計測装置では、外部電源を必要とするため、設置場所に制約をうけることになる。また、特許文献3の電力使用状況提供装置では、1つの電力線に対し、電力計測用、電力生成用、および通信用の3つのコアコイルが設けられるため、製造コストが増加し、装置のサイズが増大することになる。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、電力線に取り付けた変流器により上記電力線を流れる電流を測定する電流測定装置について、サイズの小型化を図ると共に、上記変流器からの電流により確実に動作させることにある。
 本発明に係る電流測定装置は、電力線に取り付けた変流器により上記電力線を流れる電流を測定する電流測定装置であって、上記課題を解決するために、複数の上記電力線にそれぞれ取り付けられた複数の上記変流器からの電流により蓄電を行う蓄電部と、上記各変流器からの電流に基づき、当該変流器が取り付けられた上記電力線を流れる電流を測定する電流測定部と、複数の上記変流器の1つからの電流に基づき上記電流測定部が測定を行い、これを、複数の上記変流器のそれぞれについて繰り返すように制御する制御部とを備えており、上記電流測定部および上記制御部は、上記蓄電部からの電力により動作することを特徴としている。
 また、本発明に係る電流測定装置の制御方法は、電力線に取り付けた変流器により上記電力線を流れる電流を測定する電流測定装置であって、複数の上記電力線にそれぞれ取り付けられた複数の上記変流器からの電流により蓄電を行う蓄電部と、上記各変流器からの電流に基づき、当該変流器が取り付けられた上記電力線を流れる電流を測定する電流測定部とを備える電流測定装置の制御方法において、上記課題を解決するために、上記電流測定部を上記蓄電部からの電力により動作させるために、複数の上記変流器の1つからの電流に基づき上記電流測定部が測定を行う測定ステップと、該測定ステップを、複数の上記変流器のそれぞれについて繰り返す繰返ステップとを含むことを特徴としている。
 本発明は、複数の変流器の何れかからの電流を取得し、取得した電流に基づき、当該変流器が取り付けられた電力線を流れる電流を測定し、該測定を上記複数の変流器のそれぞれに対し次々に行うので、電流測定装置のサイズを小型化できると共に、複数の電力線にそれぞれ取り付けられた複数の変流器からの電流により蓄電を行うので、自装置を確実に動作させることができるという効果を奏する。
本発明の一実施形態である電流測定システムにおける電流測定ユニットの概略構成を示すブロック図である。 電流測定システムの概略構成を示すブロック図である。 上記電流測定ユニットにおいて、切替回路の切替動作と、マイコン部および無線送信部の動作との時間変化を示すタイムチャートである。 本発明の別の実施形態である電流測定システムにおける電流測定ユニットの概略構成を示すブロック図である。 上記電流測定ユニットにおける切替回路、電源部、および計測回路の詳細を示す回路図である。 上記電流測定ユニットにおける記憶部に記憶された、電流の測定値および変流器の番号の対応テーブルを表形式で示す図である。 本発明のさらに別の実施形態である電流測定システムにおける電流測定ユニットのマイコン部における動作制御処理の流れを示すフローチャートである。 上記電流測定ユニットにおいて、マイコン部および無線送信部の動作と蓄電用キャパシタの電圧との時間変化を示すタイムチャートである。 本発明のさらに別の実施形態である電流測定システムにおける電流測定ユニットのマイコン部における電流測定処理の流れを示すフローチャートである。 本発明のさらに別の実施形態である電流測定システムにおいて、電流の実効値と測定頻度との対応関係を示すグラフである。 本発明の他の実施形態である電流測定システムにおける電流測定ユニットの概略構成を示すブロック図である。
 以下、本発明の実施の形態について、詳細に説明する。なお、説明の便宜上、各実施形態に示した部材と同一の機能を有する部材については、同一の符号を付記し、適宜その説明を省略する。
 〔実施の形態1〕
 (電流測定システムの概要)
 まず、本発明の一実施形態について図1~図3を参照して説明する。図2は、本実施形態である電流測定システムの概略構成を示すブロック図である。
 図2に示すように、電流測定システム10は、分電盤PB内に設置された複数の電力線PL1~PL4にそれぞれ取り付けた変流器(変成器)CT1~CT4により、複数の電力線PL1~PL4を流れる電流の実効値I1e~I4eをそれぞれ測定して表示するものである。電流測定システム10は、電流測定ユニット(電流測定装置)11と受信ユニット12とを備える構成である。なお、以下では、電力線PL1~PL4、変流器CT1~CT4、および電流の実効値I1e~I4eを総称する場合には、それぞれ、「電力線PL」、「変流器CT」、および「電流の実効値Ie」と記載する。
 変流器CTは、或る電力線PLに取り付けられ、該電力線PLを流れる交流電流の一部(例えば0A~5A)を取り出すものである。なお、変流器CTの構造は周知であるので、その説明を省略する。
 電流測定ユニット11は、分電盤PB内に設けられ、同じく分電盤PB内に設置された複数の電力線PL1~PL4にそれぞれ取り付けた変流器CT1~CT4からの電流に基づき、当該電力線PL1~PL4を流れる電流の実効値I1e~I4eをそれぞれ測定するものである。電流測定ユニット11は、測定した電流の実効値I1e~I4eを示す測定データを受信ユニット12に無線送信する。
 受信ユニット12は、電流測定ユニット11からの測定データを無線で受信し、受信した測定データを保存すると共に、該測定データが示す測定値(電流の実効値I1e~I4e)を表示するものである。なお、受信ユニット12の詳細については後述する。
 (電流測定ユニットの詳細)
 次に、電流測定ユニット11の詳細について説明する。図1は、電流測定ユニット11の概略構成を示すブロック図である。図示のように、電流測定ユニット11は、複数の切替回路(切替部)20a~20d、電源部(蓄電部)21、計測回路22、マイコン部23、および無線送信部(送信部)24を備える構成である。
 複数の切替回路20a~20dは、それぞれ、変流器CT1~CT4に電気的に接続されている。なお、以下では、複数の切替回路20a~20dを総称する場合には、「切替回路20」と記載する。
 切替回路20は、マイコン部23からの指示に基づき、変流器CTからの電流を、電源部21および計測回路22の何れに流すかを切り替えるものである。切替回路20は、スイッチング素子などによって構成される。
 電源部21は、自機である電流測定ユニット11における各部(特に、マイコン部23および無線送信部24)に電力を供給するものである。本実施形態では、電源部21は、変流器CTから切替回路20を介して流れる電流により、蓄電を行っている。電源部21は、整流回路、キャパシタ、DC/DC変換回路などによって構成される。なお、キャパシタ(蓄電器)の代わりに二次電池(蓄電池)を用いてもよい。また、電源部21は、1個のキャパシタ(蓄電部)または二次電池(蓄電部)でもよいし、複数個のキャパシタまたは複数個の二次電池でもよいし、キャパシタおよび二次電池の組合せでもよい。
 計測回路22は、変流器CTから切替回路20を介して流れる電流を計測するものである。計測回路22は、計測した上記電流を示す計測信号をマイコン部23に送信する。計測回路22は、上記電流が流れる計測用抵抗、該計測用抵抗の電圧を増幅するオペアンプなどによって構成される。
 マイコン部23は、マイクロプロセッサおよびメモリを含むマイクロコンピュータを備える構成であり、電流測定ユニット11内における各種構成の動作を統括的に制御するものである。上記各種構成の動作制御は、上記メモリに格納された制御プログラムを上記マイクロプロセッサに実行させることによって行われる。
 本実施形態では、マイコン部23は、計測回路22からの計測信号に基づき、変流器CTが取り付けられた電力線PLを流れる電流を測定するものである。さらに、本実施形態では、マイコン部23は、複数の切替回路20の何れかを選択し、選択した切替回路20が、変流器CTからの電流を計測回路22に流す一方、残り(非選択)の切替回路20が、変流器CTからの電流を電源部21に流すように制御し、これを、複数の切替回路20のそれぞれに対し次々に行うように制御する。
 これにより、変流器CTからの電流を計測する計測回路22と、変流器CTが取り付けられた電力線PLを流れる電流を測定するマイコン部23とのそれぞれは、1個でよく、複数個を備える必要がない。その結果、電流測定ユニット11のサイズを小型化することができる。
