WO2014064939A1 - Transparent conductor - Google Patents

Transparent conductor Download PDF

Info

Publication number
WO2014064939A1
WO2014064939A1 PCT/JP2013/006276 JP2013006276W WO2014064939A1 WO 2014064939 A1 WO2014064939 A1 WO 2014064939A1 JP 2013006276 W JP2013006276 W JP 2013006276W WO 2014064939 A1 WO2014064939 A1 WO 2014064939A1
Authority
WO
WIPO (PCT)
Prior art keywords
admittance
transparent
metal film
wavelength
layer
Prior art date
Application number
PCT/JP2013/006276
Other languages
French (fr)
Japanese (ja)
Inventor
一成 多田
清司 湯浅
仁一 粕谷
敏幸 木下
和央 吉田
岩垣 賢
川原 雄介
泰宏 渡辺
片倉 利恵
秀謙 尾関
貴之 飯島
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014064939A1 publication Critical patent/WO2014064939A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/204Plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a transparent conductor.
  • Transparent conductive films are used in various devices such as electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials. ing.
  • a transparent conductive film As a constituent material of such a transparent conductive film, metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , TiO 2 , Oxide semiconductors such as SnO 2 and ZnO are known. Among these, a transparent conductive film made of an indium tin oxide (ITO) film is frequently used from the viewpoint of light transmittance and conductivity.
  • ITO indium tin oxide
  • Patent Document 1 a transparent conductive film in which Ag is arranged in a mesh shape has been proposed as a transparent conductive film replacing ITO (Patent Document 1).
  • the transparent conductive film of Patent Document 1 has an Ag mesh width of about 20 ⁇ m. Therefore, the Ag mesh is easily visible and cannot be applied to uses that require high transparency. Furthermore, although there was conduction in the mesh portion, there was no conduction in the gap portion of the mesh, and the surface electric resistance value could not be lowered sufficiently.
  • a transparent conductive film containing Ag nanowires has also been proposed (Patent Document 2).
  • the transparent conductive film has a large surface electric resistance value, and the thickness of the transparent conductive film needs to be about 200 nm. For this reason, it has been difficult to apply the transparent conductive film to uses that require flexibility.
  • Patent Document 3 it has also been proposed to use an Ag thin film as a transparent conductive film.
  • an Ag thin film it has been difficult for the Ag thin film to achieve both a low surface electric resistance value and a high light transmittance. If the thickness of the Ag thin film is increased in order to increase the surface electrical resistance value, Ag inherent reflection occurs and the light transmittance is lowered. On the other hand, if the Ag thin film is thinned in order to increase the light transmittance, sufficient conduction cannot be obtained. Further, there is a problem that plasmon absorption occurs and the transmittance of the transparent conductive film is lowered.
  • etching is generally used as a patterning method for the transparent conductive film.
  • this method has a problem that a resist pattern must be prepared or treated with an etching solution, and the process is complicated.
  • Patent Document 4 a method of forming a transparent metal film in a pattern using a photocatalyst has been proposed (Patent Document 4).
  • the photocatalyst layer formed on the substrate is irradiated with light in a pattern to change the wettability of the photocatalyst layer.
  • the liquid for forming a transparent conductive film is made to adhere in a pattern shape using the wettability difference of a light irradiation part and a non-irradiation part.
  • an object of the present invention is to provide a transparent conductor having a high light transmittance and a low surface electric resistance value.
  • the liquid for forming the transparent conductive film is likely to adhere to a region other than the desired region; there is a problem that it is difficult to form a fine pattern. there were. Therefore, it is also demanded to provide a method for producing a transparent conductor capable of forming a fine metal pattern by a simple method.
  • the first of the present invention relates to the following transparent conductor.
  • a transparent conductor in which a transparent support material, a first admittance adjusting layer, a transparent metal film, and a second admittance adjusting layer are laminated in this order, and the transparent metal film has a thickness of 15 nm or less.
  • the second of the present invention relates to the following transparent conductor.
  • the third of the present invention relates to the following transparent conductor.
  • a transparent conductor in which a transparent support material, a first admittance adjustment layer, a transparent metal film, and a second admittance adjustment layer are laminated in this order, and the first admittance adjustment layer and the second
  • the admittance adjusting layer includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of light having a wavelength of 570 nm of the transparent support material, and the first admittance adjusting layer is formed on at least one surface of the transparent metal film.
  • a low refractive index layer comprising a material having a refractive index of light having a wavelength of 570 nm lower than that of the dielectric material or oxide semiconductor material included in the second admittance adjusting layer and having a thickness of 0.1 to 15 nm. Further, a transparent conductor.
  • a transparent conductor having both a low surface electric resistance value and high transparency can be obtained.
  • FIG. 4A shows a transparent conductor (transparent support material (glass substrate) / first admittance adjusting layer (TiO 2 ) / transparent metal film (Ag) / second admittance adjusting layer (TiO 2 ) / third according to the first embodiment. is a graph showing the admittance locus at a wavelength 570nm admittance adjusting layer transparent conductor comprising (SiO 2)).
  • FIG. 4B shows the transparent conductor of the first embodiment (transparent support material (glass substrate) / first admittance adjusting layer (TiO 2 ) / transparent metal film (Ag) / second admittance adjusting layer (TiO 2 ) / third. is a graph showing the relationship between the optical length and the electric field of the admittance adjustment layer transparent conductor comprising (SiO 2)).
  • FIG. 5 (a) is a graph showing an admittance locus at a wavelength of 570 nm of a transparent conductor comprising a transparent support material / transparent metal film / admittance adjusting layer, and FIG.
  • FIG. 5 (b) shows a wavelength of 450 nm of the transparent conductor, It is a figure which shows the optical admittance in wavelength 570nm and wavelength 700nm.
  • FIG. 6A is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor (transparent support / first admittance adjusting layer / transparent metal film / transparent conductor having the second admittance adjusting layer) of the first embodiment.
  • FIG. 6B is a diagram illustrating optical admittance of the transparent conductor at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • FIG. 7 shows the transparent conductor of the first embodiment (transparent support material (glass substrate) / first admittance adjusting layer (TiO 2 ) / transparent metal film (Ag) / second admittance adjusting layer (TiO 2 ) / third.
  • admittance wavelength 450nm adjustment layer (SiO 2) a transparent conductor comprising) is a graph showing 570 nm, and the admittance locus in 700 nm.
  • FIG. 8 shows the transparent conductor (transparent support material (glass substrate) / underlayer (MgF 2 ) / first admittance adjustment layer (TiO 2 ) / transparent metal film (Ag) / second admittance adjustment layer of the second embodiment.
  • FIG. 9A is a graph showing the admittance locus of wavelength 570nm of the transparent conductor) with a (TiO 2).
  • FIG. 9A is a graph showing the spectral characteristics of the transparent conductor of the third aspect (transparent conductor produced in Example C-1).
  • FIG. 9B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor of the third embodiment (the transparent conductor produced in Example C-1).
  • FIG. 11 is a graph in which only the plasmon absorption rate is extracted from the absorption rate of the transparent metal film produced in Experimental Example 1.
  • FIG. 9A is a graph showing the spectral characteristics of the transparent conductor of the third aspect (transparent conductor produced in Example C-1).
  • FIG. 9B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor of the third embodiment (the transparent conductor produced in Example C-1).
  • FIG. 11 is a graph in which only the
  • FIG. 12 is a graph in which only the plasmon absorption rate is extracted from the absorption rate of the transparent metal film produced in Experimental Example 2.
  • FIG. 13 is a graph in which only the plasmon absorption rate is extracted from the absorption rate of the transparent metal film produced in Experimental Example 3.
  • FIG. 14 is a graph in which only the plasmon absorption rate is extracted from the absorption rate of the transparent metal film produced in Experimental Example 4.
  • FIG. 15A is a graph showing the spectral characteristics of the transparent conductor produced in Example A-1.
  • FIG. 15B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-1.
  • FIG. 16A is a graph showing the spectral characteristics of the transparent conductor produced in Example A-2.
  • FIG. 16B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-2.
  • FIG. 17A is a graph showing the spectral characteristics of the transparent conductor produced in Example A-3.
  • FIG. 17B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-3.
  • FIG. 18A is a graph showing the spectral characteristics of the transparent conductor produced in Example A-4.
  • FIG. 18B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-4.
  • FIG. 19A is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example A-1.
  • FIG. 19B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Comparative Example A-1.
  • FIG. 20A is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example A-2.
  • FIG. 20B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Comparative Example A-2.
  • FIG. 21A is a graph showing the spectral characteristics of the transparent conductor produced in Example A-5.
  • FIG. 21B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-5.
  • FIG. 22A is a graph showing the spectral characteristics of the transparent conductor produced in Example A-6.
  • FIG. 22B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-6.
  • FIG. 23 is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-7.
  • FIG. 24 is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example A-3.
  • FIG. 25A is a graph showing the spectral characteristics of the transparent conductor produced in Example B-1.
  • FIG. 25B is a graph showing admittance trajectories of the transparent conductor produced in Example B-1 at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • FIG. 26A is a graph showing the spectral characteristics of the transparent conductor produced in Example B-2.
  • FIG. 26B is a graph showing the admittance locus of the transparent conductor produced in Example B-2 at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • FIG. 27A is a graph showing the spectral characteristics of the transparent conductor produced in Example B-3.
  • FIG. 27B is a graph showing admittance trajectories of the transparent conductor produced in Example B-3 at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • FIG. 28A is a graph showing the spectral characteristics of the transparent conductor produced in Example B-4.
  • FIG. 28B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example B-4.
  • FIG. 29A is a graph showing the spectral characteristics of the transparent conductor produced in Example B-5.
  • FIG. 29B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example B-5.
  • FIG. 30A is a graph showing the spectral characteristics of the transparent conductor produced in Example B-6.
  • FIG. 30B is a graph showing admittance trajectories of the transparent conductor produced in Example B-6 at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • FIG. 31 is a graph showing admittance loci of the transparent conductor produced in Example B-7 at wavelengths of 450 nm, 570 nm, and 700 nm.
  • FIG. 32 is a graph showing admittance trajectories of the transparent conductor produced in Example B-8 at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • FIG. 33A is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example B-2.
  • FIG. 33B is a graph showing admittance trajectories of the transparent conductor produced in Comparative Example B-2 at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • FIG. 34A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-2.
  • FIG. 34B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-2.
  • FIG. 35A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-3.
  • FIG. 35B is a graph showing an optical admittance locus of a transparent conductor produced in Example C-3 at a wavelength of 570 nm.
  • FIG. 36A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-4.
  • FIG. 36B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-4.
  • FIG. 37A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-5.
  • FIG. 37B is a graph showing an optical admittance locus of the transparent conductor produced in Example C-5 at a wavelength of 570 nm.
  • FIG. 38A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-6.
  • FIG. 38B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-6.
  • FIG. 39A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-7.
  • FIG. 39B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-7.
  • FIG. 40A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-8.
  • FIG. 40B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-8.
  • FIG. 41A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-9.
  • FIG. 41B is a graph showing an optical admittance locus of wavelength 570 nm of the transparent conductor produced in Example C-9.
  • FIG. 42A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-10.
  • FIG. 42B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-10.
  • FIG. 43A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-11.
  • FIG. 43B is a graph showing an optical admittance locus of the transparent conductor produced in Example C-11 at a wavelength of 570 nm.
  • FIG. 44A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-12.
  • FIG. 44B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-12.
  • FIG. 45A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-13.
  • FIG. 45B is a graph showing an optical admittance locus of wavelength 570 nm of the transparent conductor produced in Example C-13.
  • FIG. 46A is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example C-2.
  • FIG. 46B is a graph showing an optical admittance locus of a transparent conductor produced in Comparative Example C-2 at a wavelength of 570 nm.
  • It is process drawing which shows an example of the manufacturing method of the transparent conductor of this invention.
  • It is a schematic diagram which shows the irradiation pattern of the light in an Example.
  • 7 is a graph showing the transmittance, absorption rate, and transmittance of light with a wavelength of 400 nm to 800 nm of a transparent conductor of Example D-6 (when the thickness of the transparent metal film is 4 nm).
  • FIG. 7 is a graph showing the transmittance, absorption rate, and transmittance of light with a wavelength of 400 nm to 800 nm of the transparent conductor of Example D-7 (when the thickness of the transparent metal film is 5 nm).
  • FIG. 51 is an example of a schematic view of a sputtering apparatus used in the first embodiment of the method for producing a transparent conductor of the present invention.
  • 52 (A) and 52 (B) are examples of schematic views of a sputtering apparatus used in the second embodiment of the method for producing a transparent conductor of the present invention.
  • FIG. 53 is an SEM (scanning electron microscope) image of the transparent metal film produced in Example E-1 of the present invention.
  • FIG. 54 is an SEM (scanning electron microscope) image of the transparent metal film produced in Example E-2 of the present invention.
  • FIG. 55 is an SEM (scanning electron microscope) image of the transparent metal film produced in Example E-3 of the present invention.
  • FIG. 56 is an SEM (scanning electron microscope) image of the transparent metal film produced in Example E-4 of the present invention.
  • FIG. 57 is an SEM (scanning electron microscope) image of the transparent metal film produced in Comparative Example E-2 of the present invention.
  • FIG. 58 is an SEM (scanning electron microscope) image of the transparent metal film produced in Comparative Example E-3 of the present invention.
  • FIG. 59 is a timing chart of Step A and Step B in the manufacturing method of Example E-1 of the present invention.
  • FIG. 60 is a timing chart of Step A and Step B in the manufacturing method of Example E-6 of the present invention.
  • FIG. 61 is a timing chart of Step A and Step B in the manufacturing method of Example E-7 of the present invention.
  • the transparent conductor of the present invention is applicable to panels of various display elements such as a touch panel, an organic EL element, and a solar battery.
  • the transparent conductor of the present invention includes three modes having different layer configurations.
  • the transparent conductor 100 of the first embodiment includes a transparent support material 1 / first admittance adjustment layer 2 / transparent metal film 3 / second admittance adjustment layer 4, and a transparent metal film 3 has a structure sandwiched between two admittance adjusting layers 2 and 4.
  • the transparent metal film 2 is sandwiched between the two admittance adjusting layers 2 and 4 so that the optical admittance of the transparent conductor 100 is adjusted as described later. As a result, light reflection on the surface of the transparent conductor 100 is suppressed, and the light transmittance of the transparent conductor 100 is increased.
  • the transparent conductor 100 of the first aspect may include a third admittance adjusting layer (not shown) formed on the second admittance adjusting layer 4. Furthermore, the transparent conductor 100 of the first aspect may include two or more transparent metal films. Further, another admittance adjusting layer may be sandwiched between the two transparent metal films. The other admittance adjustment layer may be the same layer as the first admittance adjustment layer and the second admittance adjustment layer.
  • Transparent Support Material included in the transparent conductor can be the same as the transparent support material of various display devices.
  • Transparent support materials include glass substrates, cellulose ester resins (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), polycarbonate resins (for example, Panlite, Multilon (both manufactured by Teijin Limited)), cycloolefin resins (for example, ZEONOR (manufactured by Nippon Zeon), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical)), Polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate, polyethylene naphthalate), poly
  • the transparent support material is a glass substrate, triacetyl cellulose, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyether sulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, Polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin) and styrene block copolymer resin are preferable.
  • the transparent support material preferably has high transparency to visible light; the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent support material is 80% or more, the average light transmittance of the entire transparent conductor is particularly likely to increase.
  • the average absorption rate of light having a wavelength of 450 to 800 nm of the transparent support material is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average light transmittance of the transparent support material is measured by making light incident from an angle inclined by 5 ° with respect to the front surface of the transparent support material.
  • the average light absorptance of the transparent support material is measured by making the light incident from the same angle as the average transmittance and measuring the average reflectivity of the transparent support material. Then, the average absorptance is calculated as 100 ⁇ (average transmittance + average reflectance). Average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of light with a wavelength of 510 nm of the transparent support material is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. .
  • the refractive index of light having a wavelength of 570 nm of the transparent support material is also preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. It is.
  • the refractive index at each wavelength of the transparent support material is usually determined by the material of the transparent support material. The refractive index of the transparent support is measured with an ellipsometer.
  • the haze value of the transparent support material is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. When the haze value of the transparent support material is 2.5 or less, the haze value of the transparent conductor is lowered. The haze value is measured with a haze meter.
  • the thickness of the transparent support material is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent support material is 1 ⁇ m or more, the strength of the transparent support material is increased, and it is difficult to crack or tear the first admittance adjusting layer.
  • the thickness of the transparent support material is 20 mm or less, the flexibility of the transparent conductor is sufficient, and the thickness of the device using the transparent conductor can be reduced.
  • the apparatus using a transparent conductor can also be reduced in weight.
  • the first admittance adjustment layer is a layer containing a dielectric material or an oxide semiconductor material, and in this embodiment, between the transparent support material and the transparent metal film and the transparent metal film. And a layer formed adjacent to each other.
  • the refractive index of light having a wavelength of 510 nm of the first admittance adjusting layer is preferably larger than 1.5, more preferably 1.7 to 2.5, and still more preferably 1.9 to 2.5. As will be described later, when the refractive index of the first admittance adjusting layer is higher than 1.5, the light transmittance of the transparent conductor is likely to increase.
  • the refractive index of the first admittance adjusting layer is preferably larger than the refractive index of the transparent support, and the refractive index difference is preferably 0.1 to 1.1, and 0.4 to 1.0. It is more preferable that The refractive index of the first admittance adjusting layer is measured with an ellipsometer. The refractive index of the first admittance adjusting layer is adjusted by the material constituting the first admittance adjusting layer, the density of the material in the first admittance adjusting layer, and the like.
  • the refractive index of light having a wavelength of 570 nm of the material (dielectric material or oxide semiconductor material) included in the first admittance adjusting layer is preferably larger than 1.5, more preferably 1.6 to 2.5. More preferably, it is 1.7 to 2.5, and particularly preferably 1.8 to 2.5. Further, the refractive index difference between the material constituting the first admittance adjusting layer and the transparent support is preferably 0.1 to 1.1, more preferably 0.4 to 1.0.
  • the material (dielectric material or oxide semiconductor material) constituting the first admittance adjusting layer is preferably a metal oxide or a metal sulfide.
  • metal oxides or metal sulfides include TiO 2 , ITO (indium tin oxide), ZnO, ZnS, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O.
  • the first admittance adjusting layer may contain only one kind of the metal oxide or metal sulfide or two or more kinds.
  • the thickness of the first admittance adjusting layer is preferably 10 to 150 nm, more preferably 20 to 80 nm.
  • the thickness of the first admittance adjusting layer is 10 nm or more, the optical admittance of the transparent conductor is easily adjusted sufficiently by the first admittance adjusting layer. As a result, the light transmittance of the transparent conductor is sufficiently increased.
  • the thickness of the first admittance adjusting layer is 150 nm or less, the light permeability of the transparent conductor is hardly lowered by the first admittance adjusting layer.
  • the thickness of the first admittance adjusting layer is measured with an ellipsometer.
  • the first admittance adjusting layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of increasing the refractive index (density) of the first admittance adjusting layer, it is preferably a layer formed by electron beam evaporation or sputtering. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
  • IAD ion assist
  • the metal contained in the transparent metal film is not particularly limited, and may be, for example, silver, copper, gold, platinum group, titanium, chromium, or the like.
  • the transparent metal film may contain only one kind of these metals or two or more kinds.
  • the transparent metal film is preferably a film made of silver or an alloy containing 50 mass% or more of silver.
  • the transparent metal film is preferably made of silver or an alloy containing 90 at% or more of silver.
  • the transparent metal film is a layer made of a silver alloy
  • the metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, or the like.
  • the sulfide resistance of the transparent metal film is increased.
  • Combining silver with gold increases salt resistance (NaCl) resistance.
  • oxidation resistance is enhanced.
  • the plasmon absorptance of the transparent metal film is preferably 15% or less, more preferably 10% or less, even more preferably 7% or less, and particularly preferably 5 in the entire wavelength range of 400 nm to 800 nm. % Or less.
  • the plasmon absorption rate in the above wavelength range is small, the visible light transmittance of the transparent conductor is increased. Further, when the plasmon absorptance is below a certain value over a part of the wavelength of 400 nm to 800 nm, the transmitted light of the transparent conductor is hardly colored.
  • the plasmon absorption rate at a wavelength of 400 nm to 800 nm of the transparent metal film is obtained in advance by preparing a metal film having no plasmon absorption and using the absorption rate of this metal film as reference data. Specifically, it is measured by the following procedure.
  • a platinum palladium film is formed to a thickness of 0.1 nm on a glass substrate using a magnetron sputtering apparatus.
  • the average thickness of platinum palladium is calculated from the film forming speed and the like of the manufacturer's nominal value of the sputtering apparatus.
  • a metal film is formed to a thickness of 20 nm by a vapor deposition machine on the substrate to which platinum palladium is adhered.
  • the thickness of the transparent metal film contained in the transparent conductor is 15 nm or less, more preferably 3 to 13 nm, and further preferably 7 to 12 nm.
  • the thickness of the transparent metal film is 15 nm or less, more preferably 3 to 13 nm, and further preferably 7 to 12 nm.
  • the thickness of the transparent metal film is 15 nm or less, the original reflection of the metal constituting the transparent metal film hardly occurs.
  • the thickness of the transparent metal film is 15 nm or less, the light permeability of the transparent conductor is easily increased by the first admittance adjusting layer and the second admittance adjusting layer, as will be described later.
  • the thickness of the transparent metal film is measured with an ellipsometer.
  • the transparent metal film may be a film formed by any method. However, in a general vapor deposition method, it is difficult to obtain a transparent metal film having a plasmon absorption rate of 15% or less and a thickness of 15 nm or less over the entire wavelength range of 400 nm to 800 nm. Therefore, the transparent metal film is preferably a film formed after previously forming growth nuclei. A method for forming the transparent metal film will be described later.
  • the second admittance adjustment layer is a layer containing a dielectric material or an oxide semiconductor material, and may be a layer disposed adjacent to the transparent metal film.
  • the material constituting the second admittance adjustment layer can be the same as the material constituting the first admittance adjustment layer.
  • the first admittance adjusting layer and the second admittance adjusting layer may be layers made of the same material or layers made of different materials.
  • the refractive index of light having a wavelength of 510 nm of the second admittance adjusting layer is preferably larger than 1.5, more preferably 1.6 to 2.5, and still more preferably 1.8 to 2.5. As will be described later, when the refractive index of the second admittance adjusting layer is higher than 1.5, reflection on the surface of the transparent conductor is easily suppressed.
  • the refractive index of the second admittance adjusting layer is also preferably larger than the refractive index of the transparent support, and the refractive index difference is preferably 0.1 to 1.1, more preferably 0.4 to 1.0.
  • the refractive index of the second admittance adjusting layer is measured with an ellipsometer.
  • the refractive index of the second admittance adjusting layer is adjusted by the material constituting the second admittance adjusting layer, the density of the material in the second admittance adjusting layer, and the like.
  • the refractive index of light having a wavelength of 570 nm of the material (dielectric material or oxide semiconductor material) included in the second admittance adjusting layer is preferably greater than 1.5, more preferably 1.6 to 2.5. More preferably, it is 1.8 to 2.5. As will be described later, when the refractive index of the material constituting the second admittance adjusting layer is greater than 1.5, the light transmittance of the transparent conductor tends to increase.
  • the difference in refractive index between the material constituting the second admittance adjusting layer and the transparent support is preferably from 0.1 to 1.1, more preferably from 0.4 to 1.0.
  • the thickness of the second admittance adjusting layer is preferably 10 to 150 nm, more preferably 20 to 80 nm. When the thickness of the second admittance adjusting layer is 10 nm to 150 nm, the light transmittance of the transparent conductor is sufficiently increased. The thickness of the second admittance adjusting layer is measured with an ellipsometer.
  • a third admittance adjustment layer may be further laminated on the second admittance adjustment layer.
  • the third admittance adjusting layer plays a role of adjusting the optical admittance of the transparent conductor or protecting the transparent conductor.
  • the refractive index of light having a wavelength of 510 nm of the third admittance adjusting layer is preferably 1.3 to 1.8, more preferably 1.35 to 1.6, and still more preferably 1.35 to 1.5. It is.
  • the refractive index of the third admittance adjusting layer is measured with an ellipsometer.
  • the refractive index of the third admittance adjusting layer is adjusted by the material constituting the third admittance adjusting layer, the density of the material in the third admittance adjusting layer, and the like.
  • the third admittance adjusting layer preferably includes a material having a refractive index lower than the refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material included in the second admittance adjusting layer.
  • the refractive index of light having a wavelength of 570 nm of the material constituting the third admittance adjusting layer is appropriately selected according to the refractive index of the material included in the second admittance adjusting layer, and is 1.3 to 1.8. Is more preferably 1.35 to 1.6, and still more preferably 1.35 to 1.5.
  • the refractive index of the material constituting the third admittance adjusting layer is 1.35 to 1.5, the optical admittance of the transparent conductor is easily finely adjusted.
  • the refractive index of the third admittance adjusting layer is adjusted by the material constituting the third admittance adjusting layer and its density.
  • the material constituting the third admittance adjusting layer is not particularly limited as long as it is a dielectric material or an oxide semiconductor material, and examples thereof include SiO 2 , Al 2 O 3 , MgF 2 , Y 2 O 3 and the like. . From the viewpoint of finely adjusting the refractive index, the dielectric material is preferably SiO 2 or MgF 2 .
  • the thickness of the third admittance adjusting layer is preferably 10 to 150 nm, more preferably 20 to 100 nm.
  • the thickness of the third admittance adjusting layer is 10 nm or more, it is easy to finely adjust the optical admittance on the surface of the transparent conductor.
  • the thickness of the third admittance adjusting layer is 150 nm or less, the thickness of the transparent conductor is reduced.
  • the thickness of the third admittance adjusting layer is measured with an ellipsometer.
  • the transparent conductor of the first aspect includes other than the transparent support material, the first admittance adjusting layer, the transparent metal film, the second admittance adjusting layer, and the third admittance adjusting layer described above. Of layers may be included.
  • the other layer may be any layer as long as it does not affect the light transmittance of the transparent conductor; for example, between the first admittance adjusting layer and the transparent metal film, or the second admittance adjusting layer. And a transparent metal film.
  • the thickness of the other layers is preferably 15 nm or less, more preferably 10 nm or less.
  • the transparent conductor according to the first embodiment has an average absorptance of light having a wavelength of 400 nm to 800 nm of 15% or less, preferably 12% or less, more preferably 10% or less. is there. Further, the maximum value of the absorptance of light having a wavelength of 400 nm to 800 nm is 25% or less, preferably 20% or less, and more preferably 15% or less.
  • the light absorption rate of the transparent conductor can be reduced by suppressing the plasmon absorption rate of the transparent metal film and the light absorption rate of the material constituting each layer.
  • the average transmittance of light having a wavelength of 450 nm to 800 nm of the transparent conductor is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more.
  • the average reflectance of light having a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. If the average transmittance of light having the above wavelength is 50% or more and the average reflectance is 20% or less, the transparent conductor can also be applied to uses where high transparency is required.
  • the average transmittance and the average reflectance are values measured by allowing measurement light to enter the transparent conductor from an angle inclined by 5 ° with respect to the front surface of the transparent conductor.
  • the average transmittance and the average reflectance are measured with a spectrophotometer, and the average absorptance is calculated from 100 ⁇ (average transmittance + average reflectance).
  • the a * value and b * value in the L * a * b * color system of the transparent conductor are preferably within ⁇ 30, more preferably within ⁇ 5, and even more preferably within ⁇ 3.0. Particularly preferably, it is within ⁇ 2.0. If the a * value and b * value in the L * a * b * color system are within ⁇ 30, the transparent conductor is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electrical resistance of the transparent conductor is preferably 50 ⁇ / ⁇ or less, more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the transparent conductor is adjusted by the thickness of the transparent metal film and the like.
  • the surface electrical resistance value of the transparent conductor can be measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It can also be measured by a commercially available surface electrical resistivity meter.
  • the difference between the haze value H sub haze values and transparency support transparent conductor is preferably less than 0.9, more preferably 0.5 or less.
  • the haze value of the transparent conductor is measured with a haze meter.
  • the transparent conductor 200 of the second embodiment includes a transparent support material 11 / underlayer 15 / first admittance adjustment layer 12 / transparent metal film 13 / second admittance adjustment layer 14.
  • a third admittance adjustment layer (not shown) may be further laminated on the second admittance adjustment layer 14.
  • the optical admittance of the transparent conductor 200 is adjusted by the two admittance adjusting layers 12 and 14 and the underlayer 15 as described later. As a result, light reflection on the surface of the transparent conductor 200 is suppressed, and the light transmittance of the transparent conductor 200 is increased.
  • the transparent conductor of the second aspect may include two or more transparent metal films; and another admittance adjusting layer may be sandwiched between the two transparent metal films.
  • the other admittance adjustment layer may be the same layer as the first admittance adjustment layer and the second admittance adjustment layer.
  • the transparent support material, the first admittance adjustment layer, the transparent metal film, the second admittance adjustment layer, and the third admittance adjustment layer included in the transparent conductor of the second aspect are the transparent support material included in the first aspect, the first Each of the one admittance adjusting layer, the transparent metal film, the second admittance adjusting layer, and the third admittance adjusting layer may be the same.
  • the underlayer is a layer formed between the transparent support material and the first admittance adjusting layer.
  • the underlayer includes one or more layers containing a dielectric material or an oxide semiconductor material (hereinafter also referred to as “low refractive index layer”) having a refractive index lower than the refractive index of light having a wavelength of 570 nm of the transparent support material.
  • low refractive index layer a dielectric material or an oxide semiconductor material having a refractive index lower than the refractive index of light having a wavelength of 570 nm of the transparent support material.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is appropriately selected according to the refractive index of the transparent support material, but is preferably 1.8 or less, More preferably, it is 1.30 to 1.6, and still more preferably 1.35 to 1.5.
  • the underlayer may be a single layer composed of only one layer (low refractive index layer) or a laminate of 2 to 10 layers or more. From the viewpoint of the cost and production efficiency of the transparent conductor, the underlayer is preferably a single layer body.
  • the material constituting the low refractive index layer is appropriately selected according to the refractive index of the transparent support material.
  • the thickness of the low refractive index layer is appropriately set based on optical admittance described later, but is preferably 10 to 500 nm, and more preferably 30 to 250 nm. When the thickness of the low refractive index layer is 10 nm or more, the reflection suppressing effect of the transparent metal film can be sufficiently obtained.
  • the underlayer may include other layers including a material having a higher refractive index than the low refractive index layer.
  • the material constituting the other layers included in the base layer is not particularly limited, for example TiO 2, ITO, ZnO, ZnS , Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 and the like.
  • the other layer may contain only one kind of these materials or two or more kinds. When the underlayer includes other layers, the optical admittance of the underlayer described later is adjusted.
  • the thickness of other layers contained in the underlayer is appropriately set based on optical admittance described later, but is preferably 10 to 150 nm, more preferably 20 to 80 nm. When the thickness of the other layer is 10 nm or more, the effect of adjusting the optical admittance is easily obtained.
  • the total thickness of the underlayer is preferably 10 to 1000 nm, more preferably 10 to 500 nm, and still more preferably 30 to 350 nm from the viewpoint of the flexibility and spectral characteristics of the transparent conductor.
  • the low refractive index layer and other layers included in the underlayer are usually formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. It can be a layer. From the viewpoint of easiness of film formation, the low refractive index layer and other layers are preferably layers formed by electron beam evaporation or sputtering.
  • the transparent conductor of the second embodiment includes the above-mentioned transparent support material, underlayer, first admittance adjusting layer, transparent metal film, second admittance adjusting layer, and third admittance adjusting layer.
  • other layers may be included.
  • the other layer may be any layer as long as it does not affect the light transmittance of the transparent conductor; for example, between the first admittance adjusting layer and the transparent metal film, or the second admittance adjusting layer.
  • a transparent metal film is preferably 15 nm or less, more preferably 10 nm or less.
  • the transparent conductor of the second embodiment has an average absorptance of light having a wavelength of 400 nm to 800 nm of 10% or less, preferably 8% or less, more preferably 7%. It is as follows. Further, the maximum value of the absorptance of light having a wavelength of 450 nm to 800 nm is 15% or less, preferably 10% or less, and more preferably 9% or less.
  • the average light absorption rate of the transparent conductor can be reduced by suppressing the plasmon absorption rate of the transparent metal film and the light absorption rate of the material constituting each layer.
  • the average transmittance of light having a wavelength of 450 nm to 800 nm of the transparent conductor is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more.
  • the average reflectance of light having a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. If the average transmittance of light having the above wavelength is 50% or more and the average reflectance is 20% or less, the transparent conductor can also be applied to uses where high transparency is required.
  • the average transmittance and the average reflectance are values measured by allowing measurement light to enter the transparent conductor from an angle inclined by 5 ° with respect to the front surface of the transparent conductor.
  • the average transmittance and the average reflectance are measured with a spectrophotometer, and the average absorptance is calculated from 100 ⁇ (average transmittance + average reflectance).
  • the a * value and b * value in the L * a * b * color system of the transparent conductor are preferably within ⁇ 30, more preferably within ⁇ 5, and even more preferably within ⁇ 3.0. Particularly preferably, it is within ⁇ 2.0. If the a * value and b * value in the L * a * b * color system are within ⁇ 30, the transparent conductor is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electrical resistance of the transparent conductor is preferably 50 ⁇ / ⁇ or less, more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the transparent conductor can be adjusted by the thickness of the transparent metal film or the like.
  • the surface electrical resistance value of the transparent conductor can be measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It can also be measured by a commercially available surface electrical resistivity meter.
  • the difference between the haze value H sub haze values and transparency support transparent conductor (haze degradation) is preferably less than 0.9, more preferably 0.5 or less.
  • the haze value of the transparent conductor is measured with a haze meter.
  • the transparent conductor 300 of the third embodiment includes a transparent support material 21 / first admittance adjustment layer 22 / low refractive index layer 26 / transparent metal film 23 / low refractive index layer 27 / second.
  • An admittance adjustment layer 24 is included.
  • the low refractive index layers 26 and 27 are laminated on both sides of the transparent metal film 23, but the low refractive index layer is adjacent to only one surface of the transparent metal film 23. May be laminated.
  • a third admittance adjustment layer (not shown) may be further laminated on the second admittance adjustment layer 24.
  • the thickness of the transparent metal film is thick, the reflection of the metal constituting the transparent metal film occurs, and the light transmittance of the transparent conductor is lowered.
  • the thickness of the transparent metal film is reduced in order to suppress reflection of the transparent metal film, the surface roughness of the film tends to be rough. As a result, plasmon absorption occurs, and the light transmittance of the transparent conductor is lowered.
  • the local plasmon absorption cross section is expressed by the following equation.
  • the lower the refractive index of the medium in contact with the transparent metal film the lower the plasmon absorption.
  • a low refractive index layer having a relatively low refractive index is laminated adjacent to the transparent metal film. Therefore, plasmon absorption of the transparent metal film is suppressed, and the light transmittance of the transparent conductor is increased.
  • the transparent conductor of the third aspect may include two or more transparent metal films; and further, another admittance adjusting layer may be sandwiched between the two transparent metal films. Good.
  • the other admittance adjustment layer may be the same layer as the first admittance adjustment layer and the second admittance adjustment layer.
  • the transparent support material, the first admittance adjustment layer, the transparent metal film, the second admittance adjustment layer, and the third admittance adjustment layer included in the transparent conductor of the third aspect are the transparent support material and the first admittance of the first aspect.
  • the adjustment layer, the transparent metal film, the second admittance adjustment layer, and the third admittance adjustment layer may be the same.
  • the low refractive index layer is a layer adjacent to the transparent metal film and suppresses plasmon absorption of the transparent metal film as described above.
  • the low refractive index layer includes a material having a refractive index lower than the refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the first admittance layer and the second admittance layer.
  • the refractive index of the material included in the low refractive index layer is 0.2 or more lower than the refractive index of the dielectric material or oxide semiconductor material included in the first admittance layer and the second admittance layer, respectively. Is preferable, and 0.4 or more is more preferable.
  • the refractive index of the material constituting the low refractive index layer is preferably 1.8 or less, more preferably 1.30 to 1.6, particularly preferably in view of the plasmon suppressing effect described above. 1.35 to 1.5.
  • the refractive index of the low refractive index layer is usually adjusted by the refractive index of the material constituting the low refractive index layer and the density of the material constituting the low refractive index layer.
  • the material constituting the low refractive index layer is appropriately selected according to the desired refractive index.
  • the materials constituting the low refractive index layer are MgF 2 , SiO 2 , Y 2 O 3 , LaAlO 3 , CaF 2 , NaF, Na 3 AlF 6 , LiF, LaF 3 , NdF 3 , Al 2 O 3 , CeF 3 , among others. , PbF 2 , MgO, and ThO 2 are preferable, and MgF 2 and SiO 2 are particularly preferable from the viewpoint that the refractive index is low. Only one of these materials may be included in the low refractive index layer, or two or more of these materials may be included.
  • the thickness of the low refractive index layer is preferably a thickness that does not hinder the effect of adjusting the optical admittance by the first admittance adjusting layer and the second admittance adjusting layer described later.
  • the thickness of the low refractive index layer is 0.1 to 15 nm, preferably 1 to 10 nm, and more preferably 3 to 8 nm.
  • the low refractive index layer can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. From the viewpoint of easiness of film formation, the low refractive index layer and other layers are preferably layers formed by electron beam evaporation or sputtering.
  • the transparent conductor of the third aspect includes the above-mentioned transparent support material, first admittance adjusting layer, low refractive index layer, transparent metal film, second admittance adjusting layer, and third admittance. Other layers may be included in addition to the adjustment layer.
  • the other layers may be any layers as long as they do not affect the light transmittance of the transparent conductor.
  • the thickness of the other layers is preferably 15 nm or less, more preferably 10 nm or less.
  • the transparent conductor of the third aspect preferably has an average absorptance of light having a wavelength of 400 nm to 800 nm of 9% or less, more preferably 8% or less, Preferably it is 7% or less. Further, the maximum value of the absorptance of light having a wavelength of 450 nm to 800 nm is preferably 15% or less, more preferably 10% or less, and further preferably 9% or less.
  • the light absorption rate of the transparent conductor can be reduced by suppressing the plasmon absorption rate of the transparent metal film and the light absorption rate of the material constituting each layer.
  • the average transmittance of light having a wavelength of 450 nm to 800 nm of the transparent conductor is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more.
  • the average reflectance of light having a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. If the average transmittance of light having the above wavelength is 50% or more and the average reflectance is 20% or less, the transparent conductor can also be applied to uses where high transparency is required.
  • the average transmittance and the average reflectance are measured by allowing measurement light to enter the transparent conductor from an angle inclined by 5 ° with respect to the front surface of the transparent conductor.
  • the average transmittance and the average reflectance are measured with a spectrophotometer, and the average absorptance is calculated from 100 ⁇ (average transmittance + average reflectance).
  • the a * value and b * value in the L * a * b * color system of the transparent conductor are preferably within ⁇ 30, more preferably within ⁇ 5, and even more preferably within ⁇ 3.0. Particularly preferably, it is within ⁇ 2.0. If the a * value and b * value in the L * a * b * color system are within ⁇ 30, the transparent conductor is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electrical resistance of the transparent conductor is preferably 50 ⁇ / ⁇ or less, more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the transparent conductor can be adjusted by the thickness of the transparent metal film or the like.
  • the surface electrical resistance value of the transparent conductor can be measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It can also be measured by a commercially available surface electrical resistivity meter.
  • the difference between the haze value H sub haze values and transparency support transparent conductor (haze degradation) is preferably less than 0.9, more preferably 0.5 or less, more preferably 0.3 It is as follows.
  • the haze value of the transparent conductor is measured with a haze meter.
  • the reflectance R of the surface of the transparent conductor (the surface opposite to the transparent support material in the transparent conductor) is determined by the optical admittance y env of the medium on which light is incident and the equivalent admittance Y E of the surface of the transparent conductor. Determined from The medium on which light is incident refers to a member or environment that contacts the surface of the transparent conductor.
  • the relationship between the optical admittance y env of the medium and the equivalent admittance Y E of the surface of the transparent conductor is expressed by the following equation. Based on the above formula, the closer the value
  • the optical admittance y env of the medium is obtained from the ratio (H / E) of the electric field strength and the magnetic field strength, and is the same as the refractive index n env of the medium.
  • the equivalent admittance Y E is determined from the optical admittance Y of the layers constituting the transparent conductor. For example, when the transparent conductor composed of one is equivalent admittance Y E of the transparent conductor is equal to the of the layer optical admittance Y (refractive index).
  • the optical admittance Y x (E x H x ) of the laminate from the first layer to the x layer is the laminate from the first layer to the (x ⁇ 1) layer. It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the body and a specific matrix; specifically, it is obtained by the following formula (1) or formula (2).
  • the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
  • the optical admittance Yx (E x H x ) of the laminate from the transparent support material to the outermost layer becomes the equivalent admittance Y E of the transparent conductor.
  • the optical admittance of the nuclear transparent conductor according to the first to third aspects will be described.
  • FIG. 4A shows the transparent conductor (transparent support material (glass substrate) / first admittance adjusting layer (TiO 2 ) / transparent metal film (Ag) of the first aspect. ) / Second admittance adjustment layer (TiO 2 ) / transparent conductor with third admittance adjustment layer (SiO 2 )).
  • the horizontal axis of the graph is the real part when the optical admittance Y is represented by x + iy; that is, x in the formula, and the horizontal axis is the imaginary part of the optical admittance; that is, y in the formula.
  • the final coordinates of the admittance locus is equivalent admittance Y E.
  • the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (1, 0) of the air is the reflectance R of the transparent conductor surface. Is proportional to That is, the closer the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the coordinates (1, 0) of the air admittance y env is, the smaller the reflectance R of the transparent conductor is.
  • the transparent conductor of the first aspect is preferably x-coordinate x E of the equivalent admittance Y E is 0.8 or more, further preferably 1.0 or more.
  • either one of x 1 and x 2 or both are adjusted to be 1.6 or more. That is, the horizontal axis coordinate of Y1 (x 1 , y 1 ) or Y2 (x 2 , y 2 ) in the admittance locus in FIG. 4A is 1.6 or more.
  • the transparent metal film generally has a large value of the imaginary part of the optical admittance, and when a transparent metal is laminated, the admittance locus greatly moves in the vertical axis (imaginary part) direction.
  • FIG. 5A shows an admittance locus of a transparent conductor having a transparent support material / transparent metal film / admittance adjusting layer in this order
  • FIG. 5B shows a wavelength of 450 nm and a wavelength of 570 nm of the transparent conductor.
  • the coordinates x 1 of the real part of the above Y1 is not a 1.6; as shown in other words FIGS. 5 (a)
  • the admittance locus of the first admittance adjustment layer hardly moves from the starting point (the admittance coordinates (about 1.5, 0) of the transparent support material)
  • the admittance locus becomes line symmetric about the horizontal axis of the graph. hard.
  • the admittance locus at a specific wavelength (570 nm in the present invention) is not line symmetric about the horizontal axis of the graph, as shown in FIG. 5B, the admittance at other wavelengths (for example, 450 nm and 700 nm). trajectory tends shake, the coordinates of the equivalent admittance Y E is less likely to be constant. Therefore, a wavelength region where the antireflection effect is not sufficient is likely to occur.
  • the transparent conductor of the first aspect transparent support / first admittance adjusting layer / transparent metal film / transparent conductor including the second admittance adjusting layer in this order
  • the coordinates x 1 of the real part of the Y1 becomes 1.6 or more.
  • the coordinates of the imaginary part of the admittance locus are largely moved in the positive direction by the first admittance adjustment layer. That is, even if the admittance trajectory moves greatly in the negative direction of the imaginary part due to the transparent metal film, the absolute value (y 2 ) of the imaginary part of Y2 is difficult to increase.
  • the admittance trajectory tends to be line symmetric about the horizontal axis of the graph. Therefore, as shown in FIG. 6B, not only the case of the wavelength of 570 nm, but also the admittance locus of the wavelength of 400 nm and 700 nm is axisymmetric about the horizontal axis of the graph, and the equivalent admittance Y E of each wavelength is The coordinates are almost the same. That is, at any wavelength, the value of the equivalent admittance Y E tends closer to 1, at any wavelength, sufficient antireflection effect is obtained.
  • FIG. 4B is a graph showing the relationship between the optical length and the electric field of the transparent conductor having the admittance locus shown in FIG.
  • the admittance of the transparent metal film Y increases.
  • the transparent metal film hardly absorbs light, and the light transmittance of the transparent conductor is increased.
  • At least one of the x 1 and / or x 2 is preferably 1.6 or more and 7.0 or less, more preferably 1.8 or more and 5.5 or less, and still more preferably 2.0. It is 3.0 or less.
  • x 1 and x 2 x 1 is particularly preferably 1.6 or more.
  • x 1 is the refractive index of the first admittance adjusting layer and is adjusted by the thickness or the like of the first admittance adjusting layer.
  • x 2 is preferably 1.3 to 5.5, and more preferably 1.5 to 3.5 or less.
  • x 2 is the refractive index and the transparent metal film is adjusted by the thickness or the like of the transparent metal film.
  • ) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. It is. In particular, it is preferable that m
  • FIG. 7 includes a transparent support material (glass substrate) / first admittance adjustment layer (TiO 2 ) / transparent metal film (Ag) / second admittance adjustment layer (TiO 2 ) / third admittance adjustment layer (SiO 2 ).
  • trajectory of wavelength 450nm, wavelength 570nm, and wavelength 700nm of a transparent conductor is shown.
  • the third admittance adjusting layer is formed, the value of the equivalent admittance Y E is finely adjusted, approaching the air admittance coordinates (1,0). In such a transparent conductor, at any wavelength, the value of the equivalent admittance Y E is close to admittance coordinates of air, at any wavelength, sufficient antireflection effect is obtained.
  • ) is preferably 0.9 or less, more preferably 0.6 or less, and still more preferably 0.3 or less.
  • FIG. 8 shows the transparent conductor (transparent support material (glass substrate) / underlayer (MgF 2 ) / first admittance adjustment layer (TiO 2 ) of the second aspect. ) / Transparent metal film (Ag) / transparent conductor with the second admittance adjusting layer (TiO 2 )).
  • the horizontal axis of the graph is the real part when the optical admittance Y is represented by x + iy; that is, x in the equation, and the vertical axis is the imaginary part of the optical admittance; that is, y in the equation.
  • the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (n env , 0) of the medium on which light is incident is proportional to the reflectance R of the transparent conductor surface.
  • the distance (((x E ⁇ n env ) 2 + (y E ) between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (n env , 0) of the medium on which light is incident. 2 ) 0.5 ) is preferably less than 0.5, more preferably 0.3 or less. If the distance is less than 0.5, the reflectance R of the transparent conductor surface is sufficiently small, and the light transmittance of the transparent conductor is likely to increase.
  • the transparent support material has a value smaller than the refractive index n sub of light having a wavelength of 570 nm. That is, the coordinate (x 0 , y 0 ) on the surface of the underlayer on the first admittance adjustment layer side is on the left side of the optical admittance coordinate (n sub , 0) on the surface of the transparent support material.
  • x 0 is preferably from 0.01 or more smaller n sub Specifically, more preferably less than 0.05. Further, x 0 is preferably 0.5 to 1.70, more preferably 1.0 to 1.45. x 0 is adjusted by the refractive index and thickness of the layers contained in the base layer. For example, if the refractive index of the low refractive index layer is lower contained in the base layer, it is x 0 likely reduced.
  • the optical admittance of each member changes as the film thickness increases, and draws an arc-shaped admittance locus.
  • x a of the real part of the optical admittance to represent the maximum value of the real part of the optical admittance at x b;
  • product of x a and x b (x a ⁇ x b ) is the member Is equal to the square of the refractive index n. Accordingly, among the x a and x b, if one value is the smaller, the other value is increased, the arc of the admittance locus increases.
  • the minimum value x a of the real part of the optical admittance of the first admittance adjusting layer is n sub .
  • x-coordinate x 0 is transparent supporting surface of the first admittance adjusting layer side of the base layer becomes smaller than the x coordinate n sub optical admittance of the wood surface, the minimum value x a of the real part of the optical admittance of the first admittance adjusting layer, smaller than n sub.
  • the arc of the admittance locus of the first admittance adjustment layer becomes larger than when the base layer is not provided.
  • the values of x 1 and y 1 are larger than those in the case where the base layer is not provided.
  • the real part of the optical admittances Y1 and Y2 on the surface of the transparent metal film that is, the values of x 1 and x 2 are As the value increases, the electric field strength E decreases, and the electric field loss (light absorption) is suppressed. Therefore, even in the transparent conductor of the second aspect, the electric field loss of the transparent metal film is sufficiently suppressed, and the light transmittance of the transparent conductor is sufficiently increased.
  • the transparent conductor of the second aspect are either Meanwhile, or both of 1.8 or more, preferably 2.0 or more.
  • x 1 is preferably 1.8 or more.
  • the x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less.
  • x 1 is the refractive index of the underlying layer, the thickness of the base layer, the refractive index of the first admittance adjusting layer and is adjusted in such a thickness of the first admittance adjusting layer.
  • x 2 is the refractive index and the transparent metal film is adjusted by the thickness or the like of the transparent metal film. For example, when the refractive index of the first admittance adjustment layer or the second admittance adjustment layer is high, or when the thickness is somewhat thick, the values of x 1 and x 2 tend to increase.
  • ) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there.
  • / x cross is preferably smaller than 0.5. Preferably it is 0.3 or less, More preferably, it is 0.2 or less.
  • the admittance locus is preferably a center line of symmetry of the horizontal axis of the graph.
  • a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, y 1 ⁇ y It is preferable to satisfy 2 ⁇ 0.
  • is preferably less than 0.8, more preferably 0.5 or less, and still more preferably 0.3 or less. If
  • y 1 is sufficiently large.
  • the value of the imaginary part of the optical admittance of the transparent metal film is large, and the admittance locus moves greatly in the direction of the vertical axis (imaginary part). Therefore, if y 1 is too small, the absolute value of the imaginary part of the admittance coordinates becomes very large, admittance locus hardly become axisymmetric.
  • y 1 is preferably 0.5 or more, more preferably 1.0 to 5.0, and still more preferably 1.5 to 2.5.
  • y 2 described above is preferably ⁇ 1.0 to ⁇ 5.0, more preferably ⁇ 1.5 to ⁇ 2.5.
  • FIG. 9B shows optical admittance of the transparent conductor of the third aspect.
  • Transparent conductor of the third aspect transparent support material (white plate substrate) / first admittance adjusting layer (TiO 2 ) / low refractive index layer (SiO 2 ) / transparent metal film (Ag) / low refractive index layer (SiO 2 ) / Second admittance adjustment layer (TiO 2 ) / transparent conductor with third admittance adjustment layer (SiO 2 )).
  • the horizontal axis of the graph is the real part when the optical admittance Y is represented by x + iy; that is, x in the equation, and the vertical axis is the imaginary part of the optical admittance; that is, y in the equation.
  • the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (n env , 0) (not shown) of the medium on which the light is incident is the reflection on the surface of the transparent conductor. It is proportional to the rate R.
  • the distance (((x E ⁇ n env ) 2 + (y E )) between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (n env , 0) of the medium on which light is incident. 2 ) 0.5 ) is preferably less than 0.5, more preferably 0.3 or less. If the distance is less than 0.5, the reflectance R of the transparent conductor surface is sufficiently small, and the light transmittance of the transparent conductor is likely to increase.
  • x 1 and x 2 is, if it is 1.6 or more, as described above, increases light transmission of the transparent conductor.
  • x 1 and x 2 it is preferably either one or both of not less than 1.6, more preferably 1.8 or more, more preferably Is 2.0 or more.
  • x 1 is preferably 1.6 or more.
  • the x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less.
  • x 1 is the refractive index of the first admittance adjusting layer and is adjusted in such a thickness of the first admittance adjusting layer.
  • x 2 is the refractive index of the values and the transparent metal film x 1, is adjusted by the thickness or the like of the transparent metal film. For example, when the refractive index of the first admittance adjustment layer is high or the thickness is somewhat thick, the values of x 1 and x 2 are likely to increase.
  • ) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there.
  • / x cross is preferably smaller than 0.5. Preferably it is 0.3 or less, More preferably, it is 0.2 or less.
  • admittance locus is preferably a center line of symmetry of the horizontal axis of the graph.
  • a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, y It is preferable to satisfy 1 ⁇ y 2 ⁇ 0.
  • is preferably less than 0.8, more preferably 0.5 or less, and still more preferably 0.3 or less. If
  • y 1 is sufficiently large.
  • the value of the imaginary part of the optical admittance of the transparent metal film is large, and the admittance locus moves greatly in the direction of the vertical axis (imaginary part). Therefore, if y 1 is too small, the absolute value of the imaginary part of the admittance coordinates becomes very large, admittance locus hardly become axisymmetric.
  • y 1 is preferably 0.2 or more, more preferably 0.3 to 1.5, and still more preferably 0.3 to 1.0.
  • y 2 described above is preferably ⁇ 0.3 to ⁇ 2.0, and more preferably ⁇ 0.6 to ⁇ 1.5.
  • the transparent metal film contained in the transparent conductor of each of the above-described embodiments is preferably formed through the following two steps. (1) Step of forming a growth nucleus (2) Step of forming a transparent metal film on the growth nucleus
  • a transparent metal film having a plasmon absorptivity of 15% or less and a thickness of 15 nm or less over the entire wavelength range of 400 nm to 800 nm is obtained. It is difficult to obtain. This is due to the following reason.
  • a transparent metal film is formed on the first admittance adjusting layer will be described as an example.
  • the material of the transparent metal film is difficult to migrate on the first admittance adjusting layer. Further, the interval between the growth nuclei is narrower than the interval between the lumps formed by migration of atoms. Therefore, when the film grows starting from this growth nucleus, a flat film is likely to be formed even if the thickness is small. That is, even if the thickness is small, conduction is obtained and a transparent metal film in which plasmon absorption does not occur is obtained.
  • the growth nucleus for forming a transparent metal film is formed on a 1st admittance adjustment layer.
  • Method (i) When forming growth nuclei by the method (i), a thin film is formed of a metal that is difficult to migrate (move) on the first admittance adjusting layer.
  • metals that can be growth nuclei include gold, platinum group, cobalt, molybdenum, titanium, aluminum, chromium, nickel, or alloys thereof.
  • a growth nucleus may be formed by using only one of these, or a growth nucleus may be formed by combining two or more kinds. Among these, it is preferable to form a growth nucleus with platinum palladium, palladium, titanium, or aluminum.
  • Platinum palladium or palladium is difficult to migrate on the photocatalyst layer, has a high affinity with the metal constituting the transparent metal film, and provides a dense and fine growth nucleus.
  • the ratio of palladium contained in platinum palladium is preferably 10% by mass or more, and more preferably 20% by mass or more. When the proportion of palladium is 10% by mass or more, dense and fine growth nuclei are easily obtained, and plasmon absorption occurring in the transparent metal film is easily suppressed.
  • Titanium, aluminum, and the like can be grown while being finely crushed with the aid of IAD or the like, so that a growth nucleus equivalent to platinum palladium or palladium can be obtained.
  • the thin film (growth nucleus) made of the above metal is formed by sputtering or vapor deposition.
  • the average thickness of the thin film (growth nucleus) is preferably 3 nm or less, more preferably 0.5 nm or less, still more preferably a monoatomic film, and particularly preferably a film in which metal atoms are attached to be separated from each other. is there.
  • the average thickness of the thin film (growth nucleus) is adjusted by the film forming speed and the film forming time.
  • the thin film (growth nucleus) is formed by a known sputtering method or vapor deposition method.
  • sputtering methods include ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, and bias sputtering.
  • the sputtering time is appropriately selected according to the average thickness of the thin film (growth nucleus) to be formed and the film formation speed.
  • the sputter deposition rate is preferably from 0.1 to 15 ⁇ / second, more preferably from 0.1 to 7 ⁇ / second.
  • examples of vapor deposition include vacuum vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition.
  • the deposition time is appropriately selected according to the thin film to be formed (growth nuclei) and the deposition rate.
  • the deposition rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • Method (ii) When forming growth nuclei by the method (ii), a metal layer is formed on the first admittance adjusting layer, and this metal layer is dry-etched to a desired thickness.
  • the dry etching referred to in the present invention includes reactive gas etching in which etching is performed by a chemical reaction and a method of polishing with lens paper or the like, but etching that involves physical collision of etching gas, ions, radicals, and the like. A method is preferred.
  • the metal layer is etched by an etching method involving physical collision, uniform growth nuclei are easily formed on the entire photocatalyst layer.
  • the type of the metal layer (growth nucleus) is not particularly limited as long as it is a metal having a high affinity with the metal constituting the transparent metal film.
  • the metal constituting the transparent metal film may be the same as or different from the metal; examples thereof include silver, gold, platinum group, titanium and aluminum.
  • the method for forming the metal layer is not particularly limited, and may be a vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method or a thermal CVD method, or a wet film formation method such as a plating method. sell.
  • the average thickness of the metal layer to be formed is preferably 3 to 15 nm, more preferably 5 to 10 nm. If the average thickness of the metal layer is less than 3 nm, the amount of metal is small and there is a possibility that sufficient growth nuclei cannot be obtained.
  • the metal layer dry etching method is not particularly limited as long as it is an etching method involving physical collision as described above, and may be ion beam etching, reverse sputter etching, plasma etching, or the like.
  • ion beam etching is particularly preferable from the viewpoint that desired unevenness can be easily formed on the etched thin film (growth nucleus).
  • the metal layer may be dry-etched after a thin film (mask) such as titanium oxide is formed on the surface of the metal layer. The mask makes it easy to obtain desired uneven growth nuclei. The mask is removed together with the metal by dry etching.
  • the average thickness of the thin film (growth nucleus) obtained by dry etching of the metal layer is preferably 3 nm or less, more preferably 2 nm or less, still more preferably 0.01 to 1 nm, and particularly preferably 0.00. It is 01 to 0.2 nm. If the thickness of the thin film (growth nucleus) is too thick, even if the growth nucleus is formed, a thin transparent transparent metal film cannot be obtained. Furthermore, the thickness of the transparent metal film formed starting from this growth nucleus is increased.
  • the average thickness of the growth nucleus is determined from the difference between the thickness of the metal layer and the etching thickness of the metal layer.
  • the etching thickness of the metal layer is the product of the etching rate and the etching time.
  • the etching rate is obtained from the time until a 50 nm thick metal layer separately prepared on a glass substrate is etched under the same conditions and the light transmittance after the etching becomes equivalent to that of the glass substrate (approximately 0 nm thickness).
  • the average thickness of the growth nucleus is adjusted by the time for dry etching.
  • the type of the vapor deposition method is not particularly limited, and may be, for example, a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. Among these, the vacuum deposition method is preferable. According to the vacuum deposition method, it is easy to obtain a transparent metal film having a uniform thickness and a desired thickness.
  • transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescent dimming elements, etc. It can be preferably used for a substrate of an optoelectronic device.
  • the surface of the transparent conductor (for example, the surface opposite to the transparent support material) may be bonded to another member via an adhesive layer or the like.
  • the manufacturing method of the transparent conductor of a 1st aspect The following four processes are contained in the manufacturing method of the transparent conductor of a 1st aspect.
  • iii) Irradiating the photocatalyst layer with light in a pattern Step
  • a photocatalyst layer and a transparent metal film are optionally provided after the step (iv).
  • the transparent conductor 400 obtained by the manufacturing method includes a transparent support material 31, a photocatalyst layer 38, and a transparent metal film 33 formed in a pattern, for example, as shown in FIG.
  • a high refractive index layer (not shown) that covers the photocatalyst layer 38 and the transparent metal film 33 may be included on the transparent metal film 33.
  • the transparent support material is not particularly limited as long as it is transparent to visible light, and may be the same as the transparent support material of the transparent conductor described above.
  • the transparent support material preferably has high transparency to visible light.
  • the average transmittance of light having a wavelength of 450 to 800 nm is preferably 85% or more, more preferably 88% or more, and further preferably 90% or more.
  • the transparency of the transparent conductor is sufficiently increased.
  • the light transmittance of the transparent support material is measured with a spectrophotometer.
  • the thickness of the transparent support material is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm, and even more preferably 30 ⁇ m to 1 mm. If the thickness of the transparent support material is greater than 1 ⁇ m, the strength of the transparent support material is increased, and the transparent support material is prevented from being cracked or torn during the production of the photocatalyst layer. On the other hand, if the thickness of the transparent support material is 20 mm or less, the flexibility of the transparent conductor is high, and the weight of the transparent conductor can be reduced.
  • the photocatalyst layer contains a photocatalyst.
  • a photocatalyst is a substance that causes an oxidation / reduction reaction by irradiation with light (excitation light).
  • light excitation light
  • the photocatalyst is irradiated with light having energy larger than the energy gap between the conduction band and the valence band, electrons in the valence band are excited to generate conduction electrons and holes.
  • Various oxidation / reduction reactions are caused by the reducing power of electrons generated in the conduction band and / or the oxidizing power of holes generated in the valence band.
  • the transparent metal film is patterned using oxidation / reduction by a photocatalyst as described later.
  • the photocatalyst layer may contain only the photocatalyst, and may contain a binder together with the photocatalyst.
  • the amount of the photocatalyst contained in the photocatalyst layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. If the amount of photocatalyst contained in the photocatalyst layer is 80% by mass or more, the above-described oxidation / reduction reaction is sufficiently performed.
  • the type of photocatalyst contained in the photocatalyst layer is not particularly limited, and examples thereof include titanium dioxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), strontium titanate (SrTiO 3 ), and tungsten oxide. (WO 3 ), bismuth oxide (Bi 2 O 3 ), iron oxide (Fe 2 O 3 ) and the like are included.
  • the photocatalyst layer may contain only one type of photocatalyst or two or more types. From the viewpoint of stability and availability, the photocatalyst is preferably titanium oxide.
  • the binder contained in the photocatalyst layer is not particularly limited as long as it can bind the photocatalyst particles and has a binding energy that is not decomposed by the oxidation / reduction reaction by the photocatalyst.
  • Examples of the binder include organopolysiloxane and the like.
  • the thickness of the photocatalyst layer is preferably 3 nm to 100 nm, more preferably 10 nm to 50 nm. If the thickness of the photocatalyst layer is 3 nm or more, the above-described oxidation / reduction reaction occurs sufficiently, so that the transparent metal film can be sufficiently patterned. On the other hand, when the thickness of the photocatalyst layer is 100 nm or less, the transparency of the photocatalyst layer is increased, and the transparency of the transparent conductor is easily increased.
  • the transparent metal film is formed in a pattern on the photocatalyst layer.
  • a region where the transparent metal film is formed is a conducting portion, and a region where the transparent metal film is not formed is an insulating portion.
  • the pattern of the transparent metal film can be a wiring pattern of various elements.
  • the transparent metal film may be a film made of the same material as the transparent metal film of the transparent conductor described above.
  • the thickness of the transparent metal film is preferably 5 to 15 nm. If the thickness of the transparent metal film is 5 nm or more, the surface electrical resistance value is sufficiently low. On the other hand, when the thickness of the transparent metal film is 15 nm or less, the original reflection of the metal hardly occurs. Therefore, the transparency of the transparent metal film is increased, and the transparent metal film is hardly visually recognized.
  • the thickness of the transparent metal film is measured with an ellipsometer or the like.
  • a high refractive index layer may be formed on the photocatalyst layer and the transparent metal film.
  • the term refractive index layer may be a layer made of the same material as the first admittance adjusting layer or the second admittance adjusting layer of the transparent conductor described above.
  • the refractive index of light having a wavelength of 510 nm of the high refractive index layer is preferably 1.8 or more, more preferably 2.0 or more, and further preferably 2.2 or more.
  • the refractive index of the high refractive index layer is 1.8 or more, the light transmittance of the transparent conductor is sufficiently increased.
  • the refractive index of the high refractive index layer is measured with an ellipsometer.
  • the thickness of the high refractive index layer is preferably 3 nm to 100 nm, more preferably 10 nm to 60 nm. When the thickness of the high refractive index layer is in the above range, the light transmittance of the transparent conductor is sufficiently increased.
  • the method for producing a transparent conductor of this embodiment includes the following four steps.
  • a transparent metal film is laminated on the photocatalyst layer (step (ii)); by light irradiation, the transparent metal film is on the photocatalyst layer side, or the photocatalyst layer is on the transparent metal film side. Electrons are moved (step (iii)). Thereby, the metal atom on the surface of the transparent metal film in contact with the photocatalyst is ionized, and the adhesion between the transparent metal film and the photocatalyst layer is lowered. Therefore, in the step (iv), the transparent metal film in the desired region; that is, the region irradiated with light can be easily peeled off, and a fine pattern can be formed.
  • a photocatalyst layer 38 containing a photocatalyst is formed on the transparent support material 31.
  • the film formation method of the photocatalyst layer is not particularly limited, and may be a wet film formation method or a dry film formation method.
  • the photocatalyst layer 38 is formed on the entire surface of the transparent support material 31, but there may be a region where the photocatalyst layer 38 is not formed as necessary.
  • the composition for forming a photocatalyst layer in which the above-described photocatalyst or its precursor is dispersed in a solvent is applied by a spin coat method, a spray coat method, a dip coat method, a roll coat method, a dip coat method, or the like. It can be a method of drying by heating.
  • the above-mentioned binder and its precursor may be contained as needed.
  • the photocatalyst layer is a layer made of titanium dioxide
  • a sol in which amorphous titania fine particles are dispersed is applied by the above-described method, and this is baked at a crystallization temperature or higher to form a photocatalyst layer. Also good.
  • the dry film forming method may be a method of depositing the above-mentioned photocatalyst on a transparent support material by a vacuum deposition method, an ion plating method, a sputtering method, a plasma CVD method, a thermal CVD method, or the like.
  • the transparent metal film 33 is formed on the photocatalyst layer 38 described above.
  • the method for forming the transparent metal film is not particularly limited, and may be a wet film forming method or a dry film forming method.
  • the wet film formation method may be, for example, a method of electroless plating the above-described metal.
  • the dry film forming method may be a method of forming a metal film by a vacuum deposition method, an ion plating method, a sputtering method, a plasma CVD method, a thermal CVD method, or the like.
  • the vacuum deposition method is preferable. According to the vacuum deposition method, it is easy to obtain a transparent metal film having a uniform thickness and a desired thickness. In addition, since the film is formed under vacuum, it is difficult for foreign matter to enter the transparent metal film.
  • the transparent metal film it is particularly preferable to form growth nuclei before forming the transparent metal film.
  • the transparent metal film is formed after the growth nuclei are formed, a transparent metal film having good conductivity can be obtained even if the thickness is small. Also, according to this method, plasmon absorption is unlikely to occur even if the transparent metal film is thin.
  • the method for forming the transparent metal film after forming the growth nucleus may be the same method as the method for forming the transparent metal film of the transparent conductor described above.
  • the light irradiation to the photocatalyst layer 38 may be performed from the transparent metal film 33 side or from the transparent support material 31 side. Both the transparent metal film 33 and the transparent support material 31 have high light transmittance. Therefore, the photocatalyst is sufficiently excited regardless of which direction the light is irradiated.
  • the method of irradiating the light 111 in a pattern is not particularly limited; as shown in FIG. 47 (c), a method of irradiating light through the mask 112 may be used. A method of irradiating the pupil in a line shape may be used.
  • the light to be irradiated may be light having a wavelength that can excite the photocatalyst, and is determined by the type of the photocatalyst.
  • the photocatalyst is titanium oxide (TiO 2 )
  • it can be light with a wavelength of 380 nm.
  • Examples of such light sources include various mercury lamps, metal halide lamps, xenon lamps, excimer lamps, ultraviolet lamps, laser light sources such as excimer lasers and YAG lasers.
  • the amount of light applied to the photocatalyst layer is preferably 50 to 500,000 J / cm 2 , more preferably 100 to 100,000 J / cm 2 , and further preferably 500 to 10,000 J / cm 2 .
  • the transparent metal film is sufficiently ionized, and the transparent metal film can be sufficiently removed in the step (iv) described later. From the viewpoint of production efficiency, the irradiation time is preferably short.
  • This step may be performed by causing light (excitation light) to enter the apparatus for forming the transparent metal film described above. Moreover, when the apparatus has a load lock unit, this step may be performed in the load lock unit. Thereby, it can suppress that a foreign material adheres to a transparent metal film.
  • the method for peeling the transparent metal film is not particularly limited as long as the transparent metal film can be peeled only in a desired region.
  • a method of spraying an inert gas on the transparent metal film a method of immersing the transparent metal film in a solution, a method of tilting the transparent metal film to peel off by its own weight, a method of rubbing the transparent metal film, and the like can be used.
  • vibration or impact may be applied to the light irradiation region, or a gas that reacts only with the transparent metal film ionized by the photocatalyst may be contacted.
  • step (V) High Refractive Index Layer Film Formation Step
  • a high refractive index layer is formed so as to cover the transparent metal film and the photocatalyst layer. May be.
  • the high refractive index layer is formed, the surface reflection of the transparent conductor is suppressed, and the light transmittance of the transparent conductor is increased.
  • the film forming method of the high refractive index layer is not particularly limited, and may be a wet film forming method or a dry film forming method.
  • the wet film-forming method is a method for forming a high refractive index layer in which the above-described highly refractive material or a precursor thereof is dispersed in a solvent, spin coating method, spray coating method, dip coating method, roll coating method, It may be applied by a dip coating method or the like;
  • the above-mentioned binder and its precursor may be contained as necessary.
  • the dry film forming method may be a method of depositing the above-described highly refractive material on a transparent support material by a vacuum deposition method, an ion plating method, a sputtering method, a plasma CVD method, a thermal CVD method, or the like.
  • the transparent conductor obtained by the above-mentioned method includes various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, and various solar cells. It can be preferably used for transparent electrodes, transparent circuits and transparent wirings of various optoelectronic devices such as various electroluminescence light control elements.
  • the manufacturing method of the transparent conductor of 2nd aspect is a manufacturing method of the transparent conductor which has a transparent support material and the transparent metal film formed on the transparent support material. It is. In addition to the transparent support material and the transparent metal film, the transparent conductor may include other layers as necessary.
  • the manufacturing method of this aspect includes the following two steps.
  • Process B for reverse sputtering the transparent metal film In the manufacturing method of this aspect, the process A and the process B may be performed simultaneously (first form), or the process A and the process B may be performed alternately (second form).
  • a transparent metal film is formed on a transparent support material by a general sputtering method
  • plasma is generated between the transparent support material and the target material to sputter the target material. Then, the sputtered particles that are repelled from the surface of the target material are deposited on a transparent support material to obtain a transparent metal film.
  • the transparent metal film is reverse-sputtered simultaneously with the formation of the transparent metal film or after partially forming the transparent metal film.
  • the transparent metal film is reverse sputtered at the initial stage of film formation, a part of the transparent metal film is scraped off by ion collision. Thereby, fine irregularities are formed in the transparent metal film.
  • the metal film is finely crushed by the collision of ions, and fine metal particles (growth nuclei) adhere to the entire surface of the transparent support material. If there are growth nuclei on the transparent support material, the sputtered particles deposited on the transparent support material are difficult to migrate. Furthermore, the growth nuclei produced by the method have a narrow interval between adjacent growth nuclei. Therefore, films that grow from the growth nucleus as a starting point are easily connected.
  • a transparent metal film that is sufficiently electrically conductive even when the thickness is small and hardly causes plasmon absorption can be obtained. Further, since the transparent metal film is thin, absorption of the metal itself is difficult to occur.
  • Step A a step of forming a transparent metal film on the transparent support material by a sputtering method
  • a reverse metal sputtering of the transparent metal film are performed.
  • a process (process B) is performed simultaneously.
  • the process A and the process B are performed simultaneously as long as at least a part of the process A and a part of the process B are performed at the same time, and it is not always necessary to match the start timing and the end timing of both processes.
  • the step of forming the transparent metal film is preferably performed continuously from the start of film formation to the end of film formation from the viewpoint of the film formation efficiency of the transparent metal film.
  • the step of reverse sputtering the transparent metal film can be performed in an arbitrary period from the start to the end of the formation of the transparent metal film.
  • the process B may be performed over the entire period from the start to the end of the process A; the process B may be performed once or a plurality of times only during a partial period from the start to the end of the process A. Good.
  • the step of reverse sputtering the transparent metal film is particularly preferably performed at least in the initial stage of forming the transparent metal film.
  • the transparent metal film is finely crushed by argon ions or the like, and growth nuclei are formed on the entire surface of the transparent support material. Then, a transparent metal film grows from the growth film as a starting point; a film that is smooth and has little plasmon absorption is obtained even if it is thin.
  • step B it is preferable to perform the step B when the thickness of the transparent metal film formed on at least the transparent support material is 3 nm or less; the step B is started simultaneously with the start of the step A, and the transparent metal film More preferably, step B is continued until the thickness of the film becomes 3 nm or more.
  • step B is continued until the thickness of the film becomes 3 nm or more.
  • the manufacturing method of the first embodiment can be performed by a sputtering apparatus capable of generating plasma on the transparent support material side and the target material side, respectively.
  • An example of the sputtering apparatus 600 used for the manufacturing method of the first embodiment is shown in FIG.
  • the sputtering apparatus 600 includes a vacuum chamber 601, a substrate holder 602 for holding the transparent support material 41 disposed in the vacuum chamber 601, and a vacuum chamber 601. And a target holder 604 for holding the target material 603.
  • the substrate holder 602 and the target holder 604 are independently connected to the substrate side power source 605 and the target side power source 606, respectively.
  • the vacuum chamber 601 is connected to a gas pipe 607 for introducing an inert gas and a vacuum pump (not shown) for adjusting the degree of vacuum in the vacuum chamber.
  • Process A and process B are performed by setting the transparent support material 41 on the substrate holder 602 in the vacuum chamber 601 and setting the target material 603 for forming the transparent metal film on the target holder 604.
  • the target material 603 for forming the transparent metal film on the target holder 604.
  • only one type of target material 603 is disposed, but two or more types of target materials 603 may be disposed, and the resulting transparent metal film may be used as an alloy.
  • an inert gas is introduced into the vacuum chamber 601 from the gas pipe 607.
  • the type of the inert gas is not particularly limited, but is usually argon gas.
  • a voltage is applied to the target holder 604 from the target-side power source 606 to generate plasma on the surface of the target material 603. Then, the target material 603 is repelled by the generated argon ions and the like, and the target material is deposited on the transparent support material 41 to form a transparent metal film (step A).
  • the current passed through the target holder 604 may be direct current (DC) or high frequency current (RF).
  • a voltage is also applied to the substrate holder 602 from the substrate-side power source 605 to generate plasma on the surface of the transparent support material 41. Then, the transparent metal film formed on the transparent support material 41 is reverse sputtered (etched) by the generated argon ions or the like. Since the transparent support material 41 is usually an insulator, the current passed through the substrate holder 602 is usually a high frequency current (RF).
  • RF high frequency current
  • the distance between the transparent support material 41 and the target material 603 in the vacuum chamber 601 is preferably 1 to 500 mm, and more preferably 40 to 150 mm. In particular, when the distance is 150 mm or less, the target material repelled by argon atoms or the like is efficiently deposited on the transparent support material 41.
  • the power applied to the substrate holder 602 is made smaller than the power applied to the target holder 604. That is, the intensity of the plasma generated on the transparent support material 41 side is made lower than the intensity of the plasma generated on the target material 603 side.
  • the speed at which the transparent metal film is scraped off by reverse sputtering (etching) is made slower than the speed at which the target material is deposited on the transparent support material 41, and the target particles are deposited little by little on the transparent support material 41.
  • the ratio of the power applied to the substrate holder 602 to the power applied to the target holder 604 is appropriately adjusted according to the type of the sputtering apparatus 600 and the distance between the target material 603 and the transparent support material 41. Specifically, the average absorption rate (reference value) of light having a wavelength of 400 to 800 nm of the transparent metal film produced by performing only the process A, and the wavelength of 400 to 800 nm of the transparent metal film produced by performing the process A and the process B. The average absorption rate of light at 800 nm is compared. And the ratio of the electric power applied to the board
  • the average light absorptance of the transparent metal film is measured by the following method.
  • the average absorptance of a separately prepared transparent support material is calculated in the same manner, and this is used as reference data.
  • (Iii) The reference data is subtracted from the average absorption rate of the transparent conductor, and this is used as the average absorption rate of the transparent metal film.
  • the film forming rate of the transparent metal film in the manufacturing method of the first embodiment is preferably 0.01 to 4 nm / s, more preferably 0.2 to 2 nm / s.
  • the film forming speed of the transparent metal film is a value obtained by dividing the final thickness of the transparent metal film by the total time for performing the process A.
  • the film forming speed of the transparent metal film is adjusted by the electric power applied to the target holder 604 and the substrate holder 602 described above.
  • the thickness of the transparent metal film formed in the first form is preferably 15 nm or less, more preferably 3 to 13 nm, and further preferably 5 to 12 nm.
  • the thickness of the transparent metal film is measured with a film thickness meter or an ellipsometer using a crystal resonator.
  • the target material 603 for forming the transparent metal film is not particularly limited, and may be silver, copper, gold, platinum group, titanium, chromium, or the like.
  • the target material 603 may include only one type of metal or two or more types.
  • the target material 603 is preferably silver, an alloy containing 90 at% or more of silver, or pure silver.
  • the metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, or the like.
  • the resulting transparent metal film has improved sulfidation resistance.
  • the resulting transparent metal film has improved salt resistance (NaCl) resistance.
  • the oxidation resistance of the obtained transparent metal film is increased.
  • the transparent support material 41 is not particularly limited as long as it is a material having high transparency to visible light.
  • the transparent support material 41 can be the same as the transparent support material of the transparent conductor described above.
  • the transparent support material 41 may be a laminate of the resin film and a layer made of a dielectric material or an oxide semiconductor material. In this case, it is preferable to form a transparent metal film on the layer made of the dielectric material or the oxide semiconductor material of the transparent support material 41.
  • a layer made of a dielectric material or an oxide semiconductor material is present on the surface of the transparent support material 41, the transparent support material 41 is hardly damaged when the transparent metal film is reverse-sputtered. Further, when a layer made of a dielectric material or an oxide semiconductor material is present on the transparent support material 41, reflection of light on the surface of the transparent conductor is easily suppressed.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material is preferably larger than 1.5, more preferably 1.6 to 2.5, and still more preferably 1.8 to 2.5. is there.
  • the refractive index of light is 1.5 or more, reflection of light on the surface of the transparent metal film is easily suppressed.
  • the dielectric material or oxide semiconductor material is preferably a metal oxide or metal sulfide.
  • the metal oxide or metal sulfide may be the same as the metal oxide or metal sulfide contained in the first admittance layer of the transparent conductor.
  • the transparent support material 41 preferably has high transparency to visible light; the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably. If the average light transmittance of the transparent support material 41 is 80% or more, the light transmittance of the entire transparent conductor is likely to be increased. On the other hand, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent support material 41 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance of the transparent support material 41 is a value measured by making measurement light incident from an angle inclined by 5 ° with respect to the front surface of the transparent support material 41.
  • the haze value of the transparent support material 41 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2.
  • the haze value of the transparent conductor obtained can be suppressed as the haze value of the transparent support material 41 is 2.5 or less.
  • the haze value is measured with a haze meter.
  • the thickness of the transparent support material 41 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent support material is 1 ⁇ m or more, the transparent support material 41 is difficult to break when the transparent metal film is formed.
  • the thickness of the transparent support material 41 is 20 mm or less, the flexibility of the transparent conductor is easily increased, and the thickness of the device using the transparent conductor can be reduced.
  • the apparatus using a transparent conductor can also be reduced in weight.
  • a step of forming a transparent metal film on the transparent support material by a sputtering method (Step A) and a film formation on the transparent support material are performed.
  • the process of reverse sputtering the transparent metal film (process B) is performed alternately.
  • the transparent metal film formed in the process A is finely crushed by argon ions or the like, and growth nuclei are formed on the entire surface of the transparent support material.
  • the transparent metal film is formed again in the process A, the transparent metal film grows from the growth film as a starting point; even if it is thin, a smooth film with little plasmon absorption is obtained.
  • step A, step B, and step A may be performed, and step A, step B, step A, step B, and so on may be repeated for a short time.
  • at least one of the steps B is a step of setting the thickness of the transparent metal film having the thickness X to a thickness Y of less than 3 nm, and a step of setting the thickness Y to 95% or less of the thickness X. It is preferable.
  • the ratio of the thickness Y to the thickness X is more preferably 92% or less, and still more preferably 88% or less.
  • the transparent metal film is sufficient. When broken up, fine growth nuclei are formed. Further, if the thickness Y at this time is less than 3 nm, the size of the growth nucleus becomes sufficiently small, and the thickness of the finally obtained transparent metal film becomes thin.
  • the thickness X of the transparent metal film before the start of the above process B is measured with a film thickness meter or an ellipsometer using a crystal resonator. It can also be calculated from the deposition rate of the transparent metal film. The film formation rate is obtained separately from the time required for producing a transparent metal film of 50 nm on a glass substrate under the same conditions as in step A.
  • the thickness Y of the transparent metal film after completion of the process B is obtained from the difference between the thickness X of the transparent metal film before the start of reverse sputtering and the thickness of the film reduced by reverse sputtering.
  • the thickness of the film reduced by reverse sputtering can be obtained by the product of the etching rate during reverse sputtering and the reverse sputtering time.
  • the etching rate is separately reverse sputtered on a glass substrate under the same conditions as in process B on a 50 nm thick transparent metal film manufactured under the same conditions as in process A, and the light transmittance after reverse sputtering becomes equivalent to that of the glass substrate. It is determined from the time until (approximately thickness 0 nm).
  • a transparent metal film is formed on a transparent support material by sputtering (step A).
  • the target material and transparent support material used in the second form can be the same as the target material and transparent support material used in the first form.
  • the apparatus for forming the transparent metal film is not particularly limited, and may be a sputtering apparatus capable of generating plasma on the transparent support material side and the target material side used in the first embodiment.
  • a general high-frequency sputtering apparatus or the like can also be used.
  • a transparent support material 41 is placed on a substrate holder 602 in a vacuum chamber 601 and transparent.
  • a target material 603 for forming a metal film is placed on the target holder 604. Note that in the sputtering apparatus 600 shown in FIG. 52A, only one type of target material 603 is arranged, but two or more types of target materials 603 may be arranged, and the resulting transparent metal film may be used as an alloy.
  • an inert gas is introduced into the vacuum chamber 601 from the gas pipe 607.
  • the type of the inert gas is not particularly limited, but is usually argon gas.
  • a voltage is applied to the target holder 604 from the target-side power source 606 to generate plasma 608 on the surface of the target material 603. Then, the target material 603 is repelled by the generated argon ions and the like, and the target material is deposited on the transparent support material 41 to form a transparent metal film.
  • the thickness of the transparent metal film after completion of the first step A is preferably 0.1 to 3 nm, more preferably 0.1 to 2 nm, still more preferably 0.1 to 1 nm, and particularly preferably. Is 0.1 to 0.5 nm.
  • the thickness of the transparent metal film is adjusted by the target power and sputtering time. The thickness of the transparent metal film is measured with a film thickness meter or an ellipsometer using a crystal resonator.
  • the transparent metal film formed in step A is reverse sputtered (step B).
  • the reverse sputtering (process B) of the transparent metal film can be performed by the same sputtering apparatus 600 as in process A.
  • a voltage is applied to the substrate holder 602 from the substrate-side power source 605 to generate plasma 608 on the surface of the transparent support material 41.
  • the transparent metal film formed in the step A is reverse sputtered with the generated argon ions or the like.
  • the transparent metal film has a thickness Y of 95% or less and a thickness Y of less than 3 nm with respect to the thickness X of the transparent metal film before reverse sputtering.
  • the metal film is preferably reverse sputtered (etched).
  • the thickness of the transparent metal film after step B is adjusted by the substrate side power and the reverse sputtering time.
  • a transparent metal film is further formed by a sputtering method (process A). Further, if necessary, the process B and the process A are repeated any number of times.
  • the second and subsequent processes A and the second and subsequent processes B may be the same as the previously performed processes A and B.
  • the final thickness of the transparent metal film formed by the production method of the second embodiment is preferably 15 nm or less, more preferably 3 to 13 nm, and further preferably 7 to 12 nm.
  • the thickness of the transparent metal film is 15 nm or less, the original reflection of the metal hardly occurs and the light transmittance of the transparent metal film increases.
  • the film forming rate of the transparent metal film in the production method of the second embodiment is preferably 0.01 to 4 nm / s, more preferably 0.1 to 3 nm / s, and still more preferably 0.2 to 2 nm / s.
  • the film forming speed of the transparent metal film is a value obtained by dividing the final thickness of the transparent metal film by the total time for performing the process A.
  • the film forming speed of the transparent metal film is adjusted by the power applied to the target holder 604 described above, the reverse sputtering time of the process B, the power applied to the substrate holder 602, and the like.
  • Steps in the manufacturing method according to the second embodiment other steps may be included as necessary in addition to the above-described steps A and B.
  • Another example of the process may be a process of forming a high refractive index layer made of a dielectric material or an oxide semiconductor material on the transparent metal film obtained by the above-described process A and process B.
  • a high refractive index layer is formed on the transparent metal film, reflection of light on the surface of the transparent metal film is easily suppressed.
  • the film formation method of the high refractive index layer is not particularly limited, and may be a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. At this time, in order to increase the film density of the high refractive index layer, IAD (ion assist) or the like may be performed.
  • IAD ion assist
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material for forming the high refractive index layer is preferably larger than 1.5, more preferably 1.6 to 2.5, It is preferably 1.8 to 2.5. When the refractive index of light is 1.5 or more, reflection of light on the surface of the transparent metal film is suppressed.
  • the dielectric material or oxide semiconductor material for forming the high refractive index layer is preferably a metal oxide or a metal sulfide.
  • metal oxide or metal sulfide TiO 2, ITO, ZnO, ZnS, Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO, AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (indium cerium oxide), and the like.
  • the thickness of the high refractive index layer is preferably 10 to 150 nm, more preferably 20 to 80 nm.
  • the thickness of the high refractive index layer is 10 nm or more, reflection on the surface of the transparent metal film is suppressed by the high refractive index layer. As a result, the light transmittance of the transparent conductor is likely to increase.
  • the thickness of the high refractive index layer is 150 nm or less, the light transmittance of the transparent conductor is hardly lowered by the high refractive index layer.
  • the thickness of the high refractive index layer is measured with an ellipsometer.
  • the average absorption rate of light having a wavelength of 400 to 800 nm of the transparent metal film of the transparent conductor obtained by the method of this embodiment is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. It is.
  • the light transmittance of a transparent conductor increases that the average absorption factor of the light of the said wavelength of a transparent metal film is 20% or less. Therefore, the transparent conductor can be applied to various uses.
  • the maximum absorption rate of light having a wavelength of 400 nm to 800 nm of the transparent metal film is preferably 30% or less, more preferably 15% or less, and further preferably 12% or less.
  • the maximum absorptance is 30% or less over the entire wavelength range of 400 nm to 800 nm, the transmitted light of the transparent conductor is difficult to be colored.
  • the average absorption rate and the maximum absorption rate of the transparent metal film are calculated by subtracting the absorption rate (reference data) of the transparent support material from the absorption rate of the transparent conductor.
  • the surface electric resistance value of the transparent conductor is preferably 200 ⁇ / ⁇ or less, more preferably 50 ⁇ / ⁇ , and further preferably 15 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 200 ⁇ / ⁇ or less can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the transparent conductor can be adjusted by the thickness of the transparent metal film or the like.
  • the surface electrical resistance value of the transparent conductor can be measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It can also be measured by a commercially available surface resistivity meter.
  • Transparent conductors obtained by the method of this embodiment include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescence dimming elements, etc. It can be preferably used for substrates of various optoelectronic devices.
  • Measuring light for example, light having a wavelength of 450 nm to 800 nm
  • the light transmittance and reflectance are measured by Hitachi, Ltd .: spectrophotometer U4100.
  • the absorptance was calculated from a formula of 100 ⁇ (transmittance + reflectance).
  • the measurement light was incident from the second admittance adjustment layer side.
  • the plasmon absorption rate of the transparent metal film was measured as follows. On a transparent glass substrate, a growth nucleus made of platinum palladium was formed on the substrate by a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Co., for 0.2 s (0.1 nm). The average thickness of platinum-palladium was calculated from the film formation rate at the manufacturer's nominal value of the sputtering apparatus.
  • MSP-1S magnetron sputtering apparatus
  • a silver (metal film) film having a thickness of 20 nm was formed on a substrate to which platinum palladium was adhered by a BMC-800T vapor deposition machine manufactured by SYNCHRON.
  • the resistance heating at this time was 210 A, and the film formation rate was 5 ⁇ / s.
  • a transparent metal film was formed on the transparent glass substrate in the same manner as in each Example, the reflectance and transmittance of the transparent metal film were measured, and the absorptance was calculated. Then, a value obtained by subtracting the reference data from the obtained absorption rate data was defined as the plasmon absorption rate.
  • the light transmittance and reflectance were measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd.
  • FIG. 11 shows the plasmon absorption rate derived from the absorption rate of each transparent metal film.
  • the plasmon absorption rate was large when the thickness of the transparent metal film was 6 to 10 nm. Only when the thickness was 12 nm, the plasmon absorption rate was within 15% over the entire wavelength range of 400 nm to 800 nm.
  • FIG. 12 shows the plasmon absorption rate derived from the absorption rate of each transparent metal film.
  • Experimental example 4 Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm ⁇ length 30 mm ⁇ width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. On the glass substrate, a platinum palladium film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc. to form a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • MSP-1S magnetron sputtering apparatus
  • FIG. 14 shows the plasmon absorption rate derived from the absorption rate of each transparent metal film.
  • the plasmon absorption is less than 15% in the wavelength range of 400 nm to 800 nm regardless of the thickness of any film. It was.
  • Example A-1 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / second admittance adjusting layer / third admittance adjusting layer was formed on the glass substrate (transparent support).
  • the interface of the wavelength 570nm optical admittance Y1 x 1 + iy 1 and the first admittance adjusting layer transparent metal film
  • Table 2 also shows the distance ( ⁇ x + ⁇ y) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ). Further, FIG.
  • FIG. 15A shows the spectral characteristics of the obtained transparent conductor
  • FIG. 15B shows the admittance locus of the transparent conductor.
  • the light absorption rate of the obtained transparent conductor was 25% or less over the entire wavelength range of 400 nm to 800 nm.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 ⁇ / s.
  • the obtained first admittance adjusting layer was 31 nm.
  • the etching conditions were an ion beam current of 200 mA, a voltage of 200 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. Furthermore, Ag was laminated on the transparent support material on which the growth nuclei were formed again using Gener 1300 (220 mA) manufactured by Optorun to obtain a transparent metal film (8 nm) made of Ag. The plasmon absorption rate of the obtained transparent metal film was 15% or less over the entire wavelength range of 400 nm to 800 nm.
  • TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 ⁇ / s.
  • the obtained second admittance adjusting layer was 21 nm.
  • (Third admittance adjustment layer) SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained third admittance adjusting layer was 50 nm.
  • Example A-2 Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm ⁇ length 30 mm ⁇ width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / second admittance adjusting layer / third admittance adjusting layer was formed on the glass substrate (transparent support).
  • the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm.
  • Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support.
  • the interface of the wavelength 570nm optical admittance Y1 x 1 + iy 1 and the first admittance adjusting layer transparent metal film
  • Table 2 also shows the distance ( ⁇ x + ⁇ y) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ).
  • the spectral characteristic of the obtained transparent conductor is shown in FIG. 16A, and the admittance locus of the transparent conductor is shown in FIG. 16B.
  • the light absorption rate of the obtained transparent conductor was 25% or less over the entire wavelength range of 400 nm to 800 nm.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 ⁇ 10 ⁇ 2 Pa), 320 mA, and a film formation rate of 3 ⁇ / s.
  • the obtained first admittance adjusting layer was 30 nm.
  • TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 ⁇ 10 ⁇ 2 Pa), 320 mA, and a film formation rate of 3 ⁇ / s.
  • the obtained second admittance adjusting layer was 21 nm.
  • (Third admittance adjustment layer) SiO 2 was deposited by electron beam (EB) at 60 mA and a deposition rate of 10 ⁇ / s using a BMC-800T vapor deposition machine manufactured by Shincron.
  • the obtained third admittance adjusting layer was 51 nm.
  • Example A-3 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the glass substrate (transparent support).
  • the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm.
  • Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support.
  • the interface of the wavelength 570nm optical admittance Y1 x 1 + iy 1 and the first admittance adjusting layer transparent metal film
  • Table 2 also shows the distance ( ⁇ x + ⁇ y) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ).
  • the spectral characteristic of the obtained transparent conductor is shown in FIG. 17A, and the admittance locus of the transparent conductor is shown in FIG. 17B.
  • the light absorption rate of the obtained transparent conductor was 25% or less over the entire wavelength range of 400 nm to 800 nm.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 ⁇ 10 ⁇ 2 Pa), 320 mA, and a film formation rate of 3 ⁇ / s.
  • the obtained first admittance adjusting layer was 33 nm.
  • Transparent metal film Ti was deposited by electron beam (EB) at 320 mA and a deposition rate of 3 ⁇ / s by a BMC-800T vapor deposition machine manufactured by SYNCHRON. The obtained growth nucleus was 0.1 nm. Subsequently, Ag was sputter-deposited by magnetron sputtering manufactured by Osaka Vacuum Co., Ltd. to obtain a transparent metal film (10 nm) made of Ag. The film formation rate was 15 ⁇ / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over the entire wavelength range of 400 nm to 800 nm.
  • ITO (Second admittance adjustment layer) ITO was sputter-deposited by magnetron sputtering manufactured by Osaka Vacuum Co., Ltd. to obtain a second admittance adjusting layer (36 nm) made of ITO.
  • the film formation rate was 10 ⁇ / s.
  • Example A-4 Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm ⁇ length 30 mm ⁇ width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the glass substrate (transparent support).
  • the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm.
  • Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support.
  • the interface of the wavelength 570nm optical admittance Y1 x 1 + iy 1 and the first admittance adjusting layer transparent metal film
  • Table 2 also shows the distance ( ⁇ x + ⁇ y) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ).
  • the spectral characteristic of the obtained transparent conductor is shown in FIG. 18A, and the admittance locus of the transparent conductor is shown in FIG. 18B.
  • the light absorption rate of the obtained transparent conductor was 25% or less over the entire wavelength range of 400 nm to 800 nm.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 ⁇ 10 ⁇ 2 Pa), 320 mA, and a film formation rate of 3 ⁇ / s.
  • the obtained first admittance adjusting layer was 35 nm.
  • TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 ⁇ 10 ⁇ 2 Pa), 320 mA, and a film formation rate of 3 ⁇ / s.
  • the obtained first admittance adjusting layer was 42 nm.
  • the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm.
  • Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support.
  • the optical admittance of wavelength 570nm of the interface between the transparent support of a transparent metal film Y N x N + iy N
  • Table 2 also shows the distance ( ⁇ x + ⁇ y) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ).
  • the spectral characteristics of the obtained transparent conductor are shown in FIG. 19A, and the admittance locus of the transparent conductor is shown in FIG. 19B.
  • the light absorptance of the obtained transparent conductor exceeded 25% in a partial region having a wavelength of 400 nm to 800 nm.
  • (Admittance adjustment layer) Y 2 O 3 was deposited by electron beam (EB) at 250 mA and a deposition rate of 4 ⁇ / s using a BMC-800T vapor deposition machine manufactured by Shincron.
  • the thickness of the obtained admittance adjusting layer was 55 nm.
  • Example A-2 Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm ⁇ length 30 mm ⁇ width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the glass substrate (transparent support).
  • the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm.
  • Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support.
  • the interface of the wavelength 570nm optical admittance Y1 x 1 + iy 1 and the first admittance adjusting layer transparent metal film
  • Table 2 also shows the distance ( ⁇ x + ⁇ y) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ).
  • the spectral characteristics of the obtained transparent conductor are shown in FIG. 20A, and the admittance locus of the transparent conductor is shown in FIG. 20B.
  • the light absorptance of the obtained transparent conductor exceeded 25% in a partial region having a wavelength of 400 nm to 800 nm.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 ⁇ 10 ⁇ 2 Pa), 320 mA, and a film formation rate of 3 ⁇ / s.
  • the obtained first admittance adjusting layer was 35 nm.
  • TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 ⁇ 10 ⁇ 2 Pa), 320 mA, and a film formation rate of 3 ⁇ / s.
  • the obtained second admittance adjusting layer was 42 nm.
  • Example A-5 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the glass substrate (transparent support).
  • the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm.
  • Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support.
  • the interface of the wavelength 570nm optical admittance Y1 x 1 + iy 1 and the first admittance adjusting layer transparent metal film
  • Table 2 also shows the distance ( ⁇ x + ⁇ y) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ).
  • the spectral characteristic of the obtained transparent conductor is shown in FIG. 21A
  • the admittance locus of the transparent conductor is shown in FIG. 21B.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 ⁇ / s.
  • the obtained first admittance adjusting layer was 15 nm.
  • Transparent metal film (Transparent metal film) Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., platinum palladium was deposited for 0.2 seconds to form growth nuclei with an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus. Subsequently, Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (10 nm) made of Ag. The film formation rate was 7 ⁇ / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
  • MSP-1S magnetron sputtering apparatus
  • TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 ⁇ / s.
  • the obtained second admittance adjusting layer was 29 nm.
  • Example A-6 A first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on Toyobo PET (Cosmo Shine A4300 50 ⁇ m product) (transparent support material).
  • the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm.
  • Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support.
  • the interface of the wavelength 570nm optical admittance Y1 x 1 + iy 1 and the first admittance adjusting layer transparent metal film
  • Table 2 also shows the distance ( ⁇ x + ⁇ y) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ).
  • the spectral characteristic of the obtained transparent conductor is shown in FIG. 22A
  • the admittance locus of the transparent conductor is shown in FIG. 22B.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 ⁇ / s.
  • the obtained first admittance adjusting layer was 43 nm.
  • Transparent metal film (Transparent metal film) Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., platinum palladium was deposited for 0.2 seconds to form growth nuclei with an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus. Subsequently, Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (8 nm) made of Ag. The film formation rate was 4 ⁇ / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
  • MSP-1S magnetron sputtering apparatus
  • TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 ⁇ / s.
  • the obtained second admittance adjusting layer was 40 nm.
  • Example A-7 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film 1 / other admittance adjusting layer / transparent metal film 2 / second admittance adjusting layer was formed on the glass substrate (transparent support).
  • the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm.
  • Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support.
  • the interface of the wavelength 570nm optical admittance Y1 x 1 + iy 1 and the first admittance adjusting layer transparent metal film
  • Table 2 also shows the distance ( ⁇ x + ⁇ y) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ). Further, FIG.
  • the admittance locus of the obtained transparent conductor shows the admittance locus of the obtained transparent conductor.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 ⁇ / s.
  • the obtained first admittance adjusting layer was 35 nm.
  • Transparent metal film 1 (Transparent metal film 1) Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., platinum palladium was deposited for 0.2 seconds to form growth nuclei with an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus. Subsequently, Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (5 nm) made of Ag. The film formation rate was 4 ⁇ / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
  • MSP-1S magnetron sputtering apparatus
  • TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 ⁇ / s.
  • the other admittance adjusting layer obtained was 23 nm.
  • Transparent metal film 2 (Transparent metal film 2) Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., platinum palladium was deposited for 0.2 seconds to form growth nuclei with an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus. Subsequently, Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (5 nm) made of Ag. The film formation rate was 4 ⁇ / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
  • MSP-1S magnetron sputtering apparatus
  • TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 ⁇ / s.
  • the obtained second admittance adjusting layer was 31 nm.
  • a silver nanowire aqueous dispersion similar to that in Example 2 of the aforementioned Prior Art Document 2 was spin-coated on the substrate and baked at 120 ° C. for 20 minutes.
  • the coater used was 1K-DX manufactured by MIKASA, and the thermostat used was ST-120 manufactured by ESPEC.
  • Table 1 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the transparent conductor obtained. The spectral characteristics of the obtained transparent conductor are shown in FIG.
  • the transparent metal film is sandwiched between the first admittance adjusting layer and the second admittance adjusting layer;
  • the x-coordinate (x E ) of the equivalent admittance coordinate Y E is larger than 1 than the admittance coordinate (1,0) of air (Examples A-1 to A-7).
  • the average transmittance of light having a wavelength of 450 nm to 800 nm of the transparent conductor was 79.9% or more.
  • Comparative Example A-1 in which the first admittance adjusting layer was not formed, the light absorptance was high, and the average transmittance of light with a wavelength of 450 nm to 800 nm of the transparent conductor was as low as 73.7%. .
  • Comparative Example A-2 in which the light absorptance of the transparent conductor exceeds 25% in a partial region of a wavelength of 400 nm to 800 nm, the x coordinate (x E ) of the equivalent admittance Y E is larger than 1.
  • the average transmittance of light having a wavelength of 450 nm to 800 nm was as low as 71.9%.
  • Example B-1 to B-8 and Comparative Examples B-1 and B-2 the transmittance, reflectance, and absorption rate of the transparent conductor, a * value and b in the L * a * b * color system * Value and surface electric resistance are measured in the same manner as in Example A-1.
  • Example B-1 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the white plate substrate (transparent support). The obtained transparent conductor is bonded to an adhesive (Loctite (registered trademark) 3195 manufactured by Henkel).
  • an adhesive Lictite (registered trademark) 3195 manufactured by Henkel).
  • Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of the adhesive and the equivalent admittance of the transparent conductor.
  • Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor.
  • FIG. 25A shows the spectral characteristics of the obtained transparent conductor
  • FIG. 25B shows the admittance locus of the transparent conductor at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • Magnesium fluoride (MgF 2 ) was vapor-deposited by electron beam (EB) at 40 mA at a film formation rate of 3 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained underlayer was 175 nm.
  • the refractive index of light with a wavelength of 570 nm of magnesium fluoride is 1.38.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s with ion assist using a Gener 1300 manufactured by Optorun.
  • the obtained first admittance adjusting layer was 36 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light with a wavelength of 570 nm of TiO 2 is 2.35.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (12 nm) made of Ag.
  • the film formation rate was 3 ⁇ / s.
  • the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
  • TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s under oxygen introduction using a Gener 1300 manufactured by Optorun.
  • the obtained second admittance adjusting layer was 42 nm.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
  • Example B-2 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the white plate substrate (transparent support). The obtained transparent conductor is bonded to an adhesive (Loctite (registered trademark) 3195 manufactured by Henkel).
  • an adhesive Lictite (registered trademark) 3195 manufactured by Henkel).
  • Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of the adhesive and the equivalent admittance of the transparent conductor.
  • Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor.
  • FIG. 26A shows spectral characteristics of the obtained transparent conductor
  • FIG. 26B shows admittance trajectories of the transparent conductor having a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s with ion assist using a Gener 1300 manufactured by Optorun.
  • the obtained first admittance adjusting layer was 42 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (12 nm) which consists of Ag was obtained.
  • the film formation rate was 3 ⁇ / s.
  • the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
  • TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s under oxygen introduction using a Gener 1300 manufactured by Optorun.
  • the obtained second admittance adjusting layer was 43 nm.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
  • Example B-3 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A base layer (first base layer / second base layer / third base layer) / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the white plate substrate (transparent support). The obtained transparent conductor is disposed and used in contact with air.
  • Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of air and the equivalent admittance of the transparent conductor.
  • Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor.
  • FIG. 27A shows spectral characteristics of the obtained transparent conductor
  • FIG. 27B shows admittance trajectories of the transparent conductor having a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • a lanthanum aluminate (M3, manufactured by Merck) was deposited by electron beam (EB) at 190 mA and a film formation rate of 10 s / s using a Gener 1300 manufactured by Optorun.
  • the obtained first underlayer was 70 nm.
  • the refractive index of light having a wavelength of 570 nm of lanthanum aluminate (M3) is 1.77.
  • TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (10 sccm) at 320 mA and a film formation rate of 3 ⁇ / s.
  • the obtained second underlayer was 115 nm.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
  • (Third underlayer) MgF 2 was deposited by electron beam (EB) at 40 mA at a deposition rate of 3 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained third underlayer was 90 nm.
  • the refractive index of light with a wavelength of 570 nm of MgF 2 is 1.38.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s with ion assist using a Gener 1300 manufactured by Optorun.
  • the obtained first admittance adjusting layer was 48 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (15 nm) made of Ag.
  • the film formation rate was 3 ⁇ / s.
  • the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
  • TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s under oxygen introduction using a Gener 1300 manufactured by Optorun.
  • the obtained second admittance adjusting layer was 43 nm.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
  • Example B-4 An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer / third admittance adjusting layer was formed on a transparent support made of PET (Cosmo Shine A4300 thickness 50 ⁇ m) manufactured by Toyobo Co., Ltd. The obtained transparent conductor is disposed and used in contact with air.
  • Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of air and the equivalent admittance of the transparent conductor.
  • Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor. Moreover, the spectral characteristic of the obtained transparent conductor is shown in FIG. 28A, and the admittance locus of the wavelength 570 nm of the transparent conductor is shown in FIG. 28B.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s with ion assist using a Gener 1300 manufactured by Optorun.
  • the obtained first admittance adjusting layer was 34 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (12 nm) made of Ag.
  • the film formation rate was 3 ⁇ / s.
  • the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
  • TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s under oxygen introduction using a Gener 1300 manufactured by Optorun.
  • the obtained second admittance adjusting layer was 22 nm.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
  • (Third admittance adjustment layer) SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained third admittance adjusting layer was 54 nm.
  • the refractive index of light having a wavelength of 570 nm of SiO 2 is 1.46.
  • Example B-5 An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on a transparent support material made of Toyobo PET (Cosmo Shine A4300, thickness 50 ⁇ m). The obtained transparent conductor is bonded to an adhesive (8146-1 from 3M).
  • Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of the adhesive and the equivalent admittance of the transparent conductor.
  • Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor.
  • FIG. 29A shows the spectral characteristics of the obtained transparent conductor
  • FIG. 29B shows the admittance locus of the transparent conductor at a wavelength of 570 nm.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s with ion assist using a Gener 1300 manufactured by Optorun.
  • the obtained first admittance adjusting layer was 37 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (10.5 nm) which consists of Ag was obtained.
  • the film formation rate was 3 ⁇ / s.
  • the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
  • TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s under oxygen introduction using a Gener 1300 manufactured by Optorun.
  • the obtained second admittance adjusting layer was 39 nm.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
  • Example B-6 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the white plate substrate (transparent support). The obtained transparent conductor is bonded to an adhesive (Loctite (registered trademark) 3195 manufactured by Henkel).
  • an adhesive Lictite (registered trademark) 3195 manufactured by Henkel).
  • Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of the adhesive and the equivalent admittance of the transparent conductor.
  • Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor.
  • FIG. 30A shows the spectral characteristics of the obtained transparent conductor
  • FIG. 30B shows the admittance trajectories of the transparent conductor at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained first admittance adjusting layer was 36 nm.
  • the refractive index of light having a wavelength of 570 nm of Nb 2 O 5 is 2.31.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was DC sputtered using L-430S-FHS manufactured by Anerva Co., Ar20 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 125 W, and deposition rate 10 L / s.
  • the target-substrate distance was 86 mm.
  • the obtained transparent metal film was 12 nm. Further, the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained second admittance adjusting layer was 38 nm.
  • the refractive index of light having a wavelength of 570 nm of Nb 2 O 5 is 2.31.
  • Example B-7 An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on a Konica Minolta TAC film (transparent support). The obtained transparent conductor is bonded to an adhesive (8146-1, manufactured by 3M).
  • Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of the adhesive and the equivalent admittance of the transparent conductor.
  • Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor. Furthermore, the admittance locus
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was DC sputtered using L-430S-FHS manufactured by Anerva Co., Ar20 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 125 W, and deposition rate 10 L / s.
  • the target-substrate distance was 86 mm.
  • the obtained transparent metal film was 8 nm. Further, the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
  • Example B-8 An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on a Konica Minolta TAC film (transparent support). The obtained transparent conductor is bonded to an adhesive (Loctite (registered trademark) 3195 manufactured by Henkel).
  • Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of the adhesive and the equivalent admittance of the transparent conductor.
  • Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor.
  • FIG. 32 shows admittance loci of the obtained transparent conductor with a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • ZnO was RF sputtered using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 300 W, and deposition rate 1.6 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained first admittance adjusting layer was 50 nm.
  • the refractive index of light with a wavelength of 570 nm of ZnO was 2.01.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was DC sputtered using L-430S-FHS manufactured by Anerva Co., Ar20 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 125 W, and deposition rate 10 L / s.
  • the target-substrate distance was 86 mm.
  • the obtained transparent metal film was 9 nm. Further, the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
  • (Second admittance adjustment layer) ZnO was RF sputtered using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 300 W, and deposition rate 1.6 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained second admittance adjusting layer was 22 nm.
  • the refractive index of light having a wavelength of 570 nm of ZnO is 2.01.
  • Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the transparent conductor obtained.
  • a first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on a transparent support made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m). The obtained transparent conductor is disposed and used in contact with air.
  • the resulting optical admittance Y1 x 1 + iy 1 wavelength 570nm of the first admittance adjusting layer-side surface of the transparent metal film, the optical admittance of wavelength 570nm of the second admittance adjusting layer side surface of the transparent metal film
  • Table 3 also shows the coordinate distance (((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of air and the equivalent admittance of the transparent conductor.
  • Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor.
  • FIG. 33A shows spectral characteristics of the obtained transparent conductor
  • FIG. 33B shows admittance trajectories of the transparent conductor having a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained first admittance adjusting layer was 27.7 nm.
  • the refractive index of light having a wavelength of 570 nm of Nb 2 O 5 is 2.31.
  • Transparent metal film DC sputtering was performed with a small sputtering apparatus (BC4279) manufactured by Nippon Vacuum Technology Co., Ltd. At this time, the target side power was set to 200 W. The film thickness of the obtained transparent metal film was 8 nm.
  • IZO (Second admittance adjustment layer) Using an Anelva L-430S-FHS, IZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 36 nm. The refractive index of light having a wavelength of 570 nm of IZO is 2.05.
  • the average reflectance of the transparent conductor at a wavelength of 500 nm to 700 nm was 6% or less, and was relatively small (Examples B-1 to B-4 and B-6 to B-8).
  • the optical admittances Y1 (x 1 , x 2 ) and Y2 (x 2 , x 2 ) on both surfaces of the transparent metal film are increased, and the electric field of the transparent metal film It is inferred that the loss has been reduced.
  • the transparent conductor having the structure of transparent support material / underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer, for example, as shown in FIGS. 25 to 28 and FIGS.
  • the admittance locus of light having a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm tends to be line symmetric around the horizontal axis, and y 1 + y 2 was also less than 0.8. Therefore, both the equivalent admittance Y E approached n env. Furthermore, since there is less variation in the equivalent admittance Y E of each wavelength, smaller absorption maximum at a wavelength of 450 nm ⁇ 800 nm, was high transmittance at any wavelength region.
  • Example B-5 as shown in FIG. 29B, the admittance was not sufficiently symmetric about the horizontal axis, and y 1 + y 2 was 0.8 or more. Therefore, as shown in FIG. 29A, there is a region where the reflection suppressing effect is not sufficient in the wavelength range of 400 nm to 800 nm.
  • Comparative Example B-1 in which silver nanowires were formed, the surface electrical resistance was high and the haze degradation was large. Further, as shown in FIG. 33A, in Comparative Example B-2 in which no underlayer was formed, the reflectance was about 10% in any wavelength region, and the average absorptance was also close to 10%.
  • Example C-1 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used.
  • the first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer are formed on the white plate substrate (transparent support material) by the following method. A film was formed.
  • FIG. 9A shows the spectral characteristics of the obtained transparent conductor
  • FIG. 9B shows the admittance locus of the transparent conductor at a wavelength of 570 nm.
  • First admittance adjustment layer On the transparent support described above, TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s while ion assisting using a Gener 1300 manufactured by Optorun. The obtained first admittance adjusting layer was 29 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35
  • the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.35.
  • Low refractive index layer A SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained low refractive index layer A was 5 nm.
  • the refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.46.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (10 nm) which consists of Ag was obtained.
  • the film formation rate was 3 ⁇ / s.
  • the plasmon absorption rate of the obtained transparent metal film was 10% or less over a wavelength range of 400 nm to 800 nm.
  • Low refractive index layer B SiO 2 SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained low refractive index layer B was 5 nm.
  • the refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.46.
  • TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s under oxygen introduction using a Gener 1300 manufactured by Optorun.
  • the obtained second admittance adjusting layer was 24 nm.
  • the refractive index of light with a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of the second admittance adjusting layer was 2.35.
  • (Third admittance adjustment layer) SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained admittance adjusting layer was 25 nm.
  • the refractive index of light having a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of the third admittance adjusting layer was 1.46.
  • Example C-2 A first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjusting layer was formed on a Konica Minolta TAC film (transparent support) by the following method.
  • the spectral characteristic of the obtained transparent conductor is shown in FIG. 34A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 34B.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained first admittance adjusting layer was 23 nm.
  • the refractive index of light having a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.31.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained transparent metal film (11 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained second admittance adjusting layer was 23 nm.
  • the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.31.
  • Example C-3 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used.
  • the first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer are formed on the white plate substrate (transparent support material) by the following method. A film was formed.
  • FIG. 35A shows the spectral characteristics of the obtained transparent conductor
  • FIG. 35B shows the admittance locus of the transparent conductor at a wavelength of 570 nm.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s with ion assist using a Gener 1300 manufactured by Optorun.
  • the obtained first admittance adjusting layer was 35 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light with a wavelength of 570 nm of TiO 2 was 2.35
  • the refractive index of light with a wavelength of 570 nm of the first admittance adjustment layer was 2.31.
  • MgF 2 was deposited by electron beam (EB) at 190 mA and a deposition rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained low refractive index layer A was 5 nm.
  • the refractive index of light with a wavelength of 570 nm of MgF 2 was 1.38, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.38.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (10 nm) which consists of Ag was obtained.
  • the film formation rate was 3 ⁇ / s.
  • the plasmon absorption rate of the obtained transparent metal film was 10% or less over a wavelength range of 400 nm to 800 nm.
  • Low refractive index layer B MgF 2 was deposited by electron beam (EB) at 190 mA and a deposition rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained low refractive index layer B was 5 nm.
  • the refractive index of light with a wavelength of 570 nm of MgF 2 was 1.38
  • the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.38.
  • (Second admittance adjustment layer) TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s with ion assist using a Gener 1300 manufactured by Optorun.
  • the obtained second admittance adjusting layer was 24 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35
  • the refractive index of light having a wavelength of 570 nm of the second admittance adjusting layer was 2.35.
  • (Third admittance adjustment layer) SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained admittance adjusting layer was 25 nm.
  • the refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46
  • the refractive index of light with a wavelength of 570 nm of the third admittance adjustment layer was 1.46.
  • Example C-4 A first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer on a transparent support material made of Toyobo PET (Cosmo Shine A4300, thickness 50 ⁇ m) by the following method A B / second admittance adjusting layer was formed.
  • the spectral characteristics of the obtained transparent conductor are shown in FIG. 36A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 36B.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained first admittance adjusting layer was 25 nm.
  • the refractive index of light having a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.31.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained transparent metal film (10 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained second admittance adjusting layer was 26 nm.
  • the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.31.
  • Example C-5 Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm ⁇ length 30 mm ⁇ width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer is formed on the glass substrate (transparent support material) by the following method. A film was formed. The spectral characteristic of the obtained transparent conductor is shown in FIG. 37A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 37B.
  • First admittance adjustment layer On the transparent support described above, TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s while ion assisting using a Gener 1300 manufactured by Optorun. The obtained first admittance adjusting layer was 28 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35
  • the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.35.
  • Low refractive index layer A SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained low refractive index layer A was 15 nm.
  • the refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.46.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (10 nm) which consists of Ag was obtained.
  • the film formation rate was 3 ⁇ / s.
  • the plasmon absorption rate of the obtained transparent metal film was 10% or less over a wavelength range of 400 nm to 800 nm.
  • Low refractive index layer B SiO 2 SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained low refractive index layer B was 10 nm.
  • the refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.46.
  • (Second admittance adjustment layer) TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s under oxygen introduction using a Gener 1300 manufactured by Optorun.
  • the obtained second admittance adjusting layer was 29 nm.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light having a wavelength of 570 nm of the second admittance adjusting layer was 2.35.
  • (Third admittance adjustment layer) SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained admittance adjusting layer was 15 nm.
  • the refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46
  • the refractive index of light with a wavelength of 570 nm of the third admittance adjustment layer was 1.46.
  • Example C-6 Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm ⁇ length 30 mm ⁇ width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer was formed on the glass substrate (transparent support) by the following method. The spectral characteristic of the obtained transparent conductor is shown in FIG. 38A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 38B.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained first admittance adjusting layer was 29 nm.
  • the refractive index of light having a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.31.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained transparent metal film (10 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained second admittance adjusting layer was 24 nm.
  • the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.31.
  • Example C-7 Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm ⁇ length 30 mm ⁇ width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer is formed on the glass substrate (transparent support material) by the following method. A film was formed. The spectral characteristic of the obtained transparent conductor is shown in FIG. 39A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 39B.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s with ion assist using a Gener 1300 manufactured by Optorun.
  • the obtained first admittance adjusting layer was 38 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35
  • the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.35.
  • MgF 2 was deposited by electron beam (EB) at 190 mA and a deposition rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained low refractive index layer A was 3 nm.
  • the refractive index of light with a wavelength of 570 nm of MgF 2 was 1.38
  • the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.38.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (10 nm) which consists of Ag was obtained.
  • the film formation rate was 3 ⁇ / s.
  • the plasmon absorption rate of the obtained transparent metal film was 10% or less over a wavelength range of 400 nm to 800 nm.
  • Low refractive index layer B MgF 2 was deposited by electron beam (EB) at 190 mA and a deposition rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained low refractive index layer B was 5 nm.
  • the refractive index of light with a wavelength of 570 nm of MgF 2 was 1.38
  • the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.38.
  • (Second admittance adjustment layer) TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s with ion assist using a Gener 1300 manufactured by Optorun.
  • the obtained second admittance adjusting layer was 27 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35
  • the refractive index of light having a wavelength of 570 nm of the second admittance adjusting layer was 2.35.
  • (Third admittance adjustment layer) SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained admittance adjusting layer was 25 nm.
  • the refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46
  • the refractive index of light with a wavelength of 570 nm of the third admittance adjustment layer was 1.46.
  • Example C-8 Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm ⁇ length 30 mm ⁇ width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer is formed on the glass substrate (transparent support material) by the following method. A film was formed. The spectral characteristic of the obtained transparent conductor is shown in FIG. 40A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 40B.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained first admittance adjusting layer was 36 nm.
  • the refractive index of light having a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.31.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained transparent metal film (9 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained second admittance adjusting layer was 30 nm.
  • the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.31.
  • Example C-9 Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm ⁇ length 30 mm ⁇ width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / low refractive index layer A / transparent metal film / second admittance adjusting layer / third admittance adjusting layer was formed on the glass substrate (transparent support) by the following method. The spectral characteristics of the obtained transparent conductor are shown in FIG. 41A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 41B.
  • First admittance adjustment layer TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s with ion assist using a Gener 1300 manufactured by Optorun.
  • the obtained first admittance adjusting layer was 34 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35
  • the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.35.
  • a lanthanum aluminate (M3, manufactured by Merck) was deposited by electron beam (EB) at 190 mA and a film formation rate of 10 s / s using a Gener 1300 manufactured by Optorun.
  • the obtained low refractive index layer A was 3 nm.
  • the refractive index of the light of wavelength 570 nm of lanthanum aluminate (M3) was 1.77
  • the refractive index of the light of wavelength 570 nm of the low refractive index layer A was 1.77.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (9 nm) which consists of Ag was obtained.
  • the film formation rate was 3 ⁇ / s.
  • the plasmon absorption rate of the obtained transparent metal film was 10% or less over a wavelength range of 400 nm to 800 nm.
  • (Second admittance adjustment layer) TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 ⁇ / s with ion assist using a Gener 1300 manufactured by Optorun.
  • the obtained second admittance adjusting layer was 33 nm.
  • the ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
  • the refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35
  • the refractive index of light having a wavelength of 570 nm of the second admittance adjusting layer was 2.35.
  • (Third admittance adjustment layer) SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained admittance adjusting layer was 45 nm.
  • the refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46
  • the refractive index of light with a wavelength of 570 nm of the third admittance adjustment layer was 1.46.
  • Example C-10 Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm ⁇ length 30 mm ⁇ width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer was formed on the glass substrate (transparent support) by the following method.
  • FIG. 42A shows the spectral characteristics of the obtained transparent conductor
  • FIG. 42B shows the admittance locus of the transparent conductor at a wavelength of 570 nm.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained first admittance adjusting layer was 34 nm.
  • the refractive index of light having a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.31.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained transparent metal film (9 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
  • Low refractive index layer B Y 2 O 3 was deposited by electron beam (EB) at 250 mA and a deposition rate of 4 ⁇ / s using a BMC-800T vapor deposition machine manufactured by Shincron.
  • the thickness of the obtained low refractive index layer B was 3 nm.
  • the refractive index of light with a wavelength of 570 nm of Y 2 O 3 was 1.78, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.78.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained second admittance adjusting layer was 33 nm.
  • the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.31.
  • Example C-11 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjustment layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjustment layer was formed on the white plate substrate (transparent support) by the following method.
  • FIG. 43A shows the spectral characteristics of the obtained transparent conductor
  • FIG. 43B shows the admittance locus of the transparent conductor at a wavelength of 570 nm.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained transparent metal film (9 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
  • Example C-12 Yamanaka Semiconductor's white substrate ( ⁇ 30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjustment layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjustment layer was formed on the white plate substrate (transparent support) by the following method.
  • FIG. 44A shows the spectral characteristics of the obtained transparent conductor
  • FIG. 44B shows the admittance locus of the transparent conductor at a wavelength of 570 nm.
  • (First admittance adjustment layer) ZnO was DC sputtered using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target power 150 W, and deposition rate 1.4 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained first admittance adjusting layer was 28 nm.
  • the refractive index of light with a wavelength of 570 nm of ZnO was 2.01, and the refractive index of light with a wavelength of 570 nm of the first admittance adjusting layer was 2.01.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained transparent metal film (6 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
  • (Second admittance adjustment layer) ZnO was DC sputtered using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target power 150 W, and deposition rate 1.4 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained second admittance adjusting layer was 54 nm.
  • the refractive index of light with a wavelength of 570 nm of ZnO was 2.01, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.01.
  • Example C-13 Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm ⁇ length 30 mm ⁇ width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / low refractive index layer B / second admittance adjusting layer was formed on the glass substrate (transparent support) by the following method. The spectral characteristic of the obtained transparent conductor is shown in FIG. 45A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 45B.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained first admittance adjusting layer was 35 nm.
  • the refractive index of light having a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.31.
  • a palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained transparent metal film (11 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained second admittance adjusting layer was 30 nm.
  • the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.31.
  • a first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on a transparent support made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m).
  • the obtained transparent conductor is disposed and used in contact with air.
  • the spectral characteristics of the obtained transparent conductor are shown in FIG. 46A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 46B.
  • Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the obtained first admittance adjusting layer was 27.7 nm.
  • the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 is 2.31
  • the refractive index of light with a wavelength of 570 nm of the first admittance adjustment layer is 2.31.
  • Transparent metal film DC sputtering was performed with a small sputtering apparatus (BC4279) manufactured by Nippon Vacuum Technology Co., Ltd. At this time, the target side power was set to 200 W. The film thickness of the obtained transparent metal film was 8 nm.
  • IZO (Second admittance adjustment layer) Using an Anelva L-430S-FHS, IZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 36 nm. The refractive index of light having a wavelength of 570 nm of IZO was 2.05, and the refractive index of light having a wavelength of 570 nm of the second admittance adjusting layer was 2.05.
  • Table 6 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor.
  • Table 6 also shows the difference ⁇ H (haze degradation) between the haze value H stack of the transparent conductor and the haze value H sub of the transparent support material. These were measured in the same manner as in Example A-1.
  • the average absorption rate of light having a wavelength of 400 to 800 nm is 8.5% or less, The maximum value of the absorption rate was also 10.3% or less. This is because the plasmon absorption can be sufficiently suppressed by laminating the low refractive index layer even if the transparent metal film (Ag film) is thin.
  • Comparative Example C-1 in which silver nanowires were formed, the surface electrical resistance was high and haze degradation was also large. Further, in Comparative Example C-2 in which no low refractive index layer is formed, the average absorptance is 9.1%, and it is assumed that plasmon absorption is not sufficiently suppressed.
  • Example D-1 A transparent support (Yamanaka Semiconductor's white board ( ⁇ 30 mm, thickness 2 mm)) was prepared, and this was subjected to ultrasonic cleaning in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used.
  • the photocatalyst layer (TiO 2 ) was applied to the transparent support material after cleaning with an electron beam by a BMC-800T vapor deposition machine manufactured by Syncron Co., Ltd. with oxygen introduced (2 ⁇ 10 ⁇ 2 Pa), 320 mA, and a film formation rate of 3 ⁇ / s. EB) Vapor deposition.
  • the resulting photocatalyst layer had a thickness of 33 nm.
  • a platinum palladium film was formed on the photocatalyst layer for 0.4 seconds with a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Co., thereby forming a growth nucleus having an average thickness of 0.2 nm.
  • MSP-1S magnetron sputtering apparatus
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • Ag was vapor-deposited by a BMC-800T vapor deposition machine (210A resistance heating) manufactured by SYNCHRON, and a transparent metal film (9 nm) made of Ag was obtained.
  • the film formation rate was 5 ⁇ / s.
  • the transparent metal film was irradiated with light having a wavelength of 350 nm from the transparent metal film side.
  • the exposure amount was 8000 mJ / m 2 .
  • the light irradiation was performed through an exposure mask.
  • As the exposure mask a glass substrate in which chromium was formed in a pattern was used.
  • the light irradiation pattern was the pattern shown in the schematic diagram of FIG. 48 (the line width of the light irradiation portion was 0.02 mm). Thereafter, the transparent metal film was placed in pure water and subjected to ultrasonic cleaning, and the transparent metal film in the light irradiation region was removed.
  • Example D-2 A transparent conductor was produced in the same manner as in Example D-1, except that the transparent metal film was produced by the following method.
  • Method for forming transparent metal film An alloy in which 2 at% Zn (zinc) was added to Ag (silver) was prepared.
  • a sputtering apparatus manufactured by Anelva: L-430S-FHS
  • argon introduced (20 sccm)
  • a sputtering pressure of 0.3 Pa at room temperature a target-side power of 125 W, a deposition rate of 2.2 ⁇ / s.
  • the alloy was subjected to radio frequency (RF) sputtering.
  • the thickness of the obtained transparent metal film was 9 nm.
  • Example D-3 A transparent conductor was produced in the same manner as in Example D-1, except that the transparent metal film was produced by the following method.
  • Method for forming transparent metal film An alloy in which 0.5 at% Au (gold) was added to Ag (silver) was prepared.
  • a sputtering apparatus manufactured by Anelva: L-430S-FHS
  • argon introduced (20 sccm)
  • a sputtering pressure of 0.3 Pa at room temperature a target-side power of 125 W, a deposition rate of 2.2 ⁇ / s.
  • the alloy was subjected to radio frequency (RF) sputtering.
  • the thickness of the obtained transparent metal film was 9 nm.
  • Example D-4 A transparent conductor was produced in the same manner as in Example D-1, except that the transparent metal film was produced by the following method.
  • Method for forming transparent metal film An alloy in which 1 at% Cu (copper) was added to Ag (silver) was prepared.
  • a sputtering apparatus manufactured by Anelva: L-430S-FHS
  • argon introduced (20 sccm)
  • a sputtering pressure of 0.3 Pa at room temperature a target-side power of 125 W, a deposition rate of 2.2 ⁇ / s.
  • the alloy was subjected to radio frequency (RF) sputtering.
  • the thickness of the obtained transparent metal film was 9 nm.
  • Example D-5 A transparent conductor was produced in the same manner as in Example D-1, except that the transparent metal film was produced by the following method.
  • Method for forming transparent metal film An alloy in which 15 at% Al (aluminum) was added to Ag (silver) was prepared.
  • a sputtering apparatus manufactured by Anelva: L-430S-FHS
  • argon introduced (20 sccm)
  • a sputtering pressure of 0.3 Pa at room temperature a target-side power of 125 W, a deposition rate of 2.2 ⁇ / s.
  • the alloy was subjected to radio frequency (RF) sputtering.
  • the thickness of the obtained transparent metal film was 9 nm.
  • Measuring light (light having a wavelength of 450 nm to 800 nm) was incident on the front surface of the transparent conductor at an angle of 5 °, and the average light transmittance was measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd. The measurement light was incident from the transparent metal film side.
  • any transparent metal film (region not irradiated with light) passed through the region from which the transparent metal film was removed (region irradiated with light). There was no continuity. That is, it was confirmed that the transparent metal film in the region irradiated with light was completely removed. Moreover, when the said transparent metal film was confirmed visually, the line was confirmed in the pattern shape which irradiated the light. Further, as shown in Table 7, when the Ag ratio in the Ag alloy is 90 at% or more, the average transmittance of light having a wavelength of 450 nm to 800 nm exceeds 60%, and the transparency of the transparent conductor is good. there were.
  • Example D-6 A transparent conductor was produced in the same manner as in Example D-1, except that the thickness of the transparent metal film was 4 nm.
  • Example D-7 A transparent conductor was produced in the same manner as in Example D-1, except that the thickness of the transparent metal film was 5 nm.
  • Example D-8 A transparent conductor was produced in the same manner as in Example D-1, except that the thickness of the transparent metal film was 15 nm.
  • Example D-9 A transparent conductor was produced in the same manner as in Example D-1, except that the thickness of the transparent metal film was 16 nm.
  • any transparent metal film (region not irradiated with light) is adjacent to the transparent metal film through the region where the transparent metal film is removed (region irradiated with light). There was no continuity. That is, it was confirmed that the transparent metal film in the region irradiated with light was completely removed. Moreover, when the said transparent metal film was confirmed visually, the line was confirmed in the pattern shape which irradiated the light.
  • the thickness of the transparent metal film (Ag) was 5 nm or more, the surface electrical resistance was 30 ⁇ / ⁇ or less, and sufficient conduction was obtained. Further, when the thickness of the transparent metal film (Ag) was 15 nm or less, the average transmittance of light having a wavelength of 450 nm to 800 nm exceeded 50%, and the transparency of the transparent conductor was improved. When the thickness of the transparent metal film exceeds 15 nm, it is presumed that Ag inherent reflection occurred and the average transmittance was lowered.
  • FIG. 50 shows the transmittance, absorptivity, and transmittance of light with a wavelength of 400 nm to 800 nm of the transparent conductor of Example D-6 (when the thickness of the transparent metal film is 4 nm).
  • the light absorptivity was measured with a spectrophotometer in the same manner as the transmittance. The light absorptance was determined by 100 ⁇ (transmittance + reflectance).
  • FIG. 50 shows the transmittance, absorption rate, and transmittance of light with a wavelength of 400 nm to 800 nm of the transparent conductor in Example D-7 (when the transparent metal film is 5 nm).
  • Example D-10 As in Example D-1, a transparent support material, a photocatalyst layer, and a transparent metal film were prepared, and the transparent metal film was irradiated with light in a pattern. Thereafter, the transparent metal film was subjected to ultrasonic cleaning in the same manner as in Example D-1. Furthermore, the following high refractive index layer was produced on the transparent metal film.
  • ITO High refractive index layer
  • ITO was sputter-deposited by magnetron sputtering manufactured by Osaka Vacuum Co., Ltd. to form a high refractive index layer (36 nm) made of ITO.
  • the film formation rate was 10 ⁇ / s.
  • Example D-1 Similar to Example D-1, the conduction between adjacent transparent metal films (areas not irradiated with light) through the areas where the transparent metal film was removed (areas irradiated with light) was formed after the formation of the high refractive index layer. As a result of confirmation, there was no conduction between adjacent transparent metal films (areas not irradiated with light) through the areas where the transparent metal film was removed (areas irradiated with light). Further, as in Examples D-2 to D-5, when the average transmittance of the transparent conductor at a wavelength of 450 nm to 800 nm was measured, the average transmittance was 85% and the transparency was very high.
  • Example E-1 to E-9 and Comparative Examples E-1 to E-3 the average light absorptance of the transparent metal film was measured as follows. The method for measuring the thickness of the film and the method for measuring the surface electrical resistance are the same as in Example A-1.
  • Measured light for example, light having a wavelength of 450 nm to 800 nm
  • a transparent conductor including a transparent support material and a transparent metal film formed on the surface of the transparent conductor from an angle of 5 °.
  • Light transmittance and reflectance were measured with a spectrophotometer U4100.
  • the absorptance was calculated from a formula of 100 ⁇ (transmittance + reflectance).
  • the measurement light was incident from the transparent metal film side.
  • the absorption rate of the transparent metal film was calculated by subtracting the absorption rate (reference data) of the transparent support material measured separately from the absorption rate of the transparent conductor.
  • Example E-1 A transparent support material made of a white plate and an Ag target were placed in a vacuum chamber of a sputtering apparatus manufactured by Osaka Vacuum. Then, Ag was RF-sputtered at Ar 20 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power (RF) 250 W, and deposition rate 1.6 nm / s (step A). On the other hand, as shown in the timing chart of FIG. 59, during the period from the start of film formation to the end of film formation, power is also applied to the transparent support material side (substrate-side power (RF) 35 W).
  • RF target-side power
  • the transparent metal film formed above was reverse sputtered at an etching rate of 0.1 nm / s (step B). As a result, the actual film formation rate was 1.5 nm / s.
  • the target-substrate distance was 80 mm.
  • An SEM (scanning electron microscope) image of the obtained transparent metal film is shown in FIG.
  • the film thickness of the obtained transparent metal film (Ag film) was 6 nm.
  • Example E-2 A transparent conductor was obtained in the same manner as in Example E-1, except that the substrate-side power (RF) was 50 W and the film formation rate was the value shown in Table 9. An SEM (scanning electron microscope) image of the obtained transparent metal film is shown in FIG. The film thickness of the obtained transparent metal film (Ag film) was 6 nm.
  • Example E-3 A transparent support material made of a white plate and an Ag target were placed in a vacuum chamber of a sputtering apparatus (L-430S-FHS) manufactured by Anelva. Then, Ag was DC-sputtered at Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power (DC) 125 W, and film formation rate 0.57 m / s (step A). On the other hand, during the period from the start of film formation to the end of film formation, power is also applied to the transparent support material side (substrate-side power (RF) 15 W), and the transparent metal film formed on the transparent support material is etched.
  • RF substrate-side power
  • Reverse sputtering was performed at a rate of 0.01 nm / s (step B). As a result, the actual film formation rate was 0.56 nm / s. The target-substrate distance was 86 mm. An SEM (scanning electron microscope) image of the obtained transparent metal film is shown in FIG. Moreover, the film thickness of the obtained transparent metal film (Ag film) was 6 nm.
  • Example E-4 A transparent conductor was obtained in the same manner as in Example E-3 except that the substrate-side power (RF) was 25 W and the film formation rate was the value shown in Table 9.
  • FIG. 56 shows an SEM (scanning electron microscope) image of the obtained transparent metal film. Moreover, the film thickness of the obtained transparent metal film (Ag film) was 6 nm.
  • Example E-5 A transparent support material in which a layer (27.7 nm) made of Nb 2 O 5 was formed on Toyobo PET (Cosmo Shine A4300, thickness 50 ⁇ m) was prepared. A transparent conductor was obtained in the same manner as in Example E-2 except that the transparent support material was used. The film thickness of the obtained transparent metal film (Ag film) was 6 nm.
  • the layer made of Nb 2 O 5 uses L-430S-FHS manufactured by Anelva, Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 300 W, and deposition rate 0.74 ⁇ / s. Nb 2 O 5 was obtained by RF sputtering. At this time, the distance between the target and the substrate was 86 mm.
  • Example E-6 A transparent support material made of a white plate and an Ag target were placed in a vacuum chamber of a sputtering apparatus manufactured by Osaka Vacuum. Then, Ag was RF-sputtered at Ar 20 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power (RF) 250 W, and deposition rate 1.6 nm / s (step A). As shown in the timing chart of FIG.
  • step B After 2.5 seconds have elapsed from the start of film formation of the Ag film (after the Ag film is formed to 4 nm), power is also applied to the transparent support material side (substrate side power (RF) 50 W), a transparent metal film formed on the transparent support material was reverse sputtered (step B).
  • the target-substrate distance was 80 mm.
  • the film thickness of the obtained transparent metal film (Ag film) was 7 nm.
  • Non-Patent Document 1 a transparent support in which a layer (27.7 nm) made of Nb 2 O 5 was formed on PET made by Toyobo (Cosmo Shine A4300 thickness 50 ⁇ m) as in Example E-6 The material was prepared. The transparent support material was placed in a small sputtering apparatus (BC4279) manufactured by Nippon Vacuum Technology Co., Ltd. Then, Ag was DC sputtered at Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power (DC) 200 W, and deposition rate 6.7 nm / s.
  • BC4279 small sputtering apparatus manufactured by Nippon Vacuum Technology Co., Ltd.
  • Ag was DC sputtered at Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power (DC) 200 W, and deposition rate 6.7 nm / s.
  • Example E-2 A transparent conductor was obtained in the same manner as in Example E-1, except that the reverse sputtering (step B) of the transparent metal film was not performed. An SEM (scanning electron microscope) image of the obtained transparent metal film is shown in FIG. The film thickness of the obtained transparent metal film (Ag film) was 6 nm.
  • Example E-3 A transparent conductor was obtained in the same manner as in Example E-3, except that the reverse sputtering (step B) of the transparent metal film was not performed. An SEM (scanning electron microscope) image of the obtained transparent metal film is shown in FIG. The film thickness of the obtained transparent metal film (Ag film) was 6 nm.
  • Example E-5 had a higher average of transparent metal films. Absorption rate was low.
  • the thickness of the transparent metal film was smaller in Example E-5 than in Comparative Example E-1, these surface electric resistance values were equivalent.
  • the transparent metal film of Example E-5 has high smoothness, and it is presumed that sufficient conduction was obtained even with a thin film.
  • Example E-2 which was reverse sputtered when the transparent metal film was 3 nm or less was compared with Example E-6 which was reverse sputtered after the transparent metal film became 4 nm, The average absorption rate of the transparent metal film was lower, and the surface electrical resistance was also lower.
  • reverse sputtering is performed with the transparent metal film being thin, very fine growth nuclei are formed on the transparent support; it is assumed that when the transparent metal film grows from the growth nuclei, a highly smooth film can be obtained. Is done.
  • Example E-7 A transparent support material made of a white plate and an Ag target were placed in a vacuum chamber of a sputtering apparatus manufactured by Osaka Vacuum.
  • a transparent metal film having a thickness of 0.37 nm was obtained by RF sputtering with Ag for 0.23 seconds at an Ar of 20 sccm, a sputtering pressure of 0.5 Pa, a room temperature, a target-side power (RF) of 250 W, and a deposition rate of 1.6 nm / s. Was formed (step A).
  • the target-substrate distance was 80 mm.
  • the above-mentioned process A and process B were performed as one cycle, and 20 cycles were performed.
  • the total thickness of the obtained transparent metal film was 6 nm.
  • Example E-8 A transparent support material made of a white plate and an Ag target were placed in a vacuum chamber of a sputtering apparatus manufactured by Osaka Vacuum.
  • a transparent metal film having a thickness of 0.74 nm was obtained by RF sputtering with Ag for 0.46 seconds at Ar 20 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power (RF) 250 W, and film formation rate 1.6 nm / s. Was formed (step A).
  • the target-substrate distance was 80 mm.
  • power substrate-side power (RF) 50 W
  • the above-mentioned process A and process B were made into 1 cycle, and 10 cycles were performed.
  • the total thickness of the obtained transparent metal film was 6 nm.
  • Example E-9 A transparent support material made of a white plate and an Ag target were placed in a vacuum chamber of a sputtering apparatus manufactured by Osaka Vacuum.
  • a transparent metal film having a thickness of 0.37 nm was obtained by RF sputtering with Ag for 0.23 seconds at an Ar of 20 sccm, a sputtering pressure of 0.5 Pa, a room temperature, a target-side power (RF) of 250 W, and a deposition rate of 1.6 nm / s.
  • the target-substrate distance was 80 mm.
  • the above-mentioned process A and process B were made into 1 cycle, and 16 cycles were performed.
  • the total thickness of the obtained transparent metal film was 6 nm.
  • the thickness of the transparent metal film was about 6 nm.
  • the average absorption rate of the transparent metal film was 8.4% or less, and the maximum value of the absorption rate was 9.1% or less.
  • the thickness Y of the transparent metal film after completion of the first step B is 95% or less of the thickness X of the transparent metal film formed in the first step A.
  • the surface electric resistance value was sufficiently low at 16 ⁇ / ⁇ . In these examples, it is speculated that very fine growth nuclei were formed on the transparent support material by reverse sputtering; a highly smooth film was obtained because the transparent metal film grew from the growth nuclei. .
  • the transparent conductor obtained by the present invention has a low surface electric resistance value and excellent transparency. Therefore, it is preferably used for various types of optoelectronic devices such as various types of displays, touch panels, mobile phones, electronic paper, various types of solar cells, and various types of electroluminescent light control elements.

Abstract

A problem to be addressed by the present invention is to provide a transparent conductor with low surface electrical resistance and high translucence. To solve the problem, a transparent conductor is configured such that: the transparent conductor has a transparent support material, a first admittance adjustment layer, a transparent metal film, and a second admittance adjustment layer, stacked in this order; the transparent metal film is 15nm or less in thickness; the first admittance adjustment layer and the second adjustment layer include either a dielectric material or an oxide semiconductor material; the transparent conductor has an average absorption rate of light of 400-800nm wavelength of 15% or less, and a maximum value for the absorption rate thereof of 25% or less; and, with Y1=x1+iy1 representing the optical admittance of light of 570nm wavelength at the boundary between the transparent metal film and the first admittance adjustment layer, and Y2=x2+iy2 representing the optical admittance of light of 570nm wavelength at the boundary between the transparent metal film and the second admittance adjustment layer, x1 and/or x2 is 1.6 or greater.

Description

透明導電体Transparent conductor
 本発明は、透明導電体に関する。 The present invention relates to a transparent conductor.
 液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置の電極材料や、無機及び有機EL素子の電極材料、タッチパネル材料、太陽電池材料等の各種装置に透明導電膜が使用されている。 Transparent conductive films are used in various devices such as electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials. ing.
 このような透明導電膜の構成材料として、Au、Ag、Pt、Cu、Rh、Pd、Al、Cr等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO等の酸化物半導体が知られている。これらの中でも、光透過性及び導電性の観点から、酸化インジウムスズ(ITO)膜からなる透明導電膜が多用されている。 As a constituent material of such a transparent conductive film, metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , TiO 2 , Oxide semiconductors such as SnO 2 and ZnO are known. Among these, a transparent conductive film made of an indium tin oxide (ITO) film is frequently used from the viewpoint of light transmittance and conductivity.
 近年、静電容量方式のタッチパネルが開発され、この方式では、表面電気抵抗値が低く、かつ透明性の高い透明導電膜が求められている。しかし、ITO膜では、表面電気抵抗値を十分に低くすることが難しい。また、ITO膜は割れやすく、フレキシブル性が求められる用途に適用できない、という問題もある。 In recent years, a capacitive touch panel has been developed, and in this method, a transparent conductive film having a low surface electrical resistance value and high transparency is required. However, with an ITO film, it is difficult to sufficiently reduce the surface electrical resistance value. In addition, the ITO film is easily broken and cannot be applied to applications that require flexibility.
 そこで、ITOに代わる透明導電膜として、Agをメッシュ状に配置した透明導電膜が提案されている(特許文献1)。しかし、特許文献1の透明導電膜は、Agメッシュの幅が20μm程度である。そのため、Agメッシュが視認されやすく、高い透明性が必要とされる用途には適用できない。さらに、メッシュ部分では導通があるが、メッシュの隙間部分の導通がなく、表面電気抵抗値を十分に下げることができなかった。 Therefore, a transparent conductive film in which Ag is arranged in a mesh shape has been proposed as a transparent conductive film replacing ITO (Patent Document 1). However, the transparent conductive film of Patent Document 1 has an Ag mesh width of about 20 μm. Therefore, the Ag mesh is easily visible and cannot be applied to uses that require high transparency. Furthermore, although there was conduction in the mesh portion, there was no conduction in the gap portion of the mesh, and the surface electric resistance value could not be lowered sufficiently.
 また、Agナノワイヤを含む透明導電膜も提案されている(特許文献2)。しかし、当該透明導電膜は表面電気抵抗値が大きく、透明導電膜の厚みを200nm程度にする必要がある。そのため、当該透明導電膜をフレキシブル性が求められる用途に適用することは難しかった。 A transparent conductive film containing Ag nanowires has also been proposed (Patent Document 2). However, the transparent conductive film has a large surface electric resistance value, and the thickness of the transparent conductive film needs to be about 200 nm. For this reason, it has been difficult to apply the transparent conductive film to uses that require flexibility.
 さらに、Ag薄膜を透明導電膜とすることも提案されている(特許文献3)。しかし、Ag薄膜は、低い表面電気抵抗値と、高い光透過性とを両立させることが難しかった。表面電気抵抗値を高めるために、Ag薄膜の厚みを厚くすると、Ag本来の反射が生じ、光透過率が低くなる。一方、光透過率を高めるために、Ag薄膜を薄くすると、十分な導通が得られない。またさらにプラズモン吸収が生じて、透明導電膜の透過率が低くなるとの問題があった。そこで、Ag膜を含む透明導電体の光透過性を高めるため、酸化ニオブ(Nb)膜/Ag膜/IZO(酸化インジウム・酸化亜鉛)膜の積層体も提案されている(非特許文献1)。 Furthermore, it has also been proposed to use an Ag thin film as a transparent conductive film (Patent Document 3). However, it has been difficult for the Ag thin film to achieve both a low surface electric resistance value and a high light transmittance. If the thickness of the Ag thin film is increased in order to increase the surface electrical resistance value, Ag inherent reflection occurs and the light transmittance is lowered. On the other hand, if the Ag thin film is thinned in order to increase the light transmittance, sufficient conduction cannot be obtained. Further, there is a problem that plasmon absorption occurs and the transmittance of the transparent conductive film is lowered. Therefore, in order to improve the light transmittance of the transparent conductor including the Ag film, a laminate of niobium oxide (Nb 2 O 5 ) film / Ag film / IZO (indium zinc oxide) film has also been proposed (non-patent document). Reference 1).
 一方、透明導電膜のパターニング方法としては、エッチングが一般的である。しかし、当該方法では、レジストパターンを作製したり、エッチング液で処理する必要があり、工程が煩雑であるという問題があった。 On the other hand, etching is generally used as a patterning method for the transparent conductive film. However, this method has a problem that a resist pattern must be prepared or treated with an etching solution, and the process is complicated.
 このような問題に対し、光触媒を利用して、透明金属膜をパターン状に形成する方法が提案されている(特許文献4)。この技術では、基板上に形成された光触媒層にパターン状に光を照射して、光触媒層の濡れ性を変化させる。そして、光照射部と非照射部との濡れ性の差を利用して、透明導電膜を形成するための液をパターン状に付着させる。 In response to such a problem, a method of forming a transparent metal film in a pattern using a photocatalyst has been proposed (Patent Document 4). In this technique, the photocatalyst layer formed on the substrate is irradiated with light in a pattern to change the wettability of the photocatalyst layer. And the liquid for forming a transparent conductive film is made to adhere in a pattern shape using the wettability difference of a light irradiation part and a non-irradiation part.
特開2012-53644号公報JP 2012-53644 A 特表2009-505358号公報Special table 2009-505358 特表2011-508400号公報Special table 2011-508400 gazette 特開2003-309344号公報JP 2003-309344 A
 非特許文献1のように、Ag薄膜上に絶縁膜を積層し、Ag薄膜を含む透明導電体の光透過性を高めることが検討されている。しかし、Ag薄膜上に絶縁膜を形成しても、積層体表面の反射率が十分に低くならず、光透過性が高まり難いとの問題があった。そこで、本発明は、光透過性が高く、かつ表面電気抵抗値の低い透明導電体を提供することを目的とする。 As in Non-Patent Document 1, it has been studied to stack an insulating film on an Ag thin film and increase the light transmittance of a transparent conductor including the Ag thin film. However, even if an insulating film is formed on the Ag thin film, there is a problem that the reflectance of the surface of the laminate is not sufficiently lowered and the light transmittance is hardly increased. Accordingly, an object of the present invention is to provide a transparent conductor having a high light transmittance and a low surface electric resistance value.
 また、特許文献4の技術で透明導電膜をパターニングした場合、所望の領域以外にも、透明導電膜を形成するための液が付着しやすく;微細なパターンを形成することが難しいとの問題があった。そこで、簡易な方法で、微細な金属パターンを形成可能な透明導電体の製造方法を提供することも求められている。 Further, when the transparent conductive film is patterned by the technique of Patent Document 4, the liquid for forming the transparent conductive film is likely to adhere to a region other than the desired region; there is a problem that it is difficult to form a fine pattern. there were. Therefore, it is also demanded to provide a method for producing a transparent conductor capable of forming a fine metal pattern by a simple method.
 即ち、本発明の第一は、以下の透明導電体に関する。
 [1]透明支持材と、第一アドミッタンス調整層と、透明金属膜と、第二アドミッタンス調整層とがこの順に積層された透明導電体であって、前記透明金属膜は、厚みが15nm以下であり、前記第一アドミッタンス調整層及び前記第二アドミッタンス調整層が、誘電性材料または酸化物半導体材料を含み、前記透明導電体は波長400nm~800nmの光の平均吸収率が15%以下、かつ吸収率の最大値が25%以下であり、前記透明金属膜の前記第一アドミッタンス調整層側の界面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の界面の波長570nmの光学アドミッタンスをY2=x+iyで表した場合に、xまたはxのうち少なくとも一方が1.6以上である、透明導電体。
That is, the first of the present invention relates to the following transparent conductor.
[1] A transparent conductor in which a transparent support material, a first admittance adjusting layer, a transparent metal film, and a second admittance adjusting layer are laminated in this order, and the transparent metal film has a thickness of 15 nm or less. The first admittance adjusting layer and the second admittance adjusting layer include a dielectric material or an oxide semiconductor material, and the transparent conductor has an average absorption rate of light having a wavelength of 400 nm to 800 nm of 15% or less and absorption The maximum value of the ratio is 25% or less, the optical admittance at the wavelength 570 nm of the interface on the first admittance adjustment layer side of the transparent metal film is Y1 = x 1 + ii 1 , and the second admittance adjustment layer of the transparent metal film when representing the optical admittance of wavelength 570nm of the interface side with Y2 = x 2 + iy 2, at least one of x 1 and x 2 is 1. Or more, a transparent conductor.
 本発明の第二は、以下の透明導電体に関する。
 [2]透明支持材と、下地層と、第一アドミッタンス調整層と、透明金属膜と、第二アドミッタンス調整層とがこの順に積層された透明導電体であって、前記下地層の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY0=x+iyで表した場合に、xが透明支持材の波長570nmの光の屈折率より小さい値であり、前記第一アドミッタンス調整層及び前記第二アドミッタンス調整層は前記透明支持材の波長570nmの光の屈折率より高い屈折率を有する誘電性材料または酸化物半導体材料を含み、前記透明金属膜は厚みが15nm以下であり、前記透明金属膜の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY2=x+iyで表した場合に、xまたはxの少なくとも一方が1.8以上であり、前記透明導電体の波長400nm~800nmの光の平均吸収率が10%以下、かつ波長450nm~800nmの光の吸収率の最大値が15%以下である、透明導電体。
The second of the present invention relates to the following transparent conductor.
[2] A transparent conductor in which a transparent support material, an underlayer, a first admittance adjustment layer, a transparent metal film, and a second admittance adjustment layer are laminated in this order, and the first of the underlayer the optical admittance of wavelength 570nm admittance adjusting layer side of the surface when expressed in Y0 = x 0 + iy 0, x 0 is the refractive index value smaller than the light wavelength 570nm of the transparent support, the first admittance adjusting The layer and the second admittance adjusting layer include a dielectric material or an oxide semiconductor material having a refractive index higher than a refractive index of light having a wavelength of 570 nm of the transparent support material, and the transparent metal film has a thickness of 15 nm or less, the optical admittance Y1 = x 1 + iy 1 wavelength 570nm of the first admittance adjusting layer-side surface of the transparent metal film, the said transparent metal film When representing the optical admittance of wavelength 570nm of the two admittance adjusting layer side surface Y2 = x 2 + iy 2, at least one of x 1 and x 2 is 1.8 or more, the wavelength 400 nm ~ transparent conductor A transparent conductor having an average absorptance of 800 nm light of 10% or less and a maximum absorptance of light having a wavelength of 450 nm to 800 nm of 15% or less.
 本発明の第三は、以下の透明導電体に関する。
 [3]透明支持材と、第一アドミッタンス調整層と、透明金属膜と、第二アドミッタンス調整層とが、この順に積層された透明導電体であって、前記第一アドミッタンス調整層及び前記第二アドミッタンス調整層は前記透明支持材の波長570nmの光の屈折率より高い屈折率を有する誘電性材料または酸化物半導体材料を含み、前記透明金属膜の少なくとも一方の面に、前記第一アドミッタンス調整層及び前記第二アドミッタンス調整層に含まれる前記誘電性材料または酸化物半導体材料より、波長570nmの光の屈折率が低い材料を含み、かつ厚みが0.1~15nmである、低屈折率層をさらに有する透明導電体。
The third of the present invention relates to the following transparent conductor.
[3] A transparent conductor in which a transparent support material, a first admittance adjustment layer, a transparent metal film, and a second admittance adjustment layer are laminated in this order, and the first admittance adjustment layer and the second The admittance adjusting layer includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of light having a wavelength of 570 nm of the transparent support material, and the first admittance adjusting layer is formed on at least one surface of the transparent metal film. And a low refractive index layer comprising a material having a refractive index of light having a wavelength of 570 nm lower than that of the dielectric material or oxide semiconductor material included in the second admittance adjusting layer and having a thickness of 0.1 to 15 nm. Further, a transparent conductor.
 本発明によれば、低い表面電気抵抗値と高い透明性とを兼ね備えた透明導電体が得られる。 According to the present invention, a transparent conductor having both a low surface electric resistance value and high transparency can be obtained.
本発明の第一の態様の透明導電体の層構成を示す概略断面図である。It is a schematic sectional drawing which shows the layer structure of the transparent conductor of the 1st aspect of this invention. 本発明の第二の態様の透明導電体の層構成を示す概略断面図である。It is a schematic sectional drawing which shows the layer structure of the transparent conductor of the 2nd aspect of this invention. 本発明の第三の態様の透明導電体の層構成を示す概略断面図である。It is a schematic sectional drawing which shows the layer structure of the transparent conductor of the 3rd aspect of this invention. 図4Aは、第一の態様の透明導電体(透明支持材(ガラス基板)/第一アドミッタンス調整層(TiO)/透明金属膜(Ag)/第二アドミッタンス調整層(TiO)/第三アドミッタンス調整層(SiO)を備える透明導電体)の波長570nmにおけるアドミッタンス軌跡を示すグラフである。FIG. 4A shows a transparent conductor (transparent support material (glass substrate) / first admittance adjusting layer (TiO 2 ) / transparent metal film (Ag) / second admittance adjusting layer (TiO 2 ) / third according to the first embodiment. is a graph showing the admittance locus at a wavelength 570nm admittance adjusting layer transparent conductor comprising (SiO 2)). 図4Bは、第一の態様の透明導電体(透明支持材(ガラス基板)/第一アドミッタンス調整層(TiO)/透明金属膜(Ag)/第二アドミッタンス調整層(TiO)/第三アドミッタンス調整層(SiO)を備える透明導電体)の光学長と電場との関係を示すグラフである。FIG. 4B shows the transparent conductor of the first embodiment (transparent support material (glass substrate) / first admittance adjusting layer (TiO 2 ) / transparent metal film (Ag) / second admittance adjusting layer (TiO 2 ) / third. is a graph showing the relationship between the optical length and the electric field of the admittance adjustment layer transparent conductor comprising (SiO 2)). 図5(a)は、透明支持材/透明金属膜/アドミッタンス調整層を備える透明導電体の波長570nmにおけるアドミッタンス軌跡を示すグラフであり、図5(b)は、当該透明導電体の波長450nm、波長570nm、及び波長700nmにおける光学アドミッタンスを示す図である。FIG. 5 (a) is a graph showing an admittance locus at a wavelength of 570 nm of a transparent conductor comprising a transparent support material / transparent metal film / admittance adjusting layer, and FIG. 5 (b) shows a wavelength of 450 nm of the transparent conductor, It is a figure which shows the optical admittance in wavelength 570nm and wavelength 700nm. 図6(a)は、第一の態様の透明導電体(透明支持材/第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を備える透明導電体)の波長570nmにおけるアドミッタンス軌跡を示すグラフであり、図6(b)は、当該透明導電体の波長450nm、波長570nm、及び波長700nmにおける光学アドミッタンスを示す図である。FIG. 6A is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor (transparent support / first admittance adjusting layer / transparent metal film / transparent conductor having the second admittance adjusting layer) of the first embodiment. FIG. 6B is a diagram illustrating optical admittance of the transparent conductor at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm. 図7は、第一の態様の透明導電体(透明支持材(ガラス基板)/第一アドミッタンス調整層(TiO)/透明金属膜(Ag)/第二アドミッタンス調整層(TiO)/第三アドミッタンス調整層(SiO)を備える透明導電体)の波長450nm、570nm、及び700nmにおけるアドミッタンス軌跡を示すグラフである。FIG. 7 shows the transparent conductor of the first embodiment (transparent support material (glass substrate) / first admittance adjusting layer (TiO 2 ) / transparent metal film (Ag) / second admittance adjusting layer (TiO 2 ) / third. admittance wavelength 450nm adjustment layer (SiO 2) a transparent conductor comprising) is a graph showing 570 nm, and the admittance locus in 700 nm. 図8は、第二の態様の透明導電体(透明支持材(ガラス基板)/下地層(MgF)/第一アドミッタンス調整層(TiO)/透明金属膜(Ag)/第二アドミッタンス調整層(TiO)を備える透明導電体)の波長570nmのアドミッタンス軌跡を示すグラフである。FIG. 8 shows the transparent conductor (transparent support material (glass substrate) / underlayer (MgF 2 ) / first admittance adjustment layer (TiO 2 ) / transparent metal film (Ag) / second admittance adjustment layer of the second embodiment. is a graph showing the admittance locus of wavelength 570nm of the transparent conductor) with a (TiO 2). 図9Aは第三の態様の透明導電体(実施例C-1で作製した透明導電体)の分光特性を示すグラフである。FIG. 9A is a graph showing the spectral characteristics of the transparent conductor of the third aspect (transparent conductor produced in Example C-1). 図9Bは第三の態様の透明導電体(実施例C-1で作製した透明導電体)の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 9B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor of the third embodiment (the transparent conductor produced in Example C-1). 本発明の透明導電体の製造方法で得られる透明導電体の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the transparent conductor obtained with the manufacturing method of the transparent conductor of this invention. 図11は実験例1で作製した透明金属膜の吸収率からプラズモン吸収率のみを抽出したグラフである。FIG. 11 is a graph in which only the plasmon absorption rate is extracted from the absorption rate of the transparent metal film produced in Experimental Example 1. 図12は実験例2で作製した透明金属膜の吸収率からプラズモン吸収率のみを抽出したグラフである。FIG. 12 is a graph in which only the plasmon absorption rate is extracted from the absorption rate of the transparent metal film produced in Experimental Example 2. 図13は実験例3で作製した透明金属膜の吸収率からプラズモン吸収率のみを抽出したグラフである。FIG. 13 is a graph in which only the plasmon absorption rate is extracted from the absorption rate of the transparent metal film produced in Experimental Example 3. 図14は実験例4で作製した透明金属膜の吸収率からプラズモン吸収率のみを抽出したグラフである。FIG. 14 is a graph in which only the plasmon absorption rate is extracted from the absorption rate of the transparent metal film produced in Experimental Example 4. 図15Aは実施例A-1で作製した透明導電体の分光特性を示すグラフである。FIG. 15A is a graph showing the spectral characteristics of the transparent conductor produced in Example A-1. 図15Bは実施例A-1で作製した透明導電体の波長570nmにおけるアドミッタンス軌跡を示すグラフである。FIG. 15B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-1. 図16Aは実施例A-2で作製した透明導電体の分光特性を示すグラフである。FIG. 16A is a graph showing the spectral characteristics of the transparent conductor produced in Example A-2. 図16Bは実施例A-2で作製した透明導電体の波長570nmにおけるアドミッタンス軌跡を示すグラフである。FIG. 16B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-2. 図17Aは実施例A-3で作製した透明導電体の分光特性を示すグラフである。FIG. 17A is a graph showing the spectral characteristics of the transparent conductor produced in Example A-3. 図17Bは実施例A-3で作製した透明導電体の波長570nmにおけるアドミッタンス軌跡を示すグラフである。FIG. 17B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-3. 図18Aは実施例A-4で作製した透明導電体の分光特性を示すグラフである。FIG. 18A is a graph showing the spectral characteristics of the transparent conductor produced in Example A-4. 図18Bは実施例A-4で作製した透明導電体の波長570nmにおけるアドミッタンス軌跡を示すグラフである。FIG. 18B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-4. 図19Aは比較例A-1で作製した透明導電体の分光特性を示すグラフである。FIG. 19A is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example A-1. 図19Bは比較例A-1で作製した透明導電体の波長570nmにおけるアドミッタンス軌跡を示すグラフである。FIG. 19B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Comparative Example A-1. 図20Aは比較例A-2で作製した透明導電体の分光特性を示すグラフである。FIG. 20A is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example A-2. 図20Bは比較例A-2で作製した透明導電体の波長570nmにおけるアドミッタンス軌跡を示すグラフである。FIG. 20B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Comparative Example A-2. 図21Aは実施例A-5で作製した透明導電体の分光特性を示すグラフである。FIG. 21A is a graph showing the spectral characteristics of the transparent conductor produced in Example A-5. 図21Bは実施例A-5で作製した透明導電体の波長570nmにおけるアドミッタンス軌跡を示すグラフである。FIG. 21B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-5. 図22Aは実施例A-6で作製した透明導電体の分光特性を示すグラフである。FIG. 22A is a graph showing the spectral characteristics of the transparent conductor produced in Example A-6. 図22Bは実施例A-6で作製した透明導電体の波長570nmにおけるアドミッタンス軌跡を示すグラフである。FIG. 22B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-6. 図23は実施例A-7で作製した透明導電体の波長570nmにおけるアドミッタンス軌跡を示すグラフである。FIG. 23 is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example A-7. 図24は比較例A-3で作製した透明導電体の分光特性を示すグラフである。FIG. 24 is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example A-3. 図25Aは実施例B-1で作製した透明導電体の分光特性を示すグラフである。FIG. 25A is a graph showing the spectral characteristics of the transparent conductor produced in Example B-1. 図25Bは実施例B-1で作製した透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示すグラフである。FIG. 25B is a graph showing admittance trajectories of the transparent conductor produced in Example B-1 at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm. 図26Aは実施例B-2で作製した透明導電体の分光特性を示すグラフである。FIG. 26A is a graph showing the spectral characteristics of the transparent conductor produced in Example B-2. 図26Bは実施例B-2で作製した透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示すグラフである。FIG. 26B is a graph showing the admittance locus of the transparent conductor produced in Example B-2 at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm. 図27Aは実施例B-3で作製した透明導電体の分光特性を示すグラフである。FIG. 27A is a graph showing the spectral characteristics of the transparent conductor produced in Example B-3. 図27Bは実施例B-3で作製した透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示すグラフである。FIG. 27B is a graph showing admittance trajectories of the transparent conductor produced in Example B-3 at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm. 図28Aは実施例B-4で作製した透明導電体の分光特性を示すグラフである。FIG. 28A is a graph showing the spectral characteristics of the transparent conductor produced in Example B-4. 図28Bは実施例B-4で作製した透明導電体の波長570nmのアドミッタンス軌跡を示すグラフである。FIG. 28B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example B-4. 図29Aは実施例B-5で作製した透明導電体の分光特性を示すグラフである。FIG. 29A is a graph showing the spectral characteristics of the transparent conductor produced in Example B-5. 図29Bは実施例B-5で作製した透明導電体の波長570nmのアドミッタンス軌跡を示すグラフである。FIG. 29B is a graph showing an admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example B-5. 図30Aは実施例B-6で作製した透明導電体の分光特性を示すグラフである。FIG. 30A is a graph showing the spectral characteristics of the transparent conductor produced in Example B-6. 図30Bは実施例B-6で作製した透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示すグラフである。FIG. 30B is a graph showing admittance trajectories of the transparent conductor produced in Example B-6 at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm. 図31は実施例B-7で作製した透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示すグラフである。FIG. 31 is a graph showing admittance loci of the transparent conductor produced in Example B-7 at wavelengths of 450 nm, 570 nm, and 700 nm. 図32は実施例B-8で作製した透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示すグラフである。FIG. 32 is a graph showing admittance trajectories of the transparent conductor produced in Example B-8 at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm. 図33Aは比較例B-2で作製した透明導電体の分光特性を示すグラフである。FIG. 33A is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example B-2. 図33Bは比較例B-2で作製した透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示すグラフである。FIG. 33B is a graph showing admittance trajectories of the transparent conductor produced in Comparative Example B-2 at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm. 図34Aは実施例C-2で作製した透明導電体の分光特性を示すグラフである。FIG. 34A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-2. 図34Bは実施例C-2で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 34B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-2. 図35Aは実施例C-3で作製した透明導電体の分光特性を示すグラフである。FIG. 35A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-3. 図35Bは実施例C-3で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 35B is a graph showing an optical admittance locus of a transparent conductor produced in Example C-3 at a wavelength of 570 nm. 図36Aは実施例C-4で作製した透明導電体の分光特性を示すグラフである。FIG. 36A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-4. 図36Bは実施例C-4で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 36B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-4. 図37Aは実施例C-5で作製した透明導電体の分光特性を示すグラフである。FIG. 37A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-5. 図37Bは実施例C-5で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 37B is a graph showing an optical admittance locus of the transparent conductor produced in Example C-5 at a wavelength of 570 nm. 図38Aは実施例C-6で作製した透明導電体の分光特性を示すグラフである。FIG. 38A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-6. 図38Bは実施例C-6で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 38B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-6. 図39Aは実施例C-7で作製した透明導電体の分光特性を示すグラフである。FIG. 39A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-7. 図39Bは実施例C-7で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 39B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-7. 図40Aは実施例C-8で作製した透明導電体の分光特性を示すグラフである。FIG. 40A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-8. 図40Bは実施例C-8で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 40B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-8. 図41Aは実施例C-9で作製した透明導電体の分光特性を示すグラフである。FIG. 41A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-9. 図41Bは実施例C-9で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 41B is a graph showing an optical admittance locus of wavelength 570 nm of the transparent conductor produced in Example C-9. 図42Aは実施例C-10で作製した透明導電体の分光特性を示すグラフである。FIG. 42A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-10. 図42Bは実施例C-10で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 42B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-10. 図43Aは実施例C-11で作製した透明導電体の分光特性を示すグラフである。FIG. 43A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-11. 図43Bは実施例C-11で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 43B is a graph showing an optical admittance locus of the transparent conductor produced in Example C-11 at a wavelength of 570 nm. 図44Aは実施例C-12で作製した透明導電体の分光特性を示すグラフである。FIG. 44A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-12. 図44Bは実施例C-12で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 44B is a graph showing an optical admittance locus at a wavelength of 570 nm of the transparent conductor produced in Example C-12. 図45Aは実施例C-13で作製した透明導電体の分光特性を示すグラフである。FIG. 45A is a graph showing the spectral characteristics of the transparent conductor produced in Example C-13. 図45Bは実施例C-13で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 45B is a graph showing an optical admittance locus of wavelength 570 nm of the transparent conductor produced in Example C-13. 図46Aは比較例C-2で作製した透明導電体の分光特性を示すグラフである。FIG. 46A is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example C-2. 図46Bは比較例C-2で作製した透明導電体の波長570nmの光学アドミッタンス軌跡を示すグラフである。FIG. 46B is a graph showing an optical admittance locus of a transparent conductor produced in Comparative Example C-2 at a wavelength of 570 nm. 本発明の透明導電体の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the transparent conductor of this invention. 実施例における光の照射パターンを示す模式図である。It is a schematic diagram which shows the irradiation pattern of the light in an Example. 実施例D-6(透明金属膜の厚みを4nmとしたとき)の透明導電体の波長400nm~800nmの光の透過率、吸収率、及び透過率を示すグラフである。7 is a graph showing the transmittance, absorption rate, and transmittance of light with a wavelength of 400 nm to 800 nm of a transparent conductor of Example D-6 (when the thickness of the transparent metal film is 4 nm). 実施例D-7(透明金属膜の厚みを5nmとしたとき)の透明導電体の波長400nm~800nmの光の透過率、吸収率、及び透過率を示すグラフである。7 is a graph showing the transmittance, absorption rate, and transmittance of light with a wavelength of 400 nm to 800 nm of the transparent conductor of Example D-7 (when the thickness of the transparent metal film is 5 nm). 図51は、本発明の透明導電体の製造方法の第一の態様に用いるスパッタ装置の概略図の一例である。FIG. 51 is an example of a schematic view of a sputtering apparatus used in the first embodiment of the method for producing a transparent conductor of the present invention. 図52(A)及び図52(B)は、本発明の透明導電体の製造方法の第二の態様に用いるスパッタ装置の概略図の一例である。52 (A) and 52 (B) are examples of schematic views of a sputtering apparatus used in the second embodiment of the method for producing a transparent conductor of the present invention. 図53は、本発明の実施例E-1で作製した透明金属膜のSEM(走査型電子顕微鏡)画像である。FIG. 53 is an SEM (scanning electron microscope) image of the transparent metal film produced in Example E-1 of the present invention. 図54は、本発明の実施例E-2で作製した透明金属膜のSEM(走査型電子顕微鏡)画像である。FIG. 54 is an SEM (scanning electron microscope) image of the transparent metal film produced in Example E-2 of the present invention. 図55は、本発明の実施例E-3で作製した透明金属膜のSEM(走査型電子顕微鏡)画像である。FIG. 55 is an SEM (scanning electron microscope) image of the transparent metal film produced in Example E-3 of the present invention. 図56は、本発明の実施例E-4で作製した透明金属膜のSEM(走査型電子顕微鏡)画像である。FIG. 56 is an SEM (scanning electron microscope) image of the transparent metal film produced in Example E-4 of the present invention. 図57は、本発明の比較例E-2で作製した透明金属膜のSEM(走査型電子顕微鏡)画像である。FIG. 57 is an SEM (scanning electron microscope) image of the transparent metal film produced in Comparative Example E-2 of the present invention. 図58は、本発明の比較例E-3で作製した透明金属膜のSEM(走査型電子顕微鏡)画像である。FIG. 58 is an SEM (scanning electron microscope) image of the transparent metal film produced in Comparative Example E-3 of the present invention. 図59は、本発明の実施例E-1の製造方法における工程A及び工程Bのタイミングチャートである。FIG. 59 is a timing chart of Step A and Step B in the manufacturing method of Example E-1 of the present invention. 図60は、本発明の実施例E-6の製造方法における工程A及び工程Bのタイミングチャートである。FIG. 60 is a timing chart of Step A and Step B in the manufacturing method of Example E-6 of the present invention. 図61は、本発明の実施例E-7の製造方法における工程A及び工程Bのタイミングチャートである。FIG. 61 is a timing chart of Step A and Step B in the manufacturing method of Example E-7 of the present invention.
 A.透明導電体
 1.透明導電体の構造及び物性
 本発明の透明導電体は、タッチパネルや有機EL素子、太陽電池等、各種表示素子のパネル等に適用可能である。本発明の透明導電体には、層構成が互いに相違する3つの態様が含まれる。
A. Transparent conductor Structure and physical properties of transparent conductor The transparent conductor of the present invention is applicable to panels of various display elements such as a touch panel, an organic EL element, and a solar battery. The transparent conductor of the present invention includes three modes having different layer configurations.
 (1)第一の態様の透明導電体について
 第一の態様の透明導電体の構造を図1に示す。図1に示されるように、第一の態様の透明導電体100には、透明支持材1/第一アドミッタンス調整層2/透明金属膜3/第二アドミッタンス調整層4が含まれ、透明金属膜3が2つのアドミッタンス調整層2,4によって挟まれた構造を有する。
(1) About the transparent conductor of a 1st aspect The structure of the transparent conductor of a 1st aspect is shown in FIG. As shown in FIG. 1, the transparent conductor 100 of the first embodiment includes a transparent support material 1 / first admittance adjustment layer 2 / transparent metal film 3 / second admittance adjustment layer 4, and a transparent metal film 3 has a structure sandwiched between two admittance adjusting layers 2 and 4.
 第一の態様の透明導電体100では、透明金属膜2が2つのアドミッタンス調整層2,4で挟み込まれることで、後述するように透明導電体100の光学アドミッタンスが調整される。その結果、透明導電体100の表面での光の反射が抑制され、透明導電体100の光透過性が高まる。 In the transparent conductor 100 of the first aspect, the transparent metal film 2 is sandwiched between the two admittance adjusting layers 2 and 4 so that the optical admittance of the transparent conductor 100 is adjusted as described later. As a result, light reflection on the surface of the transparent conductor 100 is suppressed, and the light transmittance of the transparent conductor 100 is increased.
 第一の態様の透明導電体100には、第二アドミッタンス調整層4上に形成された第三アドミッタンス調整層(図示せず)等が含まれてもよい。さらに、第一の態様の透明導電体100には、2層以上の透明金属膜が含まれてもよい。さらに2層の透明金属膜の間には、他のアドミッタンス調整層が挟み込まれてもよい。他のアドミッタンス調整層は、第一アドミッタンス調整層や第二アドミッタンス調整層と同様の層でありうる。 The transparent conductor 100 of the first aspect may include a third admittance adjusting layer (not shown) formed on the second admittance adjusting layer 4. Furthermore, the transparent conductor 100 of the first aspect may include two or more transparent metal films. Further, another admittance adjusting layer may be sandwiched between the two transparent metal films. The other admittance adjustment layer may be the same layer as the first admittance adjustment layer and the second admittance adjustment layer.
 (1-1)透明支持材
 透明導電体に含まれる透明支持材は、各種表示デバイスの透明支持材と同様でありうる。透明支持材は、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルム等でありうる。
(1-1) Transparent Support Material The transparent support material included in the transparent conductor can be the same as the transparent support material of various display devices. Transparent support materials include glass substrates, cellulose ester resins (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), polycarbonate resins (for example, Panlite, Multilon (both manufactured by Teijin Limited)), cycloolefin resins (for example, ZEONOR (manufactured by Nippon Zeon), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical)), Polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate, polyethylene naphthalate), polyether sulfone, ABS / AS resin, MBS resin, polystyrene, meta Lil resins, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resins), may be a transparent resin film comprising a styrene block copolymer resin.
 透明性の観点からは、透明支持材が、ガラス基板や、トリアセチルセルロース、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂であることが好ましい。 From the viewpoint of transparency, the transparent support material is a glass substrate, triacetyl cellulose, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyether sulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, Polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin) and styrene block copolymer resin are preferable.
 透明支持材は、可視光に対する透明性が高いことが好ましく;波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明支持材の光の平均透過率が80%以上であると、透明導電体全体の光の平均透過率が特に高まりやすい。また、透明支持材の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent support material preferably has high transparency to visible light; the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent support material is 80% or more, the average light transmittance of the entire transparent conductor is particularly likely to increase. The average absorption rate of light having a wavelength of 450 to 800 nm of the transparent support material is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 透明支持材の光の平均透過率は、透明支持材の正面に対して、5°傾けた角度から光を入射させて測定する。一方、透明支持材の光の平均吸収率は、平均透過率と同様の角度から光を入射させて、透明支持材の平均反射率を測定する。そして平均吸収率=100-(平均透過率+平均反射率)として算出する。平均透過率及び平均反射率は分光光度計で測定する。 The average light transmittance of the transparent support material is measured by making light incident from an angle inclined by 5 ° with respect to the front surface of the transparent support material. On the other hand, the average light absorptance of the transparent support material is measured by making the light incident from the same angle as the average transmittance and measuring the average reflectivity of the transparent support material. Then, the average absorptance is calculated as 100− (average transmittance + average reflectance). Average transmittance and average reflectance are measured with a spectrophotometer.
 透明支持材の波長510nmの光の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。また、透明支持材の波長570nmの光の屈折率も1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。透明支持材の各波長における屈折率は、通常、透明支持材の材質によって定まる。透明支持材の屈折率は、エリプソメーターで測定される。 The refractive index of light with a wavelength of 510 nm of the transparent support material is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. . The refractive index of light having a wavelength of 570 nm of the transparent support material is also preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. It is. The refractive index at each wavelength of the transparent support material is usually determined by the material of the transparent support material. The refractive index of the transparent support is measured with an ellipsometer.
 透明支持材のヘイズ値は0.01~2.5であることが好ましく、より好ましくは0.1~1.2である。透明支持材のヘイズ値が2.5以下であると、透明導電体のヘイズ値が低くなる。ヘイズ値は、ヘイズメーターで測定される。 The haze value of the transparent support material is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. When the haze value of the transparent support material is 2.5 or less, the haze value of the transparent conductor is lowered. The haze value is measured with a haze meter.
 透明支持材の厚みは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明支持材の厚みが1μm以上であると、透明支持材の強度が高まり、第一アドミッタンス調整層の作製時に割れたり、裂けたりし難くなる。一方、透明支持材の厚みが20mm以下であれば、透明導電体のフレキシブル性が十分となり、透明導電体を用いた機器の厚みを薄くできる。また、透明導電体を用いた機器を軽量化することもできる。 The thickness of the transparent support material is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm. When the thickness of the transparent support material is 1 μm or more, the strength of the transparent support material is increased, and it is difficult to crack or tear the first admittance adjusting layer. On the other hand, if the thickness of the transparent support material is 20 mm or less, the flexibility of the transparent conductor is sufficient, and the thickness of the device using the transparent conductor can be reduced. Moreover, the apparatus using a transparent conductor can also be reduced in weight.
 (1-2)第一アドミッタンス調整層
 第一アドミッタンス調整層は、誘電性材料または酸化物半導体材料を含む層であり、本態様では、透明支持材と透明金属膜との間、かつ透明金属膜と隣接して形成される層でありうる。
(1-2) First Admittance Adjustment Layer The first admittance adjustment layer is a layer containing a dielectric material or an oxide semiconductor material, and in this embodiment, between the transparent support material and the transparent metal film and the transparent metal film. And a layer formed adjacent to each other.
 第一アドミッタンス調整層の波長510nmの光の屈折率は1.5より大きいことが好ましく、より好ましくは1.7~2.5であり、さらに好ましくは1.9~2.5である。後述するように、第一アドミッタンス調整層の屈折率が1.5より高いと、透明導電体の光透過性が高まりやすい。また、第一アドミッタンス調整層の屈折率は、透明支持材の屈折率より大きいことが好ましく、その屈折率差は、0.1~1.1であることが好ましく、0.4~1.0であることがより好ましい。第一アドミッタンス調整層の屈折率は、エリプソメーターで測定される。第一アドミッタンス調整層の屈折率は、第一アドミッタンス調整層を構成する材料や、第一アドミッタンス調整層中の材料の密度等によって調整される。 The refractive index of light having a wavelength of 510 nm of the first admittance adjusting layer is preferably larger than 1.5, more preferably 1.7 to 2.5, and still more preferably 1.9 to 2.5. As will be described later, when the refractive index of the first admittance adjusting layer is higher than 1.5, the light transmittance of the transparent conductor is likely to increase. The refractive index of the first admittance adjusting layer is preferably larger than the refractive index of the transparent support, and the refractive index difference is preferably 0.1 to 1.1, and 0.4 to 1.0. It is more preferable that The refractive index of the first admittance adjusting layer is measured with an ellipsometer. The refractive index of the first admittance adjusting layer is adjusted by the material constituting the first admittance adjusting layer, the density of the material in the first admittance adjusting layer, and the like.
 また、第一アドミッタンス調整層に含まれる材料(誘電性材料または酸化物半導体材料)の波長570nmの光の屈折率は、1.5より大きいことが好ましく、より好ましくは1.6~2.5であり、さらに好ましくは1.7~2.5であり、特に好ましくは1.8~2.5である。また、第一アドミッタンス調整層を構成する材料と透明支持材との屈折率差は0.1~1.1であることが好ましく、より好ましくは0.4~1.0である。 In addition, the refractive index of light having a wavelength of 570 nm of the material (dielectric material or oxide semiconductor material) included in the first admittance adjusting layer is preferably larger than 1.5, more preferably 1.6 to 2.5. More preferably, it is 1.7 to 2.5, and particularly preferably 1.8 to 2.5. Further, the refractive index difference between the material constituting the first admittance adjusting layer and the transparent support is preferably 0.1 to 1.1, more preferably 0.4 to 1.0.
 第一アドミッタンス調整層を構成する材料(誘電性材料または酸化物半導体材料)は、金属酸化物または金属硫化物であることが好ましい。金属酸化物または金属硫化物の例には、TiO、ITO(酸化インジウムスズ)、ZnO、ZnS、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(インジウム亜鉛酸化物)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)等が含まれ、屈折率や生産性の観点からTiO、ITO、ZnO、NbまたはZnSであることが好ましい。第一アドミッタンス調整層には、上記金属酸化物または金属硫化物が1種のみ含まれてもよく、2種以上が含まれてもよい。 The material (dielectric material or oxide semiconductor material) constituting the first admittance adjusting layer is preferably a metal oxide or a metal sulfide. Examples of metal oxides or metal sulfides include TiO 2 , ITO (indium tin oxide), ZnO, ZnS, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O. 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO ( Indium cerium oxide) is included, and from the viewpoint of refractive index and productivity, TiO 2 , ITO, ZnO, Nb 2 O 5 or ZnS is preferable. The first admittance adjusting layer may contain only one kind of the metal oxide or metal sulfide or two or more kinds.
 第一アドミッタンス調整層の厚みは、10~150nmであることが好ましく、より好ましくは20~80nmである。第一アドミッタンス調整層の厚みが10nm以上であると、第一アドミッタンス調整層によって、透明導電体の光学アドミッタンスが十分に調整されやすい。その結果、透明導電体の光透過性が十分に高まる。一方、第一アドミッタンス調整層の厚みが150nm以下であると、第一アドミッタンス調整層によって、透明導電体の光透過性が低下し難い。第一アドミッタンス調整層の厚みは、エリプソメーターで測定される。 The thickness of the first admittance adjusting layer is preferably 10 to 150 nm, more preferably 20 to 80 nm. When the thickness of the first admittance adjusting layer is 10 nm or more, the optical admittance of the transparent conductor is easily adjusted sufficiently by the first admittance adjusting layer. As a result, the light transmittance of the transparent conductor is sufficiently increased. On the other hand, when the thickness of the first admittance adjusting layer is 150 nm or less, the light permeability of the transparent conductor is hardly lowered by the first admittance adjusting layer. The thickness of the first admittance adjusting layer is measured with an ellipsometer.
 第一アドミッタンス調整層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層であり得る。第一アドミッタンス調整層の屈折率(密度)が高まるとの観点から、電子ビーム蒸着法またはスパッタ法で成膜された層であることが好ましい。電子ビーム蒸着法の場合は膜密度を高めるため、IAD(イオンアシスト)などのアシストがあることが望ましい。 The first admittance adjusting layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of increasing the refractive index (density) of the first admittance adjusting layer, it is preferably a layer formed by electron beam evaporation or sputtering. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
 (1-3)透明金属膜
 透明金属膜に含まれる金属は特に制限されず、例えば銀、銅、金、白金族、チタン、クロム等でありうる。透明金属膜には、これらの金属が1種のみ含まれてもよく、2種以上が含まれてもよい。プラズモン吸収が小さく、かつ反射率が小さいとの観点から、透明金属膜は銀または銀を50質量%以上含む合金からなる膜であることが好ましい。また特に、透明金属膜は銀または銀を90at%以上含む合金からなることが好ましい。透明金属膜を銀合金からなる層とする場合、銀と組み合わせる金属は、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム等でありうる。例えば銀を亜鉛と組み合わせると、透明金属膜の耐硫化性が高まる。銀を金と組み合わせると、耐塩(NaCl)性が高まる。さらに銀を銅と組み合わせると、耐酸化性が高まる。
(1-3) Transparent metal film The metal contained in the transparent metal film is not particularly limited, and may be, for example, silver, copper, gold, platinum group, titanium, chromium, or the like. The transparent metal film may contain only one kind of these metals or two or more kinds. From the viewpoint of low plasmon absorption and low reflectance, the transparent metal film is preferably a film made of silver or an alloy containing 50 mass% or more of silver. In particular, the transparent metal film is preferably made of silver or an alloy containing 90 at% or more of silver. When the transparent metal film is a layer made of a silver alloy, the metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, or the like. For example, when silver is combined with zinc, the sulfide resistance of the transparent metal film is increased. Combining silver with gold increases salt resistance (NaCl) resistance. In addition, when silver is combined with copper, oxidation resistance is enhanced.
 透明金属膜のプラズモン吸収率は、波長400nm~800nmの全範囲で15%以下であることが好ましく、10%以下であることがより好ましく、7%以下であることがさらに好ましく、特に好ましくは5%以下である。上記波長範囲におけるプラズモン吸収率が小さいと、透明導電体の可視光の透過率が高くなる。また、波長400nm~800nmの一部にわたって、プラズモン吸収率が一定値以下であると、透明導電体の透過光が着色し難い。 The plasmon absorptance of the transparent metal film is preferably 15% or less, more preferably 10% or less, even more preferably 7% or less, and particularly preferably 5 in the entire wavelength range of 400 nm to 800 nm. % Or less. When the plasmon absorption rate in the above wavelength range is small, the visible light transmittance of the transparent conductor is increased. Further, when the plasmon absorptance is below a certain value over a part of the wavelength of 400 nm to 800 nm, the transmitted light of the transparent conductor is hardly colored.
 透明金属膜の波長400nm~800nmにおけるプラズモン吸収率は、予めプラズモン吸収のない金属膜を作製し、この金属膜の吸収率をリファレンスデータとして求められる。具体的には、以下の手順で測定される。 The plasmon absorption rate at a wavelength of 400 nm to 800 nm of the transparent metal film is obtained in advance by preparing a metal film having no plasmon absorption and using the absorption rate of this metal film as reference data. Specifically, it is measured by the following procedure.
 (i)ガラス基板上に、白金パラジウムをマグネトロンスパッタ装置にて0.1nm成膜する。白金パラジウムの平均厚みは、スパッタ装置のメーカー公称値の成膜速度等から算出する。その後、白金パラジウムが付着した基板上に蒸着機にて金属膜を20nm成膜する。 (I) A platinum palladium film is formed to a thickness of 0.1 nm on a glass substrate using a magnetron sputtering apparatus. The average thickness of platinum palladium is calculated from the film forming speed and the like of the manufacturer's nominal value of the sputtering apparatus. Thereafter, a metal film is formed to a thickness of 20 nm by a vapor deposition machine on the substrate to which platinum palladium is adhered.
 (ii)そして、得られた金属膜の正面に対して、5°傾けた角度から測定光を入射させて、金属膜の透過率及び反射率を測定する。そして各波長における透過率及び反射率から、吸収率=100-(透過率+反射率)を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。 (Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the front surface of the obtained metal film, and the transmittance and reflectance of the metal film are measured. Then, from the transmittance and reflectance at each wavelength, absorption rate = 100− (transmittance + reflectance) is calculated and used as reference data. The transmittance and reflectance are measured with a spectrophotometer.
 (iii)続いて、測定対象の透明金属膜を、同様のガラス基板上に作成する。そして、当該透明金属膜の透過率及び反射率を測定する。そして、得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 (Iii) Subsequently, a transparent metal film to be measured is formed on the same glass substrate. Then, the transmittance and reflectance of the transparent metal film are measured. Then, the reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
 透明導電体に含まれる透明金属膜の厚みは15nm以下であり、より好ましくは3~13nmであり、さらに好ましくは7~12nmである。透明金属膜の厚みが15nm以下であると、透明金属膜を構成する金属本来の反射が生じ難い。さらに、透明金属膜の厚みが15nm以下であると、後述するように、第一アドミッタンス調整層及び第二アドミッタンス調整層によって、透明導電体の光の透過性が高まりやすい。透明金属膜の厚みは、エリプソメーターで測定される。 The thickness of the transparent metal film contained in the transparent conductor is 15 nm or less, more preferably 3 to 13 nm, and further preferably 7 to 12 nm. When the thickness of the transparent metal film is 15 nm or less, the original reflection of the metal constituting the transparent metal film hardly occurs. Furthermore, when the thickness of the transparent metal film is 15 nm or less, the light permeability of the transparent conductor is easily increased by the first admittance adjusting layer and the second admittance adjusting layer, as will be described later. The thickness of the transparent metal film is measured with an ellipsometer.
 透明金属膜は、いかなる方法で成膜された膜であってもよい。ただし一般的な気相成膜法では、波長400nm~800nmの全範囲でプラズモン吸収率が15%以下であり、かつ厚みが15nm以下である透明金属膜が得られにくい。したがって、透明金属膜は、予め成長核を形成してから成膜された膜であることが好ましい。透明金属膜の成膜方法は後述する。 The transparent metal film may be a film formed by any method. However, in a general vapor deposition method, it is difficult to obtain a transparent metal film having a plasmon absorption rate of 15% or less and a thickness of 15 nm or less over the entire wavelength range of 400 nm to 800 nm. Therefore, the transparent metal film is preferably a film formed after previously forming growth nuclei. A method for forming the transparent metal film will be described later.
 (1-4)第二アドミッタンス調整層
 第二アドミッタンス調整層は、誘電性材料または酸化物半導体材料を含む層であり、前述の透明金属膜と隣接して配置される層でありうる。第二アドミッタンス調整層を構成する材料は、第一アドミッタンス調整層を構成する材料と同様でありうる。第一アドミッタンス調整層及び第二アドミッタンス調整層は、同一の材料からなる層であってもよく、異なる材料からなる層であってもよい。
(1-4) Second Admittance Adjustment Layer The second admittance adjustment layer is a layer containing a dielectric material or an oxide semiconductor material, and may be a layer disposed adjacent to the transparent metal film. The material constituting the second admittance adjustment layer can be the same as the material constituting the first admittance adjustment layer. The first admittance adjusting layer and the second admittance adjusting layer may be layers made of the same material or layers made of different materials.
 第二アドミッタンス調整層の波長510nmの光の屈折率は1.5より大きいことが好ましく、より好ましくは1.6~2.5であり、さらに好ましくは1.8~2.5である。後述するように、第二アドミッタンス調整層の屈折率が1.5より高いと、透明導電体の表面での反射が抑制されやすい。また、第二アドミッタンス調整層の屈折率も、透明支持材の屈折率より大きいことが好ましく、その屈折率差は、0.1~1.1であることが好ましく、より好ましくは0.4~1.0である。第二アドミッタンス調整層の屈折率は、エリプソメーターで測定される。第二アドミッタンス調整層の屈折率は、第二アドミッタンス調整層を構成する材料や、第二アドミッタンス調整層中の材料の密度等によって調整される。 The refractive index of light having a wavelength of 510 nm of the second admittance adjusting layer is preferably larger than 1.5, more preferably 1.6 to 2.5, and still more preferably 1.8 to 2.5. As will be described later, when the refractive index of the second admittance adjusting layer is higher than 1.5, reflection on the surface of the transparent conductor is easily suppressed. The refractive index of the second admittance adjusting layer is also preferably larger than the refractive index of the transparent support, and the refractive index difference is preferably 0.1 to 1.1, more preferably 0.4 to 1.0. The refractive index of the second admittance adjusting layer is measured with an ellipsometer. The refractive index of the second admittance adjusting layer is adjusted by the material constituting the second admittance adjusting layer, the density of the material in the second admittance adjusting layer, and the like.
 また、第二アドミッタンス調整層に含まれる材料(誘電性材料または酸化物半導体材料)の波長570nmの光の屈折率は、1.5より大きいことが好ましく、より好ましくは1.6~2.5であり、さらに好ましくは1.8~2.5である。後述するように、第二アドミッタンス調整層を構成する材料の屈折率が1.5より大きいと、透明導電体の光透過性が高まりやすい。第二アドミッタンス調整層を構成する材料と透明支持材との屈折率差は0.1~1.1であることが好ましく、より好ましくは0.4~1.0である。 The refractive index of light having a wavelength of 570 nm of the material (dielectric material or oxide semiconductor material) included in the second admittance adjusting layer is preferably greater than 1.5, more preferably 1.6 to 2.5. More preferably, it is 1.8 to 2.5. As will be described later, when the refractive index of the material constituting the second admittance adjusting layer is greater than 1.5, the light transmittance of the transparent conductor tends to increase. The difference in refractive index between the material constituting the second admittance adjusting layer and the transparent support is preferably from 0.1 to 1.1, more preferably from 0.4 to 1.0.
 第二アドミッタンス調整層の厚みは、10~150nmであることが好ましく、より好ましくは20~80nmである。第二アドミッタンス調整層の厚みが10nm~150nmであると、透明導電体の光透過性が十分に高まる。第二アドミッタンス調整層の厚みは、エリプソメーターで測定される。 The thickness of the second admittance adjusting layer is preferably 10 to 150 nm, more preferably 20 to 80 nm. When the thickness of the second admittance adjusting layer is 10 nm to 150 nm, the light transmittance of the transparent conductor is sufficiently increased. The thickness of the second admittance adjusting layer is measured with an ellipsometer.
 (1-5)第三アドミッタンス調整層
 本態様の透明導電体には、第二アドミッタンス調整層上にさらに第三アドミッタンス調整層が積層されてもよい。第三アドミッタンス調整層は、透明導電体の光学アドミッタンスを調整したり、透明導電体を保護する役割を果たす。
(1-5) Third Admittance Adjustment Layer In the transparent conductor of this aspect, a third admittance adjustment layer may be further laminated on the second admittance adjustment layer. The third admittance adjusting layer plays a role of adjusting the optical admittance of the transparent conductor or protecting the transparent conductor.
 第三アドミッタンス調整層の波長510nmの光の屈折率は1.3~1.8であることが好ましく、より好ましくは1.35~1.6であり、さらに好ましくは1.35~1.5である。第三アドミッタンス調整層の屈折率が1.3~1.8であると、透明導電体の光学アドミッタンスが微調整されやすい。第三アドミッタンス調整層の屈折率は、エリプソメーターで測定される。第三アドミッタンス調整層の屈折率は、第三アドミッタンス調整層を構成する材料や、第三アドミッタンス調整層中の材料の密度等によって調整される。 The refractive index of light having a wavelength of 510 nm of the third admittance adjusting layer is preferably 1.3 to 1.8, more preferably 1.35 to 1.6, and still more preferably 1.35 to 1.5. It is. When the refractive index of the third admittance adjusting layer is 1.3 to 1.8, the optical admittance of the transparent conductor is easily finely adjusted. The refractive index of the third admittance adjusting layer is measured with an ellipsometer. The refractive index of the third admittance adjusting layer is adjusted by the material constituting the third admittance adjusting layer, the density of the material in the third admittance adjusting layer, and the like.
 ここで、第三アドミッタンス調整層には、第二アドミッタンス調整層に含まれる前記誘電性材料または酸化物半導体材料の波長570nmの光の屈折率より、低い屈折率を有する材料が含まれることが好ましい。第三アドミッタンス調整層を構成する材料の波長570nmの光の屈折率は、第二アドミッタンス調整層に含まれる材料の屈折率に応じて適宜選択されるが、1.3~1.8であることが好ましく、より好ましくは1.35~1.6であり、さらに好ましくは1.35~1.5である。第三アドミッタンス調整層を構成する材料の屈折率が1.35~1.5であると、透明導電体の光学アドミッタンスが微調整されやすい。なお、第三アドミッタンス調整層の屈折率は、第三アドミッタンス調整層を構成する材料やその密度によって調整される。 Here, the third admittance adjusting layer preferably includes a material having a refractive index lower than the refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material included in the second admittance adjusting layer. . The refractive index of light having a wavelength of 570 nm of the material constituting the third admittance adjusting layer is appropriately selected according to the refractive index of the material included in the second admittance adjusting layer, and is 1.3 to 1.8. Is more preferably 1.35 to 1.6, and still more preferably 1.35 to 1.5. When the refractive index of the material constituting the third admittance adjusting layer is 1.35 to 1.5, the optical admittance of the transparent conductor is easily finely adjusted. The refractive index of the third admittance adjusting layer is adjusted by the material constituting the third admittance adjusting layer and its density.
 第三アドミッタンス調整層を構成する材料も、誘電性材料または酸化物半導体材料であれば特に制限されず、その例にはSiO、Al、MgF、Y等が含まれる。屈折率を微調整する観点からは、誘電性材料がSiO、MgFであることが好ましい。 The material constituting the third admittance adjusting layer is not particularly limited as long as it is a dielectric material or an oxide semiconductor material, and examples thereof include SiO 2 , Al 2 O 3 , MgF 2 , Y 2 O 3 and the like. . From the viewpoint of finely adjusting the refractive index, the dielectric material is preferably SiO 2 or MgF 2 .
 第三アドミッタンス調整層の厚みは、10~150nmであることが好ましく、より好ましくは20~100nmである。第三アドミッタンス調整層の厚みが10nm以上であると、透明導電体表面の光学アドミッタンスを微調整しやすい。一方、第三アドミッタンス調整層の厚みが150nm以下であれば、透明導電体の厚みが薄くなる。第三アドミッタンス調整層の厚みは、エリプソメーターで測定される。 The thickness of the third admittance adjusting layer is preferably 10 to 150 nm, more preferably 20 to 100 nm. When the thickness of the third admittance adjusting layer is 10 nm or more, it is easy to finely adjust the optical admittance on the surface of the transparent conductor. On the other hand, if the thickness of the third admittance adjusting layer is 150 nm or less, the thickness of the transparent conductor is reduced. The thickness of the third admittance adjusting layer is measured with an ellipsometer.
 (1-6)その他の層
 第一の態様の透明導電体には、前述の透明支持材、第一アドミッタンス調整層、透明金属膜、第二アドミッタンス調整層、及び第三アドミッタンス調整層以外のその他の層が含まれてもよい。その他の層は、透明導電体の光透過性に影響を及ぼさない限り、どのような層であってもよく;例えば、第一アドミッタンス調整層と透明金属膜との間、もしくは第二アドミッタンス調整層と透明金属膜との間に形成されてもよい。その他の層の厚みは、15nm以下であることが好ましく、より好ましくは10nm以下である。
(1-6) Other Layers The transparent conductor of the first aspect includes other than the transparent support material, the first admittance adjusting layer, the transparent metal film, the second admittance adjusting layer, and the third admittance adjusting layer described above. Of layers may be included. The other layer may be any layer as long as it does not affect the light transmittance of the transparent conductor; for example, between the first admittance adjusting layer and the transparent metal film, or the second admittance adjusting layer. And a transparent metal film. The thickness of the other layers is preferably 15 nm or less, more preferably 10 nm or less.
 (1-7)透明導電体の物性
 第一の態様の透明導電体は、波長400nm~800nmの光の平均吸収率が15%以下、好ましくは12%以下であり、さらに好ましくは10%以下である。また、波長400nm~800nmの光の吸収率の最大値は25%以下であり、好ましくは20%以下であり、さらに好ましくは15%以下である。透明導電体の光の吸収率は、透明金属膜のプラズモン吸収率や、各層を構成する材料の光吸収率を抑制することで、低減される。
(1-7) Physical Properties of Transparent Conductor The transparent conductor according to the first embodiment has an average absorptance of light having a wavelength of 400 nm to 800 nm of 15% or less, preferably 12% or less, more preferably 10% or less. is there. Further, the maximum value of the absorptance of light having a wavelength of 400 nm to 800 nm is 25% or less, preferably 20% or less, and more preferably 15% or less. The light absorption rate of the transparent conductor can be reduced by suppressing the plasmon absorption rate of the transparent metal film and the light absorption rate of the material constituting each layer.
 前述の透明導電体の波長450nm~800nmの光の平均透過率は、50%以上であることが好ましく、より好ましくは70%以上であり、さらに好ましくは80%以上である。一方、透明導電体の波長500nm~700nmの光の平均反射率は、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。上記波長の光の平均透過率が50%以上であり、かつ平均反射率20%以下であると、高い透明性が要求される用途にも、透明導電体を適用できる。平均透過率及び平均反射率は、透明導電体の正面に対して5°傾けた角度から測定光を透明導電体に入射させて測定される値である。平均透過率及び平均反射率は、分光光度計で測定され、平均吸収率は、100-(平均透過率+平均反射率)から算出される。 The average transmittance of light having a wavelength of 450 nm to 800 nm of the transparent conductor is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more. On the other hand, the average reflectance of light having a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. If the average transmittance of light having the above wavelength is 50% or more and the average reflectance is 20% or less, the transparent conductor can also be applied to uses where high transparency is required. The average transmittance and the average reflectance are values measured by allowing measurement light to enter the transparent conductor from an angle inclined by 5 ° with respect to the front surface of the transparent conductor. The average transmittance and the average reflectance are measured with a spectrophotometer, and the average absorptance is calculated from 100− (average transmittance + average reflectance).
 透明導電体のL*a*b*表色系におけるa*値及びb*値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L*a*b*表色系におけるa*値及びb*値は±30以内であれば、透明導電体が無色透明に観察される。L*a*b*表色系におけるa*値及びb*値は、分光光度計で測定される。 The a * value and b * value in the L * a * b * color system of the transparent conductor are preferably within ± 30, more preferably within ± 5, and even more preferably within ± 3.0. Particularly preferably, it is within ± 2.0. If the a * value and b * value in the L * a * b * color system are within ± 30, the transparent conductor is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の表面電気抵抗は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。透明導電体の表面電気抵抗値は、透明金属膜の厚み等によって調整される。透明導電体の表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定できる。また、市販の表面電気抵抗率計によっても測定できる。 The surface electrical resistance of the transparent conductor is preferably 50Ω / □ or less, more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50Ω / □ or less can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value of the transparent conductor is adjusted by the thickness of the transparent metal film and the like. The surface electrical resistance value of the transparent conductor can be measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It can also be measured by a commercially available surface electrical resistivity meter.
 透明導電体のヘイズ値と透明支持材のヘイズ値Hsubとの差(ヘイズ劣化)は、0.9未満であることが好ましく、より好ましくは0.5以下である。透明導電体のヘイズ値と透明支持材のヘイズ値Hsubとの差は、第一アドミッタンス調整層や透明金属膜、第二アドミッタンス調整層の積層によって、どの程度ヘイズ値が高まったか;つまり各層の積層によって、どの程度、透明性が損なわれたかを示す指標である。透明導電体のヘイズ値は、ヘイズメーターで測定される。 The difference between the haze value H sub haze values and transparency support transparent conductor (haze degradation) is preferably less than 0.9, more preferably 0.5 or less. The difference between the haze value H sub haze value of the transparent conductor and the transparent support material, the first admittance adjusting layer and a transparent metal film, by lamination of the second admittance adjusting layer, how much haze value is increased; that each layer It is an index indicating how much transparency is impaired by the lamination. The haze value of the transparent conductor is measured with a haze meter.
 (2)第二の態様の透明導電体について
 第二の態様の透明導電体の構造を図2に示す。図2に示されるように、第二の態様の透明導電体200は、透明支持材11/下地層15/第一アドミッタンス調整層12/透明金属膜13/第二アドミッタンス調整層14が含まれる。第二アドミッタンス調整層14上には、さらに第三アドミッタンス調整層(図示せず)が積層されてもよい。
(2) Regarding the transparent conductor of the second embodiment The structure of the transparent conductor of the second embodiment is shown in FIG. As shown in FIG. 2, the transparent conductor 200 of the second embodiment includes a transparent support material 11 / underlayer 15 / first admittance adjustment layer 12 / transparent metal film 13 / second admittance adjustment layer 14. A third admittance adjustment layer (not shown) may be further laminated on the second admittance adjustment layer 14.
 第二の態様の透明導電体200では、2つのアドミッタンス調整層12,14、及び下地層15によって、後述するように透明導電体200の光学アドミッタンスが調整される。その結果、透明導電体200の表面での光の反射が抑制され、透明導電体200の光透過性が高まる。 In the transparent conductor 200 of the second aspect, the optical admittance of the transparent conductor 200 is adjusted by the two admittance adjusting layers 12 and 14 and the underlayer 15 as described later. As a result, light reflection on the surface of the transparent conductor 200 is suppressed, and the light transmittance of the transparent conductor 200 is increased.
 第二の態様の透明導電体には、2層以上の透明金属膜が含まれてもよく;さらに2層の透明金属膜の間には、他のアドミッタンス調整層が挟み込まれてもよい。他のアドミッタンス調整層は、第一アドミッタンス調整層や第二アドミッタンス調整層と同様の層でありうる。 The transparent conductor of the second aspect may include two or more transparent metal films; and another admittance adjusting layer may be sandwiched between the two transparent metal films. The other admittance adjustment layer may be the same layer as the first admittance adjustment layer and the second admittance adjustment layer.
 第二の態様の透明導電体に含まれる透明支持材、第一アドミッタンス調整層、透明金属膜、第二アドミッタンス調整層、第三アドミッタンス調整層は、第一の態様に含まれる透明支持材、第一アドミッタンス調整層、透明金属膜、第二アドミッタンス調整層、第三アドミッタンス調整層とそれぞれ同様でありうる。 The transparent support material, the first admittance adjustment layer, the transparent metal film, the second admittance adjustment layer, and the third admittance adjustment layer included in the transparent conductor of the second aspect are the transparent support material included in the first aspect, the first Each of the one admittance adjusting layer, the transparent metal film, the second admittance adjusting layer, and the third admittance adjusting layer may be the same.
 (2-1)下地層
 下地層は、透明支持材と第一アドミッタンス調整層との間に形成される層である。下地層には、透明支持材の波長570nmの光の屈折率より低い屈折率を有する誘電性材料または酸化物半導体材料を含む層(以下「低屈折率層」とも称する)が一層以上含まれる。第二の態様の透明導電体では、下地層に低屈折率層が含まれるため、後述するように、透明金属膜の光の反射が抑制される。低屈折率層に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、透明支持材の屈折率に応じて適宜選択されるが、1.8以下であることが好ましく、より好ましくは1.30~1.6であり、さらに好ましくは1.35~1.5である。
(2-1) Underlayer The underlayer is a layer formed between the transparent support material and the first admittance adjusting layer. The underlayer includes one or more layers containing a dielectric material or an oxide semiconductor material (hereinafter also referred to as “low refractive index layer”) having a refractive index lower than the refractive index of light having a wavelength of 570 nm of the transparent support material. In the transparent conductor of the second aspect, since the low refractive index layer is included in the base layer, reflection of light from the transparent metal film is suppressed as described later. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is appropriately selected according to the refractive index of the transparent support material, but is preferably 1.8 or less, More preferably, it is 1.30 to 1.6, and still more preferably 1.35 to 1.5.
 下地層は、一層(低屈折率層)のみからなる単層体であってもよく、また2~10層以上の積層体であってもよい。透明導電体のコストや製造効率等の観点からは、下地層が単層体であることが好ましい。 The underlayer may be a single layer composed of only one layer (low refractive index layer) or a laminate of 2 to 10 layers or more. From the viewpoint of the cost and production efficiency of the transparent conductor, the underlayer is preferably a single layer body.
 低屈折率層を構成する材料は、透明支持材の屈折率に応じて適宜選択される。例えば、フッ化マグネシウム(MgF)、SiO、AlF、CaF、CeF、CdF、LaF、LiF、NaF、NdF、YF、YbF、Ga、LaAlO等でありうる。これらの中でも屈折率が低いとの観点から、フッ化マグネシウム(MgF)が好ましい。低屈折率層には、これらの材料が1種のみ含まれてもよく、2種以上含まれてもよい。 The material constituting the low refractive index layer is appropriately selected according to the refractive index of the transparent support material. For example, magnesium fluoride (MgF 2 ), SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, NdF 3 , YF 3 , YbF 3 , Ga 2 O 3 , LaAlO 3, etc. It is possible. Among these, magnesium fluoride (MgF 2 ) is preferable from the viewpoint that the refractive index is low. Only one of these materials may be included in the low refractive index layer, or two or more of these materials may be included.
 低屈折率層の厚みは、後述する光学アドミッタンスに基づいて適宜設定されるが、10~500nmであることが好ましく、より好ましくは30~250nmである。低屈折率層の厚みが10nm以上であると、透明金属膜の反射抑制効果が十分に得られやすい。 The thickness of the low refractive index layer is appropriately set based on optical admittance described later, but is preferably 10 to 500 nm, and more preferably 30 to 250 nm. When the thickness of the low refractive index layer is 10 nm or more, the reflection suppressing effect of the transparent metal film can be sufficiently obtained.
 下地層には、低屈折率層より高い屈折率を有する材料を含む他の層が含まれてもよい。下地層に含まれる他の層を構成する材料は特に制限されず、例えばTiO、ITO、ZnO、ZnS、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi等でありうる。他の層には、これらの材料が1種のみ含まれてもよく、2種以上含まれてもよい。下地層に他の層が含まれると、後述する下地層の光学アドミッタンスが調整される。 The underlayer may include other layers including a material having a higher refractive index than the low refractive index layer. The material constituting the other layers included in the base layer is not particularly limited, for example TiO 2, ITO, ZnO, ZnS , Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 and the like. The other layer may contain only one kind of these materials or two or more kinds. When the underlayer includes other layers, the optical admittance of the underlayer described later is adjusted.
 下地層に含まれる他の層の厚みは、後述する光学アドミッタンスに基づいて適宜設定されるが、10~150nmであることが好ましく、より好ましくは20~80nmである。他の層の厚みが10nm以上であると、光学アドミッタンスの調整効果が十分に得られやすい。 The thickness of other layers contained in the underlayer is appropriately set based on optical admittance described later, but is preferably 10 to 150 nm, more preferably 20 to 80 nm. When the thickness of the other layer is 10 nm or more, the effect of adjusting the optical admittance is easily obtained.
 下地層の総厚は、透明導電体のフレキシブル性や分光特性の観点から、10~1000nmであることが好ましく、より好ましくは10~500nmであり、さらに好ましくは30~350nmである。 The total thickness of the underlayer is preferably 10 to 1000 nm, more preferably 10 to 500 nm, and still more preferably 30 to 350 nm from the viewpoint of the flexibility and spectral characteristics of the transparent conductor.
 下地層に含まれる低屈折率層や他の層は、通常、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層であり得る。成膜の容易性等の観点から、低屈折率層や他の層は、電子ビーム蒸着法またはスパッタ法で成膜された層であることが好ましい。 The low refractive index layer and other layers included in the underlayer are usually formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. It can be a layer. From the viewpoint of easiness of film formation, the low refractive index layer and other layers are preferably layers formed by electron beam evaporation or sputtering.
 (2-2)その他の層
 第二の態様の透明導電体には、前述の透明支持材、下地層、第一アドミッタンス調整層、透明金属膜、第二アドミッタンス調整層、及び第三アドミッタンス調整層以外に、その他の層が含まれてもよい。その他の層は、透明導電体の光透過性に影響を及ぼさない限り、どのような層であってもよく;例えば、第一アドミッタンス調整層と透明金属膜との間、もしくは第二アドミッタンス調整層と透明金属膜との間に形成されてもよい。その他の層の厚みは、15nm以下であることが好ましく、より好ましくは10nm以下である。
(2-2) Other layers The transparent conductor of the second embodiment includes the above-mentioned transparent support material, underlayer, first admittance adjusting layer, transparent metal film, second admittance adjusting layer, and third admittance adjusting layer. In addition, other layers may be included. The other layer may be any layer as long as it does not affect the light transmittance of the transparent conductor; for example, between the first admittance adjusting layer and the transparent metal film, or the second admittance adjusting layer. And a transparent metal film. The thickness of the other layers is preferably 15 nm or less, more preferably 10 nm or less.
 (2-3)透明導電体の物性
 第二の態様の透明導電体は、波長400nm~800nmの光の平均吸収率が10%以下であり、好ましくは8%以下であり、さらに好ましくは7%以下である。また、波長450nm~800nmの光の吸収率の最大値は15%以下であり、好ましくは10%以下であり、さらに好ましくは9%以下である。透明導電体の光の平均吸収率は、透明金属膜のプラズモン吸収率や、各層を構成する材料の光吸収率を抑制することで、低減される。
(2-3) Physical properties of transparent conductor The transparent conductor of the second embodiment has an average absorptance of light having a wavelength of 400 nm to 800 nm of 10% or less, preferably 8% or less, more preferably 7%. It is as follows. Further, the maximum value of the absorptance of light having a wavelength of 450 nm to 800 nm is 15% or less, preferably 10% or less, and more preferably 9% or less. The average light absorption rate of the transparent conductor can be reduced by suppressing the plasmon absorption rate of the transparent metal film and the light absorption rate of the material constituting each layer.
 透明導電体の波長450nm~800nmの光の平均透過率は、50%以上であることが好ましく、より好ましくは70%以上であり、さらに好ましくは80%以上である。一方、透明導電体の波長500nm~700nmの光の平均反射率は、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。上記波長の光の平均透過率が50%以上であり、かつ平均反射率20%以下であると、高い透明性が要求される用途にも、透明導電体を適用できる。平均透過率及び平均反射率は、透明導電体の正面に対して5°傾けた角度から測定光を透明導電体に入射させて測定される値である。平均透過率及び平均反射率は、分光光度計で測定され、平均吸収率は、100-(平均透過率+平均反射率)から算出される。 The average transmittance of light having a wavelength of 450 nm to 800 nm of the transparent conductor is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more. On the other hand, the average reflectance of light having a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. If the average transmittance of light having the above wavelength is 50% or more and the average reflectance is 20% or less, the transparent conductor can also be applied to uses where high transparency is required. The average transmittance and the average reflectance are values measured by allowing measurement light to enter the transparent conductor from an angle inclined by 5 ° with respect to the front surface of the transparent conductor. The average transmittance and the average reflectance are measured with a spectrophotometer, and the average absorptance is calculated from 100− (average transmittance + average reflectance).
 透明導電体のL*a*b*表色系におけるa*値及びb*値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L*a*b*表色系におけるa*値及びb*値は±30以内であれば、透明導電体が無色透明に観察される。L*a*b*表色系におけるa*値及びb*値は、分光光度計で測定される。 The a * value and b * value in the L * a * b * color system of the transparent conductor are preferably within ± 30, more preferably within ± 5, and even more preferably within ± 3.0. Particularly preferably, it is within ± 2.0. If the a * value and b * value in the L * a * b * color system are within ± 30, the transparent conductor is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の表面電気抵抗は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。透明導電体の表面電気抵抗値は、透明金属膜の厚み等によって調整できる。透明導電体の表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定できる。また、市販の表面電気抵抗率計によっても測定できる。 The surface electrical resistance of the transparent conductor is preferably 50Ω / □ or less, more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50Ω / □ or less can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value of the transparent conductor can be adjusted by the thickness of the transparent metal film or the like. The surface electrical resistance value of the transparent conductor can be measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It can also be measured by a commercially available surface electrical resistivity meter.
 透明導電体のヘイズ値と透明支持材のヘイズ値Hsubとの差(ヘイズ劣化)は、0.9未満であることが好ましく、より好ましくは0.5以下である。透明導電体のヘイズ値は、ヘイズメーターで測定される。 The difference between the haze value H sub haze values and transparency support transparent conductor (haze degradation) is preferably less than 0.9, more preferably 0.5 or less. The haze value of the transparent conductor is measured with a haze meter.
 (3)第三の態様の透明導電体について
 第三の態様の透明導電体の構造を図3に示す。図3に示されるように、第三の態様の透明導電体300は、透明支持材21/第一アドミッタンス調整層22/低屈折率層26/透明金属膜23/低屈折率層27/第二アドミッタンス調整層24が含まれる。図3の透明導電体300では、透明金属膜23の両隣に低屈折率層26,27が積層されているが、透明金属膜23のいずれか一方の面のみに隣接して、低屈折率層が積層されてもよい。また第二アドミッタンス調整層24上には、さらに第三アドミッタンス調整層(図示せず)が積層されてもよい。
(3) About the transparent conductor of a 3rd aspect The structure of the transparent conductor of a 3rd aspect is shown in FIG. As shown in FIG. 3, the transparent conductor 300 of the third embodiment includes a transparent support material 21 / first admittance adjustment layer 22 / low refractive index layer 26 / transparent metal film 23 / low refractive index layer 27 / second. An admittance adjustment layer 24 is included. In the transparent conductor 300 of FIG. 3, the low refractive index layers 26 and 27 are laminated on both sides of the transparent metal film 23, but the low refractive index layer is adjacent to only one surface of the transparent metal film 23. May be laminated. A third admittance adjustment layer (not shown) may be further laminated on the second admittance adjustment layer 24.
 前述のように、透明金属膜の厚みが厚いと、透明金属膜を構成する金属本来の反射が生じ、透明導電体の光透過性が低くなる。一方で、透明金属膜の反射抑制のために、透明金属膜の厚みを薄くすると、膜の表面粗さが粗くなりやすい。その結果、プラズモン吸収が生じて、透明導電体の光透過性が低くなる。 As described above, when the thickness of the transparent metal film is thick, the reflection of the metal constituting the transparent metal film occurs, and the light transmittance of the transparent conductor is lowered. On the other hand, if the thickness of the transparent metal film is reduced in order to suppress reflection of the transparent metal film, the surface roughness of the film tends to be rough. As a result, plasmon absorption occurs, and the light transmittance of the transparent conductor is lowered.
 ここで、厚みの薄い透明金属膜が、金属微細球で構成されると仮定すると、局在プラズモン吸収断面積は下記の式で表される。
Figure JPOXMLDOC01-appb-M000001
Here, assuming that the thin transparent metal film is composed of metal microspheres, the local plasmon absorption cross section is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
 上記関係式に基づけば、透明金属膜に接する媒質の屈折率が低ければ低いほど、プラズモン吸収が抑制される。第三の態様の透明導電体では、透明金属膜に隣接して、比較的屈折率の低い低屈折率層が積層される。そのため、透明金属膜のプラズモン吸収が抑制され、透明導電体の光透過性が高まる。 Based on the above relational expression, the lower the refractive index of the medium in contact with the transparent metal film, the lower the plasmon absorption. In the transparent conductor of the third aspect, a low refractive index layer having a relatively low refractive index is laminated adjacent to the transparent metal film. Therefore, plasmon absorption of the transparent metal film is suppressed, and the light transmittance of the transparent conductor is increased.
 ここで、第三の態様の透明導電体には、2層以上の透明金属膜が含まれてもよく;さらに2層の透明金属膜の間には、他のアドミッタンス調整層が挟み込まれてもよい。他のアドミッタンス調整層は、第一アドミッタンス調整層や第二アドミッタンス調整層と同様の層でありうる。 Here, the transparent conductor of the third aspect may include two or more transparent metal films; and further, another admittance adjusting layer may be sandwiched between the two transparent metal films. Good. The other admittance adjustment layer may be the same layer as the first admittance adjustment layer and the second admittance adjustment layer.
 第三の態様の透明導電体に含まれる透明支持材、第一アドミッタンス調整層、透明金属膜、及び第二アドミッタンス調整層、第三アドミッタンス調整層は第一の態様の透明支持材、第一アドミッタンス調整層、透明金属膜、第二アドミッタンス調整層、及び第三アドミッタンス調整層とそれぞれ同様でありうる。 The transparent support material, the first admittance adjustment layer, the transparent metal film, the second admittance adjustment layer, and the third admittance adjustment layer included in the transparent conductor of the third aspect are the transparent support material and the first admittance of the first aspect. The adjustment layer, the transparent metal film, the second admittance adjustment layer, and the third admittance adjustment layer may be the same.
 (3-1)低屈折率層
 低屈折率層は、透明金属膜に隣接する層であり、前述のように、透明金属膜のプラズモン吸収を抑制する層である。
(3-1) Low Refractive Index Layer The low refractive index layer is a layer adjacent to the transparent metal film and suppresses plasmon absorption of the transparent metal film as described above.
 低屈折率層には、第一アドミッタンス層及び第二アドミッタンス層に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の屈折率より、低い屈折率を有する材料が含まれる。具体的には、低屈折率層に含まれる材料の屈折率が、第一アドミッタンス層及び第二アドミッタンス層に含まれる誘電性材料または酸化物半導体材料の屈折率より、それぞれ0.2以上低いことが好ましく、0.4以上低いことがより好ましい。 The low refractive index layer includes a material having a refractive index lower than the refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the first admittance layer and the second admittance layer. Specifically, the refractive index of the material included in the low refractive index layer is 0.2 or more lower than the refractive index of the dielectric material or oxide semiconductor material included in the first admittance layer and the second admittance layer, respectively. Is preferable, and 0.4 or more is more preferable.
 また、低屈折率層を構成する材料の屈折率は、前述のプラズモン抑制効果を鑑みると、1.8以下であることが好ましく、より好ましくは1.30~1.6であり、特に好ましくは1.35~1.5である。低屈折率層の屈折率は、通常、低屈折率層を構成する材料の屈折率や、低屈折率層を構成する材料の密度で調整される。 Further, the refractive index of the material constituting the low refractive index layer is preferably 1.8 or less, more preferably 1.30 to 1.6, particularly preferably in view of the plasmon suppressing effect described above. 1.35 to 1.5. The refractive index of the low refractive index layer is usually adjusted by the refractive index of the material constituting the low refractive index layer and the density of the material constituting the low refractive index layer.
 低屈折率層を構成する材料は、所望の屈折率に応じて適宜選択され、例えば、フッ化マグネシウム(MgF)、SiO、AlF、CaF、CeF、CdF、LaF、LiF、NaF、NdF、Y、YF、YbF、Ga、LaAlO、NaAlF、Al、PbF、MgO、及びThO等でありうる。低屈折率層を構成する材料は、中でもMgF、SiO、Y、LaAlO、CaF、NaF、NaAlF、LiF、LaF、NdF、Al、CeF,PbF、MgO、及びThOであることが好ましく、屈折率が低いとの観点から、MgF及びSiOが特に好ましい。低屈折率層には、これらの材料が1種のみ含まれてもよく、2種以上含まれてもよい。 The material constituting the low refractive index layer is appropriately selected according to the desired refractive index. For example, magnesium fluoride (MgF 2 ), SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF , NaF, NdF 3 , Y 2 O 3 , YF 3 , YbF 3 , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , PbF 2 , MgO, and ThO 2 . The materials constituting the low refractive index layer are MgF 2 , SiO 2 , Y 2 O 3 , LaAlO 3 , CaF 2 , NaF, Na 3 AlF 6 , LiF, LaF 3 , NdF 3 , Al 2 O 3 , CeF 3 , among others. , PbF 2 , MgO, and ThO 2 are preferable, and MgF 2 and SiO 2 are particularly preferable from the viewpoint that the refractive index is low. Only one of these materials may be included in the low refractive index layer, or two or more of these materials may be included.
 低屈折率層の厚みは、後述の第一アドミッタンス調整層及び第二アドミッタンス調整層による光学アドミッタンスの調整効果を阻害しない厚みであることが好ましい。低屈折率層の厚みは0.1~15nmであり、好ましくは1~10nmであり、さらに好ましくは3~8nmである。 The thickness of the low refractive index layer is preferably a thickness that does not hinder the effect of adjusting the optical admittance by the first admittance adjusting layer and the second admittance adjusting layer described later. The thickness of the low refractive index layer is 0.1 to 15 nm, preferably 1 to 10 nm, and more preferably 3 to 8 nm.
 低屈折率層は、通常、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層であり得る。成膜の容易性等の観点から、低屈折率層や他の層は、電子ビーム蒸着法またはスパッタ法で成膜された層であることが好ましい。 The low refractive index layer can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. From the viewpoint of easiness of film formation, the low refractive index layer and other layers are preferably layers formed by electron beam evaporation or sputtering.
 (3-2)その他の層
 第三の態様の透明導電体には、前述の透明支持材、第一アドミッタンス調整層、低屈折率層、透明金属膜、第二アドミッタンス調整層、及び第三アドミッタンス調整層以外に、その他の層が含まれてもよい。その他の層は、透明導電体の光透過性に影響を及ぼさない限り、どのような層であってもよい。その他の層の厚みは、15nm以下であることが好ましく、より好ましくは10nm以下である。
(3-2) Other layers The transparent conductor of the third aspect includes the above-mentioned transparent support material, first admittance adjusting layer, low refractive index layer, transparent metal film, second admittance adjusting layer, and third admittance. Other layers may be included in addition to the adjustment layer. The other layers may be any layers as long as they do not affect the light transmittance of the transparent conductor. The thickness of the other layers is preferably 15 nm or less, more preferably 10 nm or less.
 (3-3)透明導電体の物性
 第三の態様の透明導電体は、波長400nm~800nmの光の平均吸収率が9%以下であることが好ましく、より好ましくは8%以下であり、さらに好ましくは7%以下である。また、波長450nm~800nmの光の吸収率の最大値は15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは9%以下である。透明導電体の光の吸収率は、透明金属膜のプラズモン吸収率や、各層を構成する材料の光吸収率を抑制することで、低減される。
(3-3) Physical properties of transparent conductor The transparent conductor of the third aspect preferably has an average absorptance of light having a wavelength of 400 nm to 800 nm of 9% or less, more preferably 8% or less, Preferably it is 7% or less. Further, the maximum value of the absorptance of light having a wavelength of 450 nm to 800 nm is preferably 15% or less, more preferably 10% or less, and further preferably 9% or less. The light absorption rate of the transparent conductor can be reduced by suppressing the plasmon absorption rate of the transparent metal film and the light absorption rate of the material constituting each layer.
 透明導電体の波長450nm~800nmの光の平均透過率は、50%以上であることが好ましく、より好ましくは70%以上であり、さらに好ましくは80%以上である。一方、透明導電体の波長500nm~700nmの光の平均反射率は、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。上記波長の光の平均透過率が50%以上であり、かつ平均反射率20%以下であると、高い透明性が要求される用途にも、透明導電体を適用できる。平均透過率及び平均反射率は、透明導電体の正面に対して5°傾けた角度から測定光を透明導電体に入射させて測定される。平均透過率及び平均反射率は、分光光度計で測定され、平均吸収率は、100-(平均透過率+平均反射率)から算出される。 The average transmittance of light having a wavelength of 450 nm to 800 nm of the transparent conductor is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more. On the other hand, the average reflectance of light having a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. If the average transmittance of light having the above wavelength is 50% or more and the average reflectance is 20% or less, the transparent conductor can also be applied to uses where high transparency is required. The average transmittance and the average reflectance are measured by allowing measurement light to enter the transparent conductor from an angle inclined by 5 ° with respect to the front surface of the transparent conductor. The average transmittance and the average reflectance are measured with a spectrophotometer, and the average absorptance is calculated from 100− (average transmittance + average reflectance).
 透明導電体のL*a*b*表色系におけるa*値及びb*値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L*a*b*表色系におけるa*値及びb*値は±30以内であれば、透明導電体が無色透明に観察される。L*a*b*表色系におけるa*値及びb*値は、分光光度計で測定される。 The a * value and b * value in the L * a * b * color system of the transparent conductor are preferably within ± 30, more preferably within ± 5, and even more preferably within ± 3.0. Particularly preferably, it is within ± 2.0. If the a * value and b * value in the L * a * b * color system are within ± 30, the transparent conductor is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の表面電気抵抗は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。透明導電体の表面電気抵抗値は、透明金属膜の厚み等によって調整できる。透明導電体の表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定できる。また、市販の表面電気抵抗率計によっても測定できる。 The surface electrical resistance of the transparent conductor is preferably 50Ω / □ or less, more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50Ω / □ or less can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value of the transparent conductor can be adjusted by the thickness of the transparent metal film or the like. The surface electrical resistance value of the transparent conductor can be measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It can also be measured by a commercially available surface electrical resistivity meter.
 透明導電体のヘイズ値と透明支持材のヘイズ値Hsubとの差(ヘイズ劣化)は、0.9未満であることが好ましく、より好ましくは0.5以下であり、さらに好ましくは0.3以下である。透明導電体のヘイズ値は、ヘイズメーターで測定される。 The difference between the haze value H sub haze values and transparency support transparent conductor (haze degradation) is preferably less than 0.9, more preferably 0.5 or less, more preferably 0.3 It is as follows. The haze value of the transparent conductor is measured with a haze meter.
 2.透明導電体の光学アドミッタンス
 前述のように、透明導電体に含まれる透明金属膜の導電性を高めるためには、透明金属膜をある程度厚くする必要がある。しかし、透明金属膜の厚みが厚くなると、透明金属膜の反射率が大きくなり、透明導電体の光透過率が低下する。これに対し、前述の第一の態様~第三の態様の透明導電体では、透明金属膜がアドミッタンス調整層で挟み込まれたり、下地層が積層されており、これらの層によって透明導電体表面の反射率が低く調整される。
2. Optical Admittance of Transparent Conductor As described above, in order to increase the conductivity of the transparent metal film included in the transparent conductor, it is necessary to thicken the transparent metal film to some extent. However, as the thickness of the transparent metal film increases, the reflectance of the transparent metal film increases and the light transmittance of the transparent conductor decreases. On the other hand, in the transparent conductors of the first to third aspects described above, the transparent metal film is sandwiched between the admittance adjusting layers or the underlayer is laminated. The reflectivity is adjusted low.
 ここで、透明導電体の表面(透明導電体における透明支持材と反対側の表面)の反射率Rは、光が入射する媒質の光学アドミッタンスyenvと、透明導電体の表面の等価アドミッタンスYとから定まる。光が入射する媒質とは、透明導電体の表面と接する部材もしくは環境をいう。媒質の光学アドミッタンスyenvと、透明導電体の表面の等価アドミッタンスYとの関係は以下の式で表される。
Figure JPOXMLDOC01-appb-M000002
 上記の式に基づけば、|yenv-Y|が0に近い程、透明導電体の表面の反射率Rが低くなる。
Here, the reflectance R of the surface of the transparent conductor (the surface opposite to the transparent support material in the transparent conductor) is determined by the optical admittance y env of the medium on which light is incident and the equivalent admittance Y E of the surface of the transparent conductor. Determined from The medium on which light is incident refers to a member or environment that contacts the surface of the transparent conductor. The relationship between the optical admittance y env of the medium and the equivalent admittance Y E of the surface of the transparent conductor is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
Based on the above formula, the closer the value | y env −Y E | is to 0, the lower the reflectance R of the surface of the transparent conductor.
 前記媒質の光学アドミッタンスyenvは、電場強度と磁場強度との比(H/E)から求められ、媒質の屈折率nenvと同一である。一方、等価アドミッタンスYは、透明導電体を構成する層の光学アドミッタンスYから求められる。例えば透明導電体が一層からなる場合には、透明導電体の等価アドミッタンスYは、当該層の光学アドミッタンスY(屈折率)と等しくなる。 The optical admittance y env of the medium is obtained from the ratio (H / E) of the electric field strength and the magnetic field strength, and is the same as the refractive index n env of the medium. On the other hand, the equivalent admittance Y E is determined from the optical admittance Y of the layers constituting the transparent conductor. For example, when the transparent conductor composed of one is equivalent admittance Y E of the transparent conductor is equal to the of the layer optical admittance Y (refractive index).
 一方、透明導電体が積層体である場合、1層目からx層目までの積層体の光学アドミッタンスY(E H)は、1層目から(x-1)層目までの積層体の光学アドミッタンスYx-1(Ex-1 Hx-1)と、特定のマトリクスとの積で表され;具体的には以下の式(1)または式(2)にて求められる。 On the other hand, when the transparent conductor is a laminate, the optical admittance Y x (E x H x ) of the laminate from the first layer to the x layer is the laminate from the first layer to the (x−1) layer. It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the body and a specific matrix; specifically, it is obtained by the following formula (1) or formula (2).
・x層目が誘電性材料または酸化物半導体材料からなる層である場合
Figure JPOXMLDOC01-appb-M000003
When the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
Figure JPOXMLDOC01-appb-M000003
・x層目が理想金属層である場合
Figure JPOXMLDOC01-appb-M000004
・ When the xth layer is an ideal metal layer
Figure JPOXMLDOC01-appb-M000004
 そして、x層目が最表層であるときの、透明支持材から最表層までの積層物の光学アドミッタンスYx(E H)が、当該透明導電体の等価アドミッタンスYとなる。以下、第一の態様~第三の態様の核透明導電体の光学アドミッタンスについて、それぞれ説明する。 When the x-th layer is the outermost layer, the optical admittance Yx (E x H x ) of the laminate from the transparent support material to the outermost layer becomes the equivalent admittance Y E of the transparent conductor. Hereinafter, the optical admittance of the nuclear transparent conductor according to the first to third aspects will be described.
 (1)第一の態様の透明導電体の光学アドミッタンス
 図4Aに、第一の態様の透明導電体(透明支持材(ガラス基板)/第一アドミッタンス調整層(TiO)/透明金属膜(Ag)/第二アドミッタンス調整層(TiO)/第三アドミッタンス調整層(SiO)を備える透明導電体)の波長570nmのアドミッタンス軌跡を示す。グラフの横軸は、光学アドミッタンスYをx+iyで表わしたときの実部;つまり当該式におけるxであり、横軸は光学アドミッタンスの虚部;つまり当該式におけるyである。
(1) Optical Admittance of Transparent Conductor of First Aspect FIG. 4A shows the transparent conductor (transparent support material (glass substrate) / first admittance adjusting layer (TiO 2 ) / transparent metal film (Ag) of the first aspect. ) / Second admittance adjustment layer (TiO 2 ) / transparent conductor with third admittance adjustment layer (SiO 2 )). The horizontal axis of the graph is the real part when the optical admittance Y is represented by x + iy; that is, x in the formula, and the horizontal axis is the imaginary part of the optical admittance; that is, y in the formula.
 図4Aにおいて、アドミッタンス軌跡の最終座標が、等価アドミッタンスYである。そして、光が入射する媒体を空気と仮定すると、当該等価アドミッタンスYの座標(x,y)と空気のアドミッタンス座標(1,0)との距離が、透明導電体表面の反射率Rに比例する。つまり、等価アドミッタンスYの座標(x,y)と、空気のアドミッタンスyenvの座標(1,0)との距離が近ければ近いほど、透明導電体の反射率Rが小さくなる。 In Figure 4A, the final coordinates of the admittance locus is equivalent admittance Y E. Assuming that the medium on which the light is incident is air, the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (1, 0) of the air is the reflectance R of the transparent conductor surface. Is proportional to That is, the closer the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the coordinates (1, 0) of the air admittance y env is, the smaller the reflectance R of the transparent conductor is.
 また、反射率Rと等価アドミッタンスYと光が入射する媒体の光学アドミッタンスyenvとの関係式に基づけば、等価アドミッタンスYの座標(x,y)が、媒体(空気)のアドミッタンス座標(1,0)より右側にあると、反射率Rが小さくなりやすくなる。したがって、第一の態様の透明導電体では、等価アドミッタンスYのx座標xが好ましくは0.8以上であり、さらに好ましくは1.0以上である。 Further, based on the relational expression between the reflectance R, the equivalent admittance Y E, and the optical admittance y env of the medium on which light is incident, the coordinates (x E , y E ) of the equivalent admittance Y E are the admittance of the medium (air). If it is on the right side of the coordinates (1, 0), the reflectance R tends to be small. Thus, the transparent conductor of the first aspect, is preferably x-coordinate x E of the equivalent admittance Y E is 0.8 or more, further preferably 1.0 or more.
 また、第一の態様の透明導電体では、透明金属膜と第一アドミッタンス調整層側の界面の波長570nmにおける光学アドミッタンスをY1(=x+iy)とし、透明金属膜と第二アドミッタンス調整層側の界面の波長570nmにおける光学アドミッタンスをY2(=x+iy)とした場合に、x及びxのうちいずれか一方、もしくは両方が1.6以上となるように調整される。つまり、図4Aのアドミッタンス軌跡におけるY1(x,y)、もしくはY2(x,y)の横軸座標が1.6以上とされる。なお、透明導電体に複数の透明金属膜が含まれる場合には、最も透明支持材側の透明金属膜の第一アドミッタンス調整層側の界面の光学アドミッタンスをY1=x+iyとし、最も空気側の透明金属膜の第二アドミッタンス調整層側の界面の光学アドミッタンスをY2=x+iyとする。x及びxのうちいずれか一方、もしくは両方が1.6以上であると、透明導電体の光透過性が高まりやすくなる。その理由を以下に示す。 In the transparent conductor of the first aspect, the optical admittance at the wavelength of 570 nm at the interface between the transparent metal film and the first admittance adjustment layer is Y1 (= x 1 + ii 1 ), and the transparent metal film and the second admittance adjustment layer When the optical admittance at the wavelength of 570 nm of the side interface is Y2 (= x 2 + iy 2 ), either one of x 1 and x 2 or both are adjusted to be 1.6 or more. That is, the horizontal axis coordinate of Y1 (x 1 , y 1 ) or Y2 (x 2 , y 2 ) in the admittance locus in FIG. 4A is 1.6 or more. When the transparent conductor includes a plurality of transparent metal films, the optical admittance at the interface on the first admittance adjustment layer side of the transparent metal film on the most transparent support material side is Y1 = x 1 + iy 1 , and the most air The optical admittance at the interface on the second admittance adjustment layer side of the transparent metal film on the side is Y2 = x 2 + iy 2 . either one of x 1 and x 2, or when both are 1.6 or higher, is likely to increase the light transmission of the transparent conductor. The reason is as follows.
 透明金属膜は、一般的に光学アドミッタンスの虚部の値が大きく、透明金属を積層すると、アドミッタンス軌跡が縦軸(虚部)方向に大きく移動する。図5(a)に、透明支持材/透明金属膜/アドミッタンス調整層をこの順に備える透明導電体の波長570nmのアドミッタンス軌跡を示し、図5(b)に当該透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示す。図5(a)に示されるように、透明支持材上に直接透明金属膜を積層すると、アドミッタンス軌跡の始点(透明支持材のアドミッタンス座標(約1.5,0))から縦軸(虚部)方向にアドミッタンス軌跡が大きく移動し、アドミッタンス座標の虚部の絶対値が非常に大きくなる。そしてアドミッタンス座標の虚部の絶対値が大きくなると、透明金属膜上にアドミッタンス調整層を積層しても、等価アドミッタンスYを1に近づけることが難しくなる。 The transparent metal film generally has a large value of the imaginary part of the optical admittance, and when a transparent metal is laminated, the admittance locus greatly moves in the vertical axis (imaginary part) direction. FIG. 5A shows an admittance locus of a transparent conductor having a transparent support material / transparent metal film / admittance adjusting layer in this order, and FIG. 5B shows a wavelength of 450 nm and a wavelength of 570 nm of the transparent conductor. And an admittance locus at a wavelength of 700 nm. As shown in FIG. 5A, when a transparent metal film is laminated directly on a transparent support material, the vertical axis (imaginary part) from the start point of the admittance locus (the admittance coordinates (about 1.5, 0) of the transparent support material). ) The admittance locus moves greatly in the direction, and the absolute value of the imaginary part of the admittance coordinates becomes very large. When the absolute value of the imaginary part of the admittance coordinates increases, be laminated admittance adjusting layer on a transparent metal film, it is bringing the equivalent admittance Y E 1 becomes difficult.
 またたとえ、透明支持材と透明金属膜との間にアドミッタンス調整層を形成したとしても、前述のY1の実部の座標xが1.6以上とならない;つまり図5(a)のように、第一アドミッタンス調整層のアドミッタンス軌跡が始点(透明支持材のアドミッタンス座標(約1.5,0))から殆ど移動しない場合には、アドミッタンス軌跡が、グラフの横軸を中心に線対称になり難い。そして、特定波長(本発明では570nm)におけるアドミッタンス軌跡が、グラフの横軸を中心に線対称にならないと、図5(b)に示されるように、他の波長(例えば450nmや700nm)におけるアドミッタンス軌跡がぶれやすく、等価アドミッタンスYの座標が一定になりにくい。そのため、反射防止効果が十分でない波長領域が生じやすい。 Also Even if the formation of the admittance adjustment layer between the transparent support and the transparent metal film, the coordinates x 1 of the real part of the above Y1 is not a 1.6; as shown in other words FIGS. 5 (a) When the admittance locus of the first admittance adjustment layer hardly moves from the starting point (the admittance coordinates (about 1.5, 0) of the transparent support material), the admittance locus becomes line symmetric about the horizontal axis of the graph. hard. If the admittance locus at a specific wavelength (570 nm in the present invention) is not line symmetric about the horizontal axis of the graph, as shown in FIG. 5B, the admittance at other wavelengths (for example, 450 nm and 700 nm). trajectory tends shake, the coordinates of the equivalent admittance Y E is less likely to be constant. Therefore, a wavelength region where the antireflection effect is not sufficient is likely to occur.
 一方、第一の態様の透明導電体(透明支持材/第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層をこの順に備える透明導電体)では、図6(a)に示されるように、透明支持材と透明金属膜との間に第一アドミッタンス調整層が積層されるため、Y1の実部の座標xが1.6以上となる。併せて、第一アドミッタンス調整層によって、アドミッタンス軌跡の虚部の座標が正方向に大きく移動する。つまり、透明金属膜によって、アドミッタンス軌跡が虚部の負方向に大きく移動しても、Y2の虚部の絶対値(y)が大きくなり難い。さらに、アドミッタンス軌跡がグラフの横軸を中心に線対称になりやすい。したがって、図6(b)に示されるように、波長570nmの場合だけでなく、波長400nmや波長700nmのアドミッタンス軌跡についてもグラフの横軸を中心に線対称となり、各波長の等価アドミッタンスYの座標がほぼ同一になる。つまり、いずれの波長においても、等価アドミッタンスYの値が1に近づきやすくなり、いずれの波長においても、十分な反射防止効果が得られる。 On the other hand, in the transparent conductor of the first aspect (transparent support / first admittance adjusting layer / transparent metal film / transparent conductor including the second admittance adjusting layer in this order), as shown in FIG. , since the first admittance adjusting layer is laminated between the transparent support and the transparent metal film, the coordinates x 1 of the real part of the Y1 becomes 1.6 or more. At the same time, the coordinates of the imaginary part of the admittance locus are largely moved in the positive direction by the first admittance adjustment layer. That is, even if the admittance trajectory moves greatly in the negative direction of the imaginary part due to the transparent metal film, the absolute value (y 2 ) of the imaginary part of Y2 is difficult to increase. Furthermore, the admittance trajectory tends to be line symmetric about the horizontal axis of the graph. Therefore, as shown in FIG. 6B, not only the case of the wavelength of 570 nm, but also the admittance locus of the wavelength of 400 nm and 700 nm is axisymmetric about the horizontal axis of the graph, and the equivalent admittance Y E of each wavelength is The coordinates are almost the same. That is, at any wavelength, the value of the equivalent admittance Y E tends closer to 1, at any wavelength, sufficient antireflection effect is obtained.
 また、各層界面のアドミッタンスYと、各層に存在する電場強度Eとの間には、下記関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000005
Further, the following relational expression holds between the admittance Y at the interface of each layer and the electric field strength E existing in each layer.
Figure JPOXMLDOC01-appb-M000005
 上記関係式に基づけば、アドミッタンスYが大きくなればなるほど、電場強度Eが小さくなり、電場損失(光の吸収)が抑制される。図4(b)は、図4(a)に示されるアドミッタンス軌跡を有する透明導電体の光学長と電場との関係を示すグラフである。図4(b)に示されるように、Y1の実部の座標xが1.6以上となるように調整されると、例えば図4(b)に示されるように、透明金属膜のアドミッタンスYが大きくなる。その結果、透明金属膜が光を吸収し難くなり、透明導電体の光透過性が高まる。 Based on the above relational expression, the larger the admittance Y, the smaller the electric field strength E, and the electric field loss (light absorption) is suppressed. FIG. 4B is a graph showing the relationship between the optical length and the electric field of the transparent conductor having the admittance locus shown in FIG. As shown in FIG. 4 (b), when the coordinates x 1 of the real part of Y1 is adjusted to be 1.6 or more, as shown for example in FIG. 4 (b), the admittance of the transparent metal film Y increases. As a result, the transparent metal film hardly absorbs light, and the light transmittance of the transparent conductor is increased.
 一方、Y2の実部の座標xを1.6以上に調整した場合にも、透明導電体のアドミッタンス軌跡がグラフの横軸を中心に線対称になりやすく;透明金属膜の電場が小さくなるため、透明金属膜による光の吸収が抑制される。 On the other hand, even when adjusting the coordinates x 2 of the real part of Y2 to 1.6 or more, transparency admittance locus conductor tends to become line symmetry about the horizontal axis of the graph; field of transparent metal film is reduced Therefore, light absorption by the transparent metal film is suppressed.
 本発明では、上記x及び/またはxは、少なくともどちらかが1.6以上7.0以下であることが好ましく、より好ましくは1.8以上5.5以下、さらに好ましくは2.0以上3.0以下である。x及びxのうち、特にxが1.6以上であることが好ましい。xは、第一アドミッタンス調整層の屈折率や、第一アドミッタンス調整層の厚み等によって調整される。xは1.3~5.5であることが好ましく、さらに好ましくは1.5~3.5以下である。xは、透明金属膜の屈折率や、透明金属膜の厚み等によって調整される。 In the present invention, at least one of the x 1 and / or x 2 is preferably 1.6 or more and 7.0 or less, more preferably 1.8 or more and 5.5 or less, and still more preferably 2.0. It is 3.0 or less. Of x 1 and x 2 , x 1 is particularly preferably 1.6 or more. x 1 is the refractive index of the first admittance adjusting layer and is adjusted by the thickness or the like of the first admittance adjusting layer. x 2 is preferably 1.3 to 5.5, and more preferably 1.5 to 3.5 or less. x 2 is the refractive index and the transparent metal film is adjusted by the thickness or the like of the transparent metal film.
 ここでxとxとの差の絶対値(|x-x|)は1.5以下であることが好ましく、より好ましくは1.0以下であり、さらに好ましくは0.8以下である。また特に、透明金属膜のアドミッタンス軌跡と横軸との交点の座標Ycross(xcross,0)とした場合にm|x-x|/xcrossが0.5より小さいことが好ましく、より好ましくは0.3以下であり、さらに好ましくは0.2以下である。 Here, the absolute value (| x 1 −x 2 |) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. It is. In particular, it is preferable that m | x 1 −x 2 | / x cross is smaller than 0.5 when the coordinate Ycross (x cross , 0) of the intersection point between the admittance locus of the transparent metal film and the horizontal axis is used. Preferably it is 0.3 or less, More preferably, it is 0.2 or less.
 また、アドミッタンス軌跡をグラフの横軸を中心に線対称とするため、上記Y1の虚部の座標yと、Y2の虚部の座標yが、y×y≦0を満たすことが好ましい。 Further, since the line symmetry admittance locus around the horizontal axis of the graph, the coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, to meet y 1 × y 2 ≦ 0 preferable.
 ここで、第二アドミッタンス調整層上に第三アドミッタンス調整層が形成されると、さらに等価アドミッタンスYが微調整される。図7に、透明支持材(ガラス基板)/第一アドミッタンス調整層(TiO)/透明金属膜(Ag)/第二アドミッタンス調整層(TiO)/第三アドミッタンス調整層(SiO)を備える透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示す。図7に示されるように、第三アドミッタンス調整層が形成されると、等価アドミッタンスYの値が微調整され、空気のアドミッタンス座標(1,0)に近づく。このような透明導電体では、いずれの波長においても、等価アドミッタンスYの値が空気のアドミッタンス座標に近く、いずれの波長でも、十分な反射防止効果が得られる。 Here, if the third admittance adjusting layer is formed on the second admittance adjusting layer, it is finely adjusted more equivalent admittance Y E. FIG. 7 includes a transparent support material (glass substrate) / first admittance adjustment layer (TiO 2 ) / transparent metal film (Ag) / second admittance adjustment layer (TiO 2 ) / third admittance adjustment layer (SiO 2 ). The admittance locus | trajectory of wavelength 450nm, wavelength 570nm, and wavelength 700nm of a transparent conductor is shown. As shown in Figure 7, when the third admittance adjusting layer is formed, the value of the equivalent admittance Y E is finely adjusted, approaching the air admittance coordinates (1,0). In such a transparent conductor, at any wavelength, the value of the equivalent admittance Y E is close to admittance coordinates of air, at any wavelength, sufficient antireflection effect is obtained.
 第一の態様の透明導電体では、等価アドミッタンスYの座標(x,y)と空気のアドミッタンス座標Yenv(1,0)との距離(|x-1|+|y-0|)は、0.9以下であることが好ましく、より好ましくは0.6以下、さらに好ましくは0.3以下である。 In the transparent conductor according to the first aspect, the distance (| x E −1 | + | y E −) between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates Y env (1, 0) of air. 0 |) is preferably 0.9 or less, more preferably 0.6 or less, and still more preferably 0.3 or less.
 (2)第二の態様の透明導電体の光学アドミッタンス
 図8に、第二の態様の透明導電体(透明支持材(ガラス基板)/下地層(MgF)/第一アドミッタンス調整層(TiO)/透明金属膜(Ag)/第二アドミッタンス調整層(TiO)を備える透明導電体)の波長570nmのアドミッタンス軌跡を示す。グラフの横軸は、光学アドミッタンスYをx+iyで表したときの実部;つまり当該式におけるxであり、縦軸は光学アドミッタンスの虚部;つまり当該式におけるyである。
(2) Optical Admittance of Transparent Conductor of Second Aspect FIG. 8 shows the transparent conductor (transparent support material (glass substrate) / underlayer (MgF 2 ) / first admittance adjustment layer (TiO 2 ) of the second aspect. ) / Transparent metal film (Ag) / transparent conductor with the second admittance adjusting layer (TiO 2 )). The horizontal axis of the graph is the real part when the optical admittance Y is represented by x + iy; that is, x in the equation, and the vertical axis is the imaginary part of the optical admittance; that is, y in the equation.
 前述のように、等価アドミッタンスYの座標(x,y)と、光が入射する媒質のアドミッタンス座標(nenv,0)との距離が、透明導電体表面の反射率Rに比例する。本態様では、等価アドミッタンスYの座標(x,y)と、光が入射する媒質のアドミッタンス座標(nenv,0)との距離(((x-nenv+(y0.5)が0.5未満であることが好ましく、さらに好ましくは0.3以下である。上記距離が0.5未満であれば、透明導電体表面の反射率Rが十分に小さくなり、透明導電体の光透過性が高まりやすい。 As described above, the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (n env , 0) of the medium on which light is incident is proportional to the reflectance R of the transparent conductor surface. . In this embodiment, the distance (((x E −n env ) 2 + (y E ) between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (n env , 0) of the medium on which light is incident. 2 ) 0.5 ) is preferably less than 0.5, more preferably 0.3 or less. If the distance is less than 0.5, the reflectance R of the transparent conductor surface is sufficiently small, and the light transmittance of the transparent conductor is likely to increase.
 ここで、第二の態様の透明導電体では、下地層の第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY0(=x+iy)で表した場合に、xの値が、透明支持材の波長570nmの光の屈折率nsubより小さい値となる。つまり、下地層の第一アドミッタンス調整層側の表面の座標(x,y)が透明支持材表面の光学アドミッタンスの座標(nsub,0)より左側になる。xの値は、具体的にはnsubより0.01以上小さいことが好ましく、より好ましくは0.05以上小さいことが好ましい。また、xは、0.5~1.70であることが好ましく、より好ましくは1.0~1.45である。xは、下地層に含まれる層の屈折率や厚みで調整される。例えば、下地層に含まれる低屈折率層の屈折率が低いと、xが小さくなりやすい。 Here, in the transparent conductor according to the second aspect, when the optical admittance at a wavelength of 570 nm on the surface of the underlayer on the first admittance adjustment layer side is represented by Y0 (= x 0 + iy 0 ), the value of x 0 is The transparent support material has a value smaller than the refractive index n sub of light having a wavelength of 570 nm. That is, the coordinate (x 0 , y 0 ) on the surface of the underlayer on the first admittance adjustment layer side is on the left side of the optical admittance coordinate (n sub , 0) on the surface of the transparent support material. The value of x 0 is preferably from 0.01 or more smaller n sub Specifically, more preferably less than 0.05. Further, x 0 is preferably 0.5 to 1.70, more preferably 1.0 to 1.45. x 0 is adjusted by the refractive index and thickness of the layers contained in the base layer. For example, if the refractive index of the low refractive index layer is lower contained in the base layer, it is x 0 likely reduced.
 このような下地層を有すると、透明導電体の光透過性が高まる理由を以下に示す。一般的に、各部材の光学アドミッタンスは、膜厚の増加とともに変化し、円弧状のアドミッタンス軌跡を描く。このとき、光学アドミッタンスの実部の最小値xで表し、光学アドミッタンスの実部の最大値をxで表すと;xとxとの積(x×x)は、当該部材の屈折率nの2乗と等しくなる。したがって、x及びxのうち、一方の値が小さくなれば、他方の値が大きくなり、アドミッタンス軌跡の円弧が大きくなる。 The reason why the transparency of the transparent conductor is increased when such an underlayer is provided will be described below. In general, the optical admittance of each member changes as the film thickness increases, and draws an arc-shaped admittance locus. At this time, expressed as the minimum value x a of the real part of the optical admittance, to represent the maximum value of the real part of the optical admittance at x b; product of x a and x b (x a × x b ) is the member Is equal to the square of the refractive index n. Accordingly, among the x a and x b, if one value is the smaller, the other value is increased, the arc of the admittance locus increases.
 ここで、透明支持材上に直接、第一アドミッタンス調整層を有する場合には、第一アドミッタンス調整層の光学アドミッタンスの実部の最小値xがnsubとなる。 Here, when the first admittance adjusting layer is provided directly on the transparent support material, the minimum value x a of the real part of the optical admittance of the first admittance adjusting layer is n sub .
 これに対し、透明支持材と第一アドミッタンス調整層との間に下地層を有すると、図8に示されるように、下地層の第一アドミッタンス調整層側の表面のx座標xが透明支持材表面の光学アドミッタンスのx座標nsubより小さくなり、第一アドミッタンス調整層の光学アドミッタンスの実部の最小値xが、nsubより小さくなる。その結果、第一アドミッタンス調整層のアドミッタンス軌跡の円弧が、下地層を有さない場合より大きくなる。そして、透明金属膜の第一アドミッタンス調整層側の表面の光学アドミッタンスをY1(=x+iy)で表すと、x及びyの値が下地層を有さない場合より大きくなる。またこれに伴い、透明金属膜の第二アドミッタンス調整層側の表面の光学アドミッタンスY2(=x+iy)で表すと、当該xの値も下地層を有さない場合より大きくなる。 In contrast, when having a base layer between the transparent support and the first admittance adjusting layer, as shown in FIG. 8, x-coordinate x 0 is transparent supporting surface of the first admittance adjusting layer side of the base layer becomes smaller than the x coordinate n sub optical admittance of the wood surface, the minimum value x a of the real part of the optical admittance of the first admittance adjusting layer, smaller than n sub. As a result, the arc of the admittance locus of the first admittance adjustment layer becomes larger than when the base layer is not provided. When the optical admittance on the surface of the transparent metal film on the first admittance adjustment layer side is represented by Y1 (= x 1 + iy 1 ), the values of x 1 and y 1 are larger than those in the case where the base layer is not provided. Accordingly, when expressed by the optical admittance Y2 (= x 2 + iy 2 ) on the surface of the transparent metal film on the second admittance adjusting layer side, the value of x 2 also becomes larger than the case where there is no underlying layer.
 また、前述の各層表面の光学アドミッタンスYと、各層に存在する電場強度Eとの関係式に基づけば、透明金属膜表面の光学アドミッタンスY1及びY2の実数部;つまりx及びxの値が大きくなれば電場強度Eが小さくなり、電場損失(光の吸収)が抑制される。よって、第二の態様の透明導電体でも、透明金属膜の電場損失が十分に抑制されて、透明導電体の光透過性が十分に高くなる。 Further, based on the relational expression between the optical admittance Y on the surface of each layer and the electric field strength E existing on each layer, the real part of the optical admittances Y1 and Y2 on the surface of the transparent metal film; that is, the values of x 1 and x 2 are As the value increases, the electric field strength E decreases, and the electric field loss (light absorption) is suppressed. Therefore, even in the transparent conductor of the second aspect, the electric field loss of the transparent metal film is sufficiently suppressed, and the light transmittance of the transparent conductor is sufficiently increased.
 第二の態様の透明導電体では、上記x及びxのうち、いずれか一方、もしくは両方が1.8以上であり、好ましくは2.0以上である。特にxが1.8以上であることが好ましい。またx及びxは、7.0以下であることが好ましく、より好ましくは5.5以下である。xは、下地層の屈折率、下地層の厚み、第一アドミッタンス調整層の屈折率や、第一アドミッタンス調整層の厚み等で調整される。xは、透明金属膜の屈折率や、透明金属膜の厚み等によって調整される。例えば、第一アドミッタンス調整層や第二アドミッタンス調整層の屈折率が高い場合や、厚みがある程度厚い場合には、x及びxの値が大きくなりやすい。 The transparent conductor of the second aspect, among the x 1 and x 2, are either Meanwhile, or both of 1.8 or more, preferably 2.0 or more. In particular, x 1 is preferably 1.8 or more. The x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less. x 1 is the refractive index of the underlying layer, the thickness of the base layer, the refractive index of the first admittance adjusting layer and is adjusted in such a thickness of the first admittance adjusting layer. x 2 is the refractive index and the transparent metal film is adjusted by the thickness or the like of the transparent metal film. For example, when the refractive index of the first admittance adjustment layer or the second admittance adjustment layer is high, or when the thickness is somewhat thick, the values of x 1 and x 2 tend to increase.
 またxとxとの差の絶対値(|x-x|)は1.5以下であることが好ましく、より好ましくは1.0以下であり、さらに好ましくは0.8以下である。また特に、透明金属膜のアドミッタンス軌跡と横軸とが座標Ycross(xcross,0)で交差する場合には、|x-x|/xcrossが0.5より小さいことが好ましく、より好ましくは0.3以下であり、さらに好ましくは0.2以下である。 The absolute value (| x 1 −x 2 |) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there. In particular, in the case where the admittance locus of the transparent metal film and the horizontal axis intersect at the coordinate Ycross (x cross , 0), | x 1 −x 2 | / x cross is preferably smaller than 0.5. Preferably it is 0.3 or less, More preferably, it is 0.2 or less.
 一方、アドミッタンス軌跡は、グラフの横軸を中心に線対称であることが好ましく、そのためには、上記Y1の虚部の座標yと、Y2の虚部の座標yが、y×y≦0を満たすことが好ましい。さらに、|y+y|が0.8未満であることが好ましく、より好ましくは0.5以下、さらに好ましくは0.3以下である。|y+y|が0.8未満であると、アドミッタンス軌跡が、グラフの横軸を中心に線対称になりやすい。 On the other hand, the admittance locus is preferably a center line of symmetry of the horizontal axis of the graph. For this purpose, a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, y 1 × y It is preferable to satisfy 2 ≦ 0. Furthermore, | y 1 + y 2 | is preferably less than 0.8, more preferably 0.5 or less, and still more preferably 0.3 or less. If | y 1 + y 2 | is less than 0.8, the admittance trajectory tends to be line symmetric about the horizontal axis of the graph.
 また、アドミッタンス軌跡をグラフの横軸を中心に線対称とするためには、前述のyが十分に大きいことが好ましい。透明金属膜の光学アドミッタンスは虚部の値が大きく、アドミッタンス軌跡が縦軸(虚部)方向に大きく移動する。そのため、yが小さすぎると、アドミッタンス座標の虚部の絶対値が非常に大きくなり、アドミッタンス軌跡が線対称になり難い。yは0.5以上であることが好ましく、より好ましくは1.0~5.0であり、さらに好ましくは1.5~2.5である。一方、前述のyは、-1.0~―5.0であることが好ましく、より好ましくは-1.5~―2.5である。 Further, in order to make the admittance locus line-symmetric with respect to the horizontal axis of the graph, it is preferable that y 1 described above is sufficiently large. The value of the imaginary part of the optical admittance of the transparent metal film is large, and the admittance locus moves greatly in the direction of the vertical axis (imaginary part). Therefore, if y 1 is too small, the absolute value of the imaginary part of the admittance coordinates becomes very large, admittance locus hardly become axisymmetric. y 1 is preferably 0.5 or more, more preferably 1.0 to 5.0, and still more preferably 1.5 to 2.5. On the other hand, y 2 described above is preferably −1.0 to −5.0, more preferably −1.5 to −2.5.
 なお、第二の態様の透明導電体においても、第二アドミッタンス調整層上に第三アドミッタンス調整層を有すると、さらに等価アドミッタンスYが微調整される。 Also in the transparent conductor of the second aspect, to have a third admittance adjustment layer on the second admittance adjusting layer, it is finely adjusted more equivalent admittance Y E.
 (3)第三の態様の透明導電体の光学アドミッタンス
 図9Bに、第三の態様の透明導電体の光学アドミッタンスを示す。第三の態様の透明導電体(透明支持材(白板基板)/第一アドミッタンス調整層(TiO)/低屈折率層(SiO)/透明金属膜(Ag)/低屈折率層(SiO)/第二アドミッタンス調整層(TiO)/第三アドミッタンス調整層(SiO)を備える透明導電体)の波長570nmのアドミッタンス軌跡を示す。グラフの横軸は、光学アドミッタンスYをx+iyで表したときの実部;つまり当該式におけるxであり、縦軸は光学アドミッタンスの虚部;つまり当該式におけるyである。
(3) Optical Admittance of Transparent Conductor of Third Aspect FIG. 9B shows optical admittance of the transparent conductor of the third aspect. Transparent conductor of the third aspect (transparent support material (white plate substrate) / first admittance adjusting layer (TiO 2 ) / low refractive index layer (SiO 2 ) / transparent metal film (Ag) / low refractive index layer (SiO 2 ) / Second admittance adjustment layer (TiO 2 ) / transparent conductor with third admittance adjustment layer (SiO 2 )). The horizontal axis of the graph is the real part when the optical admittance Y is represented by x + iy; that is, x in the equation, and the vertical axis is the imaginary part of the optical admittance; that is, y in the equation.
 前述のように、等価アドミッタンスYの座標(x,y)と、光が入射する媒質のアドミッタンス座標(nenv,0)(図示せず)との距離が、透明導電体表面の反射率Rに比例する。本発明では、等価アドミッタンスYの座標(x,y)と、光が入射する媒質のアドミッタンス座標(nenv,0)との距離(((x-nenv+(y0.5)が0.5未満であることが好ましく、さらに好ましくは0.3以下である。上記距離が0.5未満であれば、透明導電体表面の反射率Rが十分に小さくなり、透明導電体の光透過性が高まりやすい。 As described above, the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (n env , 0) (not shown) of the medium on which the light is incident is the reflection on the surface of the transparent conductor. It is proportional to the rate R. In the present invention, the distance (((x E −n env ) 2 + (y E )) between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (n env , 0) of the medium on which light is incident. 2 ) 0.5 ) is preferably less than 0.5, more preferably 0.3 or less. If the distance is less than 0.5, the reflectance R of the transparent conductor surface is sufficiently small, and the light transmittance of the transparent conductor is likely to increase.
 ここで、第三の態様の透明導電体では、透明金属膜の第一アドミッタンス調整層側の表面の波長570nmにおける光学アドミッタンスをY1(=x+iy)とし、透明金属膜の第二アドミッタンス調整層側の表面の波長570nmにおける光学アドミッタンスをY2(=x+iy)とした場合に、x及びxのうちいずれか一方、もしくは両方が1.6以上であることが好ましい。なお、透明導電体に複数の透明金属膜が含まれる場合には、最も第一アドミッタンス調整層側に位置する透明金属膜の、第一アドミッタンス調整層側の表面の光学アドミッタンスをY1=x+iyとし、最も第二アドミッタンス調整層側に位置する透明金属膜の、第二アドミッタンス調整層側の表面の光学アドミッタンスをY2=x+iyとする。xまたはxのうちいずれか一方が、1.6以上であると、前述のように、透明導電体の光透過性が高まる。 Here, in the transparent conductor according to the third aspect, the optical admittance at a wavelength of 570 nm on the surface of the transparent metal film on the first admittance adjustment layer side is Y1 (= x 1 + ii 1 ), and the second admittance adjustment of the transparent metal film is performed. When the optical admittance at the wavelength of 570 nm on the surface on the layer side is Y2 (= x 2 + iy 2 ), it is preferable that either one of x 1 and x 2 or both are 1.6 or more. When the transparent conductor includes a plurality of transparent metal films, the optical admittance on the surface of the transparent metal film closest to the first admittance adjustment layer side on the first admittance adjustment layer side is expressed as Y1 = x 1 + iy 1 and the optical admittance of the surface of the transparent metal film closest to the second admittance adjustment layer side on the second admittance adjustment layer side is Y2 = x 2 + iy 2 . either one of x 1 and x 2 is, if it is 1.6 or more, as described above, increases light transmission of the transparent conductor.
 そこで、第三の態様の透明導電体では、上記x及びxのうち、いずれか一方、もしくは両方が1.6以上であることが好ましく、より好ましくは1.8以上であり、さらに好ましくは2.0以上である。特にxが1.6以上であることが好ましい。またx及びxは、7.0以下であることが好ましく、より好ましくは5.5以下である。xは、第一アドミッタンス調整層の屈折率や、第一アドミッタンス調整層の厚み等で調整される。xは、xの値や透明金属膜の屈折率、透明金属膜の厚み等によって調整される。例えば、第一アドミッタンス調整層の屈折率が高い場合や、厚みがある程度厚い場合には、x及びxの値が大きくなりやすい。 Therefore, in the transparent conductor of the third aspect, among the x 1 and x 2, it is preferably either one or both of not less than 1.6, more preferably 1.8 or more, more preferably Is 2.0 or more. In particular, x 1 is preferably 1.6 or more. The x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less. x 1 is the refractive index of the first admittance adjusting layer and is adjusted in such a thickness of the first admittance adjusting layer. x 2 is the refractive index of the values and the transparent metal film x 1, is adjusted by the thickness or the like of the transparent metal film. For example, when the refractive index of the first admittance adjustment layer is high or the thickness is somewhat thick, the values of x 1 and x 2 are likely to increase.
 またxとx2との差の絶対値(|x-x|)は1.5以下であることが好ましく、より好ましくは1.0以下であり、さらに好ましくは0.8以下である。また特に、透明金属膜のアドミッタンス軌跡と横軸とが座標Ycross(xcross,0)で交差する場合には、|x-x|/xcrossが0.5より小さいことが好ましく、より好ましくは0.3以下であり、さらに好ましくは0.2以下である。 The absolute value (| x 1 −x 2 |) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there. In particular, in the case where the admittance locus of the transparent metal film and the horizontal axis intersect at the coordinate Ycross (x cross , 0), | x 1 −x 2 | / x cross is preferably smaller than 0.5. Preferably it is 0.3 or less, More preferably, it is 0.2 or less.
 前述のように、アドミッタンス軌跡は、グラフの横軸を中心に線対称であることが好ましく、そのためには、上記Y1の虚部の座標yと、Y2の虚部の座標yが、y×y≦0を満たすことが好ましい。さらに、|y+y|が0.8未満であることが好ましく、より好ましくは0.5以下、さらに好ましくは0.3以下である。|y+y|が0.8未満であると、アドミッタンス軌跡が、グラフの横軸を中心に線対称になりやすい。 As described above, admittance locus is preferably a center line of symmetry of the horizontal axis of the graph. For this purpose, a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, y It is preferable to satisfy 1 × y 2 ≦ 0. Furthermore, | y 1 + y 2 | is preferably less than 0.8, more preferably 0.5 or less, and still more preferably 0.3 or less. If | y 1 + y 2 | is less than 0.8, the admittance trajectory tends to be line symmetric about the horizontal axis of the graph.
 また、アドミッタンス軌跡をグラフの横軸を中心に線対称とするためには、前述のyが十分に大きいことが好ましい。透明金属膜の光学アドミッタンスは虚部の値が大きく、アドミッタンス軌跡が縦軸(虚部)方向に大きく移動する。そのため、yが小さすぎると、アドミッタンス座標の虚部の絶対値が非常に大きくなり、アドミッタンス軌跡が線対称になり難い。yは0.2以上であることが好ましく、より好ましくは0.3~1.5であり、さらに好ましくは0.3~1.0である。一方、前述のyは、-0.3~-2.0であることが好ましく、より好ましくは-0.6~-1.5である。 Further, in order to make the admittance locus line-symmetric with respect to the horizontal axis of the graph, it is preferable that y 1 described above is sufficiently large. The value of the imaginary part of the optical admittance of the transparent metal film is large, and the admittance locus moves greatly in the direction of the vertical axis (imaginary part). Therefore, if y 1 is too small, the absolute value of the imaginary part of the admittance coordinates becomes very large, admittance locus hardly become axisymmetric. y 1 is preferably 0.2 or more, more preferably 0.3 to 1.5, and still more preferably 0.3 to 1.0. On the other hand, y 2 described above is preferably −0.3 to −2.0, and more preferably −0.6 to −1.5.
 なお、第三の態様の透明導電体においても、第二アドミッタンス調整層上に第三アドミッタンス調整層を有すると、さらに等価アドミッタンスYが微調整される。 Also in the transparent conductor of the third aspect, when with a third admittance adjustment layer on the second admittance adjusting layer, is finely adjusted more equivalent admittance Y E.
 3.透明金属膜の成膜方法
 前述の各態様の透明導電体に含まれる透明金属膜は、以下の2つの工程を経て成膜されることが好ましい。
 (1)成長核を形成する工程
 (2)成長核上に透明金属膜を成膜する工程
3. Method for Forming Transparent Metal Film The transparent metal film contained in the transparent conductor of each of the above-described embodiments is preferably formed through the following two steps.
(1) Step of forming a growth nucleus (2) Step of forming a transparent metal film on the growth nucleus
 前述のように、一般的な気相成膜方法で透明金属膜を形成すると、波長400nm~800nmの全範囲でプラズモン吸収率が15%以下であり、かつ厚みが15nm以下である透明金属膜が得られにくい。これは以下の理由による。以下、第一アドミッタンス調整層上に透明金属膜を成膜する場合を例に説明する。 As described above, when a transparent metal film is formed by a general vapor deposition method, a transparent metal film having a plasmon absorptivity of 15% or less and a thickness of 15 nm or less over the entire wavelength range of 400 nm to 800 nm is obtained. It is difficult to obtain. This is due to the following reason. Hereinafter, a case where a transparent metal film is formed on the first admittance adjusting layer will be described as an example.
 一般的な気相成膜法で透明金属膜を第一アドミッタンス調整層上に成膜すると、成膜初期には、第一アドミッタンス調整層上に付着した原子がマイグレート(移動)し、原子が寄り集まって塊(島状構造)を形成する。そして、この塊にまとわりつきながら膜が成長する。そのため、成膜初期の膜では、塊同士の間に隙間があり、導通しない。この状態からさらに塊が成長し、厚みが15μm程度になると、塊同士の一部が繋がり、かろうじて導通する。しかし、膜の表面がいまだ平滑ではなく、プラズモン吸収が生じやすい。 When a transparent metal film is formed on the first admittance adjustment layer by a general vapor deposition method, atoms attached to the first admittance adjustment layer migrate (move) at the initial stage of film formation, Lump together to form a lump (island structure). And a film grows clinging to this lump. Therefore, in the film at the initial stage of film formation, there is a gap between the lumps and it is not conductive. When a lump further grows from this state and the thickness becomes about 15 μm, a part of the lump is connected and barely conducted. However, the film surface is not yet smooth and plasmon absorption is likely to occur.
 これに対し、(1)成長核形成工程で、あらかじめ成長核を形成すると、透明金属膜の材料が第一アドミッタンス調整層上をマイグレートし難くなる。また、成長核同士の間隔は、原子がマイグレートして形成される塊同士の間隔より狭い。したがって、この成長核を起点として膜が成長すると、厚みが薄くても平坦な膜となりやすい。つまり、厚みが薄くても導通が得られ、さらにプラズモン吸収が生じない透明金属膜が得られる。 On the other hand, if (1) the growth nucleus is formed in advance in the growth nucleus formation step, the material of the transparent metal film is difficult to migrate on the first admittance adjusting layer. Further, the interval between the growth nuclei is narrower than the interval between the lumps formed by migration of atoms. Therefore, when the film grows starting from this growth nucleus, a flat film is likely to be formed even if the thickness is small. That is, even if the thickness is small, conduction is obtained and a transparent metal film in which plasmon absorption does not occur is obtained.
 (1)成長核形成工程
 第一アドミッタンス調整層上に、透明金属膜を形成するための成長核を形成する。成長核の形成方法には、以下の2種類の方法がある。
 (i)第一アドミッタンス調整層上にスパッタ法または蒸着法で、厚み3nm以下の金属薄膜を形成し、これを成長核とする方法
 (ii)第一アドミッタンス調整層上に金属層を成膜し、この金属層をドライエッチングし、残った金属薄膜を成長核とする方法
(1) Growth nucleus formation process The growth nucleus for forming a transparent metal film is formed on a 1st admittance adjustment layer. There are the following two types of growth nucleus formation methods.
(I) A method in which a metal thin film having a thickness of 3 nm or less is formed on the first admittance adjusting layer by sputtering or vapor deposition, and this is used as a growth nucleus. (Ii) A metal layer is formed on the first admittance adjusting layer. , Dry etching this metal layer and using the remaining metal thin film as the growth nucleus
 (i)の方法
 (i)の方法で成長核を形成する場合、第一アドミッタンス調整層上をマイグレート(移動)し難い金属で薄膜を形成する。成長核となりうる金属の例には、金、白金族、コバルト、モリブデン、チタン、アルミニウム、クロム、ニッケル、もしくはこれらの合金が含まれる。これらの1種のみを用いて成長核を形成してもよく、2種以上を組み合わせて成長核を形成してもよい。これらの中でも白金パラジウム、パラジウム、チタン、またはアルミニウムで成長核を形成することが好ましい。白金パラジウムもしくはパラジウムは、光触媒層上でマイグレートし難く、かつ透明金属膜を構成する金属との親和性が高く、且つ緻密で細かい成長核が得られる。白金パラジウムに含まれるパラジウムの割合は、10質量%以上であることが好ましく、より好ましくは20質量%以上である。パラジウムの割合が10質量%以上であると、緻密で細かい成長核が得られやすく、透明金属膜に生じるプラズモン吸収を抑制しやすい。
Method (i) When forming growth nuclei by the method (i), a thin film is formed of a metal that is difficult to migrate (move) on the first admittance adjusting layer. Examples of metals that can be growth nuclei include gold, platinum group, cobalt, molybdenum, titanium, aluminum, chromium, nickel, or alloys thereof. A growth nucleus may be formed by using only one of these, or a growth nucleus may be formed by combining two or more kinds. Among these, it is preferable to form a growth nucleus with platinum palladium, palladium, titanium, or aluminum. Platinum palladium or palladium is difficult to migrate on the photocatalyst layer, has a high affinity with the metal constituting the transparent metal film, and provides a dense and fine growth nucleus. The ratio of palladium contained in platinum palladium is preferably 10% by mass or more, and more preferably 20% by mass or more. When the proportion of palladium is 10% by mass or more, dense and fine growth nuclei are easily obtained, and plasmon absorption occurring in the transparent metal film is easily suppressed.
 チタンやアルミニウムなども、IADなどのアシストによって膜を細かく砕きながら成膜することで、白金パラジウムやパラジウムと同等の成長核が得られる。 Titanium, aluminum, and the like can be grown while being finely crushed with the aid of IAD or the like, so that a growth nucleus equivalent to platinum palladium or palladium can be obtained.
 上記金属からなる薄膜(成長核)は、スパッタ法または蒸着法で形成する。薄膜(成長核)の平均厚みは3nm以下であることが好ましく、より好ましくは0.5nm以下、さらに好ましくは単原子膜であり、特に好ましくは金属原子が互いに離間して付着している膜である。上記薄膜(成長核)の平均厚みは、成膜速度及び成膜時間により調整する。 The thin film (growth nucleus) made of the above metal is formed by sputtering or vapor deposition. The average thickness of the thin film (growth nucleus) is preferably 3 nm or less, more preferably 0.5 nm or less, still more preferably a monoatomic film, and particularly preferably a film in which metal atoms are attached to be separated from each other. is there. The average thickness of the thin film (growth nucleus) is adjusted by the film forming speed and the film forming time.
 薄膜(成長核)は、公知のスパッタ法または蒸着法で形成する。スパッタ法の例には、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等がある。スパッタ時間は、形成する薄膜(成長核)の平均厚み、及び成膜速度に合わせて適宜選択する。スパッタ成膜速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 The thin film (growth nucleus) is formed by a known sputtering method or vapor deposition method. Examples of sputtering methods include ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, and bias sputtering. The sputtering time is appropriately selected according to the average thickness of the thin film (growth nucleus) to be formed and the film formation speed. The sputter deposition rate is preferably from 0.1 to 15 Å / second, more preferably from 0.1 to 7 秒 / second.
 一方、蒸着法の例には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等がある。蒸着時間は、形成する薄膜(成長核)及び成膜速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 On the other hand, examples of vapor deposition include vacuum vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition. The deposition time is appropriately selected according to the thin film to be formed (growth nuclei) and the deposition rate. The deposition rate is preferably 0.1 to 15 Å / second, more preferably 0.1 to 7 Å / second.
 (ii)の方法
 (ii)の方法で成長核を形成する場合、第一アドミッタンス調整層上に金属層を成膜し、この金属層を所望の厚みまでドライエッチングする。本発明でいうドライエッチングには、化学的な反応によってエッチングを行う反応ガスエッチングや、レンズペーパー等で研磨する方法等も含まれるが、エッチングガスやイオン、ラジカル等の物理的な衝突を伴うエッチング方法であることが好ましい。金属層を物理的な衝突を伴うエッチング方法でエッチングすると光触媒層全体に均一な成長核が形成されやすい。
Method (ii) When forming growth nuclei by the method (ii), a metal layer is formed on the first admittance adjusting layer, and this metal layer is dry-etched to a desired thickness. The dry etching referred to in the present invention includes reactive gas etching in which etching is performed by a chemical reaction and a method of polishing with lens paper or the like, but etching that involves physical collision of etching gas, ions, radicals, and the like. A method is preferred. When the metal layer is etched by an etching method involving physical collision, uniform growth nuclei are easily formed on the entire photocatalyst layer.
 金属層(成長核)の種類は、透明金属膜を構成する金属と親和性の高い金属であれば特に制限されない。透明金属膜を構成する金属と同一であってもよく、異なる金属であってもよく;その例には、銀、金、白金族、チタン及びアルミニウム等が含まれる。 The type of the metal layer (growth nucleus) is not particularly limited as long as it is a metal having a high affinity with the metal constituting the transparent metal film. The metal constituting the transparent metal film may be the same as or different from the metal; examples thereof include silver, gold, platinum group, titanium and aluminum.
 金属層の成膜方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等の気相成膜法や、メッキ法等の湿式成膜法でありうる。形成する金属層の平均厚みは3~15nmであることが好ましく、より好ましくは5~10nmである。金属層の平均厚みが3nm未満であると、金属の量が少なく、十分に成長核が得られないおそれがある。 The method for forming the metal layer is not particularly limited, and may be a vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method or a thermal CVD method, or a wet film formation method such as a plating method. sell. The average thickness of the metal layer to be formed is preferably 3 to 15 nm, more preferably 5 to 10 nm. If the average thickness of the metal layer is less than 3 nm, the amount of metal is small and there is a possibility that sufficient growth nuclei cannot be obtained.
 金属層のドライエッチング方法は、前述のように物理的な衝突を伴うエッチング方法であれば特に制限されず、イオンビームエッチング、逆スパッタエッチング、プラズマエッチング等でありうる。特にエッチング後の薄膜(成長核)に所望の凹凸を形成しやすいとの観点から、イオンビームエッチングが特に好ましい。なお、金属層の表面に酸化チタン等の薄膜(マスク)を成膜してから、金属層をドライエッチングしてもよい。マスクによって、所望の凹凸の成長核が得られやすくなる。マスクは、ドライエッチングにより、金属とともに除去される。 The metal layer dry etching method is not particularly limited as long as it is an etching method involving physical collision as described above, and may be ion beam etching, reverse sputter etching, plasma etching, or the like. In particular, ion beam etching is particularly preferable from the viewpoint that desired unevenness can be easily formed on the etched thin film (growth nucleus). The metal layer may be dry-etched after a thin film (mask) such as titanium oxide is formed on the surface of the metal layer. The mask makes it easy to obtain desired uneven growth nuclei. The mask is removed together with the metal by dry etching.
 金属層をドライエッチングして得られる薄膜(成長核)の平均厚みは3nm以下であることが好ましく、より好ましくは2nm以下であり、さらに好ましくは0.01~1nmであり、特に好ましくは0.01~0.2nmである。薄膜(成長核)の厚みが厚すぎると、成長核を形成しても、厚みが薄くかつ平滑な透明金属膜が得られない。さらにこの成長核を起点に形成される透明金属膜の厚みが厚くなる。成長核の平均厚みは、金属層の厚みと金属層のエッチング厚みとの差から求める。金属層のエッチング厚みは、エッチングレートとエッチング時間との積である。エッチングレートは、別途ガラス基板上に作製した厚み50nmの金属層を同条件でエッチングし、エッチング後の光の透過率がガラス基板と同等になる(大凡厚み0nm)までの時間から求める。成長核の平均厚みは、ドライエッチングする時間で調整する。 The average thickness of the thin film (growth nucleus) obtained by dry etching of the metal layer is preferably 3 nm or less, more preferably 2 nm or less, still more preferably 0.01 to 1 nm, and particularly preferably 0.00. It is 01 to 0.2 nm. If the thickness of the thin film (growth nucleus) is too thick, even if the growth nucleus is formed, a thin transparent transparent metal film cannot be obtained. Furthermore, the thickness of the transparent metal film formed starting from this growth nucleus is increased. The average thickness of the growth nucleus is determined from the difference between the thickness of the metal layer and the etching thickness of the metal layer. The etching thickness of the metal layer is the product of the etching rate and the etching time. The etching rate is obtained from the time until a 50 nm thick metal layer separately prepared on a glass substrate is etched under the same conditions and the light transmittance after the etching becomes equivalent to that of the glass substrate (approximately 0 nm thickness). The average thickness of the growth nucleus is adjusted by the time for dry etching.
 (2)透明金属膜形成工程
 前述の成長核が形成された第一アドミッタンス調整層上に、一般的な気相成膜法で金属を積層して、透明金属膜を形成する。気相成膜法の種類は、特に制限されず、例えば真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等でありうる。これらの中でも、好ましくは真空蒸着法である。真空蒸着法によれば、均一かつ、所望の厚みの透明金属膜が得られやすい。
(2) Transparent metal film formation process A metal is laminated | stacked by the general vapor-phase film-forming method on the 1st admittance adjustment layer in which the above-mentioned growth nucleus was formed, and a transparent metal film is formed. The type of the vapor deposition method is not particularly limited, and may be, for example, a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. Among these, the vacuum deposition method is preferable. According to the vacuum deposition method, it is easy to obtain a transparent metal film having a uniform thickness and a desired thickness.
 4.透明導電体の用途
 前述の透明導電体は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。
4). Applications of transparent conductors The above-mentioned transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescent dimming elements, etc. It can be preferably used for a substrate of an optoelectronic device.
 このとき、透明導電体の表面(例えば、透明支持材と反対側の表面)は、接着層等を介して、他の部材と貼り合わせられてもよい。この場合には、前述のように、透明導電体の表面の等価アドミッタンスYのアドミッタンス座標と接着層のアドミッタンス座標とが近いことが好ましい。これにより、透明導電体と接着層との界面での反射が抑制される。 At this time, the surface of the transparent conductor (for example, the surface opposite to the transparent support material) may be bonded to another member via an adhesive layer or the like. In this case, as described above, it is preferable admittance coordinates of the equivalent admittance Y E of the surface of the transparent conductor and the admittance coordinates of the adhesive layer is closer. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
 一方、透明導電体の表面が空気と接するような構成で使用される場合には、透明導電体の表面の等価アドミッタンスYのアドミッタンス座標と空気のアドミッタンス座標とが近いことが好ましい。これにより、透明導電体表面での光の反射が抑制される。 On the other hand, when the surface of the transparent conductor is used in construction as contact with air, it is preferred that close to the admittance coordinates of the admittance coordinates and the air equivalent admittance Y E of the surface of the transparent conductor. Thereby, reflection of the light on the transparent conductor surface is suppressed.
 B.透明導電体の製造方法
 本発明は、以下の2つの態様の透明導電体の製造方法も提供する。
B. The manufacturing method of a transparent conductor This invention also provides the manufacturing method of the transparent conductor of the following two aspects.
 1.第一の態様の透明導電体の製造方法
 第一の態様の透明導電体の製造方法には、以下の4つの工程が含まれる。
 (i)透明支持材上に光触媒層を成膜する工程
 (ii)工程(i)で成膜した光触媒層上に透明金属膜を成膜する工程
 (iii)光触媒層に光をパターン状に照射する工程
 (iv)工程(iii)で光を照射した領域の透明金属膜を除去する工程
 当該透明導電体の製造方法では、必要に応じて、工程(iv)の後に、光触媒層及び透明金属膜を覆う高屈折率層を成膜する工程を有してもよい。
1. The manufacturing method of the transparent conductor of a 1st aspect The following four processes are contained in the manufacturing method of the transparent conductor of a 1st aspect.
(I) Step of forming a photocatalyst layer on a transparent support material (ii) Step of forming a transparent metal film on the photocatalyst layer formed in step (i) (iii) Irradiating the photocatalyst layer with light in a pattern Step (iv) Step of removing the transparent metal film in the region irradiated with light in the step (iii) In the method for producing the transparent conductor, a photocatalyst layer and a transparent metal film are optionally provided after the step (iv). There may be a step of forming a high refractive index layer covering the substrate.
 当該製造方法で得られる透明導電体400は、例えば図10に示されるように、透明支持材31と、光触媒層38と、パターン状に形成された透明金属膜33とを有する。透明金属膜33上には、光触媒層38及び透明金属膜33を覆う高屈折率層(図示せず)等が含まれてもよい。 The transparent conductor 400 obtained by the manufacturing method includes a transparent support material 31, a photocatalyst layer 38, and a transparent metal film 33 formed in a pattern, for example, as shown in FIG. A high refractive index layer (not shown) that covers the photocatalyst layer 38 and the transparent metal film 33 may be included on the transparent metal film 33.
 (1-1)透明導電体の構成
 (透明支持材)
 透明支持材は、可視光に対して透明なものであれば特に制限されず、前述の透明導電体の透明支持材と同様でありうる。当該透明支持材は、可視光に対する透明性が高いことが好ましい。具体的には、波長450~800nmの光の平均透過率が85%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることがさらに好ましい。透明支持材の光の平均透過率が85%以上であると、透明導電体の透明性が十分に高まる。透明支持材の光の透過率は、分光光度計で測定される。
(1-1) Structure of transparent conductor (Transparent support material)
The transparent support material is not particularly limited as long as it is transparent to visible light, and may be the same as the transparent support material of the transparent conductor described above. The transparent support material preferably has high transparency to visible light. Specifically, the average transmittance of light having a wavelength of 450 to 800 nm is preferably 85% or more, more preferably 88% or more, and further preferably 90% or more. When the average light transmittance of the transparent support material is 85% or more, the transparency of the transparent conductor is sufficiently increased. The light transmittance of the transparent support material is measured with a spectrophotometer.
 透明支持材の厚みは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmであり、さらに好ましくは30μm~1mmである。透明支持材の厚みが1μmより厚ければ、透明支持材の強度が高くなり、光触媒層の作製時に透明支持材が割れたり、裂けたりすることが抑制される。一方、透明支持材の厚みが20mm以下であれば、透明導電体のフレキシブル性が高く、透明導電体を軽量化できる。 The thickness of the transparent support material is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm, and even more preferably 30 μm to 1 mm. If the thickness of the transparent support material is greater than 1 μm, the strength of the transparent support material is increased, and the transparent support material is prevented from being cracked or torn during the production of the photocatalyst layer. On the other hand, if the thickness of the transparent support material is 20 mm or less, the flexibility of the transparent conductor is high, and the weight of the transparent conductor can be reduced.
 (光触媒層)
 光触媒層は、光触媒を含む。光触媒とは、光(励起光)照射によって酸化・還元反応を生じさせる物質である。光触媒は、伝導帯と価電子帯との間のエネルギーギャップより大きなエネルギーの光が照射されると、価電子帯中の電子が励起して、伝導電子及び正孔を生成する。そして、伝導帯に生成した電子の還元力及び/または価電子帯に生成した正孔の酸化力によって、種々の酸化・還元反応を生じさせる。本態様の透明導電体の製造方法では、後述するように、光触媒による酸化・還元を利用して、透明金属膜をパターニングする。
(Photocatalyst layer)
The photocatalyst layer contains a photocatalyst. A photocatalyst is a substance that causes an oxidation / reduction reaction by irradiation with light (excitation light). When the photocatalyst is irradiated with light having energy larger than the energy gap between the conduction band and the valence band, electrons in the valence band are excited to generate conduction electrons and holes. Various oxidation / reduction reactions are caused by the reducing power of electrons generated in the conduction band and / or the oxidizing power of holes generated in the valence band. In the method for producing a transparent conductor according to this embodiment, the transparent metal film is patterned using oxidation / reduction by a photocatalyst as described later.
 光触媒層には、光触媒のみが含まれてもよく、光触媒と共にバインダが含まれてもよい。光触媒層中に含まれる光触媒の量は、80質量%以上であることが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上である。光触媒層中に含まれる光触媒量が80質量%以上であれば、前述の酸化・還元反応が十分に行われる。 The photocatalyst layer may contain only the photocatalyst, and may contain a binder together with the photocatalyst. The amount of the photocatalyst contained in the photocatalyst layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. If the amount of photocatalyst contained in the photocatalyst layer is 80% by mass or more, the above-described oxidation / reduction reaction is sufficiently performed.
 光触媒層中に含まれる光触媒の種類は特に制限されず、その例には、二酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、チタン酸ストロンチウム(SrTiO)、酸化タングステン(WO)、酸化ビスマス(Bi)、及び酸化鉄(Fe)等が含まれる。光触媒層には、光触媒が1種類のみ含まれてもよく、2種類以上が含まれてもよい。安定性及び入手容易性の観点から、光触媒が酸化チタンであることが好ましい。 The type of photocatalyst contained in the photocatalyst layer is not particularly limited, and examples thereof include titanium dioxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), strontium titanate (SrTiO 3 ), and tungsten oxide. (WO 3 ), bismuth oxide (Bi 2 O 3 ), iron oxide (Fe 2 O 3 ) and the like are included. The photocatalyst layer may contain only one type of photocatalyst or two or more types. From the viewpoint of stability and availability, the photocatalyst is preferably titanium oxide.
 光触媒層中に含まれるバインダは、光触媒粒子を結着可能なものであり、光触媒による酸化・還元反応により分解されない結合エネルギーを有するものであれば特に制限されない。バインダの例には、オルガノポリシロキサン等が含まれる。 The binder contained in the photocatalyst layer is not particularly limited as long as it can bind the photocatalyst particles and has a binding energy that is not decomposed by the oxidation / reduction reaction by the photocatalyst. Examples of the binder include organopolysiloxane and the like.
 光触媒層の厚みは、3nm~100nmであることが好ましく、より好ましくは10nm~50nmである。光触媒層の厚みが3nm以上であれば、前述の酸化・還元反応が十分に生じるため、透明金属膜を十分にパターニングすることができる。一方、光触媒層の厚みが100nm以下であれば、光触媒層の透明性が高まり、透明導電体の透明性が高まりやすい。 The thickness of the photocatalyst layer is preferably 3 nm to 100 nm, more preferably 10 nm to 50 nm. If the thickness of the photocatalyst layer is 3 nm or more, the above-described oxidation / reduction reaction occurs sufficiently, so that the transparent metal film can be sufficiently patterned. On the other hand, when the thickness of the photocatalyst layer is 100 nm or less, the transparency of the photocatalyst layer is increased, and the transparency of the transparent conductor is easily increased.
 (透明金属膜)
 透明金属膜は、光触媒層上にパターン状に形成される。透明導電体において、透明金属膜が形成されている領域が導通部であり、透明金属膜が形成されていない領域が絶縁部である。透明金属膜のパターンは、各種素子の、配線パターン等でありうる。
(Transparent metal film)
The transparent metal film is formed in a pattern on the photocatalyst layer. In the transparent conductor, a region where the transparent metal film is formed is a conducting portion, and a region where the transparent metal film is not formed is an insulating portion. The pattern of the transparent metal film can be a wiring pattern of various elements.
 透明金属膜は、前述の透明導電体の透明金属膜と同様の材料からなる膜でありうる。透明金属膜の厚みは5~15nmであることが好ましい。透明金属膜の厚みが5nm以上であれば、十分に表面電気抵抗値が低くなる。一方、透明金属膜の厚みが15nm以下であると、金属本来の反射が生じ難い。そのため、透明金属膜の透明性が高まり、透明金属膜が視認され難くなる。透明金属膜の厚みは、エリプソメーター等で測定される。 The transparent metal film may be a film made of the same material as the transparent metal film of the transparent conductor described above. The thickness of the transparent metal film is preferably 5 to 15 nm. If the thickness of the transparent metal film is 5 nm or more, the surface electrical resistance value is sufficiently low. On the other hand, when the thickness of the transparent metal film is 15 nm or less, the original reflection of the metal hardly occurs. Therefore, the transparency of the transparent metal film is increased, and the transparent metal film is hardly visually recognized. The thickness of the transparent metal film is measured with an ellipsometer or the like.
 (高屈折率層)
 前述の光触媒層及び透明金属膜に高屈折率層が形成されていてもよい。透明導電体に高屈折率層が含まれると、透明導電体表面の光の反射が抑制され、透明導電体の光透過性が高まる。当該項屈折率層は、前述の透明導電体の第一アドミッタンス調整層または第二アドミッタンス調整層と同様の材料からなる層でありうる。
(High refractive index layer)
A high refractive index layer may be formed on the photocatalyst layer and the transparent metal film. When the high refractive index layer is included in the transparent conductor, reflection of light on the surface of the transparent conductor is suppressed, and light transparency of the transparent conductor is increased. The term refractive index layer may be a layer made of the same material as the first admittance adjusting layer or the second admittance adjusting layer of the transparent conductor described above.
 高屈折率層の波長510nmの光の屈折率は、1.8以上であることが好ましく、2.0以上であることがより好ましく、2.2以上であることがさらに好ましい。高屈折率層の屈折率が1.8以上であると、透明導電体の光透過性が十分に高まる。高屈折率層の屈折率は、エリプソメーターで測定される。 The refractive index of light having a wavelength of 510 nm of the high refractive index layer is preferably 1.8 or more, more preferably 2.0 or more, and further preferably 2.2 or more. When the refractive index of the high refractive index layer is 1.8 or more, the light transmittance of the transparent conductor is sufficiently increased. The refractive index of the high refractive index layer is measured with an ellipsometer.
 高屈折率層の厚みは3nm~100nmであることが好ましく、より好ましくは10nm~60nmである。高屈折率層の厚みが上記範囲であれば、透明導電体の光透過性が十分に高まる。 The thickness of the high refractive index layer is preferably 3 nm to 100 nm, more preferably 10 nm to 60 nm. When the thickness of the high refractive index layer is in the above range, the light transmittance of the transparent conductor is sufficiently increased.
 (1-2)透明導電体の製造方法
 前述のように、本態様の透明導電体の製造方法には、以下の4つの工程が含まれる。
 (i)透明支持材上に光触媒層を成膜する工程
 (ii)工程(i)で成膜した光触媒層上に透明金属膜を成膜する工程
 (iii)光触媒層に光をパターン状に照射する工程
 (iv)工程(iii)で光を照射した領域の透明金属膜を除去する工程
 必要に応じて、工程(iv)の後に、(v)光触媒層及び透明金属膜を覆う高屈折率層を成膜する工程を有してもよい。
(1-2) Method for Producing Transparent Conductor As described above, the method for producing a transparent conductor of this embodiment includes the following four steps.
(I) Step of forming a photocatalyst layer on a transparent support material (ii) Step of forming a transparent metal film on the photocatalyst layer formed in step (i) (iii) Irradiating the photocatalyst layer with light in a pattern (Iv) The step of removing the transparent metal film in the region irradiated with light in the step (iii) If necessary, after the step (iv), (v) a high refractive index layer covering the photocatalyst layer and the transparent metal film May be formed.
 前述の特許文献4の技術では、光の照射によって光触媒層の濡れ性を変化させる。そして、この光照射部と非照射部の濡れ性の差を利用して、透明導電膜を形成するための液をパターン状に付着させる。しかし、この方法では、所望の領域以外にも、透明導電膜を形成するための液が付着しやすく、微細なパターンを形成することが難しかった。 In the technique of Patent Document 4 described above, the wettability of the photocatalyst layer is changed by light irradiation. And the liquid for forming a transparent conductive film is made to adhere to a pattern using the difference in wettability of this light irradiation part and a non-irradiation part. However, in this method, the liquid for forming the transparent conductive film easily adheres to a region other than the desired region, and it is difficult to form a fine pattern.
 これに対し、本態様では、光触媒層上に透明金属膜を積層しておき(工程(ii));光の照射によって、透明金属膜から光触媒層側に、もしくは光触媒層から透明金属膜側に電子を移動させる(工程(iii))。これにより、光触媒と接している透明金属膜表面の金属原子がイオン化し、透明金属膜と光触媒層との密着性が低下する。したがって、工程(iv)で、所望の領域;つまり光を照射した領域の透明金属膜を、容易に剥離することができ、微細なパターンも形成可能である。 On the other hand, in this embodiment, a transparent metal film is laminated on the photocatalyst layer (step (ii)); by light irradiation, the transparent metal film is on the photocatalyst layer side, or the photocatalyst layer is on the transparent metal film side. Electrons are moved (step (iii)). Thereby, the metal atom on the surface of the transparent metal film in contact with the photocatalyst is ionized, and the adhesion between the transparent metal film and the photocatalyst layer is lowered. Therefore, in the step (iv), the transparent metal film in the desired region; that is, the region irradiated with light can be easily peeled off, and a fine pattern can be formed.
 (i)光触媒層成膜工程
 図47(a)に示されるように、透明支持材31上に光触媒を含む光触媒層38を成膜する。光触媒層の成膜方法は特に制限されず、湿式成膜法であってもよく、乾式成膜法であってもよい。通常、透明支持材31の全面に光触媒層38を成膜するが、必要に応じて、光触媒層38を成膜しない領域があってもよい。
(I) Photocatalyst Layer Film Formation Step As shown in FIG. 47A, a photocatalyst layer 38 containing a photocatalyst is formed on the transparent support material 31. The film formation method of the photocatalyst layer is not particularly limited, and may be a wet film formation method or a dry film formation method. Usually, the photocatalyst layer 38 is formed on the entire surface of the transparent support material 31, but there may be a region where the photocatalyst layer 38 is not formed as necessary.
 湿式成膜法は、前述の光触媒もしくはその前駆体を溶剤中に分散させた光触媒層形成用組成物を、スピンコート法、スプレーコート法、ディップコート法、ロールコート法、ディップコート法等で塗布し;これを加熱乾燥させる方法等であり得る。光触媒層形成用組成物中には、必要に応じて前述のバインダやその前駆体が含まれてもよい。 In the wet film formation method, the composition for forming a photocatalyst layer in which the above-described photocatalyst or its precursor is dispersed in a solvent is applied by a spin coat method, a spray coat method, a dip coat method, a roll coat method, a dip coat method, or the like. It can be a method of drying by heating. In the composition for photocatalyst layer formation, the above-mentioned binder and its precursor may be contained as needed.
 また、光触媒層が二酸化チタンからなる層である場合には、無定型チタニア微粒子を分散させたゾルを前述の方法で塗布し、これを結晶化温度以上で焼成して光触媒層を成膜してもよい。 When the photocatalyst layer is a layer made of titanium dioxide, a sol in which amorphous titania fine particles are dispersed is applied by the above-described method, and this is baked at a crystallization temperature or higher to form a photocatalyst layer. Also good.
 一方、乾式成膜法は、真空蒸着法、イオンプレーティング法、スパッタ法、プラズマCVD法、熱CVD法等で、前述の光触媒を透明支持材状に堆積させる方法であり得る。 On the other hand, the dry film forming method may be a method of depositing the above-mentioned photocatalyst on a transparent support material by a vacuum deposition method, an ion plating method, a sputtering method, a plasma CVD method, a thermal CVD method, or the like.
 (ii)透明金属膜成膜工程
 図47(b)に示されるように、前述の光触媒層38上に透明金属膜33を成膜する。透明金属膜の成膜方法は特に制限されず、湿式成膜法であってもよく、乾式成膜法であってもよい。
(Ii) Transparent Metal Film Forming Step As shown in FIG. 47B, the transparent metal film 33 is formed on the photocatalyst layer 38 described above. The method for forming the transparent metal film is not particularly limited, and may be a wet film forming method or a dry film forming method.
 湿式成膜法は、例えば前述の金属を無電解メッキする方法等でありうる。また、乾式成膜法は、真空蒸着法、イオンプレーティング法、スパッタ法、プラズマCVD法、熱CVD法等で金属膜を成膜する方法でありうる。これらの中でも、好ましくは真空蒸着法である。真空蒸着法によれば、均一かつ、所望の厚みの透明金属膜が得られやすい。さらに、真空下で成膜するため、透明金属膜に異物が混入しにくい。 The wet film formation method may be, for example, a method of electroless plating the above-described metal. Further, the dry film forming method may be a method of forming a metal film by a vacuum deposition method, an ion plating method, a sputtering method, a plasma CVD method, a thermal CVD method, or the like. Among these, the vacuum deposition method is preferable. According to the vacuum deposition method, it is easy to obtain a transparent metal film having a uniform thickness and a desired thickness. In addition, since the film is formed under vacuum, it is difficult for foreign matter to enter the transparent metal film.
 本態様では特に、透明金属膜を成膜する前に、成長核を形成することが好ましい。成長核を形成してから透明金属膜を形成すると、厚みが薄くとも導通が良好な透明金属膜が得られる。またこの方法によれば、透明金属膜の厚みが薄くとも、プラズモン吸収が生じ難い。成長核を成膜してから、透明金属膜を成膜する方法は、前述の透明導電体の透明金属膜の成膜方法と同様の方法でありうる。 In this embodiment, it is particularly preferable to form growth nuclei before forming the transparent metal film. When the transparent metal film is formed after the growth nuclei are formed, a transparent metal film having good conductivity can be obtained even if the thickness is small. Also, according to this method, plasmon absorption is unlikely to occur even if the transparent metal film is thin. The method for forming the transparent metal film after forming the growth nucleus may be the same method as the method for forming the transparent metal film of the transparent conductor described above.
 (iii)光照射工程
 図47(c)に示されるように、光触媒層38にパターン状に光(励起光)111を照射する。光を照射すると、光触媒層38中の光触媒が励起され、透明金属膜33中の金属原子がイオン化される。
(Iii) Light Irradiation Step As shown in FIG. 47C, the photocatalyst layer 38 is irradiated with light (excitation light) 111 in a pattern. When light is irradiated, the photocatalyst in the photocatalyst layer 38 is excited and the metal atoms in the transparent metal film 33 are ionized.
 光触媒層38への光の照射は、透明金属膜33側から行ってもよく、透明支持材31側から行ってもよい。透明金属膜33及び透明支持材31は、いずれも光透過性が高い。そのため、いずれの方向から光を照射しても、十分に光触媒が励起される。 The light irradiation to the photocatalyst layer 38 may be performed from the transparent metal film 33 side or from the transparent support material 31 side. Both the transparent metal film 33 and the transparent support material 31 have high light transmittance. Therefore, the photocatalyst is sufficiently excited regardless of which direction the light is irradiated.
 光照射工程において、光111をパターン状に照射する方法は特に制限されず;図47(c)に示されるように、マスク112を介して光を照射する方法であってもよく、光の出射瞳を絞り、ライン状に照射する方法であってもよい。 In the light irradiation step, the method of irradiating the light 111 in a pattern is not particularly limited; as shown in FIG. 47 (c), a method of irradiating light through the mask 112 may be used. A method of irradiating the pupil in a line shape may be used.
 照射する光は、光触媒を励起可能な波長の光であればよく、光触媒の種類によって定まる。例えば、光触媒が酸化チタン(TiO)である場合には、波長380nmの光でありうる。このような光の光源の例には、各種の水銀灯、メタルハライドランプ、キセノンランプ、エキシマランプ灯の紫外線ランプや、エキシマレーザー、YAGレーザー等のレーザー光源が含まれる。 The light to be irradiated may be light having a wavelength that can excite the photocatalyst, and is determined by the type of the photocatalyst. For example, when the photocatalyst is titanium oxide (TiO 2 ), it can be light with a wavelength of 380 nm. Examples of such light sources include various mercury lamps, metal halide lamps, xenon lamps, excimer lamps, ultraviolet lamps, laser light sources such as excimer lasers and YAG lasers.
 光触媒層に照射する光量は、50~500000J/cmであることが好ましく、より好ましくは100~100000J/cmであり、さらに好ましくは500~10000J/cmである。上記光量を照射すれば、透明金属膜が十分にイオン化され、後述する工程(iv)で、十分に透明金属膜を除去することができる。製造効率の観点から、照射時間は短いことが好ましい。 The amount of light applied to the photocatalyst layer is preferably 50 to 500,000 J / cm 2 , more preferably 100 to 100,000 J / cm 2 , and further preferably 500 to 10,000 J / cm 2 . When the light amount is irradiated, the transparent metal film is sufficiently ionized, and the transparent metal film can be sufficiently removed in the step (iv) described later. From the viewpoint of production efficiency, the irradiation time is preferably short.
 本工程は、前述の透明金属膜の成膜を行うための装置内に光(励起光)を入射させて行ってもよい。また、当該装置にロードロック部がある場合には、本工程をロードロック部内で行ってもよい。これにより、透明金属膜に異物が付着することを抑制できる。 This step may be performed by causing light (excitation light) to enter the apparatus for forming the transparent metal film described above. Moreover, when the apparatus has a load lock unit, this step may be performed in the load lock unit. Thereby, it can suppress that a foreign material adheres to a transparent metal film.
 (iv)透明金属膜除去工程
 図47(d)に示されるように、光111を照射した領域の透明金属膜33を除去する。光照射領域の光触媒層38に接する透明金属膜33の表面は、工程(iii)でイオン化されており;光触媒層38と透明金属膜33との密着力が低下している。そのため、当該領域の透明金属膜33は、容易に剥離する。
(Iv) Transparent Metal Film Removal Step As shown in FIG. 47 (d), the transparent metal film 33 in the region irradiated with the light 111 is removed. The surface of the transparent metal film 33 in contact with the photocatalyst layer 38 in the light irradiation region is ionized in the step (iii); the adhesion between the photocatalyst layer 38 and the transparent metal film 33 is reduced. Therefore, the transparent metal film 33 in the region is easily peeled off.
 透明金属膜の剥離方法は、所望の領域のみ透明金属膜を剥離できる方法であれば特に制限されない。例えば、透明金属膜に不活性ガスを吹き付ける方法や、透明金属膜を溶液に浸漬させる方法、透明金属膜を傾けて自重で剥離させる方法、透明金属膜を擦る方法等でありうる。また、光照射領域の透明金属膜の剥離性を促進するため、光照射領域に振動や衝撃を与えたり、光触媒によりイオン化された透明金属膜のみが反応するガスを接触させてもよい。 The method for peeling the transparent metal film is not particularly limited as long as the transparent metal film can be peeled only in a desired region. For example, a method of spraying an inert gas on the transparent metal film, a method of immersing the transparent metal film in a solution, a method of tilting the transparent metal film to peel off by its own weight, a method of rubbing the transparent metal film, and the like can be used. Further, in order to promote the peelability of the transparent metal film in the light irradiation region, vibration or impact may be applied to the light irradiation region, or a gas that reacts only with the transparent metal film ionized by the photocatalyst may be contacted.
 (v)高屈折率層成膜工程
 前述のように、工程(iv)で透明金属膜を所望の形状にパターニングした後、透明金属膜及び光触媒層を覆うように高屈折率層を成膜してもよい。高屈折率層を成膜すると、透明導電体の表面反射が抑制され、透明導電体の光透過性が高まる。
(V) High Refractive Index Layer Film Formation Step As described above, after patterning the transparent metal film into a desired shape in step (iv), a high refractive index layer is formed so as to cover the transparent metal film and the photocatalyst layer. May be. When the high refractive index layer is formed, the surface reflection of the transparent conductor is suppressed, and the light transmittance of the transparent conductor is increased.
 高屈折率層の成膜方法は特に制限されず、湿式成膜法であってもよく、乾式成膜法であってもよい。湿式成膜法は、前述の高屈折性材料、もしくはその前駆体を溶剤中に分散させた高屈折率層形成用組成物を、スピンコート法、スプレーコート法、ディップコート法、ロールコート法、ディップコート法等で塗布し;これを加熱乾燥させる方法等であり得る。高屈折率層形成用組成物中には、必要に応じて前述のバインダやその前駆体が含まれてもよい。 The film forming method of the high refractive index layer is not particularly limited, and may be a wet film forming method or a dry film forming method. The wet film-forming method is a method for forming a high refractive index layer in which the above-described highly refractive material or a precursor thereof is dispersed in a solvent, spin coating method, spray coating method, dip coating method, roll coating method, It may be applied by a dip coating method or the like; In the composition for forming a high refractive index layer, the above-mentioned binder and its precursor may be contained as necessary.
 乾式成膜法は、真空蒸着法、イオンプレーティング法、スパッタ法、プラズマCVD法、熱CVD法等で、前述の高屈折性材料を透明支持材上に堆積させる方法であり得る。 The dry film forming method may be a method of depositing the above-described highly refractive material on a transparent support material by a vacuum deposition method, an ion plating method, a sputtering method, a plasma CVD method, a thermal CVD method, or the like.
 (1-3)透明導電体の用途
 前述の方法で得られる透明導電体は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの透明電極や透明回路、透明配線に好ましく用いることができる。
(1-3) Use of transparent conductor The transparent conductor obtained by the above-mentioned method includes various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, and various solar cells. It can be preferably used for transparent electrodes, transparent circuits and transparent wirings of various optoelectronic devices such as various electroluminescence light control elements.
 2.第二の態様の透明導電体の製造方法
 第二の態様の透明導電体の製造方法は、透明支持材と、透明支持材上に成膜された透明金属膜とを有する透明導電体の製造方法である。なお、透明導電体には、透明支持材及び透明金属膜以外にも、必要に応じて他の層が含まれてもよい。
2. The manufacturing method of the transparent conductor of 2nd aspect The manufacturing method of the transparent conductor of 2nd aspect is a manufacturing method of the transparent conductor which has a transparent support material and the transparent metal film formed on the transparent support material. It is. In addition to the transparent support material and the transparent metal film, the transparent conductor may include other layers as necessary.
 本態様の製造方法には、以下の2つの工程が含まれる。
 (i)透明支持材上にスパッタ法で透明金属膜を成膜する工程A
 (ii)前記透明金属膜を逆スパッタする工程B
 本態様の製造方法では、工程A及び工程Bを同時に行ってもよく(第一の形態)、工程A及び工程Bを交互に行ってよい(第二の形態)。
The manufacturing method of this aspect includes the following two steps.
(I) Step A of forming a transparent metal film on the transparent support material by sputtering.
(Ii) Process B for reverse sputtering the transparent metal film
In the manufacturing method of this aspect, the process A and the process B may be performed simultaneously (first form), or the process A and the process B may be performed alternately (second form).
 一般的なスパッタ法で透明支持材上に透明金属膜を成膜する場合、透明支持材とターゲット材料との間にプラズマを発生させて、ターゲット材料をスパッタする。そして、ターゲット材料の表面からはじき飛ばされたスパッタ粒子を、透明支持材に堆積させて透明金属膜を得る。 When a transparent metal film is formed on a transparent support material by a general sputtering method, plasma is generated between the transparent support material and the target material to sputter the target material. Then, the sputtered particles that are repelled from the surface of the target material are deposited on a transparent support material to obtain a transparent metal film.
 前述のように、このようなスパッタ法で透明金属膜を成膜すると、透明支持材に付着したスパッタ粒子(原子)がマイグレート(移動)して寄り集まる。そのため、成膜初期には、透明支持材上に多数の塊が形成される。そして、この塊を核として膜が成長し、塊同士の隙間が埋まって連続膜となる。そのため、透明金属膜の厚みが薄いと、プラズモン吸収等が生じたり、十分な導通が得られない。一方で、透明金属膜の厚みが厚くなると、金属本来の反射が生じる。したがって、通常のスパッタ法では、低い表面電気抵抗と、高い光透過性とを兼ね備える透明金属膜が得られなかった。 As described above, when a transparent metal film is formed by such a sputtering method, sputtered particles (atoms) attached to the transparent support material migrate (move) and gather together. Therefore, at the initial stage of film formation, many lumps are formed on the transparent support material. And a film | membrane grows by setting this lump as a nucleus, The clearance gap between lumps is filled, and it becomes a continuous film. For this reason, if the transparent metal film is thin, plasmon absorption or the like cannot be achieved or sufficient conduction cannot be obtained. On the other hand, when the thickness of the transparent metal film is increased, the original reflection of the metal occurs. Accordingly, a transparent metal film having both low surface electric resistance and high light transmittance cannot be obtained by a normal sputtering method.
 これに対し、本態様の製造方法では、透明金属膜の成膜と同時、もしくは透明金属膜を一部成膜した後に、当該透明金属膜を逆スパッタする。成膜初期に透明金属膜を逆スパッタすると、透明金属膜の一部がイオンの衝突によって削り取られる。これにより、透明金属膜に微細な凹凸が形成される。また、イオンの衝突によって金属膜が細かく砕かれて、透明支持材の全面に細かい金属粒子(成長核)が付着する。透明支持材上に成長核が存在すると、透明支持材上に堆積するスパッタ粒子がマイグレートし難くなる。さらに、当該方法によって作製される成長核は、隣接する成長核との間隔が狭い。そのため、当該成長核を起点として成長する膜が繋がりやすい。 On the other hand, in the manufacturing method of this aspect, the transparent metal film is reverse-sputtered simultaneously with the formation of the transparent metal film or after partially forming the transparent metal film. When the transparent metal film is reverse sputtered at the initial stage of film formation, a part of the transparent metal film is scraped off by ion collision. Thereby, fine irregularities are formed in the transparent metal film. Further, the metal film is finely crushed by the collision of ions, and fine metal particles (growth nuclei) adhere to the entire surface of the transparent support material. If there are growth nuclei on the transparent support material, the sputtered particles deposited on the transparent support material are difficult to migrate. Furthermore, the growth nuclei produced by the method have a narrow interval between adjacent growth nuclei. Therefore, films that grow from the growth nucleus as a starting point are easily connected.
 したがって、本態様の製造方法によれば、厚みが薄くても十分に電気的に導通し、プラズモン吸収が生じ難い透明金属膜が得られる。また、当該透明金属膜は厚みが薄いため、金属本来の吸収も生じ難い。 Therefore, according to the manufacturing method of this aspect, a transparent metal film that is sufficiently electrically conductive even when the thickness is small and hardly causes plasmon absorption can be obtained. Further, since the transparent metal film is thin, absorption of the metal itself is difficult to occur.
 (2-1)第一の形態
 本態様の製造方法の第一の形態では、透明支持材上にスパッタ法で透明金属膜を成膜する工程(工程A)と、透明金属膜を逆スパッタする工程(工程B)とを同時に行う。工程Aと工程Bとを同時に行うとは、少なくとも工程Aの一部と工程Bの一部とを同時に行う過程があればよく、必ずしも両工程の開始時期及び終了時期を一致させる必要はない。
(2-1) First Mode In the first mode of the manufacturing method of this aspect, a step of forming a transparent metal film on the transparent support material by a sputtering method (Step A) and a reverse metal sputtering of the transparent metal film are performed. A process (process B) is performed simultaneously. The process A and the process B are performed simultaneously as long as at least a part of the process A and a part of the process B are performed at the same time, and it is not always necessary to match the start timing and the end timing of both processes.
 ここで、透明金属膜を成膜する工程(工程A)は、透明金属膜の成膜効率等の観点から、透明金属膜の成膜開始から成膜終了まで、連続して行うことが好ましい。一方、透明金属膜を逆スパッタする工程(工程B)は、透明金属膜の成膜開始から終了までの間の任意の期間に行うことができる。例えば、工程Aの開始から終了までの全期間に亘って工程Bを行ってもよく;工程Aの開始から終了までの一部の期間にのみ、工程Bを一回、もしくは複数回行ってもよい。 Here, the step of forming the transparent metal film (step A) is preferably performed continuously from the start of film formation to the end of film formation from the viewpoint of the film formation efficiency of the transparent metal film. On the other hand, the step of reverse sputtering the transparent metal film (step B) can be performed in an arbitrary period from the start to the end of the formation of the transparent metal film. For example, the process B may be performed over the entire period from the start to the end of the process A; the process B may be performed once or a plurality of times only during a partial period from the start to the end of the process A. Good.
 透明金属膜を逆スパッタする工程(工程B)は、少なくとも透明金属膜の成膜初期に行うことが特に好ましい。前述のように、透明金属膜の成膜初期に透明金属膜を逆スパッタすると、アルゴンイオン等によって、透明金属膜が細かく砕かれて、透明支持材全面に成長核が形成される。そして、当該成長膜を起点に、透明金属膜が成長し;薄くても平滑かつプラズモン吸収の少ない膜が得られる。本形態では、少なくとも透明支持材上に成膜された透明金属膜の厚みが3nm以下であるときに、工程Bを行うことが好ましく;工程Aの開始と同時に工程Bを開始し、透明金属膜の厚みが3nm以上になるまで工程Bを継続して行うことがさらに好ましい。厚みが3nm以下である透明金属膜に対して逆スパッタすると、粒径の小さい成長核が形成されやすい。その結果、薄膜でも平滑かつプラズモン吸収の少ない透明金属膜が得られやすい。 The step of reverse sputtering the transparent metal film (step B) is particularly preferably performed at least in the initial stage of forming the transparent metal film. As described above, when the transparent metal film is reverse sputtered at the initial stage of the formation of the transparent metal film, the transparent metal film is finely crushed by argon ions or the like, and growth nuclei are formed on the entire surface of the transparent support material. Then, a transparent metal film grows from the growth film as a starting point; a film that is smooth and has little plasmon absorption is obtained even if it is thin. In this embodiment, it is preferable to perform the step B when the thickness of the transparent metal film formed on at least the transparent support material is 3 nm or less; the step B is started simultaneously with the start of the step A, and the transparent metal film More preferably, step B is continued until the thickness of the film becomes 3 nm or more. When reverse sputtering is performed on a transparent metal film having a thickness of 3 nm or less, growth nuclei having a small particle size are likely to be formed. As a result, it is easy to obtain a transparent metal film that is smooth and has little plasmon absorption even with a thin film.
 第一の形態の製造方法は、透明支持材側、及びターゲット材料側に、それぞれプラズマを発生させることが可能なスパッタ装置によって行うことができる。第一の形態の製造方法に用いられるスパッタ装置600の一例を図51に示す。図51に示されるように、スパッタ装置600には、真空チャンバー601と、真空チャンバー601内に配設された透明支持材41を保持するための基板ホルダー602と、真空チャンバー601内に配設されたターゲット材料603を保持するターゲットホルダー604とが含まれる。基板ホルダー602及びターゲットホルダー604は、それぞれ基板側電源605及びターゲット側電源606と独立に接続される。また、真空チャンバー601は、不活性ガスを導入するためのガス配管607や、真空チャンバー内の真空度を調整する真空ポンプ(図示せず)と接続される。 The manufacturing method of the first embodiment can be performed by a sputtering apparatus capable of generating plasma on the transparent support material side and the target material side, respectively. An example of the sputtering apparatus 600 used for the manufacturing method of the first embodiment is shown in FIG. As shown in FIG. 51, the sputtering apparatus 600 includes a vacuum chamber 601, a substrate holder 602 for holding the transparent support material 41 disposed in the vacuum chamber 601, and a vacuum chamber 601. And a target holder 604 for holding the target material 603. The substrate holder 602 and the target holder 604 are independently connected to the substrate side power source 605 and the target side power source 606, respectively. The vacuum chamber 601 is connected to a gas pipe 607 for introducing an inert gas and a vacuum pump (not shown) for adjusting the degree of vacuum in the vacuum chamber.
 工程A及び工程Bは、透明支持材41を真空チャンバー601内の基板ホルダー602に設置し、透明金属膜を成膜するためのターゲット材料603をターゲットホルダー604に設置して行う。なお、図51に示されるスパッタ装置では、ターゲット材料603を1種のみ配置しているが、2種以上のターゲット材料603を配置し、得られる透明金属膜を合金としてもよい。続いて真空ポンプ(図示せず)により、真空チャンバー601内を減圧状態とした後、ガス配管607から不活性ガスを真空チャンバー601内に導入する。不活性ガスの種類は特に制限されないが、通常アルゴンガスである。 Process A and process B are performed by setting the transparent support material 41 on the substrate holder 602 in the vacuum chamber 601 and setting the target material 603 for forming the transparent metal film on the target holder 604. In the sputtering apparatus shown in FIG. 51, only one type of target material 603 is disposed, but two or more types of target materials 603 may be disposed, and the resulting transparent metal film may be used as an alloy. Subsequently, after the inside of the vacuum chamber 601 is reduced in pressure by a vacuum pump (not shown), an inert gas is introduced into the vacuum chamber 601 from the gas pipe 607. The type of the inert gas is not particularly limited, but is usually argon gas.
 この状態で、ターゲット側電源606より、ターゲットホルダー604に電圧をかけて、ターゲット材料603表面にプラズマを発生させる。そして、発生させたアルゴンイオン等によってターゲット材料603をはじき飛ばし、当該ターゲット材料を透明支持材41上に堆積させて、透明金属膜を成膜する(工程A)。ターゲットホルダー604に流す電流は直流(DC)であってもよく、高周波電流(RF)であってもよい。 In this state, a voltage is applied to the target holder 604 from the target-side power source 606 to generate plasma on the surface of the target material 603. Then, the target material 603 is repelled by the generated argon ions and the like, and the target material is deposited on the transparent support material 41 to form a transparent metal film (step A). The current passed through the target holder 604 may be direct current (DC) or high frequency current (RF).
 一方、基板側電源605より、基板ホルダー602にも電圧をかけて、透明支持材41の表面にもプラズマを発生させる。そして発生させたアルゴンイオン等によって、透明支持材41上に成膜された透明金属膜を逆スパッタ(エッチング)する。透明支持材41が通常絶縁体であるため、基板ホルダー602に流す電流は通常、高周波電流(RF)である。 On the other hand, a voltage is also applied to the substrate holder 602 from the substrate-side power source 605 to generate plasma on the surface of the transparent support material 41. Then, the transparent metal film formed on the transparent support material 41 is reverse sputtered (etched) by the generated argon ions or the like. Since the transparent support material 41 is usually an insulator, the current passed through the substrate holder 602 is usually a high frequency current (RF).
 ここで、真空チャンバー601内における、透明支持材41と、ターゲット材料603との間隔は、1~500mmであることが好ましく、より好ましくは40~150mmである。これらの間隔が150mm以下であると特に、アルゴン原子等によってはじき飛ばされたターゲット材料が透明支持材41上に効率よく堆積する Here, the distance between the transparent support material 41 and the target material 603 in the vacuum chamber 601 is preferably 1 to 500 mm, and more preferably 40 to 150 mm. In particular, when the distance is 150 mm or less, the target material repelled by argon atoms or the like is efficiently deposited on the transparent support material 41.
 また、基板ホルダー602に印加する電力は、ターゲットホルダー604に印加する電力より小さくする。つまり、透明支持材41側に発生するプラズマの強度を、ターゲット材料603側に発生するプラズマの強度より低くする。ターゲット材料を透明支持材41上に堆積させる速度より、逆スパッタ(エッチング)によって透明金属膜を削り取る速度を遅くし、透明支持材41上にターゲット粒子を少しずつ堆積させる。 Also, the power applied to the substrate holder 602 is made smaller than the power applied to the target holder 604. That is, the intensity of the plasma generated on the transparent support material 41 side is made lower than the intensity of the plasma generated on the target material 603 side. The speed at which the transparent metal film is scraped off by reverse sputtering (etching) is made slower than the speed at which the target material is deposited on the transparent support material 41, and the target particles are deposited little by little on the transparent support material 41.
 ターゲットホルダー604に印加する電力に対する、基板ホルダー602に印加する電力の割合は、スパッタ装置600の種類や、ターゲット材料603と透明支持材41との距離に応じて適宜調整する。具体的には、工程Aのみを行って作製した透明金属膜の波長400~800nmの光の平均吸収率(基準値)と、工程A及び工程Bを行って作製した透明金属膜の波長400~800nmの光の平均吸収率とを比較する。そして、工程A及び工程Bを行って作製した透明金属膜の平均吸収率のほうが上記基準値より低くなるように、基板ホルダー602に印加する電力の割合を調整する。 The ratio of the power applied to the substrate holder 602 to the power applied to the target holder 604 is appropriately adjusted according to the type of the sputtering apparatus 600 and the distance between the target material 603 and the transparent support material 41. Specifically, the average absorption rate (reference value) of light having a wavelength of 400 to 800 nm of the transparent metal film produced by performing only the process A, and the wavelength of 400 to 800 nm of the transparent metal film produced by performing the process A and the process B. The average absorption rate of light at 800 nm is compared. And the ratio of the electric power applied to the board | substrate holder 602 is adjusted so that the average absorption rate of the transparent metal film produced by performing the process A and the process B may become lower than the said reference value.
 後述する実施例及び比較例で示すように、上記割合が一定以上であると、低い表面電気抵抗と、高い光透過性(低い光吸収性)を兼ね備えた透明金属膜が得られる。ただし、上記割合が過剰に高いと、透明金属膜の成膜速度が過度に遅くなる。さらに、逆スパッタによって透明金属膜の表面が荒れるため、表面電気抵抗が上がり、光透過性も低下する傾向がある。 As shown in Examples and Comparative Examples described later, when the ratio is a certain value or more, a transparent metal film having both low surface electric resistance and high light transmittance (low light absorption) can be obtained. However, when the ratio is excessively high, the film forming speed of the transparent metal film is excessively slow. Furthermore, since the surface of the transparent metal film is roughened by reverse sputtering, the surface electrical resistance tends to increase and the light transmittance tends to decrease.
 上記透明金属膜の光の平均吸収率は、以下の方法で測定する。
 (i)透明導電体(透明支持材及び透明金属膜の積層体)の透明金属膜の正面に対して、5°傾けた角度から測定光を入射させて、透明導電体の透過率及び反射率を分光光度計で測定する。測定された平均透過率及び平均反射率から、透明導電体の平均吸収率(=100-(平均透過率+平均反射率))を算出する。
 (ii)別途用意した透明支持材の平均吸収率を同様に算出し、これをリファレンスデータとする。
 (iii)透明導電体の平均吸収率からリファレンスデータを差し引き、これを透明金属膜の平均吸収率とする。
The average light absorptance of the transparent metal film is measured by the following method.
(I) Transmittance and reflectance of the transparent conductor by allowing measurement light to enter from an angle inclined by 5 ° with respect to the front surface of the transparent metal film of the transparent conductor (laminated body of transparent support material and transparent metal film). Is measured with a spectrophotometer. From the measured average transmittance and average reflectance, the average absorption rate (= 100− (average transmittance + average reflectance)) of the transparent conductor is calculated.
(Ii) The average absorptance of a separately prepared transparent support material is calculated in the same manner, and this is used as reference data.
(Iii) The reference data is subtracted from the average absorption rate of the transparent conductor, and this is used as the average absorption rate of the transparent metal film.
 第一の形態の製造方法における透明金属膜の成膜速度は、0.01~4nm/sであることが好ましく、より好ましくは0.2~2nm/sである。透明金属膜の成膜速度が4nm/s以下であると、膜厚制御を行いやすい。透明金属膜の成膜速度は、透明金属膜の最終的な厚みを、工程Aを行った時間の総和で除した値とする。透明金属膜の成膜速度は、前述のターゲットホルダー604や、基板ホルダー602に印加する電力で調整する。 The film forming rate of the transparent metal film in the manufacturing method of the first embodiment is preferably 0.01 to 4 nm / s, more preferably 0.2 to 2 nm / s. When the film forming rate of the transparent metal film is 4 nm / s or less, it is easy to control the film thickness. The film forming speed of the transparent metal film is a value obtained by dividing the final thickness of the transparent metal film by the total time for performing the process A. The film forming speed of the transparent metal film is adjusted by the electric power applied to the target holder 604 and the substrate holder 602 described above.
 第一の形態で成膜する透明金属膜の厚みは、15nm以下であることが好ましく、3~13nmであることがより好ましく、さらに好ましくは5~12nmである。透明金属膜の厚みが15nm以下であると、金属本来の反射が生じ難く、透明金属膜の光透過性が高まりやすい。透明金属膜の厚みは、水晶振動子を用いた膜厚計またはエリプソメーター等で測定する。 The thickness of the transparent metal film formed in the first form is preferably 15 nm or less, more preferably 3 to 13 nm, and further preferably 5 to 12 nm. When the thickness of the transparent metal film is 15 nm or less, the original reflection of the metal hardly occurs and the light transmittance of the transparent metal film is likely to increase. The thickness of the transparent metal film is measured with a film thickness meter or an ellipsometer using a crystal resonator.
 ここで、透明金属膜を成膜するためのターゲット材料603は特に制限されず、銀、銅、金、白金族、チタン、クロム等でありうる。ターゲット材料603には、1種の金属のみが含まれてもよく、2種以上が含まれてもよい。得られる透明金属膜のプラズモン吸収が小さく、かつ導電性が良いとの観点から、ターゲット材料603は、銀または銀を90at%以上含む合金もしくは純銀であることが好ましい。ターゲット材料603を銀合金とする場合、銀と組み合わせる金属は、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム等でありうる。例えば銀を亜鉛と組み合わせると、得られる透明金属膜の耐硫化性が高まる。銀を金と組み合わせると、得られる透明金属膜の耐塩(NaCl)性が高まる。さらに銀を銅と組み合わせると、得られる透明金属膜の耐酸化性が高まる。 Here, the target material 603 for forming the transparent metal film is not particularly limited, and may be silver, copper, gold, platinum group, titanium, chromium, or the like. The target material 603 may include only one type of metal or two or more types. From the viewpoint that the obtained transparent metal film has low plasmon absorption and good conductivity, the target material 603 is preferably silver, an alloy containing 90 at% or more of silver, or pure silver. When the target material 603 is a silver alloy, the metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, or the like. For example, when silver is combined with zinc, the resulting transparent metal film has improved sulfidation resistance. When silver is combined with gold, the resulting transparent metal film has improved salt resistance (NaCl) resistance. Further, when silver is combined with copper, the oxidation resistance of the obtained transparent metal film is increased.
 一方、透明支持材41は、可視光に対する透明性が高い材料であれば特に制限されない。透明支持材41は、前述の透明導電体の透明支持材と同様でありうる。 On the other hand, the transparent support material 41 is not particularly limited as long as it is a material having high transparency to visible light. The transparent support material 41 can be the same as the transparent support material of the transparent conductor described above.
 透明支持材41は、上記樹脂フィルムと、誘電性材料または酸化物半導体材料からなる層との積層体等であってもよい。この場合、透明支持材41の誘電性材料または酸化物半導体材料からなる層の上に、透明金属膜を成膜することが好ましい。透明支持材41の表面に誘電性材料または酸化物半導体材料からなる層が存在すると、透明金属膜を逆スパッタする際に、透明支持材41が傷付き難くなる。また、透明支持材41に誘電性材料または酸化物半導体材料からなる層が存在すると、透明導電体表面の光の反射が抑制されやすい。 The transparent support material 41 may be a laminate of the resin film and a layer made of a dielectric material or an oxide semiconductor material. In this case, it is preferable to form a transparent metal film on the layer made of the dielectric material or the oxide semiconductor material of the transparent support material 41. When a layer made of a dielectric material or an oxide semiconductor material is present on the surface of the transparent support material 41, the transparent support material 41 is hardly damaged when the transparent metal film is reverse-sputtered. Further, when a layer made of a dielectric material or an oxide semiconductor material is present on the transparent support material 41, reflection of light on the surface of the transparent conductor is easily suppressed.
 誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は1.5より大きいことが好ましく、より好ましくは1.6~2.5であり、さらに好ましくは1.8~2.5である。上記光の屈折率が1.5以上であると、透明金属膜表面での光の反射が抑制されやすい。 The refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material is preferably larger than 1.5, more preferably 1.6 to 2.5, and still more preferably 1.8 to 2.5. is there. When the refractive index of light is 1.5 or more, reflection of light on the surface of the transparent metal film is easily suppressed.
 誘電性材料または酸化物半導体材料は金属酸化物または金属硫化物であることが好ましい。金属酸化物または金属硫化物は、前述の透明導電体の第一アドミッタンス層に含まれる金属酸化物または金属硫化物と同様でありうる。 The dielectric material or oxide semiconductor material is preferably a metal oxide or metal sulfide. The metal oxide or metal sulfide may be the same as the metal oxide or metal sulfide contained in the first admittance layer of the transparent conductor.
 透明支持材41は、可視光に対する透明性が高いことが好ましく;波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明支持材41の光の平均透過率が80%以上であると、透明導電体全体の光の透過性が高まりやすい。一方、透明支持材41の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下であり、さらに好ましくは3%以下である。 The transparent support material 41 preferably has high transparency to visible light; the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably. If the average light transmittance of the transparent support material 41 is 80% or more, the light transmittance of the entire transparent conductor is likely to be increased. On the other hand, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent support material 41 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 透明支持材41の平均透過率は、透明支持材41の正面に対して、5°傾けた角度から測定光を入射させて測定した値である。一方、平均吸収率は、平均透過率と同様の方法で透明支持材41の平均反射率を測定し;平均吸収率=100-(平均透過率+平均反射率)として算出される値である。平均透過率及び平均反射率は分光光度計で測定する。 The average transmittance of the transparent support material 41 is a value measured by making measurement light incident from an angle inclined by 5 ° with respect to the front surface of the transparent support material 41. On the other hand, the average absorptance is a value calculated by measuring the average reflectance of the transparent support material 41 in the same manner as the average transmittance; average absorptance = 100− (average transmittance + average reflectance). Average transmittance and average reflectance are measured with a spectrophotometer.
 透明支持材41のヘイズ値は0.01~2.5であることが好ましく、より好ましくは0.1~1.2である。透明支持材41のヘイズ値が2.5以下であると、得られる透明導電体のヘイズ値を抑制できる。ヘイズ値は、ヘイズメーターで測定する。 The haze value of the transparent support material 41 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. The haze value of the transparent conductor obtained can be suppressed as the haze value of the transparent support material 41 is 2.5 or less. The haze value is measured with a haze meter.
 透明支持材41の厚みは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明支持材の厚みが1μm以上であると、透明金属膜の成膜時に透明支持材41が割れ難い。一方、透明支持材41の厚みが20mm以下であれば、透明導電体のフレキシブル性が高まりやすく、透明導電体を用いた機器の厚みを薄くできる。また、透明導電体を用いた機器を軽量化することもできる。 The thickness of the transparent support material 41 is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm. When the thickness of the transparent support material is 1 μm or more, the transparent support material 41 is difficult to break when the transparent metal film is formed. On the other hand, if the thickness of the transparent support material 41 is 20 mm or less, the flexibility of the transparent conductor is easily increased, and the thickness of the device using the transparent conductor can be reduced. Moreover, the apparatus using a transparent conductor can also be reduced in weight.
 (2-2)第二の形態
 本態様の製造方法の第二の形態では、透明支持材上にスパッタ法で透明金属膜を成膜する工程(工程A)と、透明支持材上に成膜された透明金属膜を逆スパッタする工程(工程B)とを交互に行う。前述のように、工程Bで透明金属膜を逆スパッタすると、アルゴンイオン等によって、工程Aで成膜した透明金属膜が細かく砕かれて、透明支持材全面に成長核が形成される。そして、再度工程Aで透明金属膜を成膜すると、当該成長膜を起点に、透明金属膜が成長し;薄くても平滑かつプラズモン吸収の少ない膜が得られる。
(2-2) Second Form In the second form of the manufacturing method of this aspect, a step of forming a transparent metal film on the transparent support material by a sputtering method (Step A) and a film formation on the transparent support material are performed. The process of reverse sputtering the transparent metal film (process B) is performed alternately. As described above, when the transparent metal film is reverse sputtered in the process B, the transparent metal film formed in the process A is finely crushed by argon ions or the like, and growth nuclei are formed on the entire surface of the transparent support material. Then, when the transparent metal film is formed again in the process A, the transparent metal film grows from the growth film as a starting point; even if it is thin, a smooth film with little plasmon absorption is obtained.
 本形態では、工程A、工程B、及び工程Aの3工程のみ行ってもよく、工程A、工程B、工程A、工程B・・・と各工程を短時間ずつ繰り返し行ってもよい。第二の形態では、工程Bのうちの少なくとも1回が、厚みXを有する透明金属膜の厚みを3nm未満の厚みYとする工程、かつ厚みYを厚みXの95%以下とする工程であることが好ましい。厚みXに対する厚みYの割合は、より好ましくは92%以下であり、さらに好ましくは88%以下である。当該工程B開始前の透明金属膜の厚みXに対して、当該工程B終了後の透明金属膜の厚みYの値が95%以下となるように、逆スパッタを行うと、透明金属膜が十分に砕かれて、細かい成長核が形成される。また、このときの厚みYが3nm未満であると、成長核の大きさが十分に小さくなり、最終的に得られる透明金属膜の厚みが薄くなる。 In this embodiment, only the three steps of step A, step B, and step A may be performed, and step A, step B, step A, step B, and so on may be repeated for a short time. In the second embodiment, at least one of the steps B is a step of setting the thickness of the transparent metal film having the thickness X to a thickness Y of less than 3 nm, and a step of setting the thickness Y to 95% or less of the thickness X. It is preferable. The ratio of the thickness Y to the thickness X is more preferably 92% or less, and still more preferably 88% or less. When reverse sputtering is performed so that the value of the thickness Y of the transparent metal film after the completion of the process B is 95% or less with respect to the thickness X of the transparent metal film before the start of the process B, the transparent metal film is sufficient. When broken up, fine growth nuclei are formed. Further, if the thickness Y at this time is less than 3 nm, the size of the growth nucleus becomes sufficiently small, and the thickness of the finally obtained transparent metal film becomes thin.
 上記工程B開始前の透明金属膜の厚みXは、水晶振動子を用いた膜厚計またはエリプソメーター等で測定する。また、透明金属膜の成膜レートから算出することもできる。成膜レートは、別途、工程Aと同条件でガラス基板上に透明金属膜を50nm作製し、このときにかかる時間から求められる。 The thickness X of the transparent metal film before the start of the above process B is measured with a film thickness meter or an ellipsometer using a crystal resonator. It can also be calculated from the deposition rate of the transparent metal film. The film formation rate is obtained separately from the time required for producing a transparent metal film of 50 nm on a glass substrate under the same conditions as in step A.
 一方、工程B(逆スパッタ)終了後の透明金属膜の厚みYは、逆スパッタ開始前の透明金属膜の厚みXと、逆スパッタによって減少した膜の厚みとの差から求められる。逆スパッタによって減少した膜の厚みは、逆スパッタ時のエッチングレートと逆スパッタ時間との積で求められる。エッチングレートは、別途ガラス基板上に、工程Aと同条件で作製した厚み50nmの透明金属膜を工程Bと同条件で逆スパッタし、逆スパッタ後の光の透過率がガラス基板と同等になる(大凡厚み0nm)までの時間から求める。 On the other hand, the thickness Y of the transparent metal film after completion of the process B (reverse sputtering) is obtained from the difference between the thickness X of the transparent metal film before the start of reverse sputtering and the thickness of the film reduced by reverse sputtering. The thickness of the film reduced by reverse sputtering can be obtained by the product of the etching rate during reverse sputtering and the reverse sputtering time. The etching rate is separately reverse sputtered on a glass substrate under the same conditions as in process B on a 50 nm thick transparent metal film manufactured under the same conditions as in process A, and the light transmittance after reverse sputtering becomes equivalent to that of the glass substrate. It is determined from the time until (approximately thickness 0 nm).
 以下、第二の形態の工程A及び工程Bについて、具体的に説明する。第二の形態ではまず、透明支持材上にスパッタ法で透明金属膜を成膜する(工程A)。第二の形態で使用するターゲット材料や透明支持材は、第一の形態で使用するターゲット材料や透明支持材と同様でありうる。 Hereinafter, the process A and process B of the second embodiment will be specifically described. In the second embodiment, first, a transparent metal film is formed on a transparent support material by sputtering (step A). The target material and transparent support material used in the second form can be the same as the target material and transparent support material used in the first form.
 透明金属膜を成膜するための装置は特に制限されず、第一の形態で使用される透明支持材側及びターゲット材料側に、それぞれプラズマを発生させることが可能なスパッタ装置等でありうる。また、一般的な高周波スパッタ装置等も使用可能である。 The apparatus for forming the transparent metal film is not particularly limited, and may be a sputtering apparatus capable of generating plasma on the transparent support material side and the target material side used in the first embodiment. A general high-frequency sputtering apparatus or the like can also be used.
 透明金属膜をスパッタ装置で成膜する(工程Aを行う)際には、例えば図52(A)に示されるように、透明支持材41を真空チャンバー601内の基板ホルダー602に設置し、透明金属膜を成膜するためのターゲット材料603をターゲットホルダー604に設置する。なお、図52(A)に示されるスパッタ装置600では、ターゲット材料603を1種のみ配置しているが、2種以上のターゲット材料603を配置し、得られる透明金属膜を合金としてもよい。続いて真空ポンプ(図示せず)により、真空チャンバー601内を減圧状態とした後、ガス配管607から不活性ガスを真空チャンバー601内に導入する。不活性ガスの種類は特に制限されないが、通常アルゴンガスである。 When forming a transparent metal film with a sputtering apparatus (performing step A), for example, as shown in FIG. 52A, a transparent support material 41 is placed on a substrate holder 602 in a vacuum chamber 601 and transparent. A target material 603 for forming a metal film is placed on the target holder 604. Note that in the sputtering apparatus 600 shown in FIG. 52A, only one type of target material 603 is arranged, but two or more types of target materials 603 may be arranged, and the resulting transparent metal film may be used as an alloy. Subsequently, after the inside of the vacuum chamber 601 is reduced in pressure by a vacuum pump (not shown), an inert gas is introduced into the vacuum chamber 601 from the gas pipe 607. The type of the inert gas is not particularly limited, but is usually argon gas.
 この状態で、ターゲット側電源606よりターゲットホルダー604に電圧を印加し、ターゲット材料603の表面に、プラズマ608を発生させる。そして、発生させたアルゴンイオン等によってターゲット材料603をはじき飛ばし、当該ターゲット材料を透明支持材41上に堆積させて、透明金属膜を成膜する。1回目の工程A終了後の透明金属膜の厚みは、0.1~3nmであることが好ましく、より好ましくは0.1~2nmであり、さらに好ましくは0.1~1nmであり、特に好ましくは0.1~0.5nmである。透明金属膜の厚みは、ターゲット側電力及びスパッタ時間で調整する。透明金属膜の厚みは、水晶振動子を用いた膜厚計またはエリプソメーター等で測定する。 In this state, a voltage is applied to the target holder 604 from the target-side power source 606 to generate plasma 608 on the surface of the target material 603. Then, the target material 603 is repelled by the generated argon ions and the like, and the target material is deposited on the transparent support material 41 to form a transparent metal film. The thickness of the transparent metal film after completion of the first step A is preferably 0.1 to 3 nm, more preferably 0.1 to 2 nm, still more preferably 0.1 to 1 nm, and particularly preferably. Is 0.1 to 0.5 nm. The thickness of the transparent metal film is adjusted by the target power and sputtering time. The thickness of the transparent metal film is measured with a film thickness meter or an ellipsometer using a crystal resonator.
 工程Aの終了後、工程Aで成膜した透明金属膜を逆スパッタする(工程B)。透明金属膜の逆スパッタ(工程B)は、工程Aと同一のスパッタ装置600にて行うことができる。例えば図52(B)に示されるように、基板側電源605より基板ホルダー602に電圧を印加し、透明支持材41の表面に、プラズマ608を発生させる。そして、発生させたアルゴンイオン等によって、工程Aで形成した透明金属膜を逆スパッタする。 After completion of step A, the transparent metal film formed in step A is reverse sputtered (step B). The reverse sputtering (process B) of the transparent metal film can be performed by the same sputtering apparatus 600 as in process A. For example, as shown in FIG. 52B, a voltage is applied to the substrate holder 602 from the substrate-side power source 605 to generate plasma 608 on the surface of the transparent support material 41. Then, the transparent metal film formed in the step A is reverse sputtered with the generated argon ions or the like.
 工程Bでは、前述のように、逆スパッタ前の透明金属膜の厚みXに対する、逆スパッタ後の透明金属膜の厚みYの割合が95%以下、かつ厚みYが3nm未満となるように、透明金属膜を逆スパッタ(エッチング)することが好ましい。工程B終了後の透明金属膜の厚みは、基板側電力及び逆スパッタ時間で調整する。 In the process B, as described above, the transparent metal film has a thickness Y of 95% or less and a thickness Y of less than 3 nm with respect to the thickness X of the transparent metal film before reverse sputtering. The metal film is preferably reverse sputtered (etched). The thickness of the transparent metal film after step B is adjusted by the substrate side power and the reverse sputtering time.
 工程Bの終了後、さらに、スパッタ法で透明金属膜を成膜する(工程A)。また必要に応じて、さらに工程B及び工程Aを任意の回数繰り返す。2回目以降の工程A、及び2回目以降の工程Bは、先に行う工程A及び工程Bと同様でありうる。 After the completion of the process B, a transparent metal film is further formed by a sputtering method (process A). Further, if necessary, the process B and the process A are repeated any number of times. The second and subsequent processes A and the second and subsequent processes B may be the same as the previously performed processes A and B.
 第二の形態の製造方法で成膜する透明金属膜の最終的な厚みは、15nm以下であることが好ましく、3~13nmであることがより好ましく、さらに好ましくは7~12nmである。透明金属膜の厚みが15nm以下であると、金属本来の反射が生じ難く、透明金属膜の光透過性が高まる。 The final thickness of the transparent metal film formed by the production method of the second embodiment is preferably 15 nm or less, more preferably 3 to 13 nm, and further preferably 7 to 12 nm. When the thickness of the transparent metal film is 15 nm or less, the original reflection of the metal hardly occurs and the light transmittance of the transparent metal film increases.
 第二の形態の製造方法における透明金属膜の成膜速度は、0.01~4nm/sであることが好ましく、より好ましくは0.1~3nm/sであり、さらに好ましくは0.2~2nm/sである。透明金属膜の成膜速度が4nm/s以下であると、膜厚制御を行いやすい。透明金属膜の成膜速度は、透明金属膜の最終的な厚みを、工程Aを行った時間の総和で除した値とする。透明金属膜の成膜速度は、前述のターゲットホルダー604に印加する電力や、工程Bの逆スパッタ時間、基板ホルダー602に印加する電力等で調整する。 The film forming rate of the transparent metal film in the production method of the second embodiment is preferably 0.01 to 4 nm / s, more preferably 0.1 to 3 nm / s, and still more preferably 0.2 to 2 nm / s. When the film forming rate of the transparent metal film is 4 nm / s or less, it is easy to control the film thickness. The film forming speed of the transparent metal film is a value obtained by dividing the final thickness of the transparent metal film by the total time for performing the process A. The film forming speed of the transparent metal film is adjusted by the power applied to the target holder 604 described above, the reverse sputtering time of the process B, the power applied to the substrate holder 602, and the like.
 (2-3)その他の工程
 第二の形態の製造方法では、前述の工程A及び工程B以外に、必要に応じて他の工程が含まれてもよい。その他の工程の例には、前述の工程A及び工程Bによって得られた透明金属膜上に、誘電性材料または酸化物半導体材料からなる高屈折率層を形成する工程でありうる。透明金属膜上に高屈折率層を成膜すると、透明金属膜表面での光の反射が抑制されやすい。
(2-3) Other Steps In the manufacturing method according to the second embodiment, other steps may be included as necessary in addition to the above-described steps A and B. Another example of the process may be a process of forming a high refractive index layer made of a dielectric material or an oxide semiconductor material on the transparent metal film obtained by the above-described process A and process B. When a high refractive index layer is formed on the transparent metal film, reflection of light on the surface of the transparent metal film is easily suppressed.
 高屈折率層の成膜方法は特に制限されず、例えば真空蒸着法やスパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法でありうる。このとき、高屈折率層の膜密度を高めるため、IAD(イオンアシスト)などを行ってもよい。 The film formation method of the high refractive index layer is not particularly limited, and may be a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. At this time, in order to increase the film density of the high refractive index layer, IAD (ion assist) or the like may be performed.
 高屈折率層を成膜するための誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は1.5より大きいことが好ましく、より好ましくは1.6~2.5であり、さらに好ましくは1.8~2.5である。上記光の屈折率が1.5以上であると、透明金属膜表面での光の反射が抑制される。 The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material for forming the high refractive index layer is preferably larger than 1.5, more preferably 1.6 to 2.5, It is preferably 1.8 to 2.5. When the refractive index of light is 1.5 or more, reflection of light on the surface of the transparent metal film is suppressed.
 高屈折率層を成膜するための誘電性材料または酸化物半導体材料は、金属酸化物または金属硫化物であることが好ましい。金属酸化物または金属硫化物の例には、TiO、ITO、ZnO、ZnS、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)等が含まれる。 The dielectric material or oxide semiconductor material for forming the high refractive index layer is preferably a metal oxide or a metal sulfide. Examples of metal oxide or metal sulfide, TiO 2, ITO, ZnO, ZnS, Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO, AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (indium cerium oxide), and the like.
 高屈折率層の厚みは、10~150nmであることが好ましく、より好ましくは20~80nmである。高屈折率層の厚みを10nm以上とすると、高屈折率層によって透明金属膜表面の反射が抑制される。その結果、透明導電体の光透過性が高まりやすい。一方、高屈折率層の厚みが150nm以下であれば、高屈折率層によって、透明導電体の光透過性が低下し難い。高屈折率層の厚みは、エリプソメーターで測定される。 The thickness of the high refractive index layer is preferably 10 to 150 nm, more preferably 20 to 80 nm. When the thickness of the high refractive index layer is 10 nm or more, reflection on the surface of the transparent metal film is suppressed by the high refractive index layer. As a result, the light transmittance of the transparent conductor is likely to increase. On the other hand, when the thickness of the high refractive index layer is 150 nm or less, the light transmittance of the transparent conductor is hardly lowered by the high refractive index layer. The thickness of the high refractive index layer is measured with an ellipsometer.
 (透明導電体の物性)
 本態様の方法で得られる透明導電体の透明金属膜の波長400~800nmの光の平均吸収率が20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明金属膜の上記波長の光の平均吸収率が20%以下であると、透明導電体の光の透過率が高まる。したがって、透明導電体を種々の用途に適用することができる。
(Physical properties of transparent conductor)
The average absorption rate of light having a wavelength of 400 to 800 nm of the transparent metal film of the transparent conductor obtained by the method of this embodiment is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. It is. The light transmittance of a transparent conductor increases that the average absorption factor of the light of the said wavelength of a transparent metal film is 20% or less. Therefore, the transparent conductor can be applied to various uses.
 また、透明金属膜の波長400nm~800nmの光の最大吸収率は30%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは12%以下である。波長400nm~800nmの全領域において、最大吸収率が30%以下であると、透明導電体の透過光が着色し難い。透明金属膜の平均吸収率及び最大吸収率は、前述のように、透明導電体の吸収率から透明支持材の吸収率(リファレンスデータ)を差し引いて算出する。 Further, the maximum absorption rate of light having a wavelength of 400 nm to 800 nm of the transparent metal film is preferably 30% or less, more preferably 15% or less, and further preferably 12% or less. When the maximum absorptance is 30% or less over the entire wavelength range of 400 nm to 800 nm, the transmitted light of the transparent conductor is difficult to be colored. As described above, the average absorption rate and the maximum absorption rate of the transparent metal film are calculated by subtracting the absorption rate (reference data) of the transparent support material from the absorption rate of the transparent conductor.
 透明導電体の表面電気抵抗値は200Ω/□以下であることが好ましく、より好ましくは50Ω/□であり、さらに好ましくは15Ω/□以下である。表面電気抵抗値が200Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。透明導電体の表面電気抵抗値は、透明金属膜の厚み等によって調整できる。透明導電体の表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定できる。また、市販の表面抵抗率計によっても測定できる。 The surface electric resistance value of the transparent conductor is preferably 200Ω / □ or less, more preferably 50Ω / □, and further preferably 15Ω / □ or less. A transparent conductor having a surface electric resistance value of 200Ω / □ or less can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value of the transparent conductor can be adjusted by the thickness of the transparent metal film or the like. The surface electrical resistance value of the transparent conductor can be measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It can also be measured by a commercially available surface resistivity meter.
 (透明導電体の用途)
 本態様の方法で得られた透明導電体は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。
(Use of transparent conductor)
Transparent conductors obtained by the method of this embodiment include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescence dimming elements, etc. It can be preferably used for substrates of various optoelectronic devices.
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by this.
 下記の実験例、実施例、及び比較例において、光の透過率、反射率、及び吸収率の測定、膜の厚みの測定、アドミッタンスの決定、表面電気抵抗の測定、プラズモン吸収率の測定、及びヘイズの測定は、以下のように行った。 In the following experimental examples, examples, and comparative examples, measurement of light transmittance, reflectance, and absorption rate, measurement of film thickness, determination of admittance, measurement of surface electrical resistance, measurement of plasmon absorption rate, and The haze measurement was performed as follows.
 <光の透過率、反射率、及び吸収率の測定方法>
 透明導電体の正面に対して、5°傾けた角度から測定光(例えば、波長450nm~800nmの光)を入射させ、日立株式会社製:分光光度計 U4100にて、光の透過率及び反射率を測定した。そして、吸収率は、100-(透過率+反射率)の計算式より算出した。なお、測定光は、第二アドミッタンス調整層側から入射させた。
<Measurement method of light transmittance, reflectance, and absorptance>
Measuring light (for example, light having a wavelength of 450 nm to 800 nm) is incident from an angle inclined by 5 ° with respect to the front surface of the transparent conductor, and the light transmittance and reflectance are measured by Hitachi, Ltd .: spectrophotometer U4100. Was measured. The absorptance was calculated from a formula of 100− (transmittance + reflectance). The measurement light was incident from the second admittance adjustment layer side.
 <膜の厚みの測定方法>
 各層の厚みは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
<Measurement method of film thickness>
The thickness of each layer is described in J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
 <アドミッタンスの決定方法>
 透明導電体体を構成する各界面のアドミッタンスは、薄膜設計ソフトEssential Macleod Ver.9.4.375で算出した。なお、算出に必要な各層の厚みd、屈折率n、及び吸収係数kは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
<Method of determining admittance>
The admittance of each interface constituting the transparent conductor was calculated by the thin film design software Essential Macleod Ver.9.4.375. Note that the thickness d, refractive index n, and absorption coefficient k of each layer necessary for the calculation are as follows. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
 <表面電気抵抗の測定方法>
 三菱化学アナリテック製のロレスタEP MCP-T360にて測定した。
<Measurement method of surface electrical resistance>
Measured with a Loresta EP MCP-T360 manufactured by Mitsubishi Chemical Analytech.
 <L*a*b*表色系におけるa*値及びb*値の測定方法>
 L*a*b*表色系におけるa*値及びb*値は、日立株式会社製:分光光度計 U4100で測定した。
<Measurement method of a * value and b * value in L * a * b * color system>
The a * value and b * value in the L * a * b * color system were measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd.
 <波長450nm~800nmにおけるプラズモン吸収率の測定方法>
 透明金属膜のプラズモン吸収率は、以下のように測定した。透明ガラス基板上に、白金パラジウムからなる成長核を真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)により基板上に0.2s(0.1nm)成膜した。白金パラジウムの平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。その後、白金パラジウムが付着した基板上にシンクロン製のBMC-800T蒸着機により銀(金属膜)を20nm成膜した。このときの抵抗加熱は210A、成膜レートは5Å/sとした。得られた金属膜の反射率及び透過率を測定し、吸収率=100-(透過率+反射率)として算出した。この金属膜にはプラズモン吸収が無いと仮定し、これをリファレンスデータとした。一方、上記透明ガラス基板上に、各実施例と同様に透明金属膜を成膜し、当該透明金属膜の反射率及び透過率を測定し、吸収率を算出した。そして、得られた吸収率のデータから、上記リファレンスデータを差し引いた値をプラズモン吸収率とした。光の透過率及び反射率は、日立株式会社製:分光光度計 U4100にて測定した。
<Measurement method of plasmon absorptance at wavelengths of 450 nm to 800 nm>
The plasmon absorption rate of the transparent metal film was measured as follows. On a transparent glass substrate, a growth nucleus made of platinum palladium was formed on the substrate by a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Co., for 0.2 s (0.1 nm). The average thickness of platinum-palladium was calculated from the film formation rate at the manufacturer's nominal value of the sputtering apparatus. Thereafter, a silver (metal film) film having a thickness of 20 nm was formed on a substrate to which platinum palladium was adhered by a BMC-800T vapor deposition machine manufactured by SYNCHRON. The resistance heating at this time was 210 A, and the film formation rate was 5 Å / s. The reflectance and transmittance of the obtained metal film were measured and calculated as absorptivity = 100− (transmittance + reflectance). This metal film was assumed to have no plasmon absorption, and this was used as reference data. On the other hand, a transparent metal film was formed on the transparent glass substrate in the same manner as in each Example, the reflectance and transmittance of the transparent metal film were measured, and the absorptance was calculated. Then, a value obtained by subtracting the reference data from the obtained absorption rate data was defined as the plasmon absorption rate. The light transmittance and reflectance were measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd.
 <ヘイズの測定方法>
 日本電色製のヘイズメーター(NDH-2000)で測定した。
<Measurement method of haze>
This was measured with a Nippon Denshoku haze meter (NDH-2000).
 [実験例1~4]
 透明金属膜の製造:以下の手法にて透明金属膜を成膜して、各透明金属膜のプラズモン吸収率を特定した。
[Experimental Examples 1 to 4]
Production of transparent metal film: A transparent metal film was formed by the following method, and the plasmon absorption rate of each transparent metal film was specified.
 ・実験例1
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。音波洗浄機はアズワン製VS-100IIIを用いた。
 上記ガラス基板上に、シンクロン製のBMC-800T蒸着機(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜を得た。成膜レートは5Å/sとした。透明金属膜の厚みは、6nm、7nm、8nm、9nm、10nm、12nmとした。各透明金属膜の吸収率から導き出されるプラズモン吸収率を図11に示す。
・ Experimental example 1
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used.
On the glass substrate, Ag was vapor-deposited with a BMC-800T vapor deposition machine (210A resistance heating) manufactured by SYNCHRON, and a transparent metal film made of Ag was obtained. The film formation rate was 5 Å / s. The thickness of the transparent metal film was 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, and 12 nm. FIG. 11 shows the plasmon absorption rate derived from the absorption rate of each transparent metal film.
 図11に示されるように、一般的な蒸着法で透明金属膜を形成した場合、透明金属膜の厚みが6~10nmである場合にプラズモン吸収率が大きかった。そして、厚み12nmになってはじめて、波長400nm~800nmの全範囲で、プラズモン吸収率が15%以内に収まった。 As shown in FIG. 11, when the transparent metal film was formed by a general vapor deposition method, the plasmon absorption rate was large when the thickness of the transparent metal film was 6 to 10 nm. Only when the thickness was 12 nm, the plasmon absorption rate was within 15% over the entire wavelength range of 400 nm to 800 nm.
 ・実験例2
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。音波洗浄機はアズワン製VS-100IIIを用いた。
 上記ガラス基板上に、真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウムを0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。続いて、シンクロン製のBMC-800T蒸着機(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜を作製した。成膜レートは5Å/sとした。
 透明金属膜の厚みは、3nm、4nm、5nm、6nm、7nm、8nm、9nm、10nmとした。各透明金属膜の吸収率から導き出されるプラズモン吸収率を図12に示す。
・ Experimental example 2
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used.
On the glass substrate, a platinum palladium film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc. to form a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus. Subsequently, Ag was vapor-deposited by a BMC-800T vapor deposition machine (210A resistance heating) manufactured by SYNCHRON, and a transparent metal film made of Ag was produced. The film formation rate was 5 Å / s.
The thickness of the transparent metal film was 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, and 10 nm. FIG. 12 shows the plasmon absorption rate derived from the absorption rate of each transparent metal film.
 図12に示されるように、白金パラジウムからなる成長核を形成してから、透明金属膜を形成した場合、透明金属膜の厚みが3nm及び4nmでも、波長400nm~800nmの全範囲で、プラズモン吸収率が15%以内に収まった。 As shown in FIG. 12, when a transparent metal film is formed after forming a growth nucleus made of platinum-palladium, plasmon absorption is achieved over the entire wavelength range of 400 nm to 800 nm even when the thickness of the transparent metal film is 3 nm and 4 nm. The rate was within 15%.
 ・実験例3
 コーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。
 上記ガラス基板上に、シンクロン製のBMC-800T蒸着機(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜を得た。成膜レートは5Å/sとした。透明金属膜の厚みは、8nm、12nm、15nm、19.5nm、24nmとした。各透明金属膜の吸収率から導き出されるプラズモン吸収率を図13に示す。
Experimental example 3
Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used.
On the glass substrate, Ag was vapor-deposited with a BMC-800T vapor deposition machine (210A resistance heating) manufactured by SYNCHRON, and a transparent metal film made of Ag was obtained. The film formation rate was 5 Å / s. The thickness of the transparent metal film was 8 nm, 12 nm, 15 nm, 19.5 nm, and 24 nm. FIG. 13 shows the plasmon absorption rate derived from the absorption rate of each transparent metal film.
 図13に示されるように、一般的な蒸着法で透明金属膜を形成した場合、透明金属膜の厚みが12nmでも、プラズモン吸収率が15%以上である領域があった。そして、厚み15nm以上となってはじめて、波長400nm~800nmの全範囲で、プラズモン吸収率が15%以内に収まった。 As shown in FIG. 13, when a transparent metal film was formed by a general vapor deposition method, there was a region where the plasmon absorption rate was 15% or more even when the thickness of the transparent metal film was 12 nm. Only when the thickness was 15 nm or more, the plasmon absorptivity was within 15% over the entire wavelength range of 400 nm to 800 nm.
 ・実験例4
 コーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。
 上記ガラス基板上に、真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウムを0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。続いて、シンクロン製のBMC-800T蒸着機(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜を作製した。成膜レートは5Å/sとした。
 透明金属膜の厚みは8nm、12nm、15nm、19.5nmとした。各透明金属膜の吸収率から導き出されるプラズモン吸収率を図14に示す。
Experimental example 4
Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used.
On the glass substrate, a platinum palladium film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc. to form a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus. Subsequently, Ag was vapor-deposited by a BMC-800T vapor deposition machine (210A resistance heating) manufactured by SYNCHRON, and a transparent metal film made of Ag was produced. The film formation rate was 5 Å / s.
The thickness of the transparent metal film was 8 nm, 12 nm, 15 nm, and 19.5 nm. FIG. 14 shows the plasmon absorption rate derived from the absorption rate of each transparent metal film.
 図14に示されるように、白金パラジウムからなる成長核を形成してから、透明金属膜を形成した場合、何れの膜の厚みでも、波長400nm~800nmの範囲において、プラズモン吸収が15%を下回った。 As shown in FIG. 14, when a transparent metal film is formed after forming a growth nucleus made of platinum palladium, the plasmon absorption is less than 15% in the wavelength range of 400 nm to 800 nm regardless of the thickness of any film. It was.
 [実施例A-1~A-7、及び比較例A-1~A-3]
 以下の手法にて透明導電体を積層した。
[Examples A-1 to A-7 and Comparative Examples A-1 to A-3]
A transparent conductor was laminated by the following method.
 [実施例A-1]
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層/第三アドミッタンス調整層を成膜した。
[Example A-1]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / second admittance adjusting layer / third admittance adjusting layer was formed on the glass substrate (transparent support).
 得られた透明導電体の波長450~800nmにおける平均透過率、波長500~700nmにおける平均反射率、波長400~800nmにおける平均吸収率、波長400~800nmにおける吸収率の最大値、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗、並びに透明支持材のヘイズ、得られた透明導電体のヘイズ、及びヘイズ劣化(透明導電体のヘイズ-透明支持材のヘイズ)を表1に示す。また、透明金属膜の前記第一アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、x、y、x、及びy、さらに等価アドミッタンスY(x,y)も表2に示す。空気のアドミッタンスYenv(xenv,yenv)と等価アドミッタンスY(x,y)との距離(δx+δy)も表2に示す。また、得られた透明導電体の分光特性を図15Aに示し、当該透明導電体のアドミッタンス軌跡を図15Bに示す。得られた透明導電体の光の吸収率は、波長400nm~800nmの全範囲で25%以下であった。 The average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm, the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, the maximum value of the absorptance at a wavelength of 400 to 800 nm, L * a * b * A * value and b * value in the color system, surface electrical resistance, haze of transparent support material, haze of the obtained transparent conductor, and haze degradation (haze of transparent conductor-haze of transparent support material) Table 1 shows. Also, the interface of the wavelength 570nm optical admittance Y1 = x 1 + iy 1 and the first admittance adjusting layer transparent metal film, the optical admittance of wavelength 570nm of the interface between the second admittance adjusting layer of the transparent metal film Table 2 also shows x 1 , y 1 , x 2 , and y 2 , and equivalent admittance Y E (x E , y E ) when Y 2 = x 2 + iy 2 . Table 2 also shows the distance (δx + δy) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ). Further, FIG. 15A shows the spectral characteristics of the obtained transparent conductor, and FIG. 15B shows the admittance locus of the transparent conductor. The light absorption rate of the obtained transparent conductor was 25% or less over the entire wavelength range of 400 nm to 800 nm.
(第一アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下(50sccm)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、31nmであった。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 Å / s. The obtained first admittance adjusting layer was 31 nm.
(透明金属膜)
 第一アドミッタンス調整層を成膜後、AgをOptorun社のGener 1300(220mA)にて蒸着し、Agからなる金属層を得た。成膜レートは5Å/sとした。その後、金属層の表面に、酸化チタン(富士チタン工業社製、Ti、結晶タイプ(1-3mm))を蒸着し、平均厚み3nmのマスクを形成した。蒸着は、Optorun社のGener 1300で行った。その後、Optorun社のGener 1300のイオンビームで、Ag膜をドライエッチングし、Ag薄膜からなる成長核を得た。エッチング条件は、イオンビーム電流200mA、電圧200V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。
 さらに、成長核が形成された透明支持材に、再度、Optorun社のGener 1300(220mA)にて、Agを積層し、Agからなる透明金属膜(8nm)を得た。得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmの全範囲で15%以下であった。
(Transparent metal film)
After the first admittance adjusting layer was formed, Ag was vapor-deposited with Optorun Gener 1300 (220 mA) to obtain a metal layer made of Ag. The film formation rate was 5 Å / s. Thereafter, titanium oxide (manufactured by Fuji Titanium Industry Co., Ti 2 O 5 , crystal type (1-3 mm)) was vapor-deposited on the surface of the metal layer to form a mask having an average thickness of 3 nm. Vapor deposition was performed on a Gener 1300 from Optorun. Thereafter, the Ag film was dry-etched with an ion beam of Gener 1300 manufactured by Optorun to obtain a growth nucleus composed of an Ag thin film. The etching conditions were an ion beam current of 200 mA, a voltage of 200 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus.
Furthermore, Ag was laminated on the transparent support material on which the growth nuclei were formed again using Gener 1300 (220 mA) manufactured by Optorun to obtain a transparent metal film (8 nm) made of Ag. The plasmon absorption rate of the obtained transparent metal film was 15% or less over the entire wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下(50sccm)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、21nmであった。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 Å / s. The obtained second admittance adjusting layer was 21 nm.
(第三アドミッタンス調整層)
 Optorun社のGener 1300により、60mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着した。得られた第三アドミッタンス調整層は、50nmであった。
(Third admittance adjustment layer)
SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained third admittance adjusting layer was 50 nm.
 [実施例A-2]
 コーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層/第三アドミッタンス調整層を成膜した。
[Example A-2]
Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / second admittance adjusting layer / third admittance adjusting layer was formed on the glass substrate (transparent support).
 得られた透明導電体について、得られた透明導電体の波長450~800nmにおける平均透過率、波長500~700nmにおける平均反射率、波長400~800nmにおける平均吸収率、波長400~800nmにおける吸収率の最大値、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗、並びに透明支持材のヘイズ、得られた透明導電体のヘイズ、及びヘイズ劣化(透明導電体のヘイズ-透明支持材のヘイズ)を表1に示す。また、透明金属膜の前記第一アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、x、y、x、及びy、さらに等価アドミッタンスY(x,y)も表2に示す。空気のアドミッタンスYenv(xenv,yenv)と等価アドミッタンスY(x,y)との距離(δx+δy)も表2に示す。得られた透明導電体の分光特性を図16Aに示し、当該透明導電体のアドミッタンス軌跡を図16Bに示す。得られた透明導電体の光の吸収率は、波長400nm~800nmの全範囲で25%以下であった。 For the obtained transparent conductor, the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm, the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm. Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support. Also, the interface of the wavelength 570nm optical admittance Y1 = x 1 + iy 1 and the first admittance adjusting layer transparent metal film, the optical admittance of wavelength 570nm of the interface between the second admittance adjusting layer of the transparent metal film Table 2 also shows x 1 , y 1 , x 2 , and y 2 , and equivalent admittance Y E (x E , y E ) when Y 2 = x 2 + iy 2 . Table 2 also shows the distance (δx + δy) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ). The spectral characteristic of the obtained transparent conductor is shown in FIG. 16A, and the admittance locus of the transparent conductor is shown in FIG. 16B. The light absorption rate of the obtained transparent conductor was 25% or less over the entire wavelength range of 400 nm to 800 nm.
(第一アドミッタンス調整層)
 シンクロン社製のBMC-800T蒸着機により、酸素導入下(2×10-2Pa)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、30nmであった。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 × 10 −2 Pa), 320 mA, and a film formation rate of 3 Å / s. The obtained first admittance adjusting layer was 30 nm.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウムを0.4秒間成膜し、平均厚み0.2nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。続いて、シンクロン製のBMC-800T蒸着機(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(10nm)を得た。成膜レートは5Å/sとした。当該透明金属膜の形成方法は、前述の実験例2及び4と同様であり、得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmの全範囲で15%以下であった。
(Transparent metal film)
Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., platinum palladium was deposited for 0.4 seconds to form growth nuclei having an average thickness of 0.2 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus. Subsequently, Ag was vapor-deposited by a BMC-800T vapor deposition machine (210A resistance heating) manufactured by SYNCHRON, and a transparent metal film (10 nm) made of Ag was obtained. The film formation rate was 5 Å / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over the entire wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 シンクロン社製のBMC-800T蒸着機により、酸素導入下(2×10-2Pa)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、21nmであった。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 × 10 −2 Pa), 320 mA, and a film formation rate of 3 Å / s. The obtained second admittance adjusting layer was 21 nm.
(第三アドミッタンス調整層)
 シンクロン社製のBMC-800T蒸着機により、60mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着した。得られた第三アドミッタンス調整層は、51nmであった。
(Third admittance adjustment layer)
SiO 2 was deposited by electron beam (EB) at 60 mA and a deposition rate of 10 Å / s using a BMC-800T vapor deposition machine manufactured by Shincron. The obtained third admittance adjusting layer was 51 nm.
 [実施例A-3]
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。
[Example A-3]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the glass substrate (transparent support).
 得られた透明導電体について、得られた透明導電体の波長450~800nmにおける平均透過率、波長500~700nmにおける平均反射率、波長400~800nmにおける平均吸収率、波長400~800nmにおける吸収率の最大値、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗、並びに透明支持材のヘイズ、得られた透明導電体のヘイズ、及びヘイズ劣化(透明導電体のヘイズ-透明支持材のヘイズ)を表1に示す。また、透明金属膜の前記第一アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、x、y、x、及びy、さらに等価アドミッタンスY(x,y)も表2に示す。空気のアドミッタンスYenv(xenv,yenv)と等価アドミッタンスY(x,y)との距離(δx+δy)も表2に示す。得られた透明導電体の分光特性を図17Aに示し、当該透明導電体のアドミッタンス軌跡を図17Bに示す。得られた透明導電体の光の吸収率は、波長400nm~800nmの全範囲で25%以下であった。 For the obtained transparent conductor, the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm, the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm. Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support. Also, the interface of the wavelength 570nm optical admittance Y1 = x 1 + iy 1 and the first admittance adjusting layer transparent metal film, the optical admittance of wavelength 570nm of the interface between the second admittance adjusting layer of the transparent metal film Table 2 also shows x 1 , y 1 , x 2 , and y 2 , and equivalent admittance Y E (x E , y E ) when Y 2 = x 2 + iy 2 . Table 2 also shows the distance (δx + δy) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ). The spectral characteristic of the obtained transparent conductor is shown in FIG. 17A, and the admittance locus of the transparent conductor is shown in FIG. 17B. The light absorption rate of the obtained transparent conductor was 25% or less over the entire wavelength range of 400 nm to 800 nm.
(第一アドミッタンス調整層)
 シンクロン社製のBMC-800T蒸着機により、酸素導入下(2×10-2Pa)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、33nmであった。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 × 10 −2 Pa), 320 mA, and a film formation rate of 3 Å / s. The obtained first admittance adjusting layer was 33 nm.
(透明金属膜)
 シンクロン社製のBMC-800T蒸着機により、320mA、成膜レート3Å/sでTiを電子ビーム(EB)蒸着した。得られた成長核は、0.1nmであった。
 続いて、大阪真空社製のマグネトロンスパッタで、Agをスパッタ蒸着し、Agからなる透明金属膜(10nm)を得た。成膜レートは15Å/sとした。当該透明金属膜の形成方法は、前述の実験例2及び4と同様であり、得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmの全範囲で15%以下であった。
(Transparent metal film)
Ti was deposited by electron beam (EB) at 320 mA and a deposition rate of 3 Å / s by a BMC-800T vapor deposition machine manufactured by SYNCHRON. The obtained growth nucleus was 0.1 nm.
Subsequently, Ag was sputter-deposited by magnetron sputtering manufactured by Osaka Vacuum Co., Ltd. to obtain a transparent metal film (10 nm) made of Ag. The film formation rate was 15 Å / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over the entire wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 大阪真空社製のマグネトロンスパッタで、ITOをスパッタ蒸着し、ITOからなる第二アドミッタンス調整層(36nm)を得た。成膜レートは10Å/sとした。
(Second admittance adjustment layer)
ITO was sputter-deposited by magnetron sputtering manufactured by Osaka Vacuum Co., Ltd. to obtain a second admittance adjusting layer (36 nm) made of ITO. The film formation rate was 10 Å / s.
 [実施例A-4]
 コーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。
[Example A-4]
Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the glass substrate (transparent support).
 得られた透明導電体について、得られた透明導電体の波長450~800nmにおける平均透過率、波長500~700nmにおける平均反射率、波長400~800nmにおける平均吸収率、波長400~800nmにおける吸収率の最大値、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗、並びに透明支持材のヘイズ、得られた透明導電体のヘイズ、及びヘイズ劣化(透明導電体のヘイズ-透明支持材のヘイズ)を表1に示す。また、透明金属膜の前記第一アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、x、y、x、及びy、さらに等価アドミッタンスY(x,y)も表2に示す。空気のアドミッタンスYenv(xenv,yenv)と等価アドミッタンスY(x,y)との距離(δx+δy)も表2に示す。得られた透明導電体の分光特性を図18Aに示し、当該透明導電体のアドミッタンス軌跡を図18Bに示す。得られた透明導電体の光の吸収率は、波長400nm~800nmの全範囲で25%以下であった。 For the obtained transparent conductor, the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm, the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm. Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support. Also, the interface of the wavelength 570nm optical admittance Y1 = x 1 + iy 1 and the first admittance adjusting layer transparent metal film, the optical admittance of wavelength 570nm of the interface between the second admittance adjusting layer of the transparent metal film Table 2 also shows x 1 , y 1 , x 2 , and y 2 , and equivalent admittance Y E (x E , y E ) when Y 2 = x 2 + iy 2 . Table 2 also shows the distance (δx + δy) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ). The spectral characteristic of the obtained transparent conductor is shown in FIG. 18A, and the admittance locus of the transparent conductor is shown in FIG. 18B. The light absorption rate of the obtained transparent conductor was 25% or less over the entire wavelength range of 400 nm to 800 nm.
(第一アドミッタンス調整層)
 シンクロン社製のBMC-800T蒸着機により、酸素導入下(2×10-2Pa)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、35nmであった。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 × 10 −2 Pa), 320 mA, and a film formation rate of 3 Å / s. The obtained first admittance adjusting layer was 35 nm.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウムを0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、シンクロン製のBMC-800T蒸着機(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(7nm)を得た。成膜レートは5Å/sとした。当該透明金属膜の形成方法は、前述の実験例2及び4と同様であり、得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmの全範囲で15%以下であった。
(Transparent metal film)
Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., platinum palladium was deposited for 0.2 seconds to form growth nuclei with an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was vapor-deposited by a BMC-800T vapor deposition machine (210A resistance heating) manufactured by SYNCHRON, and a transparent metal film (7 nm) made of Ag was obtained. The film formation rate was 5 Å / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over the entire wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 シンクロン社製のBMC-800T蒸着機により、酸素導入下(2×10-2Pa)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、42nmであった。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 × 10 −2 Pa), 320 mA, and a film formation rate of 3 Å / s. The obtained first admittance adjusting layer was 42 nm.
 [比較例A-1]
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、透明金属膜/アドミッタンス調整層を成膜した。
[Comparative Example A-1]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used. A transparent metal film / admittance adjusting layer was formed on the glass substrate (transparent support material).
 得られた透明導電体について、得られた透明導電体の波長450~800nmにおける平均透過率、波長500~700nmにおける平均反射率、波長400~800nmにおける平均吸収率、波長400~800nmにおける吸収率の最大値、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗、並びに透明支持材のヘイズ、得られた透明導電体のヘイズ、及びヘイズ劣化(透明導電体のヘイズ-透明支持材のヘイズ)を表1に示す。併せて、透明金属膜の透明支持材との界面の波長570nmの光学アドミッタンスをY=x+iy、前記透明金属膜の前記第二アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、xN、yN、x、及びy、さらに等価アドミッタンスY(x,y)も表2に示す。空気のアドミッタンスYenv(xenv,yenv)と等価アドミッタンスY(x,y)との距離(δx+δy)も表2に示す。得られた透明導電体の分光特性を図19Aに示し、当該透明導電体のアドミッタンス軌跡を図19Bに示す。得られた透明導電体の光の吸収率は、波長400nm~800nmの一部領域で25%を超えた。 For the obtained transparent conductor, the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm, the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm. Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support. In addition, the optical admittance of wavelength 570nm of the interface between the transparent support of a transparent metal film Y N = x N + iy N , the optical admittance of wavelength 570nm of the interface between the second admittance adjusting layer of the transparent metal film Y2 Table 2 also shows x N , y N , x 2 , and y 2 , and equivalent admittance Y E (x E , y E ) when = x 2 + iy 2 . Table 2 also shows the distance (δx + δy) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ). The spectral characteristics of the obtained transparent conductor are shown in FIG. 19A, and the admittance locus of the transparent conductor is shown in FIG. 19B. The light absorptance of the obtained transparent conductor exceeded 25% in a partial region having a wavelength of 400 nm to 800 nm.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウムを0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、シンクロン製のBMC-800T蒸着機(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(8nm)を得た。成膜レートは5Å/sとした。当該透明金属膜の形成方法は、前述の実験例2及び4と同様であり、得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmの全範囲で15%以下であった。
(Transparent metal film)
Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., platinum palladium was deposited for 0.2 seconds to form growth nuclei with an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was vapor-deposited by a BMC-800T vapor deposition machine (210A resistance heating) manufactured by SYNCHRON, and a transparent metal film (8 nm) made of Ag was obtained. The film formation rate was 5 Å / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over the entire wavelength range of 400 nm to 800 nm.
(アドミッタンス調整層)
 シンクロン社製のBMC-800T蒸着機により、250mA、成膜レート4Å/sでYを電子ビーム(EB)蒸着した。得られたアドミッタンス調整層の厚みは、55nmであった。
(Admittance adjustment layer)
Y 2 O 3 was deposited by electron beam (EB) at 250 mA and a deposition rate of 4 Å / s using a BMC-800T vapor deposition machine manufactured by Shincron. The thickness of the obtained admittance adjusting layer was 55 nm.
 [比較例A-2]
 コーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。
[Comparative Example A-2]
Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the glass substrate (transparent support).
 得られた透明導電体について、得られた透明導電体の波長450~800nmにおける平均透過率、波長500~700nmにおける平均反射率、波長400~800nmにおける平均吸収率、波長400~800nmにおける吸収率の最大値、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗、並びに透明支持材のヘイズ、得られた透明導電体のヘイズ、及びヘイズ劣化(透明導電体のヘイズ-透明支持材のヘイズ)を表1に示す。また、透明金属膜の前記第一アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、x、y、x、及びy、さらに等価アドミッタンスY(x,y)も表2に示す。空気のアドミッタンスYenv(xenv,yenv)と等価アドミッタンスY(x,y)との距離(δx+δy)も表2に示す。得られた透明導電体の分光特性を図20Aに示し、当該透明導電体のアドミッタンス軌跡を図20Bに示す。得られた透明導電体の光の吸収率は、波長400nm~800nmの一部領域で25%を超えた。 For the obtained transparent conductor, the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm, the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm. Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support. Also, the interface of the wavelength 570nm optical admittance Y1 = x 1 + iy 1 and the first admittance adjusting layer transparent metal film, the optical admittance of wavelength 570nm of the interface between the second admittance adjusting layer of the transparent metal film Table 2 also shows x 1 , y 1 , x 2 , and y 2 , and equivalent admittance Y E (x E , y E ) when Y 2 = x 2 + iy 2 . Table 2 also shows the distance (δx + δy) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ). The spectral characteristics of the obtained transparent conductor are shown in FIG. 20A, and the admittance locus of the transparent conductor is shown in FIG. 20B. The light absorptance of the obtained transparent conductor exceeded 25% in a partial region having a wavelength of 400 nm to 800 nm.
(第一アドミッタンス調整層)
 シンクロン社製のBMC-800T蒸着機により、酸素導入下(2×10-2Pa)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、35nmであった。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 × 10 −2 Pa), 320 mA, and a film formation rate of 3 Å / s. The obtained first admittance adjusting layer was 35 nm.
(透明金属膜)
 成長核を作製せずに、第一アドミッタンス調整層の上に直接シンクロン製のBMC-800T蒸着機(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(7nm)を得た。成膜レートは5Å/sとした。当該透明金属膜の形成方法は、前述の実験例2及び4と同様であり、得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmの全範囲で15%以上であった。
(Transparent metal film)
Without producing growth nuclei, Ag was directly deposited on the first admittance adjusting layer by a BMC-800T deposition machine (210A resistance heating) manufactured by SYNCHRON, to obtain a transparent metal film (7 nm) made of Ag. . The film formation rate was 5 Å / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or more over the entire wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 シンクロン社製のBMC-800T蒸着機により、酸素導入下(2×10-2Pa)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、42nmであった。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., with introduction of oxygen (2 × 10 −2 Pa), 320 mA, and a film formation rate of 3 Å / s. The obtained second admittance adjusting layer was 42 nm.
 [実施例A-5]
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。
[Example A-5]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the glass substrate (transparent support).
 得られた透明導電体について、得られた透明導電体の波長450~800nmにおける平均透過率、波長500~700nmにおける平均反射率、波長400~800nmにおける平均吸収率、波長400~800nmにおける吸収率の最大値、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗、並びに透明支持材のヘイズ、得られた透明導電体のヘイズ、及びヘイズ劣化(透明導電体のヘイズ-透明支持材のヘイズ)を表1に示す。また、透明金属膜の前記第一アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、x、y、x、及びy、さらに等価アドミッタンスY(x,y)も表2に示す。空気のアドミッタンスYenv(xenv,yenv)と等価アドミッタンスY(x,y)との距離(δx+δy)も表2に示す。また、得られた透明導電体の分光特性を図21Aに示し、当該透明導電体のアドミッタンス軌跡を図21Bに示す。 For the obtained transparent conductor, the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm, the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm. Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support. Also, the interface of the wavelength 570nm optical admittance Y1 = x 1 + iy 1 and the first admittance adjusting layer transparent metal film, the optical admittance of wavelength 570nm of the interface between the second admittance adjusting layer of the transparent metal film Table 2 also shows x 1 , y 1 , x 2 , and y 2 , and equivalent admittance Y E (x E , y E ) when Y 2 = x 2 + iy 2 . Table 2 also shows the distance (δx + δy) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ). Moreover, the spectral characteristic of the obtained transparent conductor is shown in FIG. 21A, and the admittance locus of the transparent conductor is shown in FIG. 21B.
(第一アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下(50sccm)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、15nmであった。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 Å / s. The obtained first admittance adjusting layer was 15 nm.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウムを0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(10nm)を得た。成膜レートは7Å/sとした。当該透明金属膜の形成方法は、前述の実験例2及び4と同様であり、得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって15%以下であった。
(Transparent metal film)
Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., platinum palladium was deposited for 0.2 seconds to form growth nuclei with an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (10 nm) made of Ag. The film formation rate was 7 Å / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下(50sccm)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、29nmであった。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 Å / s. The obtained second admittance adjusting layer was 29 nm.
 [実施例A-6]
 東洋紡製PET(コスモシャインA4300 50μm品)(透明支持材)上に、第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。
[Example A-6]
A first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on Toyobo PET (Cosmo Shine A4300 50 μm product) (transparent support material).
 得られた透明導電体について、得られた透明導電体の波長450~800nmにおける平均透過率、波長500~700nmにおける平均反射率、波長400~800nmにおける平均吸収率、波長400~800nmにおける吸収率の最大値、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗、並びに透明支持材のヘイズ、得られた透明導電体のヘイズ、及びヘイズ劣化(透明導電体のヘイズ-透明支持材のヘイズ)を表1に示す。また、透明金属膜の前記第一アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、x、y、x、及びy、さらに等価アドミッタンスY(x,y)も表2に示す。空気のアドミッタンスYenv(xenv,yenv)と等価アドミッタンスY(x,y)との距離(δx+δy)も表2に示す。また、得られた透明導電体の分光特性を図22Aに示し、当該透明導電体のアドミッタンス軌跡を図22Bに示す。 For the obtained transparent conductor, the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm, the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm. Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support. Also, the interface of the wavelength 570nm optical admittance Y1 = x 1 + iy 1 and the first admittance adjusting layer transparent metal film, the optical admittance of wavelength 570nm of the interface between the second admittance adjusting layer of the transparent metal film Table 2 also shows x 1 , y 1 , x 2 , and y 2 , and equivalent admittance Y E (x E , y E ) when Y 2 = x 2 + iy 2 . Table 2 also shows the distance (δx + δy) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ). Moreover, the spectral characteristic of the obtained transparent conductor is shown in FIG. 22A, and the admittance locus of the transparent conductor is shown in FIG. 22B.
(第一アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下(50sccm)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、43nmであった。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 Å / s. The obtained first admittance adjusting layer was 43 nm.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウムを0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(8nm)を得た。成膜レートは4Å/sとした。当該透明金属膜の形成方法は、前述の実験例2及び4と同様であり、得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって15%以下であった。
(Transparent metal film)
Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., platinum palladium was deposited for 0.2 seconds to form growth nuclei with an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (8 nm) made of Ag. The film formation rate was 4 Å / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下(50sccm)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、40nmであった。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 Å / s. The obtained second admittance adjusting layer was 40 nm.
 [実施例A-7]
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、第一アドミッタンス調整層/透明金属膜1/他のアドミッタンス調整層/透明金属膜2/第二アドミッタンス調整層を成膜した。
[Example A-7]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film 1 / other admittance adjusting layer / transparent metal film 2 / second admittance adjusting layer was formed on the glass substrate (transparent support).
 得られた透明導電体について、得られた透明導電体の波長450~800nmにおける平均透過率、波長500~700nmにおける平均反射率、波長400~800nmにおける平均吸収率、波長400~800nmにおける吸収率の最大値、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗、並びに透明支持材のヘイズ、得られた透明導電体のヘイズ、及びヘイズ劣化(透明導電体のヘイズ-透明支持材のヘイズ)を表1に示す。また、透明金属膜の前記第一アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、x、y、x、及びy、さらに等価アドミッタンスY(x,y)も表2に示す。空気のアドミッタンスYenv(xenv,yenv)と等価アドミッタンスY(x,y)との距離(δx+δy)も表2に示す。また、得られた透明導電体のアドミッタンス軌跡を図23に示す。
 なお、本実施例では、2つの透明金属膜が含まれるが、基板側の透明金属膜1の第一アドミッタンス調整層界面の光学アドミッタンスをY1=x+iyとし、空気側の透明金属膜2の第二アドミッタンス調整層界面の光学アドミッタンスをY2=x+iyとしている。
For the obtained transparent conductor, the average transmittance of the obtained transparent conductor at a wavelength of 450 to 800 nm, the average reflectance at a wavelength of 500 to 700 nm, the average absorptance at a wavelength of 400 to 800 nm, and the absorptance at a wavelength of 400 to 800 nm. Maximum value, a * value and b * value in L * a * b * color system, surface electrical resistance, haze of transparent support material, haze of obtained transparent conductor, and haze degradation (haze of transparent conductor) Table 1 shows the haze of the transparent support. Also, the interface of the wavelength 570nm optical admittance Y1 = x 1 + iy 1 and the first admittance adjusting layer transparent metal film, the optical admittance of wavelength 570nm of the interface between the second admittance adjusting layer of the transparent metal film Table 2 also shows x 1 , y 1 , x 2 , and y 2 , and equivalent admittance Y E (x E , y E ) when Y 2 = x 2 + iy 2 . Table 2 also shows the distance (δx + δy) between the air admittance Y env (x env , y env ) and the equivalent admittance Y E (x E , y E ). Further, FIG. 23 shows the admittance locus of the obtained transparent conductor.
In this embodiment, two transparent metal films are included, but the optical admittance at the interface of the first admittance adjusting layer of the transparent metal film 1 on the substrate side is Y1 = x 1 + iy 1 and the transparent metal film 2 on the air side is used. The optical admittance at the interface of the second admittance adjustment layer is Y2 = x 2 + iy 2 .
(第一アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下(50sccm)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、35nmであった。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 Å / s. The obtained first admittance adjusting layer was 35 nm.
(透明金属膜1)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウムを0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(5nm)を得た。成膜レートは4Å/sとした。当該透明金属膜の形成方法は、前述の実験例2及び4と同様であり、得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって15%以下であった。
(Transparent metal film 1)
Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., platinum palladium was deposited for 0.2 seconds to form growth nuclei with an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (5 nm) made of Ag. The film formation rate was 4 Å / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
(他のアドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下(50sccm)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた他のアドミッタンス調整層は、23nmであった。
(Other admittance adjustment layers)
TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 Å / s. The other admittance adjusting layer obtained was 23 nm.
(透明金属膜2)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウムを0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(5nm)を得た。成膜レートは4Å/sとした。当該透明金属膜の形成方法は、前述の実験例2及び4と同様であり、得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって15%以下であった。
(Transparent metal film 2)
Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., platinum palladium was deposited for 0.2 seconds to form growth nuclei with an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (5 nm) made of Ag. The film formation rate was 4 Å / s. The method for forming the transparent metal film was the same as in Experimental Examples 2 and 4 described above, and the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下(50sccm)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、31nmであった。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (50 sccm) at 320 mA and a film formation rate of 3 Å / s. The obtained second admittance adjusting layer was 31 nm.
 [比較例A-3]
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。
[Comparative Example A-3]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used.
 当該基板上に前述の先行特許文献2の例2と同様の銀ナノワイヤ水分散体をスピンコートし、120℃で20分焼成した。コーターはMIKASA製1H-DX、恒温機はESPEC製のST-120を使用した。
 得られた透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗を表1に示す。得られた透明導電体の分光特性を図24に示す。
A silver nanowire aqueous dispersion similar to that in Example 2 of the aforementioned Prior Art Document 2 was spin-coated on the substrate and baked at 120 ° C. for 20 minutes. The coater used was 1K-DX manufactured by MIKASA, and the thermostat used was ST-120 manufactured by ESPEC.
Table 1 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the transparent conductor obtained. The spectral characteristics of the obtained transparent conductor are shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、透明金属膜を第一アドミッタンス調整層及び第二アドミッタンス調整層で挟み;透明金属膜の第一アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY1=x+iyで表し、透明金属膜の第二アドミッタンス調整層との界面の波長570nmの光学アドミッタンスをY2=x+iyで表したときのx及びxが1.6以上であると、等価アドミッタンスY(x,y)が空気のアドミッタンス座標(1,0)に近くなった。さらに、空気のアドミッタンス座標(1,0)より等価アドミッタンス座標Yのx座標(x)が1より大きくなった(実施例A-1~A-7)。そして、表1に示されるように、これらの例では、透明導電体の波長450nm~800nmの光の平均透過率が79.9%以上であった。 As shown in Table 2, the transparent metal film is sandwiched between the first admittance adjusting layer and the second admittance adjusting layer; the optical admittance at a wavelength of 570 nm at the interface with the first admittance adjusting layer of the transparent metal film is Y1 = x 1 + iy expressed in 1, if x 1 and x 2 is at least 1.6 when expressed the optical admittance of wavelength 570nm of the interface between the second admittance adjusting layer transparent metal film Y2 = x 2 + iy 2, equivalent admittance Y E (x E , y E ) is close to the admittance coordinate (1, 0) of air. Further, the x-coordinate (x E ) of the equivalent admittance coordinate Y E is larger than 1 than the admittance coordinate (1,0) of air (Examples A-1 to A-7). As shown in Table 1, in these examples, the average transmittance of light having a wavelength of 450 nm to 800 nm of the transparent conductor was 79.9% or more.
 これに対し、第一アドミッタンス調整層を形成しなかった比較例A-1では、光の吸収率が高く、透明導電体の波長450nm~800nmの光の平均透過率が73.7%と低かった。また、透明導電体の光の吸収率が、波長400nm~800nmの一部領域で25%を超える比較例A-2では、等価アドミッタンスYのx座標(x)は1より大きかったものの、波長450nm~800nmの光の平均透過率が71.9%と低かった。 In contrast, in Comparative Example A-1 in which the first admittance adjusting layer was not formed, the light absorptance was high, and the average transmittance of light with a wavelength of 450 nm to 800 nm of the transparent conductor was as low as 73.7%. . Further, in Comparative Example A-2 in which the light absorptance of the transparent conductor exceeds 25% in a partial region of a wavelength of 400 nm to 800 nm, the x coordinate (x E ) of the equivalent admittance Y E is larger than 1. The average transmittance of light having a wavelength of 450 nm to 800 nm was as low as 71.9%.
 また、銀ナノワイヤを成膜した比較例A-3では、表面電気抵抗が高く、さらにヘイズ劣化も大きかった。 Further, in Comparative Example A-3 in which silver nanowires were formed, the surface electrical resistance was high and the haze degradation was large.
 実施例B-1~B-8、及び比較例B-1、B-2における、透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗の測定方法は、実施例A-1と同様である。 In Examples B-1 to B-8 and Comparative Examples B-1 and B-2, the transmittance, reflectance, and absorption rate of the transparent conductor, a * value and b in the L * a * b * color system * Value and surface electric resistance are measured in the same manner as in Example A-1.
 [実施例B-1]
 山中セミコンダクターの白板基板(Φ30mm、厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記白板基板(透明支持材)上に、下地層/第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。得られた透明導電体は、接着剤(Henkel社製 Loctite(登録商標) 3195)と貼り合わせるものとする。
[Example B-1]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the white plate substrate (transparent support). The obtained transparent conductor is bonded to an adhesive (Loctite (registered trademark) 3195 manufactured by Henkel).
 得られた下地層の第一アドミッタンス側の表面の波長570nmの光学アドミッタンスをY0=x+iy、透明金属膜の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、(x,y)、(x,y)、及び(x,y)の値、さらに等価アドミッタンスY(x,y)を表3に示す。また、前記接着剤の光学アドミッタンスと透明導電体の等価アドミッタンスとの座標上の距離(((x-nenv+(y0.5)も表3に示す。 The optical admittance at the wavelength 570 nm of the surface on the first admittance side of the obtained underlayer is Y0 = x 0 + iy 0 , and the optical admittance at the wavelength 570 nm of the surface on the first admittance adjustment layer side of the transparent metal film is Y 1 = x 1 + Iy 1 , (x 0 , y 0 ), (x 1 , y 1 ) when the optical admittance at a wavelength of 570 nm on the surface of the transparent metal film on the second admittance adjustment layer side is Y2 = x 2 + iy 2 Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E −n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of the adhesive and the equivalent admittance of the transparent conductor.
 さらに、得られた透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗を表4に示す。また、得られた透明導電体の分光特性を図25Aに示し、当該透明導電体の波長450nm、波長570nm、及び波長700nmにおけるアドミッタンス軌跡を図25Bに示す。 Furthermore, Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor. In addition, FIG. 25A shows the spectral characteristics of the obtained transparent conductor, and FIG. 25B shows the admittance locus of the transparent conductor at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
(下地層)
 Optorun社のGener 1300によって、40mA、成膜レート3Å/sでフッ化マグネシウム(MgF)を電子ビーム(EB)蒸着した。得られた下地層は175nmであった。なお、フッ化マグシウムの波長570nmの光の屈折率は1.38である。
(Underlayer)
Magnesium fluoride (MgF 2 ) was vapor-deposited by electron beam (EB) at 40 mA at a film formation rate of 3 Å / s using a Gener 1300 manufactured by Optorun. The obtained underlayer was 175 nm. In addition, the refractive index of light with a wavelength of 570 nm of magnesium fluoride is 1.38.
(第一アドミッタンス調整層)
 Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、36nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。TiOの波長570nmの光の屈折率は2.35である。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s with ion assist using a Gener 1300 manufactured by Optorun. The obtained first admittance adjusting layer was 36 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. The refractive index of light with a wavelength of 570 nm of TiO 2 is 2.35.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(12nm)を得た。成膜レートは3Å/sとした。得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって15%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (12 nm) made of Ag. The film formation rate was 3 Å / s. The plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、42nmであった。前述のように、TiOの波長570nmの光の屈折率は2.35である。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s under oxygen introduction using a Gener 1300 manufactured by Optorun. The obtained second admittance adjusting layer was 42 nm. As described above, the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
 [実施例B-2]
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記白板基板(透明支持材)上に、下地層/第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。得られた透明導電体は、接着剤(Henkel社製 Loctite(登録商標) 3195)と貼り合わせるものとする。
[Example B-2]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the white plate substrate (transparent support). The obtained transparent conductor is bonded to an adhesive (Loctite (registered trademark) 3195 manufactured by Henkel).
 得られた下地層の第一アドミッタンス側の表面の波長570nmの光学アドミッタンスをY0=x+iy、透明金属膜の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、(x,y)、(x,y)、及び(x,y)の値、さらに等価アドミッタンスY(x,y)を表3に示す。また、前記接着剤の光学アドミッタンスと透明導電体の等価アドミッタンスとの座標上の距離(((x-nenv+(y0.5)も表3に示す。 The optical admittance at the wavelength 570 nm of the surface on the first admittance side of the obtained underlayer is Y0 = x 0 + iy 0 , and the optical admittance at the wavelength 570 nm of the surface on the first admittance adjustment layer side of the transparent metal film is Y 1 = x 1 + Iy 1 , (x 0 , y 0 ), (x 1 , y 1 ) when the optical admittance at a wavelength of 570 nm on the surface of the transparent metal film on the second admittance adjustment layer side is Y2 = x 2 + iy 2 Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E −n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of the adhesive and the equivalent admittance of the transparent conductor.
 さらに、得られた透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗を表4に示す。また、得られた透明導電体の分光特性を図26Aに示し、当該透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を図26Bに示す。 Furthermore, Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor. In addition, FIG. 26A shows spectral characteristics of the obtained transparent conductor, and FIG. 26B shows admittance trajectories of the transparent conductor having a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
(下地層)
 Optorun社のGener 1300によって、40mA、成膜レート3Å/sでMgFを電子ビーム(EB)蒸着した。得られた下地層は、90nmであった。前述のように、MgFの波長570nmの光の屈折率は1.38である。
(Underlayer)
MgF 2 was deposited by electron beam (EB) at 40 mA at a deposition rate of 3 Å / s using a Gener 1300 manufactured by Optorun. The obtained underlayer was 90 nm. As described above, the refractive index of light with a wavelength of 570 nm of MgF 2 is 1.38.
(第一アドミッタンス調整層)
 Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、42nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。前述のように、TiOの波長570nmの光の屈折率は2.35である。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s with ion assist using a Gener 1300 manufactured by Optorun. The obtained first admittance adjusting layer was 42 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. As described above, the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(12nm)を得た。成膜レートは3Å/sとした。得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって15%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Then, Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (12 nm) which consists of Ag was obtained. The film formation rate was 3 Å / s. The plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、43nmであった。前述のように、TiOの波長570nmの光の屈折率は2.35である。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s under oxygen introduction using a Gener 1300 manufactured by Optorun. The obtained second admittance adjusting layer was 43 nm. As described above, the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
 [実施例B-3]
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記白板基板(透明支持材)上に、下地層(第一下地層/第二下地層/第三下地層)/第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。得られた透明導電体は空気と接するように配置されて使用するものとする。
[Example B-3]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A base layer (first base layer / second base layer / third base layer) / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the white plate substrate (transparent support). The obtained transparent conductor is disposed and used in contact with air.
 得られた下地層の第一アドミッタンス側の表面の波長570nmの光学アドミッタンスをY0=x+iy、透明金属膜の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、(x,y)、(x,y)、及び(x,y)の値、さらに等価アドミッタンスY(x,y)を表3に示す。また、空気の光学アドミッタンスと透明導電体の等価アドミッタンスとの座標上の距離(((x-nenv+(y0.5)も表3に示す。 The optical admittance at the wavelength 570 nm of the surface on the first admittance side of the obtained underlayer is Y0 = x 0 + iy 0 , and the optical admittance at the wavelength 570 nm of the surface on the first admittance adjustment layer side of the transparent metal film is Y 1 = x 1 + Iy 1 , (x 0 , y 0 ), (x 1 , y 1 ) when the optical admittance at a wavelength of 570 nm on the surface of the transparent metal film on the second admittance adjustment layer side is Y2 = x 2 + iy 2 Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E −n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of air and the equivalent admittance of the transparent conductor.
 さらに、得られた透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗を表4に示す。また、得られた透明導電体の分光特性を図27Aに示し、当該透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を図27Bに示す。 Furthermore, Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor. In addition, FIG. 27A shows spectral characteristics of the obtained transparent conductor, and FIG. 27B shows admittance trajectories of the transparent conductor having a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
(第一下地層)
 Optorun社のGener 1300によって、190mA、成膜レート10Å/sでランタンアルミネート(メルク社製 M3)を電子ビーム(EB)蒸着した。得られた第一下地層は、70nmであった。ランタンアルミネート(M3)の波長570nmの光の屈折率は1.77である。
(First ground layer)
A lanthanum aluminate (M3, manufactured by Merck) was deposited by electron beam (EB) at 190 mA and a film formation rate of 10 s / s using a Gener 1300 manufactured by Optorun. The obtained first underlayer was 70 nm. The refractive index of light having a wavelength of 570 nm of lanthanum aluminate (M3) is 1.77.
(第二下地層)
 Optorun社のGener 1300により、酸素導入下(10sccm)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二下地層は、115nmであった。前述のように、TiOの波長570nmの光の屈折率は2.35である。
(Second base layer)
TiO 2 was deposited by electron beam (EB) using Gener 1300 manufactured by Optorun under the introduction of oxygen (10 sccm) at 320 mA and a film formation rate of 3 Å / s. The obtained second underlayer was 115 nm. As described above, the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
(第三下地層)
 Optorun社のGener 1300によって、40mA、成膜レート3Å/sでMgFを電子ビーム(EB)蒸着した。得られた第三下地層は、90nmであった。前述のように、MgFの波長570nmの光の屈折率は1.38である。
(Third underlayer)
MgF 2 was deposited by electron beam (EB) at 40 mA at a deposition rate of 3 Å / s using a Gener 1300 manufactured by Optorun. The obtained third underlayer was 90 nm. As described above, the refractive index of light with a wavelength of 570 nm of MgF 2 is 1.38.
(第一アドミッタンス調整層)
 Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、48nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。前述のように、TiOの波長570nmの光の屈折率は2.35である。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s with ion assist using a Gener 1300 manufactured by Optorun. The obtained first admittance adjusting layer was 48 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. As described above, the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(15nm)を得た。成膜レートは3Å/sとした。得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって15%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (15 nm) made of Ag. The film formation rate was 3 Å / s. The plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、43nmであった。前述のように、TiOの波長570nmの光の屈折率は2.35である。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s under oxygen introduction using a Gener 1300 manufactured by Optorun. The obtained second admittance adjusting layer was 43 nm. As described above, the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
 [実施例B-4]
 東洋紡社製PET(コスモシャインA4300 厚み50μm)からなる透明支持材上に、下地層/第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層/第三アドミッタンス調整層を成膜した。得られた透明導電体は空気と接するように配置されて使用するものとする。
[Example B-4]
An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer / third admittance adjusting layer was formed on a transparent support made of PET (Cosmo Shine A4300 thickness 50 μm) manufactured by Toyobo Co., Ltd. The obtained transparent conductor is disposed and used in contact with air.
 得られた下地層の第一アドミッタンス側の表面の波長570nmの光学アドミッタンスをY0=x+iy、透明金属膜の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、(x,y)、(x,y)、及び(x,y)の値、さらに等価アドミッタンスY(x,y)を表3に示す。また、空気の光学アドミッタンスと透明導電体の等価アドミッタンスとの座標上の距離(((x-nenv+(y0.5)も表3に示す。 The optical admittance at the wavelength 570 nm of the surface on the first admittance side of the obtained underlayer is Y0 = x 0 + iy 0 , and the optical admittance at the wavelength 570 nm of the surface on the first admittance adjustment layer side of the transparent metal film is Y 1 = x 1 + Iy 1 , (x 0 , y 0 ), (x 1 , y 1 ) when the optical admittance at a wavelength of 570 nm on the surface of the transparent metal film on the second admittance adjustment layer side is Y2 = x 2 + iy 2 Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E −n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of air and the equivalent admittance of the transparent conductor.
 さらに、得られた透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗を表4に示す。また、得られた透明導電体の分光特性を図28Aに示し、当該透明導電体の波長570nmのアドミッタンス軌跡を図28Bに示す。 Furthermore, Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor. Moreover, the spectral characteristic of the obtained transparent conductor is shown in FIG. 28A, and the admittance locus of the wavelength 570 nm of the transparent conductor is shown in FIG. 28B.
(下地層)
 Optorun社のGener 1300によって、190mA、成膜レート10Å/sでMgFを電子ビーム(EB)蒸着した。得られた下地層は、90nmであった。前述のように、MgFの波長570nmの光の屈折率は1.38である。
(Underlayer)
MgF 2 was deposited by electron beam (EB) at 190 mA and a deposition rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained underlayer was 90 nm. As described above, the refractive index of light with a wavelength of 570 nm of MgF 2 is 1.38.
(第一アドミッタンス調整層)
 Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、34nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。前述のように、TiOの波長570nmの光の屈折率は2.35である。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s with ion assist using a Gener 1300 manufactured by Optorun. The obtained first admittance adjusting layer was 34 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. As described above, the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(12nm)を得た。成膜レートは3Å/sとした。得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって15%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was vapor-deposited by Gener 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (12 nm) made of Ag. The film formation rate was 3 Å / s. The plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、22nmであった。前述のように、TiOの波長570nmの光の屈折率は2.35である。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s under oxygen introduction using a Gener 1300 manufactured by Optorun. The obtained second admittance adjusting layer was 22 nm. As described above, the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
(第三アドミッタンス調整層)
 Optorun社のGener 1300により、60mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着した。得られた第三アドミッタンス調整層は、54nmであった。SiOの波長570nmの光の屈折率は1.46である。
(Third admittance adjustment layer)
SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained third admittance adjusting layer was 54 nm. The refractive index of light having a wavelength of 570 nm of SiO 2 is 1.46.
 [実施例B-5]
 東洋紡社製PET(コスモシャインA4300 厚み50μm)からなる透明支持材上に、下地層/第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。得られた透明導電体は、接着剤(3M社製 8146-1)と貼り合わせるものとする。
[Example B-5]
An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on a transparent support material made of Toyobo PET (Cosmo Shine A4300, thickness 50 μm). The obtained transparent conductor is bonded to an adhesive (8146-1 from 3M).
 得られた下地層の第一アドミッタンス側の表面の波長570nmの光学アドミッタンスをY0=x+iy、透明金属膜の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、(x,y)、(x,y)、及び(x,y)の値、さらに等価アドミッタンスY(x,y)を表3に示す。また、前記接着剤の光学アドミッタンスと透明導電体の等価アドミッタンスとの座標上の距離(((x-nenv+(y0.5)も表3に示す。 The optical admittance at the wavelength 570 nm of the surface on the first admittance side of the obtained underlayer is Y0 = x 0 + iy 0 , and the optical admittance at the wavelength 570 nm of the surface on the first admittance adjustment layer side of the transparent metal film is Y 1 = x 1 + Iy 1 , (x 0 , y 0 ), (x 1 , y 1 ) when the optical admittance at a wavelength of 570 nm on the surface of the transparent metal film on the second admittance adjustment layer side is Y2 = x 2 + iy 2 Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E −n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of the adhesive and the equivalent admittance of the transparent conductor.
 さらに、得られた透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗を表4に示す。また、得られた透明導電体の分光特性を図29Aに示し、当該透明導電体の波長570nmのアドミッタンス軌跡を図29Bに示す。 Furthermore, Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor. Further, FIG. 29A shows the spectral characteristics of the obtained transparent conductor, and FIG. 29B shows the admittance locus of the transparent conductor at a wavelength of 570 nm.
(下地層)
 Optorun社のGener 1300によって、190mA、成膜レート10Å/sでMgFを電子ビーム(EB)蒸着した。得られた下地層は、90nmであった。前述のように、MgFの波長570nmの光の屈折率は1.38である。
(Underlayer)
MgF 2 was deposited by electron beam (EB) at 190 mA and a deposition rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained underlayer was 90 nm. As described above, the refractive index of light with a wavelength of 570 nm of MgF 2 is 1.38.
(第一アドミッタンス調整層)
 Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、37nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。前述のように、TiOの波長570nmの光の屈折率は2.35である。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s with ion assist using a Gener 1300 manufactured by Optorun. The obtained first admittance adjusting layer was 37 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. As described above, the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(10.5nm)を得た。成膜レートは3Å/sとした。得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって15%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Then, Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (10.5 nm) which consists of Ag was obtained. The film formation rate was 3 Å / s. The plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、39nmであった。前述のように、TiOの波長570nmの光の屈折率は2.35である。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s under oxygen introduction using a Gener 1300 manufactured by Optorun. The obtained second admittance adjusting layer was 39 nm. As described above, the refractive index of light having a wavelength of 570 nm of TiO 2 is 2.35.
 [実施例B-6]
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記白板基板(透明支持材)上に、下地層/第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。得られた透明導電体は、接着剤(Henkel社製 Loctite(登録商標) 3195)と貼り合わせるものとする。
[Example B-6]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on the white plate substrate (transparent support). The obtained transparent conductor is bonded to an adhesive (Loctite (registered trademark) 3195 manufactured by Henkel).
 得られた下地層の第一アドミッタンス側の表面の波長570nmの光学アドミッタンスをY0=x+iy、透明金属膜の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、(x,y)、(x,y)、及び(x,y)の値、さらに等価アドミッタンスY(x,y)を表3に示す。また、前記接着剤の光学アドミッタンスと透明導電体の等価アドミッタンスとの座標上の距離(((x-nenv+(y0.5)も表3に示す。 The optical admittance at the wavelength 570 nm of the surface on the first admittance side of the obtained underlayer is Y0 = x 0 + iy 0 , and the optical admittance at the wavelength 570 nm of the surface on the first admittance adjustment layer side of the transparent metal film is Y 1 = x 1 + Iy 1 , (x 0 , y 0 ), (x 1 , y 1 ) when the optical admittance at a wavelength of 570 nm on the surface of the transparent metal film on the second admittance adjustment layer side is Y2 = x 2 + iy 2 Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E −n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of the adhesive and the equivalent admittance of the transparent conductor.
 さらに、得られた透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗を表4に示す。また、得られた透明導電体の分光特性を図30Aに示し、当該透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を図30Bに示す。 Furthermore, Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor. Further, FIG. 30A shows the spectral characteristics of the obtained transparent conductor, and FIG. 30B shows the admittance trajectories of the transparent conductor at a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
(下地層)
 Optorun社のGener 1300によって、40mA、成膜レート3Å/sでMgFを電子ビーム(EB)蒸着した。得られた下地層は、175nmであった。前述のように、MgFの波長570nmの光の屈折率は1.38である。
(Underlayer)
MgF 2 was deposited by electron beam (EB) at 40 mA at a deposition rate of 3 Å / s using a Gener 1300 manufactured by Optorun. The obtained underlayer was 175 nm. As described above, the refractive index of light with a wavelength of 570 nm of MgF 2 is 1.38.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、36nmであった。Nbの波長570nmの光の屈折率は、2.31である。
(First admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 36 nm. The refractive index of light having a wavelength of 570 nm of Nb 2 O 5 is 2.31.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、アネルバ社のL-430S-FHSを用い、Ar20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力125W、成膜レート10Å/sでAgをDCスパッタした。ターゲット-基板間距離は86mmであった。得られた透明金属膜は12nmであった。また、得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって15%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was DC sputtered using L-430S-FHS manufactured by Anerva Co., Ar20 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 125 W, and deposition rate 10 L / s. The target-substrate distance was 86 mm. The obtained transparent metal film was 12 nm. Further, the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、38nmであった。前述のように、Nbの波長570nmの光の屈折率は2.31である。
(Second admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 38 nm. As described above, the refractive index of light having a wavelength of 570 nm of Nb 2 O 5 is 2.31.
 [実施例B-7]
 コニカミノルタ製TACフィルム(透明支持材)上に、下地層/第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。得られた透明導電体は、接着剤(3M社製 8146-1)と貼り合わせるものとする
[Example B-7]
An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on a Konica Minolta TAC film (transparent support). The obtained transparent conductor is bonded to an adhesive (8146-1, manufactured by 3M).
 得られた下地層の第一アドミッタンス側の表面の波長570nmの光学アドミッタンスをY0=x+iy、透明金属膜の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、(x,y)、(x,y)、及び(x,y)の値、さらに等価アドミッタンスY(x,y)を表3に示す。また、前記接着剤の光学アドミッタンスと透明導電体の等価アドミッタンスとの座標上の距離(((x-nenv+(y0.5)も表3に示す。 The optical admittance at the wavelength 570 nm of the surface on the first admittance side of the obtained underlayer is Y0 = x 0 + iy 0 , and the optical admittance at the wavelength 570 nm of the surface on the first admittance adjustment layer side of the transparent metal film is Y 1 = x 1 + Iy 1 , (x 0 , y 0 ), (x 1 , y 1 ) when the optical admittance at a wavelength of 570 nm on the surface of the transparent metal film on the second admittance adjustment layer side is Y2 = x 2 + iy 2 Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E −n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of the adhesive and the equivalent admittance of the transparent conductor.
 さらに、得られた透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗を表4に示す。さらに、得られた透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を図31に示す。 Furthermore, Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor. Furthermore, the admittance locus | trajectory of wavelength 450nm, wavelength 570nm, and wavelength 700nm of the obtained transparent conductor is shown in FIG.
(下地層)
 Optorun社のGener 1300によって、40mA、成膜レート3Å/sでMgFを電子ビーム(EB)蒸着した。得られた下地層は、175nmであった。前述のように、MgFの波長570nmの光の屈折率は1.38である。
(Underlayer)
MgF 2 was deposited by electron beam (EB) at 40 mA at a deposition rate of 3 Å / s using a Gener 1300 manufactured by Optorun. The obtained underlayer was 175 nm. As described above, the refractive index of light with a wavelength of 570 nm of MgF 2 is 1.38.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2.2Å/sでITOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、41nmであった。ITOの波長570nmの光の屈折率は、2.12である。
(First admittance adjustment layer)
Using Anelva L-430S-FHS, ITO was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 41 nm. The refractive index of light with a wavelength of 570 nm of ITO is 2.12.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、アネルバ社のL-430S-FHSを用い、Ar20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力125W、成膜レート10Å/sでAgをDCスパッタした。ターゲット-基板間距離は86mmであった。得られた透明金属膜は8nmであった。また、得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって15%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was DC sputtered using L-430S-FHS manufactured by Anerva Co., Ar20 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 125 W, and deposition rate 10 L / s. The target-substrate distance was 86 mm. The obtained transparent metal film was 8 nm. Further, the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2.2Å/sでITOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、29nmであった。前述のように、ITOの波長570nmの光の屈折率は、2.12である。
(Second admittance adjustment layer)
Using Anelva L-430S-FHS, ITO was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 29 nm. As described above, the refractive index of light having a wavelength of 570 nm of ITO is 2.12.
 [実施例B-8]
 コニカミノルタ製TACフィルム(透明支持材)上に、下地層/第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。得られた透明導電体は、接着剤(Henkel社製 Loctite(登録商標) 3195)と貼り合わせるものとする。
[Example B-8]
An underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on a Konica Minolta TAC film (transparent support). The obtained transparent conductor is bonded to an adhesive (Loctite (registered trademark) 3195 manufactured by Henkel).
 得られた下地層の第一アドミッタンス側の表面の波長570nmの光学アドミッタンスをY0=x+iy、透明金属膜の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、(x,y)、(x,y)、及び(x,y)の値、さらに等価アドミッタンスY(x,y)を表3に示す。また、前記接着剤の光学アドミッタンスと透明導電体の等価アドミッタンスとの座標上の距離(((x-nenv+(y0.5)も表3に示す。 The optical admittance at the wavelength 570 nm of the surface on the first admittance side of the obtained underlayer is Y0 = x 0 + iy 0 , and the optical admittance at the wavelength 570 nm of the surface on the first admittance adjustment layer side of the transparent metal film is Y 1 = x 1 + Iy 1 , (x 0 , y 0 ), (x 1 , y 1 ) when the optical admittance at a wavelength of 570 nm on the surface of the transparent metal film on the second admittance adjustment layer side is Y2 = x 2 + iy 2 Table 3 shows values of (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ). Table 3 also shows the coordinate distance (((x E −n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of the adhesive and the equivalent admittance of the transparent conductor.
 さらに、得られた透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗を表4に示す。さらに、得られた透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を図32に示す。 Furthermore, Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor. Further, FIG. 32 shows admittance loci of the obtained transparent conductor with a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
(下地層)
 Optorun社のGener 1300によって、40mA、成膜レート3Å/sでMgFを電子ビーム(EB)蒸着した。得られた下地層は、100nmであった。前述のように、MgFの波長570nmの光の屈折率は1.38である。
(Underlayer)
MgF 2 was deposited by electron beam (EB) at 40 mA at a deposition rate of 3 Å / s using a Gener 1300 manufactured by Optorun. The obtained underlayer was 100 nm. As described above, the refractive index of light with a wavelength of 570 nm of MgF 2 is 1.38.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート1.6Å/sでZnOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、50nmであった。ZnOの波長570nmの光の屈折率は、2.01であった。
(First admittance adjustment layer)
ZnO was RF sputtered using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 300 W, and deposition rate 1.6 Å / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 50 nm. The refractive index of light with a wavelength of 570 nm of ZnO was 2.01.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、アネルバ社のL-430S-FHSを用い、Ar20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力125W、成膜レート10Å/sでAgをDCスパッタした。ターゲット-基板間距離は86mmであった。得られた透明金属膜は9nmであった。また、得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって15%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was DC sputtered using L-430S-FHS manufactured by Anerva Co., Ar20 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 125 W, and deposition rate 10 L / s. The target-substrate distance was 86 mm. The obtained transparent metal film was 9 nm. Further, the plasmon absorption rate of the obtained transparent metal film was 15% or less over a wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート1.6Å/sでZnOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、22nmであった。前述のように、ZnOの波長570nmの光の屈折率は2.01である。
(Second admittance adjustment layer)
ZnO was RF sputtered using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 300 W, and deposition rate 1.6 Å / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 22 nm. As described above, the refractive index of light having a wavelength of 570 nm of ZnO is 2.01.
 [比較例B-1]
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。音波洗浄機はアズワン製VS-100IIIを用いた。上記白板基板(透明支持材)上に、透明金属膜のみを成膜した。
[Comparative Example B-1]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used. Only a transparent metal film was formed on the white plate substrate (transparent support material).
 得られた透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗を表4に示す。 Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the transparent conductor obtained.
(透明金属膜)
 透明支持材上に前述の特許文献2の例2と同様の銀ナノワイヤ水分散体をスピンコートし、120℃で20分焼成した。コーターはMIKASA製1H-DX、恒温機はESPEC製のST-120を使用した。
(Transparent metal film)
A silver nanowire aqueous dispersion similar to Example 2 of Patent Document 2 described above was spin-coated on the transparent support and baked at 120 ° C. for 20 minutes. The coater used was 1K-DX manufactured by MIKASA, and the thermostat used was ST-120 manufactured by ESPEC.
 [比較例B-2]
 前述の非特許文献1を参考に、東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明支持材上に、第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。得られた透明導電体は空気と接するように配置されて使用するものとする。
[Comparative Example B-2]
With reference to Non-Patent Document 1 described above, a first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on a transparent support made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm). The obtained transparent conductor is disposed and used in contact with air.
 得られた透明金属膜の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの(x,y)、及び(x,y)の値、さらに等価アドミッタンスY(x,y)を表3に示す。また、空気の光学アドミッタンスと透明導電体の等価アドミッタンスとの座標上の距離(((x-nenv+(y0.5)も表3に示す。 The resulting optical admittance Y1 = x 1 + iy 1 wavelength 570nm of the first admittance adjusting layer-side surface of the transparent metal film, the optical admittance of wavelength 570nm of the second admittance adjusting layer side surface of the transparent metal film Table 3 shows the values of (x 1 , y 1 ) and (x 2 , y 2 ), and equivalent admittance Y E (x E , y E ), where Y 2 = x 2 + iy 2 . Table 3 also shows the coordinate distance (((x E −n env ) 2 + (y E ) 2 ) 0.5 ) between the optical admittance of air and the equivalent admittance of the transparent conductor.
 さらに、得られた透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗を表4に示す。また、得られた透明導電体の分光特性を図33Aに示し、当該透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を図33Bに示す。 Furthermore, Table 4 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor. In addition, FIG. 33A shows spectral characteristics of the obtained transparent conductor, and FIG. 33B shows admittance trajectories of the transparent conductor having a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、27.7nmであった。前述のように、Nbの波長570nmの光の屈折率は2.31である。
(First admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 27.7 nm. As described above, the refractive index of light having a wavelength of 570 nm of Nb 2 O 5 is 2.31.
(透明金属膜)
 日本真空技術株式会社の小型スパッタ装置(BC4279)でDCスパッタした。このとき、ターゲット側電力200Wとした。得られた透明金属膜の膜厚は8nmであった。
(Transparent metal film)
DC sputtering was performed with a small sputtering apparatus (BC4279) manufactured by Nippon Vacuum Technology Co., Ltd. At this time, the target side power was set to 200 W. The film thickness of the obtained transparent metal film was 8 nm.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2.2Å/sでIZOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、36nmであった。IZOの波長570nmの光の屈折率は2.05である。
(Second admittance adjustment layer)
Using an Anelva L-430S-FHS, IZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 36 nm. The refractive index of light having a wavelength of 570 nm of IZO is 2.05.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、透明支持材/下地層/第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層という構成の透明導電体では、透明導電体の波長500nm~700nmにおける平均反射率が6%以下であり、比較的小さくなった(実施例B-1~B-4、及びB-6~B-8)。下地層を有することによって、表3に示されるように、透明金属膜の両表面の光学アドミッタンスY1(x,x)及びY2(x,x)が大きくなり、透明金属膜の電場損失が小さくなったと推察される。 As shown in Table 4, in the transparent conductor having the structure of transparent support material / underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer, the average reflectance of the transparent conductor at a wavelength of 500 nm to 700 nm Was 6% or less, and was relatively small (Examples B-1 to B-4 and B-6 to B-8). By having the underlayer, as shown in Table 3, the optical admittances Y1 (x 1 , x 2 ) and Y2 (x 2 , x 2 ) on both surfaces of the transparent metal film are increased, and the electric field of the transparent metal film It is inferred that the loss has been reduced.
 また、透明支持材/下地層/第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層という構成の透明導電体では、例えば図25~28、及び図30~33に示されるように、波長450nm、波長570nm、及び波長700nmの光のアドミッタンス軌跡が横軸を中心に線対称となりやすく、y+yも0.8未満であった。そのため、等価アドミッタンスYがいずれもnenvに近づいた。さらに、各波長の等価アドミッタンスYにバラツキが少ないため、波長450nm~800nmにおける吸収最大値が小さく、いずれの波長領域でも透過率が高かった。ただし、実施例B-5は図29Bに示されるように、アドミッタンスが、横軸を中心とした対称性が十分ではなくy+yが0.8以上であった。そのため、図29Aに示されるように、波長400nm~800nmの範囲において、反射抑制効果が十分でない領域があった。 In the transparent conductor having the structure of transparent support material / underlayer / first admittance adjusting layer / transparent metal film / second admittance adjusting layer, for example, as shown in FIGS. 25 to 28 and FIGS. The admittance locus of light having a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm tends to be line symmetric around the horizontal axis, and y 1 + y 2 was also less than 0.8. Therefore, both the equivalent admittance Y E approached n env. Furthermore, since there is less variation in the equivalent admittance Y E of each wavelength, smaller absorption maximum at a wavelength of 450 nm ~ 800 nm, was high transmittance at any wavelength region. However, in Example B-5, as shown in FIG. 29B, the admittance was not sufficiently symmetric about the horizontal axis, and y 1 + y 2 was 0.8 or more. Therefore, as shown in FIG. 29A, there is a region where the reflection suppressing effect is not sufficient in the wavelength range of 400 nm to 800 nm.
 一方、銀ナノワイヤを成膜した比較例B-1では、表面電気抵抗が高く、さらにヘイズ劣化も大きかった。また、図33Aに示されるように、下地層を形成しない比較例B-2では、いずれの波長域においても反射率が10%程度であり、さらに平均吸収率も10%近かった。 On the other hand, in Comparative Example B-1 in which silver nanowires were formed, the surface electrical resistance was high and the haze degradation was large. Further, as shown in FIG. 33A, in Comparative Example B-2 in which no underlayer was formed, the reflectance was about 10% in any wavelength region, and the average absorptance was also close to 10%.
 [実施例C-1]
 山中セミコンダクターの白板基板(Φ30mm、厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記白板基板(透明支持材)上に、下記の方法で、第一アドミッタンス調整層/低屈折率層A/透明金属膜/低屈折率層B/第二アドミッタンス調整層/第三アドミッタンス調整層を成膜した。
 得られた透明導電体の分光特性を図9Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図9Bに示す。
[Example C-1]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. The first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer are formed on the white plate substrate (transparent support material) by the following method. A film was formed.
FIG. 9A shows the spectral characteristics of the obtained transparent conductor, and FIG. 9B shows the admittance locus of the transparent conductor at a wavelength of 570 nm.
(第一アドミッタンス調整層)
 前述の透明支持材上に、Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、29nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。TiOの波長570nmの光の屈折率は2.35であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.35となるようにした。
(First admittance adjustment layer)
On the transparent support described above, TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s while ion assisting using a Gener 1300 manufactured by Optorun. The obtained first admittance adjusting layer was 29 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. The refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.35.
(低屈折率層A)
 Optorun社のGener 1300により、60mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着した。得られた低屈折率層Aは、5nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Aの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer A)
SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained low refractive index layer A was 5 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.46.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(10nm)を得た。成膜レートは3Å/sとした。得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Then, Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (10 nm) which consists of Ag was obtained. The film formation rate was 3 Å / s. The plasmon absorption rate of the obtained transparent metal film was 10% or less over a wavelength range of 400 nm to 800 nm.
(低屈折率層B)
 Optorun社のGener 1300により、60mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着した。得られた低屈折率層Bは、5nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Bの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer B)
SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained low refractive index layer B was 5 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.46.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、24nmであった。TiOの波長570nmの光の屈折率は2.35であり、第二アドミッタンス調整層の屈折率は2.35となるようにした。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s under oxygen introduction using a Gener 1300 manufactured by Optorun. The obtained second admittance adjusting layer was 24 nm. The refractive index of light with a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of the second admittance adjusting layer was 2.35.
(第三アドミッタンス調整層)
 Optorun社のGener 1300により、60mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着した。得られたアドミッタンス調整層は、25nmであった。SiOの波長570nmの光の屈折率は1.46であり、第三アドミッタンス調整層の屈折率は1.46となるようにした。
(Third admittance adjustment layer)
SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained admittance adjusting layer was 25 nm. The refractive index of light having a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of the third admittance adjusting layer was 1.46.
 [実施例C-2]
 コニカミノルタ製TACフィルム(透明支持材)上に、下記の方法で、第一アドミッタンス調整層/低屈折率層A/透明金属膜/低屈折率層B/第二アドミッタンス調整層を成膜した。得られた透明導電体の分光特性を図34Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図34Bに示す。
[Example C-2]
A first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjusting layer was formed on a Konica Minolta TAC film (transparent support) by the following method. The spectral characteristic of the obtained transparent conductor is shown in FIG. 34A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 34B.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、23nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(First admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 23 nm. The refractive index of light having a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.31.
(低屈折率層A)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた低屈折率層Aは、10nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Aの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer A)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained low refractive index layer A was 10 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.46.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAgをRFスパッタした。ターゲット-基板間距離は86mmであった。得られたAgからなる透明金属膜(11nm)のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 Å / s. The target-substrate distance was 86 mm. The obtained transparent metal film (11 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
(低屈折率層B)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた低屈折率層Bは、10nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Bの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer B)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained low refractive index layer B was 10 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.46.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、23nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(Second admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 23 nm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.31.
 [実施例C-3]
 山中セミコンダクターの白板基板(Φ30mm、厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記白板基板(透明支持材)上に、下記の方法で、第一アドミッタンス調整層/低屈折率層A/透明金属膜/低屈折率層B/第二アドミッタンス調整層/第三アドミッタンス調整層を成膜した。得られた透明導電体の分光特性を図35Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図35Bに示す。
[Example C-3]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. The first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer are formed on the white plate substrate (transparent support material) by the following method. A film was formed. FIG. 35A shows the spectral characteristics of the obtained transparent conductor, and FIG. 35B shows the admittance locus of the transparent conductor at a wavelength of 570 nm.
(第一アドミッタンス調整層)
 Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、35nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。TiOの波長570nmの光の屈折率は2.35であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s with ion assist using a Gener 1300 manufactured by Optorun. The obtained first admittance adjusting layer was 35 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. The refractive index of light with a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light with a wavelength of 570 nm of the first admittance adjustment layer was 2.31.
(低屈折率層A)
 Optorun社のGener 1300によって、190mA、成膜レート10Å/sでMgFを電子ビーム(EB)蒸着した。得られた低屈折率層Aは、5nmであった。MgFの波長570nmの光の屈折率は1.38であり、低屈折率層Aの波長570nmの光の屈折率は1.38となるようにした。
(Low refractive index layer A)
MgF 2 was deposited by electron beam (EB) at 190 mA and a deposition rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained low refractive index layer A was 5 nm. The refractive index of light with a wavelength of 570 nm of MgF 2 was 1.38, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.38.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(10nm)を得た。成膜レートは3Å/sとした。得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Then, Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (10 nm) which consists of Ag was obtained. The film formation rate was 3 Å / s. The plasmon absorption rate of the obtained transparent metal film was 10% or less over a wavelength range of 400 nm to 800 nm.
(低屈折率層B)
 Optorun社のGener 1300によって、190mA、成膜レート10Å/sでMgFを電子ビーム(EB)蒸着した。得られた低屈折率層Bは、5nmであった。MgFの波長570nmの光の屈折率は1.38であり、低屈折率層Bの波長570nmの光の屈折率は1.38となるようにした。
(Low refractive index layer B)
MgF 2 was deposited by electron beam (EB) at 190 mA and a deposition rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained low refractive index layer B was 5 nm. The refractive index of light with a wavelength of 570 nm of MgF 2 was 1.38, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.38.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、24nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。TiOの波長570nmの光の屈折率は2.35であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.35となるようにした。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s with ion assist using a Gener 1300 manufactured by Optorun. The obtained second admittance adjusting layer was 24 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. The refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light having a wavelength of 570 nm of the second admittance adjusting layer was 2.35.
(第三アドミッタンス調整層)
 Optorun社のGener 1300により、60mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着した。得られたアドミッタンス調整層は、25nmであった。SiOの波長570nmの光の屈折率は1.46であり、第三アドミッタンス調整層の波長570nmの光の屈折率は1.46となるようにした。
(Third admittance adjustment layer)
SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained admittance adjusting layer was 25 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the third admittance adjustment layer was 1.46.
 [実施例C-4]東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明支持材上に、下記の方法で、第一アドミッタンス調整層/低屈折率層A/透明金属膜/低屈折率層B/第二アドミッタンス調整層を成膜した。得られた透明導電体の分光特性を図36Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図36Bに示す。 [Example C-4] A first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer on a transparent support material made of Toyobo PET (Cosmo Shine A4300, thickness 50 μm) by the following method A B / second admittance adjusting layer was formed. The spectral characteristics of the obtained transparent conductor are shown in FIG. 36A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 36B.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、25nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(First admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 25 nm. The refractive index of light having a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.31.
(低屈折率層A)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた低屈折率層Aは、10nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Aの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer A)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained low refractive index layer A was 10 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.46.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAgをRFスパッタした。ターゲット-基板間距離は86mmであった。得られたAgからなる透明金属膜(10nm)のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 Å / s. The target-substrate distance was 86 mm. The obtained transparent metal film (10 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
(低屈折率層B)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた低屈折率層Bは、10nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Bの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer B)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained low refractive index layer B was 10 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.46.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、26nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(Second admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 26 nm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.31.
 [実施例C-5]
 コーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、下記の方法で、第一アドミッタンス調整層/低屈折率層A/透明金属膜/低屈折率層B/第二アドミッタンス調整層/第三アドミッタンス調整層を成膜した。得られた透明導電体の分光特性を図37Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図37Bに示す。
[Example C-5]
Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer is formed on the glass substrate (transparent support material) by the following method. A film was formed. The spectral characteristic of the obtained transparent conductor is shown in FIG. 37A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 37B.
(第一アドミッタンス調整層)
 前述の透明支持材上に、Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、28nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。TiOの波長570nmの光の屈折率は2.35であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.35となるようにした。
(First admittance adjustment layer)
On the transparent support described above, TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s while ion assisting using a Gener 1300 manufactured by Optorun. The obtained first admittance adjusting layer was 28 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. The refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.35.
(低屈折率層A)
 Optorun社のGener 1300により、60mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着した。得られた低屈折率層Aは、15nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Aの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer A)
SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained low refractive index layer A was 15 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.46.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(10nm)を得た。成膜レートは3Å/sとした。得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Then, Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (10 nm) which consists of Ag was obtained. The film formation rate was 3 Å / s. The plasmon absorption rate of the obtained transparent metal film was 10% or less over a wavelength range of 400 nm to 800 nm.
(低屈折率層B)
 Optorun社のGener 1300により、60mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着した。得られた低屈折率層Bは、10nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Bの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer B)
SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained low refractive index layer B was 10 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.46.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、酸素導入下、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、29nmであった。TiOの波長570nmの光の屈折率は2.35であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.35となるようにした。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s under oxygen introduction using a Gener 1300 manufactured by Optorun. The obtained second admittance adjusting layer was 29 nm. The refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light having a wavelength of 570 nm of the second admittance adjusting layer was 2.35.
(第三アドミッタンス調整層)
 Optorun社のGener 1300により、60mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着した。得られたアドミッタンス調整層は、15nmであった。SiOの波長570nmの光の屈折率は1.46であり、第三アドミッタンス調整層の波長570nmの光の屈折率は1.46となるようにした。
(Third admittance adjustment layer)
SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained admittance adjusting layer was 15 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the third admittance adjustment layer was 1.46.
 [実施例C-6]
 コーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、下記の方法で、第一アドミッタンス調整層/透明金属膜/低屈折率層B/第二アドミッタンス調整層/第三アドミッタンス調整層を成膜した。得られた透明導電体の分光特性を図38Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図38Bに示す。
[Example C-6]
Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer was formed on the glass substrate (transparent support) by the following method. The spectral characteristic of the obtained transparent conductor is shown in FIG. 38A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 38B.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、29nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(First admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 29 nm. The refractive index of light having a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.31.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAgをRFスパッタした。ターゲット-基板間距離は86mmであった。得られたAgからなる透明金属膜(10nm)のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 Å / s. The target-substrate distance was 86 mm. The obtained transparent metal film (10 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
(低屈折率層B)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた低屈折率層Bは、5nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Bの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer B)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained low refractive index layer B was 5 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.46.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、24nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(Second admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 24 nm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.31.
(第三アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第三アドミッタンス調整層は、25nmであった。SiOの波長570nmの光の屈折率は1.46であり、第三アドミッタンス調整層の波長570nmの光の屈折率は1.46となるようにした。
(Third admittance adjustment layer)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained third admittance adjusting layer was 25 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the third admittance adjustment layer was 1.46.
 [実施例C-7]
 コーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、下記の方法で、第一アドミッタンス調整層/低屈折率層A/透明金属膜/低屈折率層B/第二アドミッタンス調整層/第三アドミッタンス調整層を成膜した。得られた透明導電体の分光特性を図39Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図39Bに示す。
[Example C-7]
Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer is formed on the glass substrate (transparent support material) by the following method. A film was formed. The spectral characteristic of the obtained transparent conductor is shown in FIG. 39A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 39B.
(第一アドミッタンス調整層)
 Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、38nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。TiOの波長570nmの光の屈折率は2.35であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.35となるようにした。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s with ion assist using a Gener 1300 manufactured by Optorun. The obtained first admittance adjusting layer was 38 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. The refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.35.
(低屈折率層A)
 Optorun社のGener 1300によって、190mA、成膜レート10Å/sでMgFを電子ビーム(EB)蒸着した。得られた低屈折率層Aは、3nmであった。MgFの波長570nmの光の屈折率は1.38であり、低屈折率層Aの波長570nmの光の屈折率は1.38となるようにした。
(Low refractive index layer A)
MgF 2 was deposited by electron beam (EB) at 190 mA and a deposition rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained low refractive index layer A was 3 nm. The refractive index of light with a wavelength of 570 nm of MgF 2 was 1.38, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.38.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(10nm)を得た。成膜レートは3Å/sとした。得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Then, Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (10 nm) which consists of Ag was obtained. The film formation rate was 3 Å / s. The plasmon absorption rate of the obtained transparent metal film was 10% or less over a wavelength range of 400 nm to 800 nm.
(低屈折率層B)
 Optorun社のGener 1300によって、190mA、成膜レート10Å/sでMgFを電子ビーム(EB)蒸着した。得られた低屈折率層Bは、5nmであった。MgFの波長570nmの光の屈折率は1.38であり、低屈折率層Bの波長570nmの光の屈折率は1.38となるようにした。
(Low refractive index layer B)
MgF 2 was deposited by electron beam (EB) at 190 mA and a deposition rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained low refractive index layer B was 5 nm. The refractive index of light with a wavelength of 570 nm of MgF 2 was 1.38, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.38.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、27nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。TiOの波長570nmの光の屈折率は2.35であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.35となるようにした。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s with ion assist using a Gener 1300 manufactured by Optorun. The obtained second admittance adjusting layer was 27 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. The refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light having a wavelength of 570 nm of the second admittance adjusting layer was 2.35.
(第三アドミッタンス調整層)
 Optorun社のGener 1300により、60mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着した。得られたアドミッタンス調整層は、25nmであった。SiOの波長570nmの光の屈折率は1.46であり、第三アドミッタンス調整層の波長570nmの光の屈折率は1.46となるようにした。
(Third admittance adjustment layer)
SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained admittance adjusting layer was 25 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the third admittance adjustment layer was 1.46.
 [実施例C-8]
 コーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、下記の方法で、第一アドミッタンス調整層/低屈折率層A/透明金属膜/低屈折率層B/第二アドミッタンス調整層/第三アドミッタンス調整層を成膜した。得られた透明導電体の分光特性を図40Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図40Bに示す。
[Example C-8]
Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer is formed on the glass substrate (transparent support material) by the following method. A film was formed. The spectral characteristic of the obtained transparent conductor is shown in FIG. 40A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 40B.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、36nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(First admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 36 nm. The refractive index of light having a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.31.
(低屈折率層A)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた低屈折率層Aは、6nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Aの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer A)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained low refractive index layer A was 6 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.46.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAgをRFスパッタした。ターゲット-基板間距離は86mmであった。得られたAgからなる透明金属膜(9nm)のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 Å / s. The target-substrate distance was 86 mm. The obtained transparent metal film (9 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
(低屈折率層B)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた低屈折率層Bは、5nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Bの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer B)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained low refractive index layer B was 5 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.46.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、30nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(Second admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 30 nm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.31.
(第三アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第三アドミッタンス調整層は、34nmであった。SiOの波長570nmの光の屈折率は1.46であり、第三アドミッタンス調整層の波長570nmの光の屈折率は1.46となるようにした。
(Third admittance adjustment layer)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained third admittance adjusting layer was 34 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the third admittance adjustment layer was 1.46.
 [実施例C-9]
 コーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、下記の方法で、第一アドミッタンス調整層/低屈折率層A/透明金属膜/第二アドミッタンス調整層/第三アドミッタンス調整層を成膜した。得られた透明導電体の分光特性を図41Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図41Bに示す。
[Example C-9]
Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / low refractive index layer A / transparent metal film / second admittance adjusting layer / third admittance adjusting layer was formed on the glass substrate (transparent support) by the following method. The spectral characteristics of the obtained transparent conductor are shown in FIG. 41A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 41B.
(第一アドミッタンス調整層)
 Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第一アドミッタンス調整層は、34nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。TiOの波長570nmの光の屈折率は2.35であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.35となるようにした。
(First admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s with ion assist using a Gener 1300 manufactured by Optorun. The obtained first admittance adjusting layer was 34 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. The refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.35.
(低屈折率層A)
 Optorun社のGener 1300によって、190mA、成膜レート10Å/sでランタンアルミネート(メルク社製 M3)を電子ビーム(EB)蒸着した。得られた低屈折率層Aは、3nmであった。ランタンアルミネート(M3)の波長570nmの光の屈折率は1.77であり、低屈折率層Aの波長570nmの光の屈折率は1.77となるようにした。
(Low refractive index layer A)
A lanthanum aluminate (M3, manufactured by Merck) was deposited by electron beam (EB) at 190 mA and a film formation rate of 10 s / s using a Gener 1300 manufactured by Optorun. The obtained low refractive index layer A was 3 nm. The refractive index of the light of wavelength 570 nm of lanthanum aluminate (M3) was 1.77, and the refractive index of the light of wavelength 570 nm of the low refractive index layer A was 1.77.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(9nm)を得た。成膜レートは3Å/sとした。得られた透明金属膜のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Then, Ag was vapor-deposited by Gener 1300 (210A resistance heating) of Optorun, and the transparent metal film (9 nm) which consists of Ag was obtained. The film formation rate was 3 Å / s. The plasmon absorption rate of the obtained transparent metal film was 10% or less over a wavelength range of 400 nm to 800 nm.
(第二アドミッタンス調整層)
 Optorun社のGener 1300により、イオンアシストしながら、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着した。得られた第二アドミッタンス調整層は、33nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vとし、イオンビーム装置内にOガス:50sccm、及びArガス:8sccmを導入した。TiOの波長570nmの光の屈折率は2.35であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.35となるようにした。
(Second admittance adjustment layer)
TiO 2 was deposited by electron beam (EB) at 320 mA and a film formation rate of 3 Å / s with ion assist using a Gener 1300 manufactured by Optorun. The obtained second admittance adjusting layer was 33 nm. The ion beam had a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V, and O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced into the ion beam apparatus. The refractive index of light having a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light having a wavelength of 570 nm of the second admittance adjusting layer was 2.35.
(第三アドミッタンス調整層)
 Optorun社のGener 1300により、60mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着した。得られたアドミッタンス調整層は、45nmであった。SiOの波長570nmの光の屈折率は1.46であり、第三アドミッタンス調整層の波長570nmの光の屈折率は1.46となるようにした。
(Third admittance adjustment layer)
SiO 2 was deposited by electron beam (EB) at 60 mA and a film formation rate of 10 Å / s using a Gener 1300 manufactured by Optorun. The obtained admittance adjusting layer was 45 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the third admittance adjustment layer was 1.46.
 [実施例C-10]
 コーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、下記の方法で、第一アドミッタンス調整層/透明金属膜/低屈折率層B/第二アドミッタンス調整層/第三アドミッタンス調整層を成膜した。得られた透明導電体の分光特性を図42Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図42Bに示す。
[Example C-10]
Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / low refractive index layer B / second admittance adjusting layer / third admittance adjusting layer was formed on the glass substrate (transparent support) by the following method. FIG. 42A shows the spectral characteristics of the obtained transparent conductor, and FIG. 42B shows the admittance locus of the transparent conductor at a wavelength of 570 nm.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、34nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(First admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 34 nm. The refractive index of light having a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.31.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAgをRFスパッタした。ターゲット-基板間距離は86mmであった。得られたAgからなる透明金属膜(9nm)のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 Å / s. The target-substrate distance was 86 mm. The obtained transparent metal film (9 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
(低屈折率層B)
 シンクロン社製のBMC-800T蒸着機により、250mA、成膜レート4Å/sでYを電子ビーム(EB)蒸着した。得られた低屈折率層Bの厚みは、3nmであった。Yの波長570nmの光の屈折率は1.78であり、低屈折率層Bの波長570nmの光の屈折率は1.78となるようにした。
(Low refractive index layer B)
Y 2 O 3 was deposited by electron beam (EB) at 250 mA and a deposition rate of 4 Å / s using a BMC-800T vapor deposition machine manufactured by Shincron. The thickness of the obtained low refractive index layer B was 3 nm. The refractive index of light with a wavelength of 570 nm of Y 2 O 3 was 1.78, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.78.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、33nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(Second admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 33 nm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.31.
(第三アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第三アドミッタンス調整層は、45nmであった。SiOの波長570nmの光の屈折率は1.46であり、第三アドミッタンス調整層の波長570nmの光の屈折率は1.46となるようにした。
(Third admittance adjustment layer)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained third admittance adjusting layer was 45 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the third admittance adjustment layer was 1.46.
 [実施例C-11]
 山中セミコンダクターの白板基板(Φ30mm、厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記白板基板(透明支持材)上に、下記の方法で、第一アドミッタンス調整層/低屈折率層A/透明金属膜/低屈折率層B/第二アドミッタンス調整層を成膜した。得られた透明導電体の分光特性を図43Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図43Bに示す。
[Example C-11]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjustment layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjustment layer was formed on the white plate substrate (transparent support) by the following method. FIG. 43A shows the spectral characteristics of the obtained transparent conductor, and FIG. 43B shows the admittance locus of the transparent conductor at a wavelength of 570 nm.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力150W、成膜レート2.0Å/sでITOをDCスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、39nmであった。ITOの波長570nmの光の屈折率は、2.12であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.12となるようにした。
(First admittance adjustment layer)
Using Anelva L-430S-FHS, ITO was DC sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 150 W, and deposition rate 2.0 Å / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 39 nm. The refractive index of light with a wavelength of 570 nm of ITO was 2.12, and the refractive index of light with a wavelength of 570 nm of the first admittance adjustment layer was 2.12.
(低屈折率層A)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた低屈折率層Aは、2nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Aの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer A)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained low refractive index layer A was 2 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.46.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAgをRFスパッタした。ターゲット-基板間距離は86mmであった。得られたAgからなる透明金属膜(9nm)のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 Å / s. The target-substrate distance was 86 mm. The obtained transparent metal film (9 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
(低屈折率層B)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた低屈折率層Bは、2nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Bの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer B)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained low refractive index layer B was 2 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.46.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力150W、成膜レート2.0Å/sでITOをDCスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、34nmであった。ITOの波長570nmの光の屈折率は、2.12であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.12となるようにした。
(Second admittance adjustment layer)
Using Anelva L-430S-FHS, ITO was DC sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 150 W, and deposition rate 2.0 Å / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 34 nm. The refractive index of light with a wavelength of 570 nm of ITO was 2.12, and the refractive index of light with a wavelength of 570 nm of the second admittance adjustment layer was 2.12.
 [実施例C-12]
 山中セミコンダクターの白板基板(Φ30mm、厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記白板基板(透明支持材)上に、下記の方法で、第一アドミッタンス調整層/低屈折率層A/透明金属膜/低屈折率層B/第二アドミッタンス調整層を成膜した。得られた透明導電体の分光特性を図44Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図44Bに示す。
[Example C-12]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjustment layer / low refractive index layer A / transparent metal film / low refractive index layer B / second admittance adjustment layer was formed on the white plate substrate (transparent support) by the following method. FIG. 44A shows the spectral characteristics of the obtained transparent conductor, and FIG. 44B shows the admittance locus of the transparent conductor at a wavelength of 570 nm.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力150W、成膜レート1.4Å/sでZnOをDCスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、28nmであった。ZnOの波長570nmの光の屈折率は、2.01であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.01となるようにした。
(First admittance adjustment layer)
ZnO was DC sputtered using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target power 150 W, and deposition rate 1.4 Å / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 28 nm. The refractive index of light with a wavelength of 570 nm of ZnO was 2.01, and the refractive index of light with a wavelength of 570 nm of the first admittance adjusting layer was 2.01.
(低屈折率層A)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた低屈折率層Aは、2nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Aの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer A)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained low refractive index layer A was 2 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer A was 1.46.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAgをRFスパッタした。ターゲット-基板間距離は86mmであった。得られたAgからなる透明金属膜(6nm)のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 Å / s. The target-substrate distance was 86 mm. The obtained transparent metal film (6 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
(低屈折率層B)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2Å/sでSiOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた低屈折率層Bは、2nmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層Bの波長570nmの光の屈折率は1.46となるようにした。
(Low refractive index layer B)
Using Anelva L-430S-FHS, SiO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2 Å / s. The target-substrate distance was 86 mm. The obtained low refractive index layer B was 2 nm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.46.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力150W、成膜レート1.4Å/sでZnOをDCスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、54nmであった。ZnOの波長570nmの光の屈折率は、2.01であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.01となるようにした。
(Second admittance adjustment layer)
ZnO was DC sputtered using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target power 150 W, and deposition rate 1.4 Å / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 54 nm. The refractive index of light with a wavelength of 570 nm of ZnO was 2.01, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.01.
 [実施例C-13]
 コーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記ガラス基板(透明支持材)上に、下記の方法で、第一アドミッタンス調整層/透明金属膜/低屈折率層B/第二アドミッタンス調整層を成膜した。得られた透明導電体の分光特性を図45Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図45Bに示す。
[Example C-13]
Corning non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. A first admittance adjusting layer / transparent metal film / low refractive index layer B / second admittance adjusting layer was formed on the glass substrate (transparent support) by the following method. The spectral characteristic of the obtained transparent conductor is shown in FIG. 45A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 45B.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、35nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(First admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 35 nm. The refractive index of light having a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light having a wavelength of 570 nm of the first admittance adjusting layer was 2.31.
(透明金属膜)
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウム(Pt80質量%、Pd20質量%)を0.2秒間成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
 続いて、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAgをRFスパッタした。ターゲット-基板間距離は86mmであった。得られたAgからなる透明金属膜(11nm)のプラズモン吸収率は、波長400nm~800nmにわたって10%以下であった。
(Transparent metal film)
A palladium palladium (Pt 80 mass%, Pd 20 mass%) film was formed for 0.2 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., thereby forming a growth nucleus having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
Subsequently, Ag was RF-sputtered by using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 Å / s. The target-substrate distance was 86 mm. The obtained transparent metal film (11 nm) made of Ag had a plasmon absorption rate of 10% or less over a wavelength range of 400 nm to 800 nm.
(低屈折率層B)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート3Å/sでMgFをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた低屈折率層Bは、5nmであった。MgFの波長570nmの光の屈折率は1.38であり、低屈折率層Bの波長570nmの光の屈折率は1.38となるようにした。
(Low refractive index layer B)
Using Anelva L-430S-FHS, MgF 2 was RF-sputtered at Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 3 Å / s. The target-substrate distance was 86 mm. The obtained low refractive index layer B was 5 nm. The refractive index of light with a wavelength of 570 nm of MgF 2 was 1.38, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer B was 1.38.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、30nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(Second admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 30 nm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second admittance adjusting layer was 2.31.
 [比較例C-1]
 山中セミコンダクターの白板基板(Φ30mm厚み2mm)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。音波洗浄機はアズワン製VS-100IIIを用いた。上記白板基板(透明支持材)上に、透明金属膜のみを成膜した。
[Comparative Example C-1]
Yamanaka Semiconductor's white substrate (Φ30 mm, thickness 2 mm) was ultrasonically cleaned in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used. Only a transparent metal film was formed on the white plate substrate (transparent support material).
(透明金属膜)
 透明支持材上に前述の先行特許文献2の例2と同様の銀ナノワイヤ水分散体をスピンコートし、120℃で20分焼成した。コーターはMIKASA製1H-DX、恒温機はESPEC製のST-120を使用した。
(Transparent metal film)
A silver nanowire aqueous dispersion similar to that of Example 2 of the above-mentioned Prior Art Document 2 was spin-coated on the transparent support material and baked at 120 ° C. for 20 minutes. The coater used was 1K-DX manufactured by MIKASA, and the thermostat used was ST-120 manufactured by ESPEC.
 [比較例C-2]
 前述の非特許文献1を参考に、東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明支持材上に、第一アドミッタンス調整層/透明金属膜/第二アドミッタンス調整層を成膜した。得られた透明導電体は空気と接するように配置されて使用するものとする。得られた透明導電体の分光特性を図46Aに示し、当該透明導電体の波長570nmにおけるアドミッタンス軌跡を図46Bに示す。
[Comparative Example C-2]
With reference to Non-Patent Document 1 described above, a first admittance adjusting layer / transparent metal film / second admittance adjusting layer was formed on a transparent support made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm). The obtained transparent conductor is disposed and used in contact with air. The spectral characteristics of the obtained transparent conductor are shown in FIG. 46A, and the admittance locus of the transparent conductor at a wavelength of 570 nm is shown in FIG. 46B.
(第一アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第一アドミッタンス調整層は、27.7nmであった。前述のように、Nbの波長570nmの光の屈折率は2.31であり、第一アドミッタンス調整層の波長570nmの光の屈折率は2.31となるようにした。
(First admittance adjustment layer)
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The obtained first admittance adjusting layer was 27.7 nm. As described above, the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 is 2.31, and the refractive index of light with a wavelength of 570 nm of the first admittance adjustment layer is 2.31.
(透明金属膜)
 日本真空技術株式会社の小型スパッタ装置(BC4279)でDCスパッタした。このとき、ターゲット側電力200Wとした。得られた透明金属膜の膜厚は8nmであった。
(Transparent metal film)
DC sputtering was performed with a small sputtering apparatus (BC4279) manufactured by Nippon Vacuum Technology Co., Ltd. At this time, the target side power was set to 200 W. The film thickness of the obtained transparent metal film was 8 nm.
(第二アドミッタンス調整層)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2.2Å/sでIZOをRFスパッタした。ターゲット-基板間距離は86mmであった。得られた第二アドミッタンス調整層は、36nmであった。IZOの波長570nmの光の屈折率は2.05であり、第二アドミッタンス調整層の波長570nmの光の屈折率は2.05となるようにした。
(Second admittance adjustment layer)
Using an Anelva L-430S-FHS, IZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm. The obtained second admittance adjusting layer was 36 nm. The refractive index of light having a wavelength of 570 nm of IZO was 2.05, and the refractive index of light having a wavelength of 570 nm of the second admittance adjusting layer was 2.05.
[評価]
 各実施例及び比較例で得られた透明金属膜の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの、(x,y)、及び(x,y)の値、さらに等価アドミッタンスY(x,y)を表5に示す。また、透明導電体の透明支持材とは反対側の表面と接する部材または環境の屈折率と、透明導電体の等価アドミッタンスとの座標上の距離(x-nenv+(y0.5も表5に示す。
[Evaluation]
The optical admittance at a wavelength of 570 nm of the surface on the first admittance adjustment layer side of the transparent metal film obtained in each example and comparative example is Y1 = x 1 + ii 1 , and the second admittance adjustment layer side of the transparent metal film is The value of (x 1 , y 1 ) and (x 2 , y 2 ) and the equivalent admittance Y E (x E , y E ) when the optical admittance at the surface wavelength of 570 nm is Y2 = x 2 + iy 2 Is shown in Table 5. Further, a coordinate distance (x E −n env ) 2 + (y E ) between the refractive index of the member or the environment in contact with the surface of the transparent conductor opposite to the transparent support and the equivalent admittance of the transparent conductor. 2 ) 0.5 is also shown in Table 5.
 さらに、得られた透明導電体の透過率、反射率、吸収率、L*a*b*表色系におけるa*値及びb*値、表面電気抵抗を表6に示す。また、透明導電体のヘイズ値Hstackと透明支持材のヘイズ値Hsubとの差δH(ヘイズ劣化)も表6に示す。これらは、実施例A-1と同様に測定した。 Further, Table 6 shows the transmittance, reflectance, absorptance, a * value and b * value in the L * a * b * color system, and surface electrical resistance of the obtained transparent conductor. Table 6 also shows the difference δH (haze degradation) between the haze value H stack of the transparent conductor and the haze value H sub of the transparent support material. These were measured in the same manner as in Example A-1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、透明金属膜のいずれか一方の表面、もしくは両面に低屈折率層が積層されると、波長400~800nmの光の平均吸収率が8.5%以下となり、さらに吸収率の最大値も10.3%以下であった。低屈折率層を積層することで、透明金属膜(Ag膜)が薄くとも、プラズモン吸収が十分に抑制できたためである。 As shown in Table 6, when a low refractive index layer is laminated on one or both surfaces of the transparent metal film, the average absorption rate of light having a wavelength of 400 to 800 nm is 8.5% or less, The maximum value of the absorption rate was also 10.3% or less. This is because the plasmon absorption can be sufficiently suppressed by laminating the low refractive index layer even if the transparent metal film (Ag film) is thin.
 一方、銀ナノワイヤを成膜した比較例C-1では、表面電気抵抗が高く、さらにヘイズ劣化も大きかった。また、低屈折率層を形成しない比較例C-2では平均吸収率が9.1%であり、プラズモン吸収が十分に抑制されていないと推察される。 On the other hand, in Comparative Example C-1 in which silver nanowires were formed, the surface electrical resistance was high and haze degradation was also large. Further, in Comparative Example C-2 in which no low refractive index layer is formed, the average absorptance is 9.1%, and it is assumed that plasmon absorption is not sufficiently suppressed.
 [実施例D-1]
 透明支持材(山中セミコンダクターの白板基板(Φ30mm厚み2mm))を準備し、これを超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。音波洗浄機はアズワン製VS-100IIIを用いた。
[Example D-1]
A transparent support (Yamanaka Semiconductor's white board (Φ30 mm, thickness 2 mm)) was prepared, and this was subjected to ultrasonic cleaning in ultrapure water (Ultrapure water device Synergy UV manufactured by Millipore). As a sonic cleaning machine, VS-100III manufactured by ASONE was used.
 洗浄後の透明支持材に、シンクロン社製のBMC-800T蒸着機により、酸素導入下(2×10-2Pa)、320mA、成膜レート3Å/sで光触媒層(TiO)を電子ビーム(EB)蒸着した。得られた光触媒層の厚みは、33nmであった。 The photocatalyst layer (TiO 2 ) was applied to the transparent support material after cleaning with an electron beam by a BMC-800T vapor deposition machine manufactured by Syncron Co., Ltd. with oxygen introduced (2 × 10 −2 Pa), 320 mA, and a film formation rate of 3 Å / s. EB) Vapor deposition. The resulting photocatalyst layer had a thickness of 33 nm.
 続いて、光触媒層上に、真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、白金パラジウムを0.4秒間成膜し、平均厚み0.2nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。続いて、シンクロン製のBMC-800T蒸着機(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(9nm)を得た。成膜レートは5Å/sとした。 Subsequently, a platinum palladium film was formed on the photocatalyst layer for 0.4 seconds with a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Co., thereby forming a growth nucleus having an average thickness of 0.2 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus. Subsequently, Ag was vapor-deposited by a BMC-800T vapor deposition machine (210A resistance heating) manufactured by SYNCHRON, and a transparent metal film (9 nm) made of Ag was obtained. The film formation rate was 5 Å / s.
 透明金属膜に、波長350nmの光を透明金属膜側から照射した。露光量は8000mJ/mとした。光の照射は露光マスクを介して行った。露光マスクは、ガラス基板上にクロムがパターン状に形成されたものを用いた。また、光の照射パターンは、図48の模式図に示されるパターン(光照射部の線幅0.02mm)とした。その後、透明金属膜を純水に入れて超音波洗浄し、光照射領域の透明金属膜を除去した。 The transparent metal film was irradiated with light having a wavelength of 350 nm from the transparent metal film side. The exposure amount was 8000 mJ / m 2 . The light irradiation was performed through an exposure mask. As the exposure mask, a glass substrate in which chromium was formed in a pattern was used. The light irradiation pattern was the pattern shown in the schematic diagram of FIG. 48 (the line width of the light irradiation portion was 0.02 mm). Thereafter, the transparent metal film was placed in pure water and subjected to ultrasonic cleaning, and the transparent metal film in the light irradiation region was removed.
[評価]
 超音波洗浄後、透明金属膜を除去した領域(光を照射した領域)を介して隣り合う透明金属膜(光を照射しなかった領域)に、テスタを当てて導通を確認したところ、これらの間に導通はなかった。つまり、光を照射した領域の透明金属膜が完全に除去できたことが確認された。また、当該透明金属膜を目視で確認したところ、光を照射したパターン状にラインが確認された。すなわち、本発明の方法によれば、透明電極層に、絶縁性のパターンを形成することができた。
[Evaluation]
After ultrasonic cleaning, when a tester was applied to the adjacent transparent metal film (area where light was not irradiated) through the area where the transparent metal film was removed (area where light was irradiated), the continuity was confirmed. There was no continuity in between. That is, it was confirmed that the transparent metal film in the region irradiated with light was completely removed. Moreover, when the said transparent metal film was confirmed visually, the line was confirmed in the pattern shape which irradiated the light. That is, according to the method of the present invention, an insulating pattern could be formed on the transparent electrode layer.
 [実施例D-2]
 透明金属膜を以下の方法で作製した以外は、実施例D-1と同様に透明導電体を作製した。
 (透明金属膜の形成方法)
 Ag(銀)に2at%のZn(亜鉛)を加えた合金を準備した。前述の光触媒層上に、スパッタ装置(アネルバ社製:L-430S-FHS)から、アルゴン導入下(20sccm)、室温でスパッタ圧0.3Pa、ターゲット側電力125W、成膜レート2.2Å/sで上記合金を高周波(RF)スパッタした。得られた透明金属膜の厚みは9nmであった。
[Example D-2]
A transparent conductor was produced in the same manner as in Example D-1, except that the transparent metal film was produced by the following method.
(Method for forming transparent metal film)
An alloy in which 2 at% Zn (zinc) was added to Ag (silver) was prepared. On the above-mentioned photocatalyst layer, from a sputtering apparatus (manufactured by Anelva: L-430S-FHS), with argon introduced (20 sccm), a sputtering pressure of 0.3 Pa at room temperature, a target-side power of 125 W, a deposition rate of 2.2 Å / s. The alloy was subjected to radio frequency (RF) sputtering. The thickness of the obtained transparent metal film was 9 nm.
 [実施例D-3]
 透明金属膜を以下の方法で作製した以外は、実施例D-1と同様に透明導電体を作製した。
 (透明金属膜の形成方法)
 Ag(銀)に0.5at%のAu(金)を加えた合金を準備した。前述の光触媒層上に、スパッタ装置(アネルバ社製:L-430S-FHS)から、アルゴン導入下(20sccm)、室温でスパッタ圧0.3Pa、ターゲット側電力125W、成膜レート2.2Å/sで上記合金を高周波(RF)スパッタした。得られた透明金属膜の厚みは、9nmであった。
[Example D-3]
A transparent conductor was produced in the same manner as in Example D-1, except that the transparent metal film was produced by the following method.
(Method for forming transparent metal film)
An alloy in which 0.5 at% Au (gold) was added to Ag (silver) was prepared. On the above-mentioned photocatalyst layer, from a sputtering apparatus (manufactured by Anelva: L-430S-FHS), with argon introduced (20 sccm), a sputtering pressure of 0.3 Pa at room temperature, a target-side power of 125 W, a deposition rate of 2.2 Å / s. The alloy was subjected to radio frequency (RF) sputtering. The thickness of the obtained transparent metal film was 9 nm.
 [実施例D-4]
 透明金属膜を以下の方法で作製した以外は、実施例D-1と同様に透明導電体を作製した。
 (透明金属膜の形成方法)
 Ag(銀)に1at%のCu(銅)を加えた合金を準備した。前述の光触媒層上に、スパッタ装置(アネルバ社製:L-430S-FHS)から、アルゴン導入下(20sccm)、室温でスパッタ圧0.3Pa、ターゲット側電力125W、成膜レート2.2Å/sで上記合金を高周波(RF)スパッタした。得られた透明金属膜の厚みは、9nmであった。
[Example D-4]
A transparent conductor was produced in the same manner as in Example D-1, except that the transparent metal film was produced by the following method.
(Method for forming transparent metal film)
An alloy in which 1 at% Cu (copper) was added to Ag (silver) was prepared. On the above-mentioned photocatalyst layer, from a sputtering apparatus (manufactured by Anelva: L-430S-FHS), with argon introduced (20 sccm), a sputtering pressure of 0.3 Pa at room temperature, a target-side power of 125 W, a deposition rate of 2.2 Å / s. The alloy was subjected to radio frequency (RF) sputtering. The thickness of the obtained transparent metal film was 9 nm.
 [実施例D-5]
 透明金属膜を以下の方法で作製した以外は、実施例D-1と同様に透明導電体を作製した。
 (透明金属膜の形成方法)
 Ag(銀)に15at%のAl(アルミニウム)を加えた合金を準備した。前述の光触媒層上に、スパッタ装置(アネルバ社製:L-430S-FHS)から、アルゴン導入下(20sccm)、室温でスパッタ圧0.3Pa、ターゲット側電力125W、成膜レート2.2Å/sで上記合金を高周波(RF)スパッタした。得られた透明金属膜の厚みは、9nmであった。
[Example D-5]
A transparent conductor was produced in the same manner as in Example D-1, except that the transparent metal film was produced by the following method.
(Method for forming transparent metal film)
An alloy in which 15 at% Al (aluminum) was added to Ag (silver) was prepared. On the above-mentioned photocatalyst layer, from a sputtering apparatus (manufactured by Anelva: L-430S-FHS), with argon introduced (20 sccm), a sputtering pressure of 0.3 Pa at room temperature, a target-side power of 125 W, a deposition rate of 2.2 Å / s. The alloy was subjected to radio frequency (RF) sputtering. The thickness of the obtained transparent metal film was 9 nm.
[評価]
 実施例D-2~D-5の透明導電体について、透明金属膜を除去した領域(光を照射した領域)を介して隣り合う透明金属膜(光を照射しなかった領域)の導通を確認した。導通の確認方法は、実施例D-1と同様とした。
 また、以下の方法で、光の平均透過率を測定した。結果を表7に示す。
[Evaluation]
Regarding the transparent conductors of Examples D-2 to D-5, conduction between adjacent transparent metal films (areas where light was not irradiated) was confirmed through areas where the transparent metal film was removed (areas where light was irradiated). did. The method for confirming continuity was the same as in Example D-1.
Moreover, the average light transmittance was measured by the following method. The results are shown in Table 7.
<光の平均透過率の測定方法>
 透明導電体の正面に対して、5°傾けた角度から測定光(波長450nm~800nmの光)を入射させ、日立株式会社製:分光光度計 U4100にて、光の平均透過率を測定した。なお、測定光は、透明金属膜側から入射させた。
<Measurement method of average light transmittance>
Measuring light (light having a wavelength of 450 nm to 800 nm) was incident on the front surface of the transparent conductor at an angle of 5 °, and the average light transmittance was measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd. The measurement light was incident from the transparent metal film side.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例D-2~D-5の透明導電体では、いずれも、透明金属膜を除去した領域(光を照射した領域)を介して隣り合う透明金属膜(光を照射しなかった領域)に導通がなかった。つまり、光を照射した領域の透明金属膜が完全に除去できたことが確認された。また、当該透明金属膜を目視で確認したところ、光を照射したパターン状にラインが確認された。
 また、表7に示されるように、Ag合金における、Agの比率が90at%以上であると、波長450nm~800nmの光の平均透過率が60%を上回り、透明導電体の透明性が良好であった。
In the transparent conductors of Examples D-2 to D-5, any transparent metal film (region not irradiated with light) passed through the region from which the transparent metal film was removed (region irradiated with light). There was no continuity. That is, it was confirmed that the transparent metal film in the region irradiated with light was completely removed. Moreover, when the said transparent metal film was confirmed visually, the line was confirmed in the pattern shape which irradiated the light.
Further, as shown in Table 7, when the Ag ratio in the Ag alloy is 90 at% or more, the average transmittance of light having a wavelength of 450 nm to 800 nm exceeds 60%, and the transparency of the transparent conductor is good. there were.
 [実施例D-6]
 透明金属膜の厚みを4nmとした以外は、実施例D-1と同様に透明導電体を作製した。
[Example D-6]
A transparent conductor was produced in the same manner as in Example D-1, except that the thickness of the transparent metal film was 4 nm.
 [実施例D-7]
 透明金属膜の厚みを5nmとした以外は、実施例D-1と同様に透明導電体を作製した。
[Example D-7]
A transparent conductor was produced in the same manner as in Example D-1, except that the thickness of the transparent metal film was 5 nm.
 [実施例D-8]
 透明金属膜の厚みを15nmとした以外は、実施例D-1と同様に透明導電体を作製した。
[Example D-8]
A transparent conductor was produced in the same manner as in Example D-1, except that the thickness of the transparent metal film was 15 nm.
 [実施例D-9]
 透明金属膜の厚みを16nmとした以外は、実施例D-1と同様に透明導電体を作製した。
[Example D-9]
A transparent conductor was produced in the same manner as in Example D-1, except that the thickness of the transparent metal film was 16 nm.
[評価]
 実施例D-6~D-9の透明導電体について、透明金属膜を除去した領域(光を照射した領域)を介して隣り合う透明金属膜(光を照射しなかった領域)の導通を確認した。導通の確認方法は、実施例D-1と同様とした。
 また、透明導電体の表面電気抵抗を測定した。表面電気抵抗は、三菱化学アナリテック製のロレスタEP MCP-T360にて測定した。
 さらに、実施例D-2~D-5と同様の方法で、光の平均透過率を測定した。結果を表8に示す。
[Evaluation]
For the transparent conductors of Examples D-6 to D-9, conduction between adjacent transparent metal films (areas not irradiated with light) was confirmed through the area where the transparent metal film was removed (areas irradiated with light). did. The method for confirming continuity was the same as in Example D-1.
Moreover, the surface electrical resistance of the transparent conductor was measured. The surface electrical resistance was measured with a Loresta EP MCP-T360 manufactured by Mitsubishi Chemical Analytech.
Further, the average light transmittance was measured in the same manner as in Examples D-2 to D-5. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例D-6~D-9の透明導電体では、いずれも、透明金属膜を除去した領域(光を照射した領域)を介して隣り合う透明金属膜(光を照射しなかった領域)に導通がなかった。つまり、光を照射した領域の透明金属膜が完全に除去できたことが確認された。また、当該透明金属膜を目視で確認したところ、光を照射したパターン状にラインが確認された。 In each of the transparent conductors of Examples D-6 to D-9, any transparent metal film (region not irradiated with light) is adjacent to the transparent metal film through the region where the transparent metal film is removed (region irradiated with light). There was no continuity. That is, it was confirmed that the transparent metal film in the region irradiated with light was completely removed. Moreover, when the said transparent metal film was confirmed visually, the line was confirmed in the pattern shape which irradiated the light.
 また、表8に示されるように、透明金属膜(Ag)の厚みが、5nm以上であると、表面電気抵抗が30Ω/□以下となり、十分な導通が得られた。また、透明金属膜(Ag)の厚みが15nm以下であると、波長450nm~800nmの光の平均透過率が50%を超え、透明導電体の透明性が良好になった。透明金属膜の厚みが15nmを超える場合には、Ag本来の反射が生じ、平均透過率が低下したと推察される。図49に実施例D-6(透明金属膜の厚みを4nmとしたとき)の透明導電体の波長400nm~800nmの光の透過率、吸収率、及び透過率を示す。光の吸収率は、透過率と同様に分光光度計で測定した。光の吸収率は、100-(透過率+反射率)で求めた。また、図50に実施例D-7(透明金属膜を5nmとしたとき)の、透明導電体の波長400nm~800nmの光の透過率、吸収率、及び透過率を示す。 As shown in Table 8, when the thickness of the transparent metal film (Ag) was 5 nm or more, the surface electrical resistance was 30 Ω / □ or less, and sufficient conduction was obtained. Further, when the thickness of the transparent metal film (Ag) was 15 nm or less, the average transmittance of light having a wavelength of 450 nm to 800 nm exceeded 50%, and the transparency of the transparent conductor was improved. When the thickness of the transparent metal film exceeds 15 nm, it is presumed that Ag inherent reflection occurred and the average transmittance was lowered. FIG. 49 shows the transmittance, absorptivity, and transmittance of light with a wavelength of 400 nm to 800 nm of the transparent conductor of Example D-6 (when the thickness of the transparent metal film is 4 nm). The light absorptivity was measured with a spectrophotometer in the same manner as the transmittance. The light absorptance was determined by 100− (transmittance + reflectance). FIG. 50 shows the transmittance, absorption rate, and transmittance of light with a wavelength of 400 nm to 800 nm of the transparent conductor in Example D-7 (when the transparent metal film is 5 nm).
 [実施例D-10]
 実施例D-1と同様に、透明支持材、光触媒層、及び透明金属膜を作製し、透明金属膜に光をパターン状に照射した。その後、透明金属膜を実施例D-1と同様に超音波洗浄した。さらに、透明金属膜上に、下記の高屈折率層を作製した。
[Example D-10]
As in Example D-1, a transparent support material, a photocatalyst layer, and a transparent metal film were prepared, and the transparent metal film was irradiated with light in a pattern. Thereafter, the transparent metal film was subjected to ultrasonic cleaning in the same manner as in Example D-1. Furthermore, the following high refractive index layer was produced on the transparent metal film.
(高屈折率層)
 大阪真空社製のマグネトロンスパッタで、ITOをスパッタ蒸着し、ITOからなる高屈折率層(36nm)を形成した。成膜レートは10Å/sとした。
(High refractive index layer)
ITO was sputter-deposited by magnetron sputtering manufactured by Osaka Vacuum Co., Ltd. to form a high refractive index layer (36 nm) made of ITO. The film formation rate was 10 Å / s.
 実施例D-1と同様に、透明金属膜を除去した領域(光を照射した領域)を介して隣り合う透明金属膜(光を照射しなかった領域)の導通を高屈折率層成膜後に確認したところ、透明金属膜を除去した領域(光を照射した領域)を介して隣り合う透明金属膜(光を照射しなかった領域)に導通がなかった。
 また、実施例D-2~D-5と同様に、透明導電体の波長450nm~800nmの平均透過率を測定したところ、平均透過率は85%であり、透明性が非常に高かった。
Similar to Example D-1, the conduction between adjacent transparent metal films (areas not irradiated with light) through the areas where the transparent metal film was removed (areas irradiated with light) was formed after the formation of the high refractive index layer. As a result of confirmation, there was no conduction between adjacent transparent metal films (areas not irradiated with light) through the areas where the transparent metal film was removed (areas irradiated with light).
Further, as in Examples D-2 to D-5, when the average transmittance of the transparent conductor at a wavelength of 450 nm to 800 nm was measured, the average transmittance was 85% and the transparency was very high.
 実施例E-1~E-9、及び比較例E-1~E-3における、透明金属膜の光の平均吸収率の測定は、以下のように行った。、なお、膜の厚みの測定、及び表面電気抵抗の測定方法は、実施例A-1と同様である。 In Examples E-1 to E-9 and Comparative Examples E-1 to E-3, the average light absorptance of the transparent metal film was measured as follows. The method for measuring the thickness of the film and the method for measuring the surface electrical resistance are the same as in Example A-1.
<透明金属膜の光の吸収率の測定方法>
 透明支持材と、その表面に成膜された透明金属膜とを含む透明導電体の正面に対して、5°傾けた角度から測定光(例えば、波長450nm~800nmの光)を入射させ、日立株式会社製:分光光度計 U4100にて、光の透過率及び反射率を測定した。そして、吸収率は、100-(透過率+反射率)の計算式より算出した。なお、測定光は、透明金属膜側から入射させた。透明導電体の吸収率から、別途測定した透明支持材の吸収率(リファレンスデータ)を差し引き、透明金属膜の吸収率を算出した。
<Measurement method of light absorptance of transparent metal film>
Measured light (for example, light having a wavelength of 450 nm to 800 nm) is incident on the front surface of a transparent conductor including a transparent support material and a transparent metal film formed on the surface of the transparent conductor from an angle of 5 °. Manufactured by Co., Ltd .: Light transmittance and reflectance were measured with a spectrophotometer U4100. The absorptance was calculated from a formula of 100− (transmittance + reflectance). The measurement light was incident from the transparent metal film side. The absorption rate of the transparent metal film was calculated by subtracting the absorption rate (reference data) of the transparent support material measured separately from the absorption rate of the transparent conductor.
 [実施例E-1]
 白板からなる透明支持材、及びAgターゲットを、大阪真空社製のスパッタ装置の真空チャンバー内に配置した。そして、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力(RF)250W、成膜レート1.6nm/sでAgをRFスパッタした(工程A)。一方、図59のタイミングチャートに示されるように、Ag膜の成膜開始から成膜終了までの間、透明支持材側にも電力を印加し(基板側電力(RF)35W)、透明支持材上に成膜された透明金属膜をエッチングレート0.1nm/sで逆スパッタした(工程B)。これにより、実際の成膜レートは、1.5nm/sとなった。なお、ターゲット-基板間距離は、80mmとした。得られた透明金属膜のSEM(走査型電子顕微鏡)画像を図53に示す。得られた透明金属膜(Ag膜)の膜厚は6nmであった。
[Example E-1]
A transparent support material made of a white plate and an Ag target were placed in a vacuum chamber of a sputtering apparatus manufactured by Osaka Vacuum. Then, Ag was RF-sputtered at Ar 20 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power (RF) 250 W, and deposition rate 1.6 nm / s (step A). On the other hand, as shown in the timing chart of FIG. 59, during the period from the start of film formation to the end of film formation, power is also applied to the transparent support material side (substrate-side power (RF) 35 W). The transparent metal film formed above was reverse sputtered at an etching rate of 0.1 nm / s (step B). As a result, the actual film formation rate was 1.5 nm / s. The target-substrate distance was 80 mm. An SEM (scanning electron microscope) image of the obtained transparent metal film is shown in FIG. The film thickness of the obtained transparent metal film (Ag film) was 6 nm.
 [実施例E-2]
 基板側電力(RF)を50Wとし、成膜レートを表9に示す値とした以外は、実施例E-1と同様に透明導電体を得た。得られた透明金属膜のSEM(走査型電子顕微鏡)画像を図54に示す。得られた透明金属膜(Ag膜)の膜厚は6nmであった。
[Example E-2]
A transparent conductor was obtained in the same manner as in Example E-1, except that the substrate-side power (RF) was 50 W and the film formation rate was the value shown in Table 9. An SEM (scanning electron microscope) image of the obtained transparent metal film is shown in FIG. The film thickness of the obtained transparent metal film (Ag film) was 6 nm.
 [実施例E-3]
 白板からなる透明支持材、及びAgターゲットを、アネルバ社製のスパッタ装置(L-430S-FHS)の真空チャンバー内に配置した。そして、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力(DC)125W、成膜レート0.57m/sでAgをDCスパッタした(工程A)。一方、Ag膜の成膜開始から成膜終了までの間、透明支持材側にも電力を印加し(基板側電力(RF)15W)、透明支持材上に成膜された透明金属膜をエッチングレート0.01nm/sで逆スパッタした(工程B)。これにより、実際の成膜レートは、0.56nm/sとなった。なお、ターゲット-基板間距離は、86mmとした。得られた透明金属膜のSEM(走査型電子顕微鏡)画像を図55に示す。また、得られた透明金属膜(Ag膜)の膜厚は6nmであった。
[Example E-3]
A transparent support material made of a white plate and an Ag target were placed in a vacuum chamber of a sputtering apparatus (L-430S-FHS) manufactured by Anelva. Then, Ag was DC-sputtered at Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power (DC) 125 W, and film formation rate 0.57 m / s (step A). On the other hand, during the period from the start of film formation to the end of film formation, power is also applied to the transparent support material side (substrate-side power (RF) 15 W), and the transparent metal film formed on the transparent support material is etched. Reverse sputtering was performed at a rate of 0.01 nm / s (step B). As a result, the actual film formation rate was 0.56 nm / s. The target-substrate distance was 86 mm. An SEM (scanning electron microscope) image of the obtained transparent metal film is shown in FIG. Moreover, the film thickness of the obtained transparent metal film (Ag film) was 6 nm.
 [実施例E-4]
 基板側電力(RF)を25Wとし、成膜レートを表9に示す値とした以外は、実施例E-3と同様に透明導電体を得た。得られた透明金属膜のSEM(走査型電子顕微鏡)画像を図56に示す。また、得られた透明金属膜(Ag膜)の膜厚は6nmであった。
[Example E-4]
A transparent conductor was obtained in the same manner as in Example E-3 except that the substrate-side power (RF) was 25 W and the film formation rate was the value shown in Table 9. FIG. 56 shows an SEM (scanning electron microscope) image of the obtained transparent metal film. Moreover, the film thickness of the obtained transparent metal film (Ag film) was 6 nm.
 [実施例E-5]
 東洋紡製PET(コスモシャインA4300 厚み50μm)上に、Nbからなる層(27.7nm)が成膜された透明支持材を準備した。当該透明支持材を用いた以外は、実施例E-2と同様に透明導電体を得た。得られた透明金属膜(Ag膜)の膜厚は6nmであった。
 Nbからなる層は、アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタして得た。このとき、ターゲット-基板間距離は86mmとした。
[Example E-5]
A transparent support material in which a layer (27.7 nm) made of Nb 2 O 5 was formed on Toyobo PET (Cosmo Shine A4300, thickness 50 μm) was prepared. A transparent conductor was obtained in the same manner as in Example E-2 except that the transparent support material was used. The film thickness of the obtained transparent metal film (Ag film) was 6 nm.
The layer made of Nb 2 O 5 uses L-430S-FHS manufactured by Anelva, Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 300 W, and deposition rate 0.74 Å / s. Nb 2 O 5 was obtained by RF sputtering. At this time, the distance between the target and the substrate was 86 mm.
 [実施例E-6]
 白板からなる透明支持材、及びAgターゲットを、大阪真空社製のスパッタ装置の真空チャンバー内に配置した。そして、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力(RF)250W、成膜レート1.6nm/sでAgをRFスパッタした(工程A)。図60のタイミングチャートに示されるように、Ag膜の成膜開始から2.5秒経過後(Ag膜を4nm成膜した後)、透明支持材側にも電力を印加し(基板側電力(RF)50W)、透明支持材上に成膜された透明金属膜を逆スパッタした(工程B)。なお、ターゲット-基板間距離は、80mmとした。得られた透明金属膜(Ag膜)の膜厚は7nmであった。
[Example E-6]
A transparent support material made of a white plate and an Ag target were placed in a vacuum chamber of a sputtering apparatus manufactured by Osaka Vacuum. Then, Ag was RF-sputtered at Ar 20 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power (RF) 250 W, and deposition rate 1.6 nm / s (step A). As shown in the timing chart of FIG. 60, after 2.5 seconds have elapsed from the start of film formation of the Ag film (after the Ag film is formed to 4 nm), power is also applied to the transparent support material side (substrate side power ( RF) 50 W), a transparent metal film formed on the transparent support material was reverse sputtered (step B). The target-substrate distance was 80 mm. The film thickness of the obtained transparent metal film (Ag film) was 7 nm.
 [比較例E-1]
 前述の非特許文献1を参考に、東洋紡製PET(コスモシャインA4300 厚み50μm)上に、実施例E-6と同様にNbからなる層(27.7nm)が成膜された透明支持材を準備した。
 当該透明支持材を、日本真空技術株式会社の小型スパッタ装置(BC4279)に配置した。そして、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力(DC)200W、成膜レート6.7nm/sでAgをDCスパッタした。
[Comparative Example E-1]
Referring to Non-Patent Document 1 described above, a transparent support in which a layer (27.7 nm) made of Nb 2 O 5 was formed on PET made by Toyobo (Cosmo Shine A4300 thickness 50 μm) as in Example E-6 The material was prepared.
The transparent support material was placed in a small sputtering apparatus (BC4279) manufactured by Nippon Vacuum Technology Co., Ltd. Then, Ag was DC sputtered at Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power (DC) 200 W, and deposition rate 6.7 nm / s.
 [比較例E-2]
 透明金属膜の逆スパッタ(工程B)を行わなかった以外は、実施例E-1と同様に透明導電体を得た。得られた透明金属膜のSEM(走査型電子顕微鏡)画像を図57に示す。得られた透明金属膜(Ag膜)の膜厚は6nmであった。
 [比較例E-3]
 透明金属膜の逆スパッタ(工程B)を行わなかった以外は、実施例E-3と同様に透明導電体を得た。得られた透明金属膜のSEM(走査型電子顕微鏡)画像を図58に示す。得られた透明金属膜(Ag膜)の膜厚は6nmであった。
Figure JPOXMLDOC01-appb-T000009
[Comparative Example E-2]
A transparent conductor was obtained in the same manner as in Example E-1, except that the reverse sputtering (step B) of the transparent metal film was not performed. An SEM (scanning electron microscope) image of the obtained transparent metal film is shown in FIG. The film thickness of the obtained transparent metal film (Ag film) was 6 nm.
[Comparative Example E-3]
A transparent conductor was obtained in the same manner as in Example E-3, except that the reverse sputtering (step B) of the transparent metal film was not performed. An SEM (scanning electron microscope) image of the obtained transparent metal film is shown in FIG. The film thickness of the obtained transparent metal film (Ag film) was 6 nm.
Figure JPOXMLDOC01-appb-T000009
 表9に示されるように、透明金属膜の逆スパッタを行わなかった比較例E-2と、透明金属膜の成膜時に逆スパッタを行った実施例E-1、E-2及びE-6とを比較すると、透明金属膜の逆スパッタを行ったほうが、透明金属膜の平均吸収率が低く、表面電気抵抗も低かった。同様に、透明金属膜の逆スパッタを行わなかった比較例E-3と、透明金属膜の成膜時に逆スパッタを行った実施例E-3及びE-4とを比較すると、透明金属膜の逆スパッタを行ったほうが、透明金属膜の平均吸収率が低く、表面電気抵抗も低かった。透明金属膜の成膜時に逆スパッタすることで、透明支持材上に成長核が形成され、薄くても平滑な膜が得られたと推察される。 As shown in Table 9, Comparative Example E-2 in which reverse sputtering of the transparent metal film was not performed, and Examples E-1, E-2, and E-6 in which reverse sputtering was performed when the transparent metal film was formed When the reverse sputtering of the transparent metal film was performed, the average absorption rate of the transparent metal film was lower and the surface electrical resistance was lower. Similarly, when Comparative Example E-3 in which reverse sputtering of the transparent metal film was not performed and Examples E-3 and E-4 in which reverse sputtering was performed during film formation of the transparent metal film were compared, When reverse sputtering was performed, the average absorption rate of the transparent metal film was lower and the surface electrical resistance was lower. It is inferred that by performing reverse sputtering at the time of forming the transparent metal film, growth nuclei were formed on the transparent support material, and a thin but smooth film was obtained.
 さらに、透明金属膜の逆スパッタを行わなかった比較例E-1と、透明金属膜の逆スパッタを行った実施例E-5とを比較すると、実施例E-5のほうが透明金属膜の平均吸収率が低かった。また、実施例E-5のほうが比較例E-1より透明金属膜の厚みが薄いにもかかわらず、これらの表面電気抵抗値が同等であった。実施例E-5の透明金属膜は平滑性が高く、薄膜でも十分な導通が得られたと推察される。 Further, when Comparative Example E-1 in which the transparent metal film was not reverse-sputtered and Example E-5 in which the transparent metal film was reverse-sputtered were compared, Example E-5 had a higher average of transparent metal films. Absorption rate was low. In addition, although the thickness of the transparent metal film was smaller in Example E-5 than in Comparative Example E-1, these surface electric resistance values were equivalent. The transparent metal film of Example E-5 has high smoothness, and it is presumed that sufficient conduction was obtained even with a thin film.
 一方、透明金属膜が3nm以下であるときに逆スパッタした実施例E-2と、透明金属膜が4nmになってから逆スパッタした実施例E-6とを比較すると、実施例E-2のほうが、透明金属膜の平均吸収率が低く、表面電気抵抗も小さかった。透明金属膜の厚みが薄い状態で逆スパッタすると、透明支持材上に非常に細かい成長核が形成され;当該成長核を起点に透明金属膜が成長すると、平滑性の高い膜が得られると推察される。 On the other hand, when Example E-2 which was reverse sputtered when the transparent metal film was 3 nm or less was compared with Example E-6 which was reverse sputtered after the transparent metal film became 4 nm, The average absorption rate of the transparent metal film was lower, and the surface electrical resistance was also lower. When reverse sputtering is performed with the transparent metal film being thin, very fine growth nuclei are formed on the transparent support; it is assumed that when the transparent metal film grows from the growth nuclei, a highly smooth film can be obtained. Is done.
 [実施例E-7]
 白板からなる透明支持材、及びAgターゲットを、大阪真空社製のスパッタ装置の真空チャンバー内に配置した。そして、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力(RF)250W、成膜レート1.6nm/sで0.23秒間AgをRFスパッタして、厚み0.37nmの透明金属膜を成膜した(工程A)。このとき、ターゲット-基板間距離は、80mmとした。
 続いて、透明支持材側に電力(基板側電力(RF)50W)を0.23秒間印加して、透明支持材上に成膜された透明金属膜の厚みが0.30nmとなるまで、逆スパッタした (工程B)。
[Example E-7]
A transparent support material made of a white plate and an Ag target were placed in a vacuum chamber of a sputtering apparatus manufactured by Osaka Vacuum. A transparent metal film having a thickness of 0.37 nm was obtained by RF sputtering with Ag for 0.23 seconds at an Ar of 20 sccm, a sputtering pressure of 0.5 Pa, a room temperature, a target-side power (RF) of 250 W, and a deposition rate of 1.6 nm / s. Was formed (step A). At this time, the target-substrate distance was 80 mm.
Subsequently, power (substrate-side power (RF) 50 W) is applied to the transparent support material side for 0.23 seconds, and the reverse is performed until the thickness of the transparent metal film formed on the transparent support material becomes 0.30 nm. Sputtered (process B).
 図61のタイミングチャートに示されるように、上記工程A及び工程Bを1サイクルとして、20サイクル行った。得られた透明金属膜の総厚みは6nmであった。 As shown in the timing chart of FIG. 61, the above-mentioned process A and process B were performed as one cycle, and 20 cycles were performed. The total thickness of the obtained transparent metal film was 6 nm.
 [実施例E-8]
 白板からなる透明支持材、及びAgターゲットを、大阪真空社製のスパッタ装置の真空チャンバー内に配置した。そして、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力(RF)250W、成膜レート1.6nm/sで0.46秒間AgをRFスパッタして、厚み0.74nmの透明金属膜を成膜した(工程A)。このとき、ターゲット-基板間距離は、80mmとした。
 続いて、透明支持材側に電力(基板側電力(RF)50W)を0.46秒間印加して、透明支持材上に成膜された透明金属膜の厚みが0.60nmとなるまで、逆スパッタした(工程B)。
[Example E-8]
A transparent support material made of a white plate and an Ag target were placed in a vacuum chamber of a sputtering apparatus manufactured by Osaka Vacuum. A transparent metal film having a thickness of 0.74 nm was obtained by RF sputtering with Ag for 0.46 seconds at Ar 20 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power (RF) 250 W, and film formation rate 1.6 nm / s. Was formed (step A). At this time, the target-substrate distance was 80 mm.
Subsequently, power (substrate-side power (RF) 50 W) is applied to the transparent support material side for 0.46 seconds until the thickness of the transparent metal film formed on the transparent support material reaches 0.60 nm. Sputtered (Step B).
 上記工程A及び工程Bを1サイクルとして、10サイクル行った。得られた透明金属膜の総厚みは6nmであった。 The above-mentioned process A and process B were made into 1 cycle, and 10 cycles were performed. The total thickness of the obtained transparent metal film was 6 nm.
 [実施例E-9]
 白板からなる透明支持材、及びAgターゲットを、大阪真空社製のスパッタ装置の真空チャンバー内に配置した。そして、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力(RF)250W、成膜レート1.6nm/sで0.23秒間AgをRFスパッタして、厚み0.37nmの透明金属膜を成膜した(工程A)。このとき、ターゲット-基板間距離は、80mmとした。
 続いて、透明支持材側に電力(基板側電力(RF)35W)を0.1秒間印加して、透明支持材上に成膜された透明金属膜の厚みが0.36nmとなるまで、逆スパッタした(工程B)。
[Example E-9]
A transparent support material made of a white plate and an Ag target were placed in a vacuum chamber of a sputtering apparatus manufactured by Osaka Vacuum. A transparent metal film having a thickness of 0.37 nm was obtained by RF sputtering with Ag for 0.23 seconds at an Ar of 20 sccm, a sputtering pressure of 0.5 Pa, a room temperature, a target-side power (RF) of 250 W, and a deposition rate of 1.6 nm / s. Was formed (step A). At this time, the target-substrate distance was 80 mm.
Subsequently, power (substrate-side power (RF) 35 W) is applied to the transparent support material side for 0.1 second, and the reverse is performed until the thickness of the transparent metal film formed on the transparent support material becomes 0.36 nm. Sputtered (Step B).
 上記工程A及び工程Bを1サイクルとして、16サイクル行った。得られた透明金属膜の総厚みは6nmであった。
Figure JPOXMLDOC01-appb-T000010
The above-mentioned process A and process B were made into 1 cycle, and 16 cycles were performed. The total thickness of the obtained transparent metal film was 6 nm.
Figure JPOXMLDOC01-appb-T000010
 表10に示されるように、透明金属膜の成膜工程A及び逆スパッタ工程Bを交互に行った実施例E-7~E-9では、透明金属膜の厚みが6nm程度であるにもかかわらず、いずれも透明金属膜の平均吸収率が8.4%以下であり、吸収率の最大値も9.1%以下であった。特に、1回目の工程B終了後の透明金属膜の厚みYが、1回目の工程Aで成膜した透明金属膜の厚みXの95%以下である実施例E-7及びE-8では、表面電気抵抗値が16Ω/□と十分に低かった。これらの実施例では特に、逆スパッタによって、透明支持材上に非常に細かい成長核が形成され;当該成長核を起点に透明金属膜が成長したため、平滑性の高い膜が得られたと推察される。 As shown in Table 10, in Examples E-7 to E-9 in which the transparent metal film forming step A and the reverse sputtering step B were performed alternately, the thickness of the transparent metal film was about 6 nm. In any case, the average absorption rate of the transparent metal film was 8.4% or less, and the maximum value of the absorption rate was 9.1% or less. In particular, in Examples E-7 and E-8 in which the thickness Y of the transparent metal film after completion of the first step B is 95% or less of the thickness X of the transparent metal film formed in the first step A, The surface electric resistance value was sufficiently low at 16Ω / □. In these examples, it is speculated that very fine growth nuclei were formed on the transparent support material by reverse sputtering; a highly smooth film was obtained because the transparent metal film grew from the growth nuclei. .
 本発明で得られる透明導電体は、表面電気抵抗値が低く、かつ透明性にも優れる。したがって、各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスに好ましく用いられる。 The transparent conductor obtained by the present invention has a low surface electric resistance value and excellent transparency. Therefore, it is preferably used for various types of optoelectronic devices such as various types of displays, touch panels, mobile phones, electronic paper, various types of solar cells, and various types of electroluminescent light control elements.
 1、11、21、31、41 透明支持材
 2、12、22 第一アドミッタンス調整層
 3、13、23、33 透明金属膜
 4、14、24 第二アドミッタンス調整層
 15 下地層
 26、27 低屈折率層
 38 光触媒層
 100、200、300、400 透明導電体
 600 スパッタ装置
 601 真空チャンバー
 602 基板ホルダー
 603 ターゲット材料
 604 ターゲットホルダー
 605 基板側電源
 606 ターゲット側電源
 607 ガス配管
 608 プラズマ
1, 11, 21, 31, 41 Transparent support material 2, 12, 22 First admittance adjustment layer 3, 13, 23, 33 Transparent metal film 4, 14, 24 Second admittance adjustment layer 15 Underlayer 26, 27 Low refraction Rate layer 38 Photocatalyst layer 100, 200, 300, 400 Transparent conductor 600 Sputtering apparatus 601 Vacuum chamber 602 Substrate holder 603 Target material 604 Target holder 605 Substrate side power source 606 Target side power source 607 Gas piping 608 Plasma

Claims (3)

  1.  透明支持材と、第一アドミッタンス調整層と、透明金属膜と、第二アドミッタンス調整層とがこの順に積層された透明導電体であって、
     前記透明金属膜は、厚みが15nm以下であり、
     前記第一アドミッタンス調整層及び前記第二アドミッタンス調整層が、誘電性材料または酸化物半導体材料を含み、
     前記透明導電体は波長400nm~800nmの光の平均吸収率が15%以下、かつ吸収率の最大値が25%以下であり、
     前記透明金属膜の前記第一アドミッタンス調整層側の界面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の界面の波長570nmの光学アドミッタンスをY2=x+iyで表した場合に、xまたはxの少なくとも一方が1.6以上である、透明導電体。
    A transparent conductor in which a transparent support, a first admittance adjusting layer, a transparent metal film, and a second admittance adjusting layer are laminated in this order,
    The transparent metal film has a thickness of 15 nm or less,
    The first admittance adjusting layer and the second admittance adjusting layer include a dielectric material or an oxide semiconductor material,
    The transparent conductor has an average absorptance of light having a wavelength of 400 nm to 800 nm of 15% or less, and a maximum value of the absorptance of 25% or less,
    The first admittance adjusting layer side of the optical admittance Y1 = x 1 + iy 1 wavelength 570nm of the interface of the transparent metal film, the optical admittance of the second admittance adjusting layer side of the wavelength 570nm of the interface of the transparent metal film Y2 = when expressed in x 2 + iy 2, at least one of x or x 2 is 1.6 or more, the transparent conductor.
  2.  透明支持材と、下地層と、第一アドミッタンス調整層と、透明金属膜と、第二アドミッタンス調整層とがこの順に積層された透明導電体であって、
     前記下地層の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY0=x+iyで表した場合に、xが透明支持材の波長570nmの光の屈折率より小さい値であり、
     前記第一アドミッタンス調整層及び前記第二アドミッタンス調整層は前記透明支持材の波長570nmの光の屈折率より高い屈折率を有する誘電性材料または酸化物半導体材料を含み、
     前記透明金属膜は厚みが15nm以下であり、
     前記透明金属膜の前記第一アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記透明金属膜の前記第二アドミッタンス調整層側の表面の波長570nmの光学アドミッタンスをY2=x+iyで表した場合に、xまたはxの少なくとも一方が1.8以上であり、
     前記透明導電体の波長400nm~800nmの光の平均吸収率が10%以下、かつ波長450nm~800nmの光の吸収率の最大値が15%以下である、透明導電体。
    A transparent conductor in which a transparent support material, an underlayer, a first admittance adjustment layer, a transparent metal film, and a second admittance adjustment layer are laminated in this order,
    The optical admittance of wavelength 570nm of the first admittance adjusting layer side of the surface of the underlying layer when expressed in Y0 = x 0 + iy 0, x 0 is the refractive index value smaller than the light wavelength 570nm transparent support Yes,
    The first admittance adjusting layer and the second admittance adjusting layer include a dielectric material or an oxide semiconductor material having a refractive index higher than a refractive index of light having a wavelength of 570 nm of the transparent support material,
    The transparent metal film has a thickness of 15 nm or less,
    The optical admittance Y1 = x 1 + iy 1 wavelength 570nm of the first admittance adjusting layer side surface of the transparent metal film, the optical admittance of wavelength 570nm of the second admittance adjusting layer side surface of the transparent metal film Y2 = when expressed in x 2 + iy 2, it is at least one of x 1 and x 2 is 1.8 or more,
    A transparent conductor, wherein an average absorptance of light having a wavelength of 400 nm to 800 nm of the transparent conductor is 10% or less and a maximum value of absorptance of light having a wavelength of 450 nm to 800 nm is 15% or less.
  3.  透明支持材と、第一アドミッタンス調整層と、透明金属膜と、第二アドミッタンス調整層とが、この順に積層された透明導電体であって、
     前記第一アドミッタンス調整層及び前記第二アドミッタンス調整層は前記透明支持材の波長570nmの光の屈折率より高い屈折率を有する誘電性材料または酸化物半導体材料を含み、
     前記透明金属膜の少なくとも一方の面に、前記第一アドミッタンス調整層及び前記第二アドミッタンス調整層に含まれる前記誘電性材料または酸化物半導体材料より、波長570nmの光の屈折率が低い材料を含み、かつ厚みが0.1~15nmである、低屈折率層をさらに有する透明導電体。
     
     
    A transparent support, a first admittance adjustment layer, a transparent metal film, and a second admittance adjustment layer are laminated in this order,
    The first admittance adjusting layer and the second admittance adjusting layer include a dielectric material or an oxide semiconductor material having a refractive index higher than a refractive index of light having a wavelength of 570 nm of the transparent support material,
    At least one surface of the transparent metal film includes a material having a lower refractive index of light having a wavelength of 570 nm than the dielectric material or the oxide semiconductor material included in the first admittance adjustment layer and the second admittance adjustment layer. And a transparent conductor further having a low refractive index layer having a thickness of 0.1 to 15 nm.

PCT/JP2013/006276 2012-10-24 2013-10-23 Transparent conductor WO2014064939A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2012234818 2012-10-24
JP2012-234818 2012-10-24
JP2012258572 2012-11-27
JP2012-258572 2012-11-27
JP2013002703 2013-01-10
JP2013-002703 2013-01-10
JP2013-015314 2013-01-30
JP2013015314 2013-01-30
JP2013-027662 2013-02-15
JP2013027662 2013-02-15

Publications (1)

Publication Number Publication Date
WO2014064939A1 true WO2014064939A1 (en) 2014-05-01

Family

ID=50544323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006276 WO2014064939A1 (en) 2012-10-24 2013-10-23 Transparent conductor

Country Status (1)

Country Link
WO (1) WO2014064939A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148512A1 (en) * 2013-03-19 2014-09-25 コニカミノルタ株式会社 Transparent conductor and electronic device
WO2014167835A1 (en) * 2013-04-08 2014-10-16 コニカミノルタ株式会社 Translucent conductor
WO2014171149A1 (en) * 2013-04-18 2014-10-23 コニカミノルタ株式会社 Transparent conductive material and method for manufacturing same
JP2016018288A (en) * 2014-07-07 2016-02-01 コニカミノルタ株式会社 Transparent conductor and touch panel
JP2017068219A (en) * 2015-10-02 2017-04-06 株式会社コベルコ科研 Electrode structure
CN108646321A (en) * 2018-05-09 2018-10-12 中国科学院长春光学精密机械与物理研究所 A kind of two-dimensional material normal incidence Fresnel optical characterisation methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264287A (en) * 1997-03-25 1998-10-06 Mitsui Chem Inc Transparent laminate, dimmer using it and filer for display
JP2001179868A (en) * 1999-12-27 2001-07-03 Nitto Denko Corp Method for manufacturing transparent laminate
JP2006184849A (en) * 2004-11-30 2006-07-13 Toppan Printing Co Ltd Antireflection stack, optically functional filter, optical display device and optical article
JP2007299672A (en) * 2006-05-01 2007-11-15 Asahi Glass Co Ltd Conductive laminated body, and protective plate for plasma display
JP2011138135A (en) * 2010-01-04 2011-07-14 Samsung Corning Precision Materials Co Ltd Transparent conductive film and display filter including the same
JP2012185254A (en) * 2011-03-04 2012-09-27 Sony Corp Optical element, optical module and imaging apparatus, and optical multilayer film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264287A (en) * 1997-03-25 1998-10-06 Mitsui Chem Inc Transparent laminate, dimmer using it and filer for display
JP2001179868A (en) * 1999-12-27 2001-07-03 Nitto Denko Corp Method for manufacturing transparent laminate
JP2006184849A (en) * 2004-11-30 2006-07-13 Toppan Printing Co Ltd Antireflection stack, optically functional filter, optical display device and optical article
JP2007299672A (en) * 2006-05-01 2007-11-15 Asahi Glass Co Ltd Conductive laminated body, and protective plate for plasma display
JP2011138135A (en) * 2010-01-04 2011-07-14 Samsung Corning Precision Materials Co Ltd Transparent conductive film and display filter including the same
JP2012185254A (en) * 2011-03-04 2012-09-27 Sony Corp Optical element, optical module and imaging apparatus, and optical multilayer film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148512A1 (en) * 2013-03-19 2014-09-25 コニカミノルタ株式会社 Transparent conductor and electronic device
US9899624B2 (en) 2013-03-19 2018-02-20 Konica Minolta, Inc. Transparent conductor and electronic device
WO2014167835A1 (en) * 2013-04-08 2014-10-16 コニカミノルタ株式会社 Translucent conductor
JPWO2014167835A1 (en) * 2013-04-08 2017-02-16 コニカミノルタ株式会社 Transparent conductor
WO2014171149A1 (en) * 2013-04-18 2014-10-23 コニカミノルタ株式会社 Transparent conductive material and method for manufacturing same
JPWO2014171149A1 (en) * 2013-04-18 2017-02-16 コニカミノルタ株式会社 Transparent conductor and method for producing the same
JP2016018288A (en) * 2014-07-07 2016-02-01 コニカミノルタ株式会社 Transparent conductor and touch panel
JP2017068219A (en) * 2015-10-02 2017-04-06 株式会社コベルコ科研 Electrode structure
CN108646321A (en) * 2018-05-09 2018-10-12 中国科学院长春光学精密机械与物理研究所 A kind of two-dimensional material normal incidence Fresnel optical characterisation methods
CN108646321B (en) * 2018-05-09 2019-10-15 中国科学院长春光学精密机械与物理研究所 A kind of two-dimensional material normal incidence Fresnel optical characterisation methods

Similar Documents

Publication Publication Date Title
WO2014064939A1 (en) Transparent conductor
JP2006346878A (en) Transparent conductive laminate
CN104290407A (en) Double-sided transparent conductive film and touch panel
JP2011134464A (en) Transparent conductive laminate and method of manufacturing the same, as well as touch panel
JPWO2013172055A1 (en) Substrate with transparent electrode, method for manufacturing the same, and touch panel
JP6292225B2 (en) Transparent conductor
JP5617276B2 (en) Transparent conductive laminate and method for producing the same
JP2011194679A (en) Transparent and conductive laminate, method for manufacturing same, and touch panel
JP2007323045A (en) Plasma display panel filter and method of manufacturing the same
JP2010231171A (en) Optical article and method for producing the same
JP6319302B2 (en) Transparent conductor and method for producing the same
WO2015068738A1 (en) Transparent conductive body
JP6206262B2 (en) Transparent conductor, method for producing the same, and conductive paste
JP2016115638A (en) Transparent conductive film and method for producing the same
JP2015219690A (en) Transparent conductive device and touch panel
WO2014196460A1 (en) Transparent conductor and method for producing same
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
JP2016091071A (en) Transparent conductive film and method for producing the same
JP2016177940A (en) Method for producing transparent conductive body
WO2015125677A1 (en) Transparent conductor
WO2015011928A1 (en) Method for producing transparent conductive body
WO2016052158A1 (en) Transparent conductor and touch panel including same
JP6493225B2 (en) Transparent conductive film
WO2015025525A1 (en) Transparent conductive body
WO2014181538A1 (en) Transparent conductor and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP