WO2015118904A1 - Transparent conductive film - Google Patents

Transparent conductive film Download PDF

Info

Publication number
WO2015118904A1
WO2015118904A1 PCT/JP2015/050580 JP2015050580W WO2015118904A1 WO 2015118904 A1 WO2015118904 A1 WO 2015118904A1 JP 2015050580 W JP2015050580 W JP 2015050580W WO 2015118904 A1 WO2015118904 A1 WO 2015118904A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
layer
refractive index
high refractive
conductive film
Prior art date
Application number
PCT/JP2015/050580
Other languages
French (fr)
Japanese (ja)
Inventor
弘典 高橋
一成 多田
仁一 粕谷
健一郎 平田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015560904A priority Critical patent/JP6493225B2/en
Publication of WO2015118904A1 publication Critical patent/WO2015118904A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a transparent conductive film, and more particularly, to a transparent conductive film having good conductivity and transparency and capable of displaying beautiful images without generating rainbow unevenness having angle dependency.
  • transparent conductive films have been used in various devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, touch panels, and solar cells.
  • metals such as gold, silver, platinum, copper, rhodium, palladium, aluminum, and chromium, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used.
  • SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
  • a transparent conductive film made of a transparent conductive film or the like is disposed on the image display surface of the display element. Therefore, the transparent conductive film is required to have high light transmittance.
  • a transparent conductive film made of ITO having high light transmittance is often used.
  • a silver deposited film as a transparent conductive film (see, for example, Patent Document 1). Further, in order to increase the light transmittance of the transparent conductor, a silver deposited film is formed of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium / zinc oxide), ICO (indium / cerium oxide). ), And a-GIO (a film made of gallium, indium, and oxygen) are also proposed (see, for example, Patent Documents 2 to 4). Further, it has been proposed to sandwich a vapor deposited silver film with a zinc sulfide film (see, for example, Non-Patent Documents 1 and 2).
  • a high refractive index for example, niobium oxide (Nb 2 O 5 ), IZO (indium / zinc oxide), ICO (indium / cerium oxide).
  • a-GIO a film made of gallium, indium, and oxygen
  • An object of the present invention is to provide a transparent conductive film having good conductivity and transparency, and capable of beautiful image display without occurrence of rainbow unevenness having angle dependency.
  • the present inventor uses a transparent resin support having a small in-plane retardation value Ro for the transparent conductive film in the process of examining the cause of the above-mentioned problems, and contains silver thereon.
  • a transparent resin support having a small in-plane retardation value Ro for the transparent conductive film in the process of examining the cause of the above-mentioned problems, and contains silver thereon.
  • a transparent conductive film having at least one transparent conductive layer and a high refractive index layer on a transparent resin support The in-plane retardation value Ro of the transparent resin support at a measurement wavelength of 589 nm is in the range of 0 to 150 nm,
  • the transparent conductive layer contains silver and has a layer thickness in the range of 3 to 15 nm;
  • the transparent conductive film according to Item 1 or 2 wherein the transparent resin support contains at least one selected from cellulose ester resins, cycloolefin resins, and polycarbonate resins.
  • the transparent conductive layer contains at least one metal selected from gold, copper, nickel, palladium, platinum, zinc, aluminum, manganese, germanium, bismuth, neodymium, and molybdenum. 4.
  • the transparent conductive film according to any one of items up to 3.
  • the high refractive index layer on the support side contains zinc sulfide.
  • the high refractive index layer provided on the side opposite to the support side is composed of indium tin oxide, indium zinc oxide, gallium zinc oxide. Or any one of indium, gallium, and zinc oxide,
  • the transparent conductive film of the present invention is a transparent conductive film having at least one transparent conductive layer and a high refractive index layer on a transparent resin support, and the in-plane retardation Ro of the transparent resin support is 0 to 150 nm. By making it within the range, it is possible to prevent rainbow unevenness having angle dependency.
  • General rainbow unevenness means that in a display image of a transmissive capacitive touch panel, part or all of the members constituting the transparent conductive film have a large retardation value, so that image light having a certain polarization state is generated. This is caused by being converted into a different polarization state for each wavelength and viewing angle when passing through the stacked members of the touch module.
  • FIG. 1 is a schematic diagram for explaining a general rainbow unevenness generation mechanism.
  • a typical configuration of an out-cell type transmissive capacitive touch panel is simplified and schematically shown by focusing on a change in the polarization state of light rays. Showed. Therefore, it does not faithfully reproduce the actual product form and light rays.
  • reference numeral 300 represents an image display element such as a liquid crystal, and a polarizing plate 200 is provided on the outermost surface thereof. Furthermore, the transparent conductive film 100 exists in the upper part.
  • the light emitted from the different pixels A and B travels along the different optical paths in the transparent conductive film as linearly polarized light by the action of the polarizing plate.
  • each light beam traveling in different optical paths is converted into a different polarization state before passing through A 1 and B 1, and then the observer's Reach viewpoint O.
  • ⁇ B1 represents an incident angle from point B
  • ⁇ B2 represents the refraction angle from point B
  • the s-polarized component shows a high reflectivity with respect to the p-polarized component, but as a result, the intensity of the transmitted light is naturally greater for p-polarized light than for s-polarized light, and the ratio is angularly dependent.
  • the amplitude ratios of the p-polarized light component and the s-polarized light component are not already the same.
  • the intensities of the two light beams transmitted from A 1 and B 1 to the viewer side are different, and the viewer visually recognizes the contrast as bright and dark for each part.
  • the refractive index varies depending on the wavelength
  • the reflection intensity ratio for each of the p-s polarization components also varies depending on the wavelength, and the resulting contrast level differs depending on the color.
  • a material having a large refractive index such as ITO was used as a transparent conductive film, and general rainbow unevenness was strongly generated. Therefore, in the case of a material having a refractive index smaller than ITO, such as silver, Although it was predicted that the reflection at the interface would be reduced and its generation would be suppressed, contrary to expectation, rainbow unevenness with angle dependency occurred. It is speculated that the absorption of the transparent conductive layer containing silver and the thinness of the layer may be caused.
  • the inventors of the present invention provide a video display device including a touch panel having a large screen and excellent visibility based on excellent transparent conductivity.
  • a touch panel having a large screen and excellent visibility based on excellent transparent conductivity.
  • the angle-dependent color unevenness is conspicuous on the contrary. I found it to be a serious problem.
  • the present inventors have found out that the angle-dependent color unevenness can be solved under a limited and densely configured condition. That is, by using a support with low retardation and skillfully combining a high refractive index layer and an antisulfuration layer described later with a conductive layer containing silver, industrial practicality and excellent conductivity can be obtained. A transparent conductive film that simultaneously realizes transparency and beautiful image display can be obtained.
  • Schematic diagram explaining the rainbow unevenness generation mechanism Schematic sectional view showing an example of the layer structure of the transparent conductive film of the present invention
  • the schematic diagram which shows an example of the pattern which consists of a conduction
  • the schematic diagram which shows an example of the electrode pattern which consists of a conduction
  • Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography
  • Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography
  • Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography
  • Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography
  • the transparent conductive film of the present invention is a transparent conductive film having at least one transparent conductive layer and a high refractive index layer on a transparent resin support,
  • the in-plane retardation value Ro of the transparent resin support at a measurement wavelength of 589 nm is in the range of 0 to 150 nm,
  • the transparent conductive layer contains silver and has a layer thickness in the range of 3 to 15 nm;
  • the high refractive index layer is provided on both sides of the transparent conductive layer, and at least one high refractive index layer contains zinc sulfide.
  • the thickness direction retardation value Rt of the transparent resin support is in the range of 0 to 400 nm from the viewpoint of manifesting the effects of the present invention.
  • the transparent resin support contains at least one selected from a cellulose ester resin, a cycloolefin resin and a polycarbonate resin
  • the in-plane retardation value Ro can be within the above range, and the angle dependency This is preferable because an effect of preventing rainbow unevenness can be obtained.
  • the transparent conductive layer contains at least one metal selected from gold, copper, nickel, palladium, platinum, zinc, aluminum, manganese, germanium, bismuth, neodymium and molybdenum.
  • the high refractive index layer on the support side preferably contains zinc sulfide.
  • the high refractive index layer provided on the side opposite to the support side is composed of indium tin oxide, indium zinc oxide, gallium zinc It is preferable to contain either an oxide or indium / gallium / zinc oxide.
  • a layer containing zinc oxide between the transparent conductive layer and the at least one high refractive index layer.
  • FIGS. 1-10 One embodiment of the layer structure of the transparent conductive film of the present invention is shown in FIGS.
  • the transparent conductive film 100 of the present invention includes transparent resin support 1 / first high refractive index layer 2 / transparent conductive layer 3 / second high refractive index layer 4.
  • one of the first high refractive index layer 2 and the second high refractive index layer 4 is a layer containing zinc sulfide (ZnS).
  • ZnS zinc sulfide
  • these layers are layers formed from a thin film.
  • one of the first high refractive index layer 2 and the second high refractive index layer 4 is a layer containing zinc sulfide, and the first high refractive index layer 2 or the second high refractive index layer. 4 and the transparent conductive layer 3 are preferably provided with an anti-sulfurization layer 5 (an anti-sulfurization layer 5a or 5b containing zinc oxide).
  • the metal sulfide is presumed to be produced as follows.
  • the unreacted sulfur component in the first high refractive index layer 2 is transparent. It is blown out into the film forming atmosphere by the metal material (silver) of the conductive layer. Then, the released sulfur component reacts with silver, and silver sulfide is deposited on the high refractive index layer. Moreover, when forming a high refractive index layer and a transparent conductive layer continuously, the sulfur component contained in the film-forming atmosphere of a high refractive index layer remains in the metal layer atmosphere containing the silver of a transparent conductive layer. Then, the sulfur component and silver react to deposit silver sulfide on the high refractive index layer.
  • the silver in the metal film containing silver of the transparent conductive layer is formed by the material of the second high refractive index layer. Played in the film atmosphere. Then, the ejected silver reacts with the sulfur component, and silver sulfide is deposited on the surface of the transparent conductive layer. Furthermore, silver sulfide is generated on the surface of the metal layer containing silver of the transparent conductive layer even when the surface of the transparent conductive layer is in contact with the sulfur component in the film forming atmosphere.
  • the first sulfidation preventing layer 5 a containing zinc oxide may be laminated on the first high refractive index layer 2.
  • the sulfur component in the first high refractive index layer 2 is ejected when the transparent conductive layer 3 is formed.
  • the sulfur component contained in the film formation atmosphere of the first high-refractive index layer 2 is a component of the first antisulfurization layer 5a. Or adsorbed to the constituent components of the first sulfurization prevention layer 5a. Therefore, it becomes difficult for sulfur to be contained in the film-forming atmosphere of the transparent conductive layer 3, and the production of silver sulfide is suppressed.
  • the second sulfidation preventing layer 5 b may be laminated on the transparent conductive layer 3.
  • the transparent conductive layer 3 is protected by the second sulfidation preventing layer 5b, silver in the transparent conductive layer 3 is hardly ejected when the second high refractive index layer 4 is formed.
  • the sulfur component in the film formation atmosphere of the second high refractive index layer 4 is difficult to come into contact with the surface of the transparent conductive layer 3. Therefore, it is difficult to produce silver sulfide on the surface of the transparent conductive layer 3.
  • the transparent conductive layer 3 may be laminated on the entire surface of the transparent resin support 1, and as shown in FIG. It may be patterned into a desired shape.
  • the region a where the transparent conductive layer 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”).
  • the region b not including the transparent conductive layer 3 is an insulating region.
  • the pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductive film 100.
  • the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. It is possible.
  • the transparent conductive film 100 of the present invention includes layers other than the transparent resin support 1, the first high refractive index layer 2, the transparent conductive layer 3, the second high refractive index layer 4, and the sulfurization prevention layer 5. May be included.
  • an underlayer that can be a growth nucleus when forming the transparent conductive layer 3 may be included between the transparent conductive layer and the first high refractive index layer 2 adjacent to the transparent conductive layer 3.
  • Transparent resin support examples include cellulose ester resins (for example, triacetylcellulose (Zerotac (manufactured by Konica Minolta)), diacetylcellulose, acetylpropionylcellulose, etc.), polycarbonate resins (for example, panlite, Multilon (both made by Teijin)), cycloolefin resin (for example, Zeonoa (made by Nippon Zeon), Arton (made by JSR), Apel (made by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, acrylite ( (Mitsubishi Rayon Co., Ltd.) and Sumipex (Sumitomo Chemical Co., Ltd.)), and these resins are preferably 50% by mass or more of the transparent resin support. Two or more kinds of these resins may be used.
  • cellulose ester resins for example, triacetylcellulose (Zerotac (manufactured by Konica Minolta)
  • cellulose ester resins cellulose ester resins, cycloolefin resins, and polycarbonate resins are preferable.
  • resins that may be mixed include polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (for example, polyethylene terephthalate (PET), polyethylene naphthalate), polyether sulfone, ABS / AS resin, One or more resins selected from MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, and the like may be included.
  • PPE polyphenylene ether
  • PET polyethylene terephthalate
  • PET polyethylene naphthalate
  • polyether sulfone polyether sulfone
  • ABS / AS resin One or more resins selected from MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, and the like may be included.
  • the transparent resin support 1 used in the present invention is a cellulose ester
  • a lower fatty acid ester is preferable, and cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, or the like is used.
  • the cellulose ester used in the present invention preferably has an acyl group substitution degree of 2.85 to 3.00 because the degree of plane orientation can be kept lower, and particularly preferably 2.92 to 3.00.
  • the method for measuring the substitution degree of the acyl group can be measured in accordance with the provisions of ASTM-D817-96.
  • a cellulose ester having a polymerization degree of 250 to 400 is preferably used, and cellulose triacetate is particularly preferably used.
  • the number average molecular weight Mn of the cellulose ester according to the present invention is preferably 70000 to 250,000, since it is excellent in mechanical strength and has an appropriate dope viscosity, and more preferably 80000 to 150,000.
  • a cellulose ester having a ratio Mw / Mn to the weight average molecular weight Mw of 1.0 to 5.0 is preferably used.
  • the in-plane retardation value Ro of the transparent resin support of the present invention at a measurement wavelength of 589 nm is in the range of 0 to 150 nm.
  • Ro is in the range of 0 to 20 nm or 40 to 150 nm.
  • the thickness direction retardation value Rt at a measurement wavelength of 589 nm is preferably in the range of 0 to 400 nm, and particularly preferably, Rt is in the range of 0 to 70 nm or Rt is in the range of 80 to 300 nm.
  • Rt is in the range of 0 to 70 nm or Rt is in the range of 80 to 300 nm.
  • Formula (i) Ro (nx ⁇ ny) ⁇ d
  • Formula (ii) Rt ((nx + ny) / 2 ⁇ nz) ⁇ d
  • Ro is the retardation value in the film plane
  • Rt is the retardation value in the thickness direction
  • nx is the refractive index in the slow axis direction in the film plane
  • ny is the refractive index in the fast axis direction in the film plane
  • (nz represents the refractive index in the thickness direction of the film
  • d represents the thickness (nm) of the film.
  • the in-plane retardation value Ro and the thickness direction retardation value Rt at a measurement wavelength of 589 nm are measured with a phase difference measuring device “KOBRA-21ADH” (Oji Scientific Instruments) in an environment of 23 ° C. and 55% RH. Measured by).
  • the retardation value of the transparent resin support can be controlled by selecting the resin material, the draw ratio during film formation, and the like. Specifically, it can be controlled to an arbitrary value by appropriately selecting the stretching ratio in the longitudinal direction and the transverse direction.
  • the transparent resin support 1 of the present invention preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more. And more preferably 85% or more.
  • the average light transmittance of the transparent resin support 1 is 70% or more, the light transmittance of the transparent conductive film 100 is likely to increase.
  • the average absorptance of light having a wavelength of 450 to 800 nm of the transparent resin support 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent resin support 1.
  • the average absorptance is measured by measuring the average reflectance of the transparent substrate 1 by making light incident from the same angle as the average transmittance.
  • Average absorptance (%) 100 ⁇ (average transmittance + average reflectance) Calculate as Average transmittance and average reflectance are measured with a spectrophotometer.
  • the surface roughness Ra of the transparent resin support is preferably 3.5 nm or less on both surfaces of the transparent resin support, more preferably. Is 3.0 nm or less.
  • the surface roughness Ra of the transparent resin support is 3.5 nm or less on both surfaces of the transparent resin support, the haze value is reduced and a transparent resin support excellent in transparency can be obtained.
  • the surface roughness Ra refers to the arithmetic average roughness in JIS B0601: 2001.
  • the haze value of the transparent resin support 1 of the present invention is preferably 0.01 to 2.5, more preferably 0.1 to 1.2.
  • the haze value of a transparent conductive film is suppressed as the haze value of a support body is 2.5 or less.
  • the haze value is measured with a haze meter “model: NDH 2000” (manufactured by Nippon Denshoku Co., Ltd.).
  • the refractive index of light having a wavelength of 570 nm of the transparent resin support 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. It is.
  • the refractive index of the transparent resin support is usually determined by the material of the support.
  • the refractive index of the transparent resin support is measured with an ellipsometer at 23 ° C. and 55% RH.
  • the thickness of the transparent resin support 1 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent resin support is 1 ⁇ m or more, the strength of the transparent resin support 1 is increased, and the first high refractive index layer 2 is difficult to be cracked or torn.
  • the thickness of the transparent resin support 1 is 20 mm or less, the flexibility of the transparent conductive film 100 is sufficient.
  • the thickness of the apparatus using the transparent conductive film 100 can be reduced.
  • the apparatus using the transparent conductive film 100 can also be reduced in weight.
  • the high refractive index layer in the present invention refers to a layer having a higher refractive index than that of the transparent resin support 1.
  • the first high refractive index layer 2 is a layer that adjusts the light transmission (optical admittance) of the conductive region a of the transparent conductive film, that is, the region where the transparent conductive layer 3 is formed, and at least the transparent conductive film 100. Formed in the conductive region a.
  • the first high-refractive index layer 2 has a function of protecting the transparent conductive layer from moisture, sulfide, sulfur-containing components, etc. in the atmosphere, so that it is also formed in the insulating region b of the transparent conductive film 100. It is preferable that
  • the first high refractive index layer 2 is a layer that preferably contains zinc sulfide (ZnS). When zinc sulfide is contained in the first high refractive index layer 2, it becomes difficult for moisture to permeate from the transparent resin support 1 side, and corrosion of the transparent conductive layer 3 is suppressed.
  • the first high refractive index layer 2 may contain other dielectric material or oxide semiconductor material together with zinc sulfide.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained together with zinc sulfide is preferably 0.1 to 1.1 higher than the refractive index of light having a wavelength of 570 nm of the transparent resin support 1. More preferably, it is larger by 4 to 1.0.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5, and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2.
  • the refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
  • the refractive index is measured with an ellipsometer in an environment of 23 ° C. and 55% RH.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material can be a metal oxide. Examples of the metal oxide include SiO 2 , TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7.
  • the first high refractive index layer 2 may contain only one kind of the metal oxide or two or more kinds.
  • SiO 2 is particularly preferable.
  • a method for controlling the composition of ZnS and SiO 2 for example, a sputtering method using a ZnS target containing SiO 2 at an appropriate concentration, or a co-sputtering method using SiO 2 and ZnS targets simultaneously is used. Can be performed.
  • the first high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductive film is likely to be enhanced.
  • the amount of zinc sulfide may be 0.1 to 95% by volume with respect to the total volume of the first high refractive index layer 2. Preferably, it is 50 to 90% by volume or less, and more preferably 60 to 85% by volume or less.
  • the ratio of zinc sulfide is high, the sputtering rate is increased, and the formation rate of the first high refractive index layer 2 is increased.
  • the amorphous nature of the first high refractive index layer 2 is increased, and cracking of the first high refractive index layer 2 is suppressed.
  • the layer thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm.
  • the layer thickness of the first high refractive index layer 2 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductive film 100 is sufficiently adjusted by the first high refractive index layer 2.
  • the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease.
  • the layer thickness of the first high refractive index layer 2 is measured by an ellipsometer “multi-incidence angle spectroscopic ellipsometer VASE (registered trademark)” (manufactured by JA Woollam).
  • the first high refractive index layer 2 is formed by a general vapor deposition method (also called a deposition method or a vapor deposition method) such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. It can be a layer formed of From the standpoint that the refractive index (density) of the first high refractive index layer 2 is increased, the first high refractive index layer 2 is preferably a layer formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
  • IAD ion assist
  • the patterning method is not particularly limited.
  • the first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask or the like having a desired pattern on the deposition surface. It may be a layer patterned by a method.
  • the first sulfidation preventing layer 5a is preferably included.
  • the first sulfurization preventing layer 5a has a function of preventing diffusion of sulfides and sulfur-containing components from the first high refractive index layer.
  • the first sulfidation preventing layer 5a may also be formed in the insulating region b of the transparent conductive film 100.
  • the transparent conductive layer is made transparent from moisture, sulfide, sulfur-containing components, etc. in the atmosphere. Since it has a function of protecting the layer, it is preferably formed also in the insulating region b.
  • the first antisulfurization layer 5a is a layer that preferably contains zinc oxide, and may be a layer that contains a metal oxide, a metal nitride, a metal fluoride, and the like.
  • the first sulfidation preventing layer 5a may contain only one kind or two or more kinds.
  • the metal oxide can react with sulfur or adsorb sulfur.
  • a compound is preferred.
  • the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
  • metal oxides examples include ZnO, TiO 2 , ITO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , etc. are included.
  • metal fluorides examples include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. .
  • metal nitride examples include Si 3 N 4 , AlN, and the like.
  • a layer containing zinc oxide is preferable.
  • the layer thickness of the first sulfidation preventing layer 5a is preferably a layer thickness capable of protecting the surface of the first high refractive index layer 2 from an impact when forming the transparent conductive layer 3 described later.
  • ZnS that can be contained in the first high refractive index layer has a high affinity with the metal contained in the transparent conductive layer 3. Therefore, if the thickness of the first anti-sulfurization layer 5a is very thin and a part of the first high refractive index layer 2 is slightly exposed, a transparent metal film of the transparent conductive layer grows around the exposed part.
  • the transparent conductive layer 3 tends to be dense. That is, the first sulfidation preventing layer 5a is preferably relatively thin, preferably 0.1 to 5.0 nm, and more preferably 0.5 to 2.0 nm.
  • the first antisulfurization layer 5a is a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • the first antisulfurization layer 5a is a layer patterned into a desired shape
  • the patterning method is not particularly limited.
  • the first sulfidation preventing layer 5a may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the deposition surface, and may be a known etching method. It may be a layer patterned by.
  • the transparent conductive layer 3 is a film for conducting electricity in the transparent conductive film 100. As described above, the transparent conductive layer 3 may be formed on the entire surface of the transparent resin support 1, or may be patterned into a desired shape.
  • the transparent conductive layer 3 is a layer containing silver and may contain other metals.
  • the metal used together with silver is not particularly limited as long as it is a metal having high transparent conductivity.
  • gold, copper, nickel, palladium, platinum, zinc, aluminum, manganese, germanium, bismuth, neodymium, and molybdenum are preferable.
  • the transparent conductive layer 3 may contain only one kind of these metals or two or more kinds. From the viewpoint of conductivity, the transparent conductive layer is preferably made of an alloy containing 90 atm% or more of silver. When silver is contained at 90 atm% or more, excellent conductivity and high durability can be obtained.
  • the above highly conductive metal when at least one kind of the above highly conductive metal is contained within the above range, predetermined conductivity can be secured even if the thickness of the transparent conductive layer is reduced, and it is contained in the transparent conductive layer.
  • the effect of preventing silver deterioration is obtained and the reliability is improved.
  • the sulfidation resistance of the transparent metal film is enhanced.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • the layer thickness of the transparent conductive layer of the present invention is in the range of 3 to 15 nm, preferably in the range of 5 to 13 nm. The desired transparency and plasmon absorption rate can be ensured by this layer thickness.
  • the plasmon absorption rate of the transparent conductive layer 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less.
  • the transparent conductive layer 3 can be a film formed by any method, but in order to change the average transmittance of the transparent conductive layer, it is formed on a film formed by sputtering or an underlayer described later. It is preferable to use a film.
  • the material collides with the deposition target at high speed, so that a dense and smooth film can be easily obtained, and the light transmittance of the transparent conductive layer 3 is likely to be increased.
  • the transparent conductive layer 3 is a film formed by sputtering, the transparent conductive layer 3 is hardly corroded even in an environment of high temperature and low humidity.
  • the type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like.
  • the transparent conductive layer 3 is particularly preferably a film formed by a counter sputtering method. When the transparent conductive layer 3 is a film formed by a counter sputtering method, the transparent conductive layer 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent conductive layer 3 becomes lower and the light transmittance is likely to increase.
  • Second anti-sulfur layer> When the second high refractive index layer described later is a zinc sulfide-containing layer, as shown in FIG. 2, the second sulfide containing zinc oxide between the transparent conductive layer 3 and the second high refractive index layer 4 is used. It is preferable that the prevention layer 5b is included.
  • the second sulfidation preventing layer 5b may be formed also in the insulating region b of the transparent conductive film 100, but from the viewpoint of making it difficult to visually recognize the pattern formed of the conductive region a and the insulating region b, only the conductive region a. It is preferable to be formed.
  • the second anti-sulfurization layer 5b is a layer containing zinc oxide, and is a layer containing a metal oxide, a metal nitride, a metal fluoride, and the like. In addition to zinc oxide, only one of these may be contained in the second sulfurization prevention layer 5b, or two or more thereof may be contained.
  • the metal oxide, metal nitride, and metal fluoride may be the same as the metal oxide, metal nitride, and metal fluoride contained in the first high refractive index layer 2 described above. Among these, a layer containing zinc oxide is preferable.
  • the thickness of the second antisulfurization layer 5b is preferably a thickness capable of protecting the surface of the transparent conductive layer 3 from an impact when forming the second high refractive index layer 4 described later.
  • the metal contained in the transparent conductive layer 3 and the ZnS contained in the second high refractive index layer 4 have high affinity. Therefore, if the thickness of the second antisulfurization layer 5b is very thin and a part of the transparent conductive layer 3 is slightly exposed, the transparent conductive layer 3, the second antisulfurization layer 5b, and the second high refractive index layer. Adhesion with 4 tends to increase.
  • the specific layer thickness of the second sulfidation preventing layer 5b is preferably 0.1 to 5.0 nm, and more preferably 0.5 to 2.0 nm.
  • the layer thickness of the second sulfurization preventing layer 5b is measured with an ellipsometer.
  • the second antisulfurization layer 5b may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • the second antisulfurization layer 5b is a layer patterned into a desired shape
  • the patterning method is not particularly limited.
  • the second antisulfurization layer 5b may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the deposition surface, and may be a known etching method. It may be a layer patterned by.
  • the second high refractive index layer 4 is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductive film 100, that is, the region where the transparent conductive layer 3 is formed.
  • the conductive film 100 is formed in the conduction region a.
  • the second high-refractive index layer 4 may be formed in the insulating region b of the transparent conductive film 100, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a. Preferably it is formed. Since the second high refractive index layer 4 makes it difficult for moisture to permeate from the atmosphere side, it has an effect of suppressing the corrosion of the transparent conductive layer 3.
  • the second high refractive index layer 4 is a layer having a refractive index higher than the refractive index of the transparent resin support 1 described above, and one of the first high refractive index layers contains zinc sulfide (ZnS). It is.
  • the second high refractive index layer 4 may include zinc sulfide or other dielectric material or oxide semiconductor material.
  • the refractive index of light having a wavelength of 570 nm of zinc sulfide or other dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1. More preferably, it is larger by 1.0.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the second high refractive index layer 4 is preferably larger than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductive film 100 is sufficiently adjusted by the second high refractive index layer 4.
  • the refractive index of the second high refractive index layer 4 is adjusted by the refractive index of the material included in the second high refractive index layer 4 and the density of the material included in the second high refractive index layer 4.
  • the dielectric material or oxide semiconductor material contained in the second high refractive index layer 4 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material can be a metal oxide. Examples of the metal oxide include SiO 2 , TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7.
  • the second high refractive index layer 4 may include only one kind of the metal oxide or two or more kinds.
  • ITO indium tin oxide
  • IZO indium tin oxide
  • GZO zinc oxide
  • IGZO indium tin oxide
  • These materials are suitable for patterning and at the same time can provide a protective function for silver.
  • zinc sulfide is particularly preferable as the dielectric material or oxide semiconductor material contained in the second high refractive index layer 4.
  • ZnS zinc sulfide
  • the second high refractive index layer 4 may contain only ZnS or may contain other materials together with ZnS.
  • Materials included with ZnS is a metal oxide or SiO 2 or the like, which may be the dielectric material or an oxide semiconductor material, particularly preferably SiO 2.
  • SiO 2 is contained together with ZnS, the second high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
  • the amount of ZnS is preferably 0.1 to 95% by volume with respect to the total volume of the second high refractive index layer 4.
  • the content is more preferably 50 to 90% by volume or less, and still more preferably 60 to 85% by volume.
  • the ratio of ZnS is high, the sputtering rate increases and the formation rate of the second high refractive index layer 4 increases.
  • the amorphous nature of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
  • a method for controlling the composition of zinc sulfide and SiO 2 within the above range for example, a sputtering method using a ZnS target containing SiO 2 at an appropriate concentration, or co-sputtering using a SiO 2 and ZnS target simultaneously. This can be done by using the law.
  • the second high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductive film is likely to be enhanced.
  • the ratio of ZnS is high, the sputtering rate increases and the formation rate of the second high refractive index layer 4 increases.
  • the amount of components other than ZnS increases, the amorphousness of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
  • the layer thickness of the second high refractive index layer 4 is preferably 15 to 150 nm, and more preferably 20 to 80 nm. When the layer thickness of the second high refractive index layer 4 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4. On the other hand, if the layer thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease. The layer thickness of the second high refractive index layer 4 is measured with an ellipsometer.
  • the formation method of the second high refractive index layer 4 is not particularly limited, and is a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. It can be. From the viewpoint that the moisture permeability of the second high refractive index layer 4 is lowered, the second high refractive index layer 4 is particularly preferably a film formed by a sputtering method.
  • the patterning method is not particularly limited.
  • the second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by disposing a mask having a desired pattern on the deposition surface.
  • the layer patterned by the well-known etching method may be sufficient.
  • Hard coat layer> A hard coat layer is provided on at least one surface of the transparent resin support, preferably on the transparent conductive layer side, for the purpose of preventing scratches on the surface of the transparent resin support during the production of the transparent conductive film. It is preferable.
  • the film By providing a hard coat layer on at least one surface of the transparent resin support, the film can be wound, conveyed, and unwound in the production process of the transparent conductive film of the present invention from the time of forming the transparent resin support. It has the effect of preventing the occurrence of scratches due to surface pressure and friction between the film surfaces.
  • the hard coat layer is provided by applying and drying an ultraviolet curable acrylate resin and then curing with an ultraviolet light source.
  • the layer thickness of the hard coat layer is preferably in the range of 0.2 to 5.0 ⁇ m, and if the layer thickness of the hard coat layer is in the above range, a sufficient scratch resistance effect can be obtained. Since generation
  • the hard coat layer can be produced by laminating a SiO 2 thin film by a CVD method, a sputtering method, a vapor deposition method or the like with a layer thickness of 100 nm or less in addition to the application.
  • Anti-blocking layer A blocking prevention layer having a 10-point average roughness Rz of 50 nm or less is provided on the surface of the transparent conductive film of the present invention opposite to the surface provided with the transparent conductive layer of the transparent resin support. preferable.
  • the anti-blocking layer is used to prevent sticking between films when winding and handling the film. This is done by providing an arbitrary roughness on the surface of the film and filling this gap with air. It is possible to prevent sticking between films during unwinding and winding operations.
  • the anti-blocking layer can be provided by applying a coating liquid in which fine particles are mixed with a resin such as an acrylate resin.
  • a resin such as an acrylate resin.
  • resin fine particles can be used as the fine particles.
  • the average particle diameter of the fine particles is preferably within the range of 10 to 300 nm.
  • each thin film layer of a high refractive index layer, an antisulfurization layer and a transparent conductive layer provided on a transparent resin support is formed by a sputtering method or a vapor deposition method. Is preferred.
  • productivity is improved and an effect suitable for mass production is obtained.
  • the value obtained by the present invention is not impaired even by any other thin film manufacturing method such as chemical vapor deposition (CVD).
  • the transparent conductive layer is divided into a plurality of conductive regions a and a line-shaped insulating region that divides the conductive regions a. It is preferable to pattern it into a predetermined shape including b.
  • Examples of the deterioration factor of the transparent conductive layer containing silver include moisture and sulfide contained in the atmosphere. These are taken into the transparent resin support and the hard coat layer, and pass through the hard coat layer to reach the transparent conductive layer. Therefore, the transparent resin support and the hard coat layer alone do not provide sufficient silver protective function for the transparent conductive layer. Therefore, if there is a first high refractive index layer, preferably a first antisulfurization layer, the antisulfurization layer is included. From the viewpoint of preventing the deterioration of the transparent conductive layer, it is preferable to leave it on the transparent resin support without being patterned.
  • a known method can be used as a method of patterning the transparent conductive layer. Specifically, such a patterning method can be performed as follows.
  • the photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • the transparent conductive layer is processed into a desired pattern as shown in FIG.
  • a conventionally known general photolithography method can be used as appropriate.
  • the resist either positive or negative resist can be used.
  • preheating or prebaking can be performed as necessary.
  • a pattern mask having a desired pattern may be disposed, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated thereon.
  • development is performed with a developer suitable for the resist used.
  • a resist pattern is formed by stopping development with a rinse solution such as water and washing.
  • a rinse solution such as water and washing.
  • the formed resist pattern is pretreated or post-baked as necessary, and then is etched with an etching solution containing an organic solvent to dissolve the intermediate layer in a region not protected by the resist and to form a silver thin film electrode Remove.
  • the photolithography method applied to the present invention is a method generally recognized by those skilled in the art, and the specific application mode is easily selected by those skilled in the art according to the intended purpose. be able to.
  • FIG. 5A to FIG. 5G are process flow diagrams showing an example of forming an electrode pattern on the transparent conductor of the present invention by a photolithography method.
  • a first high refractive index layer 2 As a first step, as shown in FIG. 5A, on the transparent resin support 1, a first high refractive index layer 2, a first antisulfurization layer 5a, a transparent conductive layer 3, a second antisulfurization layer 5b, and a second high A transparent conductive film 100 in which the refractive index layer 4 is laminated in this order is produced.
  • a resist film 6 composed of a photosensitive resin composition or the like is uniformly coated on the transparent conductive film 100.
  • a photosensitive resin composition a negative photosensitive resin composition or a positive photosensitive resin composition can be used.
  • a coating method it is applied on the transparent conductive film 100 by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, hot plate, oven, etc. It can be pre-baked with a heating device. Pre-baking can be performed, for example, using a hot plate or the like in the range of 50 ° C. or higher and 150 ° C. or lower for 30 seconds to 30 minutes.
  • an exposure machine such as a stepper, a mirror projection mask aligner (MPA), a parallel light mask aligner or the like is used through a mask 7 made with a predetermined electrode pattern, and 10 to 4000 J / m.
  • the resist film 6A to be removed in the next step is irradiated with light of about 2 (wavelength 365 nm exposure amount conversion).
  • the exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
  • the exposed transparent conductive film is immersed in a developing solution to dissolve the resist film 6A in the region irradiated with light.
  • the developing method it is preferable to immerse in the developer for 5 seconds to 10 minutes by a method such as showering, dipping or paddle.
  • a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include aqueous solutions containing one or more quaternary ammonium salts such as side and choline.
  • FIG. 5G the resist film 6 is removed by immersing it in a resist film remover, for example, “N-300” manufactured by Nagase ChemteX Corporation, leaving the first high refractive index layer 2.
  • a transparent conductive film having an electrode pattern can be produced.
  • APC Furuya Metal "Ag alloy" (containing Pd and Cu) 12
  • APC-TR “Ag alloy” made of Furuya Metal (containing Pd and Cu) 13.
  • APC-SR Furuya Metal's “Ag alloy” (containing Pd and Cu) The above three grade alloys have different compositions.
  • Cr metallic chromium 27.
  • ICO Indium / cerium oxide 28.
  • GZO gallium / zinc oxide 30.
  • IGZO Indium / gallium / zinc oxide In the above, n represents a refractive index.
  • ZnS—SiO 2 was RF sputtered at 2 Pa, room temperature, target-side power of 150 W, and formation rate of 3.0 ⁇ / sec (0.3 nm / sec) to form a first high refractive index layer having a layer thickness of 45.0 nm.
  • the target-substrate distance was 90 mm.
  • Ro and Rt were measured with a phase difference measuring device “KOBRA-21ADH” (manufactured by Oji Scientific Instruments) in an environment of 23 ° C. and 55% RH.
  • the ratio (volume ratio) between ZnS and SiO 2 was 75:25 (ZnS: 75% by volume).
  • Transparent conductive layer (Ag) Transparent conductive layer (Ag)
  • APC-TR (“Ag alloy” manufactured by Furuya Metal Co., Ltd.) was sputtered oppositely to form a transparent conductive layer having a layer thickness of 7.5 nm.
  • the target-substrate distance was 90 mm.
  • ZnO—SiO 2 Silicon high refractive index layer
  • ZnS—SiO 2 is RF sputtered by the same method as the first high refractive index layer to form a second high refractive index layer having a layer thickness of 45.0 nm.
  • the volume ratio of ZnS to SiO 2 was 75:25.
  • Transparent conductive films 2 to 28 and 31 to 33 of the present invention were produced in the same manner as the transparent conductive film 1 except that the configurations shown in Tables 1 and 2 were used.
  • ZnS and SiO 2 ratio was carried out by utilizing a co-sputtering method using ZnS and SiO 2 targets simultaneously. The layer thickness of each layer was adjusted by adjusting the sputtering time.
  • the first antisulfurization layer and the second antisulfurization layer were both formed by the same method.
  • TPS3 is used as a transparent resin support, and one electronic heating evaporation source provided in GENER1300, an OPTRAN vacuum evaporation system, and two resistance heating evaporation sources are used in combination, and all layers are vacuumed as follows: It formed by the vapor deposition method.
  • the first high refractive index layer was made of ZnS—SiO 2 , ZnS was co-deposited from a resistance heating evaporation source, and SiO 2 was evaporated from an electron heating evaporation source. At this time, the resistance heating / electron gun current was independently controlled so that the volume ratio of ZnS to SiO 2 was 75:25. The layer thickness was 45.0 nm.
  • ZnO was formed as a first anti-sulfuration layer with a layer thickness of 1.0 nm from an electron heating evaporation source.
  • Ag from the first resistance heating evaporation source and Au from the second resistance heating evaporation source were co-deposited as transparent conductive layers, respectively.
  • the current of each evaporation source was controlled independently so that the ratio of Ag and Au was 98: 2 by weight.
  • the layer thickness was 7.5 nm.
  • ZnO was formed from the electron heating evaporation source with a layer thickness of 1.0 nm as the second sulfurization prevention layer.
  • the second high refractive index layer was made of ZnS—SiO 2 , ZnS was co-deposited from a resistance heating evaporation source, and SiO 2 was evaporated from an electron heating evaporation source. At this time, the resistance heating / electron gun current was independently controlled so that the volume ratio of ZnS to SiO 2 was 75:25. The layer thickness was 45.0 nm, and this was used as the transparent conductive film 29.
  • the transparent conductive film 30 was produced in the same manner as the transparent conductive film 29 as shown in Table 2.
  • Transparent conductive films 101 to 116 of comparative examples were produced in the same manner as the transparent conductive film 1 except that the structure shown in Table 3 was used.
  • the transparent conductive films 112 and 113 were produced by the following method.
  • Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m) was used for the transparent resin support.
  • Nb 2 O 5 was formed as a first high refractive index layer with a layer thickness of 27.5 nm.
  • L-430S-FHS manufactured by Anelva Ar 20 sccm, O 2 1 sccm, sputtering pressure 0.5 Pa, room temperature, target side power 150 W, formation rate 1.2 ⁇ / sec (0 Nb 2 O 5 was DC sputtered at .12 nm / sec).
  • the target-substrate distance was 86 mm.
  • Ag was formed as a transparent conductive layer to a layer thickness of 7.3 nm using a sputtering apparatus manufactured by Osaka Vacuum.
  • IZO was formed to a layer thickness of 36.0 nm as the second high refractive index layer. This was designated as transparent conductive film 112.
  • ⁇ Transparent conductive film 113> Using “Zerotack” manufactured by Konica Minolta Co., Ltd., Ro was set to 3 nm by adding a stretching step before drying.
  • the first high refractive index layer was made of ICO and had a layer thickness of 27.0 nm.
  • Cr was formed as a first sulfurization prevention layer with a layer thickness of 0.8 nm, and further, an Ag—Au alloy was prepared as a transparent conductive layer, and an alloy prepared so as to contain Ag and Au at 98 atm% and 2 atm%, respectively.
  • the layer thickness was 9.0 nm.
  • Cr was formed as a second anti-sulfuration layer with a layer thickness of 0.8 nm
  • ICO was formed thereon as a second high refractive index layer with a layer thickness of 27.0 nm.
  • SiO 2 was again formed with a layer thickness of 40.0 nm on the second high refractive index layer.
  • KP801M which is a fluorine-based surface modifying material, was deposited by resistance heating vapor deposition at 190 mA and a forming rate of 10 ⁇ / sec (1 nm / sec) with a Gener 1300 manufactured by Optorun to form a layer thickness of 6.0 nm. This was designated as a transparent conductive film 113.
  • a transparent conductive film comprising a support, a high refractive index layer, an antisulfurization layer and a transparent conductive layer is used.
  • the average transmittance was measured by making light incident from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductive film on the transparent resin support side.
  • the conductive films 1 to 33 of the present invention provide a transparent conductive film having good conductivity and transparency and capable of displaying beautiful images with no rainbow unevenness having angle dependency. I understand that I can do it.
  • the transparent conductive films 101 to 116 prepared as comparative examples for the effects of the present invention were inferior in various properties as compared with the present invention.
  • the transparent conductive film 101 had insufficient transmittance because the thickness of the conductive layer containing silver was too thick.
  • the transparent conductive film 102 was remarkably inferior in terms of conductivity.
  • the transparent conductive film 103 uses gold for the conductive layer, but due to the refractive index wavelength dispersion property of gold, high transparency in the entire visible range could not be secured, and as a result, the average transmittance was insufficient.
  • the transparent conductive film 107 is inferior in overall transmittance as a result of the absence of the second high refractive index layer having a function of adjusting the optical admittance, so that a portion with a small amount of incident light energy is directed to reflection. It was.
  • the transparent conductive film 108 was not preferable in terms of transmittance because the first high refractive index layer for adjusting the optical admittance was not present, and the conductivity was slightly insufficient. This is because the base when the ZnO as the first anti-sulfurization layer is formed is the surface of the support, which is an exposed organic substance, so that the ZnO thin film explained by the island-like nuclei in the growth mode of the Volmer-Weber As a result of the fact that the microscopic structural characteristics have a strong agglomeration property, it is presumed that the conductive layer formed immediately after that is also affected by this, and the film also has a strong granular interfacial property.
  • the transparent conductive films 109, 110, 112, 114 and 115 also have refractive index wavelength dispersion characteristics specific to various materials such as SiN, TiO 2 , Nb 2 O 5 , ITO and GIO selected instead of ZnS as the high refractive index layer. Therefore, the adjustment of the optical admittance became insufficient and the conductivity was slightly inferior. Regarding this lack of conductivity, the physicochemical properties of the surface on which the conductive layer is formed are different from those of the layer using sulfide, so that the microscopic structure of the conductive layer becomes homogeneous and continuous. Presumed to be missing.
  • the transparent conductive film 116 was inferior in terms of conductivity because the thickness of the conductive layer was too thin.
  • the present invention can be suitably used for a transparent conductive film having good conductivity and transparency and capable of displaying a beautiful image without rainbow unevenness having angle dependency.
  • SYMBOLS 100 Transparent conductive film 200 Polarizing plate 300 Image display element 1 Transparent resin support body 2 1st high refractive index layer 3 Transparent conductive layer 4 2nd high refractive index layer 5a 1st sulfidation prevention layer 5b 2nd sulfation prevention layer 6 Resist film 6A Resist film to be removed 7 Mask 8 Exposure unit EU Transparent electrode unit a Conductive region b Insulating region

Abstract

The objective of the present invention is to provide a transparent conductive film which has good electrical conductivity and transparency and is capable of displaying beautiful images that are free from the occurrence of iridescent irregularities having angular dependence. A transparent conductive film according to the present invention comprises at least one transparent conductive layer and a high-refractive-index layer on a transparent resin supporting body. This transparent conductive film is characterized in that: the transparent resin supporting body has an in-plane retardation value (Ro) within the range of 0-150 nm at a measurement wavelength of 589 nm; the transparent conductive layer contains silver and has a thickness of 3-15 nm; and high-refractive-index layers are provided on both surfaces of the transparent conductive layer, and at least one of the high-refractive-index layers contains zinc sulfide.

Description

透明導電性フィルムTransparent conductive film
 本発明は、透明導電性フィルムに関し、更に詳しくは、良好な導電性と透明性を有し、かつ角度依存性のある虹ムラの発生しない美麗な映像表示が可能な透明導電性フィルムに関する。 The present invention relates to a transparent conductive film, and more particularly, to a transparent conductive film having good conductivity and transparency and capable of displaying beautiful images without generating rainbow unevenness having angle dependency.
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ、タッチパネル、太陽電池等の各種装置に透明導電膜が使用されている。 In recent years, transparent conductive films have been used in various devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, touch panels, and solar cells.
 このような透明導電膜を構成する材料として、金、銀、白金、銅、ロジウム、パラジウム、アルミニウム、クロム等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(インジウム・スズ酸化物)等の酸化物半導体が知られている。 As a material constituting such a transparent conductive film, metals such as gold, silver, platinum, copper, rhodium, palladium, aluminum, and chromium, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used. , SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
 ここで、タッチパネル型の表示装置等では、表示素子の画像表示面上に、透明導電膜等からなる透明導電性フィルムが配置される。したがって、透明導電膜には、光の透過性が高いことが求められる。このような各種表示装置には、光透過性の高いITOからなる透明導電膜が多用されている。 Here, in a touch panel type display device or the like, a transparent conductive film made of a transparent conductive film or the like is disposed on the image display surface of the display element. Therefore, the transparent conductive film is required to have high light transmittance. In such various display devices, a transparent conductive film made of ITO having high light transmittance is often used.
 近年、静電容量方式のタッチパネル表示装置が開発され、透明導電膜の表面電気抵抗をさらに低くすることが求められている。しかし、従来のITO膜では、表面電気抵抗を十分に下げられないという問題があった。 In recent years, a capacitive touch panel display device has been developed, and it is required to further reduce the surface electrical resistance of the transparent conductive film. However, the conventional ITO film has a problem that the surface electric resistance cannot be sufficiently lowered.
 そこで、銀の蒸着膜を透明導電膜とすることが検討されている(例えば、特許文献1参照。)。また、透明導電体の光透過性を高めるため、銀の蒸着膜を屈折率の高い膜(例えば酸化ニオブ(Nb)、IZO(インジウム・亜鉛酸化物)、ICO(インジウム・セリウム酸化物)、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等からなる膜)で挟み込むことも提案されている(例えば、特許文献2~4参照。)。さらに、銀の蒸着膜を硫化亜鉛の膜で挟み込むことが提案されている(例えば、非特許文献1及び2参照。)。 Thus, it has been studied to use a silver deposited film as a transparent conductive film (see, for example, Patent Document 1). Further, in order to increase the light transmittance of the transparent conductor, a silver deposited film is formed of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium / zinc oxide), ICO (indium / cerium oxide). ), And a-GIO (a film made of gallium, indium, and oxygen) are also proposed (see, for example, Patent Documents 2 to 4). Further, it has been proposed to sandwich a vapor deposited silver film with a zinc sulfide film (see, for example, Non-Patent Documents 1 and 2).
 一方、近年のタッチパネルを備えた情報機器は大画面化・軽量薄型化の要求と同時に、一層の画質の高さ、動作精度と応答速度を両立する必要に迫られた結果、高い電気伝導性と透明性の重要性はこれまで以上に増しており、さらに映像表示機能の面から求められる特性から、元の表示映像を劣化させないことが重要である。しかしながら、タッチパネルデバイスが大画面化を遂げるのにあわせ、ユーザーはより広角に映像を鑑賞することになった結果、表示装置を斜め方向から視認した場合、画面に虹状のムラが発生する虹ムラ現象の発生が重要な問題となった。そして透明導電膜を構成する材料として金属を使用し薄膜とした場合には、角度依存性のある虹ムラが発生した。 On the other hand, information devices equipped with touch panels in recent years have been required to achieve higher image quality, operational accuracy, and response speed at the same time as demands for larger screens, lighter weights and thinners. The importance of transparency is increasing more than ever, and it is important not to degrade the original display image because of the characteristics required from the viewpoint of the image display function. However, as the touch panel device increases in screen size, the user has to view the video at a wider angle. As a result, when the display device is viewed from an oblique direction, a rainbow-like unevenness occurs on the screen. The occurrence of the phenomenon became an important issue. When a metal was used as the material for forming the transparent conductive film to form a thin film, rainbow unevenness with angle dependency occurred.
特表2011-508400号公報Special table 2011-508400 gazette 特開2006-184849号公報JP 2006-184849 A 特開2002-15623号公報JP 2002-15623 A 特開2008-226581号公報JP 2008-226581 A
 本発明の課題は、良好な導電性と透明性を有し、かつ角度依存性のある虹ムラの発生しない美麗な映像表示が可能な透明導電性フィルムを提供することである。 An object of the present invention is to provide a transparent conductive film having good conductivity and transparency, and capable of beautiful image display without occurrence of rainbow unevenness having angle dependency.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、透明導電性フィルムに、面内リターデーション値Roの小さい透明樹脂支持体を用い、その上に銀を含有する透明導電層と透明導電層の両側に高屈折率層を設け、さらに少なくとも一方の高屈折率層に硫化亜鉛を含有することによって、良好な導電性と角度依存性のある虹ムラの発生しない美麗な映像表示が可能な透明導電性フィルムを得ることができることを見いだし本発明に至った。 In order to solve the above-mentioned problems, the present inventor uses a transparent resin support having a small in-plane retardation value Ro for the transparent conductive film in the process of examining the cause of the above-mentioned problems, and contains silver thereon. By providing a high refractive index layer on both sides of the transparent conductive layer and the transparent conductive layer, and further including zinc sulfide in at least one high refractive index layer, rainbow unevenness having good conductivity and angle dependency does not occur. The present inventors have found that a transparent conductive film capable of displaying beautiful images can be obtained, and have reached the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.透明樹脂支持体上に少なくとも一層の透明導電層と高屈折率層とを有する透明導電性フィルムであって、
 前記透明樹脂支持体の測定波長589nmにおける面内リターデーション値Roが、0~150nmの範囲内であり、
 前記透明導電層が、銀を含有し、かつ層厚が、3~15nmの範囲内であり、
 前記高屈折率層が、前記透明導電層の両側に設けられ、かつ少なくとも一方の高屈折率層が硫化亜鉛を含有することを特徴とする透明導電性フィルム。
1. A transparent conductive film having at least one transparent conductive layer and a high refractive index layer on a transparent resin support,
The in-plane retardation value Ro of the transparent resin support at a measurement wavelength of 589 nm is in the range of 0 to 150 nm,
The transparent conductive layer contains silver and has a layer thickness in the range of 3 to 15 nm;
The transparent conductive film, wherein the high refractive index layer is provided on both sides of the transparent conductive layer, and at least one high refractive index layer contains zinc sulfide.
 2.前記透明樹脂支持体の測定波長589nmにおける厚さ方向リターデーション値Rtが、0~400nmの範囲内であることを特徴とする第1項に記載の透明導電性フィルム。 2. 2. The transparent conductive film according to item 1, wherein a retardation value Rt in the thickness direction at a measurement wavelength of 589 nm of the transparent resin support is within a range of 0 to 400 nm.
 3.前記透明樹脂支持体が、少なくともセルロースエステル樹脂、シクロオレフィン樹脂及びポリカーボネート樹脂から選択されるいずれか一種を含有することを特徴とする第1項又は第2項に記載の透明導電性フィルム。 3. The transparent conductive film according to Item 1 or 2, wherein the transparent resin support contains at least one selected from cellulose ester resins, cycloolefin resins, and polycarbonate resins.
 4.前記透明導電層が、金、銅、ニッケル、パラジウム、白金、亜鉛、アルミニウム、マンガン、ゲルマニウム、ビスマス、ネオジム及びモリブデンから選択される少なくとも一種の金属を含有することを特徴とする第1項から第3項までのいずれか一項に記載の透明導電性フィルム。 4. The transparent conductive layer contains at least one metal selected from gold, copper, nickel, palladium, platinum, zinc, aluminum, manganese, germanium, bismuth, neodymium, and molybdenum. 4. The transparent conductive film according to any one of items up to 3.
 5.前記透明導電層の両側に設けられた高屈折率層のうち、支持体側の高屈折率層が、硫化亜鉛を含有することを特徴とする第1項から第4項までのいずれか一項に記載の透明導電性フィルム。 5. Of the high refractive index layers provided on both sides of the transparent conductive layer, the high refractive index layer on the support side contains zinc sulfide. The transparent conductive film as described.
 6.前記透明導電層の両側に設けられた高屈折率層のうち、支持体側とは反対側に設けられた高屈折率層が、インジウム・スズ酸化物、インジウム・亜鉛酸化物、ガリウム・亜鉛酸化物又はインジウム・ガリウム・亜鉛酸化物のいずれかを含有することを特徴とする第1項から第5項までのいずれか一項に記載の透明導電性フィルム。 6. Among the high refractive index layers provided on both sides of the transparent conductive layer, the high refractive index layer provided on the side opposite to the support side is composed of indium tin oxide, indium zinc oxide, gallium zinc oxide. Or any one of indium, gallium, and zinc oxide, The transparent conductive film according to any one of Items 1 to 5,
 7.前記透明導電層と前記少なくとも一方の高屈折率層との間に、酸化亜鉛を含有する層を有することを特徴とする第1項から第6項までのいずれか一項に記載の透明導電性フィルム。 7. The transparent conductive material according to any one of Items 1 to 6, further comprising a layer containing zinc oxide between the transparent conductive layer and the at least one high refractive index layer. the film.
 本発明の上記手段により、良好な導電性と透明性を有し、かつ角度依存性のある虹ムラの発生しない美麗な映像表示が可能な透明導電性フィルムを提供することができる。 By the above means of the present invention, it is possible to provide a transparent conductive film having good conductivity and transparency and capable of displaying beautiful images without generating rainbow unevenness having angle dependency.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明の透明導電性フィルムは、透明樹脂支持体上に少なくとも一層の透明導電層と高屈折率層とを有する透明導電性フィルムであり、透明樹脂支持体の面内リターデーションRoを0~150nmの範囲内とすることにより、角度依存性のある虹ムラを防止することができたものである。 The transparent conductive film of the present invention is a transparent conductive film having at least one transparent conductive layer and a high refractive index layer on a transparent resin support, and the in-plane retardation Ro of the transparent resin support is 0 to 150 nm. By making it within the range, it is possible to prevent rainbow unevenness having angle dependency.
 一般の虹ムラとは、透過型静電容量タッチパネルの表示映像において、透明導電性フィルムを構成する部材の一部又は全体が大きなリターデーション値を持つことにより、ある偏光状態をもった映像光がタッチモジュールの積層された各部材を通過するときに波長・視野角ごとに異なる偏光状態に変換されることによって生じる。 General rainbow unevenness means that in a display image of a transmissive capacitive touch panel, part or all of the members constituting the transparent conductive film have a large retardation value, so that image light having a certain polarization state is generated. This is caused by being converted into a different polarization state for each wavelength and viewing angle when passing through the stacked members of the touch module.
 図1は、一般の虹ムラ発生機構を説明する模式図であり、アウトセルタイプの透過型静電容量タッチパネルの代表的な構成を、光線の偏光状態の変化に着目して簡略化・模式化して示した。したがって、実際の製品の形態及び光線を忠実に再現したものではない。 FIG. 1 is a schematic diagram for explaining a general rainbow unevenness generation mechanism. A typical configuration of an out-cell type transmissive capacitive touch panel is simplified and schematically shown by focusing on a change in the polarization state of light rays. Showed. Therefore, it does not faithfully reproduce the actual product form and light rays.
 図1中、300は液晶などの画像表示素子を模しており、その最表面には偏光板200が設けられている。さらにその上部には透明導電性フィルム100が存在する。 In FIG. 1, reference numeral 300 represents an image display element such as a liquid crystal, and a polarizing plate 200 is provided on the outermost surface thereof. Furthermore, the transparent conductive film 100 exists in the upper part.
 ここで、異なる画素A及びBから発せられた光は、偏光板の作用により直線偏光として透明導電性フィルム中を、異なる光路に沿って進行する。このとき、透明導電性フィルムの支持体がリターデーションを持つことから、異なる光路を進行する各々の光線はA、Bを経由するまでに互いに異なる偏光状態に変換されたのち、観測者の視点Oに到達する。 Here, the light emitted from the different pixels A and B travels along the different optical paths in the transparent conductive film as linearly polarized light by the action of the polarizing plate. At this time, since the support of the transparent conductive film has retardation, each light beam traveling in different optical paths is converted into a different polarization state before passing through A 1 and B 1, and then the observer's Reach viewpoint O.
 このとき、透明導電性フィルム100の視認側界面で界面反射が生ずるが、フレネルの式によれば、このときの反射率は光線の偏光成分ごとに異なり、入射角をφ、屈折角をφとしたとき(図1中、φA1は、A点からの入射角を表し、φA2は、A点からの屈折角を表す。同様にφB1は、B点からの入射角を表し、φB2は、B点からの屈折角を表す。)、
 p偏光Rpは、
 Rp={tan(φ-φ)}/{tan(φ+φ)}
 S偏光Rsは、
 Rs=-{sin(φ-φ)}/{sin(φ+φ)}
で表される。
At this time, interface reflection occurs at the viewing-side interface of the transparent conductive film 100, but according to Fresnel's equation, the reflectance at this time differs for each polarization component of the light beam, and the incident angle is φ 1 and the refraction angle is φ. 2 (in FIG. 1, φ A1 represents an incident angle from point A, φ A2 represents a refraction angle from point A. Similarly, φ B1 represents an incident angle from point B, φ B2 represents the refraction angle from point B),
The p-polarized light Rp is
Rp = {tan (φ 1 −φ 2 )} / {tan (φ 1 + φ 2 )}
S-polarized light Rs is
Rs = − {sin (φ 1 −φ 2 )} / {sin (φ 1 + φ 2 )}
It is represented by
 上記式から明らかなように、s偏光成分はp偏光成分に対して高い反射率を示すが、結果おのずと透過光線の強度はp偏光がs偏光に対し大となり、またその比は角度依存性を有することがわかる。 As is clear from the above equation, the s-polarized component shows a high reflectivity with respect to the p-polarized component, but as a result, the intensity of the transmitted light is naturally greater for p-polarized light than for s-polarized light, and the ratio is angularly dependent. You can see that
 他方、前述の通り、図1中で画素A及びBから発せられた光線は、異なる偏光状態を有しているがゆえに、各々のp偏光及びs偏光成分の振幅比は既に同一でない。 On the other hand, as described above, since the light beams emitted from the pixels A and B in FIG. 1 have different polarization states, the amplitude ratios of the p-polarized light component and the s-polarized light component are not already the same.
 したがってA、Bから観察者側へと透過する二つの光線の強度は異なっており、観察者においては部位ごとの明暗コントラストとして視認される。加えて、屈折率は波長によって異なることから、前述のp-s偏光成分ごとの反射強度比も波長によって異なっており、結果として発生する明暗コントラストの程度は色ごとにおいても異なる。 Therefore, the intensities of the two light beams transmitted from A 1 and B 1 to the viewer side are different, and the viewer visually recognizes the contrast as bright and dark for each part. In addition, since the refractive index varies depending on the wavelength, the reflection intensity ratio for each of the p-s polarization components also varies depending on the wavelength, and the resulting contrast level differs depending on the color.
 これが一般の虹ムラの発生原理であり、近年のタッチパネルを備えた映像表示装置の大画面化の流れの中では非常に重要な問題となっている。 This is the general principle of rainbow unevenness, and it is a very important problem in the trend toward larger screens of video display devices equipped with touch panels in recent years.
 従前のタッチパネルでは、透明導電膜としてITOのような屈折率の大きい材料を使用し一般の虹ムラが強く発生していたことから、銀のような屈折率がITOよりも小さい材料の場合は、界面反射が小さくなりその発生が抑制されると予測していたが、予想に反し角度依存性のある虹ムラが発生した。銀を含有する透明導電層の吸収と、層厚の薄さが起因しているのではないかと推測している。 In a conventional touch panel, a material having a large refractive index such as ITO was used as a transparent conductive film, and general rainbow unevenness was strongly generated. Therefore, in the case of a material having a refractive index smaller than ITO, such as silver, Although it was predicted that the reflection at the interface would be reduced and its generation would be suppressed, contrary to expectation, rainbow unevenness with angle dependency occurred. It is speculated that the absorption of the transparent conductive layer containing silver and the thinness of the layer may be caused.
 本発明者らは上述のように、銀を含有することを特徴とする透明導電性フィルムは、優れた透明導電性に基づき、大画面かつ視認性に優れたタッチパネルを備えた映像表示装置を提供しうるものでありながら、その実際に供される形態においては、従前に比して使用者はより大きな視野角で映像を鑑賞することになるため、前記角度依存性のある色ムラが却って顕著な問題となることを見いだした。 As described above, the inventors of the present invention provide a video display device including a touch panel having a large screen and excellent visibility based on excellent transparent conductivity. However, in the form actually provided, since the user views the image with a larger viewing angle than before, the angle-dependent color unevenness is conspicuous on the contrary. I found it to be a serious problem.
 同時に、本発明者らはこの課題に対し、限定的かつ緻密に構成された条件のもとで、前記角度依存性の色ムラが解消可能であることを突き止めた。すなわち、リタ―デーションの低い支持体を使用し、かつ後述の高屈折率層及び硫化防止層と、銀を含有する導電層を巧みに組み合わせることで、工業的実用性と、優れた導電性と透明性及び美麗な映像表示を同時に実現する透明導電性フィルムを得ることができる。 At the same time, the present inventors have found out that the angle-dependent color unevenness can be solved under a limited and densely configured condition. That is, by using a support with low retardation and skillfully combining a high refractive index layer and an antisulfuration layer described later with a conductive layer containing silver, industrial practicality and excellent conductivity can be obtained. A transparent conductive film that simultaneously realizes transparency and beautiful image display can be obtained.
虹ムラ発生機構を説明する模式図Schematic diagram explaining the rainbow unevenness generation mechanism 本発明の透明導電性フィルムの層構成の一例を示す概略断面図Schematic sectional view showing an example of the layer structure of the transparent conductive film of the present invention 本発明の透明導電性フィルムの導通領域及び絶縁領域からなるパターンの一例を示す模式図The schematic diagram which shows an example of the pattern which consists of a conduction | electrical_connection area | region and an insulation area | region of the transparent conductive film of this invention. 本発明の透明導電性フィルムの導通領域及び絶縁領域からなる電極パターンの一例を示す模式図The schematic diagram which shows an example of the electrode pattern which consists of a conduction | electrical_connection area | region and an insulation area | region of the transparent conductive film of this invention. 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography
 本発明の透明導電性フィルムは、透明樹脂支持体上に少なくとも一層の透明導電層と高屈折率層とを有する透明導電性フィルムであって、
 前記透明樹脂支持体の測定波長589nmにおける面内リターデーション値Roが、0~150nmの範囲内であり、
 前記透明導電層が、銀を含有し、かつ層厚が、3~15nmの範囲内であり、
 前記高屈折率層が、前記透明導電層の両側に設けられ、かつ少なくとも一方の高屈折率層が硫化亜鉛を含有することを特徴とする。この特徴は、請求項1から請求項7までの請求項に係る発明に共通する技術的特徴である。
The transparent conductive film of the present invention is a transparent conductive film having at least one transparent conductive layer and a high refractive index layer on a transparent resin support,
The in-plane retardation value Ro of the transparent resin support at a measurement wavelength of 589 nm is in the range of 0 to 150 nm,
The transparent conductive layer contains silver and has a layer thickness in the range of 3 to 15 nm;
The high refractive index layer is provided on both sides of the transparent conductive layer, and at least one high refractive index layer contains zinc sulfide. This feature is a technical feature common to the inventions according to claims 1 to 7.
 本発明の実施態様として、本発明の効果発現の観点から、前記透明樹脂支持体の厚さ方向リターデーション値Rtが、0~400nmの範囲内であることが好ましい。 As an embodiment of the present invention, it is preferable that the thickness direction retardation value Rt of the transparent resin support is in the range of 0 to 400 nm from the viewpoint of manifesting the effects of the present invention.
 また、前記透明樹脂支持体が、少なくともセルロースエステル樹脂、シクロオレフィン樹脂及びポリカーボネート樹脂から選択されるいずれか一種を含有すると、面内リターデーション値Roを上記範囲内にすることができ、角度依存性のある虹ムラ防止する効果が得られるので好ましい。 Further, when the transparent resin support contains at least one selected from a cellulose ester resin, a cycloolefin resin and a polycarbonate resin, the in-plane retardation value Ro can be within the above range, and the angle dependency This is preferable because an effect of preventing rainbow unevenness can be obtained.
 前記透明導電層が、金、銅、ニッケル、パラジウム、白金、亜鉛、アルミニウム、マンガン、ゲルマニウム、ビスマス、ネオジム及びモリブデンから選択される少なくとも一種の金属を含有することが好ましい。 It is preferable that the transparent conductive layer contains at least one metal selected from gold, copper, nickel, palladium, platinum, zinc, aluminum, manganese, germanium, bismuth, neodymium and molybdenum.
 また、前記透明導電層の両側に設けられた高屈折率層のうち、支持体側の高屈折率層が、硫化亜鉛を含有することが好ましい。 Of the high refractive index layers provided on both sides of the transparent conductive layer, the high refractive index layer on the support side preferably contains zinc sulfide.
 また、前記透明導電層の両側に設けられた高屈折率層のうち、支持体側とは反対側に設けられた高屈折率層が、インジウム・スズ酸化物、インジウム・亜鉛酸化物、ガリウム・亜鉛酸化物又はインジウム・ガリウム・亜鉛酸化物のいずれかを含有することが好ましい。 Among the high refractive index layers provided on both sides of the transparent conductive layer, the high refractive index layer provided on the side opposite to the support side is composed of indium tin oxide, indium zinc oxide, gallium zinc It is preferable to contain either an oxide or indium / gallium / zinc oxide.
 また、前記透明導電層と前記少なくとも一方の高屈折率層との間に、酸化亜鉛を含有する層を有することが好ましい。 Moreover, it is preferable to have a layer containing zinc oxide between the transparent conductive layer and the at least one high refractive index layer.
 以下本発明の構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で用いる。 Hereinafter, constituent elements of the present invention, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit and an upper limit.
 ≪透明導電性フィルム≫
 本発明の透明導電性フィルムの層構成の一実施態様を図2及び図3に示す。
≪Transparent conductive film≫
One embodiment of the layer structure of the transparent conductive film of the present invention is shown in FIGS.
 本発明の透明導電性フィルム100には、透明樹脂支持体1/第1高屈折率層2/透明導電層3/第2高屈折率層4が含まれる。そして、本発明の透明導電性フィルム100では、当該第1高屈折率層2及び第2高屈折率層4のどちらか一方が、硫化亜鉛(ZnS)を含有する層である。さらに当該第1、第2の高屈折率層2及び4と透明導電層3との間には、少なくともどちらか一層の酸化亜鉛を含有する硫化防止層5a又は5bを有することが好ましい。また、これらの層は薄膜から形成される層である。 The transparent conductive film 100 of the present invention includes transparent resin support 1 / first high refractive index layer 2 / transparent conductive layer 3 / second high refractive index layer 4. In the transparent conductive film 100 of the present invention, one of the first high refractive index layer 2 and the second high refractive index layer 4 is a layer containing zinc sulfide (ZnS). Furthermore, it is preferable to have an antisulfurization layer 5a or 5b containing at least one layer of zinc oxide between the first and second high refractive index layers 2 and 4 and the transparent conductive layer 3. Moreover, these layers are layers formed from a thin film.
 図2においては、第1高屈折率層2及び第2高屈折率層4のどちらか一方が、硫化亜鉛を含有する層であり、当該第1高屈折率層2又は第2高屈折率層4と透明導電層3との間に、硫化防止層5(酸化亜鉛を含有する硫化防止層5a又は5b)が設けられることが好ましい。 In FIG. 2, one of the first high refractive index layer 2 and the second high refractive index layer 4 is a layer containing zinc sulfide, and the first high refractive index layer 2 or the second high refractive index layer. 4 and the transparent conductive layer 3 are preferably provided with an anti-sulfurization layer 5 (an anti-sulfurization layer 5a or 5b containing zinc oxide).
 透明導電層と硫化亜鉛を含有する高屈折率層とが隣接して形成されると、金属硫化物が生成されやすく、透明導電性フィルムの光透過性が低下しやすいという問題がある。金属硫化物は、以下のように生成されると推察される。 When the transparent conductive layer and the high refractive index layer containing zinc sulfide are formed adjacent to each other, there is a problem that metal sulfide is easily generated and the light transmittance of the transparent conductive film is likely to be lowered. The metal sulfide is presumed to be produced as follows.
 第1高屈折率層2(硫化亜鉛含有層)上にスパッタ法等の気相成膜法で透明導電層を形成する場合、第1高屈折率層2中の未反応の硫黄成分が、透明導電層の金属材料(銀)によって成膜雰囲気中に弾き出される。そして、弾き出された硫黄成分と銀とが反応し、硫化銀が高屈折率層上に堆積する。また、高屈折率層と透明導電層とを連続的に形成する場合、高屈折率層の成膜雰囲気に含まれる硫黄成分が透明導電層の銀を含有する金属層雰囲気内に残存する。そして、この硫黄成分と銀とが反応し、硫化銀が高屈折率層上に堆積する。 When a transparent conductive layer is formed on the first high refractive index layer 2 (zinc sulfide-containing layer) by a vapor deposition method such as sputtering, the unreacted sulfur component in the first high refractive index layer 2 is transparent. It is blown out into the film forming atmosphere by the metal material (silver) of the conductive layer. Then, the released sulfur component reacts with silver, and silver sulfide is deposited on the high refractive index layer. Moreover, when forming a high refractive index layer and a transparent conductive layer continuously, the sulfur component contained in the film-forming atmosphere of a high refractive index layer remains in the metal layer atmosphere containing the silver of a transparent conductive layer. Then, the sulfur component and silver react to deposit silver sulfide on the high refractive index layer.
 一方、透明導電層上に第2高屈折率層(硫化亜鉛含有層)を形成する場合、透明導電層の銀を含有する金属膜中の銀が、第2高屈折率層の材料によって、成膜雰囲気中に弾き出される。そして、弾き出された銀と硫黄成分とが反応し、硫化銀が透明導電層表面に堆積する。さらに、透明導電層の表面と、成膜雰囲気中の硫黄成分とが接触することでも、透明導電層の銀を含有する金属層表面に硫化銀が生成する。 On the other hand, when the second high refractive index layer (zinc sulfide-containing layer) is formed on the transparent conductive layer, the silver in the metal film containing silver of the transparent conductive layer is formed by the material of the second high refractive index layer. Played in the film atmosphere. Then, the ejected silver reacts with the sulfur component, and silver sulfide is deposited on the surface of the transparent conductive layer. Furthermore, silver sulfide is generated on the surface of the metal layer containing silver of the transparent conductive layer even when the surface of the transparent conductive layer is in contact with the sulfur component in the film forming atmosphere.
 これに対し、本発明の透明導電性フィルム100では、例えば図2に示されるように、第1高屈折率層2上に、酸化亜鉛を含有する第1硫化防止層5aが積層されてもよい。当該構成では、第1高屈折率層2が第1硫化防止層5aで保護されるため、透明導電層3の形成時に第1高屈折率層2中の硫黄成分が弾き出され難い。また、第1高屈折率層2と導電層3とを連続的に形成したとしても、第1高屈折率層2の成膜雰囲気に含まれる硫黄成分が、第1硫化防止層5aの構成成分と反応したり、第1硫化防止層5aの構成成分に吸着される。したがって、透明導電層3の成膜雰囲気には硫黄が含まれ難くなり、硫化銀の生成が抑制される。 On the other hand, in the transparent conductive film 100 of the present invention, for example, as shown in FIG. 2, the first sulfidation preventing layer 5 a containing zinc oxide may be laminated on the first high refractive index layer 2. . In this configuration, since the first high refractive index layer 2 is protected by the first antisulfurization layer 5a, it is difficult for the sulfur component in the first high refractive index layer 2 to be ejected when the transparent conductive layer 3 is formed. Even if the first high-refractive index layer 2 and the conductive layer 3 are continuously formed, the sulfur component contained in the film formation atmosphere of the first high-refractive index layer 2 is a component of the first antisulfurization layer 5a. Or adsorbed to the constituent components of the first sulfurization prevention layer 5a. Therefore, it becomes difficult for sulfur to be contained in the film-forming atmosphere of the transparent conductive layer 3, and the production of silver sulfide is suppressed.
 また本発明の透明導電性フィルム100では、例えば図2に示されるように、透明導電層3上に第2硫化防止層5bが積層されてもよい。当該構成では、透明導電層3が第2硫化防止層5bで保護されるため、第2高屈折率層4の形成時に透明導電層3中の銀が弾き出され難い。また、第2高屈折率層4の成膜雰囲気中の硫黄成分が、透明導電層3の表面と接触し難い。したがって、透明導電層3表面に硫化銀が生成し難い。 Moreover, in the transparent conductive film 100 of the present invention, for example, as shown in FIG. 2, the second sulfidation preventing layer 5 b may be laminated on the transparent conductive layer 3. In this configuration, since the transparent conductive layer 3 is protected by the second sulfidation preventing layer 5b, silver in the transparent conductive layer 3 is hardly ejected when the second high refractive index layer 4 is formed. Further, the sulfur component in the film formation atmosphere of the second high refractive index layer 4 is difficult to come into contact with the surface of the transparent conductive layer 3. Therefore, it is difficult to produce silver sulfide on the surface of the transparent conductive layer 3.
 本発明の透明導電性フィルムでは、図2に示されるように、透明導電層3が透明樹脂支持体1の全面に積層されていてもよく、図3に示されるように、透明導電層3が所望の形状にパターン化されていてもよい。本発明の透明導電性フィルムにおいて、透明導電層3が積層されている領域aが、電気が導通する領域(以下、「導通領域」とも称する)である。一方、図3に示されるように、透明導電層3が含まれない領域bが絶縁領域である。 In the transparent conductive film of the present invention, as shown in FIG. 2, the transparent conductive layer 3 may be laminated on the entire surface of the transparent resin support 1, and as shown in FIG. It may be patterned into a desired shape. In the transparent conductive film of the present invention, the region a where the transparent conductive layer 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”). On the other hand, as shown in FIG. 3, the region b not including the transparent conductive layer 3 is an insulating region.
 導通領域a及び絶縁領域bからなるパターンは、透明導電性フィルム100の用途に応じて、適宜選択される。例えば透明導電性フィルム100が静電方式のタッチパネルに適用される場合には、図4に示されるように、複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターン等でありうる。 The pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductive film 100. For example, when the transparent conductive film 100 is applied to an electrostatic touch panel, as shown in FIG. 4, the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. It is possible.
 また、本発明の透明導電性フィルム100には、透明樹脂支持体1、第1高屈折率層2、透明導電層3、及び第2高屈折率層4、及び硫化防止層5以外の層が含まれてもよい。例えば透明導電層3の形成時に成長核になり得る下地層が、透明導電層と第1高屈折率層2との間に、透明導電層3に隣接して含まれてもよい。 In addition, the transparent conductive film 100 of the present invention includes layers other than the transparent resin support 1, the first high refractive index layer 2, the transparent conductive layer 3, the second high refractive index layer 4, and the sulfurization prevention layer 5. May be included. For example, an underlayer that can be a growth nucleus when forming the transparent conductive layer 3 may be included between the transparent conductive layer and the first high refractive index layer 2 adjacent to the transparent conductive layer 3.
 ≪透明導電性フィルムの層構成について≫
 <1.透明樹脂支持体>
 透明導電性フィルム100に用いられる透明樹脂支持体1としては、セルロースエステル樹脂(例えばトリアセチルセルロース(ゼロタック(コニカミノルタ社製))、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))が挙げられ、これらの樹脂が透明樹脂支持体の50質量%以上であることが好ましい。これらの樹脂は2種以上であってもよい。
≪About layer structure of transparent conductive film≫
<1. Transparent resin support>
Examples of the transparent resin support 1 used for the transparent conductive film 100 include cellulose ester resins (for example, triacetylcellulose (Zerotac (manufactured by Konica Minolta)), diacetylcellulose, acetylpropionylcellulose, etc.), polycarbonate resins (for example, panlite, Multilon (both made by Teijin)), cycloolefin resin (for example, Zeonoa (made by Nippon Zeon), Arton (made by JSR), Apel (made by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, acrylite ( (Mitsubishi Rayon Co., Ltd.) and Sumipex (Sumitomo Chemical Co., Ltd.)), and these resins are preferably 50% by mass or more of the transparent resin support. Two or more kinds of these resins may be used.
 これらの樹脂のうち、セルロースエステル樹脂、シクロオレフィン樹脂、ポリカーボネート樹脂が好ましい。 Of these resins, cellulose ester resins, cycloolefin resins, and polycarbonate resins are preferable.
 またその他混合してもよい樹脂として、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等から選択される1種以上の樹脂が含まれてもよい。 Other resins that may be mixed include polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (for example, polyethylene terephthalate (PET), polyethylene naphthalate), polyether sulfone, ABS / AS resin, One or more resins selected from MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, and the like may be included.
 また本発明において用いられる透明樹脂支持体1がセルロースエステルである場合については、低級脂肪酸エステルが好ましく、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートブチレート等が好ましく用いられる。本発明で用いられるセルロースエステルはアシル基の置換度が2.85~3.00であることが面配向度がより低く維持できるため好ましく、特に2.92~3.00であることが好ましい。 Further, when the transparent resin support 1 used in the present invention is a cellulose ester, a lower fatty acid ester is preferable, and cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, or the like is used. Preferably used. The cellulose ester used in the present invention preferably has an acyl group substitution degree of 2.85 to 3.00 because the degree of plane orientation can be kept lower, and particularly preferably 2.92 to 3.00.
 アシル基の置換度の測定方法はASTM-D817-96の規定に準じて測定することができる。 The method for measuring the substitution degree of the acyl group can be measured in accordance with the provisions of ASTM-D817-96.
 重合度は250~400であるセルロースエステルが好ましく用いられ、特にセルローストリアセテートが好ましく用いられる。本発明に係るセルロースエステルの数平均分子量Mnは、70000~250000が、機械的強度に優れ、かつ、適度なドープ粘度となるので好ましく、更に好ましくは、80000~150000である。また、重量平均分子量Mwとの比Mw/Mnは1.0~5.0のセルロースエステルが好ましく用いられる。 A cellulose ester having a polymerization degree of 250 to 400 is preferably used, and cellulose triacetate is particularly preferably used. The number average molecular weight Mn of the cellulose ester according to the present invention is preferably 70000 to 250,000, since it is excellent in mechanical strength and has an appropriate dope viscosity, and more preferably 80000 to 150,000. A cellulose ester having a ratio Mw / Mn to the weight average molecular weight Mw of 1.0 to 5.0 is preferably used.
 本発明の透明樹脂支持体の測定波長589nmにおける面内リターデーション値Roは、0~150nmの範囲内である。好ましくはRoが、0~20nm又は40~150nmの範囲内が好ましい。 The in-plane retardation value Ro of the transparent resin support of the present invention at a measurement wavelength of 589 nm is in the range of 0 to 150 nm. Preferably, Ro is in the range of 0 to 20 nm or 40 to 150 nm.
 また、測定波長589nmにおける厚さ方向リターデーション値Rtが0~400nmの範囲内であることが好ましく、特に好ましくはRtが0~70nmの範囲内又はRtが80~300nmの範囲内である。Rtを好ましい範囲とすることで、偏光板を使用したサングラスを装着したときの視認性が改善される。 The thickness direction retardation value Rt at a measurement wavelength of 589 nm is preferably in the range of 0 to 400 nm, and particularly preferably, Rt is in the range of 0 to 70 nm or Rt is in the range of 80 to 300 nm. By setting Rt to a preferred range, the visibility when wearing sunglasses using a polarizing plate is improved.
 式(i) Ro=(nx-ny)×d
 式(ii) Rt=((nx+ny)/2-nz)×d
(式中、Roはフィルム面内リターデーション値、Rtは厚さ方向リターデーション値、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内の進相軸方向の屈折率、nzはフィルムの厚み方向の屈折率、dはフィルムの厚さ(nm)を表す。)
 本発明においては、測定波長589nmにおける面内リターデーション値Ro及び厚さ方向リターデーション値Rtは、23℃・55%RHの環境下において、位相差測定装置「KOBRA-21ADH」(王子計測機器(株)製)によって測定する。
Formula (i) Ro = (nx−ny) × d
Formula (ii) Rt = ((nx + ny) / 2−nz) × d
(In the formula, Ro is the retardation value in the film plane, Rt is the retardation value in the thickness direction, nx is the refractive index in the slow axis direction in the film plane, ny is the refractive index in the fast axis direction in the film plane, (nz represents the refractive index in the thickness direction of the film, and d represents the thickness (nm) of the film.)
In the present invention, the in-plane retardation value Ro and the thickness direction retardation value Rt at a measurement wavelength of 589 nm are measured with a phase difference measuring device “KOBRA-21ADH” (Oji Scientific Instruments) in an environment of 23 ° C. and 55% RH. Measured by).
 透明樹脂支持体のリターデーション値は、樹脂材料の選択、製膜時の延伸倍率等で制御することができる。具体的には、縦方向、横方向の延伸倍率を適宜選択することにより、任意の値に制御することができる。 The retardation value of the transparent resin support can be controlled by selecting the resin material, the draw ratio during film formation, and the like. Specifically, it can be controlled to an arbitrary value by appropriately selecting the stretching ratio in the longitudinal direction and the transverse direction.
 本発明の透明樹脂支持体1は、可視光に対する透明性が高いことが好ましく、波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明樹脂支持体1の光の平均透過率が70%以上であると、透明導電性フィルム100の光透過性が高まりやすい。また、透明樹脂支持体1の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent resin support 1 of the present invention preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more. And more preferably 85% or more. When the average light transmittance of the transparent resin support 1 is 70% or more, the light transmittance of the transparent conductive film 100 is likely to increase. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent resin support 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 上記平均透過率は、透明樹脂支持体1の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板1の平均反射率を測定し、
 平均吸収率(%)=100-(平均透過率+平均反射率)
として算出する。平均透過率及び平均反射率は分光光度計で測定される。
The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent resin support 1. On the other hand, the average absorptance is measured by measuring the average reflectance of the transparent substrate 1 by making light incident from the same angle as the average transmittance.
Average absorptance (%) = 100− (average transmittance + average reflectance)
Calculate as Average transmittance and average reflectance are measured with a spectrophotometer.
 また、透明樹脂支持体の透過率を上記範囲内とするためには、透明樹脂支持体の表面粗さRaが、透明樹脂支持体の両面において、3.5nm以下であることが好ましく、より好ましくは、3.0nm以下である。透明樹脂支持体の表面粗さRaが透明樹脂支持体の両面において、3.5nm以下であるとヘイズ値が小さくなり透明性に優れた透明樹脂支持体とすることができる。ここで、表面粗さRaとは、JIS B0601:2001における算術平均粗さをいう。 In order to make the transmittance of the transparent resin support within the above range, the surface roughness Ra of the transparent resin support is preferably 3.5 nm or less on both surfaces of the transparent resin support, more preferably. Is 3.0 nm or less. When the surface roughness Ra of the transparent resin support is 3.5 nm or less on both surfaces of the transparent resin support, the haze value is reduced and a transparent resin support excellent in transparency can be obtained. Here, the surface roughness Ra refers to the arithmetic average roughness in JIS B0601: 2001.
 本発明の透明樹脂支持体1のヘイズ値は0.01~2.5であることが好ましく、より好ましくは0.1~1.2である。支持体のヘイズ値が2.5以下であると、透明導電性フィルムのヘイズ値が抑制される。ヘイズ値は、ヘイズメーター「型式:NDH 2000」(日本電色(株)製)で測定される。 The haze value of the transparent resin support 1 of the present invention is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. The haze value of a transparent conductive film is suppressed as the haze value of a support body is 2.5 or less. The haze value is measured with a haze meter “model: NDH 2000” (manufactured by Nippon Denshoku Co., Ltd.).
 透明樹脂支持体1の波長570nmの光の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。透明樹脂支持体の屈折率は、通常、支持体の材質によって定まる。透明樹脂支持体の屈折率は、23℃・55%RHでエリプソメーターで測定される。 The refractive index of light having a wavelength of 570 nm of the transparent resin support 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. It is. The refractive index of the transparent resin support is usually determined by the material of the support. The refractive index of the transparent resin support is measured with an ellipsometer at 23 ° C. and 55% RH.
 透明樹脂支持体1の厚さは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明樹脂支持体の厚さが1μm以上であると、透明樹脂支持体1の強度が高まり、第1高屈折率層2の作製時に割れたり、裂けたりし難くなる。一方、透明樹脂支持体1の厚さが20mm以下であれば、透明導電性フィルム100のフレキシブル性が十分となる。さらに透明導電性フィルム100を用いた機器の厚さを薄くできる。また、透明導電性フィルム100を用いた機器を軽量化することもできる。 The thickness of the transparent resin support 1 is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm. When the thickness of the transparent resin support is 1 μm or more, the strength of the transparent resin support 1 is increased, and the first high refractive index layer 2 is difficult to be cracked or torn. On the other hand, if the thickness of the transparent resin support 1 is 20 mm or less, the flexibility of the transparent conductive film 100 is sufficient. Furthermore, the thickness of the apparatus using the transparent conductive film 100 can be reduced. Moreover, the apparatus using the transparent conductive film 100 can also be reduced in weight.
 <2.第1高屈折率層>
 本発明でいう高屈折率層とは、透明樹脂支持体1よりも高い屈折率を有する層をいう。
<2. First High Refractive Index Layer>
The high refractive index layer in the present invention refers to a layer having a higher refractive index than that of the transparent resin support 1.
 第1高屈折率層2は、透明導電性フィルムの導通領域a、つまり透明導電層3が形成されている領域の光透過性(光学アドミッタンス)を調整する層であり、少なくとも透明導電性フィルム100の導通領域aに形成される。第1高屈折率層2は、透明導電層を雰囲気中の水分や硫化物やイオウ含有成分等から透明導電層を保護する機能を有することから、透明導電性フィルム100の絶縁領域bにも形成されていることが好ましい。 The first high refractive index layer 2 is a layer that adjusts the light transmission (optical admittance) of the conductive region a of the transparent conductive film, that is, the region where the transparent conductive layer 3 is formed, and at least the transparent conductive film 100. Formed in the conductive region a. The first high-refractive index layer 2 has a function of protecting the transparent conductive layer from moisture, sulfide, sulfur-containing components, etc. in the atmosphere, so that it is also formed in the insulating region b of the transparent conductive film 100. It is preferable that
 第1高屈折率層2は、硫化亜鉛(ZnS)を含有することが好ましい層である。第1高屈折率層2に硫化亜鉛が含まれると、透明樹脂支持体1側から水分が透過し難くなり、透明導電層3の腐食が抑制される。第1高屈折率層2には、硫化亜鉛とともに他の誘電性材料又は酸化物半導体材料が含まれてもよい。硫化亜鉛とともに含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、透明樹脂支持体1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第1高屈折率層2に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第1高屈折率層2によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。なお、第1高屈折率層2の屈折率は、第1高屈折率層2に含まれる材料の屈折率や、第1高屈折率層2に含まれる材料の密度で調整される。上記屈折率は、23℃・55%RHの環境下、エリプソメーターで測定される。 The first high refractive index layer 2 is a layer that preferably contains zinc sulfide (ZnS). When zinc sulfide is contained in the first high refractive index layer 2, it becomes difficult for moisture to permeate from the transparent resin support 1 side, and corrosion of the transparent conductive layer 3 is suppressed. The first high refractive index layer 2 may contain other dielectric material or oxide semiconductor material together with zinc sulfide. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained together with zinc sulfide is preferably 0.1 to 1.1 higher than the refractive index of light having a wavelength of 570 nm of the transparent resin support 1. More preferably, it is larger by 4 to 1.0. On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5, and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2. The refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2. The refractive index is measured with an ellipsometer in an environment of 23 ° C. and 55% RH.
 第1高屈折率層2に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料は、金属酸化物でありうる。金属酸化物の例には、SiO、TiO、ITO(インジウム・スズ酸化物)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(インジウム・亜鉛酸化物)、AZO(アルミニウム・亜鉛酸化物)、GZO(Ga・亜鉛酸化物)、ATO(アンチモン・スズ酸化物)、ICO(インジウム・セリウム酸化物)、IGZO(インジウム・ガリウム・亜鉛酸化物)、Bi、Ga、GeO、WO、HfO、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が含まれる。第1高屈折率層2には、当該金属酸化物が一種のみ含まれてもよく、二種以上が含まれてもよい。 The dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material can be a metal oxide. Examples of the metal oxide include SiO 2 , TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7. , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium zinc oxide), AZO (aluminum zinc oxide), GZO (Ga zinc oxide), ATO (antimony tin) Oxide), ICO (indium cerium oxide), IGZO (indium gallium zinc oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (gallium, indium , And an amorphous oxide composed of oxygen). The first high refractive index layer 2 may contain only one kind of the metal oxide or two or more kinds.
 上記硫化亜鉛とともに用いられる材料の中で、特に好ましくはSiOである。ZnS及びSiOの組成を制御する方法としては、例えば、適切な濃度でSiOを含有したZnSのターゲットを用いたスパッタリング法、SiOとZnSのターゲットを同時に用いた共スパッタリング法を利用することにより行うことができる。 Of the materials used together with the zinc sulfide, SiO 2 is particularly preferable. As a method for controlling the composition of ZnS and SiO 2 , for example, a sputtering method using a ZnS target containing SiO 2 at an appropriate concentration, or a co-sputtering method using SiO 2 and ZnS targets simultaneously is used. Can be performed.
 硫化亜鉛ととともに上記範囲内でSiOが含まれると、第1高屈折率層が非晶質になりやすく、透明導電性フィルムのフレキシブル性が高まりやすい。 When SiO 2 is contained within the above range together with zinc sulfide, the first high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductive film is likely to be enhanced.
 第1高屈折率層2に硫化亜鉛とともに他の材料が含まれる場合、硫化亜鉛の量は、第1高屈折率層2の総体積に対して、0.1~95体積%であることが好ましく、50~90体積%以下であることがより好ましく、さらに好ましくは60~85体積%以下である。硫化亜鉛の比率が高いとスパッタ速度が速くなり、第1高屈折率層2の形成速度が速くなる。一方、硫化亜鉛以外の成分が多く含まれると、第1高屈折率層2の非晶質性が高まり、第1高屈折率層2の割れが抑制される。 When the first high refractive index layer 2 contains other materials together with zinc sulfide, the amount of zinc sulfide may be 0.1 to 95% by volume with respect to the total volume of the first high refractive index layer 2. Preferably, it is 50 to 90% by volume or less, and more preferably 60 to 85% by volume or less. When the ratio of zinc sulfide is high, the sputtering rate is increased, and the formation rate of the first high refractive index layer 2 is increased. On the other hand, when many components other than zinc sulfide are contained, the amorphous nature of the first high refractive index layer 2 is increased, and cracking of the first high refractive index layer 2 is suppressed.
 第1高屈折率層2の層厚は、15~150nmであることが好ましく、より好ましくは20~80nmである。第1高屈折率層2の層厚が15nm以上であると、第1高屈折率層2によって、透明導電性フィルム100の導通領域aの光学アドミッタンスが十分に調整される。一方、第1高屈折率層2の層厚が150nm以下であれば、第1高屈折率層2が含まれる領域の光透過性が低下し難い。第1高屈折率層2の層厚は、エリプソメーター「多入射角分光エリプソメーターVASE(登録商標)」(J.A.Woollam社製)で測定される。 The layer thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm. When the layer thickness of the first high refractive index layer 2 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductive film 100 is sufficiently adjusted by the first high refractive index layer 2. On the other hand, if the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease. The layer thickness of the first high refractive index layer 2 is measured by an ellipsometer “multi-incidence angle spectroscopic ellipsometer VASE (registered trademark)” (manufactured by JA Woollam).
 第1高屈折率層2は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法(堆積法、気相成長法ともいう。)で形成された層でありうる。第1高屈折率層2の屈折率(密度)が高まるとの観点から、第1高屈折率層2は、電子ビーム蒸着法又はスパッタ法で形成された層であることが好ましい。電子ビーム蒸着法の場合は膜密度を高めるため、IAD(イオンアシスト)などのアシストがあることが望ましい。 The first high refractive index layer 2 is formed by a general vapor deposition method (also called a deposition method or a vapor deposition method) such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. It can be a layer formed of From the standpoint that the refractive index (density) of the first high refractive index layer 2 is increased, the first high refractive index layer 2 is preferably a layer formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
 また、第1高屈折率層2が所望の形状にパターン化された層である場合、パターン化方法は特に制限されない。第1高屈折率層2は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターン化された層であってもよい。 Further, when the first high refractive index layer 2 is a layer patterned in a desired shape, the patterning method is not particularly limited. The first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask or the like having a desired pattern on the deposition surface. It may be a layer patterned by a method.
 <3.第1硫化防止層>
 前述の第1高屈折率層2には硫化亜鉛が含有されるので、図2に示されるように、第1高屈折率層2と透明導電層3との間にZnO(酸化亜鉛)を含有する第1硫化防止層5aが含まれることが好ましい。第1硫化防止層5aは、第1高屈折率層からの硫化物やイオウ含有成分の拡散を防止する機能を持っている。また、第1硫化防止層5aは、透明導電性フィルム100の絶縁領域bにも形成されていてもよく、この場合、透明導電層を雰囲気中の水分や硫化物やイオウ含有成分等から透明導電層を保護する機能を有することから絶縁領域bにも形成されていることが好ましい。
<3. First sulfurization prevention layer>
Since the first high refractive index layer 2 contains zinc sulfide, ZnO (zinc oxide) is contained between the first high refractive index layer 2 and the transparent conductive layer 3 as shown in FIG. The first sulfidation preventing layer 5a is preferably included. The first sulfurization preventing layer 5a has a function of preventing diffusion of sulfides and sulfur-containing components from the first high refractive index layer. Further, the first sulfidation preventing layer 5a may also be formed in the insulating region b of the transparent conductive film 100. In this case, the transparent conductive layer is made transparent from moisture, sulfide, sulfur-containing components, etc. in the atmosphere. Since it has a function of protecting the layer, it is preferably formed also in the insulating region b.
 当該第1硫化防止層5aは、酸化亜鉛を好ましく含有する層であり、その他に、金属酸化物、金属窒化物、金属フッ化物等を含む層でありうる。第1硫化防止層5aには、これらが一種のみ含まれてもよく、二種以上含まれてもよい。ただし、第1高屈折率層2と、第1硫化防止層5aと、透明導電層3とが連続的に形成される場合には、金属酸化物が硫黄と反応可能、若しくは硫黄を吸着可能な化合物であることが好ましい。金属酸化物が、硫黄と反応する化合物である場合、金属酸化物と硫黄との反応物は、可視光の透過性が高いことが好ましい。 The first antisulfurization layer 5a is a layer that preferably contains zinc oxide, and may be a layer that contains a metal oxide, a metal nitride, a metal fluoride, and the like. The first sulfidation preventing layer 5a may contain only one kind or two or more kinds. However, when the first high refractive index layer 2, the first sulfidation preventing layer 5a, and the transparent conductive layer 3 are continuously formed, the metal oxide can react with sulfur or adsorb sulfur. A compound is preferred. In the case where the metal oxide is a compound that reacts with sulfur, the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
 金属酸化物の例には、ZnOの他、TiO、ITO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO、GZO、ATO、ICO、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO、等が含まれる。 Examples of metal oxides include ZnO, TiO 2 , ITO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , etc. are included.
 金属フッ化物の例には、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等が含まれる。 Examples of metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. .
 金属窒化物の例には、Si、AlN等が含まれる。 Examples of the metal nitride include Si 3 N 4 , AlN, and the like.
 これらの中でも酸化亜鉛を含有する層であることが好ましい。 Among these, a layer containing zinc oxide is preferable.
 ここで、第1硫化防止層5aの層厚は、後述する透明導電層3の形成時の衝撃から、第1高屈折率層2の表面を保護可能な層厚であることが好ましい。一方で、第1高屈折率層に含まれ得るZnSは、透明導電層3に含まれる金属との親和性が高い。そのため、第1硫化防止層5aの層厚が非常に薄く、第1高屈折率層2の一部が僅かに露出していると、当該露出部分を中心に透明導電層の透明金属膜が成長し、透明導電層3が緻密になりやすい。つまり、第1硫化防止層5aは比較的薄いことが好ましく、0.1~5.0nmであることが好ましく、より好ましくは0.5~2.0nmである。 Here, the layer thickness of the first sulfidation preventing layer 5a is preferably a layer thickness capable of protecting the surface of the first high refractive index layer 2 from an impact when forming the transparent conductive layer 3 described later. On the other hand, ZnS that can be contained in the first high refractive index layer has a high affinity with the metal contained in the transparent conductive layer 3. Therefore, if the thickness of the first anti-sulfurization layer 5a is very thin and a part of the first high refractive index layer 2 is slightly exposed, a transparent metal film of the transparent conductive layer grows around the exposed part. However, the transparent conductive layer 3 tends to be dense. That is, the first sulfidation preventing layer 5a is preferably relatively thin, preferably 0.1 to 5.0 nm, and more preferably 0.5 to 2.0 nm.
 第1硫化防止層5aは、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層である。 The first antisulfurization layer 5a is a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
 第1硫化防止層5aが、所望の形状にパターン化された層である場合、パターン化方法は特に制限されない。第1硫化防止層5aは、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターン化された層であってもよい。 When the first antisulfurization layer 5a is a layer patterned into a desired shape, the patterning method is not particularly limited. The first sulfidation preventing layer 5a may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the deposition surface, and may be a known etching method. It may be a layer patterned by.
 <4.透明導電層>
 透明導電層3は、透明導電性フィルム100において電気を導通させるための膜である。透明導電層3は、前述のように、透明樹脂支持体1の全面に形成されていてもよく、また所望の形状にパターン化されていてもよい。
<4. Transparent conductive layer>
The transparent conductive layer 3 is a film for conducting electricity in the transparent conductive film 100. As described above, the transparent conductive layer 3 may be formed on the entire surface of the transparent resin support 1, or may be patterned into a desired shape.
 透明導電層3は銀を含有する層であり、その他の金属を含有してもよい。銀とともに用いられる金属としては、透明導電性の高い金属であれば特に制限されず、例えば金、銅、ニッケル、パラジウム、白金、亜鉛、アルミニウム、マンガン、ゲルマニウム、ビスマス、ネオジム及びモリブデンが好ましい。 The transparent conductive layer 3 is a layer containing silver and may contain other metals. The metal used together with silver is not particularly limited as long as it is a metal having high transparent conductivity. For example, gold, copper, nickel, palladium, platinum, zinc, aluminum, manganese, germanium, bismuth, neodymium, and molybdenum are preferable.
 これらの中でも、金、パラジウム、ゲルマニウム、ビスマス、銅、白金、ネオジム及びニオブが好ましい。透明導電層3には、これらの金属が一種のみ含まれてもよく、二種以上含まれてもよい。導電性の観点から、透明導電層には銀が90atm%以上含まれる合金からなることが好ましい。銀が90atm%以上含有されると優れた導電性と高耐久性が得られる。 Among these, gold, palladium, germanium, bismuth, copper, platinum, neodymium and niobium are preferable. The transparent conductive layer 3 may contain only one kind of these metals or two or more kinds. From the viewpoint of conductivity, the transparent conductive layer is preferably made of an alloy containing 90 atm% or more of silver. When silver is contained at 90 atm% or more, excellent conductivity and high durability can be obtained.
 また、上記透明導電性の高い金属を少なくとも一種を上記範囲内で含有すると透明導電層の層厚を薄層化しても所定の導電性を確保することができ、また透明導電層に含有される銀の劣化防止の効果が得られ信頼性が向上する。例えば銀と亜鉛とが組み合わされると、透明金属膜の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。 Further, when at least one kind of the above highly conductive metal is contained within the above range, predetermined conductivity can be secured even if the thickness of the transparent conductive layer is reduced, and it is contained in the transparent conductive layer. The effect of preventing silver deterioration is obtained and the reliability is improved. For example, when silver and zinc are combined, the sulfidation resistance of the transparent metal film is enhanced. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases.
 本発明の透明導電層の層厚は、3~15nmの範囲内であり、好ましくは5~13nmの範囲内である。この層厚により所望の透明性、プラズモン吸収率を担保することができる。 The layer thickness of the transparent conductive layer of the present invention is in the range of 3 to 15 nm, preferably in the range of 5 to 13 nm. The desired transparency and plasmon absorption rate can be ensured by this layer thickness.
 透明導電層3のプラズモン吸収率は、波長400~800nmにわたって(全範囲で)10%以下であることが好ましく、7%以下であることがより好ましく、さらに好ましくは5%以下である。 The plasmon absorption rate of the transparent conductive layer 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less.
 透明導電層3は、いずれの形成方法で形成された膜でありうるが、透明導電層の平均透過率を変えるためには、スパッタ法で形成された膜、若しくは後述する下地層上に形成された膜であることが好ましい。 The transparent conductive layer 3 can be a film formed by any method, but in order to change the average transmittance of the transparent conductive layer, it is formed on a film formed by sputtering or an underlayer described later. It is preferable to use a film.
 スパッタ法では、層の形成時に材料が被成膜体に高速で衝突するため、緻密かつ平滑な膜が得られやすく、透明導電層3の光透過性が高まりやすい。また、透明導電層3がスパッタ法により形成された膜であると、透明導電層3が高温かつ低湿度な環境においても腐食し難くなる。 In the sputtering method, when the layer is formed, the material collides with the deposition target at high speed, so that a dense and smooth film can be easily obtained, and the light transmittance of the transparent conductive layer 3 is likely to be increased. Moreover, when the transparent conductive layer 3 is a film formed by sputtering, the transparent conductive layer 3 is hardly corroded even in an environment of high temperature and low humidity.
 スパッタ法の種類は特に制限されず、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法、対向スパッタ法等でありうる。透明導電層3は、特に対向スパッタ法で形成された膜であることが好ましい。透明導電層3が、対向スパッタ法で形成された膜であると、透明導電層3が緻密になり、表面平滑性が高まりやすい。その結果、透明導電層3の表面電気抵抗がより低くなり、光の透過率も高まりやすい。 The type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like. The transparent conductive layer 3 is particularly preferably a film formed by a counter sputtering method. When the transparent conductive layer 3 is a film formed by a counter sputtering method, the transparent conductive layer 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent conductive layer 3 becomes lower and the light transmittance is likely to increase.
 <5.第2硫化防止層>
 後述する第2高屈折率層が硫化亜鉛含有層である場合は、図2に示されるように、透明導電層3と第2高屈折率層4との間に酸化亜鉛を含有する第2硫化防止層5bが含まれることが好ましい。第2硫化防止層5bは、透明導電性フィルム100の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
<5. Second anti-sulfur layer>
When the second high refractive index layer described later is a zinc sulfide-containing layer, as shown in FIG. 2, the second sulfide containing zinc oxide between the transparent conductive layer 3 and the second high refractive index layer 4 is used. It is preferable that the prevention layer 5b is included. The second sulfidation preventing layer 5b may be formed also in the insulating region b of the transparent conductive film 100, but from the viewpoint of making it difficult to visually recognize the pattern formed of the conductive region a and the insulating region b, only the conductive region a. It is preferable to be formed.
 当該第2硫化防止層5bは、酸化亜鉛を含有する層であり、その他に金属酸化物、金属窒化物、金属フッ化物等を含む層である。第2硫化防止層5bには、酸化亜鉛の他にこれらが一種のみ含まれてもよく、二種以上が含まれてもよい。金属酸化物、金属窒化物、金属フッ化物は、前述の第1高屈折率層2に含まれる金属酸化物、金属窒化物、金属フッ化物と同様でありうる。これらの中でも酸化亜鉛を含有する層であることが好ましい。 The second anti-sulfurization layer 5b is a layer containing zinc oxide, and is a layer containing a metal oxide, a metal nitride, a metal fluoride, and the like. In addition to zinc oxide, only one of these may be contained in the second sulfurization prevention layer 5b, or two or more thereof may be contained. The metal oxide, metal nitride, and metal fluoride may be the same as the metal oxide, metal nitride, and metal fluoride contained in the first high refractive index layer 2 described above. Among these, a layer containing zinc oxide is preferable.
 一方、第2硫化防止層5bの層厚は、後述する第2高屈折率層4の形成時の衝撃から、透明導電層3の表面を保護可能な厚さであることが好ましい。一方で、透明導電層3に含まれる金属と、第2高屈折率層4に含まれるZnSは、親和性が高い。そのため、第2硫化防止層5bの層厚が非常に薄く、透明導電層3の一部が僅かに露出していると、透明導電層3や第2硫化防止層5bと第2高屈折率層4との密着性が高まりやすい。したがって、第2硫化防止層5bの具体的な層厚は0.1~5.0nmであることが好ましく、より好ましくは0.5~2.0nmである。第2硫化防止層5bの層厚は、エリプソメーターで測定される。 On the other hand, the thickness of the second antisulfurization layer 5b is preferably a thickness capable of protecting the surface of the transparent conductive layer 3 from an impact when forming the second high refractive index layer 4 described later. On the other hand, the metal contained in the transparent conductive layer 3 and the ZnS contained in the second high refractive index layer 4 have high affinity. Therefore, if the thickness of the second antisulfurization layer 5b is very thin and a part of the transparent conductive layer 3 is slightly exposed, the transparent conductive layer 3, the second antisulfurization layer 5b, and the second high refractive index layer. Adhesion with 4 tends to increase. Therefore, the specific layer thickness of the second sulfidation preventing layer 5b is preferably 0.1 to 5.0 nm, and more preferably 0.5 to 2.0 nm. The layer thickness of the second sulfurization preventing layer 5b is measured with an ellipsometer.
 第2硫化防止層5bは、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層でありうる。 The second antisulfurization layer 5b may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
 第2硫化防止層5bが、所望の形状にパターン化された層である場合、パターン化方法は特に制限されない。第2硫化防止層5bは、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターン化された層であってもよい。 When the second antisulfurization layer 5b is a layer patterned into a desired shape, the patterning method is not particularly limited. The second antisulfurization layer 5b may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the deposition surface, and may be a known etching method. It may be a layer patterned by.
 <6.第2高屈折率層>
 第2高屈折率層4は、透明導電性フィルム100の導通領域a、つまり透明導電層3が形成されている領域の光透過性(光学アドミッタンス)を調整するための層であり、少なくとも透明導電性フィルム100の導通領域aに形成される。第2高屈折率層4は、透明導電性フィルム100の絶縁領域bに形成されてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。第2高屈折率層4は、大気側から水分を透過しにくくするので、透明導電層3の腐食が抑制される効果を有する。
<6. Second High Refractive Index Layer>
The second high refractive index layer 4 is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductive film 100, that is, the region where the transparent conductive layer 3 is formed. The conductive film 100 is formed in the conduction region a. The second high-refractive index layer 4 may be formed in the insulating region b of the transparent conductive film 100, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a. Preferably it is formed. Since the second high refractive index layer 4 makes it difficult for moisture to permeate from the atmosphere side, it has an effect of suppressing the corrosion of the transparent conductive layer 3.
 第2高屈折率層4は前述の透明樹脂支持体1の屈折率より高い屈折率を有する層であり、第1高屈折率層のどちらか一方の層が硫化亜鉛(ZnS)を含有する層である。第2高屈折率層4には、硫化亜鉛又は他の誘電性材料又は酸化物半導体材料が含まれてもよい。硫化亜鉛又は他の誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。 The second high refractive index layer 4 is a layer having a refractive index higher than the refractive index of the transparent resin support 1 described above, and one of the first high refractive index layers contains zinc sulfide (ZnS). It is. The second high refractive index layer 4 may include zinc sulfide or other dielectric material or oxide semiconductor material. The refractive index of light having a wavelength of 570 nm of zinc sulfide or other dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1. More preferably, it is larger by 1.0.
 一方、第2高屈折率層4に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第2高屈折率層4によって、透明導電性フィルム100の導通領域aの光学アドミッタンスが十分に調整される。なお、第2高屈折率層4の屈折率は、第2高屈折率層4に含まれる材料の屈折率や、第2高屈折率層4に含まれる材料の密度で調整される。 On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the second high refractive index layer 4 is preferably larger than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductive film 100 is sufficiently adjusted by the second high refractive index layer 4. The refractive index of the second high refractive index layer 4 is adjusted by the refractive index of the material included in the second high refractive index layer 4 and the density of the material included in the second high refractive index layer 4.
 第2高屈折率層4に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料は、金属酸化物でありうる。金属酸化物の例には、SiO、TiO、ITO(インジウム・スズ酸化物)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(インジウム・亜鉛酸化物)、AZO(アルミニウム・亜鉛酸化物)、GZO(ガリウム・亜鉛酸化物)、ATO(アンチモン・スズ酸化物)、ICO(インジウム・セリウム酸化物)、IGZO(インジウム・ガリウム・亜鉛酸化物)、Bi、Ga、GeO、WO、HfO、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が含まれる。第2高屈折率層4には、当該金属酸化物が一種のみ含まれてもよく、二種以上が含まれてもよい。 The dielectric material or oxide semiconductor material contained in the second high refractive index layer 4 may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material can be a metal oxide. Examples of the metal oxide include SiO 2 , TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7. , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium zinc oxide), AZO (aluminum zinc oxide), GZO (gallium zinc oxide), ATO (antimony tin) Oxide), ICO (indium cerium oxide), IGZO (indium gallium zinc oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (gallium, indium , And an amorphous oxide composed of oxygen). The second high refractive index layer 4 may include only one kind of the metal oxide or two or more kinds.
 本発明においては、上記金属酸化物の中では、ITO、IZO、GZO、IGZOが好ましい。これらの材料は、パターン化に好適であると同時に、銀の保護機能を得ることができる。 In the present invention, among the above metal oxides, ITO, IZO, GZO, and IGZO are preferable. These materials are suitable for patterning and at the same time can provide a protective function for silver.
 また、本発明において、第2高屈折率層4に含まれる誘電性材料又は酸化物半導体材料としては、硫化亜鉛(ZnS)が特に好ましい。第2高屈折率層4にZnSが含まれると、透明樹脂支持体1側から水分が透過し難くなり、透明導電層3の腐食が抑制される。第2高屈折率層4には、ZnSのみが含まれてもよく、ZnSとともに他の材料が含まれてもよい。ZnSとともに含まれる材料は、上記誘電性材料または酸化物半導体材料でありうる金属酸化物やSiO等であり、特に好ましくはSiOである。ZnSとともにSiOが含まれると、第2高屈折率層が非晶質になりやすく、透明導電体のフレキシブル性が高まりやすい。 In the present invention, zinc sulfide (ZnS) is particularly preferable as the dielectric material or oxide semiconductor material contained in the second high refractive index layer 4. When ZnS is contained in the second high refractive index layer 4, it becomes difficult for moisture to permeate from the transparent resin support 1 side, and corrosion of the transparent conductive layer 3 is suppressed. The second high refractive index layer 4 may contain only ZnS or may contain other materials together with ZnS. Materials included with ZnS is a metal oxide or SiO 2 or the like, which may be the dielectric material or an oxide semiconductor material, particularly preferably SiO 2. When SiO 2 is contained together with ZnS, the second high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
 第2高屈折率層4にZnSとともに他の材料が含まれる場合、ZnSの量は、第2高屈折率層4の総体積に対して、0.1~95体積%であることが好ましく、50~90体積%以下であることがより好ましく、さらに好ましくは60~85体積%である。ZnSの比率が高いとスパッタ速度が速くなり、第2高屈折率層4の成形成速度が速くなる。一方、ZnS以外の成分が多く含まれると、第2高屈折率層4の非晶質性が高まり、第2高屈折率層4の割れが抑制される。 When the second high refractive index layer 4 contains other materials together with ZnS, the amount of ZnS is preferably 0.1 to 95% by volume with respect to the total volume of the second high refractive index layer 4. The content is more preferably 50 to 90% by volume or less, and still more preferably 60 to 85% by volume. When the ratio of ZnS is high, the sputtering rate increases and the formation rate of the second high refractive index layer 4 increases. On the other hand, when many components other than ZnS are contained, the amorphous nature of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
 硫化亜鉛及びSiOの組成を上記範囲内に制御する方法としては、例えば、適切な濃度でSiOを含有したZnSのターゲットを用いたスパッタリング法、SiOとZnSのターゲットを同時に用いた共スパッタリング法を利用することにより行うことができる。 As a method for controlling the composition of zinc sulfide and SiO 2 within the above range, for example, a sputtering method using a ZnS target containing SiO 2 at an appropriate concentration, or co-sputtering using a SiO 2 and ZnS target simultaneously. This can be done by using the law.
 硫化亜鉛とともに上記範囲内でSiOが含まれると、第2高屈折率層が非晶質になりやすく、透明導電性フィルムのフレキシブル性が高まりやすい。 When SiO 2 is contained within the above range together with zinc sulfide, the second high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductive film is likely to be enhanced.
 ZnSの比率が高いとスパッタ速度が速くなり、第2高屈折率層4の形成速度が早くなる。一方、ZnS以外の成分が多くなると、第2高屈折率層4の非晶質性が高まり、第2高屈折率層4の割れが抑制される。 When the ratio of ZnS is high, the sputtering rate increases and the formation rate of the second high refractive index layer 4 increases. On the other hand, when the amount of components other than ZnS increases, the amorphousness of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
 第2高屈折率層4の層厚は、好ましくは15~150nmであり、さらに好ましくは20nm~80nmである。第2高屈折率層4の層厚が15nm以上であると、第2高屈折率層4によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。一方、第2高屈折率層4の層厚が150nm以下であれば、第2高屈折率層4が含まれる領域の光透過性が低下し難い。第2高屈折率層4の層厚は、エリプソメーターで測定される。 The layer thickness of the second high refractive index layer 4 is preferably 15 to 150 nm, and more preferably 20 to 80 nm. When the layer thickness of the second high refractive index layer 4 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4. On the other hand, if the layer thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease. The layer thickness of the second high refractive index layer 4 is measured with an ellipsometer.
 第2高屈折率層4の形成方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層であり得る。第2高屈折率層4の透湿性が低くなるとの観点から、第2高屈折率層4はスパッタ法で形成された膜であることが特に好ましい。 The formation method of the second high refractive index layer 4 is not particularly limited, and is a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. It can be. From the viewpoint that the moisture permeability of the second high refractive index layer 4 is lowered, the second high refractive index layer 4 is particularly preferably a film formed by a sputtering method.
 また、第2高屈折率層4が所望の形状にパターン化された層である場合、パターン化方法は特に制限されない。第2高屈折率層4は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に形成された層であってもよい。また、公知のエッチング法によってパターン化された層であってもよい。 Further, when the second high refractive index layer 4 is a layer patterned into a desired shape, the patterning method is not particularly limited. The second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by disposing a mask having a desired pattern on the deposition surface. Moreover, the layer patterned by the well-known etching method may be sufficient.
 <7.ハードコート層>
 透明導電性フィルムの製造時において透明樹脂支持体の表面に傷が発生するのを防止する目的で、透明樹脂支持体の少なくとも一方の面、好ましくは、透明導電層側にハードコート層が設けられていることが好ましい。
<7. Hard coat layer>
A hard coat layer is provided on at least one surface of the transparent resin support, preferably on the transparent conductive layer side, for the purpose of preventing scratches on the surface of the transparent resin support during the production of the transparent conductive film. It is preferable.
 透明樹脂支持体の少なくともどちらか一方の面にハードコート層を設けることによって、透明樹脂支持体の製膜時から本発明の透明導電性フィルムの作製過程において、フィルムの巻き取り・搬送・巻き出しにおけるフィルム表面間の面圧や摩擦による傷の発生を防止する効果を有する。 By providing a hard coat layer on at least one surface of the transparent resin support, the film can be wound, conveyed, and unwound in the production process of the transparent conductive film of the present invention from the time of forming the transparent resin support. It has the effect of preventing the occurrence of scratches due to surface pressure and friction between the film surfaces.
 ハードコート層は、紫外線硬化性アクリレート系樹脂を塗布乾燥、その後紫外線光源にて硬化されて提供される。 The hard coat layer is provided by applying and drying an ultraviolet curable acrylate resin and then curing with an ultraviolet light source.
 ハードコート層の層厚は、0.2~5.0μmの範囲内であることが好ましく、ハードコート層の層厚が、上記範囲内であると十分な耐傷効果が得られるので、製造過程における傷の発生を防止することができるので透明導電性フィルムとしたときに十分な透明性が得られる。 The layer thickness of the hard coat layer is preferably in the range of 0.2 to 5.0 μm, and if the layer thickness of the hard coat layer is in the above range, a sufficient scratch resistance effect can be obtained. Since generation | occurrence | production of a damage | wound can be prevented, when it is set as a transparent conductive film, sufficient transparency is obtained.
 ハードコート層は、塗布の他、CVD法、スパッタリング法、蒸着法などによるSiO薄膜を100nm以下の層厚で積層することによって作製することもできる。 The hard coat layer can be produced by laminating a SiO 2 thin film by a CVD method, a sputtering method, a vapor deposition method or the like with a layer thickness of 100 nm or less in addition to the application.
 <8.ブロッキング防止層>
 本発明の透明導電性フィルムの透明樹脂支持体の透明導電層が設けられた面とは反対側の面に、十点平均粗さRzが、50nm以下のブロッキング防止層が設けられていることが好ましい。ブロッキング防止層とは、フィルムを巻き取りハンドリングする際のフィルム同士の貼付き防止のためになされるが、これはフィルムの表面に任意の粗さを設け、この隙間を空気が埋めることで、巻き出し・巻き取り操作時のフィルム同士の貼付きを防ぐことができる。
<8. Anti-blocking layer>
A blocking prevention layer having a 10-point average roughness Rz of 50 nm or less is provided on the surface of the transparent conductive film of the present invention opposite to the surface provided with the transparent conductive layer of the transparent resin support. preferable. The anti-blocking layer is used to prevent sticking between films when winding and handling the film. This is done by providing an arbitrary roughness on the surface of the film and filling this gap with air. It is possible to prevent sticking between films during unwinding and winding operations.
 十点平均粗さRzとは、JIS B0601:1994に規定されるRzをいう。 10-point average roughness Rz means Rz defined in JIS B0601: 1994.
 ブロッキング防止層は、アクリレート系樹脂などの樹脂に微粒子を混合した塗布液を塗布することによって設けることができる。微粒子としては、シリカなどの無機微粒子の他、樹脂の微粒子を用いることができる。上記微粒子の平均粒子径としては、10~300nmの範囲内のものを用いることが好ましい。 The anti-blocking layer can be provided by applying a coating liquid in which fine particles are mixed with a resin such as an acrylate resin. In addition to inorganic fine particles such as silica, resin fine particles can be used as the fine particles. The average particle diameter of the fine particles is preferably within the range of 10 to 300 nm.
 本発明の透明導電性フィルムにおいては、透明樹脂支持体上に設けられた高屈折率層、硫化防止層及び透明導電層の各薄膜層が、スパッタリング法又は蒸着法で形成されたものであることが好ましい。前記透明樹脂支持体上に設けられた各薄膜層が、スパッタリング法又は蒸着法で形成されたものであると生産性が向上し大量生産に好適な効果が得られる。ただし、化学気相蒸着法(CVD法)等他のあらゆる薄膜製造方法によったものであっても、本発明によって得られる価値は損なわれない。 In the transparent conductive film of the present invention, each thin film layer of a high refractive index layer, an antisulfurization layer and a transparent conductive layer provided on a transparent resin support is formed by a sputtering method or a vapor deposition method. Is preferred. When each thin film layer provided on the transparent resin support is formed by a sputtering method or a vapor deposition method, productivity is improved and an effect suitable for mass production is obtained. However, the value obtained by the present invention is not impaired even by any other thin film manufacturing method such as chemical vapor deposition (CVD).
 ≪透明導電層のパターン化≫
 本発明の透明導電性フィルムを用いて例えば、静電容量方式のタッチパネルを作製するためには、図4に示すように透明導電層を複数の導通領域aと、これを区切るライン状の絶縁領域bとを含む所定の形状にパターン化することが好ましい。
≪Patterning of transparent conductive layer≫
For example, in order to produce a capacitive touch panel using the transparent conductive film of the present invention, as shown in FIG. 4, the transparent conductive layer is divided into a plurality of conductive regions a and a line-shaped insulating region that divides the conductive regions a. It is preferable to pattern it into a predetermined shape including b.
 銀を含有する透明導電層の劣化因子としては、雰囲気中に含まれる水分や硫化物が挙げられる。これらは、透明樹脂支持体やハードコート層に取り込まれ、またハードコート層を透過して透明導電層まで到達する。したがって、透明樹脂支持体とハードコート層だけでは、透明導電層の銀の保護機能が十分ではなく、そのため第1高屈折率層、好ましくは第1硫化防止層がある場合は硫化防止層も含めて透明樹脂支持体上にパターン化されずに残存させることが、透明導電層の劣化防止の観点から好ましい。 Examples of the deterioration factor of the transparent conductive layer containing silver include moisture and sulfide contained in the atmosphere. These are taken into the transparent resin support and the hard coat layer, and pass through the hard coat layer to reach the transparent conductive layer. Therefore, the transparent resin support and the hard coat layer alone do not provide sufficient silver protective function for the transparent conductive layer. Therefore, if there is a first high refractive index layer, preferably a first antisulfurization layer, the antisulfurization layer is included. From the viewpoint of preventing the deterioration of the transparent conductive layer, it is preferable to leave it on the transparent resin support without being patterned.
 透明導電層をパターン化する方法としては、公知の方法を用いることができ、このようなパターン化の方法としては、具体的には、以下のようにして行うことができる。 As a method of patterning the transparent conductive layer, a known method can be used. Specifically, such a patterning method can be performed as follows.
 (パターン化工程)
 以下、フォトリソグラフィー法による電極パターンの形成方法について説明する。
(Patterning process)
Hereinafter, a method for forming an electrode pattern by photolithography will be described.
 本発明に適用するフォトリソグラフィー法とは、硬化性樹脂等のレジスト塗布、予備加熱、露光、現像(未硬化樹脂の除去)、リンス、エッチング液によるエッチング処理、レジスト剥離の各工程を経ることにより、透明導電層を、図4に示すような所望のパターンに加工する方法である。 The photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping. The transparent conductive layer is processed into a desired pattern as shown in FIG.
 本発明では、従来公知の一般的なフォトリソグラフィー法を適宜利用することができる。例えば、レジストとしてはポジ型又はネガ型のいずれのレジストでも使用可能である。また、レジスト塗布後、必要に応じて予備加熱又はプリベークを実施することができる。露光に際しては、所期のパターンを有するパターンマスクを配置し、その上から、用いたレジストに適合する波長の光、一般には紫外線や電子線等を照射すればよい。露光後、用いたレジストに適合する現像液で現像を行う。 In the present invention, a conventionally known general photolithography method can be used as appropriate. For example, as the resist, either positive or negative resist can be used. In addition, after applying the resist, preheating or prebaking can be performed as necessary. At the time of exposure, a pattern mask having a desired pattern may be disposed, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated thereon. After the exposure, development is performed with a developer suitable for the resist used.
 現像後、水等のリンス液で現像を止めるとともに洗浄を行うことで、レジストパターンが形成される。次いで、形成されたレジストパターンを、必要に応じて前処理又はポストベークを実施してから、有機溶媒を含むエッチング液によるエッチングで、レジストで保護されていない領域の中間層の溶解及び銀薄膜電極の除去を行う。 After development, a resist pattern is formed by stopping development with a rinse solution such as water and washing. Next, the formed resist pattern is pretreated or post-baked as necessary, and then is etched with an etching solution containing an organic solvent to dissolve the intermediate layer in a region not protected by the resist and to form a silver thin film electrode Remove.
 エッチング後、残留するレジストを剥離することによって、所期のパターンを有する透明電極が得られる。このように、本発明に適用されるフォトリソグラフィー法は、当業者に一般に認識されている方法であり、その具体的な適用態様は当業者であれば所期の目的に応じて容易に選定することができる。 After etching, the remaining resist is removed to obtain a transparent electrode having the desired pattern. As described above, the photolithography method applied to the present invention is a method generally recognized by those skilled in the art, and the specific application mode is easily selected by those skilled in the art according to the intended purpose. be able to.
 次いで、図5A~図5Gを用いて、本発明に適用可能な電極パターンの形成方法について説明する。 Next, an electrode pattern forming method applicable to the present invention will be described with reference to FIGS. 5A to 5G.
 図5A~図5Gは、本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図である。 FIG. 5A to FIG. 5G are process flow diagrams showing an example of forming an electrode pattern on the transparent conductor of the present invention by a photolithography method.
 第1ステップとして、図5Aで示すように、透明樹脂支持体1上に、第1高屈折率層2、第1硫化防止層5a、透明導電層3、第2硫化防止層5b、第2高屈折率層4をこの順で積層した透明導電性フィルム100を作製する。 As a first step, as shown in FIG. 5A, on the transparent resin support 1, a first high refractive index layer 2, a first antisulfurization layer 5a, a transparent conductive layer 3, a second antisulfurization layer 5b, and a second high A transparent conductive film 100 in which the refractive index layer 4 is laminated in this order is produced.
 次いで、図5Bで示すレジスト膜の形成工程で、透明導電性フィルム100上に感光性樹脂組成物等から構成されるレジスト膜6を均一に塗設する。感光性樹脂組成物としては、ネガ型感光性樹脂組成物あるいはポジ型感光性樹脂組成物を用いることができる。 Next, in the resist film forming step shown in FIG. 5B, a resist film 6 composed of a photosensitive resin composition or the like is uniformly coated on the transparent conductive film 100. As the photosensitive resin composition, a negative photosensitive resin composition or a positive photosensitive resin composition can be used.
 塗布方法としては、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどの公知の方法によって、透明導電性フィルム100上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークすることができる。プリベークは、例えば、ホットプレート等を用いて、50℃以上、150℃以下の範囲で30秒~30分間行うことができる。 As a coating method, it is applied on the transparent conductive film 100 by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, hot plate, oven, etc. It can be pre-baked with a heating device. Pre-baking can be performed, for example, using a hot plate or the like in the range of 50 ° C. or higher and 150 ° C. or lower for 30 seconds to 30 minutes.
 次いで、図5Cに示す露光工程で、所定の電極パターンにより作製したマスク7を介して、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナーなどの露光機を用いて、10~4000J/m程度(波長365nm露光量換算)の光を、次工程で除去するレジスト膜6Aに照射する。露光光源に制限はなく、紫外線、電子線や、KrF(波長248nm)レーザー、ArF(波長193nm)レーザーなどを用いることができる。 Next, in the exposure step shown in FIG. 5C, an exposure machine such as a stepper, a mirror projection mask aligner (MPA), a parallel light mask aligner or the like is used through a mask 7 made with a predetermined electrode pattern, and 10 to 4000 J / m. The resist film 6A to be removed in the next step is irradiated with light of about 2 (wavelength 365 nm exposure amount conversion). The exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
 次いで、図5Dに示す現像工程で、露光済みの透明導電性フィルムを、現像液に浸漬して、光照射した領域のレジスト膜6Aを溶解する。 Next, in the developing step shown in FIG. 5D, the exposed transparent conductive film is immersed in a developing solution to dissolve the resist film 6A in the region irradiated with light.
 現像方法としては、シャワー、ディッピング、パドルなどの方法で現像液に5秒~10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体例としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミンなどのアミン類、テトラメチルアンモニウムヒドロキサイド、コリンなどの4級アンモニウム塩を一種あるいは二種以上含む水溶液などが挙げられる。現像後、水でリンスすることが好ましく、続いて50℃以上150℃以下の範囲で乾燥ベークを行ってもよい。 As the developing method, it is preferable to immerse in the developer for 5 seconds to 10 minutes by a method such as showering, dipping or paddle. As the developer, a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include aqueous solutions containing one or more quaternary ammonium salts such as side and choline. After development, it is preferable to rinse with water, and then dry baking may be performed in the range of 50 ° C. to 150 ° C.
 この後、第2高屈折率層及び第2硫化防止層を除去すべく、エッチング液として林純薬工業(株)製「PURE ETCH 100」を使用する。(図5E)
 次いで、透明導電層、第1硫化防止層のみを溶解すべく関東化学(株)製「SEA-5」を短時間のエッチングにおいて実施する。(図5F)
 最後に、図5Gに示すように、レジスト膜剥離液、例えば、ナガセケムテックス社製の「N-300」に浸漬して、レジスト膜6を除去して、第1高屈折率層2を残した電極パターンを有する透明導電性フィルムを作製することができる。
Thereafter, “PURE ETCH 100” manufactured by Hayashi Pure Chemical Industries, Ltd. is used as an etchant to remove the second high refractive index layer and the second antisulfurization layer. (Fig. 5E)
Next, “SEA-5” manufactured by Kanto Chemical Co., Inc. is carried out in a short time etching in order to dissolve only the transparent conductive layer and the first antisulfuration layer. (Fig. 5F)
Finally, as shown in FIG. 5G, the resist film 6 is removed by immersing it in a resist film remover, for example, “N-300” manufactured by Nagase ChemteX Corporation, leaving the first high refractive index layer 2. A transparent conductive film having an electrode pattern can be produced.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 ≪透明導電性フィルムの作製≫
 透明導電性フィルムの作製には、以下の透明樹脂支持体及び導電性材料を用いた。
≪Preparation of transparent conductive film≫
For the production of the transparent conductive film, the following transparent resin support and conductive material were used.
 1.TPS1:コニカミノルタ(株)製「ゼロタック」厚さ50μm Ro=0nm Rt=0nm n=1.50
 2.TPS2:コニカミノルタ(株)製「コニカミノルタタック」厚さ50μm Ro=5nm Rt=30nm n=1.48
 3.TPS3:コニカミノルタ(株)製「ゼロタック」を延伸し、厚さ50μm Ro=3nm Rt=3nmに調整した。n=1.50
1. TPS1: “Zero tack” manufactured by Konica Minolta Co., Ltd., thickness 50 μm Ro = 0 nm Rt = 0 nm n = 1.50
2. TPS2: Konica Minolta Co., Ltd. “Konica Minolta Tack” thickness 50 μm Ro = 5 nm Rt = 30 nm n = 1.48
3. TPS3: “Zero tack” manufactured by Konica Minolta Co., Ltd. was stretched and adjusted to a thickness of 50 μm Ro = 3 nm and Rt = 3 nm. n = 1.50
 4.TPS4:コニカミノルタ(株)製「コニカミノルタタック」を延伸し、厚さ50μm Ro=15nm Rt=30nmに調整した。n=1.48 4. TPS4: “Konica Minolta Tac” manufactured by Konica Minolta Co., Ltd. was stretched and adjusted to a thickness of 50 μm, Ro = 15 nm, and Rt = 30 nm. n = 1.48
 5.PET1:東洋紡製ポリエチレンテレフタレートフィルム「コスモシャインA4300」厚さ50μm Ro=5000nm Rt=10000nm n=1.60
 6.PC1 :カネカ製ポリカーボネートフィルム「エルメック R40#435フィルム」厚さ40μm Ro=435nm Rt=600nm n=1.58
 7.TPS5 :カネカ製ポリカーボネートフィルム「エルメック R40#140フィルム」厚さ40μm Ro=140nm Rt=350nm n=1.58
 8.TPS6:日本ゼオン製シクロオレフィンフィルム「ゼオノアZ14(50μm)」厚さ50μm Ro=1.5nm Rt=10nm n=1.53
 9.TPS7:コニカミノルタ(株)製「VA-TAC」厚さ80μm Ro=50nm Rt=130nm n=1.48
 10.PET2:2軸延伸PET 厚さ50μm Ro=1500nm Rt=5000nm n=1.60
 11.APC:フルヤ金属製「Ag合金」(Pd、Cuを含有)
 12.APC-TR:フルヤ金属製「Ag合金」(Pd、Cuを含有)
 13.APC-SR:フルヤ金属製「Ag合金」(Pd、Cuを含有)
 上記3グレードの合金は、各々の組成が異なっている。
5. PET1: Toyobo polyethylene terephthalate film “Cosmo Shine A4300” thickness 50 μm Ro = 5000 nm Rt = 10000 nm n = 1.60
6). PC1: Kaneka polycarbonate film “Elmec R40 # 435 film” thickness 40 μm Ro = 435 nm Rt = 600 nm n = 1.58
7). TPS5: Kaneka polycarbonate film “Elmec R40 # 140 film” thickness 40 μm Ro = 140 nm Rt = 350 nm n = 1.58
8). TPS6: ZEON cycloolefin film “ZEONOR Z14 (50 μm)” thickness 50 μm Ro = 1.5 nm Rt = 10 nm n = 1.53
9. TPS7: “VA-TAC” manufactured by Konica Minolta Co., Ltd. thickness 80 μm Ro = 50 nm Rt = 130 nm n = 1.48
10. PET2: Biaxially stretched PET Thickness 50 μm Ro = 1500 nm Rt = 5000 nm n = 1.60
11. APC: Furuya Metal "Ag alloy" (containing Pd and Cu)
12 APC-TR: “Ag alloy” made of Furuya Metal (containing Pd and Cu)
13. APC-SR: Furuya Metal's “Ag alloy” (containing Pd and Cu)
The above three grade alloys have different compositions.
 14.GB-100:コベルコ科研製「Ag合金」Ag(99.0atm%)/Bi(1.0atm%)
 15.GBR-15:コベルコ科研製「Ag合金」Ag(98.35atm%)/Bi(0.35atm%)/Ge(0.3atm%)/Au(1.0atm%)
 16.Ag:(純度99.99%)
 17.KP801M:信越化学工業社製「フッ素系表面改質材料」
 18.a-GIO:非晶性ガリウム・インジウム酸化物
 19.ITO:インジウム・スズ酸化物 n=1.80
 20.ZnS:硫化亜鉛 n=2.37
 21.SiN:窒化ケイ素 n=2.02
 22.TiO:酸化チタン n=2.52
 23.Nb:5酸化ニオブ n=2.31
 24.Au:(純度99.99%)n=0.34
 25.ZnO:酸化亜鉛 n=1.95
 26.Cr:金属クロム
 27.ICO:インジウム・セリウム酸化物
 28.IZO:インジウム・亜鉛酸化物 n=2.10
 29.GZO:ガリウム・亜鉛酸化物
 30.IGZO:インジウム・ガリウム・亜鉛酸化物
 上記の中で、nは屈折率を表す。
 <透明導電性フィルム1の作製>
 (第1高屈折率層(ZnS-SiO))
 透明樹脂支持体としてコニカミノルタ(株)製「ゼロタック」(Ro=0nm、Rt=0nm)膜厚50μm上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 5sccm、スパッタ圧0.2Pa、室温下、ターゲット側電力150W、形成速度3.0Å/sec(0.3nm/sec)でZnS-SiOをRFスパッタし、層厚45.0nmの第1高屈折率層を形成した。ターゲット-基板間距離は90mmとした。Ro及びRtは、23℃・55%RHの環境下において、位相差測定装置「KOBRA-21ADH」(王子計測機器(株)製)によって測定した。
14 GB-100: “Ag alloy” manufactured by Kobelco Research Institute, Ag (99.0 atm%) / Bi (1.0 atm%)
15. GBR-15: “Ag alloy” manufactured by Kobelco Research Institute, Ag (98.35 atm%) / Bi (0.35 atm%) / Ge (0.3 atm%) / Au (1.0 atm%)
16. Ag: (Purity 99.99%)
17. KP801M: “Fluorine-based surface modification material” manufactured by Shin-Etsu Chemical Co., Ltd.
18. a-GIO: amorphous gallium indium oxide19. ITO: Indium tin oxide n = 1.80
20. ZnS: Zinc sulfide n = 2.37
21. SiN: silicon nitride n = 2.02
22. TiO 2 : Titanium oxide n = 2.52
23. Nb 2 O 5 : Niobium pentoxide n = 2.31
24. Au: (Purity 99.99%) n = 0.34
25. ZnO: zinc oxide n = 1.95
26. Cr: metallic chromium 27. ICO: Indium / cerium oxide 28. IZO: Indium / Zinc Oxide n = 2.10
29. GZO: gallium / zinc oxide 30. IGZO: Indium / gallium / zinc oxide In the above, n represents a refractive index.
<Preparation of transparent conductive film 1>
(First high refractive index layer (ZnS—SiO 2 ))
Using a magnetron sputtering apparatus manufactured by Konica Minolta Co., Ltd. “Zerotack” (Ro = 0 nm, Rt = 0 nm), 50 μm thick, and using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ar 20 sccm, O 2 5 sccm, sputtering pressure 0. ZnS—SiO 2 was RF sputtered at 2 Pa, room temperature, target-side power of 150 W, and formation rate of 3.0 Å / sec (0.3 nm / sec) to form a first high refractive index layer having a layer thickness of 45.0 nm. The target-substrate distance was 90 mm. Ro and Rt were measured with a phase difference measuring device “KOBRA-21ADH” (manufactured by Oji Scientific Instruments) in an environment of 23 ° C. and 55% RH.
 ZnSとSiOとの比率(体積比)は、75:25(ZnS:75体積%)であった。 The ratio (volume ratio) between ZnS and SiO 2 was 75:25 (ZnS: 75% by volume).
 (透明導電層(Ag))
 前記第1高屈折率層上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、形成速度14Å/sec(1.4nm/sec)でAPC-TR(フルヤ金属製「Ag合金」)を対向スパッタし、層厚7.5nmの透明導電層を形成した。ターゲット-基板間距離は90mmとした。
(Transparent conductive layer (Ag))
On the first high refractive index layer, using a magnetron sputtering apparatus of Osaka Vacuum Co., Ar 20 sccm, sputtering pressure 0.5 Pa, room temperature, target side power 150 W, formation rate 14 Å / sec (1.4 nm / sec) APC-TR (“Ag alloy” manufactured by Furuya Metal Co., Ltd.) was sputtered oppositely to form a transparent conductive layer having a layer thickness of 7.5 nm. The target-substrate distance was 90 mm.
 (第2硫化防止層)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、形成速度1.1Å/sec(0.11nm/sec)でZnOを層厚1.0nmになるようにしてRFスパッタした。ターゲット-基板間距離は90mmであった。
(Second anti-sulfur layer)
Using an Osaka vacuum magnetron sputtering system, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target power 150 W, formation rate 1.1 Å / sec (0.11 nm / sec), ZnO layer thickness RF sputtering was performed so that the thickness became 1.0 nm. The target-substrate distance was 90 mm.
 (第2高屈折率層(ZnO-SiO))
 上記硫化防止層の上に、第1高屈折率層と同一の方法で、ZnS-SiOをRFスパッタし、層厚45.0nmの第2高屈折率層を形成し透明導電性フィルム1を作製した。ZnSとSiOとの体積比は75:25であった。
(Second high refractive index layer (ZnO—SiO 2 ))
On the anti-sulfurization layer, ZnS—SiO 2 is RF sputtered by the same method as the first high refractive index layer to form a second high refractive index layer having a layer thickness of 45.0 nm. Produced. The volume ratio of ZnS to SiO 2 was 75:25.
 <透明導電性フィルム2~28、31~33の作製>
 表1及び表2の構成にした他は、透明導電性フィルム1と同様にして、本発明の透明導電性フィルム2~28及び31~33を作製した。なお、ZnSとSiOの比率は、ZnSとSiOのターゲットを同時に用いた共スパッタリング法を利用することにより行った。各層の層厚は、スパッタ時間を調整することにより行った。また、第1硫化防止層と第2硫化防止層は、いずれも同様の方法で形成した。
<Preparation of transparent conductive films 2 to 28, 31 to 33>
Transparent conductive films 2 to 28 and 31 to 33 of the present invention were produced in the same manner as the transparent conductive film 1 except that the configurations shown in Tables 1 and 2 were used. Incidentally, ZnS and SiO 2 ratio was carried out by utilizing a co-sputtering method using ZnS and SiO 2 targets simultaneously. The layer thickness of each layer was adjusted by adjusting the sputtering time. The first antisulfurization layer and the second antisulfurization layer were both formed by the same method.
 <透明導電性フィルム29、30の作製>
 透明樹脂支持体としてTPS3を用い、オプトラン製真空蒸着装置であるGENER1300に設けた1機の電子加熱蒸発源と、2機の抵抗加熱蒸発源を組み合わせて用い、以下のように全ての層を真空蒸着法により形成した。
<Preparation of transparent conductive films 29 and 30>
TPS3 is used as a transparent resin support, and one electronic heating evaporation source provided in GENER1300, an OPTRAN vacuum evaporation system, and two resistance heating evaporation sources are used in combination, and all layers are vacuumed as follows: It formed by the vapor deposition method.
 まず、第1高屈折率層をZnS-SiOとし、ZnSを抵抗加熱蒸発源から、SiOを電子加熱蒸発源から、それぞれ共蒸着した。このとき、抵抗加熱・電子銃の電流を、ZnSとSiOの体積比が75:25となるように独立に制御した。層厚は45.0nmとした。 First, the first high refractive index layer was made of ZnS—SiO 2 , ZnS was co-deposited from a resistance heating evaporation source, and SiO 2 was evaporated from an electron heating evaporation source. At this time, the resistance heating / electron gun current was independently controlled so that the volume ratio of ZnS to SiO 2 was 75:25. The layer thickness was 45.0 nm.
 次に、第1硫化防止層としてZnOを電子加熱蒸発源から層厚1.0nmで形成した。次いで、透明導電層として第1の抵抗加熱蒸発源からAgを、第2の抵抗加熱蒸発源からAuを、それぞれ共蒸着した。このとき、AgとAuの比率を重量比で98:2となるよう、各々の蒸発源の電流を独立に制御した。層厚は7.5nmとした。 Next, ZnO was formed as a first anti-sulfuration layer with a layer thickness of 1.0 nm from an electron heating evaporation source. Subsequently, Ag from the first resistance heating evaporation source and Au from the second resistance heating evaporation source were co-deposited as transparent conductive layers, respectively. At this time, the current of each evaporation source was controlled independently so that the ratio of Ag and Au was 98: 2 by weight. The layer thickness was 7.5 nm.
 次に、第2硫化防止層としてZnOを電子加熱蒸発源から層厚1.0nmで形成した。 Next, ZnO was formed from the electron heating evaporation source with a layer thickness of 1.0 nm as the second sulfurization prevention layer.
 最後に、第2高屈折率層をZnS-SiOとし、ZnSを抵抗加熱蒸発源から、SiOを電子加熱蒸発源から、それぞれ共蒸着した。このとき、抵抗加熱・電子銃の電流を、ZnSとSiOの体積比が75:25となるように独立に制御した。層厚は45.0nmとしたこれを透明導電性フィルム29とした。 Finally, the second high refractive index layer was made of ZnS—SiO 2 , ZnS was co-deposited from a resistance heating evaporation source, and SiO 2 was evaporated from an electron heating evaporation source. At this time, the resistance heating / electron gun current was independently controlled so that the volume ratio of ZnS to SiO 2 was 75:25. The layer thickness was 45.0 nm, and this was used as the transparent conductive film 29.
 透明導電性フィルム30は、表2に記載の通り透明導電性フィルム29と同様に作製した。 The transparent conductive film 30 was produced in the same manner as the transparent conductive film 29 as shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <透明導電性フィルム101~116の作製>
 表3の構成にした他は、透明導電性フィルム1と同様にして、比較例の透明導電性フィルム101~116を作製した。なお、透明導電性フィルム112及び113は下記の方法で作製した。
<Preparation of transparent conductive films 101 to 116>
Transparent conductive films 101 to 116 of comparative examples were produced in the same manner as the transparent conductive film 1 except that the structure shown in Table 3 was used. The transparent conductive films 112 and 113 were produced by the following method.
 <透明導電性フィルム112>
 透明樹脂支持体に東洋紡製PET(コスモシャインA4300 厚さ50μm)を用いた。これに、第1高屈折率層としてNbを層厚27.5nmで形成した。ただし、Nb層についてはアネルバ社のL-430S-FHSを用い、Ar 20sccm、O 1sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、形成速度1.2Å/sec(0.12nm/sec)でNbをDCスパッタした。ターゲット-基板間距離は86mmであった。続いて大阪真空製のスパッタリング装置を用い、透明導電層としてAgを層厚7.3nmまで形成した。続いて第2高屈折率層としてIZOを層厚36.0nmまで形成した。これを透明導電性フィルム112とした。
<Transparent conductive film 112>
Toyobo PET (Cosmo Shine A4300 thickness 50 μm) was used for the transparent resin support. To this, Nb 2 O 5 was formed as a first high refractive index layer with a layer thickness of 27.5 nm. However, for the Nb 2 O 5 layer, L-430S-FHS manufactured by Anelva is used, Ar 20 sccm, O 2 1 sccm, sputtering pressure 0.5 Pa, room temperature, target side power 150 W, formation rate 1.2 Å / sec (0 Nb 2 O 5 was DC sputtered at .12 nm / sec). The target-substrate distance was 86 mm. Subsequently, Ag was formed as a transparent conductive layer to a layer thickness of 7.3 nm using a sputtering apparatus manufactured by Osaka Vacuum. Subsequently, IZO was formed to a layer thickness of 36.0 nm as the second high refractive index layer. This was designated as transparent conductive film 112.
 <透明導電性フィルム113>
 コニカミノルタ(株)製「ゼロタック」を用い、乾燥前に延伸工程を加えることでRo=3nmとした。これに、第1高屈折率層をICOとし、層厚27.0nmとして形成した。続いて第1硫化防止層として、Crを層厚0.8nmにて形成し、さらに透明導電層としてAg-Au合金を、Ag、Auをそれぞれ98atm%、2atm%、含まれるよう調製された合金をターゲットに用いて、層厚9.0nmにて形成した。続いて第2硫化防止層として、Crを層厚0.8nmにて形成し、その上に第2高屈折率層としてICOを27.0nmの層厚で形成した。
<Transparent conductive film 113>
Using “Zerotack” manufactured by Konica Minolta Co., Ltd., Ro was set to 3 nm by adding a stretching step before drying. The first high refractive index layer was made of ICO and had a layer thickness of 27.0 nm. Subsequently, Cr was formed as a first sulfurization prevention layer with a layer thickness of 0.8 nm, and further, an Ag—Au alloy was prepared as a transparent conductive layer, and an alloy prepared so as to contain Ag and Au at 98 atm% and 2 atm%, respectively. Was used as a target and the layer thickness was 9.0 nm. Subsequently, Cr was formed as a second anti-sulfuration layer with a layer thickness of 0.8 nm, and ICO was formed thereon as a second high refractive index layer with a layer thickness of 27.0 nm.
 次いで、上記の第2高屈折率層の上に改めてSiOを40.0nmの層厚で形成した。さらに、フッ素系表面改質材料である「KP801M」を、Optorun社のGener 1300によって、190mA、形成速度10Å/sec(1nm/sec)で抵抗加熱蒸着し6.0nmの層厚で形成した。これを透明導電性フィルム113とした。 Next, SiO 2 was again formed with a layer thickness of 40.0 nm on the second high refractive index layer. Furthermore, “KP801M”, which is a fluorine-based surface modifying material, was deposited by resistance heating vapor deposition at 190 mA and a forming rate of 10 Å / sec (1 nm / sec) with a Gener 1300 manufactured by Optorun to form a layer thickness of 6.0 nm. This was designated as a transparent conductive film 113.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 ≪評価方法≫
 上記のようにして作製した本発明の透明導電性フィルム1~33及び比較例の透明導電性フィルム101~116について、以下のようして評価した。
≪Evaluation method≫
The transparent conductive films 1 to 33 of the present invention produced as described above and the transparent conductive films 101 to 116 of the comparative example were evaluated as follows.
 <角度依存性虹ムラ>
 角度依存性虹ムラの評価は、10インチサイズ(1インチ=2.54cm)で設けた透明導電性フィルムに電極を模したパターニング加工を行い、LCDディスプレイパネルに貼り合せてアウトセル型タッチパネルとした上で、画面にカラーチャートを実写投影し、盲検法にて、法線方向に対し45度の角度からの映像について50人の目視官能評価を行い、最大多数回答で比較判定する。
<Angle-dependent rainbow unevenness>
The angle-dependent rainbow unevenness was evaluated by performing patterning processing imitating electrodes on a transparent conductive film provided in a 10-inch size (1 inch = 2.54 cm) and pasting it on an LCD display panel to form an out-cell touch panel Then, a color chart is projected on the screen and a visual test is performed on a video from an angle of 45 degrees with respect to the normal direction in a blind manner, and comparison judgment is made with the maximum number of answers.
 (評価判定基準)
 ○:虹ムラが見られない
 △:軽微な虹ムラが認められる
 ×:視認性を損なう程度に虹ムラが発生する
 <表面抵抗(導電性)>
 透明導電性フィルムの初期の表面抵抗の測定は、低抵抗率計「ロレスタ-EP」((株)三菱化学アナリテック製)を用いて行った。
(Evaluation criteria)
○: No rainbow unevenness is observed Δ: Minor rainbow unevenness is observed ×: Rainbow unevenness is generated to the extent that visibility is impaired <Surface resistance (conductivity)>
The initial surface resistance of the transparent conductive film was measured using a low resistivity meter “Loresta-EP” (manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
 (評価判定基準)
 ◎:10Ω/□未満
 ○:10Ω/□未満
 △:10Ω/□以上15Ω/□未満
 ×:15Ω/□未満
 <透明性の評価>
 透明導電性フィルムの初期の透明性の測定は、分光光度計「U4100」(日立ハイテク製)を用いて、測定波長400~800nmの平均透過率を測定することによって行った。
(Evaluation criteria)
◎: Less than 10Ω / □ ○: Less than 10Ω / □ △: 10Ω / □ or more and less than 15Ω / □ X: Less than 15Ω / □ <Transparency evaluation>
The initial transparency of the transparent conductive film was measured by measuring the average transmittance at a measurement wavelength of 400 to 800 nm using a spectrophotometer “U4100” (manufactured by Hitachi High-Tech).
 この測定は、透過型静電容量タッチパネルに供されることを想定し、現実の系を反映すべく、支持体、高屈折率層、硫化防止層及び透明導電層からなる透明導電性フィルムを、油浸光学系で用いられるイマージョンオイル「タイプA(n=1.515)」((株)ニコン製)にてガラス基板に貼りつけ、上記の全透過率を測定することにより評価した。 Assuming that this measurement is applied to a transmissive capacitive touch panel, in order to reflect the actual system, a transparent conductive film comprising a support, a high refractive index layer, an antisulfurization layer and a transparent conductive layer is used. The evaluation was performed by pasting on a glass substrate with immersion oil “type A (n = 1.515)” (manufactured by Nikon Corporation) used in the oil immersion optical system and measuring the total transmittance.
 上記平均透過率は、透明導電性フィルムの透明樹脂支持体側の表面の法線に対して、5°傾けた角度から光を入射させて測定した。 The average transmittance was measured by making light incident from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductive film on the transparent resin support side.
 (評価判定基準)
 ◎:平均透過率が、92%以上
 ○:平均透過率が、90%以上、92%未満
 △:平均透過率が、85%以上、90%未満
 ×:平均透過率が、85%未満
 上記のようにして評価した結果を表4に示した。
(Evaluation criteria)
◎: Average transmittance is 92% or more ○: Average transmittance is 90% or more and less than 92% △: Average transmittance is 85% or more and less than 90% ×: Average transmittance is less than 85% The results of the evaluation are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の結果から本発明の導電性フィルム1~33が、良好な導電性と透明性を有し、かつ角度依存性のある虹ムラの発生しない美麗な映像表示が可能な透明導電性フィルムを提供できることが分かる。 Based on the above results, the conductive films 1 to 33 of the present invention provide a transparent conductive film having good conductivity and transparency and capable of displaying beautiful images with no rainbow unevenness having angle dependency. I understand that I can do it.
 一方、本発明の効果に対する比較例として作成した透明導電性フィルム101~116は、いずれも本発明に比して諸特性で劣る結果となった。 On the other hand, the transparent conductive films 101 to 116 prepared as comparative examples for the effects of the present invention were inferior in various properties as compared with the present invention.
 透明導電性フィルム101は、銀を含有する導電層の層厚が厚すぎるために透過率が不十分となった。 The transparent conductive film 101 had insufficient transmittance because the thickness of the conductive layer containing silver was too thick.
 透明導電性フィルム102は、導電層にITOを用いた結果、導電性の観点で著しく劣った。 As a result of using ITO for the conductive layer, the transparent conductive film 102 was remarkably inferior in terms of conductivity.
 透明導電性フィルム103は、導電層に金を用いているが、金の屈折率波長分散の特性ゆえに可視域全体においての高い透明性を確保できず、結果として平均透過率が不足していた。 The transparent conductive film 103 uses gold for the conductive layer, but due to the refractive index wavelength dispersion property of gold, high transparency in the entire visible range could not be secured, and as a result, the average transmittance was insufficient.
 透明導電性フィルム104~106及び111は、透明樹脂支持体のリタ―デーションが大きすぎるがゆえに、角度依存性の虹ムラが顕著に発生した。 In the transparent conductive films 104 to 106 and 111, since the retardation of the transparent resin support was too large, the angle-dependent rainbow unevenness was remarkably generated.
 透明導電性フィルム107は、光学アドミッタンスを調整する機能を有する第2高屈折率層が存在しないことにより、入射した光のエネルギーの少なくない部分が反射に仕向けられた結果、全体の透過率が劣った。 The transparent conductive film 107 is inferior in overall transmittance as a result of the absence of the second high refractive index layer having a function of adjusting the optical admittance, so that a portion with a small amount of incident light energy is directed to reflection. It was.
 透明導電性フィルム108は、同じく光学アドミッタンスを調整する第1高屈折率層が存在しないために透過率の面で好ましくないばかりか、導電性もやや不足する結果となった。これは、第1硫化防止層であるZnOが形成される際の下地が剥き出しの有機物である支持体表面であることから、Volmer-Weberの成長様式において島状核で説明される、ZnO薄膜の微視的な構造特性が粒塊性の強いものとなった結果、その直後に成膜される導電層もこの影響を受け、同じく粒状界面性の強い膜となったものと推測される。 The transparent conductive film 108 was not preferable in terms of transmittance because the first high refractive index layer for adjusting the optical admittance was not present, and the conductivity was slightly insufficient. This is because the base when the ZnO as the first anti-sulfurization layer is formed is the surface of the support, which is an exposed organic substance, so that the ZnO thin film explained by the island-like nuclei in the growth mode of the Volmer-Weber As a result of the fact that the microscopic structural characteristics have a strong agglomeration property, it is presumed that the conductive layer formed immediately after that is also affected by this, and the film also has a strong granular interfacial property.
 透明導電性フィルム109、110、112、114及び115についても、高屈折率層としてZnSに代わって選定したSiN、TiO、Nb、ITO、GIOの各種材料固有の屈折率波長分散特性ゆえに光学アドミッタンスの調整が不十分となったほか、やや導電性も劣った。この導電性の不足については、同じく導電層の成膜される面の物理化学的性状が、硫化物を用いた層の場合と異なるために、導電層の微視的な構造が均質連続性に欠けるものとなったものと推測される。 The transparent conductive films 109, 110, 112, 114 and 115 also have refractive index wavelength dispersion characteristics specific to various materials such as SiN, TiO 2 , Nb 2 O 5 , ITO and GIO selected instead of ZnS as the high refractive index layer. Therefore, the adjustment of the optical admittance became insufficient and the conductivity was slightly inferior. Regarding this lack of conductivity, the physicochemical properties of the surface on which the conductive layer is formed are different from those of the layer using sulfide, so that the microscopic structure of the conductive layer becomes homogeneous and continuous. Presumed to be missing.
 透明導電性フィルム116については、導電層の厚みが薄すぎるために導電性の観点で劣っていた。 The transparent conductive film 116 was inferior in terms of conductivity because the thickness of the conductive layer was too thin.
 上記の比較例は、本発明により提供される透明導電性フィルムの効果および優位性を明らかに示すものである。 The above comparative example clearly shows the effect and superiority of the transparent conductive film provided by the present invention.
 本発明は、良好な導電性と透明性を有し、かつ角度依存性のある虹ムラの発生しない美麗な映像表示が可能な透明導電性フィルムに好適に利用することができる。 The present invention can be suitably used for a transparent conductive film having good conductivity and transparency and capable of displaying a beautiful image without rainbow unevenness having angle dependency.
 100 透明導電性フィルム
 200 偏光板
 300 画像表示素子
 1 透明樹脂支持体
 2 第1高屈折率層
 3 透明導電層
 4 第2高屈折率層
 5a 第1硫化防止層
 5b 第2硫化防止層
 6 レジスト膜
 6A 除去するレジスト膜
 7 マスク
 8 露光機
 EU 透明電極ユニット
 a 導通領域
 b 絶縁領域
DESCRIPTION OF SYMBOLS 100 Transparent conductive film 200 Polarizing plate 300 Image display element 1 Transparent resin support body 2 1st high refractive index layer 3 Transparent conductive layer 4 2nd high refractive index layer 5a 1st sulfidation prevention layer 5b 2nd sulfation prevention layer 6 Resist film 6A Resist film to be removed 7 Mask 8 Exposure unit EU Transparent electrode unit a Conductive region b Insulating region

Claims (7)

  1.  透明樹脂支持体上に少なくとも一層の透明導電層と高屈折率層とを有する透明導電性フィルムであって、
     前記透明樹脂支持体の測定波長589nmにおける面内リターデーション値Roが、0~150nmの範囲内であり、
     前記透明導電層が、銀を含有し、かつ層厚が、3~15nmの範囲内であり、
     前記高屈折率層が、前記透明導電層の両側に設けられ、かつ少なくとも一方の高屈折率層が硫化亜鉛を含有することを特徴とする透明導電性フィルム。
    A transparent conductive film having at least one transparent conductive layer and a high refractive index layer on a transparent resin support,
    The in-plane retardation value Ro of the transparent resin support at a measurement wavelength of 589 nm is in the range of 0 to 150 nm,
    The transparent conductive layer contains silver and has a layer thickness in the range of 3 to 15 nm;
    The transparent conductive film, wherein the high refractive index layer is provided on both sides of the transparent conductive layer, and at least one high refractive index layer contains zinc sulfide.
  2.  前記透明樹脂支持体の測定波長589nmにおける厚さ方向リターデーション値Rtが、0~400nmの範囲内であることを特徴とする請求項1に記載の透明導電性フィルム。 2. The transparent conductive film according to claim 1, wherein the retardation value Rt in the thickness direction at a measurement wavelength of 589 nm of the transparent resin support is in the range of 0 to 400 nm.
  3.  前記透明樹脂支持体が、少なくともセルロースエステル樹脂、シクロオレフィン樹脂及びポリカーボネート樹脂から選択されるいずれか一種を含有することを特徴とする請求項1又は請求項2に記載の透明導電性フィルム。 3. The transparent conductive film according to claim 1, wherein the transparent resin support contains at least one selected from a cellulose ester resin, a cycloolefin resin, and a polycarbonate resin.
  4.  前記透明導電層が、金、銅、ニッケル、パラジウム、白金、亜鉛、アルミニウム、マンガン、ゲルマニウム、ビスマス、ネオジム及びモリブデンから選択される少なくとも一種の金属を含有することを特徴とする請求項1から請求項3までのいずれか一項に記載の透明導電性フィルム。 The transparent conductive layer contains at least one metal selected from gold, copper, nickel, palladium, platinum, zinc, aluminum, manganese, germanium, bismuth, neodymium and molybdenum. Item 4. The transparent conductive film according to any one of Items 3 to 3.
  5.  前記透明導電層の両側に設けられた高屈折率層のうち、支持体側の高屈折率層が、硫化亜鉛を含有することを特徴とする請求項1から請求項4までのいずれか一項に記載の透明導電性フィルム。 5. The high refractive index layer on the support side among the high refractive index layers provided on both sides of the transparent conductive layer contains zinc sulfide. 5. The transparent conductive film as described.
  6.  前記透明導電層の両側に設けられた高屈折率層のうち、支持体側とは反対側に設けられた高屈折率層が、インジウム・スズ酸化物、インジウム・亜鉛酸化物、ガリウム・亜鉛酸化物又はインジウム・ガリウム・亜鉛酸化物のいずれかを含有することを特徴とする請求項1から請求項5までのいずれか一項に記載の透明導電性フィルム。 Among the high refractive index layers provided on both sides of the transparent conductive layer, the high refractive index layer provided on the side opposite to the support side is composed of indium tin oxide, indium zinc oxide, gallium zinc oxide. The transparent conductive film according to any one of claims 1 to 5, further comprising any one of indium, gallium, and zinc oxide.
  7.  前記透明導電層と前記少なくとも一方の高屈折率層との間に、酸化亜鉛を含有する層を有することを特徴とする請求項1から請求項6までのいずれか一項に記載の透明導電性フィルム。 The transparent conductive material according to any one of claims 1 to 6, further comprising a layer containing zinc oxide between the transparent conductive layer and the at least one high refractive index layer. the film.
PCT/JP2015/050580 2014-02-10 2015-01-13 Transparent conductive film WO2015118904A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015560904A JP6493225B2 (en) 2014-02-10 2015-01-13 Transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-023242 2014-02-10
JP2014023242 2014-02-10

Publications (1)

Publication Number Publication Date
WO2015118904A1 true WO2015118904A1 (en) 2015-08-13

Family

ID=53777712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050580 WO2015118904A1 (en) 2014-02-10 2015-01-13 Transparent conductive film

Country Status (2)

Country Link
JP (1) JP6493225B2 (en)
WO (1) WO2015118904A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287851A (en) * 2016-03-30 2017-10-24 青岛海尔滚筒洗衣机有限公司 Washing machine door body, washing machine and clothes washing method with case ring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318933A (en) * 1996-05-28 1997-12-12 Toyobo Co Ltd Electrode substrate
JP2012230491A (en) * 2011-04-25 2012-11-22 Nitto Denko Corp Transparent conductive film for touch panel, and image display device
WO2013118643A1 (en) * 2012-02-06 2013-08-15 コニカミノルタ株式会社 Conductive film and touch panel using same
JP2013188876A (en) * 2012-03-12 2013-09-26 Toppan Printing Co Ltd Transparent thin film laminate and method of manufacturing the same
JP2013225296A (en) * 2012-03-23 2013-10-31 Fujifilm Corp Conductive member, touch panel using the same, display device, and input device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318933A (en) * 1996-05-28 1997-12-12 Toyobo Co Ltd Electrode substrate
JP2012230491A (en) * 2011-04-25 2012-11-22 Nitto Denko Corp Transparent conductive film for touch panel, and image display device
WO2013118643A1 (en) * 2012-02-06 2013-08-15 コニカミノルタ株式会社 Conductive film and touch panel using same
JP2013188876A (en) * 2012-03-12 2013-09-26 Toppan Printing Co Ltd Transparent thin film laminate and method of manufacturing the same
JP2013225296A (en) * 2012-03-23 2013-10-31 Fujifilm Corp Conductive member, touch panel using the same, display device, and input device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287851A (en) * 2016-03-30 2017-10-24 青岛海尔滚筒洗衣机有限公司 Washing machine door body, washing machine and clothes washing method with case ring
CN107287851B (en) * 2016-03-30 2021-03-02 青岛海尔滚筒洗衣机有限公司 Washing machine door body with decorative ring, washing machine and washing method

Also Published As

Publication number Publication date
JPWO2015118904A1 (en) 2017-03-23
JP6493225B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6314463B2 (en) Transparent conductor
TWI554410B (en) Transparent conductive film
JP6292225B2 (en) Transparent conductor
JP2007206146A (en) Antireflection film, method of manufacturing the same and display equipped with the antireflection film
JP2016081318A (en) Transparent conductor and touch panel
WO2014064939A1 (en) Transparent conductor
JP6319302B2 (en) Transparent conductor and method for producing the same
WO2015068738A1 (en) Transparent conductive body
JP6344095B2 (en) Transparent conductor and touch panel
JP6206262B2 (en) Transparent conductor, method for producing the same, and conductive paste
WO2015118904A1 (en) Transparent conductive film
WO2015194320A1 (en) Transparent conductor and touchscreen
JP2016152182A (en) Transparent conductive film, method for producing transparent conductive film, and electronic apparatus
WO2015107968A1 (en) Method for manufacturing transparent conductor and transparent conductor
WO2015087895A1 (en) Transparent conductive body
WO2015125677A1 (en) Transparent conductor
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
JPWO2015125558A1 (en) Method for producing transparent conductor and transparent conductor
JP2016091071A (en) Transparent conductive film and method for producing the same
WO2015053371A1 (en) Transparent conductor
WO2015025525A1 (en) Transparent conductive body
JP6586738B2 (en) Transparent conductive member and method for manufacturing transparent conductive member
JP2016177940A (en) Method for producing transparent conductive body
JP2016160115A (en) Method for selecting transparent conductive member
WO2015122392A1 (en) Transparent conductor and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560904

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746568

Country of ref document: EP

Kind code of ref document: A1