 また、複数の電力線PL1~PL4にそれぞれ取り付けられた複数の変流器CT1~CT4からの電流により、電源部21の蓄電が行われる。この場合、1本の電力線PLに流れている電流の値が、電源部21にて充電可能な閾値以下である確率がp(0<p<1)とすると、N本の電力線PL1~PLNに流れている電流の値が、全て、上記閾値以下である確率は、pとなり、上記1本の電力線PLの場合の確率pよりも小さくなる。また、1本の電力線PLから得られる電力の期待値をSとすると、N本の電力線PLから得られる電力の期待値は、N×Sとなり、上記1本の電力線PLの場合に比べて大きくなる。
 従って、1本の電力線PLに取り付けられた変流器CTにより蓄電される電気量よりも、複数本の電力線PL1~PL4にそれぞれ取り付けられた複数の変流器CT1~CT4により蓄電される電気量の方が多くなることが予測される。これにより、電源部21からマイコン部23および無線送信部24に所要の電力を供給することができ、自装置である電流測定ユニット11を確実に動作させることができる。
 無線送信部24は、マイコン部23にて測定された複数の電流の測定値を含む測定データを、無線送信に適した形式に変更して、受信ユニット12に無線送信するものである。この無線送信は、例えば、ZigBee(登録商標)、Bluetooth(登録商標)などの低消費電力の無線通信技術を用いて行われる。無線送信部24は、変復調回路、RF(Radio Frequency)回路などを備える構成である。
 本実施形態では、無線送信部24は、マイコン部23が測定した、複数の電力線PL1~PL4を流れる電流の測定値を一括して無線送信している。この場合、個別に無線送信する場合に比べて、消費電力量を抑えることができるので、自装置である電流測定ユニット11をさらに確実に動作させることができる。
 これについて、より具体的に説明する。無線送信部24における無線送信の処理は、概略的には、起動・終了処理、接続・切断処理、およびデータの送信処理に分けることができ、該データの送信処理は、測定値以外のデータの送信処理と、測定値のデータの送信処理とに分けることができる。上記起動・終了処理、上記接続・切断処理、上記測定値以外のデータの送信処理、および上記測定値のデータの送信処理における消費電力量(消費エネルギ)を、それぞれ、E1、E2、E31、およびE32とする。
 N本の電力線PLを流れる電流の測定値を個別に送信する場合、消費電力量Esは、Es=(E1+E2+E31+E32)×N、となる。一方、N本の電力線PLを流れる電流の測定値を一括して送信する場合、消費電力量Ebは、Eb=E1+E2+E31+(E32×N)、となる。従って、Es-Eb=(E1+E2+E31)×(N-1)となり、Nが複数であれば、一括して無線送信する方が、個別に無線送信するよりも消費電力量が少なくて済むことが理解できる。
 (マイコン部の詳細)
 次に、マイコン部23の詳細について説明する。図1に示すように、マイコン部23は、記憶部30、切替指示部(制御部)31、測定部(電流測定部)32、およびデータ送出部33を備える構成である。記憶部30は、上記メモリに該当するものであり、記憶部30に格納されたプログラムを上記マイクロプロセッサに実行させることにより、測定部32、切替指示部31、およびデータ送出部33の各機能を実現する。
 記憶部30は、フラッシュメモリ、ROM(Read Only Memory)などの不揮発性の記憶装置と、RAM(Random Access Memory)などの揮発性の記憶装置とによって構成されるものである。不揮発性の記憶装置に記憶される内容としては、上記した制御プログラム、OS(operating system)プログラム、その他の各種プログラム、各種設定値などが挙げられる。一方、揮発性の記憶装置に記憶される内容としては、作業用ファイル、テンポラリファイルなどが挙げられる。
 切替指示部31は、切替回路20が、変流器CTからの電流を、電源部21および計測回路22の何れに流すかを切り替えるように、切替回路20に指示するものである。この切替指示の詳細については、後述する。
 測定部32は、計測回路22からの計測信号に基づき、該当する変流器CTが取り付けられた電力線PLを流れる電流を測定するものである。測定部32は、測定した電流の測定値をデータ送出部33に送出する。測定される電流の物理量としては、当該電流のピーク値、瞬間値、位相、実効値、周波数などが挙げられ、実施例では実効値である。
 具体的には、まず、変流器CTから流れる電流を示す計測信号をサンプリングし、これを、所定の波形(通常は正弦波)にフィッティングすることにより、当該電流の振幅および特定し、当該電流の振幅から当該電流の実効値を算出する。次に、算出した、変流器CTから流れる電流の実効値から、記憶部30に記憶された、変流器CTの1次側巻数および2次側巻数の巻数比を用いて、当該変流器CTが取り付けられた電力線PLを流れる電流の実効値Ieを算出する。
 データ送出部33は、測定部32からの電流の測定値を無線送信部24に送信するものである。
 次に、切替指示部31における切替指示の詳細について説明する。図3は、変流器CT1~CT4のための切替回路20a~20d(以下、それぞれ、CT1用切替回路20a~CT4用切替回路20dと称する。)における切替動作と、マイコン部23および無線送信部24の動作との時間変化を示すタイムチャートである。なお、図示の例では、切替回路20は、通常は、変流器CTからの電流を電源部21に流すようになっており、マイコン部23からの切替指示があった場合にのみ、上記電流を計測回路22に流すようになっている。
 図3に示すように、まず、マイコン部23の切替指示部31は、CT1用切替回路20aを選択し、選択した切替回路20aに対し切替指示を行う。これにより、変流器CT1からの電流は、切替回路20aを介して計測回路22に流れて、計測回路22にて計測され(計測1)、その結果、変流器CT1が取り付けられた電力線PL1を流れる電流の実効値I1eがマイコン部23にて測定される(測定1)。一方、他の変流器CT2~CT4からの電流は、切替回路20b~20dを介して電源部21に流れて蓄電される(充電)。
 次に、マイコン部23の切替指示部31は、CT2用切替回路20bを選択し、選択した切替回路20bに対し切替指示を行う。これにより、変流器CT2からの電流は、切替回路20bを介して計測回路22に流れて、計測回路22にて計測され(計測2)、その結果、変流器CT2が取り付けられた電力線PL2を流れる電流の実効値I2eがマイコン部23にて測定される(測定2)。一方、他の変流器CT1・CT3・CT4からの電流は、切替回路20a・20c・20dを介して電源部21に流れて蓄電される(充電)。
 以下、CT3用切替回路20cおよびCT4用切替回路20dのそれぞれについても同様に選択する。これにより、変流器CT1~CT4がそれぞれ取り付けられた電力線PL1~PL4を流れる電流の実効値I1e~I4eが測定される(測定1~測定4)。
 次に、無線送信部24が起動し、マイコン部23にて測定された電流の実効値I1e~I4eを一括して無線送信する(送信1)。このとき、切替指示部31は、何れの切替回路20にも切替指示を行っていないので、全ての変流器CT1~CT4からの電流は、切替回路20a~20dを介して電源部21に流れて蓄電される(充電)。
 次に、所定の期間が経過するまで、マイコン部23および無線送信部24は、動作を停止する(スリープ(Sleep)モード)。これにより、消費電力を低減することができる。また、全ての変流器CT1~CT4からの電流は、切替回路20a~20dを介して電源部21に流れて蓄電される(充電)。その後、上記動作を繰り返す。
 なお、本実施形態では、電流の実効値を測定しているが、電流のピーク値、瞬間値、位相、周波数など、電流に関する任意の物理量を測定してもよい。また、フィッティングする波形としては、正弦波以外にも、鋸歯状波、三角波など、任意の波形を利用することができる。
 (受信ユニットの詳細)
 次に、受信ユニット12の詳細について説明する。図2に示すように、受信ユニット12は、受信部40、ロガー部42、記録部43、および表示部44を備える構成である。なお、受信ユニット12は、外部から電力が供給される。
 受信部40は、電流測定ユニット11から無線送信された測定データを受信するものであり、変復調回路、RF回路などを備える構成である。受信部40は、受信した測定データをロガー部42に送出する。
 操作部41は、ユーザの操作により該ユーザからの各種の入力を受け付けるものであり、入力用ボタン、その他の操作デバイスによって構成されている。操作部41は、ユーザが操作した情報を操作データに変換してロガー部42に送出する。なお、操作デバイスの他の例としては、タッチパネルと、キーボードと、テンキーと、マウスなどのポインティングデバイスとが挙げられる。
 ロガー部42は、受信部40からの測定データを、時系列に従って記録部43に書き込むものである。なお、ロガー部42は、上記測定データを測定時刻と共に記録部43に書き込むことが望ましい。上記測定時刻は、電流測定ユニット11から測定データと共に受信してもよいし、該測定データを受信した時刻を測定時刻としてもよい。
 また、ロガー部42は、受信部40からの測定データが示す測定値(電流の実効値I1e~I4e)を、表示部44を介して表示出力させる。また、ロガー部42は、ユーザから操作部41を介しての指示に基づき、記録部43から測定データを読み出して、表示部44を介して表示出力させることが望ましい。
 記録部43は、ロガー部42からの測定データを記録するものであり、例えば、EEPROM(Electrically Erasable Programmable ROM、登録商標)、フラッシュメモリなど、読み書き可能な不揮発性メモリなどによって構成される。なお、記録部43は、記録された測定データを外部のPC(Personal Computer)などで利用できるように、着脱可能な記録媒体であることが望ましい。
 表示部44は、ロガー部42からの測定データを表示するものである。表示部44は、セグメント型表示素子、ビットマップ型表示素子などの表示素子によって構成される。
 なお、受信ユニット12は、LAN(Local Area Network)に接続可能なネットワークI/F(interface)を備えることが望ましい。この場合、記録部43に記録された測定データを、上記LANを介して、外部の情報処理装置に送信することができる。
 〔実施の形態2〕
 次に、本発明の別の実施形態について、図4~図6を参照して説明する。本実施形態の電流測定システム10は、図2に示す電流測定システム10に比べて、電流測定ユニット11の構成および動作が異なり、その他の構成は同様である。
 図4は、本実施形態における電流測定ユニット11の概略構成を示すブロック図である。図4に示す電流測定ユニット11は、図1に示す電流測定ユニット11に比べて、切替回路20ごとに計測回路22が設けられている点と、マイコン部23の動作とが異なり、その他の構成は同様である。本実施形態のように、計測回路22は、切替回路20ごとに設けることができる。
 図5は、電流測定ユニット11における切替回路20、電源部21、および計測回路22の詳細を示す回路図である。図示において、ノイズ除去用コイルL1と、スイッチング用抵抗R3・R4と、TFT(Thin Film Transistor)であるスイッチング素子TR1・TR2とが切替回路20を構成し、ダイオードブリッジである整流回路D1~D4と、蓄電用キャパシタCとが電源部21を構成し、計測用抵抗R1・R2が計測回路22と構成する。なお、蓄電用キャパシタC以外の部品は、変流器CT1~CT4ごとに設けられる。
 マイコン部23の切替指示部31からの切替指示SWを受け取らない場合、スイッチング素子TR1・TR2がオフになり、変流器CTからの電流は、ノイズ除去用コイルL1にて高周波ノイズが除去され、整流回路D1~D4にて整流された後、蓄電用キャパシタCにて蓄電される。一方、切替指示部31からの切替指示SWを受け取ると、スイッチング素子TR1・TR2がオンになり、変流器CTからの電流は、ノイズ除去用コイルL1にて高周波ノイズが除去され、計測用抵抗R1・R2にて電圧に変換される。そして、計測用抵抗R1・R2の両端の電圧は、該両端に設けられた計測用出力端子Mesure+・Mesure-から、差動増幅回路にて増幅されて、マイコン部23に入力される。
 また、本実施形態のマイコン部23は、図1に示すマイコン部23に比べて、記憶部30、切替指示部31、および測定部32の動作が異なり、その他の構成は同様である。
 本実施形態の測定部32および記憶部30は、図1に示す測定部32および記憶部30に比べて、電流の測定値(実効値I1e~I4e)を、対応する変流器CTの番号と共に記憶部30にさらに記憶する点が異なり、その他の構成は同様である。図6は、記憶部30に記憶された、電流の測定値および変流器CTの番号の対応テーブルを表形式で示す図である。
 本実施形態の切替指示部31は、図1に示す切替指示部31に比べて、切替指示の動作が異なり、その他の構成は同様である。本実施形態の切替指示部31は、記憶部30の対応テーブルを参照して、前回計測した測定値の小さい方から、切替回路20を選択している。図6の例の場合、切替指示部31は、CT4用切替回路20d、CT2用切替回路20b、CT1用切替回路20a、およびCT3用切替回路20cの順番で選択することになる。
 通常、前回測定された電流の実効値Ieが小さい電力線PLは、今回の測定においても当該電流の実効値Ieが小さいと予測される。同様に、前回測定された電流の実効値Ieが大きい電力線PLは、今回の測定においても当該電流の実効値Ieが大きいと予測される。
 従って、上記の構成によると、電流の実効値Ieが小さいと予測される電力線PLに取り付けられた変流器CT(図6の例ではCT4)からの電流が、切替回路20を介して計測回路22に流れる一方、電流の実効値Ieが大きいと予測される電力線PLに取り付けられた変流器CT(図6の例ではCT1~CT3)からの電流が電源部21に流れることになる。これにより、電源部21に電気量が迅速に蓄積されると予測される。その結果、電源部21からマイコン部23および無線送信部24に所要の電力を確実に供給することができ、自装置をさらに確実に動作させることができる。
 〔実施の形態3〕
 次に、本発明のさらに別の実施形態について、図7・図8を参照して説明する。本実施形態の電流測定システム10は、図2に示す電流測定システム10に比べて、電流測定ユニット11におけるマイコン部23および無線送信部24の動作が異なり、その他の動作は同様である。
 本実施形態の電流測定ユニット11は、図4および図5に示す電流測定ユニット11に比べて、電源部21における蓄電用キャパシタC(図5)の電圧(出力電圧)Vcに基づいて、マイコン部23および無線送信部24の動作を制御する点が異なり、その他の動作は同様である。
 図7は、本実施形態のマイコン部23における動作制御処理の流れを示すフローチャートである。図示のように、まず、蓄電用キャパシタCの電圧Vcを測定する(S10)。上記電圧Vcが2.5V(第1の所定値)未満である場合(S11)、マイコン部23における電流の測定と、無線送信部24における無線送信とは実行せずに、スリープモードに移行する(S16)。
 これにより、マイコン部23における電流の測定と、無線送信部24における無線送信とを実行することにより、蓄電用キャパシタCから供給される電力が不足し、マイコン部23および無線送信部24が動作不能に陥ることを防止することができる。また、マイコン部23の切替指示部31による切替指示も停止するので、複数の変流器CT1~CT4からの電流は、全て蓄電用キャパシタCに流れる。従って、蓄電用キャパシタCに電気量が迅速に蓄積されるので、マイコン部23および無線送信部24の動作を再開するまでの期間を短くすることができる。
 一方、上記電圧Vcが2.5V以上3.0V(第2の所定値)未満である場合(S11)、マイコン部23における電流の測定を実行するが(S12)、無線送信部24における無線送信は実行せずに、測定データを保持する(S13)。その後、スリープモードに移行する(S16)。
 これにより、無線送信部24における無線送信を実行することにより、蓄電用キャパシタCから供給される電力が不足し、マイコン部23および無線送信部24が動作不能に陥ることを防止することができる。なお、当該測定データは、マイコン部23の記憶部30に保持してもよいし、無線送信部24の記憶部(図示せず)に記憶してもよい。また、上記測定データは、その後に測定される測定データと混同しないように、時刻情報、シーケンス番号、未送信フラグなどを付加することが望ましい。
 一方、上記電圧Vcが3.0V以上である場合(S11)、マイコン部23における電流の測定を実行し(S14)、無線送信部24における測定データの無線送信を実行する(S15)。このとき、無線送信部24は、未送信の測定データの無線送信も実行する。その後、スリープモードに移行する(S16)。
 スリープモード(S16)に移行した後、所定期間が経過すると(S17)、再びステップS10に戻って上記動作を繰り返す。
 図8は、本実施形態におけるマイコン部23および無線送信部24の動作と蓄電用キャパシタCの電圧Vcとの時間変化を示すタイムチャートである。図示のように、1回目の測定周期(M1)が開始されると、上記電圧Vcが3Vであるので、マイコン部23は、電流の測定を実行し(測定1~測定4)、無線送信部24は、測定データの無線送信を実行し(送信)、その後にスリープモードに移行する(Sleep)。次に、2回目の測定周期(M2)が開始されると、上記電圧Vcが約1.5Vであるので、マイコン部23は、電流の測定を実行せず、無線送信部24は、測定データの無線送信を実行せずに、スリープモードに移行する(Sleep)。
 次に、3回目の測定周期(M3)が開始されると、上記電圧Vcが2.5Vであるので、マイコン部23は、電流の測定を実行する一方(測定1~測定4)、無線送信部24は、測定データの無線送信を実行せず、測定データが保持される(保持)。その後にスリープモードに移行する(Sleep)。次に、4回目の測定周期(M4)が開始されると、上記電圧Vcが約2Vであるので、マイコン部23は、電流の測定を実行せず、無線送信部24は、測定データの無線送信を実行せずに、スリープモードに移行する(Sleep)。
 そして、5回目の測定周期が開始されると、上記電圧Vcが約3Vであるので、1回目の測定周期と同様の動作を行う。このとき、無線送信部24は、3回目の測定周期に測定された測定データと、今回(5回目)の測定周期に測定された測定データとをまとめて送信する。
 〔実施の形態4〕
 次に、本発明のさらに別の実施形態について、図9を参照して説明する。本実施形態の電流測定システム10は、図2に示す電流測定システム10に比べて、電流測定ユニット11におけるマイコン部23の動作が異なり、その他の動作は同様である。
 本実施形態のマイコン部23は、図4に示すマイコン部23に比べて、測定した電流の測定値が、前回無線送信した測定値から所定範囲内であり、かつ、前回無線送信した時刻から所定期間内である場合に、測定した電流の測定値の無線送信を省略する点が異なり、その他の構成は同様である。
 これにより、上記電流の測定値がさほど変化しない場合には、当該測定値の無線送信が省略されるので、全ての電流の測定値を無線送信する場合に比べて、消費電力量を抑えることができる。これにより、自装置をさらに確実に動作させることができる。また、上記測定値の無線送信が連続して省略されても、所定期間が経過すれば上記測定値の無線送信が実行される。これにより、受信ユニット12は、電力線PLを流れる電流の測定値が、さほど変化していないのか、或いは、小さくなりすぎて、測定不能となったのかを判別することができる。
 図9は、本実施形態のマイコン部23における電流測定処理の流れを示すフローチャートである。図示のように、測定部32が、或る電力線PLの電流を測定し(S20)、今回の測定値と、前回送出した測定値との差が所定範囲内であるか否かを判定する(S21)。所定範囲内である場合、カウンタ(図示せず)のカウントを増分し(S22)、該カウントは所定値以上であるか否かを判定する(S23)。
 上記差が所定範囲内ではなく(S21でNO)、或いは、上記カウントが所定値以上である場合(S23でYES)、データ送出部33が今回の測定値を無線送信部24に送出すると共に、記憶部30の測定値を更新する(S24)。これにより、今回の測定値が無線送信される。次に、上記カウンタのカウントをリセットし(S25)、ステップS26に進む。
 一方、上記差が所定範囲内であり、かつ、上記カウントが所定値未満である場合(S23でNO)、そのままステップS26に進む。これにより、今回の測定値の無線送信が省略される。
 ステップS26において、全ての電力線PLの電流を測定していない場合、ステップS20に戻って上記動作を繰り返す一方、測定した場合、今回の測定周期における測定を終了する。
 〔実施の形態5〕
 次に、本発明のさらに別の実施形態について、図10を参照して説明する。本実施形態の電流測定システム10は、図2に示す電流測定システム10に比べて、電流測定ユニット11におけるマイコン部23の動作が異なり、その他の動作は同様である。
 本実施形態のマイコン部23は、図4に示すマイコン部23に比べて、図6に示す対応テーブルを参照して、各電力線PLを流れる電流を測定する頻度を決定する点が異なり、その他の構成は同様である。
 図10は、電流の実効値(測定値)と測定頻度との対応関係を示すグラフである。図示のように、電流の実効値が増加するにつれて、測定頻度を増加し、電流の実効値が設定値以上になると、毎回測定するようになっている。例えば、電流の実効値が設定値の1/5である場合、測定頻度は1/2であり、2回の測定周期のうち、1回測定を行うことになる。これにより、電源部21に流れ込む電流の量に応じた測定頻度となる。その結果、自装置をさらに確実に動作させることができる。
 〔実施の形態6〕
 次に、本発明の他の実施形態について、図11を参照して説明する。本実施形態の電流測定システム10は、図2に示す電流測定システム10に比べて、電流測定ユニット11における電源部21の構成と、マイコン部23の動作とが異なり、その他の構成および動作は同様である。
 図11は、本実施形態における電流測定ユニット11の概略構成を示すブロック図である。図示のように、電源部21は、複数の充電部50、複数の充電電圧計測回路(電圧測定部)51、切替回路52、およびDC/DCコンバータ53を備える構成である。
 複数の充電部50は、それぞれ、複数の切替回路20からの電流を充電するものである。充電部50は、キャパシタまたは二次電池を備える構成である。複数の充電電圧計測回路51は、それぞれ、複数の充電部50の充電電圧(出力電圧)を計測するものである。充電電圧計測回路51は、計測した充電電圧をマイコン部23に送出する。
 切替回路52は、マイコン部23からの指示に基づき、複数の充電部50の何れかからの電力をDC/DCコンバータ53に供給するように切り替えるものである。DC/DCコンバータ53は、切替回路52からの直流電圧をマイコン部23および無線送信部24のそれぞれの駆動電圧に変換して、マイコン部23および無線送信部24に印加するものである。
 本実施形態では、マイコン部23は、充電電圧計測回路51からの充電電圧を取得する。取得した充電電圧がゼロ、或いは所定値以下である場合としては、当該充電電圧計測回路51に対応する切替回路20に対し、変流器CTが接続されていないか、変流器CTが接続されているが電力線PLに取り付けられていないか、或いは、変流器CTが接続され電力線PLに取り付けられているが、電力線PLに電流が流れていない場合が考えられる。何れの場合でも、当該切替回路20からの電流に基づく測定を行う必要がない。
 そこで、本実施形態では、上記の場合に、当該切替回路20に対し、切替指示部31は切替指示を省略している。これにより、上記測定は行われず、該測定による無駄な電力消費および測定時間を省略することができる。その結果、自装置をさらに確実に動作させることができる。
 また、本実施形態では、マイコン部23は、充電電圧計測回路51からの充電電圧に基づいて、電力供給すべき充電部50を選択し、選択した充電部50からDC/DCコンバータ53に電力が供給されるように切替回路52に指示している。これにより、電流測定ユニット11の各部を動作させるための電力を確実に確保することができる。
 なお、本実施形態では、充電電圧計測回路51からの充電電圧に基づいて、切替指示部31が切替指示を省略するか否かを判断しているが、切替回路20に変流器CTが接続されているか否かに基づいて、切替指示部31が切替指示を省略するか否かを判断してもよい。また、本実施形態において、図7に示すような動作制御処理を行うには、同図のステップS10において、蓄電用キャパシタCの電圧Vcを測定する代わりに、複数の充電電圧計測回路51からの充電電圧の合計値を算出すればよい。
 〔変形例1〕
 なお、上記実施形態では、電流の測定と測定データの無線送信とのタイミングを、電流測定ユニット11のマイコン部23が決定しているが、当該タイミングを受信ユニット12が決定して、電流測定ユニット11に送信してもよい。受信ユニット12は、測定データのログを記憶し、外部から電力が供給されているので、測定データの詳細な解析を行うことができ、その解析結果に基づいて、上記タイミングを決定することができる。その結果、電流測定システム10をさらに確実に動作させることができる。
 〔変形例2〕
 また、上記実施形態では、同じような電力線PL1~PL4に変流器CT1~CT4を取り付けているが、変流器CTの何れか1つを主幹ラインに取り付けてもよい。この場合、電源部21に蓄電される電気量を増加することができ、電流測定システム10をさらに確実に動作させることができる。
 〔変形例3〕
 また、受信ユニット12は、電力線PLの消費電力の状況と、各種電気機器に接続されたPLC(Programmable Logic Controller)における動作プログラムとを分析して、当該電力線PLに接続された電気機器を推定してもよい。
 また、受信ユニット12は、いわゆる「機器分離技術」を利用することにより、測定された各電力線PLの電流の測定値の時間変化から、当該電力線PLに接続された電気機器を推定すると共に、推定した電気機器の消費電力の時間変化を推定してもよい。
 〔変形例4〕
 また、受信ユニット12は、電圧の実効値および力率を設定することにより、電流測定ユニット11からの電流の実効値から、各電力線PLを介して供給される電力の概算値を算出してもよい。また、電流測定ユニット(電圧測定部、電力測定部、電力測定装置)11は、特許文献2に記載のように、電力線PLの電圧を測定することにより、各電力線PLを介して供給される電力を測定し、測定した電力、電圧、および電力を受信ユニット12に無線送信してもよい。すなわち、本発明は、各電力線PLを介して供給される電力を測定する電力測定システムにも適用可能である。
 〔ソフトウェアによる実現例〕
 電流測定システム10の制御ブロック(特にマイコン部23およびロガー部42)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、電流測定システム10は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 例えば、上記実施形態の電流測定ユニット11において、切替回路20を省略してもよい。この場合、マイコン部23は、複数の変流器CTの1つからの電流に基づき、当該変流器が取り付けられた電力線を流れる電流を測定し、これを、複数の変流器CTのそれぞれについて繰り返すように制御すればよい。具体的には、マイコン部23は、複数の変流器CTからの電流に基づく計測回路22からの複数の計測信号をそれぞれA/D変換して測定部32に送信する複数のA/D変換器について、何れか1つのA/D変換器をオンにする一方、残りのA/D変換器をオフにし、これを、上記複数のA/D変換器のそれぞれについて繰り返せばよい。
 なお、電流測定ユニット11において、切替回路20を省略するよりも切替回路20を設ける方が下記のメリットを有する。すなわち、選択中の切替回路20から電源部21に電流が流れることを防止するので、測定部32における電流の測定精度が向上する。また、非選択の切替回路20から計測回路22に電流が流れることを防止するので、電源部21における蓄電の効率が向上する。
 以上のように、本発明に係る電流測定装置は、電力線に取り付けた変流器により上記電力線を流れる電流を測定する電流測定装置であって、複数の上記電力線にそれぞれ取り付けられた複数の上記変流器からの電流により蓄電を行う蓄電部と、上記各変流器からの電流に基づき、当該変流器が取り付けられた上記電力線を流れる電流を測定する電流測定部と、複数の上記変流器の1つからの電流に基づき上記電流測定部が測定を行い、これを、複数の上記変流器のそれぞれについて繰り返すように制御する制御部とを備えており、上記電流測定部および上記制御部は、上記蓄電部からの電力により動作する。
 また、本発明に係る電流測定装置の制御方法は、電力線に取り付けた変流器により上記電力線を流れる電流を測定する電流測定装置であって、複数の上記電力線にそれぞれ取り付けられた複数の上記変流器からの電流により蓄電を行う蓄電部と、上記各変流器からの電流に基づき、当該変流器が取り付けられた上記電力線を流れる電流を測定する電流測定部とを備える電流測定装置の制御方法において、上記電流測定部を上記蓄電部からの電力により動作させるために、複数の上記変流器の1つからの電流に基づき上記電流測定部が測定を行う測定ステップと、該測定ステップを、複数の上記変流器のそれぞれについて繰り返す繰返ステップとを含んでいる。
 上記の構成および方法によると、複数の変流器の1つからの電流に基づき電流測定部が測定を行い、これを、複数の上記変流器のそれぞれについて繰り返すように制御する。これにより、電流測定部は、複数の変流器の何れかからの電流を取得し、取得した電流に基づき、当該変流器が取り付けられた電力線を流れる電流を測定し、該測定を上記複数の変流器のそれぞれに対し次々に行うことになる。従って、上記電流測定部は、1個でよく、複数個を備える必要がない。その結果、電流測定装置のサイズを小型化することができる。
 また、蓄電部は、複数の電力線にそれぞれ取り付けられた複数の変流器からの電流により蓄電を行うので、1本の電力線に取り付けられた1台の変流器からの電流により蓄電を行う場合に比べて、蓄積する電気量が多くなる。従って、上記蓄電部から上記電流測定部および上記制御部に所要の電力を供給することができ、自装置を確実に動作させることができる。
 なお、電流の測定値としては、当該電流のピーク値、瞬間値、位相、実効値、周波数などが挙げられる。また、蓄電部の例としては、キャパシタ(蓄電器)、二次電池(蓄電池)などが挙げられる。また、蓄電部は、1個が設けられてもよいし、複数個が上記複数の変流器からの電流ごとに設けられてもよい。
 本発明に係る電流測定装置では、上記複数の変流器からの電流を上記蓄電部および上記電流測定部の何れに流すかをそれぞれ切り替える複数の切替部をさらに備えており、上記制御部は、上記複数の切替部の何れかを選択し、選択した上記切替部が上記電流を上記電流測定部に流す一方、非選択の上記切替部が上記電流を上記蓄電部に流し、当該選択を上記複数の切替部のそれぞれに対し次々に行うように制御することが好ましい。
 この場合、選択した上記切替部から上記蓄電部に電流が流れることを防止するので、上記電流測定部における電流の測定精度が向上する。また、非選択の上記切替部から上記電流測定部までに電流が流れることを防止するので、上記蓄電部における蓄電の効率が向上する。
 本発明に係る電流測定装置では、上記制御部は、上記電流測定部が測定した、上記電力線を流れる電流の測定値に応じて、当該電力線に対応する切替部を選択する頻度を決定してもよい。
 この場合、上記電流の測定値が小さいときに上記選択する頻度を少なくすることにより、当該電流の測定頻度を少なくすることができるので、上記蓄電部に流れ込む電流に応じた測定頻度とすることができる。その結果、自装置をさらに確実に動作させることができる。
 本発明に係る電流測定装置では、上記制御部は、上記複数の切替部について、前回測定した電流の測定値が小さいものから順番に選択してもよい。
 前回測定された電流の測定値が小さい電力線は、今回の測定においても当該電流の測定値が小さいと予測される。同様に、前回測定された電流の測定値が大きい電力線は、今回の測定においても当該電流の測定値が大きいと予測される。
 従って、上記の構成によると、電流の測定値が小さいと予測される電力線に取り付けられた変流器からの電流が上記電流測定部に流れる一方、電流の測定値が大きいと予測される電力線に取り付けられた変流器からの電流が上記蓄電部に流れるので、上記蓄電部に電気量が迅速に蓄積されると予測される。その結果、該蓄電部から上記電流測定部および上記制御部に所要の電力を確実に供給することができ、自装置をさらに確実に動作させることができる。
 本発明に係る電流測定装置では、上記蓄電部の出力電圧の値を測定する電圧測定部をさらに備えており、該電圧測定部が測定した出力電圧の値が第1の所定値よりも小さい場合、上記制御部は、上記電流測定部の測定を停止すると共に、上記切替部の選択を停止するように制御してもよい。
 上記の構成によると、上記出力電圧の値が第1の所定値よりも小さい場合、上記制御部により上記電流測定部の測定が停止されるので、上記電流測定部が測定を行って、上記蓄電部から供給される電力が不足し、自装置が動作不能に陥ることを防止することができる。さらに、上記制御部により、上記切替部の選択が停止されるので、上記複数の変流器からの電流は、全て上記蓄電部に流れる。従って、該蓄電部に電気量が迅速に蓄積されるので、上記電流測定部の測定を再開するまでの期間を短くすることができる。
 本発明に係る電流測定装置では、上記電流測定部が測定した、上記複数の電力線を流れる電流の測定値を外部の装置に無線送信する送信部であって、上記蓄電部からの電力により動作する送信部をさらに備えており、上記電圧測定部が測定した出力電圧の値が、第1の所定値よりも大きい値である第2の所定値よりも小さい場合、上記制御部は、上記送信部の無線送信を停止するように制御してもよい。
 上記の構成によると、上記出力電圧の値が第1の所定値よりも小さい場合、上記制御部により上記電流測定部の測定および上記送信部の無線送信が停止されるので、上記電流測定部が測定を行い、かつ、上記送信部が無線送信を行って、上記蓄電部から供給される電力が不足し、自装置が動作不能に陥ることを防止することができる。また、上記出力電圧の値が、第1の所定値以上であり、かつ、第2の所定値よりも小さいとき、上記制御部により、上記電流測定部の測定が実行される一方、上記送信部の無線送信が停止される。これにより、上記電流測定部が測定を行うことができる一方、上記送信部が無線送信を実行することにより、上記蓄電部から供給される電力が不足に陥り、自装置が動作不能に陥ることを防止することができる。なお、このときに測定された電流の測定値は、自装置内に保持しておき、その後、上記出力電圧の値が第2の所定値以上となったときに、このとき測定された電流の測定値と、以前に測定され保持された電流の測定値とをまとめて無線送信すればよい。
 なお、上記蓄電部が複数である場合、複数の上記蓄電部のそれぞれに複数の上記電圧測定部を設け、上記複数の電圧測定部が測定した出力電圧の合計値を、第1の所定値および第2の所定値と比較すればよい。
 本発明に係る電流測定装置では、上記制御部は、上記複数の切替部のそれぞれに、上記変流器が接続されているか否かを判定し、上記変流器が接続されていない上記切替部に対しては、上記選択を省略してもよい。
 上記の構成によると、上記切替部に上記変流器が接続されていない場合、当該切替部からの電流に基づく上記測定を行う必要がない。従って、上記の場合に当該切替部の選択が省略されるので、当該切替部からの電流に基づく上記測定は行われず、該測定による無駄な電力消費および測定時間を省略することができる。その結果、自装置をさらに確実に動作させることができる。
 本発明に係る電流測定装置では、上記蓄電部は、上記複数の切替部にそれぞれ接続された複数の蓄電部であり、該複数の蓄電部の出力電圧の値をそれぞれ測定する複数の電圧測定部をさらに備えており、上記制御部は、上記電圧測定部が測定した出力電圧の値がゼロ、または、所定値以下である蓄電部に対応する切替部に対しては、上記選択を省略してもよい。
 上記蓄電部の出力電圧がゼロ、または所定値以下である場合としては、当該蓄電部に対応する上記切替部に対し、上記変流器が接続されていないか、上記変流器が接続されているが上記電力線に取り付けられていないか、或いは、上記変流器が接続され上記電力線に取り付けられているが、上記電力線に電流が流れていない場合が考えられる。何れの場合でも、当該切替部からの電流に基づく上記測定を行う必要がない。従って、上記の場合に、該当する蓄電部に対応する上記切替部の選択が省略されるので、当該切替部からの電流に基づく上記測定は行われず、該測定による無駄な電力消費および測定時間を省略することができる。その結果、自装置をさらに確実に動作させることができる。
 本発明に係る電流測定装置では、上記電流測定部が測定した、上記複数の電力線を流れる電流の測定値を外部の装置に無線送信する送信部であって、上記蓄電部からの電力により動作する送信部をさらに備えることが好ましい。
 この場合、自装置と外部の装置との間をケーブルで接続する必要がないので、利便性が向上する。また、上記蓄電部は、上述のように、蓄積する電気量が多くなるので、上記蓄電部から上記電流測定部、上記制御部、および上記送信部に所要の電力を供給することができ、自装置を確実に動作させることができる。
 本発明に係る電流測定装置では、上記送信部は、上記複数の電流の測定値を一括して無線送信することが好ましい。この場合、複数の電流の測定値、または、複数の関連情報を、一括して無線送信するので、個別に無線送信する場合に比べて、消費電力量を抑えることができる。これにより、自装置をさらに確実に動作させることができる。
 本発明に係る電流測定装置では、上記制御部は、上記複数の電力線のそれぞれについて、上記電流測定部が測定した今回の電流の測定値が、上記送信部が直前に無線送信した電流の測定値から所定範囲内である場合、上記今回の電流の測定値の無線送信を省略するように上記送信部を制御してもよい。
 この場合、上記電流の測定値がさほど変化しない場合には、当該測定値の無線送信が省略されるので、全ての電流の測定値を無線送信する場合に比べて、消費電力量を抑えることができる。これにより、自装置をさらに確実に動作させることができる。
 なお、上記無線送信の省略が長期間に亘る場合、上記電力線を流れる電流の測定値が、さほど変化していないのか、小さくなりすぎて、測定不能となったのかが、判別し難くなる。そこで、上記無線送信を省略する期間を所定期間に限定することが好ましい。
 なお、電力線を介して供給される電力を測定する電力測定装置であって、複数の上記電力線にそれぞれ取り付けた複数の変流器により上記電力線を流れる電流を測定する、上記構成の電流測定装置と、上記複数の電力線の電圧を測定する電圧測定部と、上記電流測定装置が測定した電流と、上記電圧測定部が測定した電圧とに基づき、上記複数の電力線を介して供給される電力をそれぞれ測定する電力測定部とを備える電力測定装置であれば、上述と同様の効果を奏することができる。
 本発明の各態様に係る電流測定装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記電流測定装置が備える各部として動作させることにより上記電流測定装置をコンピュータにて実現させる電流測定装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 本発明は、複数の変流器の何れかからの電流を取得し、取得した電流に基づき、当該変流器が取り付けられた電力線を流れる電流を測定し、該測定を上記複数の変流器のそれぞれに対し次々に行うので、電流測定装置のサイズを小型化できると共に、複数の電力線にそれぞれ取り付けられた複数の変流器からの電流により蓄電を行うので、自装置を確実に動作させることができることから、変流器により電流を測定する任意の電力測定装置に適用することができる。
10 電流測定システム
11 電流測定ユニット(電流測定装置)
12 受信ユニット
20 切替回路(切替部)
21 電源部(蓄電部)
22 計測回路
23 マイコン部
24 無線送信部(送信部)
30 記憶部
31 切替指示部(制御部)
32 測定部(電流測定部)
33 データ送出部
40 受信部
41 操作部
42 ロガー部
43 記録部
44 表示部
50 充電部
51 充電電圧計測回路(電圧測定部)
52 切替回路
53 DC/DCコンバータ

Claims (15)

  1.  電力線に取り付けた変流器により上記電力線を流れる電流を測定する電流測定装置であって、
     複数の上記電力線にそれぞれ取り付けられた複数の上記変流器からの電流により蓄電を行う蓄電部と、
     上記各変流器からの電流に基づき、当該変流器が取り付けられた上記電力線を流れる電流を測定する電流測定部と、
     複数の上記変流器の1つからの電流に基づき上記電流測定部が測定を行い、これを、複数の上記変流器のそれぞれについて繰り返すように制御する制御部とを備えており、
     上記電流測定部および上記制御部は、上記蓄電部からの電力により動作することを特徴とする電流測定装置。
  2.  上記複数の変流器からの電流を上記蓄電部および上記電流測定部の何れに流すかをそれぞれ切り替える複数の切替部をさらに備えており、
     上記制御部は、上記複数の切替部の何れかを選択し、選択した上記切替部が上記電流を上記電流測定部に流す一方、非選択の上記切替部が上記電流を上記蓄電部に流し、当該選択を上記複数の切替部のそれぞれに対し次々に行うように制御することを特徴とする請求項1に記載の電流測定装置。
  3.  上記制御部は、上記電流測定部が測定した、上記電力線を流れる電流の測定値に応じて、当該電力線に対応する切替部を選択する頻度を決定することを特徴とする請求項2に記載の電流測定装置。
  4.  上記制御部は、上記複数の切替部について、前回測定した電流の測定値が小さいものから順番に選択することを特徴とする請求項2に記載の電流測定装置。
  5.  上記蓄電部の出力電圧の値を測定する電圧測定部をさらに備えており、
     該電圧測定部が測定した出力電圧の値が第1の所定値よりも小さい場合、上記制御部は、上記電流測定部の測定を停止すると共に、上記切替部の選択を停止するように制御することを特徴とする請求項2に記載の電流測定装置。
  6.  上記電流測定部が測定した、上記複数の電力線を流れる電流の測定値を外部の装置に無線送信する送信部であって、上記蓄電部からの電力により動作する送信部をさらに備えており、
     上記電圧測定部が測定した出力電圧の値が、第1の所定値よりも大きい値である第2の所定値よりも小さい場合、上記制御部は、上記送信部の無線送信を停止するように制御することを特徴とする請求項5に記載の電流測定装置。
  7.  上記制御部は、上記複数の切替部のそれぞれに、上記変流器が接続されているか否かを判定し、上記変流器が接続されていない上記切替部に対しては、上記選択を省略することを特徴とする請求項2に記載の電流測定装置。
  8.  上記蓄電部は、上記複数の切替部にそれぞれ接続された複数の蓄電部であり、
     該複数の蓄電部の出力電圧の値をそれぞれ測定する複数の電圧測定部をさらに備えており、
     上記制御部は、上記電圧測定部が測定した出力電圧の値がゼロ、または、所定値以下である蓄電部に対応する切替部に対しては、上記選択を省略することを特徴とする請求項2に記載の電流測定装置。
  9.  上記電流測定部が測定した、上記複数の電力線を流れる電流の測定値を外部の装置に無線送信する送信部であって、上記蓄電部からの電力により動作する送信部をさらに備えることを特徴とする請求項1から8までの何れか1項に記載の電流測定装置。
  10.  上記送信部は、上記複数の電流の測定値を一括して無線送信することを特徴とする請求項9に記載の電流測定装置。
  11.  上記制御部は、上記複数の電力線のそれぞれについて、上記電流測定部が測定した今回の電流の測定値が、上記送信部が直前に無線送信した電流の測定値から所定範囲内である場合、上記今回の電流の測定値の無線送信を省略するように上記送信部を制御することを特徴とする請求項9または10に記載の電流測定装置。
  12.  電力線を介して供給される電力を測定する電力測定装置であって、
     複数の上記電力線にそれぞれ取り付けた複数の変流器により上記電力線を流れる電流を測定する電流測定装置と、
     上記複数の電力線の電圧を測定する電圧測定部と、
     上記電流測定装置が測定した電流と、上記電圧測定部が測定した電圧とに基づき、上記複数の電力線を介して供給される電力をそれぞれ測定する電力測定部とを備えており、
     上記電流測定装置は、請求項1から11の何れか1項に記載の電流測定装置であることを特徴とする電力測定装置。
  13.  電力線に取り付けた変流器により上記電力線を流れる電流を測定する電流測定装置であって、複数の上記電力線にそれぞれ取り付けられた複数の上記変流器からの電流により蓄電を行う蓄電部と、上記各変流器からの電流に基づき、当該変流器が取り付けられた上記電力線を流れる電流を測定する電流測定部とを備える電流測定装置の制御方法において、
     上記電流測定部を上記蓄電部からの電力により動作させるために、
     複数の上記変流器の1つからの電流に基づき上記電流測定部が測定を行う測定ステップと、
     該測定ステップを、複数の上記変流器のそれぞれについて繰り返す繰返ステップとを含むことを特徴とする電流測定装置の制御方法。
  14.  請求項1から11のいずれか1項に記載の電流測定装置としてコンピュータを機能させるための制御プログラムであって、コンピュータを上記各部として機能させるための制御プログラム。
  15.  請求項14に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2015/050826 2014-02-17 2015-01-14 電流測定装置、その制御方法、制御プログラム、並びに記録媒体、および電力測定装置 WO2015122230A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/114,473 US9921247B2 (en) 2014-02-17 2015-01-14 Current measurement device, control method for same, recording medium, and power measurement device
CN201580005841.4A CN105934679B (zh) 2014-02-17 2015-01-14 电流测定装置以及其控制方法、及功率测定装置
EP15748753.9A EP3109645B1 (en) 2014-02-17 2015-01-14 Current measurement device, control method and control program for same, recording medium, and power measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014027715A JP6260329B2 (ja) 2014-02-17 2014-02-17 電流測定装置、その制御方法、制御プログラム、並びに記録媒体、および電力測定装置
JP2014-027715 2014-02-17

Publications (1)

Publication Number Publication Date
WO2015122230A1 true WO2015122230A1 (ja) 2015-08-20

Family

ID=53799978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050826 WO2015122230A1 (ja) 2014-02-17 2015-01-14 電流測定装置、その制御方法、制御プログラム、並びに記録媒体、および電力測定装置

Country Status (5)

Country Link
US (1) US9921247B2 (ja)
EP (1) EP3109645B1 (ja)
JP (1) JP6260329B2 (ja)
CN (1) CN105934679B (ja)
WO (1) WO2015122230A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138213A (ja) * 2016-02-04 2017-08-10 アルプス電気株式会社 自己給電型の電流センサ
CN113311282A (zh) * 2021-05-26 2021-08-27 贵州电网有限责任公司 一种电容器的无线测量方法
JP7436081B1 (ja) 2023-08-31 2024-02-21 東京ファシリティーズ株式会社 使用電力量の計測方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6166319B2 (ja) * 2015-09-17 2017-07-19 株式会社中央製作所 非接触型直流電流センサ及び該非接触型直流電流センサを用いてなる直流電流計測システム
FR3052868B1 (fr) * 2016-06-20 2021-01-01 Gulplug Dispositif de comptage d'energie electrique
JP6832657B2 (ja) * 2016-09-16 2021-02-24 ラピスセミコンダクタ株式会社 電流計測装置および電流計測方法
US10615641B2 (en) * 2017-06-26 2020-04-07 Vutiliti, Inc. Induction powered electricity current monitoring
US10557875B2 (en) 2018-05-09 2020-02-11 Fluke Corporation Multi-sensor scanner configuration for non-contact voltage measurement devices
EP3940345B1 (en) * 2019-03-14 2024-02-14 Omron Corporation Flow rate measurement device
KR102270285B1 (ko) * 2019-10-29 2021-06-28 (주)화인파워엑스 무선 온라인 모니터링 시스템을 위한 계기용 변류기의 전원공급장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055356A (ja) * 2008-08-28 2010-03-11 Toyo Electric Mfg Co Ltd 設備データ収集システム
JP2010181378A (ja) * 2009-02-09 2010-08-19 Mitsubishi Electric Corp 電力計測装置及び機器制御装置
JP2014020966A (ja) * 2012-07-19 2014-02-03 Kawamura Electric Inc 電力計測装置
JP2014055831A (ja) * 2012-09-12 2014-03-27 Fujitsu Ltd 測定装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855671A (en) * 1983-04-13 1989-08-08 Fernandes Roosevelt A Electrical power line and substation monitoring apparatus
US6018700A (en) * 1998-02-19 2000-01-25 Edel; Thomas G. Self-powered current monitor
EP0961124A3 (en) * 1998-05-28 2003-07-02 Matsushita Electric Industrial Co., Ltd. Multicircuit type instrument and split type current transformer for measuring various electric power quantities
JP2001257592A (ja) * 2000-03-09 2001-09-21 Mitsubishi Electric Corp 計測装置
JP4258119B2 (ja) 2000-10-27 2009-04-30 富士電機システムズ株式会社 電流計測装置
JP2004015900A (ja) * 2002-06-05 2004-01-15 Omron Corp プッシュプル回路方式の電力変換装置
AU2002952426A0 (en) * 2002-11-01 2002-11-21 Fault Detectors Pty Ltd. A sensor system and method
FI119493B (fi) * 2006-12-21 2008-11-28 Vacon Oyj Taajuusmuuttajan virran mittausjärjestely
WO2009139077A1 (ja) * 2008-05-15 2009-11-19 国立大学法人 東京工業大学 交流電圧制御装置
US20100118301A1 (en) * 2008-11-13 2010-05-13 Petroleum Analyzer Company, L.P. System for analyzing a sample or a sample component and method for making and using same
WO2010119332A1 (en) * 2009-04-16 2010-10-21 Panoramic Power Ltd. Apparatus and methods thereof for power consumption measurement at circuit breaker points
JP5127773B2 (ja) 2009-05-08 2013-01-23 三菱電機株式会社 組み込み式電力計測装置及びこれを備えた機器
US9267826B2 (en) * 2010-05-28 2016-02-23 Schneider Electric It Corporation System for self-powered, wireless monitoring of electrical current, power and energy
WO2012073533A1 (ja) * 2010-11-30 2012-06-07 オムロン株式会社 検出装置および方法、並びに、プログラム
WO2013061475A1 (ja) * 2011-10-28 2013-05-02 三菱電機株式会社 判定装置、判定方法、およびプログラム
JP2013124864A (ja) 2011-12-13 2013-06-24 Kyokko Denki Kk 電力使用状況提供装置
JP5825135B2 (ja) * 2012-02-15 2015-12-02 オムロン株式会社 検出装置および方法、並びに、プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055356A (ja) * 2008-08-28 2010-03-11 Toyo Electric Mfg Co Ltd 設備データ収集システム
JP2010181378A (ja) * 2009-02-09 2010-08-19 Mitsubishi Electric Corp 電力計測装置及び機器制御装置
JP2014020966A (ja) * 2012-07-19 2014-02-03 Kawamura Electric Inc 電力計測装置
JP2014055831A (ja) * 2012-09-12 2014-03-27 Fujitsu Ltd 測定装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138213A (ja) * 2016-02-04 2017-08-10 アルプス電気株式会社 自己給電型の電流センサ
CN107064597A (zh) * 2016-02-04 2017-08-18 阿尔卑斯电气株式会社 自供电式的电流传感器
CN107064597B (zh) * 2016-02-04 2021-03-12 阿尔卑斯阿尔派株式会社 自供电式的电流传感器
CN113311282A (zh) * 2021-05-26 2021-08-27 贵州电网有限责任公司 一种电容器的无线测量方法
JP7436081B1 (ja) 2023-08-31 2024-02-21 東京ファシリティーズ株式会社 使用電力量の計測方法

Also Published As

Publication number Publication date
US20160349290A1 (en) 2016-12-01
US9921247B2 (en) 2018-03-20
JP2015152488A (ja) 2015-08-24
CN105934679B (zh) 2019-01-01
CN105934679A (zh) 2016-09-07
EP3109645A1 (en) 2016-12-28
EP3109645B1 (en) 2021-04-28
JP6260329B2 (ja) 2018-01-17
EP3109645A4 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
JP6260329B2 (ja) 電流測定装置、その制御方法、制御プログラム、並びに記録媒体、および電力測定装置
CA2865757C (en) Electrical current measuring apparatus and method
US20130181539A1 (en) Adaptive wireless power transfer system and method
CN104104154A (zh) 电子装置与供电系统
JP5058188B2 (ja) 電力計測装置
JP2016174532A (ja) 電力管理システム、電力管理方法およびプログラム
JP2010055356A (ja) 設備データ収集システム
JP5979548B2 (ja) 無線送信機能付き電流センサ端末、無線送信方法及び無線送受信システム
KR20080013242A (ko) 대기전원 공급장치
JP6334457B2 (ja) 電流測定システム
JP6136684B2 (ja) 電力供給システム、電力供給方法および負荷用変換装置
JP2015210135A (ja) 電力計測装置
JP6417570B2 (ja) 直流電源装置
US20230120207A1 (en) Controlling pulsed operation of a power supply during a power outage
JP6144842B1 (ja) 節電装置
US20230327437A1 (en) Controlling operation of a secondary power supply of an electricity meter during ac power loss
WO2018180435A1 (ja) 電力変換装置、電力変換システム、及び直流電源装置
JP5974893B2 (ja) 処理装置および処理方法
CN202503444U (zh) 简易电工源装置
CN116599027A (zh) 便携式储能电源装置及其电池容量控制器、控制方法
KR20130081523A (ko) 고효율, 고입력전압 dc/dc 컨버터 회로 및 그 회로를 채택한 dc/dc컨버터
JP2012200041A (ja) 効果検証モードを備えた交流電源の降圧受電システム
JP2013258878A (ja) 整流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748753

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15114473

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015748753

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015748753

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE