WO2015194320A1 - Transparent conductor and touchscreen - Google Patents

Transparent conductor and touchscreen Download PDF

Info

Publication number
WO2015194320A1
WO2015194320A1 PCT/JP2015/064910 JP2015064910W WO2015194320A1 WO 2015194320 A1 WO2015194320 A1 WO 2015194320A1 JP 2015064910 W JP2015064910 W JP 2015064910W WO 2015194320 A1 WO2015194320 A1 WO 2015194320A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
high refractive
index layer
transparent
Prior art date
Application number
PCT/JP2015/064910
Other languages
French (fr)
Japanese (ja)
Inventor
一成 多田
仁一 粕谷
健一郎 平田
智一 田口
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016529193A priority Critical patent/JP6536575B2/en
Publication of WO2015194320A1 publication Critical patent/WO2015194320A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a transparent conductor and a touch panel. More specifically, the present invention relates to a transparent conductor with improved electrical connection between a transparent metal layer having high light transmittance and high moisture resistance and a circuit board, and a touch panel including the transparent conductor.
  • transparent conductors have been used in various devices such as liquid crystal displays, plasma displays, display devices such as inorganic and organic EL (electroluminescence) displays, touch panels, and solar cells.
  • a transparent conductor In a touch panel type display device or the like, wiring including a transparent conductor is disposed on the image display surface of the display element. Therefore, the transparent conductor is required to have high light transmittance. In such various display devices, a transparent conductor using ITO having a high light transmittance is often used.
  • the Ag layer is formed of a film having a high refractive index (for example, Nb 2 O 5 (niobium oxide), IZO (indium / zinc oxide), ICO (indium / cerium oxide)).
  • a-GIO a film made of gallium / indium oxide or the like
  • Non-Patent Document 2 a layer containing zinc sulfide (hereinafter also referred to as a ZnS layer or a zinc sulfide-containing layer) (see, for example, Non-Patent Document 2).
  • Non-Patent Document 2 a transparent conductor in which an Ag layer is sandwiched between dielectric layers such as niobium oxide and IZO has not been sufficiently moisture-resistant. As a result, when a transparent conductor is used in a high humidity environment, there is a problem that the Ag layer is easily corroded.
  • the moisture resistance of the transparent conductor is sufficiently high, when the Ag layer is formed or the ZnS layer is formed, silver is sulfided and sulfided. Silver is likely to occur. As a result, there is a problem that the light transmittance of the transparent conductor is lowered.
  • the present invention has been made in view of the above problems and situations.
  • the problem to be solved is to provide a transparent conductor having improved electrical connection between a transparent metal layer having high light transmittance and high moisture resistance and a circuit board, and a touch panel including the transparent conductor.
  • the present inventor in the process of examining the cause of the above problems, the high refractive index layer contains a dielectric material or an oxide semiconductor material, higher than the refractive index of the transparent substrate, The inventors have found that it is effective to contain a sulfur component at a content within a predetermined range, and have reached the present invention. That is, the said subject which concerns on this invention is solved by the following means.
  • a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order;
  • the transparent metal layer contains silver as a main component,
  • the first high refractive index layer and the second high refractive index layer each contain a dielectric material or an oxide semiconductor material;
  • the refractive index of the first high refractive index layer and the second high refractive index layer is higher than the refractive index of the transparent substrate,
  • the first high refractive index layer contains a sulfur component
  • the transparent conductor, wherein the second high refractive index layer contains a sulfur component in a range of 0.1 to 10 at%.
  • the second high refractive index layer is made of titanium (Ti), indium (In), zinc (Zn), cerium (Ce), tungsten (W), gallium (Ga), tin (Sn), hafnium (Hf), zirconium. Containing a metal oxide containing at least one element selected from the group consisting of (Zr), niobium (Nb), tantalum (Ta), aluminum (Al), bismuth (Bi), and germanium (Ge). 5.
  • the transparent conductor according to any one of items 1 to 4, which is characterized.
  • the sulfidation prevention layer further containing a zinc component is provided between the first high refractive index layer and the transparent metal layer. Transparent conductor.
  • the sulfidation prevention layer further containing a zinc component is provided between the second high refractive index layer and the transparent metal layer, wherein any one of items 1 to 6 is provided.
  • Transparent conductor is provided between the second high refractive index layer and the transparent metal layer, wherein any one of items 1 to 6 is provided.
  • a touch panel comprising the transparent conductor according to any one of items 1 to 8.
  • a transparent conductor in which electrical connection between a transparent metal layer having high light transmittance and high moisture resistance and a circuit board is improved, and a touch panel including the transparent conductor. it can.
  • the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
  • the transparent metal layer and the ZnS-containing layer are formed adjacent to each other, there is a problem that metal sulfide is easily generated and the light transmittance of the transparent conductor is likely to be lowered.
  • the metal sulfide is presumed to be produced as follows.
  • a transparent metal layer is formed on the first high refractive index layer as a layer containing at least zinc sulfide (hereinafter also referred to as a zinc sulfide-containing layer) by a vapor deposition method such as sputtering, the zinc sulfide-containing layer
  • a vapor deposition method such as sputtering
  • the zinc sulfide-containing layer The unreacted sulfur component is expelled into the layer formation atmosphere by the transparent metal layer material (metal material). Then, the ejected sulfur component reacts with the metal, and metal sulfide is deposited on the zinc sulfide-containing layer.
  • the sulfur component contained in the atmosphere of layer formation of a zinc sulfide content layer remains in a transparent metal layer atmosphere.
  • this sulfur component and the metal derived from a transparent metal layer react, and a metal sulfide deposits on the 1st high refractive index layer containing a zinc sulfide.
  • the metal in the transparent metal layer is expelled into the layer formation atmosphere by the material of the second high refractive index layer. .
  • the ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal layer. Furthermore, a metal sulfide is generated on the surface of the transparent metal layer also when the surface of the transparent metal layer comes into contact with the sulfur component in the layer forming atmosphere.
  • the first high refractive index layer and the transparent metal layer are continuously formed by setting the content ratio of the sulfur component contained in the first high refractive index layer to a predetermined range, the first high refractive index.
  • the sulfur component contained in the layer forming atmosphere of the layer reacts with the component of the first antisulfurization layer or is adsorbed by the component of the first antisulfuration layer. Therefore, it is presumed that the atmosphere in which the transparent metal layer is formed does not easily contain sulfur, and the generation of metal sulfide is suppressed.
  • the first antisulfurization layer is laminated on the first high refractive index layer.
  • a 1st high refractive index layer is protected by a 1st sulfurization prevention layer, when forming a transparent metal layer, it is guessed that the sulfur component in a 1st high refractive index layer is hard to be expelled.
  • the affinity between silver and sulfur atoms is strengthened, and since water permeability is hindered, corrosion of silver can be prevented and the moisture resistance of the transparent conductor can be improved. it is conceivable that.
  • the first high refractive index layer contains a sulfur component
  • the second high refractive index layer contains the sulfur component in a range of 0.1 to 10 at%, thereby causing moisture of the transparent metal layer. It is assumed that deterioration can be suitably prevented and high conductivity can be maintained.
  • Schematic sectional view showing an example of the configuration of the transparent conductor of the present invention Schematic sectional view showing an example of the configuration of the transparent conductor of the present invention
  • the schematic diagram which shows an example of the pattern which consists of a conduction
  • the transparent conductor of the present invention is a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order, and the transparent metal layer mainly contains silver.
  • the first high refractive index layer and the second high refractive index layer each contain a dielectric material or an oxide semiconductor material, and the first high refractive index layer with respect to light having a wavelength of 570 nm.
  • the refractive index of the second high refractive index layer is higher than the refractive index of the transparent substrate, the first high refractive index layer contains a sulfur component, and the second high refractive index layer contains a sulfur component. In the range of 0.1 to 10 at%.
  • the sulfur component contained in the first high refractive index layer is derived from zinc sulfide.
  • the sulfur component contained in the second high refractive index layer is derived from zinc sulfide.
  • the first high refractive index layer contains silicon dioxide.
  • membrane which comprises a 1st high refractive index layer becomes amorphous form, and it can resist a crack, and can improve flexibility.
  • the second high refractive index layer may be titanium (Ti), indium (In), zinc (Zn), cerium (Ce), tungsten (W), gallium (Ga), tin. At least one element selected from the group consisting of (Sn), hafnium (Hf), zirconium (Zr), niobium (Nb), tantalum (Ta), aluminum (Al), bismuth (Bi), and germanium (Ge). It is preferable to contain the metal oxide to contain. As a result, the second high refractive index layer can have sufficient conductivity to connect the transparent metal layer and the external circuit.
  • an antisulfurization layer containing a zinc component is further provided between the first high refractive index layer and the transparent metal layer. This is because the reaction between silver contained in the transparent metal layer and sulfur contained in the first high refractive index layer can be suppressed.
  • an antisulfurization layer containing a zinc component is further provided between the second high refractive index layer and the transparent metal layer. This is because the reaction between silver contained in the transparent metal layer and sulfur contained in the second high refractive index layer can be suppressed.
  • the transparent metal layer is patterned into a predetermined shape. This is because the conductivity can be improved.
  • the transparent conductor of the present invention can be suitably provided in a touch panel.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • ⁇ Basic structure of transparent conductor ⁇ 1A to 1C are schematic sectional views showing an example of the configuration of the transparent conductor of the present invention.
  • the transparent conductor 1 of the present invention has at least a transparent substrate 2, a first high refractive index layer 3A, a transparent metal layer 4, and a second high refractive index layer 3B in this order.
  • a transparent metal layer 4 is provided between the first high refractive index layer 3A and the second high refractive index layer 3B.
  • a high refractive index layer containing a sulfur component is provided adjacent to the transparent metal layer 4, the silver atoms in the transparent metal layer 4 and the sulfur atoms of ZnS have a high affinity.
  • the transparent metal layer 4 can be obtained with a thin film. And since this silver thin film is stable, it is excellent also in moisture resistance.
  • a first sulfidation preventing layer 5A is provided between the transparent metal layer 4 and the first high refractive index layer 3A.
  • a second antisulfurization layer 5B is also provided between the transparent metal layer 4 and the second high refractive index layer 3B.
  • the transparent metal layer 4 may be laminated on the entire surface of the transparent substrate 2 as shown in FIGS. 1A to 1C.
  • the transparent electrode unit EU including the index layer 3A, the first antisulfurization layer 5A, the transparent metal layer 4, and the second high refractive index layer 3B is patterned into a desired shape.
  • the region a where the transparent electrode unit EU is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”).
  • the region b that does not have the transparent electrode unit EU is an insulating region.
  • the pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 1. Details of the pattern applied to the electrostatic touch panel will be described later.
  • the transparent conductor 1 of the present invention includes a transparent substrate 2, a first high refractive index layer 3A, a first antisulfurization layer 5A, a transparent metal layer 4, a second antisulfurization layer 5B, and a second high refractive index layer 3B.
  • a known functional layer may be provided as necessary.
  • the layers included in the transparent conductor 1 of the present invention are preferably layers made of an inorganic material except for the transparent substrate 2. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 3B, the laminated body from the transparent substrate 2 to the second high refractive index layer 3B is the transparent conductor 1 of the present invention. Define that there is.
  • the transparent conductor of the present invention is a transparent conductor 1 having at least a transparent substrate 2, a first high refractive index layer 3A, a transparent metal layer 4, and a second high refractive index layer 3B in this order, and the first high refractive index.
  • the refractive index layer 3A and the second high refractive index layer 3B each contain a dielectric material or an oxide semiconductor material, and the first high refractive index layer 3A and the second high refractive index layer 3B with respect to light having a wavelength of 570 nm.
  • the first high refractive index layer 3 A contains a sulfur component
  • the second high refractive index layer 3 B contains 0.1 to 10 at% of the sulfur component. It is contained within the range.
  • the first high refractive index layer 3A preferably contains a sulfur component within a range of 0.1 to 50 at%
  • the second high refractive index layer 3B contains a sulfur component within a range of 0.1 to 5 at%. It is more preferable to contain within.
  • the first antisulfurization layer 5A and the second antisulfurization layer It is a preferable aspect to have 5B.
  • the transparent substrate 2 is a glass substrate, cellulose ester resin (for example, triacetylcellulose (abbreviation: TAC), diacetylcellulose, acetylpropionylcellulose, etc.), polycarbonate resin (for example, Panlite, Multilon (above, manufactured by Teijin Limited)).
  • cellulose ester resin for example, triacetylcellulose (abbreviation: TAC), diacetylcellulose, acetylpropionylcellulose, etc.
  • polycarbonate resin for example, Panlite, Multilon (above, manufactured by Teijin Limited
  • Cycloolefin resins for example, ZEONOR (manufactured by ZEON CORPORATION), ARTON (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resins (for example, polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex) (Manufactured by Sumitomo Chemical Co., Ltd.)), polyimide, phenol resin, epoxy resin, polyphenylene ether (abbreviation: PPE) resin, polyester resin (for example, polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN)), polyether Ruhon resin, acrylonitrile / butadiene / styrene resin (abbreviation: ABS resin) / acrylonitrile / styrene resin (abbreviation: AS resin), methyl methacrylate / butadiene
  • the transparent substrate 2 applied to the present invention includes a glass substrate, cellulose ester resin, polycarbonate resin, polyester resin (particularly polyethylene terephthalate), triacetyl cellulose, and cycloolefin resin.
  • Resin such as phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin
  • a film composed of the components is preferred.
  • the transparent substrate 2 preferably has a high light transmittance with respect to visible light.
  • the average light transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85%. More preferably, it is the above.
  • the average light transmittance of light of the transparent substrate 2 is 70% or more, the light transmittance of the transparent conductor 1 is likely to be increased.
  • the average light absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 2 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average light transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 2.
  • the average light absorptance is measured by measuring the average light reflectance of the transparent substrate 2 by making light incident from the same angle as the average light transmittance.
  • Average light absorption rate (%) 100- (average light transmittance + average light reflectance) (%) Calculate as The average light transmittance and the average light reflectance can be measured using a spectrophotometer (for example, U4100; manufactured by Hitachi High-Technologies Corporation).
  • the refractive index of light having a wavelength of 570 nm of the transparent substrate 2 is preferably in the range of 1.40 to 1.95, more preferably in the range of 1.45 to 1.75, and still more preferably 1.45. Within the range of ⁇ 1.70.
  • the refractive index of the transparent substrate 2 is usually determined by the material of the transparent substrate 2.
  • the refractive index of the transparent substrate 2 can be determined by measuring in an environment of 25 ° C. using an ellipsometer.
  • the haze value of the transparent substrate 2 is preferably in the range of 0.01 to 2.5%, more preferably in the range of 0.1 to 1.2%.
  • the haze value of the transparent substrate is 2.5% or less, the haze value as the transparent conductor can be suppressed, which is preferable.
  • the haze value can be measured using a haze meter.
  • the thickness of the transparent substrate 2 is preferably in the range of 1 ⁇ m to 20 mm, more preferably in the range of 10 ⁇ m to 2 mm. If the thickness of the transparent substrate is 1 ⁇ m or more, the strength of the transparent substrate 2 is increased, and it is possible to prevent the first high refractive index layer 3A from being cracked or torn during production. On the other hand, if the thickness of the transparent substrate 2 is 20 mm or less, sufficient flexibility of the transparent conductor 1 can be obtained. Furthermore, the thickness of the electronic device apparatus etc. which comprised the transparent conductor 1 can be made thin. Moreover, the electronic device apparatus etc. which used the transparent conductor 1 can also be reduced in weight.
  • the transparent substrate 2 to be used is formed by removing moisture contained in the substrate and remaining solvent in advance using a cryopump or the like before forming each constituent layer. It is preferable to use in the process.
  • a known clear hard coat layer may be provided on the transparent substrate applied to the present invention from the viewpoint of obtaining the smoothness of the first high refractive index layer formed thereafter.
  • the transparent conductor 1 of the present invention has a first high refractive index layer 3A and a second high refractive index layer 3B, the first high refractive index layer 3A being closer to the transparent substrate 2 and the second being the second higher refractive index layer 3B. This is referred to as a high refractive index layer 3B (see FIG. 1A).
  • Each of the first high refractive index layer 3A and the second high refractive index layer 3B contains a dielectric material or an oxide semiconductor material, and the first high refractive index layer 3A and the second high refractive index layer 3A with respect to light having a wavelength of 570 nm.
  • the refractive index of the refractive index layer 3B is higher than the refractive index of the transparent substrate 2, the first high refractive index layer 3A contains a sulfur component, and the second high refractive index layer 3B contains a sulfur component of 0. It is contained within the range of 1 to 10 at%.
  • the first high refractive index layer 3A preferably contains a sulfur component in the range of 0.1 to 50 at%. Since the second high refractive index layer 3B contains the sulfur component within the range, it is possible to achieve both high conductivity and moisture resistance, and the first high refractive index layer 3A is sulfur within the range. It has been found that the inclusion of a component is more preferable for exhibiting the effect.
  • the sulfur component contained in the first high-refractive index layer is 50 at% or less, so that it is possible to prevent the target from being difficult to produce due to excessive sulfur. Moreover, it is preferable at 0.1 at% or more in that silver migration can be easily suppressed.
  • the sulfur component contained in the second high refractive index layer is 10 at% or less, poor electrical connection between the external circuit and silver can be suppressed. Moreover, by setting it as 0.1 at% or more, it can be made easy to suppress silver migration similarly to the first high refractive index layer.
  • the sulfur component contained in the first high refractive index layer and the second high refractive index layer those derived from zinc sulfide and single sulfur can be used, but those derived from zinc sulfide are particularly preferable. . Since the sulfur component derived from zinc sulfide can exist stably in the high refractive index layer, it is easy to prevent the sulfur component from diffusing and reacting in an undesired place.
  • the first high refractive index layer 3 ⁇ / b> A is a layer that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor, that is, the region where the transparent metal layer 4 is formed, and at least the conduction of the transparent conductor 1. Formed in region a.
  • the first high-refractive index layer 3A may be formed also in the insulating region b of the transparent conductor 1, but is illustrated in FIG. 2 from the viewpoint of making it difficult to visually recognize the pattern including the conductive region a and the insulating region b. Thus, it is preferably formed only in the conduction region a.
  • the first high refractive index layer 3 ⁇ / b> A has a refractive index higher than that of the transparent substrate 2.
  • the first high refractive index layer 3A includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate 2 described above.
  • the refractive index of the dielectric material or oxide semiconductor material with respect to light having a wavelength of 570 nm is preferably 0.1 to 1.1 larger than the refractive index of the transparent substrate, and more preferably 0.4 to 1.0 larger.
  • the refractive index according to the present invention is a measured value at a temperature of 25 ° C. and a relative humidity of 25%.
  • the refractive index of the dielectric material or the oxide semiconductor material included in the first high refractive index layer with respect to light having a wavelength of 570 nm is preferably higher than 1.5, more preferably 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is higher than 1.5, the optical admittance of the conductive region a of the transparent conductor is sufficiently adjusted by the first high refractive index layer.
  • the refractive index of the first high refractive index layer is adjusted by the refractive index of the material included in the first high refractive index layer and the density of the material included in the first high refractive index layer.
  • the refractive index of the high refractive index layer can be determined by measuring in an environment of 25 ° C. using an ellipsometer.
  • the dielectric material or the oxide semiconductor material included in the first high refractive index layer 3A may be an insulating material or a conductive material.
  • the dielectric material or the oxide semiconductor material may be a metal oxide having the above refractive index.
  • the metal oxide having the refractive index include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4.
  • the first high refractive index layer may be a layer containing only one kind of the metal oxide or a layer containing two or more kinds.
  • a mixture of SiO 2 and ZnS is preferable in terms of stability and high flexibility.
  • the above-described two or more types of high refractive index layers may be laminated to form a first high refractive index layer comprising a plurality of layers.
  • the second high refractive index layer 3B has a higher refractive index than the refractive index of the transparent substrate 2 like the first high refractive index layer 3A.
  • the second high refractive index layer includes a material having a refractive index higher than that of the transparent substrate 2 described above.
  • the refractive index of the material with respect to light having a wavelength of 570 nm is preferably 0.1 to 1.1 larger than the refractive index of the transparent substrate, and more preferably 0.4 to 1.0 larger.
  • the refractive index of the material contained in the second high refractive index layer with respect to light having a wavelength of 570 nm is preferably greater than 1.5, more preferably 1.7 to 2.5, and even more preferably 1.8. ⁇ 2.5.
  • the optical admittance of the conductive region a of the transparent conductor is sufficiently adjusted by the second high refractive index layer.
  • the refractive index of the second high refractive index layer is adjusted by the refractive index of the material included in the second high refractive index layer and the density of the material included in the second high refractive index layer.
  • the transparent conductor has such a refractive index
  • reflection due to silver contained in the transparent metal layer can be offset.
  • the refractive index of the first high refractive index layer is higher than that of the base material, the reflection at the interface between the base material and the first high refractive index layer is increased, and therefore, it is contained in the transparent metal layer. It becomes easy to cancel the reflection generated from silver.
  • the higher the refractive index of the second high refractive index layer the higher the reflection generated on the surface of the second high refractive index layer, and it becomes possible to cancel the reflected light of silver. Therefore, it is desirable that the refractive index of the high refractive index layer is higher than the refractive index of the substrate.
  • the second high-refractive index layer 3B is a layer that also has conductivity in order to ensure electrical connectivity.
  • a material having a specific resistance of 1000 ⁇ ⁇ cm or less is preferable. More preferably, it is 0.1 ⁇ ⁇ cm or less.
  • the material included in the second high refractive index layer preferably includes an oxide semiconductor material among the materials included in the first high refractive index layer. Of these, metal oxides are preferable.
  • metal oxides include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2.
  • the first high refractive index layer may be a layer containing only one kind of the metal oxide or a layer containing two or more kinds.
  • a second high refractive index layer composed of a plurality of layers may be formed by laminating the two or more types of high refractive index layers.
  • the thickness of the first high refractive index layer 3A and the second high refractive index layer 3B is preferably in the range of 10 to 150 nm, more preferably in the range of 10 to 80 nm.
  • the thickness of these high refractive index layers is 10 nm or more, the optical admittance of the conductive region a of the transparent conductor 1 is sufficiently adjusted by the high refractive index layer.
  • the thickness of the high refractive index layer is 150 nm or less, the light transmittance of the region including the high refractive index layer is unlikely to decrease.
  • the thickness of the high refractive index layer is measured with an ellipsometer.
  • the high refractive index layer is preferably formed by vapor deposition or sputtering.
  • Deposition methods applicable to the present invention include resistance heating vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition.
  • a vapor deposition apparatus for example, a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. can be used.
  • Sputtering methods include magnetron sputtering and counter sputtering.
  • the patterning method is not particularly limited.
  • the high refractive index layer may be, for example, a layer formed in a pattern by a vapor phase forming method by placing a mask having a desired pattern on the surface to be formed. It may be a layer patterned by a lithography method.
  • the first high refractive index layer and the second high refractive index layer contain a sulfur component.
  • the first high refractive index layer contains a sulfur component
  • the second high refractive index layer contains a sulfur component in the range of 0.1 to 10 at%.
  • the silver atoms first form a two-dimensional nucleus on the surface of the high refractive index layer containing silver atoms and zinc sulfide, and a two-dimensional single crystal layer is formed around the two-dimensional nucleus (Frank).
  • -Van der Merwe (FM type) film growth is a two-dimensional nucleus on the surface of the high refractive index layer containing silver atoms and zinc sulfide, and a two-dimensional single crystal layer is formed around the two-dimensional nucleus (Frank).
  • -Van der Merwe (FM type) film growth FM type
  • a conductive layer having a uniform film thickness can be obtained even though the film thickness is small. Therefore, even if the transparent metal layer 4 is thin, plasmon absorption hardly occurs. As a result, it is possible to obtain a transparent conductor in which conductivity is ensured while maintaining light transmittance with a thinner film thickness.
  • the affinity between silver and sulfur atoms is strengthened, and since water permeability is hindered, silver corrosion is prevented and the moisture resistance of the transparent conductor can be improved. It is done.
  • FIG. 3 is an example showing the relationship between the thickness of the silver layer and light absorption.
  • 4 is a graph showing the relationship between the film thickness of silver and the average light absorption of visible light (400 to 800 nm) when silver is deposited on a thin layer of glass, ITO and zinc sulfide to form a silver thin film.
  • visible light 400 to 800 nm
  • the absorption of silver can be reduced more than when silver is deposited on glass or ITO.
  • Examples of the metal oxide that can be used in the first high refractive index layer together with a sulfur component such as zinc sulfide include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , and CeO 2.
  • the second high refractive index layer is made of titanium (Ti), indium (In), zinc (Zn), cerium (Ce), tungsten (W), gallium (Ga), tin (Sn), hafnium (Hf), Containing a metal oxide containing at least one element selected from the group consisting of zirconium (Zr), niobium (Nb), tantalum (Ta), aluminum (Al), bismuth (Bi), and germanium (Ge). Is preferred. Specifically, for the second high refractive index layer, the same compound as the metal oxide that can be used together with the sulfur component can be used. This is preferable because the second high refractive index layer can secure sufficient conductivity to connect the transparent metal layer and the external circuit.
  • metal fluoride examples include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. Can do.
  • examples of the metal nitride include boron nitride, aluminum nitride, chromium nitride, silicon nitride, tungsten nitride, magnesium nitride, molybdenum nitride, lithium nitride, and titanium nitride.
  • the transparent conductor of the present invention preferably has an antisulfurization layer containing a zinc component between the high refractive index layer and the transparent metal layer.
  • an antisulfurization layer a metal oxide, metal nitride, metal fluoride, metal or semiconductor can be used.
  • a layer containing a zinc component such as ZnO, GZO and AZO is preferable. Only two or more kinds may be included.
  • a plurality of antisulfurization layers may be provided, and the one closer to the transparent substrate is referred to as a first antisulfurization layer, and the far side is referred to as a second antisulfation layer.
  • the metal in the transparent metal layer is formed when the transparent metal layer 4 is formed or when the second high refractive index layer 3B is formed. May be sulfided to produce metal sulfide, which may reduce the light transmittance of the transparent conductor.
  • an antisulfurization layer is included between the first high refractive index layer 3A and the transparent metal layer 4 or between the transparent metal layer 4 and the second high refractive index layer 3B, the metal sulfide Generation is suppressed.
  • metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 and the like are included.
  • metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like.
  • metal nitride examples include Si 3 N 4 , AlN, and the like.
  • the thickness of the sulfidation preventive layer is not particularly limited as long as the transparent metal layer 4 can be prevented from being sulfidized during the formation of the transparent metal layer 4 or the second high refractive index layer 3B. Not limited. However, ZnS contained in the first high refractive index layer 3 ⁇ / b> A and the second high refractive index layer 3 ⁇ / b> B has high affinity with the metal contained in the transparent metal layer 4. Therefore, when the thickness of the sulfurization preventing layer is very thin, a portion where the transparent metal layer 4 and the first high refractive index layer 3A or the transparent metal layer 4 and the second high refractive index layer 3B are in contact with each other is generated. Adhesion tends to increase.
  • the antisulfurization layer is preferably relatively thin, preferably 0.1 to 10 nm, more preferably 0.1 to 5 nm, and further preferably 0.1 to 3 nm.
  • the thickness of the sulfidation prevention layer is measured with an ellipsometer.
  • an antisulfurization layer containing Zn or Ga metal is preferable because it does not deteriorate moisture resistance and has strong interaction with silver.
  • the anti-sulfurization layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • the sulfidation prevention layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the deposition surface, and patterned by a known etching method. It may be a layer formed.
  • the transparent metal layer 4 containing silver as a main component is a layer for conducting electricity in the transparent conductor 1.
  • the transparent metal layer 4 may be formed on the entire surface of the transparent substrate 2 as shown in FIGS. 1A to 1C, and is preferably patterned into a predetermined shape as shown in FIG.
  • “containing silver as a main component” means that the silver thin film electrode content ratio of the metal layer is 60 at% (atomic%) or more.
  • the silver content is 90 at% or more from the viewpoint of conductivity, more preferably 95 at% or more, and the transparent electrode is preferably made of only silver.
  • the metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, platinum, titanium, chromium, or the like.
  • the sulfide resistance of the transparent metal layer is increased.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • the plasmon absorption rate of the transparent metal layer 4 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor 1 is likely to be colored.
  • the plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 4 is measured by the following procedure.
  • platinum palladium is formed at a thickness of 0.1 nm by a BMC-800T vapor deposition apparatus manufactured by SYNCHRON.
  • the average thickness of platinum palladium is calculated from the formation rate of the manufacturer's nominal value of the vapor deposition apparatus.
  • a layer made of metal is formed to a thickness of 20 nm on the substrate to which platinum palladium is adhered by a vacuum deposition method.
  • a transparent metal layer to be measured is formed on the same glass substrate. And about the said transparent metal layer, light transmittance and light reflectance are measured similarly. The reference data is subtracted from the obtained light absorption rate, and the calculated value is defined as the plasmon absorption rate.
  • the thickness of the transparent metal layer 4 is preferably 10 nm or less, more preferably in the range of 3 to 9 nm, and still more preferably in the range of 5 to 8 nm.
  • the transparent conductor 1 when the thickness of the transparent metal layer 4 is 10 nm or less, the original reflection of metal hardly occurs in the transparent metal layer 4. Furthermore, when the thickness of the transparent metal layer 4 is 10 nm or less, the optical admittance of the transparent conductor 1 is easily adjusted by the first high refractive index layer 3A and the second high refractive index layer 3B, and the surface of the conductive region a The reflection of light is easy to be suppressed.
  • the thickness of the transparent metal layer 4 can be determined by measurement using an ellipsometer.
  • the transparent metal layer 4 may be a layer formed by any forming method, but is preferably a layer formed by a vacuum evaporation method or a sputtering method.
  • a transparent metal layer with high planarity can be formed at a very high formation rate.
  • a metal layer is formed on a high refractive index layer containing ZnS, if the formation speed of the layer is high, a metal sulfide is difficult to be generated. Therefore, the transparent metal layer containing silver as a main component
  • the formation rate is preferably 0.3 nm / second or more.
  • the formation rate is more preferably in the range of 0.5 to 30 nm / second, and particularly preferably in the range of 1.0 to 15 nm / second.
  • the temperature during film formation is preferably in the range of ⁇ 25 to 25 ° C.
  • the counter sputtering method is preferable because the smoothness of silver is increased and transparency and conductivity are improved.
  • the patterning method is not particularly limited.
  • the transparent metal layer 4 may be a layer formed by arranging a mask having a desired pattern, or may be a film patterned by a known etching method.
  • the transparent conductor 1 of the present invention may have an adhesion layer on the transparent substrate in order to improve adhesion between the transparent substrate and the first high refractive index layer.
  • the adhesion layer may be any layer as long as the first high refractive index layer is firmly adhered to the transparent substrate.
  • the adhesion layer may contain a dielectric material, an oxide semiconductor material, an insulating or conductive material.
  • the dielectric material or oxide semiconductor material is preferably a metal oxide, metal sulfide, or metal nitride.
  • the refractive index is not limited. In particular, when the first high refractive index layer is formed by vapor deposition, it is preferable that there is an adhesion layer.
  • the energy required for film formation is smaller when the film is formed by the vapor deposition method than when the film is formed by the sputtering method. It is considered that it depends on the compatibility of the material of the first high refractive index layer.
  • the material of the first high refractive index layer For example, SiO 2 film, and a ZnS-SiO 2 film formed by sputtering.
  • the thickness of the layer is not particularly limited, and is preferably in the range of 0.01 to 15 nm, more preferably in the range of 0.1 to 3 nm.
  • the transparent conductor 1 of the present invention has a low refractive index layer (not shown) that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor on the second high refractive index layer 3B. It may be.
  • the low refractive index layer may be formed only in the conductive region a of the transparent conductor 1 or may be formed in both the conductive region a and the insulating region b of the transparent conductor 1.
  • the refractive index of light is lower than the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material included in the first high refractive index layer 3A and the second high refractive index layer 3B.
  • Dielectric materials or oxide semiconductor materials are included.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is the light of wavelength 570 nm of the above material contained in the first high refractive index layer 3A and the second high refractive index layer 3B.
  • the refractive index is preferably 0.2 or more lower and more preferably 0.4 or more lower.
  • the transparent conductor 1 of the present invention may further include a third high refractive index layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor on the second high refractive index layer.
  • the third high refractive index layer may be formed only in the conductive region a of the transparent conductor 1, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 1.
  • the third high refractive index layer preferably contains a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 2 and the refractive index of the low refractive index layer.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably larger than 1.5, more preferably 1.7 to 2.5. Preferably, it is 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 1 is sufficiently adjusted by the third high refractive index layer.
  • the refractive index of the third high refractive index layer is adjusted by the refractive index and density of the material contained in the third high refractive index layer.
  • the dielectric material or the oxide semiconductor material included in the third high refractive index layer may be an insulating material or a conductive material.
  • the dielectric material or the oxide semiconductor material is preferably a metal oxide, a metal sulfide, or a metal nitride.
  • Examples of the metal oxide or metal sulfide include the metal oxide or metal sulfide contained in the first high refractive index layer 3A or the second high refractive index layer 3B.
  • the third high refractive index layer may contain only one kind of the metal oxide or metal sulfide, or may contain two or more kinds.
  • the thickness of the third high refractive index layer is not particularly limited, and is preferably 1 to 40 nm, and more preferably 5 to 20 nm. When the thickness of the third high refractive index layer is within the above range, the optical admittance of the conductive region a of the transparent conductor 1 is sufficiently adjusted. The thickness of the third high refractive index layer is measured with an ellipsometer.
  • the film formation method of the third high refractive index layer is not particularly limited, and may be a layer formed by the same method as the first high refractive index layer 3A and the second high refractive index layer 3B.
  • the average light transmittance of light with a wavelength of 400 to 1000 nm of the transparent conductor of the present invention is preferably 88% or more, more preferably 90% or more, and still more preferably in both the conduction region a and the insulation region b. 93% or more. If the average light transmittance of light having a wavelength of 400 to 1000 nm is 88% or more, the transparent conductor is also used in applications requiring light transmittance with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. Can be applied.
  • the average optical absorptance of light having a wavelength of 400 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and even more preferably in both the conduction region a and the insulation region b. Is 7% or less.
  • the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 to 800 nm is preferably 15% or less, more preferably 10% or less, both in the conduction region a and the insulation region b. Preferably it is 9% or less.
  • the average light reflectance of light having a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, both in the conduction region a and the insulation region b. Preferably it is 10% or less.
  • the average light transmittance, average light absorption rate, and average light reflectance are preferably an average light transmittance, an average light absorption rate, and an average light reflectance measured in an environment where the transparent conductor is used.
  • the transparent conductor when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average light transmittance and the average light reflectance by disposing a layer made of the organic resin on the transparent conductor.
  • the transparent conductor is used in the air, it is preferable to measure the average light transmittance and the average light reflectance in the air.
  • the light transmittance and the light reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor.
  • the light absorptance (%) is calculated from a calculation formula of 100 ⁇ (light transmittance + light reflectance).
  • the transparent conductor 1 has the conductive region a and the insulating region b as shown in FIG. 2, it is preferable that the reflectance of the conductive region a and the reflectance of the insulating region b are approximated.
  • the difference ⁇ R between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and still more preferably It is 1% or less, particularly preferably 0.3% or less.
  • the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less.
  • the luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
  • the a * value and the b * value in the L * a * b * color system are preferably within ⁇ 30 in any region. More preferably, it is within ⁇ 5, more preferably within ⁇ 3.0, and particularly preferably within ⁇ 2.0. If the a * value and the b * value in the L * a * b * color system are within ⁇ 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electrical resistance value of the conductive region a of the transparent conductor is preferably 50 ⁇ / ⁇ or less, and more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the conduction region a is adjusted by the thickness of the transparent metal layer and the like.
  • the surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, or the like. It is also measured by a commercially available surface electrical resistivity meter.
  • Method of forming transparent conductor having patterned electrode A method of forming a pattern composed of a conductive region and an insulating region as shown in FIG. 2 will be described for the transparent conductor of the present invention.
  • a commercially available laser etching apparatus manufactured by Takei Electric Industry Co., Ltd.
  • the wavelength is particularly preferably 1064 nm, 532 nm or 355 nm.
  • the line width is preferably 5 to 30 ⁇ m.
  • the transparent conductor of the present invention for example, the first high refractive index layer, the transparent metal layer, and the second high refractive index layer are laminated in this order on the transparent substrate by the method as described above.
  • a metal electrode obtained by patterning the transparent metal layer into a predetermined shape is preferable to form. Specifically, for example, the patterning as shown in FIG. It is preferable to form an electrode.
  • the line width of the electrode to be formed is preferably 50 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • the transparent metal layer is processed into a desired pattern.
  • a conventionally known general photolithography method can be appropriately used.
  • the resist either positive or negative resist can be used.
  • preheating or prebaking can be performed as necessary.
  • a pattern mask having a predetermined pattern may be disposed, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated thereon.
  • development is performed with a developer suitable for the resist used.
  • the resist pattern is formed by stopping the development with a rinse solution such as water and washing.
  • the formed resist pattern is pretreated or post-baked as necessary, and then etched with an etching solution containing an organic solvent to dissolve the high refractive index layer in a region not protected by the resist and to form silver.
  • the thin film electrode is removed. After etching, the remaining resist is peeled to obtain a transparent electrode having a predetermined pattern.
  • the photolithography method applied to the present invention is a method generally recognized by those skilled in the art, and a specific application mode thereof can be easily selected by a person skilled in the art according to a predetermined purpose. Can do.
  • 4A to 4F are schematic views showing an example of patterning the electrode of the transparent conductor of the present invention by a photolithography method.
  • the transparent conductor 1 in which the layers 3B are laminated in this order is produced.
  • ultrasonic cleaning for example, ultrasonic cleaning and water washing with pure water are performed several times using a detergent clean-through KS-3030 manufactured by Kao Corporation, and then water is blown off with a spin coater and dried in an oven.
  • a resist film 7 made of a photosensitive resin composition or the like is uniformly coated on the transparent conductor 1.
  • a photosensitive resin composition a negative photosensitive resin composition or a positive photosensitive resin composition can be used.
  • the resist for example, OFPR-800LB manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
  • a coating method it is applied on the transparent conductor 1 by a known method such as micro gravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, etc., and heated by a hot plate, oven or the like. It can be pre-baked in the apparatus. Pre-baking can be performed, for example, using a hot plate or the like in the range of 50 ° C. or higher and 150 ° C. or lower for 30 seconds to 30 minutes.
  • the resist film 7A to be removed in the next step is irradiated with light of about 2 (wavelength 365 nm exposure amount conversion).
  • the exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
  • the exposed transparent conductor is immersed in a developing solution to dissolve the resist film 7A in the region irradiated with light.
  • a developer for positive photoresist “Tokuso SD” series (tetramethylammonium hydroxide) manufactured by Tokuyama Corporation should be used. Can do.
  • the developing method it is preferable to immerse in the developer for 5 seconds to 10 minutes by a method such as showering, dipping or paddle.
  • a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include an aqueous solution containing one or more quaternary ammonium salts such as side and choline.
  • an etching process using the etching solution 10 is performed.
  • a solution containing an inorganic acid or an organic acid is preferable, and formic acid, acetic acid, oxalic acid, citric acid, hydrochloric acid, phosphoric acid, nitric acid and the like can be mentioned, and in particular, oxalic acid Acetic acid and phosphoric acid are preferred.
  • Commercially available products can also be used as the etchant. For example, Pure Etch DE100 (oxalic acid) manufactured by Hayashi Junyaku Kogyo Co., Ltd., “Mixed Solution SEA-5” manufactured by Kanto Chemical Co. (phosphoric acid: 55% by mass, Acetic acid: 30% by mass, water and other components: 15% by mass) and the like can be used.
  • the transparent conductor 1 having the resist film 7 is immersed in an etching solution containing an organic acid or the like, and the electrode unit EU in the insulating region b that is not protected by the resist film 7 is dissolved.
  • the electrode unit EU of the conductive region a protected by 7 is formed as a predetermined patterned electrode (hereinafter also referred to as an electrode pattern).
  • the etching time varies depending on the type of acid to be applied, but is preferably adjusted within a range of 30 to 120 seconds.
  • an etched transparent conductor is used by using, for example, acetone, sodium hydroxide solution, N-300 manufactured by Nagase ChemteX Corp. as a resist film stripping solution, as a resist film stripping solution.
  • the resist film 7 is removed by dipping, and a transparent conductor having a patterned electrode can be produced.
  • the transparent conductor of the present invention having the above-described configuration includes various displays such as a liquid crystal system, a plasma system, an organic electroluminescence system, a field emission system, a touch panel, a mobile phone, electronic paper, various solar cells, and various electroluminescence light control elements. It can preferably be used for substrates of various optoelectronic devices.
  • the surface of the transparent conductor (for example, the surface opposite to the transparent substrate) may be bonded to another member via an adhesive layer or the like.
  • the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer are approximated respectively.
  • reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
  • it is preferable to adjust the admittance coordinates on the surface of the transparent conductor so that the reflectance at a wavelength of 550 nm is 1% or less. This is because the refractive index of the adhesive is generally difficult to adjust largely.
  • the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed. Specifically, it is preferable to adjust the admittance coordinates on the surface of the transparent conductor so that the reflectance at a wavelength of 550 nm is 1% or less.
  • FIG. 5 is a perspective view illustrating an example of a configuration of a touch panel including a transparent conductor having patterned electrodes.
  • the touch panel 21 shown in FIG. 5 is a projected capacitive touch panel.
  • a first transparent electrode unit EU-1 and a second transparent electrode unit EU-2 are arranged in this order on one main surface of the transparent substrates 2-1 and 2-2. Covered with a face plate 13.
  • the first transparent electrode unit EU-1 and the second transparent electrode unit EU-2 are respectively transparent conductors 1 on which the patterned electrodes described with reference to FIGS. 2 and 4A to F are formed. . Therefore, the first transparent electrode unit EU-1 includes the first high refractive index layer 3A, the first sulfidation preventing layer 5A, the transparent metal layer 4, the second sulfidation preventing layer 5B, the second on the transparent substrate 2-1. The high refractive index layer 3B is laminated in this order.
  • the second transparent electrode unit EU-2 has the same configuration.
  • the transparent conductor of the present invention can be applied to various types of touch panel touch sensors (hereinafter also referred to as “touch sensor electrode portions”) in addition to a projected capacitive touch panel.
  • touch sensor electrode portions for example, it can be used in a surface capacitive touch panel, a resistive touch panel, and the like.
  • the compositions of oxides marked with * 1 to * 7 are as shown in Table 3. The layer thickness was adjusted by adjusting the sputtering time or the deposition time.
  • ZnS—SiO 2 First High Refractive Index Layer
  • an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS—SiO 2 was RF (alternating current) sputtered so that The target-substrate distance was 86 mm.
  • the target ZnS—SiO 2 was prepared by mixing SiO 2 with ZnS and sintering. The content rate of the sulfur component contained in the first high refractive index layer was 15 at%.
  • the content of the sulfur component in the first high refractive index layer was 15 at% as a result of measurement using X-ray photoelectron spectroscopy (XPS).
  • the content rate of the sulfur component was similarly confirmed about the following examples.
  • AZO second anti-sulfurization layer
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • AZO was RF sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the PET film on which the second anti-sulfuration layer was produced was subjected to an L-430S-FHS sputtering apparatus manufactured by Anelva, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second.
  • ITO was RF sputtered so that the layer thickness was 46 nm.
  • the deposited film had a target-substrate distance of 86 mm.
  • the target ITO was prepared by mixing ZnS with ITO and sintering it.
  • the content rate of the sulfur component contained in the second high refractive index layer was 0.4 at%.
  • the transparent conductor 1 was produced.
  • a 50 ⁇ m PET film was used as the transparent substrate, and the first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second on the PET film according to the following method.
  • Two anti-sulfurization layers (GZO) / second high refractive index layer (GZO (5.7 mass%)) were laminated in this order.
  • ZnS—SiO 2 First High Refractive Index Layer
  • PET transparent substrate
  • an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS—SiO 2 was RF sputtered so that The target-substrate distance was 86 mm.
  • the target ZnS—SiO 2 was prepared by mixing SiO 2 with ZnS and sintering.
  • the content rate of the sulfur component contained in the first high refractive index layer was 24 at%.
  • first antisulfurization layer (GZO)
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC (direct current) sputtered to a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the PET film on which the first anti-sulfurization layer was formed was made using Anelva L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 2.0 nm / s, and layer thickness 7 Ag was DC sputtered to a thickness of 4 nm.
  • the target-substrate distance was 86 mm.
  • Second anti-sulfurization layer (GZO)
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was DC sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • a transparent conductor 5 was produced in the same manner as the production of the transparent conductor 4 except that the first antisulfurization layer was not provided as shown in Table 1.
  • the transparent conductor 6 was produced in the same manner as the production of the transparent conductor 5 except that the second sulfidation preventing layer was not provided as shown in Table 1.
  • a first high refractive index layer (ZnS) / transparent metal layer (Ag) / second antisulfuration layer (GZO) / second high refractive index on a PET film according to the following method.
  • Layers (AZO) were laminated in this order.
  • first high refractive index layer (ZnS)
  • a vacuum deposition device a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa, and the resistance heating boat was energized and heated. The current heating condition of the resistance heating boat was adjusted, and vapor deposition was performed on the PET film under the condition of a formation rate of 2.0 nm / second to form a first high refractive index layer having a layer thickness of 40 nm.
  • the target ZnS was produced by sintering ZnS.
  • the content rate of the sulfur component contained in the first high refractive index layer was 35 at%.
  • Second anti-sulfurization layer (GZO)
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was DC sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the PET film on which the second sulfidation-preventing layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second, AZO was RF sputtered so that the layer thickness was 46 nm.
  • the deposited film had a target-substrate distance of 86 mm.
  • the target AZO was prepared by mixing AZO with ZnS and sintering.
  • the content rate of the sulfur component contained in the second high refractive index layer was 4 at%.
  • the transparent conductor 10 was produced.
  • a first high refractive index layer (ZnS) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second high refraction is formed on the PET film according to the following method.
  • the rate layer (GZO (10 mass%)) was laminated in this order.
  • first high refractive index layer On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS was RF sputtered so that The target-substrate distance was 86 mm.
  • the target ZnS was produced by sintering ZnS.
  • the content rate of the sulfur component contained in the first high refractive index layer was 45 at%.
  • first antisulfurization layer (GZO)
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • Second high refractive index layer (GZO (10% by mass))
  • the PET film on which the transparent metal layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, layer thickness GZO (10 mass%) was DC sputtered so that the thickness was 46 nm.
  • the deposited film had a target-substrate distance of 86 mm.
  • the target GZO (10 mass%) was prepared by mixing ZnS with GZO and sintering it.
  • the content rate of the sulfur component contained in the second high refractive index layer was 1 at%.
  • the transparent conductor 11 was produced.
  • the first high refractive index layer (ZnS) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second antisulfuration is formed on the PET film according to the following method.
  • Layer (GZO) / second high refractive index layer (TiO 2 ) were laminated in this order.
  • first high refractive index layer On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS was RF sputtered so that The target-substrate distance was 86 mm.
  • the target ZnS was produced by sintering ZnS.
  • the content rate of the sulfur component contained in the first high refractive index layer was 50 at%.
  • first antisulfurization layer (GZO)
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • Second anti-sulfurization layer (GZO)
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was DC sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the PET film on which the second sulfidation-preventing layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second, TiO 2 was RF sputtered so that the layer thickness was 46 nm.
  • the deposited film had a target-substrate distance of 86 mm.
  • the target TiO 2 was prepared by mixing TiO 2 with ZnS and sintering.
  • the content rate of the sulfur component contained in the second high refractive index layer was 4 at%.
  • the transparent conductor 12 was produced.
  • the first high refractive index layer (ZnS) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second antisulfuration is formed on the PET film according to the following method.
  • Layer (GZO) / second high refractive index layer (WO 3 ) were laminated in this order.
  • first high refractive index layer On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS was RF sputtered so that The target-substrate distance was 86 mm.
  • the target ZnS was produced by sintering ZnS.
  • the content rate of the sulfur component contained in the first high refractive index layer was 40 at%.
  • first antisulfurization layer (GZO)
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • Second anti-sulfurization layer (GZO)
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was DC sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the PET film on which the second sulfidation-preventing layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second, WO 3 was RF sputtered to a layer thickness of 46 nm.
  • the deposited film had a target-substrate distance of 86 mm.
  • the target WO 3 was prepared by mixing WO 3 with ZnS and sintering.
  • the content rate of the sulfur component contained in the second high refractive index layer was 9.8 at%. In this way, a transparent conductor 13 was produced.
  • the TiO 2 is a target used in the second high refractive index layer as shown in Table 1, the point of making by mixing the elemental sulfur in the TiO 2, is sintered In the same manner as in the production of the transparent conductor 12, the transparent conductor 17 was produced.
  • a first high refractive index layer (ZnS) / first antisulfuration layer (ZnO) / transparent metal layer (Ag) / second high refraction is formed on the PET film according to the following method.
  • Rate layers (WO 3 ) were laminated in this order.
  • first high refractive index layer On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS was RF sputtered so that The target-substrate distance was 86 mm.
  • the target ZnS was produced by sintering ZnS.
  • the content rate of the sulfur component contained in the first high refractive index layer was 40 at%.
  • first antisulfurization layer (ZnO)
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • ZnO was RF sputtered to a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the PET film on which the transparent metal layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, layer thickness WO 3 was RF sputtered to a thickness of 46 nm.
  • the deposited film had a target-substrate distance of 86 mm.
  • the target WO 3 was prepared by mixing WO 3 with sulfur alone and sintering it.
  • the content rate of the sulfur component contained in the second high refractive index layer was 9.8 at%. In this way, a transparent conductor 18 was produced.
  • the first high refractive index layer (ZnS) / first anti-sulfurization layer (ZnO) / transparent metal layer (Ag) / second anti-sulfurization layer is formed on the PET film according to the following method.
  • Layer (ZnO) / second high refractive index layer (ZrO 2 ) were laminated in this order.
  • first high refractive index layer On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS was RF sputtered so that The target-substrate distance was 86 mm.
  • the target ZnS was produced by sintering ZnS.
  • the content rate of the sulfur component contained in the first high refractive index layer was 43 at%.
  • first antisulfurization layer (ZnO)
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • ZnO was RF sputtered to a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • Second anti-sulfurization layer (ZnO)
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • ZnO was RF sputtered to have a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the PET film on which the second sulfidation-preventing layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second, ZrO 2 was RF sputtered so that the layer thickness was 46 nm.
  • the deposited film had a target-substrate distance of 86 mm.
  • the target ZrO 2 was prepared by mixing and sintering a single element of sulfur in ZrO 2 .
  • the content rate of the sulfur component contained in the second high refractive index layer was 9.8 at%. In this way, a transparent conductor 19 was produced.
  • a 50 ⁇ m PET film was used as the transparent substrate, and the first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second on the PET film according to the following method.
  • a disulfide prevention layer (GZO) / second high refractive index layer (ZnO * 1 ) were laminated in this order.
  • ZnS—SiO 2 First High Refractive Index Layer
  • PET transparent substrate
  • an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS—SiO 2 was RF sputtered so that The target-substrate distance was 86 mm.
  • the target ZnS—SiO 2 was prepared by mixing SiO 2 with ZnS and sintering.
  • the content rate of the sulfur component contained in the first high refractive index layer was 25 at%.
  • first antisulfurization layer (GZO)
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the PET film on which the first anti-sulfurization layer was formed was made using Anelva L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 2.0 nm / s, and layer thickness 7 Ag was DC sputtered to a thickness of 4 nm.
  • the target-substrate distance was 86 mm.
  • Second anti-sulfurization layer (GZO)
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was DC sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the target ZnO * 1 was prepared by mixing ZnS and ITO in ZnO and sintering.
  • the content rate of the sulfur component contained in the second high refractive index layer was 0.5 at%.
  • the transparent conductor 20 was produced.
  • a first high refractive index layer (ZnS—SiO 2 ) / transparent metal layer (Ag) / second high refractive index layer (GZO * 2 ) is formed on the PET film according to the following method. ) Were laminated in this order.
  • ZnS—SiO 2 First High Refractive Index Layer
  • PET transparent substrate
  • an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS—SiO 2 was RF sputtered so that The target-substrate distance was 86 mm.
  • the target ZnS—SiO 2 was prepared by mixing SiO 2 with ZnS and sintering.
  • the content rate of the sulfur component contained in the first high refractive index layer was 25 at%.
  • the PET film on which the first high refractive index layer was formed was Ln430S-FHS manufactured by Anelva, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 2.0 nm / s, and layer thickness. Ag was DC sputtered to a thickness of 7.4 nm. The target-substrate distance was 86 mm.
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a formation rate of 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus.
  • GZO * 2 was DC sputtered so that the layer thickness was 46 nm.
  • the target-substrate distance was 86 mm.
  • the composition of GZO * 2 corresponds to * 2 shown in Table 3. Further, as shown in Table 2, the target GZO * 2 was prepared by mixing ZnS with GZO (5.7 mass%) and sintering it.
  • the content rate of the sulfur component contained in the second high refractive index layer was 4.2 at%.
  • the transparent conductor 21 was produced.
  • transparent conductor 23 In the production of the transparent conductor 21, the material used for the second high refractive index layer is changed to GZO * 4 shown in Table 3 as shown in Table 1, and contained in the second high refractive index layer. A transparent conductor 23 was prepared in the same manner as the transparent conductor 21 except that the content of the sulfur component was 1.8 at%.
  • transparent conductor 24 In the production of the transparent conductor 20, the material used for the second high refractive index layer is changed to GZO * 5 shown in Table 3 as shown in Table 1, and contained in the second high refractive index layer. A transparent conductor 24 was prepared in the same manner as the transparent conductor 20 except that the content of the sulfur component was 0.8 at%.
  • transparent conductor 25 In the production of the transparent conductor 20, as shown in Table 1, the material used for the second high refractive index layer is changed to GZO * 6 shown in Table 3, and is contained in the second high refractive index layer. A transparent conductor 25 was prepared in the same manner as the transparent conductor 20 except that the content of the sulfur component was 0.7 at%.
  • transparent conductor 26 In the production of the transparent conductor 20, as shown in Table 1, the material used for the second high refractive index layer is changed to GZO * 7 shown in Table 3 and contained in the second high refractive index layer. A transparent conductor 26 was prepared in the same manner as the transparent conductor 20 except that the content of the sulfur component was 0.6 at%.
  • a first high refractive index layer (ITO) / transparent metal layer (Ag) / second antisulfuration layer (GZO) / second high refraction is formed on the PET film according to the following method.
  • the rate layer (ITO) was laminated in this order.
  • first high refractive index layer On a transparent substrate (PET), using an Anelva L-430S-FHS sputtering system, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, ITO layer thickness was RF sputtered to a thickness of 46 nm.
  • the target-substrate distance was 86 mm.
  • the target ITO was prepared by mixing ZnS in ITO and sintering it.
  • the content rate of the sulfur component contained in the first high refractive index layer was 0.7 at%.
  • Second anti-sulfurization layer (GZO)
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was DC sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the PET film on which the second sulfidation-preventing layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second, ITO was RF sputtered so that the layer thickness was 46 nm.
  • the deposited film had a target-substrate distance of 86 mm.
  • the target ITO was prepared by mixing ZnS with ITO and sintering it.
  • the content rate of the sulfur component contained in the second high refractive index layer was 0.7 at%. In this manner, a transparent conductor 27 was produced.
  • the first high refractive index layer (ZnO * 1 ) / transparent metal layer (Ag) / second antisulfuration layer (GZO) / second on the PET film according to the following method.
  • a high refractive index layer (ZnO * 1 ) was laminated in this order.
  • ZnO * 1 Formation of the first high refractive index layer (ZnO * 1 )
  • a transparent substrate PET
  • ZnO * 1 was formed at an Ar of 20 sccm, O 2 of 0 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.15 nm / s.
  • RF sputtering was performed so that the layer thickness was 46 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the first high refractive index layer was 0.5 at%.
  • the PET film on which the first high refractive index layer was formed was Ln430S-FHS manufactured by Anelva, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 2.0 nm / s, and layer thickness. Ag was DC sputtered to a thickness of 7.4 nm. The target-substrate distance was 86 mm.
  • Second anti-sulfurization layer (GZO)
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was DC sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • first high refractive index layer (GZO * 2 ))
  • a transparent substrate PET
  • Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, GZO * 2 DC sputtering was performed so that the layer thickness was 46 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the first high refractive index layer was 4.2 at%.
  • first antisulfurization layer (GZO)
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the PET film on which the first anti-sulfurization layer was formed was made using Anelva L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 2.0 nm / s, and layer thickness 7 Ag was DC sputtered to a thickness of 4 nm.
  • the target-substrate distance was 86 mm.
  • Second high refractive index layer (GZO * 2 )
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a formation rate of 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus.
  • GZO * 2 was DC sputtered so that the layer thickness was 46 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 4.2 at%. In this way, a transparent conductor 29 was produced.
  • a first high refractive index layer (GZO * 4 ) / transparent metal layer (Ag) / second high refractive index layer (GZO * 4 ) is formed on the PET film according to the following method. Were stacked in this order.
  • first high refractive index layer (GZO * 4 )) On a transparent substrate (PET), using an Anelva L-430S-FHS sputtering apparatus, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, GZO * 4 DC sputtering was performed so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the first high refractive index layer was 1.8 at%.
  • the PET film on which the first high refractive index layer was formed was Ln430S-FHS manufactured by Anelva, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 2.0 nm / s, and layer thickness. Ag was DC sputtered to a thickness of 7.4 nm. The target-substrate distance was 86 mm.
  • Second high refractive index layer (GZO * 4 )
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a formation rate of 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus.
  • GZO * 4 was DC sputtered so that the layer thickness was 46 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 1.8 at%. In this way, a transparent conductor 31 was produced.
  • Transparent Conductor 32 In the production of the transparent conductor 28, as shown in Table 2, the material used for the first high refractive index layer and the second high refractive index layer is changed to GZO * 5 shown in Table 3, A transparent conductor 32 was produced in the same manner as the production of the transparent conductor 28 except that the content of the sulfur component contained in the refractive index layer and the second high refractive index layer was 0.8 at%.
  • transparent conductor 33 In the production of the transparent conductor 28, as shown in Table 2, the material used for the first high refractive index layer and the second high refractive index layer was changed to GZO * 6 shown in Table 3, A transparent conductor 33 was prepared in the same manner as the transparent conductor 28 except that the content of the sulfur component contained in the refractive index layer and the second high refractive index layer was 0.7 at%.
  • transparent conductor 34 In the production of the transparent conductor 28, as shown in Table 2, the material used for the first high refractive index layer and the second high refractive index layer was changed to GZO * 7 shown in Table 3, A transparent conductor 34 was prepared in the same manner as the transparent conductor 28 except that the content of the sulfur component contained in the refractive index layer and the second high refractive index layer was 0.6 at%.
  • a first high refractive index layer (ZnS) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second antisulfurization layer on a PET film according to the following method (GZO) / second high refractive index layer (ZnO * 1 ) was laminated in this order.
  • first high refractive index layer (ZnS)
  • a vacuum deposition device a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa, and then the resistance heating boat was energized and heated. The current heating condition of the resistance heating boat was adjusted, and vapor deposition was performed on the PET film under the condition of a formation rate of 2.0 nm / second to form a first high refractive index layer having a layer thickness of 35 nm. The content rate of the sulfur component contained in the first high refractive index layer was 39 at%.
  • first antisulfurization layer (GZO)
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 0.5 nm.
  • the target-substrate distance was 86 mm.
  • Second anti-sulfurization layer (GZO)
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was DC sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the first high refractive index layer (ZnS) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second antisulfuration is formed on the PET film according to the following method.
  • Layer (Si) / second high refractive index layer (GZO * 2 ) were laminated in this order.
  • first high refractive index layer (ZnS)
  • a vacuum deposition device a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa, and then the resistance heating boat was energized and heated. The current heating condition of the resistance heating boat was adjusted, and vapor deposition was performed on the PET film under the condition of a formation rate of 2.0 nm / second to form a first high refractive index layer having a layer thickness of 35 nm. The content rate of the sulfur component contained in the first high refractive index layer was 39 at%.
  • first antisulfurization layer (GZO)
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 0.5 nm.
  • the target-substrate distance was 86 mm.
  • Second anti-sulfurization layer (Si) (Formation of second anti-sulfurization layer (Si))
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • Si was RF-sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • Second high refractive index layer (GZO * 2 )
  • the PET film on which the second anti-sulfuring layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus.
  • GZO * 2 was DC sputtered to have a layer thickness of 46 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 4.2 at%. In this way, a transparent conductor 36 was produced.
  • the transparent conductor 35 In the production of the transparent conductor 35, as shown in Table 2, the transparent substrate was changed to a polycarbonate polymer (abbreviation: PC) film (“Elmec R40 # 140 film”, 40 ⁇ m thickness, manufactured by Kaneka), and the second high refractive index layer The transparent conductor 35 is manufactured except that the material used for is changed to GZO * 3 shown in Table 3 and the content of the sulfur component contained in the second high refractive index layer is 2.0 at%. In the same manner, a transparent conductor 37 was produced.
  • PC polycarbonate polymer
  • a first high refractive index layer (ZnS-DC3) / first antisulfurization layer (GZO) / transparent metal layer (Ag) / A second antisulfurization layer (Si) / second high refractive index layer (GZO * 4 ) was laminated in this order.
  • first high refractive index layer ZnS-DC3
  • Ar 20 sccm, O 2 2 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 1 nm / s, and layer thickness 35 nm ZnS-DC3 was DC sputtered.
  • the target-substrate distance was 86 mm.
  • the target, ZnS-DC3, was manufactured by JX Nippon Mining & Metals.
  • the content rate of the sulfur component contained in the first high refractive index layer was 35 at%.
  • first antisulfurization layer (GZO)
  • the PC film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / second using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 0.5 nm.
  • the target-substrate distance was 86 mm.
  • first high refractive index layer (ZnS)
  • a vacuum deposition device a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa, and then the resistance heating boat was energized and heated. The current heating condition of the resistance heating boat was adjusted, and vapor deposition was performed on the COP film under the condition of a formation rate of 2.0 nm / second to form a first high refractive index layer having a layer thickness of 35 nm. The content rate of the sulfur component contained in the first high refractive index layer was 39 at%.
  • first antisulfurization layer (GZO)
  • the COP film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 0.5 nm.
  • the target-substrate distance was 86 mm.
  • the COP film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a formation rate of 0.06 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was DC sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • Second high refractive index layer (GZO * 5 )
  • the COP film on which the second anti-sulfurization layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO * 5 was DC sputtered so that the layer thickness was 46 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 0.8 at%. In this way, a transparent conductor 39 was produced.
  • Transparent Conductor 40 Using a cycloolefin polymer (abbreviation: COP) film (Zeonor Z14, 50 ⁇ m thick, manufactured by Nippon Zeon Co., Ltd.) as the transparent substrate, the first high refractive index layer (ZnS-DC3) / A first antisulfurization layer (GZO) / transparent metal layer (Ag) / second antisulfurization layer (GZO) / second high refractive index layer (GZO * 6 ) were laminated in this order.
  • COP cycloolefin polymer
  • first high refractive index layer ZnS-DC3
  • Ar 20 sccm, O 2 2 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 1 nm / s, and layer thickness 35 nm ZnS-DC3 was DC sputtered.
  • the target-substrate distance was 86 mm.
  • the target, ZnS-DC3, was manufactured by JX Nippon Mining & Metals.
  • the content rate of the sulfur component contained in the first high refractive index layer was 35 at%.
  • first antisulfurization layer (GZO)
  • the COP film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 0.5 nm.
  • the target-substrate distance was 86 mm.
  • the COP film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a formation rate of 0.06 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was DC sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • Second high refractive index layer (GZO * 6 )
  • the COP film on which the second anti-sulfurization layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO * 6 was DC sputtered so that the layer thickness was 46 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 0.7 at%.
  • the transparent conductor 40 was produced.
  • TAC film triacetyl cellulose film made by Konica Minolta, thickness 40 ⁇ m
  • ZnS first high refractive index layer
  • ZnS first anti-sulfurization
  • Layer (GZO) / transparent metal layer (Ag) / second antisulfurization layer (Si) / second high refractive index layer (GZO * 7 ) were laminated in this order.
  • first high refractive index layer On a transparent substrate (TAC), an L-430S-FHS sputtering apparatus manufactured by Anelva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 35 nm ZnS was RF sputtered so that The target-substrate distance was 86 mm.
  • the target ZnS was produced by sintering ZnS.
  • the content rate of the sulfur component contained in the first high refractive index layer was 39 at%.
  • first antisulfurization layer (GZO)
  • the TAC film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 0.5 nm.
  • the target-substrate distance was 86 mm.
  • Second high refractive index layer (GZO * 7 )
  • the TAC film on which the second sulfidation prevention layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO * 7 was DC sputtered so that the layer thickness was 46 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 0.6 at%. In this way, a transparent conductor 41 was produced.
  • a 50 ⁇ m PET film was used as the transparent substrate, and the first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second on the PET film according to the following method.
  • a disulfide prevention layer (GZO) / second high refractive index layer (ZnO) were laminated in this order.
  • ZnS—SiO 2 First High Refractive Index Layer
  • PET transparent substrate
  • an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS—SiO 2 was RF sputtered so that The target-substrate distance was 86 mm.
  • the target ZnS—SiO 2 was prepared by mixing SiO 2 with ZnS and sintering.
  • the content rate of the sulfur component contained in the first high refractive index layer was 25 at%.
  • first antisulfurization layer (GZO)
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 1.0 nm.
  • the target-substrate distance was 86 mm.
  • Second anti-sulfurization layer (GZO)
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was DC sputtered so that the layer thickness was 1.0 nm.
  • the target-substrate distance was 86 mm.
  • the PET film on which the second sulfidation-preventing layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second, ZnO (manufactured by Toshima Seisakusho Co., Ltd.) was RF sputtered so that the layer thickness was 46 nm.
  • the deposited film had a target-substrate distance of 86 mm. In this way, a transparent conductor 42 was produced.
  • a first high refractive index layer (ZnS) / transparent metal layer (Ag) / second high refractive index layer (ZnS) are laminated in this order on the PET film according to the following method. did.
  • first high refractive index layer (ZnS)
  • PET transparent substrate
  • an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS (Toyoshima Seisakusho Co., Ltd.) was RF sputtered so that The target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the first high refractive index layer was 50 at%.
  • the PET film on which the transparent metal layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, layer thickness ZnS (manufactured by Toyoshima Seisakusho Co., Ltd.) was RF sputtered to a thickness of 40 nm.
  • the deposited film had a target-substrate distance of 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 50 at%. In this way, a transparent conductor 44 was produced.
  • a first high refractive index layer (Nb 2 O 5 ) / transparent metal layer (Ag) / second high refractive index layer (IZO) is formed on the PET film according to the following method. The layers were laminated in this order.
  • the first high refractive index layer (ZTO) / transparent metal layer (Ag) / second high refractive index layer (ZTO) are laminated in this order on the PET film according to the following method. did.
  • ZTO first high refractive index layer
  • PET transparent substrate
  • Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZTO (Toyoshima Seisakusho Co., Ltd.) was RF sputtered so that The target-substrate distance was 86 mm.
  • the PET film on which the transparent metal layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, layer thickness ZTO (manufactured by Toshima Seisakusho Co., Ltd.) was RF sputtered so that the thickness was 40 nm.
  • the deposited film had a target-substrate distance of 86 mm. In this way, a transparent conductor 46 was produced.
  • transparent conductor 47 In the production of the transparent conductor 37, the thickness of the second anti-sulfurization layer was changed to 0.5 nm, and the material used for the second high refractive index layer was changed to GZO * 6 as shown in Table 2. A transparent conductor 47 was prepared in the same manner as the transparent conductor 37 except that the content of the sulfur component contained in the second high refractive index layer was 12.0 at%.
  • PET Polyethylene terephthalate
  • ITO indium tin oxide
  • GZO gallium zinc oxide
  • IGZO indium gallium zinc oxide
  • AZO Aluminum Zinc oxide
  • ZTO zinc tin oxide
  • E Mixing and sintering ZnS in ZnO
  • F Sintering by mixing ZnS in GZO
  • G Sintering by mixing ZnS with AZO
  • H Sintering by mixing ZnS with TiO 2
  • the average light absorptance is measured by measuring the average light transmittance and the average light reflectance of the transparent substrate 2 by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate.
  • Average light absorption rate (%) 100- (average light transmittance + average light reflectance) (%) Calculate as The average light transmittance and the average light reflectance can be measured using a spectrophotometer. It measured with the spectrophotometer (U4100; Hitachi High-Technologies company make).
  • Corrosion evaluation The corrosion resistance of the transparent conductors obtained in Examples and Comparative Examples was evaluated. Corrosion resistance was evaluated by the appearance after storing the transparent conductors obtained in Examples or Comparative Examples, two by two in 85 ° C. and 85% Rh for 240 hours. Evaluation was based on the following criteria.
  • the transparent conductors 1 to 41 of the present invention are superior in light transmittance, moisture resistance, and electrical connectivity as compared with the comparative transparent conductors 42 to 47. I understood.
  • Example 2 The transparent conductor shown in Example 2 is different in that an adhesive layer and a third high refractive index layer are provided on the transparent conductor shown in Example 1.
  • the configuration of each transparent conductor is as shown in Table 5. Differences from the first embodiment will be described below.
  • a vacuum deposition apparatus As a vacuum deposition apparatus, a BMC-800T deposition apparatus manufactured by SYNCHRON Co., Ltd. was used. After the vacuum chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa, SiO 2 was deposited on the PET film at a rate of 2.0 nm / second by EB ( Electron beam) was evaporated to form a layer having a thickness of 1 nm.
  • EB Electron beam
  • first high refractive index layer (ZnS)
  • a vacuum deposition device a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa, and then the resistance heating boat was energized and heated. The current heating condition of the resistance heating boat was adjusted, and vapor deposition was performed on the adhesion layer under the condition of a formation rate of 2.0 nm / second to form a first high refractive index layer having a layer thickness of 35 nm. The content rate of the sulfur component contained in the first high refractive index layer was 39 at%.
  • first antisulfurization layer (GZO)
  • the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus.
  • GZO was DC sputtered to a layer thickness of 0.5 nm.
  • the target-substrate distance was 86 mm.
  • Second anti-sulfurization layer (GZO)
  • the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO was DC sputtered so that the layer thickness was 0.5 nm.
  • the target-substrate distance was 86 mm.
  • the steps formation of the first high refractive index layer (ZnS)
  • formation of the second antisulfurization layer (GZO) were produced in the same manner as the transparent conductor 50.
  • Second high refractive index layer (GZO * 2 )
  • the PET film on which the second anti-sulfuring layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus.
  • GZO * 2 was DC sputtered to have a layer thickness of 20 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 4.2 at%.
  • the steps of (formation of adhesion layer (SiO 2 / ZnS—SiO 2 )) to (formation of second anti-sulfurization layer (GZO)) are transparent. It was produced in the same manner as the conductor 50.
  • Second high refractive index layer (GZO * 3 )
  • the PC film on which the second sulfidation preventing layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO * 3 was DC sputtered so that the layer thickness was 20 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 2.0 at%.
  • the step of (third high refractive index layer (ZrO 2 ) formation) was prepared in the same manner as the transparent conductor 50. In this way, a transparent conductor 52 was produced.
  • Second high refractive index layer (GZO * 4 )
  • the PC film on which the second sulfidation preventing layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO * 4 was DC sputtered to have a layer thickness of 20 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 1.8 at%.
  • the step of (formation of third high refractive index layer (SnO 2 ))) was produced in the same manner as the transparent conductor 51. In this way, a transparent conductor 53 was produced.
  • a cycloolefin polymer (COP) film as a transparent substrate, an adhesion layer (ZnS—SiO 2 ) / first high refractive index layer (ZnS) / first antisulfurization layer (GZO) is formed on the COP film according to the following method.
  • / Transparent metal layer (Ag) / second anti-sulfurization layer (GZO) / second high refractive index layer (GZO * 5 ) / third high refractive index layer (ZrO 2 ) were laminated in this order.
  • ZnS-SiO 2 Formation of adhesion layer (ZnS-SiO 2 )
  • ZnS-SiO 2 was formed so that the layer thickness would be 1 nm with Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s. RF sputtered.
  • the target-substrate distance was 86 mm.
  • the steps formation of the first high refractive index layer (ZnS)
  • formation of the second antisulfurization layer (GZO) were produced in the same manner as the transparent conductor 50.
  • Second high refractive index layer (GZO * 5 )
  • the COP film on which the second anti-sulfurization layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO * 5 was DC sputtered to have a layer thickness of 20 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 0.8 at%.
  • the step of (third high refractive index layer (ZrO 2 ) formation) was prepared in the same manner as the transparent conductor 50. In this way, a transparent conductor 54 was produced.
  • the steps of (formation of adhesion layer (SiO 2 / ZnS—SiO 2 )) to (formation of second anti-sulfurization layer (GZO)) are transparent. It was produced in the same manner as the conductor 50.
  • Second high refractive index layer (GZO * 6 )
  • the COP film on which the second anti-sulfurization layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO * 6 was DC sputtered to have a layer thickness of 20 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 0.7 at%.
  • the step of (third high refractive index layer (SnO 2 ) formation) was prepared in the same manner as the transparent conductor 51. In this way, a transparent conductor 55 was produced.
  • the steps of (formation of adhesion layer (ZnS—SiO 2 )) to (formation of second anti-sulfurization layer (GZO)) are as follows. It produced similarly.
  • Second high refractive index layer (GZO * 7 )
  • the TAC film on which the second sulfidation prevention layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva.
  • GZO * 7 was DC sputtered to have a layer thickness of 20 nm.
  • the target-substrate distance was 86 mm.
  • the content rate of the sulfur component contained in the second high refractive index layer was 0.6 at%.
  • the step of (third high refractive index layer (SnO 2 ) formation) was prepared in the same manner as the transparent conductor 51. In this way, a transparent conductor 56 was produced.
  • the transparent conductor 57 in the steps of (adhesion layer (SiO 2 / ZnS—SiO 2 ) formation) to (third high refractive index layer (ZrO 2 ) formation), except for the formation of the transparent metal layer, It produced similarly to the transparent conductor 50.
  • the transparent conductor 58 In the transparent conductor 58, the steps of (formation of the adhesion layer (SiO 2 )) to (formation of the third high refractive index layer (SnO 2 )), except for the formation of the transparent metal layer, It produced similarly.
  • the layer thickness of Ag-Bi (manufactured by Kobelco Research Institute, Inc.) is 6.0 nm at an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.7 nm / s. DC sputtering was performed. The target-substrate distance was 86 mm. In this way, a transparent conductor 58 was produced.
  • the present invention is used in the field of various optoelectronic devices such as liquid crystal, plasma, organic electroluminescence, field emission display, touch panel, mobile phone, electronic paper, various solar cells, various electroluminescence dimming elements there is a possibility.

Abstract

This invention addresses the problem of providing the following: a transparent conductor whereby electrical connectivity between a circuit board and a transparent metal layer that exhibits a high transmittance and resists moisture well is improved; and a touchscreen containing said transparent conductor. Said transparent conductor (1) comprises, at least, a transparent substrate (2), a first high-refractive-index layer (3A), a transparent metal layer (4), and a second high-refractive-index layer (3B), in that order, and is characterized in that: the transparent metal layer consists primarily of silver; the first high-refractive-index layer (3A) and the second high-refractive-index layer (3B) each contain either a dielectric material or an oxide-semiconductor material; the refractive indices of the first high-refractive-index layer (3A) and the second high-refractive-index layer (3B) are higher than that of the transparent substrate (2) with respect to light having a wavelength of 570 nm; the first high-refractive-index layer (3A) contains a sulfur component; and the second high-refractive-index layer (3B) contains a sulfur component in an amount between 0.1 and 10 at.%.

Description

透明導電体及びタッチパネルTransparent conductor and touch panel
 本発明は、透明導電体及びタッチパネルに関する。より詳しくは、高い光透過率及び高い耐湿性を有する透明金属層と回路基板との電気的な接続が改良された透明導電体及び当該透明導電体を具備するタッチパネルに関する。 The present invention relates to a transparent conductor and a touch panel. More specifically, the present invention relates to a transparent conductor with improved electrical connection between a transparent metal layer having high light transmittance and high moisture resistance and a circuit board, and a touch panel including the transparent conductor.
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置、タッチパネル、太陽電池等の各種装置に透明導電体が使用されている。 In recent years, transparent conductors have been used in various devices such as liquid crystal displays, plasma displays, display devices such as inorganic and organic EL (electroluminescence) displays, touch panels, and solar cells.
 タッチパネル型の表示装置等では、表示素子の画像表示面上に、透明導電体を含む配線が配置される。したがって、透明導電体には、光の透過性が高いことが求められる。このような各種表示装置には、光透過性の高いITOを用いた透明導電体が多用されている。 In a touch panel type display device or the like, wiring including a transparent conductor is disposed on the image display surface of the display element. Therefore, the transparent conductor is required to have high light transmittance. In such various display devices, a transparent conductor using ITO having a high light transmittance is often used.
 近年、静電容量方式のタッチパネル表示装置が開発され、透明導電体の表面電気抵抗をさらに低くすることが求められている。しかし、従来のITO膜では、表面電気抵抗を十分に下げられないという問題があった。 In recent years, a capacitive touch panel display device has been developed, and it is required to further reduce the surface electrical resistance of the transparent conductor. However, the conventional ITO film has a problem that the surface electric resistance cannot be sufficiently lowered.
 そこで、銀を蒸着して形成する層を透明金属層(以下、Ag層ともいう。)に用いることが検討されている(例えば、特許文献1参照。)。また、透明導電体の光透過性を高めるため、Ag層を屈折率の高い膜(例えば、Nb(酸化ニオブ)、IZO(インジウム・亜鉛酸化物)、ICO(インジウム・セリウム酸化物)、a-GIO(ガリウム・インジウム酸化物)等からなる膜)で挟み込むことも提案されている(例えば、非特許文献1参照。)。さらに、Ag層を、硫化亜鉛を含有する層(以下、ZnS層又は硫化亜鉛含有層ともいう。)で挟み込むことが提案されている(例えば、非特許文献2参照。)。 Then, using the layer formed by vapor-depositing silver for a transparent metal layer (henceforth Ag layer) is examined (for example, refer patent document 1). In order to increase the light transmittance of the transparent conductor, the Ag layer is formed of a film having a high refractive index (for example, Nb 2 O 5 (niobium oxide), IZO (indium / zinc oxide), ICO (indium / cerium oxide)). And a-GIO (a film made of gallium / indium oxide) or the like) (see Non-Patent Document 1, for example). Further, it has been proposed to sandwich the Ag layer with a layer containing zinc sulfide (hereinafter also referred to as a ZnS layer or a zinc sulfide-containing layer) (see, for example, Non-Patent Document 2).
 しかし、非特許文献2に示されるように、酸化ニオブやIZO等の誘電体層でAg層が挟み込まれた透明導電体では、耐湿性が十分でなかった。その結果、高湿度環境下で透明導電体を使用すると、Ag層が腐食しやすい等の問題があった。 However, as shown in Non-Patent Document 2, a transparent conductor in which an Ag layer is sandwiched between dielectric layers such as niobium oxide and IZO has not been sufficiently moisture-resistant. As a result, when a transparent conductor is used in a high humidity environment, there is a problem that the Ag layer is easily corroded.
 また、Ag層がZnS層に挟み込まれた透明導電体では、透明導電体の耐湿性が十分に高いものの、Ag層を形成する際、若しくはZnS層を形成する際に、銀が硫化されて硫化銀が生じやすい。その結果、透明導電体の光透過性が低くなるという問題があった。 Further, in the transparent conductor in which the Ag layer is sandwiched between the ZnS layers, although the moisture resistance of the transparent conductor is sufficiently high, when the Ag layer is formed or the ZnS layer is formed, silver is sulfided and sulfided. Silver is likely to occur. As a result, there is a problem that the light transmittance of the transparent conductor is lowered.
特開2007-250430号公報JP 2007-250430 A
 本発明は、上記問題・状況に鑑みてなされたものである。その解決課題は、高い光透過率及び高い耐湿性を有する透明金属層と回路基板との電気的な接続が改良された透明導電体及び当該透明導電体を具備するタッチパネルを提供することである。 The present invention has been made in view of the above problems and situations. The problem to be solved is to provide a transparent conductor having improved electrical connection between a transparent metal layer having high light transmittance and high moisture resistance and a circuit board, and a touch panel including the transparent conductor.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、高屈折率層が誘電性材料又は酸化物半導体材料を含有し、透明基板の屈折率よりも高く、さらに所定範囲内の含有率で硫黄成分を含有することが有効であることを見いだし、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above problems, the present inventor, in the process of examining the cause of the above problems, the high refractive index layer contains a dielectric material or an oxide semiconductor material, higher than the refractive index of the transparent substrate, The inventors have found that it is effective to contain a sulfur component at a content within a predetermined range, and have reached the present invention.
That is, the said subject which concerns on this invention is solved by the following means.
 1.少なくとも、透明基板、第1高屈折率層、透明金属層及び第2高屈折率層をこの順に有する透明導電体であって、
 前記透明金属層が、銀を主成分として含有し、
 前記第1高屈折率層及び第2高屈折率層が、それぞれ、誘電性材料又は酸化物半導体材料を含有し、
 波長570nmの光に対して、前記第1高屈折率層及び第2高屈折率層の屈折率が、前記透明基板の屈折率よりも高く、
 前記第1高屈折率層が、硫黄成分を含有し、かつ、
 前記第2高屈折率層が、硫黄成分を0.1~10at%の範囲内で含有する
 ことを特徴とする透明導電体。
1. A transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order;
The transparent metal layer contains silver as a main component,
The first high refractive index layer and the second high refractive index layer each contain a dielectric material or an oxide semiconductor material;
For light with a wavelength of 570 nm, the refractive index of the first high refractive index layer and the second high refractive index layer is higher than the refractive index of the transparent substrate,
The first high refractive index layer contains a sulfur component, and
The transparent conductor, wherein the second high refractive index layer contains a sulfur component in a range of 0.1 to 10 at%.
 2.前記第1高屈折率層が含有する硫黄成分が、硫化亜鉛に由来するものであることを特徴とする第1項に記載の透明導電体。 2. 2. The transparent conductor according to item 1, wherein the sulfur component contained in the first high refractive index layer is derived from zinc sulfide.
 3.前記第2高屈折率層が含有する硫黄成分が、硫化亜鉛に由来するものであることを特徴とする第1項又は第2項に記載の透明導電体。 3. 3. The transparent conductor according to item 1 or 2, wherein the sulfur component contained in the second high refractive index layer is derived from zinc sulfide.
 4.前記第1高屈折率層が、二酸化ケイ素を含有することを特徴とする第1項から第3項までのいずれか一項に記載の透明導電体。 4. The transparent conductor according to any one of Items 1 to 3, wherein the first high refractive index layer contains silicon dioxide.
 5.前記第2高屈折率層が、チタン(Ti)、インジウム(In)、亜鉛(Zn)、セリウム(Ce)、タングステン(W)、ガリウム(Ga)、スズ(Sn)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タンタル(Ta)、アルミニウム(Al)、ビスマス(Bi)、ゲルマニウム(Ge)からなる群から選ばれる少なくとも1種の元素を含有する金属酸化物を含有することを特徴とする第1項から第4項までのいずれか一項に記載の透明導電体。 5. The second high refractive index layer is made of titanium (Ti), indium (In), zinc (Zn), cerium (Ce), tungsten (W), gallium (Ga), tin (Sn), hafnium (Hf), zirconium. Containing a metal oxide containing at least one element selected from the group consisting of (Zr), niobium (Nb), tantalum (Ta), aluminum (Al), bismuth (Bi), and germanium (Ge). 5. The transparent conductor according to any one of items 1 to 4, which is characterized.
 6.前記第1高屈折率層と前記透明金属層の間に、さらに亜鉛成分を含有した硫化防止層が設けられていることを特徴とする第1項から第5項までのいずれか一項に記載の透明導電体。 6. 6. The sulfidation prevention layer further containing a zinc component is provided between the first high refractive index layer and the transparent metal layer. Transparent conductor.
 7.前記第2高屈折率層と前記透明金属層の間に、さらに亜鉛成分を含有した硫化防止層が設けられていることを特徴とする第1項から第6項までのいずれか一項に記載の透明導電体。 7. The sulfidation prevention layer further containing a zinc component is provided between the second high refractive index layer and the transparent metal layer, wherein any one of items 1 to 6 is provided. Transparent conductor.
 8.前記透明金属層が、所定の形状にパターニングされていることを特徴とする第1項から第7項までのいずれか一項に記載の透明導電体。 8. The transparent conductor according to any one of claims 1 to 7, wherein the transparent metal layer is patterned into a predetermined shape.
 9.第1項から第8項までのいずれか一項に記載の透明導電体が具備されていることを特徴とするタッチパネル。 9. A touch panel comprising the transparent conductor according to any one of items 1 to 8.
 本発明の上記手段により、高い光透過率及び高い耐湿性を有する透明金属層と回路基板との電気的な接続が改良された透明導電体及び当該透明導電体を具備するタッチパネルを提供することができる。 By the above means of the present invention, there is provided a transparent conductor in which electrical connection between a transparent metal layer having high light transmittance and high moisture resistance and a circuit board is improved, and a touch panel including the transparent conductor. it can.
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 前述のように、透明金属層とZnSを含有する層とが隣接して形成されると、金属硫化物が生成しやすく、透明導電体の光透過性が低下しやすいとの問題があった。金属硫化物は、以下のように生成すると推察される。
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
As described above, when the transparent metal layer and the ZnS-containing layer are formed adjacent to each other, there is a problem that metal sulfide is easily generated and the light transmittance of the transparent conductor is likely to be lowered. The metal sulfide is presumed to be produced as follows.
 少なくとも硫化亜鉛を含有する層(以下、硫化亜鉛含有層ともいう。)として第1高屈折率層上にスパッタ法等の気相成膜法で透明金属層を形成する場合、硫化亜鉛含有層中の未反応の硫黄成分が、透明金属層の材料(金属材料)によって層形成の雰囲気中に弾き出される。そして、弾き出された硫黄成分と金属とが反応し、金属硫化物が硫化亜鉛含有層上に堆積する。また、硫化亜鉛含有層と透明金属層とを連続的に形成する場合、硫化亜鉛含有層の層形成の雰囲気に含まれる硫黄成分が透明金属層雰囲気内に残存する。そして、この硫黄成分と透明金属層由来の金属とが反応し、金属硫化物が硫化亜鉛を含有する第1高屈折率層上に堆積する。 When a transparent metal layer is formed on the first high refractive index layer as a layer containing at least zinc sulfide (hereinafter also referred to as a zinc sulfide-containing layer) by a vapor deposition method such as sputtering, the zinc sulfide-containing layer The unreacted sulfur component is expelled into the layer formation atmosphere by the transparent metal layer material (metal material). Then, the ejected sulfur component reacts with the metal, and metal sulfide is deposited on the zinc sulfide-containing layer. Moreover, when forming a zinc sulfide content layer and a transparent metal layer continuously, the sulfur component contained in the atmosphere of layer formation of a zinc sulfide content layer remains in a transparent metal layer atmosphere. And this sulfur component and the metal derived from a transparent metal layer react, and a metal sulfide deposits on the 1st high refractive index layer containing a zinc sulfide.
 一方、透明金属層上に第2高屈折率層(硫化亜鉛含有層)を形成する場合、透明金属層中の金属が、第2高屈折率層の材料によって、層形成の雰囲気中に弾き出される。そして、弾き出された金属と硫黄成分とが反応し、金属硫化物が透明金属層表面に堆積する。さらに、透明金属層の表面と、層形成の雰囲気中の硫黄成分とが接触することでも、透明金属層表面に金属硫化物が生成する。 On the other hand, when the second high refractive index layer (zinc sulfide-containing layer) is formed on the transparent metal layer, the metal in the transparent metal layer is expelled into the layer formation atmosphere by the material of the second high refractive index layer. . The ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal layer. Furthermore, a metal sulfide is generated on the surface of the transparent metal layer also when the surface of the transparent metal layer comes into contact with the sulfur component in the layer forming atmosphere.
 そこで、第1高屈折率層に含有される硫黄成分の含有率を所定範囲にすることにより、第1高屈折率層と透明金属層とを連続的に形成したとしても、第1高屈折率層の層形成の雰囲気に含まれる硫黄成分が、第1硫化防止層の構成成分と反応したり、第1硫化防止層の構成成分に吸着される。したがって、透明金属層を形成する雰囲気には硫黄が含まれ難くなり、金属硫化物の生成が抑制されると推察される。 Therefore, even if the first high refractive index layer and the transparent metal layer are continuously formed by setting the content ratio of the sulfur component contained in the first high refractive index layer to a predetermined range, the first high refractive index. The sulfur component contained in the layer forming atmosphere of the layer reacts with the component of the first antisulfurization layer or is adsorbed by the component of the first antisulfuration layer. Therefore, it is presumed that the atmosphere in which the transparent metal layer is formed does not easily contain sulfur, and the generation of metal sulfide is suppressed.
 さらに、本発明に係る透明金属層では、第1高屈折率層上に、第1硫化防止層が積層されることが好ましい。当該構成では、第1高屈折率層が第1硫化防止層で保護されるため、透明金属層を形成する際に第1高屈折率層中の硫黄成分が弾き出され難いものと推察される。 Furthermore, in the transparent metal layer according to the present invention, it is preferable that the first antisulfurization layer is laminated on the first high refractive index layer. In the said structure, since a 1st high refractive index layer is protected by a 1st sulfurization prevention layer, when forming a transparent metal layer, it is guessed that the sulfur component in a 1st high refractive index layer is hard to be expelled.
 また、高屈折率層を設けることにより、銀と硫黄原子の親和性が強くなり、かつ水の透過性を妨げるため銀の腐食が防止され、透明導電体の耐湿性を向上させることができるものと考えられる。
 さらに、第1高屈折率層が、硫黄成分を含有し、かつ、第2高屈折率層が、硫黄成分を0.1~10at%の範囲内で含有することにより、透明金属層の湿気による劣化を好適に防ぐことができ、高い導電性を維持することができると推察している。
In addition, by providing a high refractive index layer, the affinity between silver and sulfur atoms is strengthened, and since water permeability is hindered, corrosion of silver can be prevented and the moisture resistance of the transparent conductor can be improved. it is conceivable that.
Furthermore, the first high refractive index layer contains a sulfur component, and the second high refractive index layer contains the sulfur component in a range of 0.1 to 10 at%, thereby causing moisture of the transparent metal layer. It is assumed that deterioration can be suitably prevented and high conductivity can be maintained.
本発明の透明導電体の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the transparent conductor of the present invention 本発明の透明導電体の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the transparent conductor of the present invention 本発明の透明導電体の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the transparent conductor of the present invention 本発明の透明導電体の導通領域及び絶縁領域からなるパターンの一例を示す模式図The schematic diagram which shows an example of the pattern which consists of a conduction | electrical_connection area | region and an insulation area | region of the transparent conductor of this invention. 銀層の厚さと光吸収の関係を示す一例An example of the relationship between silver layer thickness and light absorption 本発明の透明導電体の電極をフォトリソグラフィー法でパターニングする一例を示す模式図The schematic diagram which shows an example which patterns the electrode of the transparent conductor of this invention by the photolithographic method 本発明の透明導電体の電極をフォトリソグラフィー法でパターニングする一例を示す模式図The schematic diagram which shows an example which patterns the electrode of the transparent conductor of this invention by the photolithographic method 本発明の透明導電体の電極をフォトリソグラフィー法でパターニングする一例を示す模式図The schematic diagram which shows an example which patterns the electrode of the transparent conductor of this invention by the photolithographic method 本発明の透明導電体の電極をフォトリソグラフィー法でパターニングする一例を示す模式図The schematic diagram which shows an example which patterns the electrode of the transparent conductor of this invention by the photolithographic method 本発明の透明導電体の電極をフォトリソグラフィー法でパターニングする一例を示す模式図The schematic diagram which shows an example which patterns the electrode of the transparent conductor of this invention by the photolithographic method 本発明の透明導電体の電極をフォトリソグラフィー法でパターニングする一例を示す模式図The schematic diagram which shows an example which patterns the electrode of the transparent conductor of this invention by the photolithographic method パターニングされた電極を有する透明導電体を具備したタッチパネルの構成の一例を示す斜視図A perspective view showing an example of composition of a touch panel provided with a transparent conductor which has a patterned electrode
 本発明の透明導電体は、少なくとも、透明基板、第1高屈折率層、透明金属層及び第2高屈折率層をこの順に有する透明導電体であって、前記透明金属層が、銀を主成分として含有し、前記第1高屈折率層及び第2高屈折率層が、それぞれ、誘電性材料又は酸化物半導体材料を含有し、波長570nmの光に対して、前記第1高屈折率層及び第2高屈折率層の屈折率が、前記透明基板の屈折率よりも高く、前記第1高屈折率層が、硫黄成分を含有し、かつ、前記第2高屈折率層が、硫黄成分を0.1~10at%の範囲内で含有することを特徴とする。この特徴は、請求項1から請求項9までの請求項に係る発明に共通する技術的特徴である。 The transparent conductor of the present invention is a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order, and the transparent metal layer mainly contains silver. And the first high refractive index layer and the second high refractive index layer each contain a dielectric material or an oxide semiconductor material, and the first high refractive index layer with respect to light having a wavelength of 570 nm. And the refractive index of the second high refractive index layer is higher than the refractive index of the transparent substrate, the first high refractive index layer contains a sulfur component, and the second high refractive index layer contains a sulfur component. In the range of 0.1 to 10 at%. This feature is a technical feature common to the inventions according to claims 1 to 9.
 また、本発明の効果発現の観点から、前記第1高屈折率層が含有する硫黄成分が、硫化亜鉛に由来するものであることが好ましい。 Further, from the viewpoint of manifesting the effect of the present invention, it is preferable that the sulfur component contained in the first high refractive index layer is derived from zinc sulfide.
 また、本発明の効果発現の観点から、前記第2高屈折率層が含有する硫黄成分が、硫化亜鉛に由来するものであることが好ましい。 Further, from the viewpoint of manifesting the effects of the present invention, it is preferable that the sulfur component contained in the second high refractive index layer is derived from zinc sulfide.
 また、前記第1高屈折率層が、二酸化ケイ素を含有することが好ましい。これにより、第1高屈折率層を構成する膜がアモルファス状になり割れに強くフレキシブル性を高めることができる。 Further, it is preferable that the first high refractive index layer contains silicon dioxide. Thereby, the film | membrane which comprises a 1st high refractive index layer becomes amorphous form, and it can resist a crack, and can improve flexibility.
 また、本発明の透明導電体は、前記第2高屈折率層が、チタン(Ti)、インジウム(In)、亜鉛(Zn)、セリウム(Ce)、タングステン(W)、ガリウム(Ga)、スズ(Sn)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タンタル(Ta)、アルミニウム(Al)、ビスマス(Bi)、ゲルマニウム(Ge)からなる群から選ばれる少なくとも1種の元素を含有する金属酸化物を含有することが好ましい。これにより、透明金属層と外部回路を接続するに足る導電性を第2高屈折率層に確保することができる。 In the transparent conductor according to the present invention, the second high refractive index layer may be titanium (Ti), indium (In), zinc (Zn), cerium (Ce), tungsten (W), gallium (Ga), tin. At least one element selected from the group consisting of (Sn), hafnium (Hf), zirconium (Zr), niobium (Nb), tantalum (Ta), aluminum (Al), bismuth (Bi), and germanium (Ge). It is preferable to contain the metal oxide to contain. As a result, the second high refractive index layer can have sufficient conductivity to connect the transparent metal layer and the external circuit.
 本発明の実施態様としては、前記第1高屈折率層と前記透明金属層の間に、さらに亜鉛成分を含有した硫化防止層が設けられていることが好ましい。これにより、透明金属層に含有される銀と、第1高屈折率層に含有される硫黄との反応を抑制することができるためである。 As an embodiment of the present invention, it is preferable that an antisulfurization layer containing a zinc component is further provided between the first high refractive index layer and the transparent metal layer. This is because the reaction between silver contained in the transparent metal layer and sulfur contained in the first high refractive index layer can be suppressed.
 また、前記第2高屈折率層と前記透明金属層の間に、さらに亜鉛成分を含有した硫化防止層が設けられていることが好ましい。透明金属層に含有される銀と、第2高屈折率層に含有される硫黄との反応を抑制することができるためである。 Further, it is preferable that an antisulfurization layer containing a zinc component is further provided between the second high refractive index layer and the transparent metal layer. This is because the reaction between silver contained in the transparent metal layer and sulfur contained in the second high refractive index layer can be suppressed.
 また、前記透明金属層が、所定の形状にパターニングされていることが好ましい。これにより、導電性を向上させることができるためである。 Further, it is preferable that the transparent metal layer is patterned into a predetermined shape. This is because the conductivity can be improved.
 また、本発明の透明導電体は、タッチパネルに好適に具備され得る。 Further, the transparent conductor of the present invention can be suitably provided in a touch panel.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《透明導電体の基本的な構成》
 図1A~Cは、本発明の透明導電体の構成の一例を示す概略断面図である。
 本発明の透明導電体1は、少なくとも、透明基板2、第1高屈折率層3A、透明金属層4及び第2高屈折率層3Bをこの順に有することを特徴とする。
《Basic structure of transparent conductor》
1A to 1C are schematic sectional views showing an example of the configuration of the transparent conductor of the present invention.
The transparent conductor 1 of the present invention has at least a transparent substrate 2, a first high refractive index layer 3A, a transparent metal layer 4, and a second high refractive index layer 3B in this order.
 図1Aでは、第1高屈折率層3Aと第2高屈折率層3Bとの間に透明金属層4が設けられている。このように、硫黄成分を含有した高屈折率層を透明金属層4に隣接して設けると、透明金属層4中の銀原子とZnSの硫黄原子との親和性が高いため、銀原子のマイグレーションが抑えられ、薄膜で均一な透明金属層4を得ることができる。かつ、この銀薄膜は安定であるため、耐湿性にも優れている。 In FIG. 1A, a transparent metal layer 4 is provided between the first high refractive index layer 3A and the second high refractive index layer 3B. Thus, when a high refractive index layer containing a sulfur component is provided adjacent to the transparent metal layer 4, the silver atoms in the transparent metal layer 4 and the sulfur atoms of ZnS have a high affinity. The transparent metal layer 4 can be obtained with a thin film. And since this silver thin film is stable, it is excellent also in moisture resistance.
 また、図1Bでは、透明金属層4と前記第1高屈折率層3Aの間に第1硫化防止層5Aが設けられている。このような構成とすることで、亜鉛成分を含有した第1硫化防止層5Aを透明金属層4に隣接して設けると、透明金属層中の銀が高屈折率層に含まれる硫黄により硫化されることを抑えることができる。 In FIG. 1B, a first sulfidation preventing layer 5A is provided between the transparent metal layer 4 and the first high refractive index layer 3A. With this configuration, when the first sulfurization preventing layer 5A containing a zinc component is provided adjacent to the transparent metal layer 4, silver in the transparent metal layer is sulfided by sulfur contained in the high refractive index layer. Can be suppressed.
 図1Cでは、さらに透明金属層4と第2高屈折率層3Bの間にも第2硫化防止層5Bが設けられている。このような構成とすることで、亜鉛成分を含有した第2硫化防止層5Bを透明金属層4に隣接して設けると、透明金属層中の銀が高屈折率層に含まれる硫黄により硫化されることをさらに抑えることができる。 In FIG. 1C, a second antisulfurization layer 5B is also provided between the transparent metal layer 4 and the second high refractive index layer 3B. With this configuration, when the second sulfurization preventing layer 5B containing the zinc component is provided adjacent to the transparent metal layer 4, silver in the transparent metal layer is sulfided by sulfur contained in the high refractive index layer. This can be further suppressed.
 本発明の透明導電体1では、図1A~Cで示すように、透明金属層4が透明基板2の全面に積層されていてもよいが、図2に示すように、例えば、第1高屈折率層3A、第1硫化防止層5A、透明金属層4、第2高屈折率層3Bから構成される透明電極ユニットEUが所望の形状にパターニングされていることが好ましい。
 本発明の透明導電体1において、透明電極ユニットEUが積層されている領域aが、電気が導通する領域(以下、「導通領域」とも称する。)である。一方、図2に示されるように、透明電極ユニットEUを有していない領域bが絶縁領域である。
In the transparent conductor 1 of the present invention, the transparent metal layer 4 may be laminated on the entire surface of the transparent substrate 2 as shown in FIGS. 1A to 1C. For example, as shown in FIG. It is preferable that the transparent electrode unit EU including the index layer 3A, the first antisulfurization layer 5A, the transparent metal layer 4, and the second high refractive index layer 3B is patterned into a desired shape.
In the transparent conductor 1 of the present invention, the region a where the transparent electrode unit EU is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”). On the other hand, as shown in FIG. 2, the region b that does not have the transparent electrode unit EU is an insulating region.
 導通領域a及び絶縁領域bからなるパターンは、透明導電体1の用途に応じて、適宜選択される。静電方式のタッチパネルに適用するパターンの詳細については、後述する。 The pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 1. Details of the pattern applied to the electrostatic touch panel will be described later.
 また、本発明の透明導電体1には、透明基板2、第1高屈折率層3A、第1硫化防止層5A、透明金属層4、第2硫化防止層5B及び第2高屈折率層3Bの他に、必要に応じて公知の機能性層を設けてもよい。 Further, the transparent conductor 1 of the present invention includes a transparent substrate 2, a first high refractive index layer 3A, a first antisulfurization layer 5A, a transparent metal layer 4, a second antisulfurization layer 5B, and a second high refractive index layer 3B. In addition, a known functional layer may be provided as necessary.
 本発明の透明導電体1に含まれる層は、透明基板2を除いて、いずれも無機材料からなる層であることが好ましい。例えば、第2高屈折率層3B上に有機樹脂からなる接着層が積層されていたとしても、透明基板2から第2高屈折率層3Bまでの積層体が、本発明の透明導電体1であると定義する。 The layers included in the transparent conductor 1 of the present invention are preferably layers made of an inorganic material except for the transparent substrate 2. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 3B, the laminated body from the transparent substrate 2 to the second high refractive index layer 3B is the transparent conductor 1 of the present invention. Define that there is.
 《透明導電体の各構成要素》
 本発明の透明導電体は、少なくとも、透明基板2、第1高屈折率層3A、透明金属層4及び第2高屈折率層3Bをこの順に有する透明導電体1であって、第1高屈折率層3A及び第2高屈折率層3Bが、それぞれ、誘電性材料又は酸化物半導体材料を含有し、波長570nmの光に対して、第1高屈折率層3A及び第2高屈折率層3Bの屈折率が、透明基板2の屈折率よりも高く、第1高屈折率層3Aが、硫黄成分を含有し、かつ、第2高屈折率層3Bが、硫黄成分を0.1~10at%の範囲内で含有することを特徴とする。さらに、第1高屈折率層3Aが、硫黄成分を0.1~50at%の範囲内で含有することが好ましく、第2高屈折率層3Bが、硫黄成分を0.1~5at%の範囲内で含有することがより好ましい。
 さらには、第1高屈折率層3Aと透明金属層4との間又は/及び第2高屈折率層3Bと透明金属層4との間に、第1硫化防止層5A、第2硫化防止層5Bを有していることが好ましい態様である。
<< Each component of transparent conductor >>
The transparent conductor of the present invention is a transparent conductor 1 having at least a transparent substrate 2, a first high refractive index layer 3A, a transparent metal layer 4, and a second high refractive index layer 3B in this order, and the first high refractive index. The refractive index layer 3A and the second high refractive index layer 3B each contain a dielectric material or an oxide semiconductor material, and the first high refractive index layer 3A and the second high refractive index layer 3B with respect to light having a wavelength of 570 nm. Is higher than the refractive index of the transparent substrate 2, the first high refractive index layer 3 A contains a sulfur component, and the second high refractive index layer 3 B contains 0.1 to 10 at% of the sulfur component. It is contained within the range. Further, the first high refractive index layer 3A preferably contains a sulfur component within a range of 0.1 to 50 at%, and the second high refractive index layer 3B contains a sulfur component within a range of 0.1 to 5 at%. It is more preferable to contain within.
Further, between the first high refractive index layer 3A and the transparent metal layer 4 and / or between the second high refractive index layer 3B and the transparent metal layer 4, the first antisulfurization layer 5A and the second antisulfurization layer. It is a preferable aspect to have 5B.
 〔透明基板〕
 本発明の透明導電体1に適用可能な透明基板2としては、各種表示デバイスの透明基板に適用されている材料を用いることができる。
 透明基板2は、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース(略称:TAC)、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えば、パンライト、マルチロン(以上、帝人社製))、シクロオレフィン樹脂(例えば、ゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えば、ポリメチルメタクリレート、アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(略称:PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN))、ポリエーテルスルホン樹脂、アクリロニトリル・ブタジエン・スチレン樹脂(略称:ABS樹脂)/アクリロニトリル・スチレン樹脂(略称:AS樹脂)、メチルメタクリレート・ブタジエン・スチレン樹脂(略称:MBS樹脂)、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/エチレンビニルアルコール樹脂(略称:EVOH)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムでありうる。透明基板2が透明樹脂フィルムである場合、当該フィルムには2種以上の樹脂が含まれてもよい。
[Transparent substrate]
As the transparent substrate 2 applicable to the transparent conductor 1 of the present invention, materials applied to transparent substrates of various display devices can be used.
The transparent substrate 2 is a glass substrate, cellulose ester resin (for example, triacetylcellulose (abbreviation: TAC), diacetylcellulose, acetylpropionylcellulose, etc.), polycarbonate resin (for example, Panlite, Multilon (above, manufactured by Teijin Limited)). , Cycloolefin resins (for example, ZEONOR (manufactured by ZEON CORPORATION), ARTON (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resins (for example, polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex) (Manufactured by Sumitomo Chemical Co., Ltd.)), polyimide, phenol resin, epoxy resin, polyphenylene ether (abbreviation: PPE) resin, polyester resin (for example, polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN)), polyether Ruhon resin, acrylonitrile / butadiene / styrene resin (abbreviation: ABS resin) / acrylonitrile / styrene resin (abbreviation: AS resin), methyl methacrylate / butadiene / styrene resin (abbreviation: MBS resin), polystyrene, methacrylic resin, polyvinyl alcohol / ethylene It may be a transparent resin film made of vinyl alcohol resin (abbreviation: EVOH), styrene block copolymer resin, or the like. When the transparent substrate 2 is a transparent resin film, the film may contain two or more kinds of resins.
 高い光透過性を達成することができる観点から、本発明に適用する透明基板2としては、ガラス基板や、セルロースエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等の樹脂成分から構成されるフィルムであることが好ましい。 From the viewpoint of achieving high light transmittance, the transparent substrate 2 applied to the present invention includes a glass substrate, cellulose ester resin, polycarbonate resin, polyester resin (particularly polyethylene terephthalate), triacetyl cellulose, and cycloolefin resin. Resin such as phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin A film composed of the components is preferred.
 透明基板2は、可視光に対する光透過性が高いことが好ましく、波長450~800nmの光の平均光透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基板2の光の平均光透過率が70%以上であると、透明導電体1の光透過性が高まりやすい。また、透明基板2の波長450~800nmの光の平均光吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent substrate 2 preferably has a high light transmittance with respect to visible light. The average light transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85%. More preferably, it is the above. When the average light transmittance of light of the transparent substrate 2 is 70% or more, the light transmittance of the transparent conductor 1 is likely to be increased. Further, the average light absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 2 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 上記平均光透過率は、透明基板2の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均光吸収率は、平均光透過率と同様の角度から光を入射させて、透明基板2の平均光反射率を測定し、
 平均光吸収率(%)=100-(平均光透過率+平均光反射率)(%)
として算出する。平均光透過率及び平均光反射率は、分光光度計(例えば、U4100;日立ハイテクノロジーズ社製)を用いて測定することができる。
The average light transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 2. On the other hand, the average light absorptance is measured by measuring the average light reflectance of the transparent substrate 2 by making light incident from the same angle as the average light transmittance.
Average light absorption rate (%) = 100- (average light transmittance + average light reflectance) (%)
Calculate as The average light transmittance and the average light reflectance can be measured using a spectrophotometer (for example, U4100; manufactured by Hitachi High-Technologies Corporation).
 透明基板2の波長570nmの光の屈折率は1.40~1.95の範囲内であることが好ましく、より好ましくは1.45~1.75の範囲内であり、さらに好ましくは1.45~1.70の範囲内である。透明基板2の屈折率は、通常、透明基板2の材質によって定まる。透明基板2の屈折率は、エリプソメーターを用い、25℃の環境下で測定することにより求めることができる。 The refractive index of light having a wavelength of 570 nm of the transparent substrate 2 is preferably in the range of 1.40 to 1.95, more preferably in the range of 1.45 to 1.75, and still more preferably 1.45. Within the range of ~ 1.70. The refractive index of the transparent substrate 2 is usually determined by the material of the transparent substrate 2. The refractive index of the transparent substrate 2 can be determined by measuring in an environment of 25 ° C. using an ellipsometer.
 透明基板2のヘイズ値は、0.01~2.5%の範囲内であることが好ましく、より好ましくは0.1~1.2%の範囲内である。透明基板のヘイズ値が2.5%以下であると、透明導電体としてのヘイズ値を抑制することができ、好ましい。ヘイズ値は、ヘイズメーターを用いて測定することができる。 The haze value of the transparent substrate 2 is preferably in the range of 0.01 to 2.5%, more preferably in the range of 0.1 to 1.2%. When the haze value of the transparent substrate is 2.5% or less, the haze value as the transparent conductor can be suppressed, which is preferable. The haze value can be measured using a haze meter.
 透明基板2の厚さは、1μm~20mmの範囲内であることが好ましく、より好ましくは10μm~2mmの範囲内である。透明基板の厚さが1μm以上であれば、透明基板2の強度が高まり、第1高屈折率層3Aの作製時に割れたり、裂けたりすることを防止することができる。一方、透明基板2の厚さが20mm以下であれば、透明導電体1の十分なフレキシブル性を得ることができる。さらに、透明導電体1を具備した電子デバイス機器等の厚さを薄くできる。また、透明導電体1を用いた電子デバイス機器等を軽量化することもできる。 The thickness of the transparent substrate 2 is preferably in the range of 1 μm to 20 mm, more preferably in the range of 10 μm to 2 mm. If the thickness of the transparent substrate is 1 μm or more, the strength of the transparent substrate 2 is increased, and it is possible to prevent the first high refractive index layer 3A from being cracked or torn during production. On the other hand, if the thickness of the transparent substrate 2 is 20 mm or less, sufficient flexibility of the transparent conductor 1 can be obtained. Furthermore, the thickness of the electronic device apparatus etc. which comprised the transparent conductor 1 can be made thin. Moreover, the electronic device apparatus etc. which used the transparent conductor 1 can also be reduced in weight.
 本発明においては、使用する透明基板2は、各構成層を成膜する前に、基板中に含まれている水分や残留している溶媒を、クライオポンプ等を用いてあらかじめ除いたのち、形成工程で使用することが好ましい。 In the present invention, the transparent substrate 2 to be used is formed by removing moisture contained in the substrate and remaining solvent in advance using a cryopump or the like before forming each constituent layer. It is preferable to use in the process.
 また、本発明に適用する透明基板上には、そのあとに形成する第1高屈折率層の平滑性を得る観点から、公知のクリアハードコート層を設けてもよい。 Further, a known clear hard coat layer may be provided on the transparent substrate applied to the present invention from the viewpoint of obtaining the smoothness of the first high refractive index layer formed thereafter.
 〔高屈折率層〕
 本発明の透明導電体1は、第1高屈折率層3Aと第2高屈折率層3Bを有しており、透明基板2に近い方を第1高屈折率層3A、遠い方を第2高屈折率層3Bと呼ぶ(図1A参照。)。
 第1高屈折率層3A及び第2高屈折率層3Bが、それぞれ、誘電性材料又は酸化物半導体材料を含有し、波長570nmの光に対して、第1高屈折率層3A及び第2高屈折率層3Bの屈折率が、透明基板2の屈折率よりも高く、第1高屈折率層3Aが、硫黄成分を含有し、かつ、第2高屈折率層3Bが、硫黄成分を0.1~10at%の範囲内で含有することを特徴とする。
 第1高屈折率層3Aは、硫黄成分を0.1~50at%の範囲内で含有することが好ましい。
 第2高屈折率層3Bが、当該範囲内で硫黄成分を含有することで、高い導電性と耐湿性を両立させることが可能であり、第1高屈折率層3Aが、当該範囲内で硫黄成分を含有することが、当該効果を発揮するためにより好ましいことを見いだした。
 これは、第1高屈折率層に含有される硫黄成分が50at%以下とすることで、硫黄過多となってターゲットが作製しにくくなることを抑制することができる点で好ましい。また、0.1at%以上とすることで、銀のマイグレーションを抑え込みやすくすることができる点で好ましい。
 第2高屈折率層に含有される硫黄成分が10at%を以下とすることで、外部回路と銀の電気的な接続不良を抑制することができる。また、0.1at%以上とすることで、第1高屈折率層と同様に銀のマイグレーションを抑え込みやすくすることができる。
 第1高屈折率層及び第2高屈折率層が含有する硫黄成分としては、硫化亜鉛及び単体の硫黄に由来するものを用いることができるが、硫化亜鉛に由来するものであることが特に好ましい。硫化亜鉛に由来する硫黄成分が、高屈折率層中で安定して存在することができるため、硫黄成分が望まない場所に拡散し反応するのを防ぎやすい。
(High refractive index layer)
The transparent conductor 1 of the present invention has a first high refractive index layer 3A and a second high refractive index layer 3B, the first high refractive index layer 3A being closer to the transparent substrate 2 and the second being the second higher refractive index layer 3B. This is referred to as a high refractive index layer 3B (see FIG. 1A).
Each of the first high refractive index layer 3A and the second high refractive index layer 3B contains a dielectric material or an oxide semiconductor material, and the first high refractive index layer 3A and the second high refractive index layer 3A with respect to light having a wavelength of 570 nm. The refractive index of the refractive index layer 3B is higher than the refractive index of the transparent substrate 2, the first high refractive index layer 3A contains a sulfur component, and the second high refractive index layer 3B contains a sulfur component of 0. It is contained within the range of 1 to 10 at%.
The first high refractive index layer 3A preferably contains a sulfur component in the range of 0.1 to 50 at%.
Since the second high refractive index layer 3B contains the sulfur component within the range, it is possible to achieve both high conductivity and moisture resistance, and the first high refractive index layer 3A is sulfur within the range. It has been found that the inclusion of a component is more preferable for exhibiting the effect.
This is preferable in that the sulfur component contained in the first high-refractive index layer is 50 at% or less, so that it is possible to prevent the target from being difficult to produce due to excessive sulfur. Moreover, it is preferable at 0.1 at% or more in that silver migration can be easily suppressed.
When the sulfur component contained in the second high refractive index layer is 10 at% or less, poor electrical connection between the external circuit and silver can be suppressed. Moreover, by setting it as 0.1 at% or more, it can be made easy to suppress silver migration similarly to the first high refractive index layer.
As the sulfur component contained in the first high refractive index layer and the second high refractive index layer, those derived from zinc sulfide and single sulfur can be used, but those derived from zinc sulfide are particularly preferable. . Since the sulfur component derived from zinc sulfide can exist stably in the high refractive index layer, it is easy to prevent the sulfur component from diffusing and reacting in an undesired place.
 第1高屈折率層3Aは、透明導電体の導通領域a、つまり透明金属層4が形成されている領域の光透過性(光学アドミッタンス)を調整する層であり、少なくとも透明導電体1の導通領域aに形成される。第1高屈折率層3Aは、透明導電体1の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、図2に例示するように導通領域aのみに形成されていることが好ましい。 The first high refractive index layer 3 </ b> A is a layer that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor, that is, the region where the transparent metal layer 4 is formed, and at least the conduction of the transparent conductor 1. Formed in region a. The first high-refractive index layer 3A may be formed also in the insulating region b of the transparent conductor 1, but is illustrated in FIG. 2 from the viewpoint of making it difficult to visually recognize the pattern including the conductive region a and the insulating region b. Thus, it is preferably formed only in the conduction region a.
 第1高屈折率層3Aは、透明基板2の屈折率より高い屈折率を有する。第1高屈折率層3Aには、前述の透明基板2の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれる。波長570nmの光に対する当該誘電性材料又は酸化物半導体材料の屈折率は、透明基板の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。
 なお、本発明に係る屈折率は、温度25℃、相対湿度25%における測定値である。
The first high refractive index layer 3 </ b> A has a refractive index higher than that of the transparent substrate 2. The first high refractive index layer 3A includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate 2 described above. The refractive index of the dielectric material or oxide semiconductor material with respect to light having a wavelength of 570 nm is preferably 0.1 to 1.1 larger than the refractive index of the transparent substrate, and more preferably 0.4 to 1.0 larger.
The refractive index according to the present invention is a measured value at a temperature of 25 ° C. and a relative humidity of 25%.
 一方、波長570nmの光に対する第1高屈折率層に含まれる誘電性材料又は酸化物半導体材料の屈折率は1.5より高いことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より高いと、第1高屈折率層によって、透明導電体の導通領域aの光学アドミッタンスが十分に調整される。なお、第1高屈折率層の屈折率は、第1高屈折率層に含まれる材料の屈折率や、第1高屈折率層に含まれる材料の密度で調整される。高屈折率層の屈折率も透明基板と同様に、エリプソメーターを用い、25℃の環境下で測定することにより求めることができる。 On the other hand, the refractive index of the dielectric material or the oxide semiconductor material included in the first high refractive index layer with respect to light having a wavelength of 570 nm is preferably higher than 1.5, more preferably 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is higher than 1.5, the optical admittance of the conductive region a of the transparent conductor is sufficiently adjusted by the first high refractive index layer. The refractive index of the first high refractive index layer is adjusted by the refractive index of the material included in the first high refractive index layer and the density of the material included in the first high refractive index layer. Similarly to the transparent substrate, the refractive index of the high refractive index layer can be determined by measuring in an environment of 25 ° C. using an ellipsometer.
 第1高屈折率層3Aに含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料は、上記屈折率を有する金属酸化物でありうる。
 上記屈折率を有する金属酸化物の例には、TiO、ITO(インジウム・スズ酸化物)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(インジウム・亜鉛酸化物)、AZO(アルミニウム・亜鉛酸化物)、GZO(ガリウム・亜鉛酸化物)、ATO(アンチモン・スズ酸化物)、ICO(インジウム・セリウム酸化物)、IGZO(インジウム・ガリウム・亜鉛酸化物)、Bi、Ga、GeO、WO、HfO、In、a-GIO(ガリウム・インジウム酸化物)等が含まれる。第1高屈折率層は、当該金属酸化物が1種のみ含まれる層であってもよく、2種以上が含まれる層であってもよい。
 特にSiOとZnSの混合物は安定でフレキシブル性が高い点で好ましい。さらに、上記2種類以上の高屈折率層が積層されて複数層からなる第1高屈折率層を形成してもよい。
The dielectric material or the oxide semiconductor material included in the first high refractive index layer 3A may be an insulating material or a conductive material. The dielectric material or the oxide semiconductor material may be a metal oxide having the above refractive index.
Examples of the metal oxide having the refractive index include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4. O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium zinc oxide), AZO (aluminum zinc oxide), GZO (gallium zinc oxide), ATO (antimony) Tin oxide), ICO (indium cerium oxide), IGZO (indium gallium zinc oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , In 2 O 3 , a-GIO (gallium indium oxide) and the like are included. The first high refractive index layer may be a layer containing only one kind of the metal oxide or a layer containing two or more kinds.
In particular, a mixture of SiO 2 and ZnS is preferable in terms of stability and high flexibility. Furthermore, the above-described two or more types of high refractive index layers may be laminated to form a first high refractive index layer comprising a plurality of layers.
 第2高屈折率層3Bは、第1高屈折率層3A同様に透明基板2の屈折率より高い屈折率を有する。第2高屈折率層には、前述の透明基板2の屈折率より高い屈折率を有する材料が含まれる。波長570nmの光に対する当該材料の屈折率は、透明基板の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。
 一方、第2高屈折率層に含まれる材料の波長570nmの光に対する屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。材料の屈折率が1.5より大きいと、第2高屈折率層によって、透明導電体の導通領域aの光学アドミッタンスが十分に調整される。なお、第2高屈折率層の屈折率は、第2高屈折率層に含まれる材料の屈折率や、第2高屈折率層に含まれる材料の密度で調整される。
The second high refractive index layer 3B has a higher refractive index than the refractive index of the transparent substrate 2 like the first high refractive index layer 3A. The second high refractive index layer includes a material having a refractive index higher than that of the transparent substrate 2 described above. The refractive index of the material with respect to light having a wavelength of 570 nm is preferably 0.1 to 1.1 larger than the refractive index of the transparent substrate, and more preferably 0.4 to 1.0 larger.
On the other hand, the refractive index of the material contained in the second high refractive index layer with respect to light having a wavelength of 570 nm is preferably greater than 1.5, more preferably 1.7 to 2.5, and even more preferably 1.8. ~ 2.5. When the refractive index of the material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor is sufficiently adjusted by the second high refractive index layer. The refractive index of the second high refractive index layer is adjusted by the refractive index of the material included in the second high refractive index layer and the density of the material included in the second high refractive index layer.
 このような屈折率を透明導電体が有することにより、透明金属層に含有される銀による反射を相殺することができる。
 具体的には、基材と比較して、第1高屈折率層の屈折率が高いほど、基材と第1高屈折率層の界面での反射が高まるため、透明金属層に含有される銀から発生する反射を打ち消しやすくなる。
 また、第2高屈折率層も同様に屈折率が高いほど第2高屈折率層の表面で発生する反射が高まり、銀の反射光を相殺させることが可能になる。したがって高屈折率層の屈折率は基材の屈折率より高いほど望ましい。
When the transparent conductor has such a refractive index, reflection due to silver contained in the transparent metal layer can be offset.
Specifically, as the refractive index of the first high refractive index layer is higher than that of the base material, the reflection at the interface between the base material and the first high refractive index layer is increased, and therefore, it is contained in the transparent metal layer. It becomes easy to cancel the reflection generated from silver.
Similarly, the higher the refractive index of the second high refractive index layer, the higher the reflection generated on the surface of the second high refractive index layer, and it becomes possible to cancel the reflected light of silver. Therefore, it is desirable that the refractive index of the high refractive index layer is higher than the refractive index of the substrate.
 第2高屈折率層3Bは、さらに、電気接続性を確保するために導電性をも有する層である。本発明において、良好な電気接続性を確保するためには、比抵抗が1000Ω・cm以下の材料であることが好ましい。さらに好ましくは0.1Ω・cm以下であることが望ましい。このような構成とすることで、この第2高屈折率層を通して外側に設けられた端子と、透明金属層との電気接続性が得られ、透明金属層を通して通電できるので、透明導電体の導電性が格段に向上する。 The second high-refractive index layer 3B is a layer that also has conductivity in order to ensure electrical connectivity. In the present invention, in order to ensure good electrical connectivity, a material having a specific resistance of 1000 Ω · cm or less is preferable. More preferably, it is 0.1Ω · cm or less. By adopting such a configuration, electrical connection between the terminal provided outside through the second high refractive index layer and the transparent metal layer can be obtained, and current can be passed through the transparent metal layer. Sexually improves.
 第2高屈折率層に含まれる材料は、上記した第1高屈折率層に含まれる材料の中でも酸化物半導体材料が含まれることが好ましい。中でも金属酸化物が好ましい。 The material included in the second high refractive index layer preferably includes an oxide semiconductor material among the materials included in the first high refractive index layer. Of these, metal oxides are preferable.
 金属酸化物の例には、TiO、ITO(インジウム・スズ酸化物)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(インジウム・亜鉛酸化物)、AZO(アルミニウム・亜鉛酸化物)、GZO(ガリウム・亜鉛酸化物)、ATO(アンチモン・スズ酸化物)、ICO(インジウム・セリウム酸化物)、IGZO(インジウム・ガリウム・亜鉛酸化物)、Bi、Ga、GeO、WO、HfO、In、a-GIO(ガリウム・インジウム酸化物)等が含まれる。第1高屈折率層は、当該金属酸化物が1種のみ含まれる層であってもよく、2種以上が含まれる層であってもよい。または、上記2種類以上の高屈折率層が積層されて複数層からなる第2高屈折率層を形成してもよい。 Examples of metal oxides include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2. O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium zinc oxide), AZO (aluminum zinc oxide), GZO (gallium zinc oxide), ATO (antimony tin oxide) , ICO (indium cerium oxide), IGZO (indium gallium zinc oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , In 2 O 3 , a-GIO (gallium) -Indium oxide) and the like. The first high refractive index layer may be a layer containing only one kind of the metal oxide or a layer containing two or more kinds. Alternatively, a second high refractive index layer composed of a plurality of layers may be formed by laminating the two or more types of high refractive index layers.
 第1高屈折率層3A及び第2高屈折率層3Bの厚さは、10~150nmの範囲内であることが好ましく、より好ましくは10~80nmの範囲内である。これらの高屈折率層の厚さが10nm以上であると、高屈折率層によって、透明導電体1の導通領域aの光学アドミッタンスが十分に調整される。一方、高屈折率層の厚さが150nm以下であれば、高屈折率層が含まれる領域の光透過性が低下し難い。高屈折率層の厚さは、エリプソメーターで測定される。 The thickness of the first high refractive index layer 3A and the second high refractive index layer 3B is preferably in the range of 10 to 150 nm, more preferably in the range of 10 to 80 nm. When the thickness of these high refractive index layers is 10 nm or more, the optical admittance of the conductive region a of the transparent conductor 1 is sufficiently adjusted by the high refractive index layer. On the other hand, when the thickness of the high refractive index layer is 150 nm or less, the light transmittance of the region including the high refractive index layer is unlikely to decrease. The thickness of the high refractive index layer is measured with an ellipsometer.
 高屈折率層は、蒸着法若しくはスパッタ法により形成することが好ましい。本発明に適用可能な蒸着法としては、抵抗加熱蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着装置としては、例えば、シンクロン社製のBMC-800T蒸着機等を用いることができる。スパッタ法としてはマグネトロンスパッタや対向スパッタが含まれる。 The high refractive index layer is preferably formed by vapor deposition or sputtering. Deposition methods applicable to the present invention include resistance heating vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition. As the vapor deposition apparatus, for example, a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. can be used. Sputtering methods include magnetron sputtering and counter sputtering.
 また、高屈折率層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。高屈折率層は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相形成法でパターン状に形成された層であってもよく、公知のエッチング法、例えば、フォトリソグラフィー法によってパターニングされた層であってもよい。 Further, when the high refractive index layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The high refractive index layer may be, for example, a layer formed in a pattern by a vapor phase forming method by placing a mask having a desired pattern on the surface to be formed. It may be a layer patterned by a lithography method.
 本発明においては、第1高屈折率層及び第2高屈折率層が、硫黄成分を含有することを特徴とする。具体的には、第1高屈折率層が、硫黄成分を含有し、かつ、第2高屈折率層が、硫黄成分を0.1~10at%の範囲内で含有する。当該範囲で硫黄成分を含有することにより、透明金属層の湿気による劣化を好適に防ぐことができ、高い導電性を維持することができる。 In the present invention, the first high refractive index layer and the second high refractive index layer contain a sulfur component. Specifically, the first high refractive index layer contains a sulfur component, and the second high refractive index layer contains a sulfur component in the range of 0.1 to 10 at%. By containing a sulfur component in the said range, deterioration by the humidity of a transparent metal layer can be prevented suitably, and high electroconductivity can be maintained.
 これにより、高屈折率層の上部に銀を主成分として含有している透明金属層を成膜する際には、透明金属層を構成する銀原子が、高屈折率層に含有されている銀原子と親和性のある硫化亜鉛の硫黄原子と相互作用し、当該高屈折率層表面上での銀原子の拡散距離が減少し、特異箇所での銀の凝集が抑えられる。 Thus, when a transparent metal layer containing silver as a main component is formed on the high refractive index layer, silver atoms constituting the transparent metal layer are contained in the high refractive index layer. It interacts with the sulfur atom of zinc sulfide having an affinity for the atom, the diffusion distance of the silver atom on the surface of the high refractive index layer is reduced, and the aggregation of silver at a specific location is suppressed.
 すなわち、銀原子は、まず銀原子と硫化亜鉛を含有する高屈折率層表面上で2次元的な核を形成し、それを中心に2次元の単結晶層を形成するという層状成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。 That is, the silver atoms first form a two-dimensional nucleus on the surface of the high refractive index layer containing silver atoms and zinc sulfide, and a two-dimensional single crystal layer is formed around the two-dimensional nucleus (Frank). -Van der Merwe (FM type) film growth.
 なお、一般的には、高屈折率層表面において付着した銀原子が表面を拡散しながら結合し3次元的な核を形成し、3次元的な島状に成長するという島状成長型(Volumer-Weber:VW型)での膜成長により島状に成膜しやすいと考えられるが、本発明では、高屈折率層に含有されている硫化亜鉛により、このような様式の島状成長が防止され、層状成長が促進されると推察される。 In general, silver atoms attached on the surface of the high refractive index layer are combined while diffusing the surface to form three-dimensional nuclei and grow into three-dimensional islands (Volumer). -Weber: VW type) is considered to be easily formed into islands, but in the present invention, zinc sulfide contained in the high refractive index layer prevents islands of this type. It is assumed that layer growth is promoted.
 したがって、薄い膜厚でありながらも、均一な膜厚の導電性層が得られるようになる。そのため、透明金属層4が薄くとも、プラズモン吸収が生じ難くなる。この結果、より薄い膜厚として光透過性を保ちつつも、導電性が確保された透明導電体とすることができる。 Therefore, a conductive layer having a uniform film thickness can be obtained even though the film thickness is small. Therefore, even if the transparent metal layer 4 is thin, plasmon absorption hardly occurs. As a result, it is possible to obtain a transparent conductor in which conductivity is ensured while maintaining light transmittance with a thinner film thickness.
 また、この層を設けることにより、銀と硫黄原子の親和性が強くなり、かつ水の透過性を妨げるため銀の腐食が防止され、透明導電体の耐湿性を向上させることができるものと考えられる。 In addition, by providing this layer, the affinity between silver and sulfur atoms is strengthened, and since water permeability is hindered, silver corrosion is prevented and the moisture resistance of the transparent conductor can be improved. It is done.
 図3は、銀層の厚さと光吸収の関係を示す一例である。ガラス、ITO及び硫化亜鉛の薄層上に銀を蒸着して銀薄膜を形成した際の、銀の膜厚と可視光(400~800nm)の平均光吸収の関係を示すグラフである。硫化亜鉛上に銀を成膜すると、ガラスやITO上に銀を成膜するより銀の吸収を減らすことができる。 FIG. 3 is an example showing the relationship between the thickness of the silver layer and light absorption. 4 is a graph showing the relationship between the film thickness of silver and the average light absorption of visible light (400 to 800 nm) when silver is deposited on a thin layer of glass, ITO and zinc sulfide to form a silver thin film. When silver is deposited on zinc sulfide, the absorption of silver can be reduced more than when silver is deposited on glass or ITO.
 第1高屈折率層に硫化亜鉛等の硫黄成分とともに用いることができる金属酸化物としては、例えば、TiO、ITO(インジウム・スズ酸化物)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、(インジウム・亜鉛酸化物)、AZO(アルミニウム・亜鉛酸化物)、GZO(ガリウム・亜鉛酸化物)、ATO(アンチモン・スズ酸化物)、ICO(インジウム・セリウム酸化物)、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO、a-GIO(ガリウム・インジウム酸化物)等が含まれる。上記金属酸化物の中でも、特に、二酸化ケイ素(SiO)が好ましい。これは、第1高屈折率層を構成する膜がアモルファス状になり割れに強くフレキシブル性を高めることができるためである。 Examples of the metal oxide that can be used in the first high refractive index layer together with a sulfur component such as zinc sulfide include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , and CeO 2. , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , (indium / zinc oxide), AZO (aluminum / zinc oxide), GZO (gallium / zinc oxide), ATO (antimony / tin oxide), ICO (indium / cerium oxide), Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , a-GIO (gallium indium oxide), and the like. Among the above metal oxides, silicon dioxide (SiO 2 ) is particularly preferable. This is because the film constituting the first high refractive index layer becomes amorphous and is resistant to cracking and can improve flexibility.
 また、第2高屈折率層が、チタン(Ti)、インジウム(In)、亜鉛(Zn)、セリウム(Ce)、タングステン(W)、ガリウム(Ga)、スズ(Sn)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タンタル(Ta)、アルミニウム(Al)、ビスマス(Bi)、ゲルマニウム(Ge)からなる群から選ばれる少なくとも1種の元素を含有する金属酸化物を含有することが好ましい。
 具体的には、第2高屈折率層は、第1高屈折率層が硫黄成分とともに用いることができる上記金属酸化物と同様の化合物を用いることができる。これにより、透明金属層と外部回路を接続するに足る導電性を第2高屈折率層に確保することができるため好ましい。
The second high refractive index layer is made of titanium (Ti), indium (In), zinc (Zn), cerium (Ce), tungsten (W), gallium (Ga), tin (Sn), hafnium (Hf), Containing a metal oxide containing at least one element selected from the group consisting of zirconium (Zr), niobium (Nb), tantalum (Ta), aluminum (Al), bismuth (Bi), and germanium (Ge). Is preferred.
Specifically, for the second high refractive index layer, the same compound as the metal oxide that can be used together with the sulfur component can be used. This is preferable because the second high refractive index layer can secure sufficient conductivity to connect the transparent metal layer and the external circuit.
 また、金属フッ化物としては、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等を挙げることができる。 Examples of the metal fluoride include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. Can do.
 また、金属窒化物としては、窒化ホウ素、窒化アルミニウム、窒化クロム、窒化ケイ素、窒化タングステン、窒化マグネシウム、窒化モリブデン、窒化リチウム、窒化チタン等を挙げることができる。 Further, examples of the metal nitride include boron nitride, aluminum nitride, chromium nitride, silicon nitride, tungsten nitride, magnesium nitride, molybdenum nitride, lithium nitride, and titanium nitride.
 〔硫化防止層〕
 本発明の透明導電体は、高屈折率層と前記透明金属層との間に、亜鉛成分を含有した硫化防止層を有することが好ましい。
 硫化防止層としては、金属酸化物、金属窒化物、金属フッ化物、金属又は半導体が使用でき、例えば、ZnO、GZO、AZO等の亜鉛成分を含有した層であることが好ましく、これらが1種のみ含まれてもよく、2種以上含まれてもよい。
 硫化防止層は、複数設けてもよく、透明基板に近い方を第1硫化防止層、遠い方を第2硫化防止層と呼ぶ。
[Sulfurization prevention layer]
The transparent conductor of the present invention preferably has an antisulfurization layer containing a zinc component between the high refractive index layer and the transparent metal layer.
As the anti-sulfurization layer, a metal oxide, metal nitride, metal fluoride, metal or semiconductor can be used. For example, a layer containing a zinc component such as ZnO, GZO and AZO is preferable. Only two or more kinds may be included.
A plurality of antisulfurization layers may be provided, and the one closer to the transparent substrate is referred to as a first antisulfurization layer, and the far side is referred to as a second antisulfation layer.
 透明金属層とZnSを含む高屈折率層とが隣接して成膜されると、透明金属層4の成膜時、若しくは第2高屈折率層3Bの成膜時に、透明金属層中の金属が硫化されて金属硫化物が生成し、透明導電体の光透過性が低下する場合がある。これに対し、第1高屈折率層3Aと透明金属層4との間、又は透明金属層4と第2高屈折率層3Bとの間に、硫化防止層が含まれると、金属硫化物の生成が抑制される。 When the transparent metal layer and the high refractive index layer containing ZnS are formed adjacent to each other, the metal in the transparent metal layer is formed when the transparent metal layer 4 is formed or when the second high refractive index layer 3B is formed. May be sulfided to produce metal sulfide, which may reduce the light transmittance of the transparent conductor. On the other hand, when an antisulfurization layer is included between the first high refractive index layer 3A and the transparent metal layer 4 or between the transparent metal layer 4 and the second high refractive index layer 3B, the metal sulfide Generation is suppressed.
 金属酸化物の例には、TiO、ITO、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO、GZO、ATO、ICO、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO等が含まれる。
 金属フッ化物の例には、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等が含まれる。
 金属窒化物の例には、Si、AlN等が含まれる。
Examples of metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 and the like are included.
Examples of metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. .
Examples of the metal nitride include Si 3 N 4 , AlN, and the like.
 硫化防止層の厚さは、透明金属層4の成膜時、若しくは第2高屈折率層3Bの成膜時に、透明金属層4が硫化されることを防止可能な厚さであれば、特に制限されない。ただし、第1高屈折率層3Aや第2高屈折率層3Bに含まれるZnSは、透明金属層4に含まれる金属との親和性が高い。そのため、硫化防止層の厚さが非常に薄いと、透明金属層4と第1高屈折率層3A、又は透明金属層4と第2高屈折率層3Bとが接する部分が生じ、各層同士の密着性が高まりやすい。つまり、硫化防止層は比較的薄いことが好ましく、0.1~10nmであることが好ましく、より好ましくは0.1~5nmであり、さらに好ましくは0.1~3nmである。硫化防止層の厚さは、エリプソメーターで測定される。特にZnやGa金属が入った硫化防止層であれば耐湿性を劣化させず、また銀との相互作用も強いため好ましい。 The thickness of the sulfidation preventive layer is not particularly limited as long as the transparent metal layer 4 can be prevented from being sulfidized during the formation of the transparent metal layer 4 or the second high refractive index layer 3B. Not limited. However, ZnS contained in the first high refractive index layer 3 </ b> A and the second high refractive index layer 3 </ b> B has high affinity with the metal contained in the transparent metal layer 4. Therefore, when the thickness of the sulfurization preventing layer is very thin, a portion where the transparent metal layer 4 and the first high refractive index layer 3A or the transparent metal layer 4 and the second high refractive index layer 3B are in contact with each other is generated. Adhesion tends to increase. That is, the antisulfurization layer is preferably relatively thin, preferably 0.1 to 10 nm, more preferably 0.1 to 5 nm, and further preferably 0.1 to 3 nm. The thickness of the sulfidation prevention layer is measured with an ellipsometer. In particular, an antisulfurization layer containing Zn or Ga metal is preferable because it does not deteriorate moisture resistance and has strong interaction with silver.
 硫化防止層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層でありうる。 The anti-sulfurization layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
 硫化防止層が、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。硫化防止層は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 When the antisulfurization layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The sulfidation prevention layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the deposition surface, and patterned by a known etching method. It may be a layer formed.
 〔透明金属層〕
 銀を主成分として含有する透明金属層4は、透明導電体1において電気を導通させるための層である。透明金属層4は、図1A~Cに記載のように透明基板2の全面に形成されていてもよく、また、図2に示すように所定の形状にパターニングされていることが好ましい。
(Transparent metal layer)
The transparent metal layer 4 containing silver as a main component is a layer for conducting electricity in the transparent conductor 1. The transparent metal layer 4 may be formed on the entire surface of the transparent substrate 2 as shown in FIGS. 1A to 1C, and is preferably patterned into a predetermined shape as shown in FIG.
 銀を主成分として含有するとは、本発明においては、金属層の銀薄膜電極含有比率が60at%(原子%)以上であることをいう。好ましくは銀の含有比率は導電性の観点から90at%以上でより好ましくは95at%以上で、さらには透明電極が銀のみからなることが好ましい。 In the present invention, “containing silver as a main component” means that the silver thin film electrode content ratio of the metal layer is 60 at% (atomic%) or more. Preferably, the silver content is 90 at% or more from the viewpoint of conductivity, more preferably 95 at% or more, and the transparent electrode is preferably made of only silver.
 銀と組み合わされる金属としては、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム、モリブデン、白金、チタン、クロム等でありうる。例えば、銀と亜鉛とが組み合わされると、透明金属層の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。 The metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, platinum, titanium, chromium, or the like. For example, when silver and zinc are combined, the sulfide resistance of the transparent metal layer is increased. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases.
 透明金属層4のプラズモン吸収率は、波長400~800nmにわたって(全範囲で)10%以下であることが好ましく、7%以下であることがより好ましく、さらに好ましくは5%以下である。波長400~800nmの一部にプラズモン吸収率が大きい領域があると、透明導電体1の導通領域aの透過光が着色しやすくなる。 The plasmon absorption rate of the transparent metal layer 4 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor 1 is likely to be colored.
 透明金属層4の波長400~800nmにおけるプラズモン吸収率は、以下の手順で測定される。 The plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 4 is measured by the following procedure.
 (i)ガラス基板上に、白金パラジウムをシンクロン社製のBMC-800T蒸着装置にて0.1nmで形成する。白金パラジウムの平均厚さは、蒸着装置のメーカー公称値の形成速度等から算出する。その後、白金パラジウムが付着した基板上に、真空蒸着法にて金属からなる層を20nmの厚さで形成する。 (I) On the glass substrate, platinum palladium is formed at a thickness of 0.1 nm by a BMC-800T vapor deposition apparatus manufactured by SYNCHRON. The average thickness of platinum palladium is calculated from the formation rate of the manufacturer's nominal value of the vapor deposition apparatus. Thereafter, a layer made of metal is formed to a thickness of 20 nm on the substrate to which platinum palladium is adhered by a vacuum deposition method.
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の光透過率及び光反射率を測定する。そして各波長における光透過率及び光反射率から、光吸収率(%)=100-(光透過率+光反射率)(%)を算出し、これをリファレンスデータとする。光透過率及び光反射率は、分光光度計で測定する。 (Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the light transmittance and light reflectance of the metal film are measured. Then, light absorptance (%) = 100− (light transmittance + light reflectance) (%) is calculated from the light transmittance and light reflectance at each wavelength, and this is used as reference data. The light transmittance and light reflectance are measured with a spectrophotometer.
 (iii)続いて、測定対象の透明金属層を同様のガラス基板上に形成する。そして、当該透明金属層について、同様に光透過率及び光反射率を測定する。得られた光吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 (Iii) Subsequently, a transparent metal layer to be measured is formed on the same glass substrate. And about the said transparent metal layer, light transmittance and light reflectance are measured similarly. The reference data is subtracted from the obtained light absorption rate, and the calculated value is defined as the plasmon absorption rate.
 透明金属層4の厚さは10nm以下であることが好ましく、より好ましくは3~9nmの範囲内であり、さらに好ましくは5~8nmの範囲内である。透明導電体1では、透明金属層4の厚さが10nm以下の場合、透明金属層4に金属本来の反射が生じ難い。さらに、透明金属層4の厚さが10nm以下であると、第1高屈折率層3A及び第2高屈折率層3Bによって、透明導電体1の光学アドミッタンスが調整されやすく、導通領域a表面での光の反射が抑制されやすい。透明金属層4の厚さは、エリプソメーターを用いて測定して求めることができる。 The thickness of the transparent metal layer 4 is preferably 10 nm or less, more preferably in the range of 3 to 9 nm, and still more preferably in the range of 5 to 8 nm. In the transparent conductor 1, when the thickness of the transparent metal layer 4 is 10 nm or less, the original reflection of metal hardly occurs in the transparent metal layer 4. Furthermore, when the thickness of the transparent metal layer 4 is 10 nm or less, the optical admittance of the transparent conductor 1 is easily adjusted by the first high refractive index layer 3A and the second high refractive index layer 3B, and the surface of the conductive region a The reflection of light is easy to be suppressed. The thickness of the transparent metal layer 4 can be determined by measurement using an ellipsometer.
 透明金属層4は、いずれの形成方法で形成された層でもよいが、真空蒸着法若しくはスパッタ法で形成された層であることが好ましい。 The transparent metal layer 4 may be a layer formed by any forming method, but is preferably a layer formed by a vacuum evaporation method or a sputtering method.
 スパッタ法若しくは真空蒸着法であれば、平面性の高い透明金属層を、極めて早い形成速度で形成することができる。また、ZnSを含有する高屈折率層の上に金属層を成膜する際、層の形成速度が速ければ、金属の硫化物が生成しにくいため、銀を主成分として含有する透明金属層の形成速度は0.3nm/秒以上であることが好ましい。形成速度が0.5~30nm/秒の範囲内であることがより好ましく、特に好ましくは1.0~15nm/秒の範囲内である。また成膜時の温度は、-25~25℃の範囲内であることが好ましい。
 対向スパッタ法では銀の平滑性が高まるため、また透明性と導電性が良好になるため好ましい。
If it is a sputtering method or a vacuum evaporation method, a transparent metal layer with high planarity can be formed at a very high formation rate. Further, when a metal layer is formed on a high refractive index layer containing ZnS, if the formation speed of the layer is high, a metal sulfide is difficult to be generated. Therefore, the transparent metal layer containing silver as a main component The formation rate is preferably 0.3 nm / second or more. The formation rate is more preferably in the range of 0.5 to 30 nm / second, and particularly preferably in the range of 1.0 to 15 nm / second. The temperature during film formation is preferably in the range of −25 to 25 ° C.
The counter sputtering method is preferable because the smoothness of silver is increased and transparency and conductivity are improved.
 また、透明金属層4が所望の形状にパターニングされた膜である場合、パターニング方法は特に制限されない。透明金属層4は、例えば、所望のパターンを有するマスクを配置して形成された層であってもよく、公知のエッチング法によってパターニングされた膜であってもよい。 Further, when the transparent metal layer 4 is a film patterned in a desired shape, the patterning method is not particularly limited. For example, the transparent metal layer 4 may be a layer formed by arranging a mask having a desired pattern, or may be a film patterned by a known etching method.
 〔その他の構成層〕
 (密着層)
 本発明の透明導電体1には、透明基板と第1高屈折率層の密着改善のために透明基板上に密着層があってもよい。密着層は第1高屈折率層が透明基板としっかり密着するものであればよい。
 密着層は、誘電性材料、酸化物半導体材料、絶縁性又は導電性の材料を含有してもよい。
 誘電性材料又は酸化物半導体材料は、金属酸化物、金属硫化物又は金属窒化物であることが好ましい。屈折率は限定されない。特に第1高屈折率層が蒸着法で成膜される場合、密着層があることが好ましい。これは、明確な作用機構は明らかになっていないが、スパッタ法で成膜した場合に比べて、蒸着法で成膜される方が成膜にかかるエネルギーが小さいため、密着性が透明基板と第1高屈折率層の材質による相性に左右されると考えている。
 例えば、SiO膜や、スパッタ法で成膜したZnS-SiO膜が挙げられる。層の厚さは特に制限されず、好ましくは0.01~15nmの範囲内であり、さらに好ましくは0.1~3nmの範囲内である。
[Other component layers]
(Adhesion layer)
The transparent conductor 1 of the present invention may have an adhesion layer on the transparent substrate in order to improve adhesion between the transparent substrate and the first high refractive index layer. The adhesion layer may be any layer as long as the first high refractive index layer is firmly adhered to the transparent substrate.
The adhesion layer may contain a dielectric material, an oxide semiconductor material, an insulating or conductive material.
The dielectric material or oxide semiconductor material is preferably a metal oxide, metal sulfide, or metal nitride. The refractive index is not limited. In particular, when the first high refractive index layer is formed by vapor deposition, it is preferable that there is an adhesion layer. Although the clear mechanism of action has not been clarified, the energy required for film formation is smaller when the film is formed by the vapor deposition method than when the film is formed by the sputtering method. It is considered that it depends on the compatibility of the material of the first high refractive index layer.
For example, SiO 2 film, and a ZnS-SiO 2 film formed by sputtering. The thickness of the layer is not particularly limited, and is preferably in the range of 0.01 to 15 nm, more preferably in the range of 0.1 to 3 nm.
 (低屈折率層)
 本発明の透明導電体1には、第2高屈折率層3B上に、透明導電体の導通領域aの光透過性(光学アドミッタンス)を調整する低屈折率層(図示せず)を有していてもよい。低屈折率層は、透明導電体1の導通領域aにのみ形成されていてもよく、透明導電体1の導通領域a及び絶縁領域bの両方に形成されていてもよい。
(Low refractive index layer)
The transparent conductor 1 of the present invention has a low refractive index layer (not shown) that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor on the second high refractive index layer 3B. It may be. The low refractive index layer may be formed only in the conductive region a of the transparent conductor 1 or may be formed in both the conductive region a and the insulating region b of the transparent conductor 1.
 低屈折率層には、第1高屈折率層3A及び第2高屈折率層3Bに含まれる誘電性材料又は酸化物半導材料の波長570nmの光の屈折率より、光の屈折率が低い誘電性材料又は酸化物半導体材料が含まれる。低屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、第1高屈折率層3A及び第2高屈折率層3Bに含まれる上記材料の波長570nmの光の屈折率より、それぞれ0.2以上低いことが好ましく、0.4以上低いことがより好ましい。 In the low refractive index layer, the refractive index of light is lower than the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material included in the first high refractive index layer 3A and the second high refractive index layer 3B. Dielectric materials or oxide semiconductor materials are included. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is the light of wavelength 570 nm of the above material contained in the first high refractive index layer 3A and the second high refractive index layer 3B. The refractive index is preferably 0.2 or more lower and more preferably 0.4 or more lower.
 (第3高屈折率層)
 本発明の透明導電体1には、第2高屈折率層上にさらに、透明導電体の導通領域aの光透過性(光学アドミッタンス)を調整する第3高屈折率層が含まれてもよい。第3高屈折率層は、透明導電体1の導通領域aにのみ成膜されていてもよく、透明導電体1の導通領域a及び絶縁領域bの両方に成膜されていてもよい。
(Third high refractive index layer)
The transparent conductor 1 of the present invention may further include a third high refractive index layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor on the second high refractive index layer. . The third high refractive index layer may be formed only in the conductive region a of the transparent conductor 1, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 1.
 第3高屈折率層には、前述の透明基板2の屈折率及び前記低屈折率層の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれることが好ましい。
 第3高屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。
 誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第3高屈折率層によって、透明導電体1の導通領域aの光学アドミッタンスが十分に調整される。
 なお、第3高屈折率層の屈折率は、第3高屈折率層に含まれる材料の屈折率や密度で調整される。
The third high refractive index layer preferably contains a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 2 and the refractive index of the low refractive index layer.
The specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably larger than 1.5, more preferably 1.7 to 2.5. Preferably, it is 1.8 to 2.5.
When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 1 is sufficiently adjusted by the third high refractive index layer.
The refractive index of the third high refractive index layer is adjusted by the refractive index and density of the material contained in the third high refractive index layer.
 第3高屈折率層に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料は、金属酸化物又は金属硫化物又は金属窒化物であることが好ましい。金属酸化物又は金属硫化物の例には、前述の第1高屈折率層3A又は第2高屈折率層3Bに含まれる金属酸化物又は金属硫化物等が含まれる。第3高屈折率層には、当該金属酸化物又は金属硫化物が1種のみ含まれてもよく、2種以上が含まれてもよい。 The dielectric material or the oxide semiconductor material included in the third high refractive index layer may be an insulating material or a conductive material. The dielectric material or the oxide semiconductor material is preferably a metal oxide, a metal sulfide, or a metal nitride. Examples of the metal oxide or metal sulfide include the metal oxide or metal sulfide contained in the first high refractive index layer 3A or the second high refractive index layer 3B. The third high refractive index layer may contain only one kind of the metal oxide or metal sulfide, or may contain two or more kinds.
 第3高屈折率層の厚さは特に制限されず、好ましくは1~40nmであり、さらに好ましくは5~20nmである。第3高屈折率層の厚さが上記範囲であると、透明導電体1の導通領域aの光学アドミッタンスが十分に調整される。第3高屈折率層の厚さは、エリプソメーターで測定される。 The thickness of the third high refractive index layer is not particularly limited, and is preferably 1 to 40 nm, and more preferably 5 to 20 nm. When the thickness of the third high refractive index layer is within the above range, the optical admittance of the conductive region a of the transparent conductor 1 is sufficiently adjusted. The thickness of the third high refractive index layer is measured with an ellipsometer.
 第3高屈折率層の成膜方法は特に制限されず、第1高屈折率層3Aや第2高屈折率層3Bと同様の方法で成膜された層でありうる。 The film formation method of the third high refractive index layer is not particularly limited, and may be a layer formed by the same method as the first high refractive index layer 3A and the second high refractive index layer 3B.
 〔透明導電体の物性〕
 本発明の透明導電体の波長400~1000nmの光の平均光透過率は、導通領域a及び絶縁領域bのいずれにおいても88%以上であることが好ましく、より好ましくは90%以上、さらに好ましくは93%以上である。波長400~1000nmの光の平均光透過率が88%以上であると、広い波長範囲の光に対して光透過性が要求される用途、例えば太陽電池用の透明導電膜等にも透明導電体を適用することができる。
[Physical properties of transparent conductor]
The average light transmittance of light with a wavelength of 400 to 1000 nm of the transparent conductor of the present invention is preferably 88% or more, more preferably 90% or more, and still more preferably in both the conduction region a and the insulation region b. 93% or more. If the average light transmittance of light having a wavelength of 400 to 1000 nm is 88% or more, the transparent conductor is also used in applications requiring light transmittance with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. Can be applied.
 一方、透明導電体の波長400~800nmの光の平均光吸収率は、導通領域a及び絶縁領域bのいずれにおいても10%以下であることが好ましく、より好ましくは8%以下であり、さらに好ましくは7%以下である。また、透明導電体の波長450~800nmの光の吸収率の最大値は、導通領域a及び絶縁領域bのいずれにおいても15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは9%以下である。一方、透明導電体の波長500~700nmの光の平均光反射率は、導通領域a及び絶縁領域bのいずれにおいても、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明導電体の平均光吸収率及び平均光反射率が低いほど、前述の平均光透過率が高まる。 On the other hand, the average optical absorptance of light having a wavelength of 400 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and even more preferably in both the conduction region a and the insulation region b. Is 7% or less. In addition, the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 to 800 nm is preferably 15% or less, more preferably 10% or less, both in the conduction region a and the insulation region b. Preferably it is 9% or less. On the other hand, the average light reflectance of light having a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, both in the conduction region a and the insulation region b. Preferably it is 10% or less. The lower the average light absorptance and average light reflectance of the transparent conductor, the higher the above-mentioned average light transmittance.
 上記平均光透過率、平均光吸収率、及び平均光反射率は、透明導電体の使用環境下で測定した平均光透過率、平均光吸収率、及び平均光反射率であることが好ましい。具体的には、透明導電体が有機樹脂と貼り合わせて使用される場合には、透明導電体上に有機樹脂からなる層を配置して平均光透過率及び平均光反射率測定することが好ましい。一方、透明導電体が大気中で使用される場合には、大気中での平均光透過率及び平均光反射率を測定することが好ましい。光透過率及び光反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を入射させて分光光度計で測定する。光吸収率(%)は、100-(光透過率+光反射率)の計算式より算出される。 The average light transmittance, average light absorption rate, and average light reflectance are preferably an average light transmittance, an average light absorption rate, and an average light reflectance measured in an environment where the transparent conductor is used. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average light transmittance and the average light reflectance by disposing a layer made of the organic resin on the transparent conductor. . On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average light transmittance and the average light reflectance in the air. The light transmittance and the light reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. The light absorptance (%) is calculated from a calculation formula of 100− (light transmittance + light reflectance).
 また、透明導電体1が、図2に示すように導通領域a及び絶縁領域bを有する場合、導通領域aの反射率及び絶縁領域bの反射率がそれぞれ近似することが好ましい。具体的には、導通領域aの視感反射率と、絶縁領域bの視感反射率との差ΔRが5%以下であることが好ましく、3%以下であることがより好ましく、さらに好ましくは1%以下であり、特に好ましくは0.3%以下である。一方、導通領域a及び絶縁領域bの視感反射率は、それぞれ5%以下であることが好ましく、より好ましくは3%以下であり、さらに好ましくは1%以下である。視感反射率は、分光光度計(U4100;日立ハイテクノロジーズ社製)で測定されるY値である。 Further, when the transparent conductor 1 has the conductive region a and the insulating region b as shown in FIG. 2, it is preferable that the reflectance of the conductive region a and the reflectance of the insulating region b are approximated. Specifically, the difference ΔR between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and still more preferably It is 1% or less, particularly preferably 0.3% or less. On the other hand, the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less. The luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
 また透明導電体1に導通領域a及び絶縁領域bが含まれる場合、いずれの領域においても、L表色系におけるa値及びb値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L表色系におけるa値及びb値が±30以内であれば、導通領域a及び絶縁領域bのいずれの領域も無色透明に観察される。L表色系におけるa値及びb値は、分光光度計で測定される。 When the transparent conductor 1 includes the conduction region a and the insulation region b, the a * value and the b * value in the L * a * b * color system are preferably within ± 30 in any region. More preferably, it is within ± 5, more preferably within ± 3.0, and particularly preferably within ± 2.0. If the a * value and the b * value in the L * a * b * color system are within ± 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の導通領域aの表面電気抵抗値は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。導通領域の表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。導通領域aの表面電気抵抗値は、透明金属層の厚さ等によって調整される。導通領域aの表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定される。また、市販の表面電気抵抗率計によっても測定される。 The surface electrical resistance value of the conductive region a of the transparent conductor is preferably 50Ω / □ or less, and more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50 Ω / □ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value of the conduction region a is adjusted by the thickness of the transparent metal layer and the like. The surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, or the like. It is also measured by a commercially available surface electrical resistivity meter.
 〔パターニングされた電極を有する透明導電体の形成方法〕
 本発明の透明導電体に対し、図2で示すような導通領域及び絶縁領域からなるパターンの形成方法について説明する。パターンの形成にあたっては、市販のレーザーエッチング装置(武井電機工業株式会社製)などを用いることができる。波長は1064nm、532nm又は355nmが特に望ましい。線幅は5~30μmが望ましい。
 本発明の透明導電体においては、上記のような方法で透明基板上に、例えば、第1高屈折率層と、透明金属層と、第2高屈折率層とをこの順で積層して製造した後、透明金属層を所定の形状にパターニングされた金属電極を形成することが好ましく、具体的には、フォトリソグラフィー法により、エッチング液を用いて、例えば、図5に示すようなパターニングされた電極を形成することが好ましい。形成する電極の線幅としては、50μm以下であることが好ましく、特に好ましくは、20μm以下である。
[Method of forming transparent conductor having patterned electrode]
A method of forming a pattern composed of a conductive region and an insulating region as shown in FIG. 2 will be described for the transparent conductor of the present invention. In forming the pattern, a commercially available laser etching apparatus (manufactured by Takei Electric Industry Co., Ltd.) can be used. The wavelength is particularly preferably 1064 nm, 532 nm or 355 nm. The line width is preferably 5 to 30 μm.
In the transparent conductor of the present invention, for example, the first high refractive index layer, the transparent metal layer, and the second high refractive index layer are laminated in this order on the transparent substrate by the method as described above. After that, it is preferable to form a metal electrode obtained by patterning the transparent metal layer into a predetermined shape. Specifically, for example, the patterning as shown in FIG. It is preferable to form an electrode. The line width of the electrode to be formed is preferably 50 μm or less, and particularly preferably 20 μm or less.
 (製造工程)
 以下、フォトリソグラフィー法による電極のパターニング方法について説明する。
 本発明に適用するフォトリソグラフィー法とは、硬化性樹脂等のレジスト塗布、予備加熱、露光、現像(未硬化樹脂の除去)、リンス、エッチング液によるエッチング処理、レジスト剥離の各工程を経ることにより、透明金属層を、所望のパターンに加工する方法である。
(Manufacturing process)
Hereinafter, an electrode patterning method by photolithography will be described.
The photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping. The transparent metal layer is processed into a desired pattern.
 本発明では、従来公知の一般的なフォトリソグラフィー法を適宜利用することができる。例えば、レジストとしてはポジ型又はネガ型のいずれのレジストでも使用可能である。また、レジスト塗布後、必要に応じて予備加熱又はプリベークを実施することができる。露光に際しては、所定のパターンを有するパターンマスクを配置し、その上から、用いたレジストに適合する波長の光、一般には紫外線や電子線等を照射すればよい。
 露光後、用いたレジストに適合する現像液で現像を行う。現像後、水等のリンス液で現像を止めるとともに洗浄を行うことで、レジストパターンが形成される。次いで、形成されたレジストパターンを、必要に応じて前処理又はポストベークを実施してから、有機溶媒を含むエッチング液によるエッチングで、レジストで保護されていない領域の高屈折率層の溶解及び銀薄膜電極の除去を行う。エッチング後、残留するレジストを剥離することによって、所定のパターンを有する透明電極が得られる。
 このように、本発明に適用されるフォトリソグラフィー法は、当業者に一般に認識されている方法であり、その具体的な適用態様は当業者であれば所定の目的に応じて容易に選定することができる。
In the present invention, a conventionally known general photolithography method can be appropriately used. For example, as the resist, either positive or negative resist can be used. In addition, after applying the resist, preheating or prebaking can be performed as necessary. At the time of exposure, a pattern mask having a predetermined pattern may be disposed, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated thereon.
After the exposure, development is performed with a developer suitable for the resist used. After the development, the resist pattern is formed by stopping the development with a rinse solution such as water and washing. Next, the formed resist pattern is pretreated or post-baked as necessary, and then etched with an etching solution containing an organic solvent to dissolve the high refractive index layer in a region not protected by the resist and to form silver. The thin film electrode is removed. After etching, the remaining resist is peeled to obtain a transparent electrode having a predetermined pattern.
As described above, the photolithography method applied to the present invention is a method generally recognized by those skilled in the art, and a specific application mode thereof can be easily selected by a person skilled in the art according to a predetermined purpose. Can do.
 次いで、図を交えて、本発明に適用可能な電極のパターニング方法について説明する。
 図4A~Fは、本発明の透明導電体の電極にフォトリソグラフィー法でパターニングする一例を示す模式図である。
Next, an electrode patterning method applicable to the present invention will be described with reference to the drawings.
4A to 4F are schematic views showing an example of patterning the electrode of the transparent conductor of the present invention by a photolithography method.
 第1ステップとして、図4Aで示すように、透明基板2上に、第1高屈折率層3A、第1硫化防止層5A、透明金属層4、第2硫化防止層5B、第2高屈折率層3Bをこの順で積層した透明導電体1を作製する。
 次いで、図4Bでレジスト膜を形成する前に、透明導電体1に超音波洗浄処理を施すことが好ましい。超音波洗浄としては、例えば、花王社製の洗剤クリンスルー KS-3030を用いて超音波洗浄と純水による水洗いを数回行った後、スピンコータで水を飛ばし、オーブンで乾燥させる。
As a first step, as shown in FIG. 4A, on the transparent substrate 2, the first high refractive index layer 3A, the first antisulfurization layer 5A, the transparent metal layer 4, the second antisulfurization layer 5B, the second high refractive index. The transparent conductor 1 in which the layers 3B are laminated in this order is produced.
Next, it is preferable to subject the transparent conductor 1 to ultrasonic cleaning before forming the resist film in FIG. 4B. As the ultrasonic cleaning, for example, ultrasonic cleaning and water washing with pure water are performed several times using a detergent clean-through KS-3030 manufactured by Kao Corporation, and then water is blown off with a spin coater and dried in an oven.
 次いで、図4Bで示すレジスト膜の形成工程で、透明導電体1上に感光性樹脂組成物等から構成されるレジスト膜7を均一に塗設する。感光性樹脂組成物としては、ネガ型感光性樹脂組成物又はポジ型感光性樹脂組成物を用いることができる。レジストとしては、例えば、東京応化工業社製のOFPR-800LB等を用いることができる。 Next, in the resist film forming step shown in FIG. 4B, a resist film 7 made of a photosensitive resin composition or the like is uniformly coated on the transparent conductor 1. As the photosensitive resin composition, a negative photosensitive resin composition or a positive photosensitive resin composition can be used. As the resist, for example, OFPR-800LB manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
 塗布方法としては、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどの公知の方法によって、透明導電体1上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークすることができる。プリベークは、例えば、ホットプレート等を用いて、50℃以上、150℃以下の範囲で30秒~30分間行うことができる。 As a coating method, it is applied on the transparent conductor 1 by a known method such as micro gravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, etc., and heated by a hot plate, oven or the like. It can be pre-baked in the apparatus. Pre-baking can be performed, for example, using a hot plate or the like in the range of 50 ° C. or higher and 150 ° C. or lower for 30 seconds to 30 minutes.
 次いで、図4Cに示す露光工程で、所定のパターニングにより作製したマスク8を介して、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナーなどの露光機9を用いて、10~4000J/m程度(波長365nm露光量換算)の光を、次工程で除去するレジスト膜7Aに照射する。露光光源に制限はなく、紫外線、電子線や、KrF(波長248nm)レーザー、ArF(波長193nm)レーザーなどを用いることができる。 Next, in the exposure step shown in FIG. 4C, 10 to 4000 J / m using an exposure machine 9 such as a stepper, a mirror projection mask aligner (MPA), and a parallel light mask aligner through a mask 8 produced by predetermined patterning. The resist film 7A to be removed in the next step is irradiated with light of about 2 (wavelength 365 nm exposure amount conversion). The exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
 次いで、図4Dに示す現像工程で、露光済みの透明導電体を、現像液に浸漬して、光照射した領域のレジスト膜7Aを溶解する。現像液としては、例えば、レジストとしてポジ型感光性樹脂組成物を用いた場合には、トクヤマ社製のポジ型フォトレジスト用現像液「トクソーSD」シリーズ(テトラメチルアンモニウムヒドロキシド)等を用いることができる。 Next, in the developing step shown in FIG. 4D, the exposed transparent conductor is immersed in a developing solution to dissolve the resist film 7A in the region irradiated with light. As the developer, for example, when a positive photosensitive resin composition is used as a resist, a developer for positive photoresist “Tokuso SD” series (tetramethylammonium hydroxide) manufactured by Tokuyama Corporation should be used. Can do.
 現像方法としては、シャワー、ディッピング、パドルなどの方法で現像液に5秒~10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体例としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミンなどのアミン類、テトラメチルアンモニウムヒドロキサイド、コリンなどの4級アンモニウム塩を1種又は2種以上含む水溶液などが挙げられる。現像後、水でリンスすることが好ましく、続いて50℃以上150℃以下の範囲で乾燥ベークを行ってもよい。 As the developing method, it is preferable to immerse in the developer for 5 seconds to 10 minutes by a method such as showering, dipping or paddle. As the developer, a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include an aqueous solution containing one or more quaternary ammonium salts such as side and choline. After development, it is preferable to rinse with water, and then dry baking may be performed in the range of 50 ° C. to 150 ° C.
 次いで、図4Eに示すように、エッチング液10を用いたエッチング処理を行う。
 本発明に適用可能なエッチング液としては、無機酸又は有機酸を含有する液が好ましく、ギ酸、酢酸、シュウ酸、クエン酸、塩酸、リン酸、硝酸等を挙げることができ、特に、シュウ酸、酢酸、リン酸が好ましい。また、エッチング液としては市販品を用いることもでき、例えば、林純薬工業社製のPure Etch DE100(シュウ酸)、関東化学社製の「混液 SEA-5」(リン酸:55質量%、酢酸:30質量%、水その他の成分:15質量%)等を用いることができる。
Next, as shown in FIG. 4E, an etching process using the etching solution 10 is performed.
As an etching solution applicable to the present invention, a solution containing an inorganic acid or an organic acid is preferable, and formic acid, acetic acid, oxalic acid, citric acid, hydrochloric acid, phosphoric acid, nitric acid and the like can be mentioned, and in particular, oxalic acid Acetic acid and phosphoric acid are preferred. Commercially available products can also be used as the etchant. For example, Pure Etch DE100 (oxalic acid) manufactured by Hayashi Junyaku Kogyo Co., Ltd., “Mixed Solution SEA-5” manufactured by Kanto Chemical Co. (phosphoric acid: 55% by mass, Acetic acid: 30% by mass, water and other components: 15% by mass) and the like can be used.
 具体的には、例えば、有機酸等を含むエッチング液に、レジスト膜7を有する透明導電体1を浸漬し、レジスト膜7で保護されていない絶縁領域bの電極ユニットEUを溶解し、レジスト膜7で保護している導電領域aの電極ユニットEUを所定のパターニングされた電極(以下、電極パターンともいう。)として形成する。エッチング時間は、適用する酸の種類により異なるが、30~120秒の範囲内で調整することが好ましい。 Specifically, for example, the transparent conductor 1 having the resist film 7 is immersed in an etching solution containing an organic acid or the like, and the electrode unit EU in the insulating region b that is not protected by the resist film 7 is dissolved. The electrode unit EU of the conductive region a protected by 7 is formed as a predetermined patterned electrode (hereinafter also referred to as an electrode pattern). The etching time varies depending on the type of acid to be applied, but is preferably adjusted within a range of 30 to 120 seconds.
 最後に、図4Fに示すように、レジスト膜剥離液として、例えば、アセトン、水酸化ナトリウム液、市販品としては、ナガセケムテックス社製のN-300等を用いて、エッチングした透明導電体を浸漬して、レジスト膜7を除去して、パターニングされた電極を有する透明導電体を作製することができる。 Finally, as shown in FIG. 4F, an etched transparent conductor is used by using, for example, acetone, sodium hydroxide solution, N-300 manufactured by Nagase ChemteX Corp. as a resist film stripping solution, as a resist film stripping solution. The resist film 7 is removed by dipping, and a transparent conductor having a patterned electrode can be produced.
 《透明導電体の適用分野》
 上記構成からなる本発明の透明導電体は、液晶方式、プラズマ方式、有機エレクトロルミネッセンス方式、フィールドエミッション方式など各種ディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。
《Field of application of transparent conductors》
The transparent conductor of the present invention having the above-described configuration includes various displays such as a liquid crystal system, a plasma system, an organic electroluminescence system, a field emission system, a touch panel, a mobile phone, electronic paper, various solar cells, and various electroluminescence light control elements. It can preferably be used for substrates of various optoelectronic devices.
 このとき、透明導電体の表面(例えば、透明基板と反対側の表面)は、接着層等を介して、他の部材と貼り合わせられてもよい。この場合には、透明導電体の表面の等価アドミッタンス座標と、接着層のアドミッタンス座標とがそれぞれ近似することが好ましい。これにより、透明導電体と接着層との界面での反射が抑制される。具体的には、波長550nmの反射率が1%以下になるように透明導電体の表面のアドミッタンス座標を調整するのが好ましい。接着剤の屈折率は一般的に、大きく調整することが難しいためである。 At this time, the surface of the transparent conductor (for example, the surface opposite to the transparent substrate) may be bonded to another member via an adhesive layer or the like. In this case, it is preferable that the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer are approximated respectively. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed. Specifically, it is preferable to adjust the admittance coordinates on the surface of the transparent conductor so that the reflectance at a wavelength of 550 nm is 1% or less. This is because the refractive index of the adhesive is generally difficult to adjust largely.
 一方、透明導電体の表面が空気と接するような構成で使用される場合には、透明導電体の表面のアドミッタンス座標と、空気のアドミッタンス座標とがそれぞれ近似することが好ましい。これにより、透明導電体と空気との界面での光の反射が抑制される。具体的には、波長550nmの反射率が1%以下になるように透明導電体の表面のアドミッタンス座標を調整するのが好ましい。 On the other hand, when used in a configuration in which the surface of the transparent conductor is in contact with air, it is preferable that the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed. Specifically, it is preferable to adjust the admittance coordinates on the surface of the transparent conductor so that the reflectance at a wavelength of 550 nm is 1% or less.
 以下、本発明の透明導電体をタッチパネルに適用した一例を示す。
 図5は、パターニングされた電極を有する透明導電体を具備したタッチパネルの構成の一例を示す斜視図である。
 図5に示すタッチパネル21は、投影型静電容量式のタッチパネルである。このタッチパネル21は、透明基板2-1及び2-2の一主面上に、第1の透明電極ユニットEU-1及び第2の透明電極ユニットEU-2がこの順に配置され、この上部が前面板13で覆われている。
Hereinafter, an example in which the transparent conductor of the present invention is applied to a touch panel will be described.
FIG. 5 is a perspective view illustrating an example of a configuration of a touch panel including a transparent conductor having patterned electrodes.
The touch panel 21 shown in FIG. 5 is a projected capacitive touch panel. In the touch panel 21, a first transparent electrode unit EU-1 and a second transparent electrode unit EU-2 are arranged in this order on one main surface of the transparent substrates 2-1 and 2-2. Covered with a face plate 13.
 第1の透明電極ユニットEU-1及び第2の透明電極ユニットEU-2は、それぞれが、図2及び図4A~Fを用いて説明したパターニングされた電極が形成された透明導電体1である。したがって、第1の透明電極ユニットEU-1は、透明基板2-1上に、第1高屈折率層3A、第1硫化防止層5A、透明金属層4、第2硫化防止層5B、第2高屈折率層3Bをこの順で積層した構成である。第2の透明電極ユニットEU-2も同様の構成である。 The first transparent electrode unit EU-1 and the second transparent electrode unit EU-2 are respectively transparent conductors 1 on which the patterned electrodes described with reference to FIGS. 2 and 4A to F are formed. . Therefore, the first transparent electrode unit EU-1 includes the first high refractive index layer 3A, the first sulfidation preventing layer 5A, the transparent metal layer 4, the second sulfidation preventing layer 5B, the second on the transparent substrate 2-1. The high refractive index layer 3B is laminated in this order. The second transparent electrode unit EU-2 has the same configuration.
 本発明の透明導電体は、投影型静電容量式のタッチパネルに加え、種々の方式のタッチパネルのタッチセンサー(以下において、「タッチセンサー電極部」ともいう。)に適用され得る。例えば、表面型静電容量方式タッチパネル、抵抗膜式タッチパネルなどにおいても用いることができる。 The transparent conductor of the present invention can be applied to various types of touch panel touch sensors (hereinafter also referred to as “touch sensor electrode portions”) in addition to a projected capacitive touch panel. For example, it can be used in a surface capacitive touch panel, a resistive touch panel, and the like.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。表中の「S含有率」は、硫黄成分の含有率を表す。
 また、本発明に用いる酸化物の組成比は、IGZOが、In:Ga:Zn:O=1:1:1:4(at%比)、ITOが、In:SnO=90:10(質量%比)、ZTOが、ZnO:SnO=70:30(質量%比)、AZOが、Zn:Al=96:4(at%比)、IZOが、In:ZnO=90:10(質量%比)である。
 また、ZnO*1及びGZO*2~GZO*7について、*1~*7を付した酸化物の組成は表3に示したとおりである。また、層厚はスパッタ時間又は蒸着時間を調整することで調節した。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented. “S content” in the table represents the content of the sulfur component.
The composition ratio of the oxide used in the present invention is as follows: IGZO is In: Ga: Zn: O = 1: 1: 1: 4 (at% ratio), ITO is In 2 O 3 : SnO 2 = 90: 10 (mass% ratio), ZTO is ZnO: SnO 2 = 70: 30 (mass% ratio), AZO is Zn: Al = 96: 4 (at% ratio), IZO is In 2 O 3 : ZnO = 90:10 (mass% ratio).
In addition, regarding ZnO * 1 and GZO * 2 to GZO * 7 , the compositions of oxides marked with * 1 to * 7 are as shown in Table 3. The layer thickness was adjusted by adjusting the sputtering time or the deposition time.
 [実施例1]
 《透明導電体の作製》
 〔透明導電体1の作製〕
 透明基板としてポリエチレンテレフタレート(略称:PET)フィルム(東洋紡製「コスモシャインA4300」厚さ50μm)を用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS-SiO)/透明金属層(Ag)/第2硫化防止層(AZO)/第2高屈折率層(ITO)をこの順に積層した。
 なお、以下に示す各層の厚さ及び屈折率は、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
[Example 1]
<< Production of transparent conductor >>
[Preparation of transparent conductor 1]
A polyethylene terephthalate (abbreviation: PET) film (“Cosmo Shine A4300”, 50 μm thick, manufactured by Toyobo Co., Ltd.) is used as the transparent substrate, and the first high refractive index layer (ZnS—SiO 2 ) / transparent on the PET film according to the following method. A metal layer (Ag) / second anti-sulfurization layer (AZO) / second high refractive index layer (ITO) were laminated in this order.
In addition, the thickness and refractive index of each layer shown below are J.P. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
 (第1高屈折率層(ZnS-SiO)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が40nmとなるようZnS-SiOをRF(交流)スパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnS-SiOは、ZnSにSiOを混合し、焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、15at%とした。
(Formation of First High Refractive Index Layer (ZnS—SiO 2 ))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS—SiO 2 was RF (alternating current) sputtered so that The target-substrate distance was 86 mm. The target ZnS—SiO 2 was prepared by mixing SiO 2 with ZnS and sintering. The content rate of the sulfur component contained in the first high refractive index layer was 15 at%.
 なお、第1高屈折率層における硫黄成分の含有率は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いて測定した結果、15at%であることを確認した。以下の実施例についても同様に硫黄成分の含有率を確認した。 The content of the sulfur component in the first high refractive index layer was 15 at% as a result of measurement using X-ray photoelectron spectroscopy (XPS). The content rate of the sulfur component was similarly confirmed about the following examples.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sで銀(以下、Agと表記する。)を層厚が7.4nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using Anelva's L-430S-FHS, Ar (20 sccm), sputtering pressure (0.25 Pa), room temperature, formation rate 0.7 nm / s, and silver (hereinafter referred to as Ag) layer thickness is 7.4 nm. DC sputtering was performed. The target-substrate distance was 86 mm.
 (第2硫化防止層(AZO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようAZOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (AZO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. AZO was RF sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(ITO)の形成)
 第2硫化防止層を作製したPETフィルムに、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようITOをRFスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。表1で示したように、ターゲットであるITOは、ITOにZnSを混合し、焼結させることで作製した。第2高屈折率層に含有される硫黄成分の含有率は、0.4at%とした。
 このようにして透明導電体1を作製した。
(Formation of second high refractive index layer (ITO))
The PET film on which the second anti-sulfuration layer was produced was subjected to an L-430S-FHS sputtering apparatus manufactured by Anelva, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second. ITO was RF sputtered so that the layer thickness was 46 nm. The deposited film had a target-substrate distance of 86 mm. As shown in Table 1, the target ITO was prepared by mixing ZnS with ITO and sintering it. The content rate of the sulfur component contained in the second high refractive index layer was 0.4 at%.
Thus, the transparent conductor 1 was produced.
 〔透明導電体2及び3の作製〕
 透明導電体1の作製において、表1で示したように第2硫化防止層と第2高屈折率層の材質並びに第1高屈折率層及び第2高屈折率層に含有される硫黄成分の含有率を変えて、透明導電体1の作製と同様にして透明導電体2及び3を作製した。
[Production of transparent conductors 2 and 3]
In the production of the transparent conductor 1, as shown in Table 1, the materials of the second antisulfurization layer and the second high refractive index layer and the sulfur component contained in the first high refractive index layer and the second high refractive index layer The transparent conductors 2 and 3 were produced in the same manner as the production of the transparent conductor 1 by changing the content rate.
 〔透明導電体4の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS-SiO)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(GZO(5.7質量%))をこの順に積層した。
[Preparation of transparent conductor 4]
A 50 μm PET film was used as the transparent substrate, and the first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second on the PET film according to the following method. Two anti-sulfurization layers (GZO) / second high refractive index layer (GZO (5.7 mass%)) were laminated in this order.
 (第1高屈折率層(ZnS-SiO)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が40nmとなるようZnS-SiOをRFスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnS-SiOは、ZnSにSiOを混合し、焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、24at%とした。
(Formation of First High Refractive Index Layer (ZnS—SiO 2 ))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS—SiO 2 was RF sputtered so that The target-substrate distance was 86 mm. The target ZnS—SiO 2 was prepared by mixing SiO 2 with ZnS and sintering. The content rate of the sulfur component contained in the first high refractive index layer was 24 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDC(直流)スパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC (direct current) sputtered to a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 次いで、第1硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度2.0nm/sで、層厚が7.4nmとなるようAgをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Next, the PET film on which the first anti-sulfurization layer was formed was made using Anelva L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 2.0 nm / s, and layer thickness 7 Ag was DC sputtered to a thickness of 4 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was DC sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(GZO(5.7質量%))の形成)
 次いで、第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようGZO(5.7質量%)をDCスパッタした。ターゲット-基板間距離は86mmであった。表1で示したように、ターゲットであるGZOは、GZOにZnSを混合し、焼結させることで作製した。第2高屈折率層に含有される硫黄成分の含有率は、1.0at%とした。
 このようにして透明導電体4を作製した。
(Formation of Second High Refractive Index Layer (GZO (5.7% by mass))
Next, the PET film on which the second anti-sulfuring layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus. Then, GZO (5.7 mass%) was DC sputtered so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. As shown in Table 1, the target GZO was prepared by mixing ZnS with GZO and sintering it. The content rate of the sulfur component contained in the second high refractive index layer was 1.0 at%.
Thus, the transparent conductor 4 was produced.
 〔透明導電体5の作製〕
 透明導電体4の作製において、表1で示したように第1硫化防止層を設けない点を除いて、透明導電体4の作製と同様にして透明導電体5を作製した。
[Preparation of transparent conductor 5]
In the production of the transparent conductor 4, a transparent conductor 5 was produced in the same manner as the production of the transparent conductor 4 except that the first antisulfurization layer was not provided as shown in Table 1.
 〔透明導電体6の作製〕
 透明導電体5の作製において、表1で示したように第2硫化防止層を設けない点を除いて、透明導電体5の作製と同様にして透明導電体6を作製した。
[Preparation of transparent conductor 6]
In the production of the transparent conductor 5, the transparent conductor 6 was produced in the same manner as the production of the transparent conductor 5 except that the second sulfidation preventing layer was not provided as shown in Table 1.
 〔透明導電体7の作製〕
 透明導電体6の作製において、表1で示したように第2高屈折率層に含有される硫黄成分の含有率を5at%に変更して、透明導電体6の作製と同様にして透明導電体7を作製した。
[Preparation of transparent conductor 7]
In the production of the transparent conductor 6, as shown in Table 1, the content of the sulfur component contained in the second high refractive index layer was changed to 5 at%, and the transparent conductor 6 was produced in the same manner as the production of the transparent conductor 6. A body 7 was produced.
 〔透明導電体8の作製〕
 透明導電体4の作製において、表1で示したように第1高屈折率層に含有される硫黄成分の含有率を25at%に変更し、第2高屈折率層に用いられるGZOを10質量%のものに変更して、透明導電体4の作製と同様にして透明導電体8を作製した。
[Preparation of transparent conductor 8]
In the production of the transparent conductor 4, as shown in Table 1, the content of the sulfur component contained in the first high refractive index layer was changed to 25 at%, and 10 mass of GZO used for the second high refractive index layer was obtained. The transparent conductor 8 was produced in the same manner as the production of the transparent conductor 4.
 〔透明導電体9の作製〕
 透明導電体4の作製において、表1で示したように第2硫化防止層を設けず、第2高屈折率層に用いられるGZOを23質量%のものに変更して、透明導電体4の作製と同様にして透明導電体9を作製した。
[Preparation of transparent conductor 9]
In the production of the transparent conductor 4, as shown in Table 1, the second antisulfurization layer is not provided, and the GZO used for the second high refractive index layer is changed to 23% by mass, so that the transparent conductor 4 A transparent conductor 9 was produced in the same manner as the production.
 〔透明導電体10の作製〕
 透明基板として50μmのPETを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(AZO)をこの順に積層した。
[Preparation of transparent conductor 10]
Using PET of 50 μm as a transparent substrate, a first high refractive index layer (ZnS) / transparent metal layer (Ag) / second antisulfuration layer (GZO) / second high refractive index on a PET film according to the following method. Layers (AZO) were laminated in this order.
 (第1高屈折率層(ZnS)の形成)
 真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、モリブデン製抵抗加熱ボートにZnSを装填し、真空槽を1×10-4Paまで減圧した後、抵抗加熱ボートに通電加熱し、抵抗加熱ボートの通電加熱条件を調整して、形成速度2.0nm/秒の条件でPETフィルム上に蒸着して、層厚が40nmの第1高屈折率層を形成した。ターゲットであるZnSは、ZnSを焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、35at%とした。
(Formation of first high refractive index layer (ZnS))
As a vacuum deposition device, a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 × 10 −4 Pa, and the resistance heating boat was energized and heated. The current heating condition of the resistance heating boat was adjusted, and vapor deposition was performed on the PET film under the condition of a formation rate of 2.0 nm / second to form a first high refractive index layer having a layer thickness of 40 nm. The target ZnS was produced by sintering ZnS. The content rate of the sulfur component contained in the first high refractive index layer was 35 at%.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が7.4nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered to form a layer thickness of 7.4 nm at an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.7 nm / s. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was DC sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(AZO)の形成)
 第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようAZOをRFスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。表1で示したように、ターゲットであるAZOは、AZOにZnSを混合し、焼結させることで作製した。第2高屈折率層に含有される硫黄成分の含有率は、4at%とした。
 このようにして透明導電体10を作製した。
(Formation of second high refractive index layer (AZO))
Using a Anelva L-430S-FHS sputtering apparatus, the PET film on which the second sulfidation-preventing layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second, AZO was RF sputtered so that the layer thickness was 46 nm. The deposited film had a target-substrate distance of 86 mm. As shown in Table 1, the target AZO was prepared by mixing AZO with ZnS and sintering. The content rate of the sulfur component contained in the second high refractive index layer was 4 at%.
Thus, the transparent conductor 10 was produced.
 〔透明導電体11の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2高屈折率層(GZO(10質量%))をこの順に積層した。
[Preparation of transparent conductor 11]
Using a 50 μm PET film as a transparent substrate, a first high refractive index layer (ZnS) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second high refraction is formed on the PET film according to the following method. The rate layer (GZO (10 mass%)) was laminated in this order.
 (第1高屈折率層(ZnS)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が40nmとなるようZnSをRFスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnSは、ZnSを焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、45at%とした。
(Formation of first high refractive index layer (ZnS))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS was RF sputtered so that The target-substrate distance was 86 mm. The target ZnS was produced by sintering ZnS. The content rate of the sulfur component contained in the first high refractive index layer was 45 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が7.4nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered to form a layer thickness of 7.4 nm at an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.7 nm / s. The target-substrate distance was 86 mm.
 (第2高屈折率層(GZO(10質量%))の形成)
 透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようGZO(10質量%)をDCスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。表1で示したように、ターゲットであるGZO(10質量%)は、GZOにZnSを混合し、焼結させることで作製した。第2高屈折率層に含有される硫黄成分の含有率は、1at%とした。
 このようにして透明導電体11を作製した。
(Formation of second high refractive index layer (GZO (10% by mass))
Using a Anelva L-430S-FHS sputtering apparatus, the PET film on which the transparent metal layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, layer thickness GZO (10 mass%) was DC sputtered so that the thickness was 46 nm. The deposited film had a target-substrate distance of 86 mm. As shown in Table 1, the target GZO (10 mass%) was prepared by mixing ZnS with GZO and sintering it. The content rate of the sulfur component contained in the second high refractive index layer was 1 at%.
Thus, the transparent conductor 11 was produced.
 〔透明導電体12の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(TiO)をこの順に積層した。
[Preparation of transparent conductor 12]
Using a PET film of 50 μm as a transparent substrate, the first high refractive index layer (ZnS) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second antisulfuration is formed on the PET film according to the following method. Layer (GZO) / second high refractive index layer (TiO 2 ) were laminated in this order.
 (第1高屈折率層(ZnS)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が40nmとなるようZnSをRFスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnSは、ZnSを焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、50at%とした。
(Formation of first high refractive index layer (ZnS))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS was RF sputtered so that The target-substrate distance was 86 mm. The target ZnS was produced by sintering ZnS. The content rate of the sulfur component contained in the first high refractive index layer was 50 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が7.4nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered to form a layer thickness of 7.4 nm at an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.7 nm / s. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was DC sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(TiO)の形成)
 第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようTiOをRFスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。表1で示したように、ターゲットであるTiOは、TiOにZnSを混合し、焼結させることで作製した。第2高屈折率層に含有される硫黄成分の含有率は、4at%とした。
 このようにして透明導電体12を作製した。
(Formation of second high refractive index layer (TiO 2 ))
Using a Anelva L-430S-FHS sputtering apparatus, the PET film on which the second sulfidation-preventing layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second, TiO 2 was RF sputtered so that the layer thickness was 46 nm. The deposited film had a target-substrate distance of 86 mm. As shown in Table 1, the target TiO 2 was prepared by mixing TiO 2 with ZnS and sintering. The content rate of the sulfur component contained in the second high refractive index layer was 4 at%.
Thus, the transparent conductor 12 was produced.
 〔透明導電体13の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(WO)をこの順に積層した。
[Preparation of transparent conductor 13]
Using a PET film of 50 μm as a transparent substrate, the first high refractive index layer (ZnS) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second antisulfuration is formed on the PET film according to the following method. Layer (GZO) / second high refractive index layer (WO 3 ) were laminated in this order.
 (第1高屈折率層(ZnS)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が40nmとなるようZnSをRFスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnSは、ZnSを焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、40at%とした。
(Formation of first high refractive index layer (ZnS))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS was RF sputtered so that The target-substrate distance was 86 mm. The target ZnS was produced by sintering ZnS. The content rate of the sulfur component contained in the first high refractive index layer was 40 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が7.4nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered to form a layer thickness of 7.4 nm at an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.7 nm / s. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was DC sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(WO)の形成)
 第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようWOをRFスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。表1で示したように、ターゲットであるWOは、WOにZnSを混合し、焼結させることで作製した。第2高屈折率層に含有される硫黄成分の含有率は、9.8at%とした。
 このようにして透明導電体13を作製した。
(Formation of second high refractive index layer (WO 3 ))
Using a Anelva L-430S-FHS sputtering apparatus, the PET film on which the second sulfidation-preventing layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second, WO 3 was RF sputtered to a layer thickness of 46 nm. The deposited film had a target-substrate distance of 86 mm. As shown in Table 1, the target WO 3 was prepared by mixing WO 3 with ZnS and sintering. The content rate of the sulfur component contained in the second high refractive index layer was 9.8 at%.
In this way, a transparent conductor 13 was produced.
 〔透明導電体14の作製〕
 透明導電体13の作製において、表1で示したように第1高屈折率に含有される硫黄成分の含有率を変更し、第2高屈折率層に使用される材質をZrOに変更して、透明導電体13の作製と同様にして透明導電体14を作製した。
[Preparation of transparent conductor 14]
In the preparation of the transparent conductor 13, to change the content of sulfur component contained in the first high refractive index as shown in Table 1, by changing the material used for the second high refractive index layer ZrO 2 Thus, a transparent conductor 14 was produced in the same manner as the production of the transparent conductor 13.
 〔透明導電体15の作製〕
 透明導電体10の作製において、表1で示したように第2高屈折率層に使用されるターゲットであるAZOについて、AZOに硫黄単体を混合し、焼結させることで作製する点を変更して、透明導電体10の作製と同様にして透明導電体15を作製した。
[Preparation of transparent conductor 15]
In the production of the transparent conductor 10, as shown in Table 1, with respect to AZO, which is a target used for the second high refractive index layer, the point of production is changed by mixing AZO with simple sulfur and sintering. Thus, a transparent conductor 15 was produced in the same manner as the production of the transparent conductor 10.
 〔透明導電体16の作製〕
 透明導電体11の作製において、表1で示したように第2高屈折率層に使用されるターゲットであるZTOについて、ZTOに硫黄単体を混合し、焼結させることで作製し、第2高屈折率層に含有される硫黄成分の含有率は、4at%とした点を変更して、透明導電体11の作製と同様にして透明導電体16を作製した。
[Preparation of transparent conductor 16]
In the production of the transparent conductor 11, as shown in Table 1, ZTO, which is a target used for the second high refractive index layer, is produced by mixing and sintering ZTO alone with ZTO. The transparent conductor 16 was produced in the same manner as the production of the transparent conductor 11 by changing the content of the sulfur component contained in the refractive index layer to 4 at%.
 〔透明導電体17の作製〕
 透明導電体12の作製において、表1で示したように第2高屈折率層に使用されるターゲットであるTiOについて、TiOに硫黄単体を混合し、焼結させることで作製する点を変更して、透明導電体12の作製と同様にして透明導電体17を作製した。
[Preparation of transparent conductor 17]
In the preparation of the transparent conductor 12, the TiO 2 is a target used in the second high refractive index layer as shown in Table 1, the point of making by mixing the elemental sulfur in the TiO 2, is sintered In the same manner as in the production of the transparent conductor 12, the transparent conductor 17 was produced.
 〔透明導電体18の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS)/第1硫化防止層(ZnO)/透明金属層(Ag)/第2高屈折率層(WO)をこの順に積層した。
[Preparation of transparent conductor 18]
Using a 50 μm PET film as a transparent substrate, a first high refractive index layer (ZnS) / first antisulfuration layer (ZnO) / transparent metal layer (Ag) / second high refraction is formed on the PET film according to the following method. Rate layers (WO 3 ) were laminated in this order.
 (第1高屈折率層(ZnS)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が40nmとなるようZnSをRFスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnSは、ZnSを焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、40at%とした。
(Formation of first high refractive index layer (ZnS))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS was RF sputtered so that The target-substrate distance was 86 mm. The target ZnS was produced by sintering ZnS. The content rate of the sulfur component contained in the first high refractive index layer was 40 at%.
 (第1硫化防止層(ZnO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようZnOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (ZnO))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, ZnO was RF sputtered to a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が7.4nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered to form a layer thickness of 7.4 nm at an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.7 nm / s. The target-substrate distance was 86 mm.
 (第2高屈折率層(WO)の形成)
 透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようWOをRFスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。表1で示したように、ターゲットであるWOは、WOに硫黄単体を混合し、焼結させることで作製した。第2高屈折率層に含有される硫黄成分の含有率は、9.8at%とした。
 このようにして透明導電体18を作製した。
(Formation of second high refractive index layer (WO 3 ))
Using a Anelva L-430S-FHS sputtering apparatus, the PET film on which the transparent metal layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, layer thickness WO 3 was RF sputtered to a thickness of 46 nm. The deposited film had a target-substrate distance of 86 mm. As shown in Table 1, the target WO 3 was prepared by mixing WO 3 with sulfur alone and sintering it. The content rate of the sulfur component contained in the second high refractive index layer was 9.8 at%.
In this way, a transparent conductor 18 was produced.
 〔透明導電体19の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS)/第1硫化防止層(ZnO)/透明金属層(Ag)/第2硫化防止層(ZnO)/第2高屈折率層(ZrO)をこの順に積層した。
[Preparation of transparent conductor 19]
Using a 50 μm PET film as the transparent substrate, the first high refractive index layer (ZnS) / first anti-sulfurization layer (ZnO) / transparent metal layer (Ag) / second anti-sulfurization layer is formed on the PET film according to the following method. Layer (ZnO) / second high refractive index layer (ZrO 2 ) were laminated in this order.
 (第1高屈折率層(ZnS)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が40nmとなるようZnSをRFスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnSは、ZnSを焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、43at%とした。
(Formation of first high refractive index layer (ZnS))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS was RF sputtered so that The target-substrate distance was 86 mm. The target ZnS was produced by sintering ZnS. The content rate of the sulfur component contained in the first high refractive index layer was 43 at%.
 (第1硫化防止層(ZnO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようZnOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (ZnO))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, ZnO was RF sputtered to a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が7.4nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered to form a layer thickness of 7.4 nm at an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.7 nm / s. The target-substrate distance was 86 mm.
 (第2硫化防止層(ZnO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようZnOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (ZnO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. ZnO was RF sputtered to have a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(ZrO)の形成)
 第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようZrOをRFスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。表1で示したように、ターゲットであるZrOは、ZrOに硫黄単体を混合し、焼結させることで作製した。第2高屈折率層に含有される硫黄成分の含有率は、9.8at%とした。
 このようにして透明導電体19を作製した。
(Formation of Second High Refractive Index Layer (ZrO 2 ))
Using a Anelva L-430S-FHS sputtering apparatus, the PET film on which the second sulfidation-preventing layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second, ZrO 2 was RF sputtered so that the layer thickness was 46 nm. The deposited film had a target-substrate distance of 86 mm. As shown in Table 1, the target ZrO 2 was prepared by mixing and sintering a single element of sulfur in ZrO 2 . The content rate of the sulfur component contained in the second high refractive index layer was 9.8 at%.
In this way, a transparent conductor 19 was produced.
 〔透明導電体20の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS-SiO)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(ZnO*1)をこの順に積層した。
[Production of transparent conductor 20]
A 50 μm PET film was used as the transparent substrate, and the first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second on the PET film according to the following method. A disulfide prevention layer (GZO) / second high refractive index layer (ZnO * 1 ) were laminated in this order.
 (第1高屈折率層(ZnS-SiO)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が40nmとなるようZnS-SiOをRFスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnS-SiOは、ZnSにSiOを混合し、焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、25at%とした。
(Formation of First High Refractive Index Layer (ZnS—SiO 2 ))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS—SiO 2 was RF sputtered so that The target-substrate distance was 86 mm. The target ZnS—SiO 2 was prepared by mixing SiO 2 with ZnS and sintering. The content rate of the sulfur component contained in the first high refractive index layer was 25 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 次いで、第1硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度2.0nm/sで、層厚が7.4nmとなるようAgをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Next, the PET film on which the first anti-sulfurization layer was formed was made using Anelva L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 2.0 nm / s, and layer thickness 7 Ag was DC sputtered to a thickness of 4 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was DC sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(ZnO*1)の形成)
 次いで、第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようZnO*1をRFスパッタした。ターゲット-基板間距離は86mmであった。ZnO*1の組成は、表3に示した*1に対応している。また、表1で示したように、ターゲットであるZnO*1は、ZnOにZnSとITOを混合し、焼結させることで作製した。第2高屈折率層に含有される硫黄成分の含有率は、0.5at%とした。
 このようにして透明導電体20を作製した。
(Formation of Second High Refractive Index Layer (ZnO * 1 ))
Next, the PET film on which the second anti-sulfuring layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus. Then, ZnO * 1 was RF sputtered so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The composition of ZnO * 1 corresponds to * 1 shown in Table 3. Further, as shown in Table 1, the target ZnO * 1 was prepared by mixing ZnS and ITO in ZnO and sintering. The content rate of the sulfur component contained in the second high refractive index layer was 0.5 at%.
Thus, the transparent conductor 20 was produced.
 〔透明導電体21の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS-SiO)/透明金属層(Ag)/第2高屈折率層(GZO*2)をこの順に積層した。
[Preparation of transparent conductor 21]
Using a 50 μm PET film as a transparent substrate, a first high refractive index layer (ZnS—SiO 2 ) / transparent metal layer (Ag) / second high refractive index layer (GZO * 2 ) is formed on the PET film according to the following method. ) Were laminated in this order.
 (第1高屈折率層(ZnS-SiO)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が40nmとなるようZnS-SiOをRFスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnS-SiOは、ZnSにSiOを混合し、焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、25at%とした。
(Formation of First High Refractive Index Layer (ZnS—SiO 2 ))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS—SiO 2 was RF sputtered so that The target-substrate distance was 86 mm. The target ZnS—SiO 2 was prepared by mixing SiO 2 with ZnS and sintering. The content rate of the sulfur component contained in the first high refractive index layer was 25 at%.
 (透明金属層(Ag)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度2.0nm/sで、層厚が7.4nmとなるようAgをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Next, the PET film on which the first high refractive index layer was formed was Ln430S-FHS manufactured by Anelva, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 2.0 nm / s, and layer thickness. Ag was DC sputtered to a thickness of 7.4 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(GZO*2)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようGZO*2をDCスパッタした。ターゲット-基板間距離は86mmであった。GZO*2の組成は、表3に示した*2に対応している。また、表2で示したように、ターゲットであるGZO*2は、GZO(5.7質量%)にZnSを混合し、焼結させることで作製した。第2高屈折率層に含有される硫黄成分の含有率は、4.2at%とした。
 このようにして透明導電体21を作製した。
(Formation of second high refractive index layer (GZO * 2 ))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a formation rate of 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus. GZO * 2 was DC sputtered so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The composition of GZO * 2 corresponds to * 2 shown in Table 3. Further, as shown in Table 2, the target GZO * 2 was prepared by mixing ZnS with GZO (5.7 mass%) and sintering it. The content rate of the sulfur component contained in the second high refractive index layer was 4.2 at%.
Thus, the transparent conductor 21 was produced.
 〔透明導電体22の作製〕
 透明導電体21の作製において、表1で示したように第2高屈折率層に使用される材質を表3に示したGZO*3に変更して、GZO*3に含有される硫黄成分の含有率が2.0at%とした以外は、透明導電体21の作製と同様にして透明導電体22を作製した。
[Preparation of transparent conductor 22]
In the preparation of the transparent conductor 21, the material used for the second high refractive index layer as shown in Table 1 by changing the GZO * 3 shown in Table 3, the sulfur components contained in GZO * 3 A transparent conductor 22 was produced in the same manner as the production of the transparent conductor 21 except that the content rate was 2.0 at%.
 〔透明導電体23の作製〕
 透明導電体21の作製において、表1で示したように第2高屈折率層に使用される材質を表3に示したGZO*4に変更して、第2高屈折率層に含有される硫黄成分の含有率を1.8at%とした以外は、透明導電体21の作製と同様にして透明導電体23を作製した。
[Preparation of transparent conductor 23]
In the production of the transparent conductor 21, the material used for the second high refractive index layer is changed to GZO * 4 shown in Table 3 as shown in Table 1, and contained in the second high refractive index layer. A transparent conductor 23 was prepared in the same manner as the transparent conductor 21 except that the content of the sulfur component was 1.8 at%.
 〔透明導電体24の作製〕
 透明導電体20の作製において、表1で示したように第2高屈折率層に使用される材質を表3に示したGZO*5に変更して、第2高屈折率層に含有される硫黄成分の含有率を0.8at%とした以外は、透明導電体20の作製と同様にして透明導電体24を作製した。
[Preparation of transparent conductor 24]
In the production of the transparent conductor 20, the material used for the second high refractive index layer is changed to GZO * 5 shown in Table 3 as shown in Table 1, and contained in the second high refractive index layer. A transparent conductor 24 was prepared in the same manner as the transparent conductor 20 except that the content of the sulfur component was 0.8 at%.
 〔透明導電体25の作製〕
 透明導電体20の作製において、表1で示したように第2高屈折率層に使用される材質を表3に示したGZO*6に変更して、第2高屈折率層に含有される硫黄成分の含有率を0.7at%とした以外は、透明導電体20の作製と同様にして透明導電体25を作製した。
[Preparation of transparent conductor 25]
In the production of the transparent conductor 20, as shown in Table 1, the material used for the second high refractive index layer is changed to GZO * 6 shown in Table 3, and is contained in the second high refractive index layer. A transparent conductor 25 was prepared in the same manner as the transparent conductor 20 except that the content of the sulfur component was 0.7 at%.
 〔透明導電体26の作製〕
 透明導電体20の作製において、表1で示したように第2高屈折率層に使用される材質を表3に示したGZO*7に変更して、第2高屈折率層に含有される硫黄成分の含有率を0.6at%とした以外は、透明導電体20の作製と同様にして透明導電体26を作製した。
[Preparation of transparent conductor 26]
In the production of the transparent conductor 20, as shown in Table 1, the material used for the second high refractive index layer is changed to GZO * 7 shown in Table 3 and contained in the second high refractive index layer. A transparent conductor 26 was prepared in the same manner as the transparent conductor 20 except that the content of the sulfur component was 0.6 at%.
 〔透明導電体27の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ITO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(ITO)をこの順に積層した。
[Preparation of transparent conductor 27]
Using a 50 μm PET film as a transparent substrate, a first high refractive index layer (ITO) / transparent metal layer (Ag) / second antisulfuration layer (GZO) / second high refraction is formed on the PET film according to the following method. The rate layer (ITO) was laminated in this order.
 (第1高屈折率層(ITO)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、ITOを層厚が46nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるITOは、ITOにZnSを混合し、焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、0.7at%とした。
(Formation of first high refractive index layer (ITO))
On a transparent substrate (PET), using an Anelva L-430S-FHS sputtering system, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, ITO layer thickness Was RF sputtered to a thickness of 46 nm. The target-substrate distance was 86 mm. The target ITO was prepared by mixing ZnS in ITO and sintering it. The content rate of the sulfur component contained in the first high refractive index layer was 0.7 at%.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が7.4nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered to form a layer thickness of 7.4 nm at an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.7 nm / s. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was DC sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(ITO)の形成)
 第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようITOをRFスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。表2で示したように、ターゲットであるITOは、ITOにZnSを混合し、焼結させることで作製した。第2高屈折率層に含有される硫黄成分の含有率は、0.7at%とした。
 このようにして透明導電体27を作製した。
(Formation of second high refractive index layer (ITO))
Using a Anelva L-430S-FHS sputtering apparatus, the PET film on which the second sulfidation-preventing layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second, ITO was RF sputtered so that the layer thickness was 46 nm. The deposited film had a target-substrate distance of 86 mm. As shown in Table 2, the target ITO was prepared by mixing ZnS with ITO and sintering it. The content rate of the sulfur component contained in the second high refractive index layer was 0.7 at%.
In this manner, a transparent conductor 27 was produced.
 〔透明導電体28の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnO*1)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(ZnO*1)をこの順に積層した。
[Preparation of transparent conductor 28]
Using a 50 μm PET film as the transparent substrate, the first high refractive index layer (ZnO * 1 ) / transparent metal layer (Ag) / second antisulfuration layer (GZO) / second on the PET film according to the following method. A high refractive index layer (ZnO * 1 ) was laminated in this order.
 (第1高屈折率層(ZnO*1)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、ZnO*1を層厚が46nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。第1高屈折率層に含有される硫黄成分の含有率は、0.5at%とした。
(Formation of the first high refractive index layer (ZnO * 1 ))
On a transparent substrate (PET), using an L-430S-FHS sputtering apparatus manufactured by Anelva, ZnO * 1 was formed at an Ar of 20 sccm, O 2 of 0 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.15 nm / s. RF sputtering was performed so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the first high refractive index layer was 0.5 at%.
 (透明金属層(Ag)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度2.0nm/sで、層厚が7.4nmとなるようAgをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Next, the PET film on which the first high refractive index layer was formed was Ln430S-FHS manufactured by Anelva, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 2.0 nm / s, and layer thickness. Ag was DC sputtered to a thickness of 7.4 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was DC sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(ZnO*1)の形成)
 次いで、第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようZnO*1をRFスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、0.5at%とした。
 このようにして透明導電体28を作製した。
(Formation of Second High Refractive Index Layer (ZnO * 1 ))
Next, the PET film on which the second anti-sulfuring layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus. Then, ZnO * 1 was RF sputtered so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 0.5 at%.
In this way, a transparent conductor 28 was produced.
 〔透明導電体29の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(GZO*2)/第1硫化防止層(GZO)/透明金属層(Ag)/第2高屈折率層(GZO*2)をこの順に積層した。
[Preparation of transparent conductor 29]
Using a 50 μm PET film as the transparent substrate, the first high refractive index layer (GZO * 2 ) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second on the PET film according to the following method. A high refractive index layer (GZO * 2 ) was laminated in this order.
 (第1高屈折率層(GZO*2)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、GZO*2を層厚が46nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。第1高屈折率層に含有される硫黄成分の含有率は、4.2at%とした。
(Formation of first high refractive index layer (GZO * 2 ))
On a transparent substrate (PET), using an Anelva L-430S-FHS sputtering apparatus, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, GZO * 2 DC sputtering was performed so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the first high refractive index layer was 4.2 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 次いで、第1硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度2.0nm/sで、層厚が7.4nmとなるようAgをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Next, the PET film on which the first anti-sulfurization layer was formed was made using Anelva L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 2.0 nm / s, and layer thickness 7 Ag was DC sputtered to a thickness of 4 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(GZO*2)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようGZO*2をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、4.2at%とした。
 このようにして透明導電体29を作製した。
(Formation of second high refractive index layer (GZO * 2 ))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a formation rate of 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus. GZO * 2 was DC sputtered so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 4.2 at%.
In this way, a transparent conductor 29 was produced.
 〔透明導電体30の作製〕
 透明導電体29の作製において、表2で示したように第1高屈折率層及び第2高屈折率層に使用される材質を表3に示したGZO*3に変更して、第1高屈折率層及び第2高屈折率層に含有される硫黄成分の含有率を2.0at%とした以外は、透明導電体29の作製と同様にして透明導電体30を作製した。
[Preparation of transparent conductor 30]
In the production of the transparent conductor 29, as shown in Table 2, the material used for the first high refractive index layer and the second high refractive index layer was changed to GZO * 3 shown in Table 3, A transparent conductor 30 was produced in the same manner as the production of the transparent conductor 29 except that the content of the sulfur component contained in the refractive index layer and the second high refractive index layer was 2.0 at%.
 〔透明導電体31の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(GZO*4)/透明金属層(Ag)/第2高屈折率層(GZO*4)をこの順に積層した。
[Preparation of transparent conductor 31]
Using a 50 μm PET film as a transparent substrate, a first high refractive index layer (GZO * 4 ) / transparent metal layer (Ag) / second high refractive index layer (GZO * 4 ) is formed on the PET film according to the following method. Were stacked in this order.
 (第1高屈折率層(GZO*4)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、GZO*4を層厚が46nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。第1高屈折率層に含有される硫黄成分の含有率は、1.8at%とした。
(Formation of first high refractive index layer (GZO * 4 ))
On a transparent substrate (PET), using an Anelva L-430S-FHS sputtering apparatus, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, GZO * 4 DC sputtering was performed so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the first high refractive index layer was 1.8 at%.
 (透明金属層(Ag)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度2.0nm/sで、層厚が7.4nmとなるようAgをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Next, the PET film on which the first high refractive index layer was formed was Ln430S-FHS manufactured by Anelva, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 2.0 nm / s, and layer thickness. Ag was DC sputtered to a thickness of 7.4 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(GZO*4)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようGZO*4をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、1.8at%とした。
 このようにして透明導電体31を作製した。
(Formation of second high refractive index layer (GZO * 4 ))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a formation rate of 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus. GZO * 4 was DC sputtered so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 1.8 at%.
In this way, a transparent conductor 31 was produced.
 〔透明導電体32の作製〕
 透明導電体28の作製において、表2で示したように第1高屈折率層及び第2高屈折率層に使用される材質を表3に示したGZO*5に変更して、第1高屈折率層及び第2高屈折率層に含有される硫黄成分の含有率を0.8at%とした以外は、透明導電体28の作製と同様にして透明導電体32を作製した。
[Production of Transparent Conductor 32]
In the production of the transparent conductor 28, as shown in Table 2, the material used for the first high refractive index layer and the second high refractive index layer is changed to GZO * 5 shown in Table 3, A transparent conductor 32 was produced in the same manner as the production of the transparent conductor 28 except that the content of the sulfur component contained in the refractive index layer and the second high refractive index layer was 0.8 at%.
 〔透明導電体33の作製〕
 透明導電体28の作製において、表2で示したように第1高屈折率層及び第2高屈折率層に使用される材質を表3に示したGZO*6に変更して、第1高屈折率層及び第2高屈折率層に含有される硫黄成分の含有率を0.7at%とした以外は、透明導電体28の作製と同様にして透明導電体33を作製した。
[Preparation of transparent conductor 33]
In the production of the transparent conductor 28, as shown in Table 2, the material used for the first high refractive index layer and the second high refractive index layer was changed to GZO * 6 shown in Table 3, A transparent conductor 33 was prepared in the same manner as the transparent conductor 28 except that the content of the sulfur component contained in the refractive index layer and the second high refractive index layer was 0.7 at%.
 〔透明導電体34の作製〕
 透明導電体28の作製において、表2で示したように第1高屈折率層及び第2高屈折率層に使用される材質を表3に示したGZO*7に変更して、第1高屈折率層及び第2高屈折率層に含有される硫黄成分の含有率を0.6at%とした以外は、透明導電体28の作製と同様にして透明導電体34を作製した。
[Preparation of transparent conductor 34]
In the production of the transparent conductor 28, as shown in Table 2, the material used for the first high refractive index layer and the second high refractive index layer was changed to GZO * 7 shown in Table 3, A transparent conductor 34 was prepared in the same manner as the transparent conductor 28 except that the content of the sulfur component contained in the refractive index layer and the second high refractive index layer was 0.6 at%.
 〔透明導電体35の作製〕
 透明基板として50μmのPETを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(ZnO*1)をこの順に積層した。
[Preparation of transparent conductor 35]
Using PET of 50 μm as a transparent substrate, a first high refractive index layer (ZnS) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second antisulfurization layer on a PET film according to the following method (GZO) / second high refractive index layer (ZnO * 1 ) was laminated in this order.
 (第1高屈折率層(ZnS)の形成)
 真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、モリブデン製抵抗加熱ボートにZnSを装填し、真空槽を1×10-4Paまで減圧した後、抵抗加熱ボートに通電加熱し、抵抗加熱ボートの通電加熱条件を調整して、形成速度2.0nm/秒の条件でPETフィルム上に蒸着して、層厚が35nmの第1高屈折率層を形成した。第1高屈折率層に含有される硫黄成分の含有率は、39at%とした。
(Formation of first high refractive index layer (ZnS))
As a vacuum deposition device, a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 × 10 −4 Pa, and then the resistance heating boat was energized and heated. The current heating condition of the resistance heating boat was adjusted, and vapor deposition was performed on the PET film under the condition of a formation rate of 2.0 nm / second to form a first high refractive index layer having a layer thickness of 35 nm. The content rate of the sulfur component contained in the first high refractive index layer was 39 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が0.5nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 0.5 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が6.0nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered at a formation rate of 0.7 nm / s under a 20 sccm Ar, sputtering pressure of 0.25 Pa, room temperature, and a layer thickness of 6.0 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was DC sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(ZnO*1)の形成)
 次いで、第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようZnO*1をRFスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、0.5at%とした。
 このようにして透明導電体35を作製した。
(Formation of Second High Refractive Index Layer (ZnO * 1 ))
Next, the PET film on which the second anti-sulfuring layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus. Then, ZnO * 1 was RF sputtered so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 0.5 at%.
In this way, a transparent conductor 35 was produced.
 〔透明導電体36の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(Si)/第2高屈折率層(GZO*2)をこの順に積層した。
[Preparation of transparent conductor 36]
Using a PET film of 50 μm as a transparent substrate, the first high refractive index layer (ZnS) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second antisulfuration is formed on the PET film according to the following method. Layer (Si) / second high refractive index layer (GZO * 2 ) were laminated in this order.
 (第1高屈折率層(ZnS)の形成)
 真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、モリブデン製抵抗加熱ボートにZnSを装填し、真空槽を1×10-4Paまで減圧した後、抵抗加熱ボートに通電加熱し、抵抗加熱ボートの通電加熱条件を調整して、形成速度2.0nm/秒の条件でPETフィルム上に蒸着して、層厚が35nmの第1高屈折率層を形成した。第1高屈折率層に含有される硫黄成分の含有率は、39at%とした。
(Formation of first high refractive index layer (ZnS))
As a vacuum deposition device, a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 × 10 −4 Pa, and then the resistance heating boat was energized and heated. The current heating condition of the resistance heating boat was adjusted, and vapor deposition was performed on the PET film under the condition of a formation rate of 2.0 nm / second to form a first high refractive index layer having a layer thickness of 35 nm. The content rate of the sulfur component contained in the first high refractive index layer was 39 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が0.5nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 0.5 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が6.0nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered at a formation rate of 0.7 nm / s under a 20 sccm Ar, sputtering pressure of 0.25 Pa, room temperature, and a layer thickness of 6.0 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(Si)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようSiをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (Si))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. Si was RF-sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(GZO*2)の形成)
 次いで、第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようGZO*2をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、4.2at%とした。
 このようにして透明導電体36を作製した。
(Formation of second high refractive index layer (GZO * 2 ))
Next, the PET film on which the second anti-sulfuring layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus. Then, GZO * 2 was DC sputtered to have a layer thickness of 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 4.2 at%.
In this way, a transparent conductor 36 was produced.
 〔透明導電体37の作製〕
 透明導電体35の作製において、表2で示したように透明基板をポリカーボネートポリマー(略称:PC)フィルム(カネカ製「エルメックR40#140フィルム」厚さ40μm)に変更し、第2高屈折率層に使用される材質を表3に示したGZO*3に変更して、第2高屈折率層に含有される硫黄成分の含有率が2.0at%とした以外は、透明導電体35の作製と同様にして透明導電体37を作製した。
[Preparation of transparent conductor 37]
In the production of the transparent conductor 35, as shown in Table 2, the transparent substrate was changed to a polycarbonate polymer (abbreviation: PC) film (“Elmec R40 # 140 film”, 40 μm thickness, manufactured by Kaneka), and the second high refractive index layer The transparent conductor 35 is manufactured except that the material used for is changed to GZO * 3 shown in Table 3 and the content of the sulfur component contained in the second high refractive index layer is 2.0 at%. In the same manner, a transparent conductor 37 was produced.
 〔透明導電体38の作製〕
 透明基板としてポリカーボネートポリマー(PC)フィルムを用い、PCフィルム上に、下記の方法に従って、第1高屈折率層(ZnS-DC3)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(Si)/第2高屈折率層(GZO*4)をこの順に積層した。
[Preparation of transparent conductor 38]
Using a polycarbonate polymer (PC) film as a transparent substrate, a first high refractive index layer (ZnS-DC3) / first antisulfurization layer (GZO) / transparent metal layer (Ag) / A second antisulfurization layer (Si) / second high refractive index layer (GZO * 4 ) was laminated in this order.
 (第1高屈折率層(ZnS-DC3)の形成)
 透明基板(PC)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 2sccm、スパッタ圧0.25Pa、室温下、形成速度1nm/sで、層厚が35nmとなるようZnS-DC3をDCスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnS-DC3は、JX日鉱日石金属株式会社製を使用した。第1高屈折率層に含有される硫黄成分の含有率は、35at%とした。
(Formation of first high refractive index layer (ZnS-DC3))
Using an L-430S-FHS sputtering apparatus manufactured by Anerva on a transparent substrate (PC), Ar 20 sccm, O 2 2 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 1 nm / s, and layer thickness 35 nm ZnS-DC3 was DC sputtered. The target-substrate distance was 86 mm. The target, ZnS-DC3, was manufactured by JX Nippon Mining & Metals. The content rate of the sulfur component contained in the first high refractive index layer was 35 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したPCフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が0.5nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the PC film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / second using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 0.5 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が6.0nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered at a formation rate of 0.7 nm / s under a 20 sccm Ar, sputtering pressure of 0.25 Pa, room temperature, and a layer thickness of 6.0 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(Si)の形成)
 次いで、透明金属層を形成したPCフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようSiをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (Si))
Next, the PC film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / second using an Anelva L-430S-FHS sputtering apparatus. Si was RF-sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(GZO*4)の形成)
 次いで、第2硫化防止層を形成したPCフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようGZO*4をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、1.8at%とした。
 このようにして透明導電体38を作製した。
(Formation of second high refractive index layer (GZO * 4 ))
Next, the PC film on which the second sulfidation preventing layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, GZO * 4 was DC sputtered so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 1.8 at%.
In this way, a transparent conductor 38 was produced.
 〔透明導電体39の作製〕
 透明基板としてシクロオレフィンポリマー(略称:COP)フィルム(日本ゼオン社製「ゼオノアZ14」厚さ50μm)を用い、COPフィルム上に、下記の方法に従って、第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(GZO*5)をこの順に積層した。
[Preparation of transparent conductor 39]
Using a cycloolefin polymer (abbreviation: COP) film (“ZEONOR Z14”, 50 μm thick, manufactured by Nippon Zeon Co., Ltd.) as the transparent substrate, the first high refractive index layer (ZnS) / first layer was formed on the COP film according to the following method. An antisulfurization layer (GZO) / transparent metal layer (Ag) / second antisulfurization layer (GZO) / second high refractive index layer (GZO * 5 ) were laminated in this order.
 (第1高屈折率層(ZnS)の形成)
 真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、モリブデン製抵抗加熱ボートにZnSを装填し、真空槽を1×10-4Paまで減圧した後、抵抗加熱ボートに通電加熱し、抵抗加熱ボートの通電加熱条件を調整して、形成速度2.0nm/秒の条件でCOPフィルム上に蒸着して、層厚が35nmの第1高屈折率層を形成した。第1高屈折率層に含有される硫黄成分の含有率は、39at%とした。
(Formation of first high refractive index layer (ZnS))
As a vacuum deposition device, a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 × 10 −4 Pa, and then the resistance heating boat was energized and heated. The current heating condition of the resistance heating boat was adjusted, and vapor deposition was performed on the COP film under the condition of a formation rate of 2.0 nm / second to form a first high refractive index layer having a layer thickness of 35 nm. The content rate of the sulfur component contained in the first high refractive index layer was 39 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が0.5nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the COP film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 0.5 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が6.0nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered at a formation rate of 0.7 nm / s under a 20 sccm Ar, sputtering pressure of 0.25 Pa, room temperature, and a layer thickness of 6.0 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the COP film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a formation rate of 0.06 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was DC sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(GZO*5)の形成)
 次いで、第2硫化防止層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようGZO*5をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、0.8at%とした。
 このようにして透明導電体39を作製した。
(Formation of second high refractive index layer (GZO * 5 ))
Next, the COP film on which the second anti-sulfurization layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, GZO * 5 was DC sputtered so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 0.8 at%.
In this way, a transparent conductor 39 was produced.
 〔透明導電体40の作製〕
 透明基板としてシクロオレフィンポリマー(略称:COP)フィルム(日本ゼオン社製「ゼオノアZ14」厚さ50μm)を用い、COPフィルム上に、下記の方法に従って、第1高屈折率層(ZnS-DC3)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(GZO*6)をこの順に積層した。
[Production of Transparent Conductor 40]
Using a cycloolefin polymer (abbreviation: COP) film (Zeonor Z14, 50 μm thick, manufactured by Nippon Zeon Co., Ltd.) as the transparent substrate, the first high refractive index layer (ZnS-DC3) / A first antisulfurization layer (GZO) / transparent metal layer (Ag) / second antisulfurization layer (GZO) / second high refractive index layer (GZO * 6 ) were laminated in this order.
 (第1高屈折率層(ZnS-DC3)の形成)
 透明基板(COP)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 2sccm、スパッタ圧0.25Pa、室温下、形成速度1nm/sで、層厚が35nmとなるようZnS-DC3をDCスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnS-DC3は、JX日鉱日石金属株式会社製を使用した。第1高屈折率層に含有される硫黄成分の含有率は、35at%とした。
(Formation of first high refractive index layer (ZnS-DC3))
Using an L-430S-FHS sputtering system manufactured by Anelva on a transparent substrate (COP), Ar 20 sccm, O 2 2 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 1 nm / s, and layer thickness 35 nm ZnS-DC3 was DC sputtered. The target-substrate distance was 86 mm. The target, ZnS-DC3, was manufactured by JX Nippon Mining & Metals. The content rate of the sulfur component contained in the first high refractive index layer was 35 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が0.5nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the COP film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 0.5 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が6.0nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered at a formation rate of 0.7 nm / s under a 20 sccm Ar, sputtering pressure of 0.25 Pa, room temperature, and a layer thickness of 6.0 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the COP film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a formation rate of 0.06 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was DC sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(GZO*6)の形成)
 次いで、第2硫化防止層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようGZO*6をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、0.7at%とした。
 このようにして透明導電体40を作製した。
(Formation of second high refractive index layer (GZO * 6 ))
Next, the COP film on which the second anti-sulfurization layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, GZO * 6 was DC sputtered so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 0.7 at%.
Thus, the transparent conductor 40 was produced.
 〔透明導電体41の作製〕
 透明基板としてトリアセチルセルロース(略称:TAC)フィルム(コニカミノルタ製TACフィルム、厚さ40μm)を用い、TACフィルム上に、下記の方法に従って、第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(Si)/第2高屈折率層(GZO*7)をこの順に積層した。
[Preparation of transparent conductor 41]
Using a triacetyl cellulose (abbreviation: TAC) film (TAC film made by Konica Minolta, thickness 40 μm) as a transparent substrate, the first high refractive index layer (ZnS) / first anti-sulfurization is performed on the TAC film according to the following method. Layer (GZO) / transparent metal layer (Ag) / second antisulfurization layer (Si) / second high refractive index layer (GZO * 7 ) were laminated in this order.
 (第1高屈折率層(ZnS)の形成)
 透明基板(TAC)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が35nmとなるようZnSをRFスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnSは、ZnSを焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、39at%とした。
(Formation of first high refractive index layer (ZnS))
On a transparent substrate (TAC), an L-430S-FHS sputtering apparatus manufactured by Anelva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 35 nm ZnS was RF sputtered so that The target-substrate distance was 86 mm. The target ZnS was produced by sintering ZnS. The content rate of the sulfur component contained in the first high refractive index layer was 39 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したTACフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が0.5nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the TAC film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 0.5 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が6.0nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered at a formation rate of 0.7 nm / s under a 20 sccm Ar, sputtering pressure of 0.25 Pa, room temperature, and a layer thickness of 6.0 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(Si)の形成)
 次いで、透明金属層を形成したTACフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようSiをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (Si))
Next, the TAC film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / second using an Anelva L-430S-FHS sputtering apparatus. Si was RF-sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(GZO*7)の形成)
 次いで、第2硫化防止層を形成したTACフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようGZO*7をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、0.6at%とした。
 このようにして透明導電体41を作製した。
(Formation of second high refractive index layer (GZO * 7 ))
Next, the TAC film on which the second sulfidation prevention layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, GZO * 7 was DC sputtered so that the layer thickness was 46 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 0.6 at%.
In this way, a transparent conductor 41 was produced.
 〔透明導電体42の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS-SiO)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(ZnO)をこの順に積層した。
[Preparation of transparent conductor 42]
A 50 μm PET film was used as the transparent substrate, and the first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (GZO) / transparent metal layer (Ag) / second on the PET film according to the following method. A disulfide prevention layer (GZO) / second high refractive index layer (ZnO) were laminated in this order.
 (第1高屈折率層(ZnS-SiO)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が40nmとなるようZnS-SiOをRFスパッタした。ターゲット-基板間距離は86mmであった。ターゲットであるZnS-SiOは、ZnSにSiOを混合し、焼結させることで作製した。第1高屈折率層に含有される硫黄成分の含有率は、25at%とした。
(Formation of First High Refractive Index Layer (ZnS—SiO 2 ))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS—SiO 2 was RF sputtered so that The target-substrate distance was 86 mm. The target ZnS—SiO 2 was prepared by mixing SiO 2 with ZnS and sintering. The content rate of the sulfur component contained in the first high refractive index layer was 25 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 1.0 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が7.4nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered to form a layer thickness of 7.4 nm at an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.7 nm / s. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が1.0nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was DC sputtered so that the layer thickness was 1.0 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(ZnO)の形成)
 第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が46nmとなるようZnO(株式会社豊島製作所製)をRFスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。
 このようにして透明導電体42を作製した。
(Formation of second high refractive index layer (ZnO))
Using a Anelva L-430S-FHS sputtering apparatus, the PET film on which the second sulfidation-preventing layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, at room temperature, at a formation rate of 0.03 nm / second, ZnO (manufactured by Toshima Seisakusho Co., Ltd.) was RF sputtered so that the layer thickness was 46 nm. The deposited film had a target-substrate distance of 86 mm.
In this way, a transparent conductor 42 was produced.
 〔透明導電体43の作製〕
 透明導電体42の作製において、表2で示したように第2高屈折率層に使用される材質を5.7質量%のGZO(株式会社豊島製作所製)に変更し、DCスパッタにより成膜した以外は、透明導電体42の作製と同様にして透明導電体43を作製した。
[Preparation of transparent conductor 43]
In the production of the transparent conductor 42, as shown in Table 2, the material used for the second high refractive index layer was changed to 5.7 mass% GZO (manufactured by Toshima Seisakusho Co., Ltd.), and the film was formed by DC sputtering. A transparent conductor 43 was produced in the same manner as the production of the transparent conductor 42 except that.
 〔透明導電体44の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZnS)/透明金属層(Ag)/第2高屈折率層(ZnS)をこの順に積層した。
[Preparation of transparent conductor 44]
Using a 50 μm PET film as a transparent substrate, a first high refractive index layer (ZnS) / transparent metal layer (Ag) / second high refractive index layer (ZnS) are laminated in this order on the PET film according to the following method. did.
 (第1高屈折率層(ZnS)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が40nmとなるようZnS(株式会社豊島製作所製)をRFスパッタした。ターゲット-基板間距離は86mmであった。第1高屈折率層に含有される硫黄成分の含有率は、50at%とした。
(Formation of first high refractive index layer (ZnS))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZnS (Toyoshima Seisakusho Co., Ltd.) was RF sputtered so that The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the first high refractive index layer was 50 at%.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が12nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anerva, Ag was sputtered at a formation rate of 0.7 nm / s under a 20 sccm Ar, sputtering pressure of 0.25 Pa, room temperature, and a layer thickness of 12 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(ZnS)の形成)
 透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が40nmとなるようZnS(株式会社豊島製作所製)をRFスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、50at%とした。
 このようにして透明導電体44を作製した。
(Formation of Second High Refractive Index Layer (ZnS))
Using a Anelva L-430S-FHS sputtering apparatus, the PET film on which the transparent metal layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, layer thickness ZnS (manufactured by Toyoshima Seisakusho Co., Ltd.) was RF sputtered to a thickness of 40 nm. The deposited film had a target-substrate distance of 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 50 at%.
In this way, a transparent conductor 44 was produced.
 〔透明導電体45の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(Nb)/透明金属層(Ag)/第2高屈折率層(IZO)をこの順に積層した。
[Preparation of transparent conductor 45]
Using a 50 μm PET film as a transparent substrate, a first high refractive index layer (Nb 2 O 5 ) / transparent metal layer (Ag) / second high refractive index layer (IZO) is formed on the PET film according to the following method. The layers were laminated in this order.
 (第1高屈折率層(Nb)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が27.7nmとなるようNb(株式会社豊島製作所製)をRFスパッタした。
(Formation of the first high refractive index layer (Nb 2 O 5 ))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, layer thickness 27 Nb 2 O 5 (manufactured by Toshima Seisakusho Co., Ltd.) was RF sputtered to a thickness of 0.7 nm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が7.7nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using Anelva L-430S-FHS, DC sputtering of Ag was performed at a formation rate of 0.7 nm / s at an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a layer thickness of 7.7 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(IZO)の形成)
 透明基板上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が36nmとなるようIZO(株式会社豊島製作所製)をRFスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。
 このようにして透明導電体45を作製した。
(Formation of second high refractive index layer (IZO))
Using an L-430S-FHS sputtering apparatus manufactured by Anerva on an transparent substrate, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, forming rate 0.03 nm / second, and layer thickness 36 nm IZO (manufactured by Toshima Seisakusho Co., Ltd.) was RF sputtered. The deposited film had a target-substrate distance of 86 mm.
In this way, a transparent conductor 45 was produced.
 〔透明導電体46の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、第1高屈折率層(ZTO)/透明金属層(Ag)/第2高屈折率層(ZTO)をこの順に積層した。
[Preparation of transparent conductor 46]
Using a 50 μm PET film as the transparent substrate, the first high refractive index layer (ZTO) / transparent metal layer (Ag) / second high refractive index layer (ZTO) are laminated in this order on the PET film according to the following method. did.
 (第1高屈折率層(ZTO)の形成)
 透明基板(PET)上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が40nmとなるようZTO(株式会社豊島製作所製)をRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first high refractive index layer (ZTO))
On a transparent substrate (PET), an L-430S-FHS sputtering apparatus manufactured by Anerva Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 40 nm ZTO (Toyoshima Seisakusho Co., Ltd.) was RF sputtered so that The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が10nmとなるようRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was RF-sputtered with an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.7 nm / s to a layer thickness of 10 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(ZTO)の形成)
 透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が40nmとなるようZTO(株式会社豊島製作所製)をRFスパッタした。成膜した膜厚はターゲット-基板間距離は86mmであった。
 このようにして透明導電体46を作製した。
(Formation of second high refractive index layer (ZTO))
Using a Anelva L-430S-FHS sputtering apparatus, the PET film on which the transparent metal layer was formed was Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second, layer thickness ZTO (manufactured by Toshima Seisakusho Co., Ltd.) was RF sputtered so that the thickness was 40 nm. The deposited film had a target-substrate distance of 86 mm.
In this way, a transparent conductor 46 was produced.
 〔透明導電体47の作製〕
 透明導電体37の作製において、第2硫化防止層の層厚を0.5nmに変更して、表2で示したように第2高屈折率層に使用される材質をGZO*6に変更して、第2高屈折率層に含有される硫黄成分の含有率が12.0at%とした以外は、透明導電体37の作製と同様にして透明導電体47を作製した。
[Preparation of transparent conductor 47]
In the production of the transparent conductor 37, the thickness of the second anti-sulfurization layer was changed to 0.5 nm, and the material used for the second high refractive index layer was changed to GZO * 6 as shown in Table 2. A transparent conductor 47 was prepared in the same manner as the transparent conductor 37 except that the content of the sulfur component contained in the second high refractive index layer was 12.0 at%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、以上の透明導電体の作製又は表1~3で用いた略称及び記号の詳細は、以下のとおりである。
 PET:ポリエチレンテレフタレート
 ITO:インジウム・スズ酸化物
 GZO:ガリウム・亜鉛酸化物
 IGZO:インジウム・ガリウム・亜鉛酸化物
 AZO:アルミニウム・亜鉛酸化物
 ZTO:亜鉛・スズ酸化物
 A:ZnSにSiOを混ぜて焼結
 B:ZnSを焼結
 C:ITOにZnSを混ぜて焼結
 D:IGZOにZnSを混ぜて焼結
 E:ZnOにZnSを混ぜて焼結
 F:GZOにZnSを混ぜて焼結
 G:AZOにZnSを混ぜて焼結
 H:TiOにZnSを混ぜて焼結
 I:WOにZnSを混ぜて焼結
 J:ZrOにZnSを混ぜて焼結
 K:AZOに硫黄単体を混ぜて焼結
 L:ZTOに硫黄単体を混ぜて焼結
 M:TiOに硫黄単体を混ぜて焼結
 N:WOに硫黄単体を混ぜて焼結
 P:ZrOに硫黄単体を混ぜて焼結
 Q:ZnOにZnSとITOを混ぜて焼結
 R:GZO(5.7質量%)にZnSを混ぜて焼結
 S:GZO(5.7質量%)にZnSとITOを混ぜて焼結
 T:GZO(10質量%)にZnSを混ぜて焼結
 U:株式会社豊島製作所製
 V:JX日鉱日石金属株式会社製
Details of the abbreviations and symbols used in the production of the above transparent conductors or in Tables 1 to 3 are as follows.
PET: Polyethylene terephthalate ITO: indium tin oxide GZO: gallium zinc oxide IGZO: indium gallium zinc oxide AZO: Aluminum Zinc oxide ZTO: zinc tin oxide A: mix SiO 2 to ZnS Sintering B: Sintering ZnS C: Sintering by mixing ZnS in ITO D: Sintering by mixing ZnS in IGZO E: Mixing and sintering ZnS in ZnO F: Sintering by mixing ZnS in GZO G: Sintering by mixing ZnS with AZO H: Sintering by mixing ZnS with TiO 2 I: Sintering by mixing ZnS with WO 3 J: Sintering with ZnS mixed with ZrO 2 K: Mixing single element of sulfur with AZO Sintering L: Sintered with ZTO in ZTO M: Sintered with mixed sulfur in TiO 2 N: Sintered with mixed sulfur in WO 3 P: Sintered with mixed sulfur in ZrO 2 Q: ZnS and ITO mixed with ZnS and sintered R: GZO (5.7 mass%) mixed with ZnS and sintered S: GZO (5.7 mass%) mixed with ZnS and ITO and sintered T: GZO (10% by mass) mixed with ZnS and sintered U: manufactured by Toshima Seisakusho Co., Ltd. V: manufactured by JX Nippon Mining & Metals
 《透明導電体の評価》
 上記作製した各透明導電体について、下記の各特性値の測定及び評価を行った。
<< Evaluation of transparent conductor >>
About each produced said transparent conductor, the following characteristic value was measured and evaluated.
 〔平均光吸収率の測定〕
 平均光吸収率は、透明基板の表面の法線に対して、5°傾けた角度から光を入射させて、透明基板2の平均光透過率及び平均光反射率を測定し、
 平均光吸収率(%)=100-(平均光透過率+平均光反射率)(%)
として算出する。平均光透過率及び平均光反射率は、分光光度計を用いて測定することができる。分光光度計(U4100;日立ハイテクノロジーズ社製)で測定した。
(Measurement of average light absorption rate)
The average light absorptance is measured by measuring the average light transmittance and the average light reflectance of the transparent substrate 2 by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate.
Average light absorption rate (%) = 100- (average light transmittance + average light reflectance) (%)
Calculate as The average light transmittance and the average light reflectance can be measured using a spectrophotometer. It measured with the spectrophotometer (U4100; Hitachi High-Technologies company make).
 〔シート抵抗値の測定〕
 各透明導電体の導通領域aに、三菱化学アナリテック社製の抵抗率計「ロレスタEP MCP-T360」を接触させて、導通領域aのシート抵抗値(Ω/□)を測定した。
[Measurement of sheet resistance]
A resistance meter “Loresta EP MCP-T360” manufactured by Mitsubishi Chemical Analytech Co., Ltd. was brought into contact with the conduction region a of each transparent conductor, and the sheet resistance value (Ω / □) of the conduction region a was measured.
 〔腐食評価〕
 実施例及び比較例で得られた透明導電体の腐食耐性を評価した。腐食耐性は、実施例又は比較例で得られた透明導電体を、2個ずつ、85℃、85%Rh中に240時間保存した後の外観で評価した。評価は、以下の基準とした。
 ◎:30mm×30mmの領域において、サイズ20μm以上の腐食箇所が0個
 ○:30mm×30mmの領域において、サイズ20μm以上の腐食箇所が1個以上10個未満
 ×:30mm×30mmの領域において、サイズ20μm以上の腐食箇所が10個以上
 透明導電体の構成と、以上の評価により得られた結果を表1~3に示す。
[Corrosion evaluation]
The corrosion resistance of the transparent conductors obtained in Examples and Comparative Examples was evaluated. Corrosion resistance was evaluated by the appearance after storing the transparent conductors obtained in Examples or Comparative Examples, two by two in 85 ° C. and 85% Rh for 240 hours. Evaluation was based on the following criteria.
A: 0 in the region of 30 mm × 30 mm, no corrosion sites with a size of 20 μm or more ○: In a region of 30 mm × 30 mm, 1 or more and less than 10 corrosion sites in the size of 20 μm ×: In the region of 30 mm × 30 mm Tables 1 to 3 show the structure of the transparent conductor and the results obtained by the above evaluation, with 10 or more corrosion spots of 20 μm or more.
 〔フレキシブル性評価〕
 実施例及び比較例で得られた透明導電体を平板状の支持部材に載置し、一端を固定した。当該透明導電体をU字状に屈曲させた。屈曲部の曲率半径は5mmとした。そして、支持部材と平行に配置した摺動板に、透明導電体の他端を固定した。摺動板と支持部材とを平行に保ったまま、透明導電体の長さ方向に摺動板を1000回往復移動させた。その後、透明導電体の各層にクラック等が生じたかを目視で確認した。フレキシブル性は以下のように評価した。
 ◎:屈曲部位を含む30mm×30mmの領域に、クラックが一つも生じなかった
 ○:屈曲部位を含む30mm×30mmの領域に、1個以上50個以下のクラックが生じた
 ×:屈曲部位を含む30mm×30mmの領域に、50個超のクラックが生じた
[Flexibility evaluation]
The transparent conductors obtained in Examples and Comparative Examples were placed on a flat support member, and one end was fixed. The transparent conductor was bent into a U shape. The curvature radius of the bent portion was 5 mm. And the other end of the transparent conductor was fixed to the sliding plate arrange | positioned in parallel with the supporting member. The sliding plate was reciprocated 1000 times in the length direction of the transparent conductor while keeping the sliding plate and the support member in parallel. Thereafter, it was visually confirmed whether cracks or the like occurred in each layer of the transparent conductor. The flexibility was evaluated as follows.
A: No crack was generated in a 30 mm × 30 mm region including the bent portion. ○: One to 50 cracks were generated in the 30 mm × 30 mm region including the bent portion. X: The bent portion was included. Over 50 cracks occurred in a 30mm x 30mm area
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に記載の結果より明らかなように、本発明の透明導電体1~41は、比較の透明導電体42~47に比べて、光透過性、耐湿性及び電気接続性に優れていることが分かった。 As is clear from the results shown in Table 4, the transparent conductors 1 to 41 of the present invention are superior in light transmittance, moisture resistance, and electrical connectivity as compared with the comparative transparent conductors 42 to 47. I understood.
 [実施例2]
 実施例2で示す透明導電体は、実施例1で示した透明導電体に密着層及び第3高屈折率層を設けた点が異なっている。各透明導電体の構成は、表5に示すとおりである。実施例1と異なる点を以下に説明する。
[Example 2]
The transparent conductor shown in Example 2 is different in that an adhesive layer and a third high refractive index layer are provided on the transparent conductor shown in Example 1. The configuration of each transparent conductor is as shown in Table 5. Differences from the first embodiment will be described below.
 〔透明導電体50の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、密着層(SiO/ZnS-SiO)/第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(ZnO*1)/第3高屈折率層(ZrO)をこの順に積層した。
[Production of transparent conductor 50]
Using a 50 μm PET film as a transparent substrate, an adhesion layer (SiO 2 / ZnS—SiO 2 ) / first high refractive index layer (ZnS) / first antisulfurization layer (GZO) is formed on the PET film according to the following method. / Transparent metal layer (Ag) / second anti-sulfurization layer (GZO) / second high refractive index layer (ZnO * 1 ) / third high refractive index layer (ZrO 2 ) were laminated in this order.
 (密着層(SiO/ZnS-SiO)の形成)
 真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、真空槽を1×10-4Paまで減圧した後、形成速度2.0nm/秒の条件でPETフィルム上にSiOをEB(電子ビーム)蒸着して、層厚が1nmの層を形成した。
 次いで、SiO層上に、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が1nmとなるようZnS-SiOをRFスパッタした。ターゲット-基板間距離は86mmであった。
 層厚が2nmの密着層(SiO/ZnS-SiO)を形成した。
(Formation of adhesion layer (SiO 2 / ZnS—SiO 2 ))
As a vacuum deposition apparatus, a BMC-800T deposition apparatus manufactured by SYNCHRON Co., Ltd. was used. After the vacuum chamber was depressurized to 1 × 10 −4 Pa, SiO 2 was deposited on the PET film at a rate of 2.0 nm / second by EB ( Electron beam) was evaporated to form a layer having a thickness of 1 nm.
Next, on the SiO 2 layer, using an L-430S-FHS sputtering apparatus manufactured by Anelva, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s, and layer thickness 1 nm ZnS—SiO 2 was RF sputtered so that The target-substrate distance was 86 mm.
An adhesion layer (SiO 2 / ZnS—SiO 2 ) having a layer thickness of 2 nm was formed.
 (第1高屈折率層(ZnS)の形成)
 真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、モリブデン製抵抗加熱ボートにZnSを装填し、真空槽を1×10-4Paまで減圧した後、抵抗加熱ボートに通電加熱し、抵抗加熱ボートの通電加熱条件を調整して、形成速度2.0nm/秒の条件で密着層上に蒸着して、層厚が35nmの第1高屈折率層を形成した。第1高屈折率層に含有される硫黄成分の含有率は、39at%とした。
(Formation of first high refractive index layer (ZnS))
As a vacuum deposition device, a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 × 10 −4 Pa, and then the resistance heating boat was energized and heated. The current heating condition of the resistance heating boat was adjusted, and vapor deposition was performed on the adhesion layer under the condition of a formation rate of 2.0 nm / second to form a first high refractive index layer having a layer thickness of 35 nm. The content rate of the sulfur component contained in the first high refractive index layer was 39 at%.
 (第1硫化防止層(GZO)の形成)
 次いで、第1高屈折率層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が0.5nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of first antisulfurization layer (GZO))
Next, the PET film on which the first high refractive index layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / L using an Anelva L-430S-FHS sputtering apparatus. In a second, GZO was DC sputtered to a layer thickness of 0.5 nm. The target-substrate distance was 86 mm.
 (透明金属層(Ag)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAgを層厚が6.0nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of transparent metal layer (Ag))
Using an L-430S-FHS manufactured by Anelva, Ag was sputtered at a formation rate of 0.7 nm / s under a 20 sccm Ar, sputtering pressure of 0.25 Pa, room temperature, and a layer thickness of 6.0 nm. The target-substrate distance was 86 mm.
 (第2硫化防止層(GZO)の形成)
 次いで、透明金属層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.06nm/秒で、層厚が0.5nmとなるようGZOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, the PET film on which the transparent metal layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature at a forming rate of 0.06 nm / sec using an L-430S-FHS sputtering apparatus manufactured by Anelva. GZO was DC sputtered so that the layer thickness was 0.5 nm. The target-substrate distance was 86 mm.
 (第2高屈折率層(ZnO*1)の形成)
 次いで、第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が20nmとなるようZnO*1をRFスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、0.5at%とした。
(Formation of Second High Refractive Index Layer (ZnO * 1 ))
Next, the PET film on which the second anti-sulfuring layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus. Then, ZnO * 1 was RF sputtered so that the layer thickness was 20 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 0.5 at%.
 (第3高屈折率層(ZrO)の形成)
 次いで、真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、真空槽を1×10-4Paまで減圧した後、形成速度2.0nm/秒の条件でPETフィルム上にZrOをEB蒸着して、層厚が27nmの層を形成した。
 このようにして透明導電体50を作製した。
(Formation of third high refractive index layer (ZrO 2 ))
Next, using a BMC-800T vapor deposition device manufactured by Shincron as a vacuum vapor deposition device, the vacuum chamber was depressurized to 1 × 10 −4 Pa, and then ZrO 2 was deposited on the PET film under the condition of a formation rate of 2.0 nm / second . EB deposition was performed to form a layer with a layer thickness of 27 nm.
In this way, a transparent conductor 50 was produced.
 〔透明導電体51の作製〕
 透明基板として50μmのPETフィルムを用い、PETフィルム上に、下記の方法に従って、密着層(SiO)/第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(GZO*2)/第3高屈折率層(SnO)をこの順に積層した。
[Preparation of transparent conductor 51]
Using a 50 μm PET film as a transparent substrate, an adhesion layer (SiO 2 ) / first high refractive index layer (ZnS) / first antisulfuration layer (GZO) / transparent metal layer (on the PET film) Ag) / second anti-sulfurization layer (GZO) / second high refractive index layer (GZO * 2 ) / third high refractive index layer (SnO 2 ) were laminated in this order.
 (密着層(SiO)の形成)
 真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、真空槽を1×10-4Paまで減圧した後、形成速度2.0nm/秒の条件でPETフィルム上にSiOをEB蒸着して、層厚が1nmの密着層を形成した。
(Formation of adhesion layer (SiO 2 ))
A BMC-800T vapor deposition device manufactured by SYNCHRON Co., Ltd. was used as the vacuum vapor deposition device, and after the vacuum chamber was depressurized to 1 × 10 −4 Pa, SiO 2 was deposited on the PET film by EB deposition at a formation rate of 2.0 nm / second. Thus, an adhesion layer having a layer thickness of 1 nm was formed.
 透明導電体51において、(第1高屈折率層(ZnS)の形成)~(第2硫化防止層(GZO)の形成)の工程については、透明導電体50と同様に作製した。 In the transparent conductor 51, the steps (formation of the first high refractive index layer (ZnS)) to (formation of the second antisulfurization layer (GZO)) were produced in the same manner as the transparent conductor 50.
 (第2高屈折率層(GZO*2)の形成)
 次いで、第2硫化防止層を形成したPETフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が20nmとなるようGZO*2をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、4.2at%とした。
(Formation of second high refractive index layer (GZO * 2 ))
Next, the PET film on which the second anti-sulfuring layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an Anelva L-430S-FHS sputtering apparatus. Then, GZO * 2 was DC sputtered to have a layer thickness of 20 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 4.2 at%.
 (第3高屈折率層(SnO)の形成)
 次いで、真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、真空槽を1×10-4Paまで減圧した後、形成速度2.0nm/秒の条件でPETフィルム上にSnOをEB蒸着して、層厚が27nmの層を形成した。
 このようにして透明導電体51を作製した。
(Formation of third high refractive index layer (SnO 2 ))
Next, using a BMC-800T vapor deposition apparatus manufactured by SYNCHRON as a vacuum vapor deposition apparatus, the vacuum chamber was depressurized to 1 × 10 −4 Pa, and SnO 2 was then deposited on the PET film at a formation rate of 2.0 nm / second . EB deposition was performed to form a layer with a layer thickness of 27 nm.
In this way, a transparent conductor 51 was produced.
 〔透明導電体52の作製〕
 透明基板としてポリカーボネートポリマー(PC)フィルムを用い、PCフィルム上に、下記の方法に従って、密着層(SiO/ZnS-SiO)/第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(GZO*3)/第3高屈折率層(ZrO)をこの順に積層した。
[Preparation of transparent conductor 52]
Using a polycarbonate polymer (PC) film as a transparent substrate, an adhesion layer (SiO 2 / ZnS—SiO 2 ) / first high refractive index layer (ZnS) / first antisulfurization layer (on the PC film according to the following method) GZO) / transparent metal layer (Ag) / second anti-sulfurization layer (GZO) / second high refractive index layer (GZO * 3 ) / third high refractive index layer (ZrO 2 ) were laminated in this order.
 透明導電体52において、透明基板としてPCを用いた以外は、(密着層(SiO/ZnS-SiO)の形成)~(第2硫化防止層(GZO)の形成)の工程については、透明導電体50と同様に作製した。 In the transparent conductor 52, except for using PC as a transparent substrate, the steps of (formation of adhesion layer (SiO 2 / ZnS—SiO 2 )) to (formation of second anti-sulfurization layer (GZO)) are transparent. It was produced in the same manner as the conductor 50.
 (第2高屈折率層(GZO*3)の形成)
 次いで、第2硫化防止層を形成したPCフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が20nmとなるようGZO*3をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、2.0at%とした。
(Formation of second high refractive index layer (GZO * 3 ))
Next, the PC film on which the second sulfidation preventing layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, GZO * 3 was DC sputtered so that the layer thickness was 20 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 2.0 at%.
 (第3高屈折率層(ZrO)の形成)の工程は、透明導電体50と同様に作製した。
 このようにして透明導電体52を作製した。
The step of (third high refractive index layer (ZrO 2 ) formation) was prepared in the same manner as the transparent conductor 50.
In this way, a transparent conductor 52 was produced.
 〔透明導電体53の作製〕
 透明基板としてポリカーボネートポリマー(PC)フィルムを用い、PCフィルム上に、下記の方法に従って、密着層(SiO/ZnS-SiO)/第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(GZO*4)/第3高屈折率層(SnO)をこの順に積層した。
[Preparation of transparent conductor 53]
Using a polycarbonate polymer (PC) film as a transparent substrate, an adhesion layer (SiO 2 / ZnS—SiO 2 ) / first high refractive index layer (ZnS) / first antisulfurization layer (on the PC film according to the following method) GZO) / transparent metal layer (Ag) / second antisulfurization layer (GZO) / second high refractive index layer (GZO * 4 ) / third high refractive index layer (SnO 2 ) were laminated in this order.
 透明導電体53において、(密着層(SiO/ZnS-SiO)の形成)~(第2硫化防止層(GZO)の形成)の工程については、透明導電体50と同様に作製した。 The steps of (adhesion layer (SiO 2 / ZnS—SiO 2 ) formation) to (formation of second anti-sulfurization layer (GZO)) in the transparent conductor 53 were produced in the same manner as the transparent conductor 50.
 (第2高屈折率層(GZO*4)の形成)
 次いで、第2硫化防止層を形成したPCフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が20nmとなるようGZO*4をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、1.8at%とした。
(Formation of second high refractive index layer (GZO * 4 ))
Next, the PC film on which the second sulfidation preventing layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, GZO * 4 was DC sputtered to have a layer thickness of 20 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 1.8 at%.
 (第3高屈折率層(SnO)の形成)の形成)の工程は、透明導電体51と同様に作製した。
 このようにして透明導電体53を作製した。
The step of (formation of third high refractive index layer (SnO 2 ))) was produced in the same manner as the transparent conductor 51.
In this way, a transparent conductor 53 was produced.
 〔透明導電体54の作製〕
 透明基板としてシクロオレフィンポリマー(COP)フィルムを用い、COPフィルム上に、下記の方法に従って、密着層(ZnS-SiO)/第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(GZO*5)/第3高屈折率層(ZrO)をこの順に積層した。
[Preparation of transparent conductor 54]
Using a cycloolefin polymer (COP) film as a transparent substrate, an adhesion layer (ZnS—SiO 2 ) / first high refractive index layer (ZnS) / first antisulfurization layer (GZO) is formed on the COP film according to the following method. / Transparent metal layer (Ag) / second anti-sulfurization layer (GZO) / second high refractive index layer (GZO * 5 ) / third high refractive index layer (ZrO 2 ) were laminated in this order.
 (密着層(ZnS-SiO)の形成)
 アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.15nm/sで、層厚が1nmとなるようZnS-SiOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of adhesion layer (ZnS-SiO 2 ))
Using an Anelva L-430S-FHS sputtering system, ZnS-SiO 2 was formed so that the layer thickness would be 1 nm with Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.15 nm / s. RF sputtered. The target-substrate distance was 86 mm.
 透明導電体54において、(第1高屈折率層(ZnS)の形成)~(第2硫化防止層(GZO)の形成)の工程については、透明導電体50と同様に作製した。 In the transparent conductor 54, the steps (formation of the first high refractive index layer (ZnS)) to (formation of the second antisulfurization layer (GZO)) were produced in the same manner as the transparent conductor 50.
 (第2高屈折率層(GZO*5)の形成)
 次いで、第2硫化防止層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が20nmとなるようGZO*5をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、0.8at%とした。
(Formation of second high refractive index layer (GZO * 5 ))
Next, the COP film on which the second anti-sulfurization layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, GZO * 5 was DC sputtered to have a layer thickness of 20 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 0.8 at%.
 (第3高屈折率層(ZrO)の形成)の工程は、透明導電体50と同様に作製した。
 このようにして透明導電体54を作製した。
The step of (third high refractive index layer (ZrO 2 ) formation) was prepared in the same manner as the transparent conductor 50.
In this way, a transparent conductor 54 was produced.
 〔透明導電体55の作製〕
 透明基板としてシクロオレフィンポリマー(COP)フィルムを用い、COPフィルム上に、下記の方法に従って、密着層(SiO/ZnS-SiO)/第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(GZO*6)/第3高屈折率層(SnO)をこの順に積層した。
[Preparation of transparent conductor 55]
Using a cycloolefin polymer (COP) film as a transparent substrate, an adhesion layer (SiO 2 / ZnS—SiO 2 ) / first high refractive index layer (ZnS) / first antisulfurization layer is formed on the COP film according to the following method. (GZO) / transparent metal layer (Ag) / second antisulfurization layer (GZO) / second high refractive index layer (GZO * 6 ) / third high refractive index layer (SnO 2 ) were laminated in this order.
 透明導電体55において、透明基板としてCOPを用いた以外は、(密着層(SiO/ZnS-SiO)の形成)~(第2硫化防止層(GZO)の形成)の工程については、透明導電体50と同様に作製した。 In the transparent conductor 55, except for using COP as a transparent substrate, the steps of (formation of adhesion layer (SiO 2 / ZnS—SiO 2 )) to (formation of second anti-sulfurization layer (GZO)) are transparent. It was produced in the same manner as the conductor 50.
 (第2高屈折率層(GZO*6)の形成)
 次いで、第2硫化防止層を形成したCOPフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が20nmとなるようGZO*6をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、0.7at%とした。
(Formation of second high refractive index layer (GZO * 6 ))
Next, the COP film on which the second anti-sulfurization layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, and formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, GZO * 6 was DC sputtered to have a layer thickness of 20 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 0.7 at%.
 (第3高屈折率層(SnO)の形成)の工程は、透明導電体51と同様に作製した。
 このようにして透明導電体55を作製した。
The step of (third high refractive index layer (SnO 2 ) formation) was prepared in the same manner as the transparent conductor 51.
In this way, a transparent conductor 55 was produced.
 〔透明導電体56の作製〕
 透明基板としてトリアセチルセルロース(TAC)フィルムを用い、TACフィルム上に、下記の方法に従って、密着層(ZnS-SiO)/第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag)/第2硫化防止層(GZO)/第2高屈折率層(GZO*7)/第3高屈折率層(SnO)をこの順に積層した。
[Preparation of transparent conductor 56]
Using a triacetyl cellulose (TAC) film as a transparent substrate, an adhesion layer (ZnS—SiO 2 ) / first high refractive index layer (ZnS) / first antisulfurization layer (GZO) is formed on the TAC film according to the following method. / Transparent metal layer (Ag) / second anti-sulfurization layer (GZO) / second high refractive index layer (GZO * 7 ) / third high refractive index layer (SnO 2 ) were laminated in this order.
 透明導電体56において、透明基板としてTACを用いた以外は、(密着層(ZnS-SiO)の形成)~(第2硫化防止層(GZO)の形成)の工程については、透明導電体54と同様に作製した。 In the transparent conductor 56, except for using TAC as the transparent substrate, the steps of (formation of adhesion layer (ZnS—SiO 2 )) to (formation of second anti-sulfurization layer (GZO)) are as follows. It produced similarly.
 (第2高屈折率層(GZO*7)の形成)
 次いで、第2硫化防止層を形成したTACフィルムを、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.03nm/秒で、層厚が20nmとなるようGZO*7をDCスパッタした。ターゲット-基板間距離は86mmであった。第2高屈折率層に含有される硫黄成分の含有率は、0.6at%とした。
(Formation of second high refractive index layer (GZO * 7 ))
Next, the TAC film on which the second sulfidation prevention layer was formed was subjected to Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.03 nm / second using an L-430S-FHS sputtering apparatus manufactured by Anelva. Then, GZO * 7 was DC sputtered to have a layer thickness of 20 nm. The target-substrate distance was 86 mm. The content rate of the sulfur component contained in the second high refractive index layer was 0.6 at%.
 (第3高屈折率層(SnO)の形成)の工程は、透明導電体51と同様に作製した。
 このようにして透明導電体56を作製した。
The step of (third high refractive index layer (SnO 2 ) formation) was prepared in the same manner as the transparent conductor 51.
In this way, a transparent conductor 56 was produced.
 〔透明導電体57の作製〕
 透明基板としてポリエチレンテレフタレート(PET)フィルムを用い、PETフィルム上に、下記の方法に従って、密着層(SiO/ZnS-SiO)/第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(APC-TR)/第2硫化防止層(GZO)/第2高屈折率層(ZnO*1)/第3高屈折率層(ZrO)をこの順に積層した。
[Preparation of transparent conductor 57]
Using a polyethylene terephthalate (PET) film as a transparent substrate, an adhesion layer (SiO 2 / ZnS—SiO 2 ) / first high refractive index layer (ZnS) / first antisulfurization layer (on the PET film according to the following method) GZO) / transparent metal layer (APC-TR) / second anti-sulfurization layer (GZO) / second high refractive index layer (ZnO * 1 ) / third high refractive index layer (ZrO 2 ) were laminated in this order.
 透明導電体57において、(密着層(SiO/ZnS-SiO)の形成)~(第3高屈折率層(ZrO)の形成)の工程のうち、透明金属層の形成を除いて、透明導電体50と同様に作製した。 In the transparent conductor 57, in the steps of (adhesion layer (SiO 2 / ZnS—SiO 2 ) formation) to (third high refractive index layer (ZrO 2 ) formation), except for the formation of the transparent metal layer, It produced similarly to the transparent conductor 50.
 (透明金属層(APC-TR)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAPC-TR(株式会社フルヤ金属製)を層厚が6.0nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
 このようにして透明導電体57を作製した。
(Formation of transparent metal layer (APC-TR))
Using Anelva L-430S-FHS, Ar 20 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.7 nm / s, APC-TR (Furuya Metal Co., Ltd.) layer thickness becomes 6.0 nm DC sputtering was performed. The target-substrate distance was 86 mm.
In this way, a transparent conductor 57 was produced.
 〔透明導電体58の作製〕
 透明基板としてポリエチレンテレフタレート(PET)フィルムを用い、PETフィルム上に、下記の方法に従って、密着層(SiO)/第1高屈折率層(ZnS)/第1硫化防止層(GZO)/透明金属層(Ag-Bi)/第2硫化防止層(GZO)/第2高屈折率層(GZO*2)/第3高屈折率層(SnO)をこの順に積層した。
[Preparation of transparent conductor 58]
Using a polyethylene terephthalate (PET) film as a transparent substrate, an adhesion layer (SiO 2 ) / first high refractive index layer (ZnS) / first antisulfuration layer (GZO) / transparent metal on the PET film according to the following method Layer (Ag-Bi) / second anti-sulfurization layer (GZO) / second high refractive index layer (GZO * 2 ) / third high refractive index layer (SnO 2 ) were laminated in this order.
 透明導電体58において、(密着層(SiO)の形成)~(第3高屈折率層(SnO)の形成)の工程のうち、透明金属層の形成を除いて、透明導電体51と同様に作製した。 In the transparent conductor 58, the steps of (formation of the adhesion layer (SiO 2 )) to (formation of the third high refractive index layer (SnO 2 )), except for the formation of the transparent metal layer, It produced similarly.
 (透明金属層(Ag-Bi)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.25Pa、室温下、形成速度0.7nm/sでAg-Bi(株式会社コベルコ科研製)を層厚が6.0nmとなるようDCスパッタした。ターゲット-基板間距離は86mmであった。
 このようにして透明導電体58を作製した。
(Formation of transparent metal layer (Ag-Bi))
Using Anelva L-430S-FHS, the layer thickness of Ag-Bi (manufactured by Kobelco Research Institute, Inc.) is 6.0 nm at an Ar of 20 sccm, a sputtering pressure of 0.25 Pa, a room temperature, and a formation rate of 0.7 nm / s. DC sputtering was performed. The target-substrate distance was 86 mm.
In this way, a transparent conductor 58 was produced.
 《透明導電体の評価》
 上記作製した各透明導電体について、下記の各特性値の測定及び評価を行った。
 評価方法には実施例1と同様である。
<< Evaluation of transparent conductor >>
About each produced said transparent conductor, the following characteristic value was measured and evaluated.
The evaluation method is the same as in Example 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に記載の結果より明らかなように、本発明の透明導電体50~58は、光透過性、耐湿性及び電気接続性に優れていることが分かった。 As is clear from the results shown in Table 6, it was found that the transparent conductors 50 to 58 of the present invention were excellent in light transmittance, moisture resistance and electrical connectivity.
 本発明は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの分野において利用可能性がある。 The present invention is used in the field of various optoelectronic devices such as liquid crystal, plasma, organic electroluminescence, field emission display, touch panel, mobile phone, electronic paper, various solar cells, various electroluminescence dimming elements there is a possibility.
 1 透明導電体
 2、2-1、2-2 透明基板
 3A 第1高屈折率層
 3B 第2高屈折率層
 4 透明金属層
 5A 第1硫化防止層
 5B 第2硫化防止層
 7 レジスト膜
 7A 除去するレジスト膜
 8 マスク
 9 露光機
 10 エッチング液
 13 前面板
 21 タッチパネル
 a 導通領域
 b 絶縁領域
 EU、EU-1、EU-2 透明電極ユニット
DESCRIPTION OF SYMBOLS 1 Transparent conductor 2, 2-1, 2-2 Transparent substrate 3A 1st high refractive index layer 3B 2nd high refractive index layer 4 Transparent metal layer 5A 1st sulfidation prevention layer 5B 2nd sulfidation prevention layer 7 Resist film 7A Removal Resist film 8 Mask 9 Exposure machine 10 Etching solution 13 Front plate 21 Touch panel a Conduction area b Insulation area EU, EU-1, EU-2 Transparent electrode unit

Claims (9)

  1.  少なくとも、透明基板、第1高屈折率層、透明金属層及び第2高屈折率層をこの順に有する透明導電体であって、
     前記透明金属層が、銀を主成分として含有し、
     前記第1高屈折率層及び第2高屈折率層が、それぞれ、誘電性材料又は酸化物半導体材料を含有し、
     波長570nmの光に対して、前記第1高屈折率層及び第2高屈折率層の屈折率が、前記透明基板の屈折率よりも高く、
     前記第1高屈折率層が、硫黄成分を含有し、かつ、
     前記第2高屈折率層が、硫黄成分を0.1~10at%の範囲内で含有する
     ことを特徴とする透明導電体。
    A transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order;
    The transparent metal layer contains silver as a main component,
    The first high refractive index layer and the second high refractive index layer each contain a dielectric material or an oxide semiconductor material;
    For light with a wavelength of 570 nm, the refractive index of the first high refractive index layer and the second high refractive index layer is higher than the refractive index of the transparent substrate,
    The first high refractive index layer contains a sulfur component, and
    The transparent conductor, wherein the second high refractive index layer contains a sulfur component in a range of 0.1 to 10 at%.
  2.  前記第1高屈折率層が含有する硫黄成分が、硫化亜鉛に由来するものであることを特徴とする請求項1に記載の透明導電体。 The transparent conductor according to claim 1, wherein the sulfur component contained in the first high refractive index layer is derived from zinc sulfide.
  3.  前記第2高屈折率層が含有する硫黄成分が、硫化亜鉛に由来するものであることを特徴とする請求項1又は請求項2に記載の透明導電体。 The transparent conductor according to claim 1 or 2, wherein the sulfur component contained in the second high refractive index layer is derived from zinc sulfide.
  4.  前記第1高屈折率層が、二酸化ケイ素を含有することを特徴とする請求項1から請求項3までのいずれか一項に記載の透明導電体。 The transparent conductor according to any one of claims 1 to 3, wherein the first high refractive index layer contains silicon dioxide.
  5.  前記第2高屈折率層が、チタン(Ti)、インジウム(In)、亜鉛(Zn)、セリウム(Ce)、タングステン(W)、ガリウム(Ga)、スズ(Sn)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タンタル(Ta)、アルミニウム(Al)、ビスマス(Bi)、ゲルマニウム(Ge)からなる群から選ばれる少なくとも1種の元素を含有する金属酸化物を含有することを特徴とする請求項1から請求項4までのいずれか一項に記載の透明導電体。 The second high refractive index layer is made of titanium (Ti), indium (In), zinc (Zn), cerium (Ce), tungsten (W), gallium (Ga), tin (Sn), hafnium (Hf), zirconium. Containing a metal oxide containing at least one element selected from the group consisting of (Zr), niobium (Nb), tantalum (Ta), aluminum (Al), bismuth (Bi), and germanium (Ge). The transparent conductor according to any one of claims 1 to 4, wherein the transparent conductor is characterized.
  6.  前記第1高屈折率層と前記透明金属層の間に、さらに亜鉛成分を含有した硫化防止層が設けられていることを特徴とする請求項1から請求項5までのいずれか一項に記載の透明導電体。 6. The sulfidation prevention layer further containing a zinc component is provided between the first high refractive index layer and the transparent metal layer. 6. Transparent conductor.
  7.  前記第2高屈折率層と前記透明金属層の間に、さらに亜鉛成分を含有した硫化防止層が設けられていることを特徴とする請求項1から請求項6までのいずれか一項に記載の透明導電体。 7. The sulfidation prevention layer further containing a zinc component is provided between the second high refractive index layer and the transparent metal layer. 8. Transparent conductor.
  8.  前記透明金属層が、所定の形状にパターニングされていることを特徴とする請求項1から請求項7までのいずれか一項に記載の透明導電体。 The transparent conductor according to any one of claims 1 to 7, wherein the transparent metal layer is patterned into a predetermined shape.
  9.  請求項1から請求項8までのいずれか一項に記載の透明導電体が具備されていることを特徴とするタッチパネル。 A touch panel comprising the transparent conductor according to any one of claims 1 to 8.
PCT/JP2015/064910 2014-06-17 2015-05-25 Transparent conductor and touchscreen WO2015194320A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529193A JP6536575B2 (en) 2014-06-17 2015-05-25 Transparent conductor and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014124070 2014-06-17
JP2014-124070 2014-06-17

Publications (1)

Publication Number Publication Date
WO2015194320A1 true WO2015194320A1 (en) 2015-12-23

Family

ID=54935314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064910 WO2015194320A1 (en) 2014-06-17 2015-05-25 Transparent conductor and touchscreen

Country Status (2)

Country Link
JP (1) JP6536575B2 (en)
WO (1) WO2015194320A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194010A1 (en) * 2018-04-06 2019-10-10 Tdk株式会社 Transparent conductor, method for manufacturing same, and organic device
WO2021025040A1 (en) * 2019-08-05 2021-02-11 三菱マテリアル株式会社 Laminated film
WO2022224671A1 (en) * 2021-04-20 2022-10-27 株式会社クレハ Transparent electrically conductive piezoelectric laminate film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278244A (en) * 1993-01-29 1994-10-04 Mitsui Toatsu Chem Inc Lamination
JP2000106044A (en) * 1998-09-30 2000-04-11 Nitto Denko Corp Surface resistance lowering method for transparent conductive film
JP2001297630A (en) * 2000-04-13 2001-10-26 Mitsui Chemicals Inc Clear electrode
JP2004342375A (en) * 2003-05-13 2004-12-02 Mitsui Chemicals Inc Luminous body
JP2005116646A (en) * 2003-10-03 2005-04-28 Mitsui Chemicals Inc Transparent electromagnetic wave shielding film
JP2007250430A (en) * 2006-03-17 2007-09-27 Sumitomo Metal Mining Co Ltd Transparent conductive thin film and transparent conductive film using same
JP2010184477A (en) * 2009-02-13 2010-08-26 Toppan Printing Co Ltd Laminated film and method for manufacturing the same
JP2011138135A (en) * 2010-01-04 2011-07-14 Samsung Corning Precision Materials Co Ltd Transparent conductive film and display filter including the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278244A (en) * 1993-01-29 1994-10-04 Mitsui Toatsu Chem Inc Lamination
JP2000106044A (en) * 1998-09-30 2000-04-11 Nitto Denko Corp Surface resistance lowering method for transparent conductive film
JP2001297630A (en) * 2000-04-13 2001-10-26 Mitsui Chemicals Inc Clear electrode
JP2004342375A (en) * 2003-05-13 2004-12-02 Mitsui Chemicals Inc Luminous body
JP2005116646A (en) * 2003-10-03 2005-04-28 Mitsui Chemicals Inc Transparent electromagnetic wave shielding film
JP2007250430A (en) * 2006-03-17 2007-09-27 Sumitomo Metal Mining Co Ltd Transparent conductive thin film and transparent conductive film using same
JP2010184477A (en) * 2009-02-13 2010-08-26 Toppan Printing Co Ltd Laminated film and method for manufacturing the same
JP2011138135A (en) * 2010-01-04 2011-07-14 Samsung Corning Precision Materials Co Ltd Transparent conductive film and display filter including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194010A1 (en) * 2018-04-06 2019-10-10 Tdk株式会社 Transparent conductor, method for manufacturing same, and organic device
WO2021025040A1 (en) * 2019-08-05 2021-02-11 三菱マテリアル株式会社 Laminated film
WO2022224671A1 (en) * 2021-04-20 2022-10-27 株式会社クレハ Transparent electrically conductive piezoelectric laminate film

Also Published As

Publication number Publication date
JP6536575B2 (en) 2019-07-03
JPWO2015194320A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6314463B2 (en) Transparent conductor
JP2016081318A (en) Transparent conductor and touch panel
JP6292225B2 (en) Transparent conductor
TWI554410B (en) Transparent conductive film
WO2015194320A1 (en) Transparent conductor and touchscreen
JP6344095B2 (en) Transparent conductor and touch panel
JP6206262B2 (en) Transparent conductor, method for producing the same, and conductive paste
WO2015068738A1 (en) Transparent conductive body
JP2016152182A (en) Transparent conductive film, method for producing transparent conductive film, and electronic apparatus
JP2015156270A (en) Method of forming transparent electrode pattern
WO2015125677A1 (en) Transparent conductor
JP6256253B2 (en) Transparent conductor and touch panel
WO2015087895A1 (en) Transparent conductive body
WO2015107968A1 (en) Method for manufacturing transparent conductor and transparent conductor
JP2016146052A (en) Transparent conductor, and touch panel including the same
WO2015190227A1 (en) Transparent conductor manufacturing method
JP6493225B2 (en) Transparent conductive film
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
JP2016177940A (en) Method for producing transparent conductive body
JP6586738B2 (en) Transparent conductive member and method for manufacturing transparent conductive member
WO2015053371A1 (en) Transparent conductor
JP2016144884A (en) Transparent conductor and touch panel including the same
JP2016169420A (en) Apparatus and method for manufacturing transparent conductive member
JP2015173050A (en) Method of producing transparent conductor and patterned transparent conductor
JPWO2015025525A1 (en) Transparent conductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529193

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810172

Country of ref document: EP

Kind code of ref document: A1