WO2019194010A1 - Transparent conductor, method for manufacturing same, and organic device - Google Patents

Transparent conductor, method for manufacturing same, and organic device Download PDF

Info

Publication number
WO2019194010A1
WO2019194010A1 PCT/JP2019/012532 JP2019012532W WO2019194010A1 WO 2019194010 A1 WO2019194010 A1 WO 2019194010A1 JP 2019012532 W JP2019012532 W JP 2019012532W WO 2019194010 A1 WO2019194010 A1 WO 2019194010A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal oxide
oxide layer
metal
light
Prior art date
Application number
PCT/JP2019/012532
Other languages
French (fr)
Japanese (ja)
Inventor
新開 浩
祥久 玉川
俊治 松原
喜彦 田邊
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2019194010A1 publication Critical patent/WO2019194010A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present disclosure relates to a transparent conductor, a manufacturing method thereof, and an organic device.
  • the transparent conductor is used as a transparent electrode such as a liquid crystal display (LCD), a plasma display panel (PDP), an electroluminescence panel (organic EL, inorganic EL), and a solar cell.
  • the transparent conductor is required to have high light transmittance in some applications, for example, so as not to be an obstacle to light absorption and emission (for example, Patent Document 1).
  • organic EL is a technology that utilizes the electroluminescence phenomenon of organic materials, and attempts have been made to improve the light extraction efficiency.
  • Patent Document 2 discusses optimizing the optical path length of light emitted from the light emitting layer of the organic light emitting element to the substrate side and reflected by the reflective film to increase the intensity of the emitted light.
  • the transparent conductor of such a light-emitting element ITO was added tin (Sn) to indium oxide (In 2 O 3), or, IZO is added zinc (Zn) to indium oxide (In 2 O 3) It is used.
  • the transparent conductor is required to have flexibility in each application.
  • it is difficult to improve flexibility because it is necessary to increase the thickness in order to ensure conductivity. Therefore, as a transparent conductor having both excellent conductivity and flexibility, a transparent conductor having a three-layer structure in which a metal layer is laminated between a pair of metal oxide layers is considered as a promising material.
  • an object of one aspect of the present disclosure is to provide a transparent conductor capable of sufficiently increasing light extraction efficiency from a light emitting layer and a method for manufacturing the transparent conductor.
  • this indication aims at providing an organic device provided with the above-mentioned transparent conductor.
  • the present invention is a transparent conductor for an organic device having a light emitting layer, which is a transparent substrate, a first metal oxide layer, a metal layer containing silver or a silver alloy, and a second metal.
  • the oxide layers are provided in this order, the wavelength of light from the light emitting layer is ⁇ [nm], the refractive index of the second metal oxide layer at ⁇ is n, and the thickness of the second metal oxide layer is d [nm]. ],
  • a transparent conductor satisfying the following formula (1) or (2) is provided.
  • d is more than 0 and 210 nm or less.
  • the light from the light emitting layer of an organic device contains a some wavelength, what is necessary is just to satisfy
  • the second metal oxide layer of the transparent conductor satisfies the above formula (1) or formula (2).
  • fills said Formula (1) or Formula (2) the extraction efficiency of the light light-emitted from an organic layer can be made high. This is presumably due to the fact that the phase difference between the light extracted directly from the light emitting layer and the light reflected at the boundary between the layers is uniform.
  • the second metal oxide layer may be composed of a plurality of metal oxide films, in which case the total film thickness of the plurality of metal oxide layers (that is, the thickness d of the second metal oxide film) is expressed by the above formula. What is necessary is just to satisfy
  • the second metal oxide layer forming the surface opposite to the transparent substrate may contain indium oxide as a main component. Thereby, the hole injection efficiency can be increased and the light emission efficiency can be increased.
  • the metal oxide film that is in contact with the organic layer and that forms the outermost surface may contain indium oxide as a main component.
  • the work function of the second metal oxide layer that forms the surface opposite to the transparent substrate and is in contact with the organic layer may be 4.7 eV or more. Thereby, the internal quantum efficiency of the organic layer can be increased.
  • the present disclosure provides a transparent conductor for an organic device, which includes a transparent substrate, a first metal oxide layer, a metal layer containing silver or a silver alloy, and a second metal oxide layer in this order.
  • the second metal oxide layer is manufactured so as to satisfy the following formula (1) or formula (2) based on the wavelength ⁇ [nm] of light emitted from the light emitting layer of the organic device.
  • a method for producing a transparent conductor wherein at least one of a refractive index n of a second metal oxide layer at a thickness d [nm] and ⁇ is adjusted.
  • d is more than 0 and 210 nm or less.
  • the light from the light emitting layer of an organic device contains a some wavelength, what is necessary is just to satisfy
  • the second metal oxide layer satisfies the above formula (1) or formula (2).
  • the extraction efficiency of light emitted from the organic layer can be increased.
  • the present disclosure provides an organic device including a transparent substrate, a first metal oxide layer, a metal layer containing silver or a silver alloy, a second metal oxide layer, and a light emitting layer in this order.
  • the wavelength of light from the light emitting layer is ⁇ [nm]
  • the refractive index of the second metal oxide layer at ⁇ is n
  • the thickness of the second metal oxide layer is d [nm]
  • d is more than 0 and 210 nm or less.
  • the light from the light emitting layer of an organic device contains a some wavelength, what is necessary is just to satisfy
  • the second metal oxide layer of the transparent conductor of the organic device satisfies the above formula (1) or formula (2).
  • the extraction efficiency of the light light-emitted from an organic layer can be made high. This is presumably due to the fact that the phase difference between the light extracted directly from the light emitting layer and the light reflected at the boundary between the layers is uniform.
  • a transparent conductor capable of sufficiently increasing the light extraction efficiency from the light emitting layer and a method for manufacturing the transparent conductor.
  • an organic device comprising the transparent conductor can be provided.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of a transparent conductor.
  • FIG. 2 is a diagram schematically illustrating an embodiment of an organic device.
  • FIG. 3 is a diagram schematically showing a propagation path of light from the light emitting layer.
  • FIG. 4 is a diagram illustrating an example of a simulation result of the organic device of FIG.
  • FIG. 5 is a graph showing the relationship between the wavelength ⁇ of light used in the simulation and n ⁇ d / ⁇ .
  • FIG. 6 is a graph showing the relationship between the current value passed through the organic EL device and the luminous efficiency (EQE).
  • FIG. 7 is a graph showing a simulation result of Experimental Example 1.
  • FIG. 8 is a graph showing a simulation result of Experimental Example 1.
  • FIG. 9 is a graph showing a simulation result of Experimental Example 2.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a transparent conductor.
  • the transparent conductor 10 has a laminated structure in which a transparent substrate 11, a first metal oxide layer 12, a metal layer 18, and a second metal oxide layer 14 are arranged in this order.
  • Transparent in this specification means that visible light is transmitted, and the light may be scattered to some extent. Regarding the degree of light scattering, the required level varies depending on the application of the transparent conductor 10. What has light scattering generally referred to as translucent is also included in the concept of “transparency” in this specification.
  • the transparent substrate 11 is not particularly limited, and may be a flexible transparent resin substrate.
  • the organic resin film may be an organic resin sheet.
  • the transparent substrate 11 include polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin films such as polyethylene and polypropylene, polycarbonate films, acrylic films, norbornene films, polyarylate films, and polyether sulfone.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyolefin films such as polyethylene and polypropylene
  • polycarbonate films such as polycarbonate films, acrylic films, norbornene films, polyarylate films, and polyether sulfone.
  • a film, a diacetyl cellulose film, a polyimide, a triacetyl cellulose film, etc. are mentioned.
  • polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are preferable.
  • the thickness of the transparent substrate 11 is, for example, 200 ⁇ m or less from the viewpoint of further increasing the flexibility of the transparent conductor 10.
  • the refractive index of the transparent substrate is, for example, 1.50 to 1.70 from the viewpoint of the transparent conductor 10 having excellent optical characteristics.
  • the transparent substrate 11 may be subjected to at least one surface treatment selected from the group consisting of corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, and ozone treatment. .
  • the transparent substrate 11 is not limited to a transparent resin substrate, and may be a molded product of an inorganic compound such as soda lime glass, non-alkali glass, and quartz glass.
  • the transparent conductor 10 can be made excellent in flexibility. Thereby, the transparent conductor 10 can be used suitably as a transparent conductor for flexible organic devices.
  • the first metal oxide layer 12 is a transparent layer containing a metal oxide.
  • the first metal oxide layer 12 has a function of protecting the metal layer 18.
  • the first metal oxide layer 12 may be made of a metal oxide different from ITO (indium tin oxide). When the 1st metal oxide layer 12 does not contain ITO, corrosion of the silver alloy contained in the metal layer 18 can be suppressed.
  • the first metal oxide layer 12 is composed of, for example, four components of zinc oxide, tin oxide, indium oxide and titanium oxide, or zinc oxide, indium oxide and oxide. You may contain 3 components of titanium as a main component. By including the above four components, the first metal oxide layer 12 can have sufficiently high conductivity and transparency.
  • Zinc oxide contained in the first metal oxide layer 12 is, for example, ZnO, and indium oxide is, for example, In 2 O 3 .
  • Titanium oxide is, for example, TiO 2.
  • Tin oxide is, for example, SnO 2.
  • the ratio of metal atoms to oxygen atoms in each of the metal oxides may deviate from the stoichiometric ratio. Further, another oxide having a different oxidation number may be included.
  • the first metal oxide layer 12 may contain tin oxide, but the content of tin oxide (SnO 2 ) is small from the viewpoint of reducing the corrosion of silver or silver alloy contained in the metal layer 18. The tin oxide may not be contained.
  • the total content of the three components is 90% by mass or more in terms of ZnO, In 2 O 3 and TiO 2 , respectively. It is preferably 95% by mass or more.
  • the thickness of the first metal oxide layer 12 is, for example, 60 nm or less from the viewpoint of improving flexibility. On the other hand, from the viewpoint of further improving corrosion resistance and improving productivity, the thickness is, for example, 5 nm or more.
  • the content of ZnO with respect to the total of the three components is , 20 to 85 mol%, or 30 to 80 mol%.
  • the content of In 2 O 3 with respect to the total of the above three components may be 10 to 35 mol% or 10 to 25 mol% from the viewpoint of achieving both high conductivity and high corrosion resistance. May be.
  • the content of TiO 2 with respect to the total of the above three components is preferably 5 to 15 mol%, and preferably 7 to 13 mol% from the viewpoint of achieving both transparency and excellent corrosion resistance. More preferred.
  • the first metal oxide layer 12 contains the above four components as main components
  • the first metal oxide layer 12 contains four components of zinc oxide, indium oxide, titanium oxide, and tin oxide, respectively, ZnO, In
  • the content of zinc oxide relative to the total of the four components may be 20 to 68 mol% from the viewpoint of achieving both high conductivity and excellent corrosion resistance. .
  • the content of indium oxide with respect to the total of the above four components is 15 to 35 mol% from the viewpoint of improving the corrosion resistance while sufficiently reducing the surface resistance.
  • the content of titanium oxide with respect to the total of the above four components is 5 to 20 mol% from the viewpoint of securing visible light transmittance and increasing alkali resistance.
  • the content of tin oxide with respect to the total of the four components is, for example, 5 to 40 mol% from the viewpoint of achieving both high transparency and excellent corrosion resistance.
  • the first metal oxide layer 12 may be composed of a plurality of metal oxide films having different compositions, and some of the plurality of metal oxide films are a metal nitride film or a metal oxynitride film.
  • the film in contact with the transparent substrate 11 may be a metal oxide film, a metal nitride film, or a metal oxynitride film containing the above four components or other components, and the film in contact with the metal layer 18 is It may be a metal oxide film containing the above three components.
  • the metal oxide film in contact with the transparent substrate 11 may contain, for example, silicon oxide.
  • the metal nitride film in contact with the transparent substrate 11 may contain silicon nitride.
  • the metal oxynitride film in contact with the transparent substrate 11 may contain silicon oxynitride (Si—O—N).
  • silicon corresponds to a metal element
  • silicon oxide and silicon nitride correspond to a metal oxide and a metal nitride, respectively.
  • the first metal oxide layer 12 may have low conductivity or may be an insulator. In this case, the conductivity of the transparent conductor 10 may be borne by the metal layer 18 and the second metal oxide layer 14.
  • the first metal oxide layer 12 can be manufactured by a vacuum film formation method such as a vacuum evaporation method, a sputtering method, an ion plating method, or a CVD method. Among these, the sputtering method is preferable because the film forming chamber can be downsized and the film forming speed is high. Examples of the sputtering method include DC magnetron sputtering. As the target, a metal target or a metal oxide target can be used.
  • the first metal oxide layer 12 may be a layer that does not dissolve in the acidic etching solution.
  • the metal layer 18 may contain silver or a silver alloy as a main component.
  • the metal layer 18 may be a layer that dissolves in an acidic etching solution. Thus, patterning can be easily performed. Since the metal layer 18 has high transparency and excellent conductivity, the surface resistance can be sufficiently lowered while ensuring the transmittance of the transparent conductor 10.
  • the metal layer 18 may contain a metal element other than silver.
  • the environment resistance of the metal layer 18 is improved by containing at least one element selected from the group consisting of Cu, Nd, Pt, Pd, Bi, Sn, and Sb as a constituent element of a silver alloy or a metal simple substance. be able to.
  • silver alloys examples include Ag—Pd, Ag—Cu, Ag—Pd—Cu, Ag—Nd—Cu, Ag—In—Sn, and Ag—Sn—Sb.
  • the silver alloy preferably contains Ag as a main component and includes the above-described metals as subcomponents.
  • the metal layer 18 may be a layer made of only metal.
  • the content of metals other than Ag in the silver alloy is, for example, 0.5 to 5% by mass from the viewpoint of further improving the corrosion resistance and transparency.
  • the silver alloy preferably contains Pd as a metal other than Ag. Thereby, the corrosion resistance in a high-temperature and high-humidity environment can be further improved.
  • the thickness of the metal layer 18 may be, for example, 5 to 25 nm. If the thickness of the metal layer 18 becomes too small, the continuity of the metal layer 18 is impaired and the surface resistance value of the transparent conductor 10 tends to increase. On the other hand, when the thickness of the metal layer 18 becomes too large, excellent transparency tends to be impaired.
  • the metal layer 18 has a function of adjusting the conductivity and surface resistance of the transparent conductor 10.
  • the metal layer 18 can be produced by a vacuum film forming method such as a vacuum deposition method, a sputtering method, an ion plating method, or a CVD method.
  • the sputtering method is preferable because the film forming chamber can be downsized and the film forming speed is high. Examples of the sputtering method include DC magnetron sputtering.
  • a metal target can be used as the target.
  • the second metal oxide layer 14 is a transparent layer containing a metal oxide.
  • the second metal oxide layer 14 in contact with the organic layer may be composed of a metal oxide containing ITO.
  • the second metal oxide layer 14 may contain ITO as a main component, or may be composed of inevitable impurities derived from ITO and impurities of raw materials.
  • the content of ITO in the second metal oxide layer 14 is preferably 90% by mass or more, and more preferably 95% by mass or more.
  • the second metal oxide layer 14 may be composed of a plurality of metal oxide films having different compositions.
  • the film in contact with the metal layer 18 is a metal oxide film containing a metal oxide different from ITO as a main component.
  • the film in contact with the organic layer may be a metal oxide film containing ITO as a main component.
  • ITO is an oxide of indium and tin.
  • the oxide is a composite oxide having In, Sn, and O (oxygen) as constituent elements.
  • the second metal oxide layer 14 may contain another composite oxide.
  • the work function of the surface 14a opposite to the metal layer 18 side of the second metal oxide layer 14 may be 4.7 eV or more, or 5.0 eV or more.
  • an organic device is manufactured by providing an organic layer on the surface 14a of the second metal oxide layer 14 having such a high work function, injection of holes into the organic layer or formation of holes from the organic layer is performed. Acceptance can be done smoothly. For this reason, the performance of the organic device can be improved.
  • the work function of the surface 14a of the second metal oxide layer 14 can be measured using a commercially available measuring device.
  • the work function of the surface 14a of the second metal oxide layer 14 tends to depend on the composition in the vicinity of the surface 14a.
  • the Sn composition containing SnO 2 in the target composition or In depending on the film formation conditions during sputtering The work function of the surface 14a of the second metal oxide layer 14 can be adjusted by changing the Sn and O contents.
  • the thickness d of the second metal oxide layer 14 may be, for example, 2 nm or more, or 5 nm or more from the viewpoint of stably increasing the work function on the surface 14a.
  • the thickness d of the second metal oxide layer 14 is, for example, 100 nm or less from the viewpoint of sufficiently increasing the transparency and flexibility of the transparent conductor 10.
  • each layer constituting the transparent conductor 10 can be measured by the following procedure.
  • the transparent conductor 10 is cut by a focused ion beam device (FIB, Focused Ion Beam) to obtain a cross section.
  • the cross section is observed using a transmission electron microscope (TEM), and the thickness of each layer is measured.
  • the measurement is preferably performed at 10 or more arbitrarily selected positions, and the average value is obtained.
  • a microtome may be used as an apparatus other than the focused ion beam apparatus.
  • a scanning electron microscope (SEM) may be used. It is also possible to measure the film thickness using a fluorescent X-ray apparatus.
  • the thickness of the transparent conductor 10 may be 250 ⁇ m or less, or 200 ⁇ m or less. With such a thickness, the required levels of transparency and flexibility can be sufficiently satisfied.
  • compositions of the first metal oxide layer 12 and the second metal oxide layer 14 may be different from each other. By making the composition of the first metal oxide layer 12 and the composition of the second metal oxide layer 14 different, only the second metal oxide layer 14 and the metal layer 18 are subjected to acidic etching in one step.
  • the first metal oxide layer 12 can be left by etching using a liquid.
  • the transparent conductor 10 having the above-described configuration is also excellent in alkali resistance. Therefore, patterning can be performed efficiently.
  • the transparent conductor 10 can be suitably used for organic devices such as organic EL displays and organic EL lighting.
  • the transparent conductor 10 in FIG. 1 may include an arbitrary layer between each layer.
  • a hard coat layer may be provided between the transparent substrate 11 and the first metal oxide layer 12, or an etching resistant layer is provided between the metal layer 18 and the first metal oxide layer 12. May be.
  • a water vapor barrier layer may be provided between the transparent substrate 11 and the first metal oxide layer 12.
  • the hard coat layers may be provided in pairs so as to sandwich the transparent substrate 11.
  • the transparent conductor 10 is excellent in conductivity, flexibility and corrosion resistance, it is suitably used as an electrode for organic devices such as organic EL displays and organic EL lighting.
  • the first metal oxide layer 12, the metal layer 18, and the second metal oxide layer 14 function as the transparent electrode 20.
  • the transparent electrode 20 may be an anode or a cathode.
  • FIG. 2 is a diagram schematically showing an embodiment of an organic device.
  • the organic device 100 is, for example, organic EL illumination, and includes a transparent substrate 11, a transparent electrode (anode) 20, a hole injection layer 30, a hole transport layer 32, a light emitting layer 40, an electron transport layer 50, an electron injection layer 52, And the laminated body 150 which has the metal electrode (cathode) 60 in this order is provided.
  • the transparent substrate 11 and the transparent electrode 20 in the organic device 100 the transparent conductor 10 can be used as the transparent substrate 11 and the transparent electrode 20 in the organic device 100.
  • the transparent conductor 10 is provided so that the surface of the second metal oxide layer 14 of the transparent electrode 20 (the surface 14 a in FIG. 1) is in contact with the hole injection layer 30.
  • a power source 80 is connected to the transparent electrode 20 functioning as an anode and the metal electrode 60 functioning as a cathode. By applying an electric field by the power source 80, holes are injected from the transparent electrode 20 into the hole injection layer 30, and electrons are injected from the metal electrode 60 into the electron injection layer 52.
  • the holes injected into the hole injection layer 30 and the electrons injected into the electron injection layer 52 move through the hole transport layer 32 and the electron transport layer 50 and recombine in the light emitting layer 40, respectively.
  • the organic compound in the light emitting layer 40 emits light.
  • the light generated by the light emission passes through the hole transport layer 32, the hole injection layer 30, the transparent electrode 20, and the transparent substrate 11 and is emitted from the side surface 20 a of the organic device 100.
  • the metal electrode 60 functions as a reflective electrode.
  • Organic device 100 uses transparent conductor 10 as transparent substrate 11 and transparent electrode 20. Therefore, holes can be efficiently injected into the hole injection layer 30 by increasing the work function on the surface 14 a of the second metal oxide layer 14 of the transparent electrode 20. Thereby, the light emission amount in the light emitting layer 40 of the organic device 100 can be increased with respect to the voltage applied from the power supply 80 (current flowing between both electrodes).
  • the thickness d of the second metal oxide layer 14 according to the emission wavelength, the light emitted from the light emitting layer 40 can be efficiently extracted from the side surface 20a, and the light emission efficiency is sufficiently high. can do. Thereby, it is possible to increase the light emission efficiency indicating how much light can be extracted with respect to the voltage (current) applied from the power supply 80.
  • the hole injection layer 30, the hole transport layer 32, the light emitting layer 40, the electron transport layer 50, the electron injection layer 52, and the metal electrode (cathode) 60 can be formed using ordinary materials.
  • the hole injection layer 30 has a function of facilitating injection of holes from the transparent electrode 20 and transporting the injected holes into the hole transport layer 32.
  • the hole transport layer 32 has a function of injecting holes injected from the hole injection layer 30 into the light emitting layer 40.
  • the material of the hole injection layer 30 and the hole transport layer 32 includes an aromatic amine compound and an anthracene derivative.
  • the light emitting layer 40 has a function of transporting injected holes and electrons and a function of generating excitons by recombination of holes and electrons.
  • Examples of the light emitting layer 40 include a two-component system in which a host material and a dopant material are combined.
  • Host materials include 1,10-phenanthroline derivatives, organometallic complex compounds, aromatic hydrocarbon compounds such as naphthalene, anthracene, naphthacene, perylene, benzofluoranthene, naphthofluoranthene and their derivatives, and styrylamine and And tetraaryldiamine derivatives.
  • Examples of the dopant material include benzodifluoranthene derivatives and coumarin derivatives.
  • the electron transport layer 50 has a function of transporting electrons injected from the electron injection layer 52 to the light emitting layer 40.
  • the electron injection layer 52 has a function of facilitating injection of electrons from the metal electrode 60 and a function of improving adhesion with the metal electrode 60.
  • the electron transport layer 50 and the electron injection layer may be formed using an organic material such as a compound having a trinitrofluorenone, oxadiazole or triazole structure, or an alkali metal such as lithium, lithium fluoride, Alternatively, it may be formed using an inorganic material such as lithium oxide.
  • each layer can be formed by a usual method such as a vacuum deposition method, an ionization deposition method, and a coating method.
  • the thickness of each layer of the stacked body 150 constituting the organic device 100 can be set to, for example, 1/8 to 1/4 of the wavelength of light obtained in the light emitting layer 40.
  • FIG. 3 is a diagram schematically showing a propagation path of light from the light emitting layer 40.
  • excitons are generated and emit light.
  • a part of the emitted light is totally reflected at the interface between the hole injection layer 30 and the transparent electrode 20 and at the interface between the transparent electrode 20 and the transparent substrate 11.
  • another part of the emitted light is extracted from the side surface 20a.
  • the light extraction efficiency is the ratio (%) of light emitted from the side surface 20a to the light emitted from the light emitting layer 40
  • the light emission efficiency (external quantum efficiency) of the organic device 100 is obtained by the following formula (I). be able to. From formula (I), in order to improve the light emission efficiency of the organic device 100, it is effective to increase the light extraction efficiency.
  • Luminous efficiency Internal quantum efficiency x
  • the internal quantum efficiency indicates a ratio (light energy generated in the light emitting layer 40) in which the energy excited in the light emitting layer 40 by the injected power is converted into light energy.
  • the light extraction efficiency can be increased by suppressing total reflection at the interface of each layer.
  • the reflectance and transmittance of the laminate 150 can be optically simulated using the optical constant (n / k) and thickness of each layer. k is an extinction coefficient.
  • simulation software for example, software (trade name: SimOLED) for an organic light emitting diode manufactured by Sim4Tec can be cited.
  • FIG. 4 shows the transparent substrate 11, the first metal oxide layer 12, the metal layer 18, the second metal oxide layer 14, the hole injection layer 30, the hole transport layer 32, the light emitting layer 40, and the metal electrode 60. It is a figure which shows an example of the simulation result of the organic device comprised with the laminated body which has these in this order.
  • the multiple interference effect inside the light emitting layer 40 and the optical characteristics of each layer other than the light emitting layer 40 are made a function of the wavelength of light generated in the light emitting layer 40 and the light propagation angle. It is a simulation of efficiency.
  • the prerequisites for the simulation are as shown in Table 1.
  • FIG. 4 shows the result of simulating the relationship between the thickness d (nm) of the second metal oxide layer 14 and the light extraction efficiency at each wavelength under the above-mentioned preconditions. Based on this simulation result, the range of the thickness d of the second metal oxide layer 14 in which the light extraction efficiency of light of each wavelength is 15% can be obtained.
  • the range in which the light extraction efficiency of light at each wavelength is 15% or more is as follows.
  • FIG. 5 is a graph showing the relationship between the wavelength ⁇ of light used in the simulation and the lower limit value and the upper limit value in each range of the optical path length shown in Table 2.
  • FIG. 5 shows a linear regression line and a linear regression equation of the upper limit value and the lower limit value of each range where the wavelength ⁇ [nm] is x and n ⁇ d [nm] / ⁇ [nm] is y. Yes.
  • the light extraction efficiency can be increased (for example, 15% or more).
  • This region is expressed by the following formulas (1) and (2), respectively. 0 ⁇ n ⁇ d / ⁇ ⁇ 0.0008 ⁇ ⁇ 0.3393 (1) 0.0012 ⁇ ⁇ 0.3302 ⁇ n ⁇ d / ⁇ ⁇ 0.0015 ⁇ ⁇ 0.1975 (2)
  • d exceeds 0 and is 210 nm or less.
  • N at the wavelength ⁇ is, for example, 1.8 to 2.2.
  • the light from the light emitting layer 40 of an organic device contains a several wavelength, what is necessary is just to satisfy
  • the wavelength of light from the light emitting layer 40 of the organic device may be, for example, 400 to 700 nm.
  • the ratio of light extracted from the side surface 20a is sufficiently increased. be able to. This is because the phase difference between the light directly extracted from the light emitting layer 40 and the light reflected at the boundary of each layer is uniform, and total reflection at the interface between the transparent substrate 11 and the transparent electrode 20 is reduced. It is inferred that this is caused by
  • optical path length (n ⁇ d / ⁇ ) preferably satisfies the formula (1-1) or the formula (2-1) from the viewpoint of further increasing the light extraction efficiency, and the formula (1-2) or the formula (2) -2) is more preferable.
  • N, d, and ⁇ in the following expressions are synonymous with the expressions (1) and (2).
  • the manufacturing method of the transparent conductor 10 according to the embodiment includes the second method so as to satisfy the above formula (1) or formula (2) based on the wavelength ⁇ [nm] of the light emitted from the light emitting layer 40. At least one of the thickness d [nm] and the refractive index n of the metal oxide layer 14 is adjusted. Thereby, the transparent conductor 10 having high light extraction efficiency can be manufactured.
  • FIG. 6 is a graph showing the relationship between the current value passed through the organic EL device using Alq3 [tris (8-quinolinolato) aluminum] emitting green light in the light emitting layer 40 and the light emission efficiency (EQE).
  • the black circles, white squares, and black triangles in FIG. 6 are plotted in the organic device 100 shown in FIG. 2 when the thickness d of the second metal oxide layer 14 is 10 nm, 100 nm, and 40 nm, respectively.
  • the change in luminous efficiency is shown.
  • the black triangle is a condition for maximizing the transmittance of the transparent conductor 10, and is a conventional transparent conductor whose optical path length does not satisfy the expressions (1) and (2).
  • the luminous efficiency can be increased. Further, the luminous efficiency can be adjusted by changing the thickness d of the second metal oxide layer 14.
  • the organic device may be organic EL lighting or an organic EL display, and the structure thereof is not limited to the structure shown in FIG.
  • Example 1 (Production of transparent conductor) A transparent conductor having a laminated structure as shown in FIG. 1 was produced.
  • the transparent conductor had a laminated structure in which a transparent substrate, a first metal oxide layer, a metal layer, and a second metal oxide layer were laminated in this order.
  • This transparent conductor was produced as follows.
  • a commercially available glass substrate (manufactured by Corning, trade name: EAGLE XG, thickness: 0.7 mm) was prepared. This glass substrate was used as a transparent substrate. A first metal oxide layer, a metal layer, and a second metal oxide layer were sequentially formed on the transparent substrate by DC magnetron sputtering.
  • the first material was formed on the transparent substrate by DC magnetron sputtering under reduced pressure (0.5 Pa) in a mixed gas atmosphere of argon gas and oxygen gas. 1 metal oxide layer (thickness: 40 nm) was formed.
  • the content of ZnO with respect to the total of the above three components was 74 mol%
  • the content of In 2 O 3 was 15 mol%
  • the content of TiO 2 was 11 mol%.
  • the refractive index of the first metal oxide layer at a wavelength of 450 nm was 2.1.
  • a silver alloy is mainly contained on the first metal oxide layer by DC magnetron sputtering under reduced pressure (0.5 Pa) in an argon gas atmosphere.
  • a metal layer thickness: 10 nm.
  • a second metal oxide layer (thickness: 40 nm, thickness: 40 nm) on the metal layer by DC magnetron sputtering under reduced pressure (0.5 Pa) in a mixed gas atmosphere of argon gas and oxygen gas. ITO layer) was formed.
  • the refractive index of the second metal oxide layer at a wavelength of 450 nm was 1.9.
  • the total light transmittance (transmittance) of the produced transparent conductor was measured using a haze meter (trade name: NDH-7000, manufactured by Nippon Denshoku Industries Co., Ltd.). The total light transmittance was 88%.
  • the surface resistance value of the produced transparent conductor was measured using a 4-terminal resistivity meter (trade name: Loresta GP, manufactured by Mitsubishi Chemical Corporation). The surface resistance value is 10 ⁇ / sq. Met.
  • the work function on the surface of the second metal oxide layer of the produced transparent conductor was measured using a photoelectron spectrometer (trade name: FAC-1 manufactured by Riken Keiki Co., Ltd.). The work function was 5.2 eV.
  • the light extraction efficiency of the produced transparent conductor was simulated. As a result, the light extraction efficiency was less than 15%.
  • the light extraction efficiency was simulated when the thickness d of the second metal oxide layer was changed in the above-described transparent conductor.
  • the simulation result was as shown in FIG. As shown in FIG. 7, it was confirmed that the light extraction efficiency can be increased by adjusting the thickness d of the second metal oxide layer according to the wavelength.
  • the emission wavelength was 520 nm
  • the light extraction efficiency and transmittance when the thickness d of the second metal oxide layer was changed in the above-described transparent conductor were simulated.
  • the simulation result was as shown in FIG. In FIG. 8, the dotted line indicates the transmittance, and the solid line indicates the light extraction efficiency at 520 nm.
  • the light extraction efficiency and the transmittance are not directly proportional to each other, and the light extraction efficiency cannot be increased even if the transmittance is increased. Further, it was confirmed that if the thickness d is in a predetermined range, even if the transmittance is 60% or less, the light extraction efficiency can be 15% or more.
  • a transparent conductor capable of sufficiently increasing the light extraction efficiency from the light emitting layer and a method for manufacturing the transparent conductor are provided. Moreover, an organic device provided with a transparent conductor is provided.
  • SYMBOLS 10 Transparent conductor, 11 ... Transparent base material, 12 ... 1st metal oxide layer, 14 ... 2nd metal oxide layer, 14a ... Surface, 18 ... Metal layer, 20 ... Transparent electrode, 20a ... Side surface, DESCRIPTION OF SYMBOLS 30 ... Hole injection layer, 32 ... Hole transport layer, 40 ... Light emitting layer, 50 ... Electron transport layer, 52 ... Electron injection layer, 60 ... Metal electrode, 80 ... Power supply, 100 ... Organic device, 150 ... Laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided is a transparent conductor 10 for an organic device having a light emission layer, wherein: the transparent conductor 10 comprises, in the stated order, a transparent substrate 11, a first metal oxide layer 12, a metal layer 18 containing silver or a silver alloy, and a second metal oxide layer 14; and the transparent conductor 10 satisfies equation (1) or (2), where λ [nm] is the wavelength of light from the light emission layer, n is the refractivity of the second metal oxide layer 14 at λ, and d [nm] is the thickness of the second metal oxide layer 14. (Equation 1) 0 < n × d/λ ≤ 0.0008 × λ – 0.3393 (Equation 2) 0.0012 × λ – 0.3302 ≤ n × d/λ ≤ 0.0015 × λ – 0.1975 [In equations (1) and (2), d is greater than 0 and less than or equal to 210 nm.]

Description

透明導電体及びその製造方法、並びに有機デバイスTransparent conductor, method for producing the same, and organic device
 本開示は、透明導電体及びその製造方法、並びに有機デバイスに関する。 The present disclosure relates to a transparent conductor, a manufacturing method thereof, and an organic device.
 透明導電体は、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、及びエレクトロルミネッセンスパネル(有機EL、無機EL)などのディスプレイ、並びに、太陽電池などの透明電極として使用されている。透明導電体は、幾つかの用途において、例えば、光の吸収及び放出の障害とならないようにするため、高い光透過率を有することが求められる(例えば、特許文献1)。 The transparent conductor is used as a transparent electrode such as a liquid crystal display (LCD), a plasma display panel (PDP), an electroluminescence panel (organic EL, inorganic EL), and a solar cell. The transparent conductor is required to have high light transmittance in some applications, for example, so as not to be an obstacle to light absorption and emission (for example, Patent Document 1).
 一方、有機ELは、有機材料の電界発光現象を利用した技術であり、光取り出し効率を向上することが試みられている。例えば、特許文献2では、有機発光素子の発光層から基板側に発光し、反射膜によって反射される光の光路長を最適化して、出射する光の強度を増大させることが検討されている。このような発光素子の透明導電体としては、酸化インジウム(In)に錫(Sn)を添加したITO、又は、酸化インジウム(In)に亜鉛(Zn)を添加したIZOが用いられている。 On the other hand, organic EL is a technology that utilizes the electroluminescence phenomenon of organic materials, and attempts have been made to improve the light extraction efficiency. For example, Patent Document 2 discusses optimizing the optical path length of light emitted from the light emitting layer of the organic light emitting element to the substrate side and reflected by the reflective film to increase the intensity of the emitted light. The transparent conductor of such a light-emitting element, ITO was added tin (Sn) to indium oxide (In 2 O 3), or, IZO is added zinc (Zn) to indium oxide (In 2 O 3) It is used.
国際公開第2012/002113号International Publication No. 2012/002113 特開2002-252087号JP 2002-252087 A
 透明導電体は、各用途において、柔軟性を有することが求められている。従来のITO膜の場合、導電性を確保するために厚みを大きくする必要があるため、柔軟性を向上することが難しい。そこで、優れた導電性と柔軟性を兼ね備える透明導電体として、一対の金属酸化物層の間に金属層を積層した3層構造の透明導電体が有望な材料として考えられる。 The transparent conductor is required to have flexibility in each application. In the case of a conventional ITO film, it is difficult to improve flexibility because it is necessary to increase the thickness in order to ensure conductivity. Therefore, as a transparent conductor having both excellent conductivity and flexibility, a transparent conductor having a three-layer structure in which a metal layer is laminated between a pair of metal oxide layers is considered as a promising material.
 しかしながら、本発明者らの検討によれば、このような透明導電体は、発光層に積層して有機デバイスを構築した場合に、透明導電体自体の透過率を最大限に高めても、発光層からの光の取り出し効率が低くなる現象があることが分かった。そこで、本開示は、一つの側面において、発光層からの光の取り出し効率を十分に高くすることが可能な透明導電体及びその製造方法を提供することを目的とする。本開示は、さらに別の側面において、上記透明導電体を備える有機デバイスを提供することを目的とする。 However, according to the study by the present inventors, such a transparent conductor can be emitted even when the transmittance of the transparent conductor itself is maximized when an organic device is constructed by laminating the light emitting layer. It has been found that there is a phenomenon that the light extraction efficiency from the layer is lowered. Therefore, an object of one aspect of the present disclosure is to provide a transparent conductor capable of sufficiently increasing light extraction efficiency from a light emitting layer and a method for manufacturing the transparent conductor. In another aspect, this indication aims at providing an organic device provided with the above-mentioned transparent conductor.
 本発明は、一つの側面において、発光層を有する有機デバイス用の透明導電体であって、透明基材、第1の金属酸化物層、銀又は銀合金を含む金属層、及び第2の金属酸化物層をこの順に備え、発光層からの光の波長をλ[nm]、λにおける第2の金属酸化物層の屈折率をn、及び第2の金属酸化物層の厚みをd[nm]としたときに、下記式(1)又は(2)を満たす透明導電体を提供する。
  0<n×d/λ≦0.0008×λ-0.3393・・・(1)
  0.0012×λ-0.3302≦n×d/λ≦0.0015×λ-0.1975・・・(2)
 式(1)及び式(2)中、dは0を超え且つ210nm以下である。なお、有機デバイスの発光層からの光が複数の波長を含む場合は、複数の波長の中の少なくとも一つの波長において上記式(1)又は式(2)を満たせばよい。
In one aspect, the present invention is a transparent conductor for an organic device having a light emitting layer, which is a transparent substrate, a first metal oxide layer, a metal layer containing silver or a silver alloy, and a second metal. The oxide layers are provided in this order, the wavelength of light from the light emitting layer is λ [nm], the refractive index of the second metal oxide layer at λ is n, and the thickness of the second metal oxide layer is d [nm]. ], A transparent conductor satisfying the following formula (1) or (2) is provided.
0 <n × d / λ ≦ 0.0008 × λ−0.3393 (1)
0.0012 × λ−0.3302 ≦ n × d / λ ≦ 0.0015 × λ−0.1975 (2)
In Formula (1) and Formula (2), d is more than 0 and 210 nm or less. In addition, when the light from the light emitting layer of an organic device contains a some wavelength, what is necessary is just to satisfy | fill said Formula (1) or Formula (2) in the at least 1 wavelength among several wavelengths.
 上記透明導電体の第2の金属酸化物層は上記式(1)又は式(2)を満たす。このように第2の金属酸化物層が上記式(1)又は式(2)を満たすことによって、有機層から発光される光の取り出し効率を高くすることができる。これは、発光層から直接取り出される光と、各層の境界で反射した光との位相差が揃うことに起因しているものと推察される。第2の金属酸化物層は複数の金属酸化物膜から構成されてよく、その場合は、複数の金属酸化物層の合計膜厚(すなわち第2の金属酸化物膜の厚みd)が上記式(1)又は式(2)を満たせばよい。 The second metal oxide layer of the transparent conductor satisfies the above formula (1) or formula (2). Thus, when the 2nd metal oxide layer satisfy | fills said Formula (1) or Formula (2), the extraction efficiency of the light light-emitted from an organic layer can be made high. This is presumably due to the fact that the phase difference between the light extracted directly from the light emitting layer and the light reflected at the boundary between the layers is uniform. The second metal oxide layer may be composed of a plurality of metal oxide films, in which case the total film thickness of the plurality of metal oxide layers (that is, the thickness d of the second metal oxide film) is expressed by the above formula. What is necessary is just to satisfy | fill (1) or Formula (2).
 透明基材とは反対側の表面をなす第2の金属酸化物層は、主成分として酸化インジウムを含有してもよい。これによって、ホール注入効率を高くして、発光効率を高くすることができる。また、第2の金属酸化物層が複数の金属酸化物膜から構成される場合は、最表面をなす、有機層と接する金属酸化物膜は、主成分として酸化インジウムを含有してもよい。 The second metal oxide layer forming the surface opposite to the transparent substrate may contain indium oxide as a main component. Thereby, the hole injection efficiency can be increased and the light emission efficiency can be increased. When the second metal oxide layer is composed of a plurality of metal oxide films, the metal oxide film that is in contact with the organic layer and that forms the outermost surface may contain indium oxide as a main component.
 透明基材とは反対側の表面をなし、有機層と接する最表面の第2の金属酸化物層の仕事関数が4.7eV以上であってもよい。これによって、有機層の内部量子効率を高くすることができる。 The work function of the second metal oxide layer that forms the surface opposite to the transparent substrate and is in contact with the organic layer may be 4.7 eV or more. Thereby, the internal quantum efficiency of the organic layer can be increased.
 本開示は、別の側面において、透明基材、第1の金属酸化物層、銀又は銀合金を含む金属層、及び第2の金属酸化物層をこの順に備える、有機デバイス用の透明導電体の製造方法であって、有機デバイスの発光層から発光される光の波長λ[nm]に基づいて、下記式(1)又は式(2)を満たすように、第2の金属酸化物層の厚みd[nm]及びλにおける第2の金属酸化物層の屈折率nの少なくとも一方を調整する、透明導電体の製造方法を提供する。
  0<n×d/λ≦0.0008×λ-0.3393・・・(1)
  0.0012×λ-0.3302≦n×d/λ≦0.0015×λ-0.1975・・・(2)
 式(1)及び式(2)中、dは0を超え且つ210nm以下である。なお、有機デバイスの発光層からの光が複数の波長を含む場合は、複数の波長の中の少なくとも一つの波長において上記式(1)又は式(2)を満たせばよい。
In another aspect, the present disclosure provides a transparent conductor for an organic device, which includes a transparent substrate, a first metal oxide layer, a metal layer containing silver or a silver alloy, and a second metal oxide layer in this order. The second metal oxide layer is manufactured so as to satisfy the following formula (1) or formula (2) based on the wavelength λ [nm] of light emitted from the light emitting layer of the organic device. Provided is a method for producing a transparent conductor, wherein at least one of a refractive index n of a second metal oxide layer at a thickness d [nm] and λ is adjusted.
0 <n × d / λ ≦ 0.0008 × λ−0.3393 (1)
0.0012 × λ−0.3302 ≦ n × d / λ ≦ 0.0015 × λ−0.1975 (2)
In Formula (1) and Formula (2), d is more than 0 and 210 nm or less. In addition, when the light from the light emitting layer of an organic device contains a some wavelength, what is necessary is just to satisfy | fill said Formula (1) or Formula (2) in the at least 1 wavelength among several wavelengths.
 上記透明導電体の製造方法では、第2の金属酸化物層が上記式(1)又は式(2)を満たす。このように上記式(1)又は式(2)を満たす第2の金属酸化物層を発光層側に配置することによって、有機層から発光される光の取り出し効率を高くすることができる。 In the method for producing a transparent conductor, the second metal oxide layer satisfies the above formula (1) or formula (2). Thus, by arranging the second metal oxide layer satisfying the above formula (1) or formula (2) on the light emitting layer side, the extraction efficiency of light emitted from the organic layer can be increased.
 本開示は、さらに別の側面において、透明基材、第1の金属酸化物層、銀又は銀合金を含む金属層、第2の金属酸化物層、及び発光層をこの順に備える有機デバイスであって、発光層からの光の波長をλ[nm]、λにおける第2の金属酸化物層の屈折率をn、及び第2の金属酸化物層の厚みをd[nm]としたときに、下記式(1)又は式(2)を満たす有機デバイスを提供する。
  0<n×d/λ≦0.0008×λ-0.3393・・・(1)
  0.0012×λ-0.3302≦n×d/λ≦0.0015×λ-0.1975・・・(2)
 式(1)及び式(2)中、dは0を超え且つ210nm以下である。なお、有機デバイスの発光層からの光が複数の波長を含む場合は、複数の波長の中の少なくとも一つの波長において上記式(1)又は式(2)を満たせばよい。
In still another aspect, the present disclosure provides an organic device including a transparent substrate, a first metal oxide layer, a metal layer containing silver or a silver alloy, a second metal oxide layer, and a light emitting layer in this order. When the wavelength of light from the light emitting layer is λ [nm], the refractive index of the second metal oxide layer at λ is n, and the thickness of the second metal oxide layer is d [nm], An organic device satisfying the following formula (1) or (2) is provided.
0 <n × d / λ ≦ 0.0008 × λ−0.3393 (1)
0.0012 × λ−0.3302 ≦ n × d / λ ≦ 0.0015 × λ−0.1975 (2)
In Formula (1) and Formula (2), d is more than 0 and 210 nm or less. In addition, when the light from the light emitting layer of an organic device contains a some wavelength, what is necessary is just to satisfy | fill said Formula (1) or Formula (2) in the at least 1 wavelength among several wavelengths.
 上記有機デバイスの透明導電体の第2の金属酸化物層は上記式(1)又は式(2)を満たす。このように第2の金属酸化物層が上記式(1)又は式(2)を満たすことによって、有機層から発光される光の取り出し効率を高くすることができる。これは、発光層から直接取り出される光と、各層の境界で反射した光との位相差が揃うことに起因しているものと推察される。 The second metal oxide layer of the transparent conductor of the organic device satisfies the above formula (1) or formula (2). Thus, when the 2nd metal oxide layer satisfy | fills said Formula (1) or Formula (2), the extraction efficiency of the light light-emitted from an organic layer can be made high. This is presumably due to the fact that the phase difference between the light extracted directly from the light emitting layer and the light reflected at the boundary between the layers is uniform.
 一つの側面において、発光層からの光の取り出し効率を十分に高くすることが可能な透明導電体及びその製造方法を提供することができる。別の側面において、上記透明導電体を備える有機デバイスを提供することができる。 In one aspect, it is possible to provide a transparent conductor capable of sufficiently increasing the light extraction efficiency from the light emitting layer and a method for manufacturing the transparent conductor. In another aspect, an organic device comprising the transparent conductor can be provided.
図1は、透明導電体の一実施形態を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing one embodiment of a transparent conductor. 図2は、有機デバイスの一実施形態を模式的に示す図である。FIG. 2 is a diagram schematically illustrating an embodiment of an organic device. 図3は、発光層からの光の伝播経路を模式的に示す図である。FIG. 3 is a diagram schematically showing a propagation path of light from the light emitting layer. 図4は、図3の有機デバイスのシミュレーション結果の一例を示す図である。FIG. 4 is a diagram illustrating an example of a simulation result of the organic device of FIG. 図5は、シミュレーションに用いた光の波長λと、n×d/λとの関係を示すグラフである。FIG. 5 is a graph showing the relationship between the wavelength λ of light used in the simulation and n × d / λ. 図6は、有機ELデバイスに流した電流値と発光効率(EQE)の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the current value passed through the organic EL device and the luminous efficiency (EQE). 図7は、実験例1のシミュレーション結果を示すグラフである。FIG. 7 is a graph showing a simulation result of Experimental Example 1. 図8は、実験例1のシミュレーション結果を示すグラフである。FIG. 8 is a graph showing a simulation result of Experimental Example 1. 図9は、実験例2のシミュレーション結果を示すグラフである。FIG. 9 is a graph showing a simulation result of Experimental Example 2.
 以下、場合により図面を参照して、本発明の実施形態を以下に説明する。ただし、以下の実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。説明において、同一構造又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments of the present invention will be described below with reference to the drawings as the case may be. However, the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. In the description, the same reference numerals are used for elements having the same structure or the same function, and redundant description is omitted in some cases. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
 図1は、透明導電体の一実施形態を示す模式断面図である。透明導電体10は、透明基材11と、第1の金属酸化物層12と、金属層18と、第2の金属酸化物層14とがこの順に配置された積層構造を有する。 FIG. 1 is a schematic cross-sectional view showing an embodiment of a transparent conductor. The transparent conductor 10 has a laminated structure in which a transparent substrate 11, a first metal oxide layer 12, a metal layer 18, and a second metal oxide layer 14 are arranged in this order.
 本明細書における「透明」とは、可視光が透過することを意味しており、光をある程度散乱してもよい。光の散乱度合いについては、透明導電体10の用途によって要求されるレベルが異なる。一般に半透明といわれるような光の散乱があるものも、本明細書における「透明」の概念に含まれる。 “Transparent” in this specification means that visible light is transmitted, and the light may be scattered to some extent. Regarding the degree of light scattering, the required level varies depending on the application of the transparent conductor 10. What has light scattering generally referred to as translucent is also included in the concept of “transparency” in this specification.
 透明基材11は、特に限定されず、可撓性を有する透明樹脂基材であってもよい。透明樹脂基材は、例えば有機樹脂フィルムは有機樹脂シートであってもよい。透明基材11としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステルフィルム、ポリエチレン及びポリプロピレン等のポリオレフィンフィルム、ポリカーボネートフィルム、アクリルフィルム、ノルボルネンフィルム、ポリアリレートフィルム、ポリエーテルスルフォンフィルム、ジアセチルセルロースフィルム、ポリミイド、並びにトリアセチルセルロースフィルム等が挙げられる。これらのうち、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)等のポリエステルフィルムが好ましい。上述の1種を単独で、又は2種以上を組み合わせてもよい。 The transparent substrate 11 is not particularly limited, and may be a flexible transparent resin substrate. For example, the organic resin film may be an organic resin sheet. Examples of the transparent substrate 11 include polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin films such as polyethylene and polypropylene, polycarbonate films, acrylic films, norbornene films, polyarylate films, and polyether sulfone. A film, a diacetyl cellulose film, a polyimide, a triacetyl cellulose film, etc. are mentioned. Of these, polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are preferable. One of the above may be used alone, or two or more may be combined.
 透明基材11の厚みは、透明導電体10の屈曲性を一層高くする観点から、例えば200μm以下である。透明基材の屈折率は、光学特性に優れる透明導電体10とする観点から、例えば1.50~1.70である。なお、本明細書における屈折率は、λ=633nm、温度20℃の条件下で測定される値である。透明基材11は、コロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理、電子線照射処理、及びオゾン処理からなる群より選ばれる少なくとも一つの表面処理が施されたものであってもよい。 The thickness of the transparent substrate 11 is, for example, 200 μm or less from the viewpoint of further increasing the flexibility of the transparent conductor 10. The refractive index of the transparent substrate is, for example, 1.50 to 1.70 from the viewpoint of the transparent conductor 10 having excellent optical characteristics. The refractive index in this specification is a value measured under the conditions of λ = 633 nm and a temperature of 20 ° C. The transparent substrate 11 may be subjected to at least one surface treatment selected from the group consisting of corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, and ozone treatment. .
 透明基材11は、透明樹脂基材に限定されず、例えば、ソーダライムガラス、無アルカリガラス、及び、石英ガラス等の無機化合物の成形物であってもよい。他方、透明基材11が透明樹脂基材であることによって、透明導電体10を柔軟性に優れたものとすることができる。これによって、透明導電体10を、フレキシブルな有機デバイス用の透明導電体として好適に用いることできる。 The transparent substrate 11 is not limited to a transparent resin substrate, and may be a molded product of an inorganic compound such as soda lime glass, non-alkali glass, and quartz glass. On the other hand, when the transparent substrate 11 is a transparent resin substrate, the transparent conductor 10 can be made excellent in flexibility. Thereby, the transparent conductor 10 can be used suitably as a transparent conductor for flexible organic devices.
 第1の金属酸化物層12は、金属酸化物を含む透明の層である。第1の金属酸化物層12は、金属層18を保護する機能を有する。第1の金属酸化物層12は、ITO(酸化インジウムスズ)とは異なる金属酸化物で構成されてもよい。第1の金属酸化物層12がITOを含まない場合、金属層18に含まれる銀合金の腐食を抑制することができる。 The first metal oxide layer 12 is a transparent layer containing a metal oxide. The first metal oxide layer 12 has a function of protecting the metal layer 18. The first metal oxide layer 12 may be made of a metal oxide different from ITO (indium tin oxide). When the 1st metal oxide layer 12 does not contain ITO, corrosion of the silver alloy contained in the metal layer 18 can be suppressed.
 透明性と耐食性を一層高い水準で両立する観点から、第1の金属酸化物層12は、例えば、酸化亜鉛、酸化スズ、酸化インジウム及び酸化チタンの4成分、又は、酸化亜鉛、酸化インジウム及び酸化チタンの3成分を、主成分として含有してもよい。第1の金属酸化物層12は上記4成分を含むことによって、十分に高い導電性と透明性を兼ね備えることができる。 From the viewpoint of achieving both transparency and corrosion resistance at a higher level, the first metal oxide layer 12 is composed of, for example, four components of zinc oxide, tin oxide, indium oxide and titanium oxide, or zinc oxide, indium oxide and oxide. You may contain 3 components of titanium as a main component. By including the above four components, the first metal oxide layer 12 can have sufficiently high conductivity and transparency.
 第1の金属酸化物層12に含まれる酸化亜鉛は例えばZnOであり、酸化インジウムは例えばInである。酸化チタンは例えばTiOである。酸化スズは例えばSnOである。上記各金属酸化物における金属原子と酸素原子の比は、化学量論比からずれていてもよい。また、酸化数が異なる別の酸化物を含んでいてもよい。第1の金属酸化物層12は、酸化スズを含んでいてもよいが、金属層18に含まれる銀又は銀合金の腐食を低減する観点から、酸化スズ(SnO)の含有量は少なくてもよく、酸化スズを含有しなくてもよい。 Zinc oxide contained in the first metal oxide layer 12 is, for example, ZnO, and indium oxide is, for example, In 2 O 3 . Titanium oxide is, for example, TiO 2. Tin oxide is, for example, SnO 2. The ratio of metal atoms to oxygen atoms in each of the metal oxides may deviate from the stoichiometric ratio. Further, another oxide having a different oxidation number may be included. The first metal oxide layer 12 may contain tin oxide, but the content of tin oxide (SnO 2 ) is small from the viewpoint of reducing the corrosion of silver or silver alloy contained in the metal layer 18. The tin oxide may not be contained.
 第1の金属酸化物層12が上記3成分を主成分として含む場合、3成分の合計の含有量は、それぞれ、ZnO、In及びTiOに換算して、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。 When the first metal oxide layer 12 includes the above three components as main components, the total content of the three components is 90% by mass or more in terms of ZnO, In 2 O 3 and TiO 2 , respectively. It is preferably 95% by mass or more.
 第1の金属酸化物層12の厚みは、柔軟性を向上する観点から、例えば60nm以下である。一方、耐食性を一層向上するとともに生産性向上の観点から、上記厚みは、例えば5nm以上である。 The thickness of the first metal oxide layer 12 is, for example, 60 nm or less from the viewpoint of improving flexibility. On the other hand, from the viewpoint of further improving corrosion resistance and improving productivity, the thickness is, for example, 5 nm or more.
 第1の金属酸化物層12は、酸化亜鉛、酸化インジウム及び酸化チタンの3成分を、それぞれZnO、In及びTiOに換算したときに、上記3成分の合計に対するZnOの含有量は、20~85mol%であってもよく、30~80mol%であってもよい。同様に換算したときに、上記3成分の合計に対するInの含有量は、高い導電性と高い耐食性を両立する観点から、10~35mol%であってもよく、10~25mol%であってもよい。 In the first metal oxide layer 12, when the three components of zinc oxide, indium oxide and titanium oxide are converted into ZnO, In 2 O 3 and TiO 2 respectively, the content of ZnO with respect to the total of the three components is , 20 to 85 mol%, or 30 to 80 mol%. When converted in the same manner, the content of In 2 O 3 with respect to the total of the above three components may be 10 to 35 mol% or 10 to 25 mol% from the viewpoint of achieving both high conductivity and high corrosion resistance. May be.
 同様に換算したときに、上記3成分の合計に対するTiOの含有量は、透明性と優れた耐食性を両立する観点から、5~15mol%であることが好ましく、7~13mol%であることがより好ましい。 When converted in the same manner, the content of TiO 2 with respect to the total of the above three components is preferably 5 to 15 mol%, and preferably 7 to 13 mol% from the viewpoint of achieving both transparency and excellent corrosion resistance. More preferred.
 第1の金属酸化物層12が上記4成分を主成分として含有する場合、第1の金属酸化物層12は、酸化亜鉛、酸化インジウム、酸化チタン及び酸化スズの4成分を、それぞれZnO、In、TiO及びSnOに換算したときに、上記4成分の合計に対する酸化亜鉛の含有量は、高い導電性と優れた耐食性を両立する観点から、20~68mol%であってもよい。 When the first metal oxide layer 12 contains the above four components as main components, the first metal oxide layer 12 contains four components of zinc oxide, indium oxide, titanium oxide, and tin oxide, respectively, ZnO, In When converted to 2 O 3 , TiO 2, and SnO 2 , the content of zinc oxide relative to the total of the four components may be 20 to 68 mol% from the viewpoint of achieving both high conductivity and excellent corrosion resistance. .
 同様に換算したときに、上記4成分の合計に対する酸化インジウムの含有量は、表面抵抗を十分に低くしつつ耐食性を向上する観点から、15~35mol%である。同様に換算したときに、上記4成分の合計に対する酸化チタンの含有量は、可視光の透過率を確保するとともにアルカリ耐性を高くする観点から、5~20mol%である。同様に換算したときに、上記4成分の合計に対する酸化スズの含有量は、高い透明性と優れた耐食性を両立する観点から、例えば5~40mol%である。 When converted in the same manner, the content of indium oxide with respect to the total of the above four components is 15 to 35 mol% from the viewpoint of improving the corrosion resistance while sufficiently reducing the surface resistance. When converted in the same manner, the content of titanium oxide with respect to the total of the above four components is 5 to 20 mol% from the viewpoint of securing visible light transmittance and increasing alkali resistance. When converted in the same manner, the content of tin oxide with respect to the total of the four components is, for example, 5 to 40 mol% from the viewpoint of achieving both high transparency and excellent corrosion resistance.
 第1の金属酸化物層12は組成が互いに異なる複数の金属酸化物膜で構成されていてもよく、複数の金属酸化物膜のうち、一部は金属窒化物膜又は金属酸窒化物膜であってもよい。その場合は、透明基材11と接する膜には上記4成分又はそれ以外の成分を含む金属酸化物膜、金属窒化物膜或いは金属酸窒化物膜であってよく、金属層18と接する膜は上記3成分を含む金属酸化物膜であってよい。透明基材11と接する金属酸化物膜は、例えば酸化ケイ素を含んでよい。透明基材11と接する金属窒化物膜は窒化ケイ素を含んでよい。透明基材11と接する金属酸窒化膜は、及び窒酸化ケイ素(Si-O-N)を含んでよい。なお、本開示において、ケイ素は金属元素に該当し、酸化ケイ素及び窒化ケイ素は、それぞれ金属酸化物及び金属窒化物に該当する。 The first metal oxide layer 12 may be composed of a plurality of metal oxide films having different compositions, and some of the plurality of metal oxide films are a metal nitride film or a metal oxynitride film. There may be. In that case, the film in contact with the transparent substrate 11 may be a metal oxide film, a metal nitride film, or a metal oxynitride film containing the above four components or other components, and the film in contact with the metal layer 18 is It may be a metal oxide film containing the above three components. The metal oxide film in contact with the transparent substrate 11 may contain, for example, silicon oxide. The metal nitride film in contact with the transparent substrate 11 may contain silicon nitride. The metal oxynitride film in contact with the transparent substrate 11 may contain silicon oxynitride (Si—O—N). In the present disclosure, silicon corresponds to a metal element, and silicon oxide and silicon nitride correspond to a metal oxide and a metal nitride, respectively.
 第1の金属酸化物層12は、導電性が低くてもよく、絶縁体であってもよい。この場合、透明導電体10の導電性は、金属層18及び第2の金属酸化物層14によって担われてもよい。第1の金属酸化物層12は、真空蒸着法、スパッタリング法、イオンプレーティング法、又はCVD法などの真空成膜法によって作製することができる。これらのうち、成膜室を小型化できる点、及び成膜速度が速い点で、スパッタリング法が好ましい。スパッタリング法としては、DCマグネトロンスパッタリングが挙げられる。ターゲットとしては、金属ターゲット又は金属酸化物ターゲットを用いることができる。第1の金属酸化物層12は、酸性エッチング液に溶解しない層であってもよい。 The first metal oxide layer 12 may have low conductivity or may be an insulator. In this case, the conductivity of the transparent conductor 10 may be borne by the metal layer 18 and the second metal oxide layer 14. The first metal oxide layer 12 can be manufactured by a vacuum film formation method such as a vacuum evaporation method, a sputtering method, an ion plating method, or a CVD method. Among these, the sputtering method is preferable because the film forming chamber can be downsized and the film forming speed is high. Examples of the sputtering method include DC magnetron sputtering. As the target, a metal target or a metal oxide target can be used. The first metal oxide layer 12 may be a layer that does not dissolve in the acidic etching solution.
 金属層18は、主成分として銀又は銀合金を含んでもよい。金属層18は、酸性エッチング液に溶解する層であってもよい。これによって、容易にパターニングすることができる。金属層18が高い透明性と優れた導電性を有することによって、透明導電体10の透過率を確保しつつ表面抵抗を十分に低くすることができる。金属層18は、銀以外の金属元素を含んでいてもよい。例えば、Cu、Nd、Pt、Pd、Bi、Sn及びSbからなる群より選ばれる少なくとも一つの元素を銀合金の構成元素又は金属単体として含有することによって、金属層18の耐環境性を向上することができる。銀合金の例としては、Ag-Pd、Ag-Cu、Ag-Pd-Cu、Ag-Nd-Cu、Ag-In-Sn、及びAg-Sn-Sbが挙げられる。銀合金は、Agを主成分として含有し、副成分として上述の各金属を含むものが好ましい。金属層18は、金属のみからなる層であってもよい。 The metal layer 18 may contain silver or a silver alloy as a main component. The metal layer 18 may be a layer that dissolves in an acidic etching solution. Thus, patterning can be easily performed. Since the metal layer 18 has high transparency and excellent conductivity, the surface resistance can be sufficiently lowered while ensuring the transmittance of the transparent conductor 10. The metal layer 18 may contain a metal element other than silver. For example, the environment resistance of the metal layer 18 is improved by containing at least one element selected from the group consisting of Cu, Nd, Pt, Pd, Bi, Sn, and Sb as a constituent element of a silver alloy or a metal simple substance. be able to. Examples of silver alloys include Ag—Pd, Ag—Cu, Ag—Pd—Cu, Ag—Nd—Cu, Ag—In—Sn, and Ag—Sn—Sb. The silver alloy preferably contains Ag as a main component and includes the above-described metals as subcomponents. The metal layer 18 may be a layer made of only metal.
 銀合金におけるAg以外の金属の含有量は、耐食性と透明性を一層向上させる観点から、例えば0.5~5質量%である。銀合金はAg以外の金属としてPdを含有することが好ましい。これによって、高温高湿環境下における耐食性を一層向上することができる。 The content of metals other than Ag in the silver alloy is, for example, 0.5 to 5% by mass from the viewpoint of further improving the corrosion resistance and transparency. The silver alloy preferably contains Pd as a metal other than Ag. Thereby, the corrosion resistance in a high-temperature and high-humidity environment can be further improved.
 金属層18の厚みは、例えば5~25nmであってもよい。金属層18の厚みが小さくなり過ぎると、金属層18の連続性が損なわれて透明導電体10の表面抵抗値が高くなる傾向にある。一方、金属層18の厚みが大きくなりすぎると、優れた透明性が損なわれる傾向にある。 The thickness of the metal layer 18 may be, for example, 5 to 25 nm. If the thickness of the metal layer 18 becomes too small, the continuity of the metal layer 18 is impaired and the surface resistance value of the transparent conductor 10 tends to increase. On the other hand, when the thickness of the metal layer 18 becomes too large, excellent transparency tends to be impaired.
 金属層18は、透明導電体10の導電性及び表面抵抗を調整する機能を有している。金属層18は、真空蒸着法、スパッタリング法、イオンプレーティング法、又はCVD法などの真空成膜法によって作製することができる。これらのうち、成膜室を小型化できる点、及び成膜速度が速い点で、スパッタリング法が好ましい。スパッタリング法としては、DCマグネトロンスパッタリングが挙げられる。ターゲットとしては、金属ターゲットを用いることができる。 The metal layer 18 has a function of adjusting the conductivity and surface resistance of the transparent conductor 10. The metal layer 18 can be produced by a vacuum film forming method such as a vacuum deposition method, a sputtering method, an ion plating method, or a CVD method. Among these, the sputtering method is preferable because the film forming chamber can be downsized and the film forming speed is high. Examples of the sputtering method include DC magnetron sputtering. A metal target can be used as the target.
 第2の金属酸化物層14は、金属酸化物を含む透明の層である。有機層と接する第2の金属酸化物層14は、例えば、有機デバイスの有機層側に配置されたときに、正孔の移動を円滑にする機能を有する。有機層と接する第2の金属酸化物層14は、ITOを含む金属酸化物で構成されてもよい。第2の金属酸化物層14は、ITOを主成分として含有していてもよく、ITOと原料の不純物等に由来する不可避的不純物から構成されていてもよい。第2の金属酸化物層14におけるITOの含有量は、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。 The second metal oxide layer 14 is a transparent layer containing a metal oxide. For example, when the second metal oxide layer 14 in contact with the organic layer is disposed on the organic layer side of the organic device, it has a function of facilitating the movement of holes. The second metal oxide layer 14 in contact with the organic layer may be composed of a metal oxide containing ITO. The second metal oxide layer 14 may contain ITO as a main component, or may be composed of inevitable impurities derived from ITO and impurities of raw materials. The content of ITO in the second metal oxide layer 14 is preferably 90% by mass or more, and more preferably 95% by mass or more.
 第2の金属酸化物層14は組成が互いに異なる複数の金属酸化物膜から構成されてもよい。第2の金属酸化物層14が組成が互いに異なる複数の金属酸化物膜から構成される場合、金属層18と接する膜はITOとは異なる金属酸化物を主成分として含有する金属酸化物膜であり、有機層と接する膜は、ITOを主成分として含有する金属酸化物膜であってよい。 The second metal oxide layer 14 may be composed of a plurality of metal oxide films having different compositions. When the second metal oxide layer 14 is composed of a plurality of metal oxide films having different compositions, the film in contact with the metal layer 18 is a metal oxide film containing a metal oxide different from ITO as a main component. The film in contact with the organic layer may be a metal oxide film containing ITO as a main component.
 ITOは、インジウムとスズの酸化物である。当該酸化物は、構成元素としてIn、Sn及びO(酸素)を有する複合酸化物である。また、第2の金属酸化物層14は、別の複合酸化物を含んでいてもよい。 ITO is an oxide of indium and tin. The oxide is a composite oxide having In, Sn, and O (oxygen) as constituent elements. The second metal oxide layer 14 may contain another composite oxide.
 第2の金属酸化物層14の金属層18側とは反対側の表面14aの仕事関数は、4.7eV以上であってもよく、5.0eV以上であってもよい。このような高い仕事関数を有する第2の金属酸化物層14の表面14a上に有機層を設けて有機デバイスを作製した場合に、有機層への正孔の注入又は有機層からの正孔の受け入れを十分円滑に行うことができる。このため有機デバイスの性能を向上することができる。第2の金属酸化物層14の表面14aの仕事関数は、市販の測定装置を用いて測定することができる。 The work function of the surface 14a opposite to the metal layer 18 side of the second metal oxide layer 14 may be 4.7 eV or more, or 5.0 eV or more. When an organic device is manufactured by providing an organic layer on the surface 14a of the second metal oxide layer 14 having such a high work function, injection of holes into the organic layer or formation of holes from the organic layer is performed. Acceptance can be done smoothly. For this reason, the performance of the organic device can be improved. The work function of the surface 14a of the second metal oxide layer 14 can be measured using a commercially available measuring device.
 第2の金属酸化物層14の表面14aの仕事関数は、表面14a近傍における組成に依存する傾向にある。例えば、ITOを含有する第2の金属酸化物層14、又は有機層と接する金属酸化物膜を形成する場合、ターゲット組成のSnO含有量、又は、スパッタリング時の成膜条件に依存するInとSnとO含有量を変えることで第2の金属酸化物層14の表面14aの仕事関数を調整することができる。 The work function of the surface 14a of the second metal oxide layer 14 tends to depend on the composition in the vicinity of the surface 14a. For example, when forming the second metal oxide layer 14 containing ITO or the metal oxide film in contact with the organic layer, the Sn composition containing SnO 2 in the target composition or In depending on the film formation conditions during sputtering The work function of the surface 14a of the second metal oxide layer 14 can be adjusted by changing the Sn and O contents.
 第2の金属酸化物層14の厚みdは、表面14aにおける仕事関数を安定的に大きくする観点から、例えば2nm以上であってもよく、5nm以上であってもよい。一方、第2の金属酸化物層14の厚みdは、透明導電体10の透明性と屈曲性を十分に高くする観点から、例えば100nm以下である。 The thickness d of the second metal oxide layer 14 may be, for example, 2 nm or more, or 5 nm or more from the viewpoint of stably increasing the work function on the surface 14a. On the other hand, the thickness d of the second metal oxide layer 14 is, for example, 100 nm or less from the viewpoint of sufficiently increasing the transparency and flexibility of the transparent conductor 10.
 透明導電体10を構成する各層の厚みは、以下の手順で測定することができる。集束イオンビーム装置(FIB,Focused Ion Beam)によって透明導電体10を切断して断面を得る。透過型電子顕微鏡(TEM)を用いて当該断面を観察し、各層の厚みを測定する。測定は、任意に選択された10箇所以上の位置で測定を行い、その平均値を求めることが好ましい。断面を得る方法として、集束イオンビーム装置以外の装置としてミクロトームを用いてもよい。厚みを測定する方法としては、走査型電子顕微鏡(SEM)を用いてもよい。また蛍光X線装置を用いても膜厚を測定することが可能である。 The thickness of each layer constituting the transparent conductor 10 can be measured by the following procedure. The transparent conductor 10 is cut by a focused ion beam device (FIB, Focused Ion Beam) to obtain a cross section. The cross section is observed using a transmission electron microscope (TEM), and the thickness of each layer is measured. The measurement is preferably performed at 10 or more arbitrarily selected positions, and the average value is obtained. As a method for obtaining the cross section, a microtome may be used as an apparatus other than the focused ion beam apparatus. As a method for measuring the thickness, a scanning electron microscope (SEM) may be used. It is also possible to measure the film thickness using a fluorescent X-ray apparatus.
 透明導電体10の厚みは、250μm以下であってもよく、200μm以下であってもよい。このような厚みであれば、透明性と屈曲性の要求レベルを十分に満足することができる。 The thickness of the transparent conductor 10 may be 250 μm or less, or 200 μm or less. With such a thickness, the required levels of transparency and flexibility can be sufficiently satisfied.
 第1の金属酸化物層12と第2の金属酸化物層14の組成は、互いに異なっていてもよい。第1の金属酸化物層12の組成と第2の金属酸化物層14の組成とを異ならせることによって、一つの工程で、第2の金属酸化物層14及び金属層18のみを酸性のエッチング液を用いてエッチングにより除去し、第1の金属酸化物層12を残存させることができる。 The compositions of the first metal oxide layer 12 and the second metal oxide layer 14 may be different from each other. By making the composition of the first metal oxide layer 12 and the composition of the second metal oxide layer 14 different, only the second metal oxide layer 14 and the metal layer 18 are subjected to acidic etching in one step. The first metal oxide layer 12 can be left by etching using a liquid.
 上述の構成を備える透明導電体10は、アルカリ耐性にも優れている。したがって、パターニングを効率よく行うことができる。透明導電体10は、有機ELディスプレイ、及び有機EL照明等の有機デバイス用として好適に用いることができる。 The transparent conductor 10 having the above-described configuration is also excellent in alkali resistance. Therefore, patterning can be performed efficiently. The transparent conductor 10 can be suitably used for organic devices such as organic EL displays and organic EL lighting.
 図1の透明導電体10は、各層の間に任意の層を備えていてもよい。例えば、透明基材11と第1の金属酸化物層12の間にハードコート層を備えていてもよいし、金属層18と第1の金属酸化物層12の間に耐エッチング層を備えていてもよい。また、透明基材11と第1の金属酸化物層12の間に、水蒸気バリア層を備えてもよい。ハードコート層は、透明基材11を挟むように対をなして設けられてもよい。 The transparent conductor 10 in FIG. 1 may include an arbitrary layer between each layer. For example, a hard coat layer may be provided between the transparent substrate 11 and the first metal oxide layer 12, or an etching resistant layer is provided between the metal layer 18 and the first metal oxide layer 12. May be. Further, a water vapor barrier layer may be provided between the transparent substrate 11 and the first metal oxide layer 12. The hard coat layers may be provided in pairs so as to sandwich the transparent substrate 11.
 透明導電体10は、導電性、屈曲性及び耐食性に優れることから、有機ELディスプレイ及び有機EL照明等の有機デバイスの電極として好適に用いられる。この場合、第1の金属酸化物層12、金属層18、及び第2の金属酸化物層14が、透明電極20として機能する。透明電極20はアノードであってもよいし、カソードであってもよい。 Since the transparent conductor 10 is excellent in conductivity, flexibility and corrosion resistance, it is suitably used as an electrode for organic devices such as organic EL displays and organic EL lighting. In this case, the first metal oxide layer 12, the metal layer 18, and the second metal oxide layer 14 function as the transparent electrode 20. The transparent electrode 20 may be an anode or a cathode.
 図2は、有機デバイスの一実施形態を模式的に示す図である。有機デバイス100は、例えば有機EL照明であり、透明基材11、透明電極(アノード)20、正孔注入層30、正孔輸送層32、発光層40、電子輸送層50、電子注入層52、及び金属電極(カソード)60をこの順に有する積層体150を備える。有機デバイス100における透明基材11及び透明電極20として、透明導電体10を用いることができる。 FIG. 2 is a diagram schematically showing an embodiment of an organic device. The organic device 100 is, for example, organic EL illumination, and includes a transparent substrate 11, a transparent electrode (anode) 20, a hole injection layer 30, a hole transport layer 32, a light emitting layer 40, an electron transport layer 50, an electron injection layer 52, And the laminated body 150 which has the metal electrode (cathode) 60 in this order is provided. As the transparent substrate 11 and the transparent electrode 20 in the organic device 100, the transparent conductor 10 can be used.
 透明導電体10は、透明電極20の第2の金属酸化物層14の表面(図1の表面14a)が正孔注入層30と接するように設けられる。アノードとして機能する透明電極20とカソードとして機能する金属電極60には電源80が接続されている。電源80による電界の印加によって、透明電極20から正孔注入層30に正孔(ホール)が注入されるとともに、金属電極60から電子注入層52に電子が注入される。 The transparent conductor 10 is provided so that the surface of the second metal oxide layer 14 of the transparent electrode 20 (the surface 14 a in FIG. 1) is in contact with the hole injection layer 30. A power source 80 is connected to the transparent electrode 20 functioning as an anode and the metal electrode 60 functioning as a cathode. By applying an electric field by the power source 80, holes are injected from the transparent electrode 20 into the hole injection layer 30, and electrons are injected from the metal electrode 60 into the electron injection layer 52.
 正孔注入層30に注入された正孔と、電子注入層52に注入された電子は、それぞれ、正孔輸送層32と電子輸送層50を移動し、発光層40において再結合する。この再結合によって、発光層40中の有機化合物が発光する。この発光によって生じた光は、正孔輸送層32、正孔注入層30、透明電極20及び透明基材11を通過して、有機デバイス100の側面20aから放射される。金属電極60は反射電極として機能する。 The holes injected into the hole injection layer 30 and the electrons injected into the electron injection layer 52 move through the hole transport layer 32 and the electron transport layer 50 and recombine in the light emitting layer 40, respectively. By this recombination, the organic compound in the light emitting layer 40 emits light. The light generated by the light emission passes through the hole transport layer 32, the hole injection layer 30, the transparent electrode 20, and the transparent substrate 11 and is emitted from the side surface 20 a of the organic device 100. The metal electrode 60 functions as a reflective electrode.
 有機デバイス100は、透明基材11及び透明電極20として透明導電体10を用いている。したがって、透明電極20の第2の金属酸化物層14の表面14aにおける仕事関数を大きくすることによって、正孔注入層30に効率よく正孔を注入することができる。これによって、電源80から印可される電圧(両電極間を流れる電流)に対して、有機デバイス100の発光層40における発光量を高めることができる。また、第2の金属酸化物層14の厚みdを発光波長に応じて最適化することで、発光層40で発光した光を側面20aから効率よく取り出すことが可能となり、発光効率を十分に高くすることができる。これによって、電源80から印可される電圧(電流)に対してどの程度光が取り出せたかを示す発光効率を高めることができる。 Organic device 100 uses transparent conductor 10 as transparent substrate 11 and transparent electrode 20. Therefore, holes can be efficiently injected into the hole injection layer 30 by increasing the work function on the surface 14 a of the second metal oxide layer 14 of the transparent electrode 20. Thereby, the light emission amount in the light emitting layer 40 of the organic device 100 can be increased with respect to the voltage applied from the power supply 80 (current flowing between both electrodes). In addition, by optimizing the thickness d of the second metal oxide layer 14 according to the emission wavelength, the light emitted from the light emitting layer 40 can be efficiently extracted from the side surface 20a, and the light emission efficiency is sufficiently high. can do. Thereby, it is possible to increase the light emission efficiency indicating how much light can be extracted with respect to the voltage (current) applied from the power supply 80.
 正孔注入層30、正孔輸送層32、発光層40、電子輸送層50、電子注入層52及び金属電極(カソード)60は、通常の材料を用いて形成することができる。 The hole injection layer 30, the hole transport layer 32, the light emitting layer 40, the electron transport layer 50, the electron injection layer 52, and the metal electrode (cathode) 60 can be formed using ordinary materials.
 正孔注入層30は透明電極20からの正孔の注入を容易にするとともに、注入された正孔を輸送して正孔輸送層32に注入する機能を有する。正孔輸送層32は、正孔注入層30から注入された正孔を発光層40へ注入する機能を有する。例えば、正孔注入層30及び正孔輸送層32の材料としては、芳香族アミン化合物及びアントラセン誘導体等が挙げられる。 The hole injection layer 30 has a function of facilitating injection of holes from the transparent electrode 20 and transporting the injected holes into the hole transport layer 32. The hole transport layer 32 has a function of injecting holes injected from the hole injection layer 30 into the light emitting layer 40. For example, the material of the hole injection layer 30 and the hole transport layer 32 includes an aromatic amine compound and an anthracene derivative.
 発光層40は、注入された正孔及び電子の輸送機能と、正孔と電子の再結合により励起子を生成させる機能を有する。発光層40としては、ホスト材料とドーパント材料を組み合わせた2成分系のものが挙げられる。ホスト材料としては、1,10-フェナントロリン誘導体、有機金属錯体化合物、ナフタレン、アントラセン、ナフタセン、ペリレン、ベンゾフルオランテン、ナフトフルオランテン等の芳香族炭化水素化合物及びそれらの誘導体、並びにスチリルアミン及びテトラアリールジアミン誘導体等が挙げられる。ドーパント材料としては、ベンゾジフルオランテン誘導体及びクマリン誘導体等が挙げられる。 The light emitting layer 40 has a function of transporting injected holes and electrons and a function of generating excitons by recombination of holes and electrons. Examples of the light emitting layer 40 include a two-component system in which a host material and a dopant material are combined. Host materials include 1,10-phenanthroline derivatives, organometallic complex compounds, aromatic hydrocarbon compounds such as naphthalene, anthracene, naphthacene, perylene, benzofluoranthene, naphthofluoranthene and their derivatives, and styrylamine and And tetraaryldiamine derivatives. Examples of the dopant material include benzodifluoranthene derivatives and coumarin derivatives.
 電子輸送層50は、電子注入層52から注入された電子を発光層40に輸送する機能を有する。電子注入層52は、金属電極60からの電子の注入を容易にする機能を有するとともに、金属電極60との密着性を高める機能を有する。電子輸送層50及び電子注入層は、例えば、トリニトロフルオレノン、オキサジアゾール又はトリアゾール構造を有する化合物等の有機材料を用いて形成されていてもよいし、リチウム等のアルカリ金属、フッ化リチウム、又は酸化リチウム等の無機材料を用いて形成されてもよい。 The electron transport layer 50 has a function of transporting electrons injected from the electron injection layer 52 to the light emitting layer 40. The electron injection layer 52 has a function of facilitating injection of electrons from the metal electrode 60 and a function of improving adhesion with the metal electrode 60. The electron transport layer 50 and the electron injection layer may be formed using an organic material such as a compound having a trinitrofluorenone, oxadiazole or triazole structure, or an alkali metal such as lithium, lithium fluoride, Alternatively, it may be formed using an inorganic material such as lithium oxide.
 金属電極60としては、アルミニウム等の金属材料、有機金属錯体又は金属化合物で構成されたものを用いることができる。各層は、真空蒸着法、イオン化蒸着法、及び塗布法等の通常の方法によって形成することができる。有機デバイス100を構成する積層体150の各層の厚みは、例えば、発光層40で得られる光の波長の1/8~1/4とすることができる。 As the metal electrode 60, a metal material such as aluminum, an organic metal complex, or a metal compound can be used. Each layer can be formed by a usual method such as a vacuum deposition method, an ionization deposition method, and a coating method. The thickness of each layer of the stacked body 150 constituting the organic device 100 can be set to, for example, 1/8 to 1/4 of the wavelength of light obtained in the light emitting layer 40.
 図3は、発光層40からの光の伝播経路を模式的に示す図である。発光層40では、励起子が生成して発光する。発光した光の一部は、例えば、図3に示すように、正孔注入層30と透明電極20との界面、及び、透明電極20と透明基材11との界面で全反射する。そして、発光した光の別の一部が、側面20aから取り出される。発光層40で発光する光に対して、側面20aから出射される光の割合(%)を、光取り出し効率とすると、有機デバイス100の発光効率(外部量子効率)は下記式(I)によって求めることができる。式(I)から、有機デバイス100の発光効率を向上するためには、光取り出し効率を高くすることが有効である。
  発光効率=内部量子効率×光取り出し効率   (I)
FIG. 3 is a diagram schematically showing a propagation path of light from the light emitting layer 40. In the light emitting layer 40, excitons are generated and emit light. For example, as shown in FIG. 3, a part of the emitted light is totally reflected at the interface between the hole injection layer 30 and the transparent electrode 20 and at the interface between the transparent electrode 20 and the transparent substrate 11. Then, another part of the emitted light is extracted from the side surface 20a. Assuming that the light extraction efficiency is the ratio (%) of light emitted from the side surface 20a to the light emitted from the light emitting layer 40, the light emission efficiency (external quantum efficiency) of the organic device 100 is obtained by the following formula (I). be able to. From formula (I), in order to improve the light emission efficiency of the organic device 100, it is effective to increase the light extraction efficiency.
Luminous efficiency = Internal quantum efficiency x Light extraction efficiency (I)
 本明細書における内部量子効率とは、注入された電力によって発光層40で励起されたエネルギーが光エネルギーに変換された割合(発光層40で発生した光エネルギー)を示す。 In the present specification, the internal quantum efficiency indicates a ratio (light energy generated in the light emitting layer 40) in which the energy excited in the light emitting layer 40 by the injected power is converted into light energy.
 光取り出し効率は、各層の界面における全反射を抑制することによって大きくすることができる。ここで、各層の光学定数(n/k)と厚みを用いて、積層体150の反射率及び透過率を光学的にシミュレーションすることができる。kは消衰係数である。このようなシミュレーションのソフトウエアとしては、例えば、Sim4Tec社製の有機発光ダイオード用のソフトウエア(商品名:SimOLED)が挙げられる。 The light extraction efficiency can be increased by suppressing total reflection at the interface of each layer. Here, the reflectance and transmittance of the laminate 150 can be optically simulated using the optical constant (n / k) and thickness of each layer. k is an extinction coefficient. As such simulation software, for example, software (trade name: SimOLED) for an organic light emitting diode manufactured by Sim4Tec can be cited.
 図4は、透明基材11、第1の金属酸化物層12、金属層18、第2の金属酸化物層14、正孔注入層30、正孔輸送層32、発光層40及び金属電極60をこの順に有する積層体で構成される有機デバイスのシミュレーション結果の一例を示す図である。このシミュレーションは、発光層40内部の多重干渉効果と、発光層40以外の各層の光学特性を、発光層40で発生する光の波長と光伝播角度の関数とすることで、有機デバイスの光取り出し効率をシミュレーションしたものである。なお、シミュレーションの前提条件は、表1のとおりである。 FIG. 4 shows the transparent substrate 11, the first metal oxide layer 12, the metal layer 18, the second metal oxide layer 14, the hole injection layer 30, the hole transport layer 32, the light emitting layer 40, and the metal electrode 60. It is a figure which shows an example of the simulation result of the organic device comprised with the laminated body which has these in this order. In this simulation, the multiple interference effect inside the light emitting layer 40 and the optical characteristics of each layer other than the light emitting layer 40 are made a function of the wavelength of light generated in the light emitting layer 40 and the light propagation angle. It is a simulation of efficiency. The prerequisites for the simulation are as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図4は、上述の前提条件で、第2の金属酸化物層14の厚みd(nm)と、各波長における光取り出し効率の関係を、シミュレーションした結果が示されている。このシミュレーション結果に基づいて、各波長の光の光取り出し効率が15%となる第2の金属酸化物層14の厚みdの範囲を求めることができる。図4に示すシミュレーションでは、厚みdが0~210nmの範囲では、各波長において、光の光取り出し効率が15%以上となる範囲は概ね以下のとおりである。 FIG. 4 shows the result of simulating the relationship between the thickness d (nm) of the second metal oxide layer 14 and the light extraction efficiency at each wavelength under the above-mentioned preconditions. Based on this simulation result, the range of the thickness d of the second metal oxide layer 14 in which the light extraction efficiency of light of each wavelength is 15% can be obtained. In the simulation shown in FIG. 4, when the thickness d is in the range of 0 to 210 nm, the range in which the light extraction efficiency of light at each wavelength is 15% or more is as follows.
  λ=450nmのとき、d=45~95nm、d=160~210nm
  λ=520nmのとき、d=30nm以下、d=70~170nm
  λ=610nmのとき、d=40nm以下、d=120~210nm
When λ = 450 nm, d = 45 to 95 nm, d = 160 to 210 nm
When λ = 520 nm, d = 30 nm or less, d = 70 to 170 nm
When λ = 610 nm, d = 40 nm or less, d = 120 to 210 nm
 上述の結果から、光取り出し効率が15%以上となる厚みdの範囲を、dが小さい方から順番に抽出する(第1の範囲、第2の範囲、・・・、第nの範囲)。そして、それぞれの範囲におけるdの上下限値における光路長(n×d/λ)を算出する。各上下限値における波長λにおける第2の金属酸化物層14の屈折率nを表2に示すとおりとすると、各範囲におけるdの上下限値の光路長は表2に示すとおり算出される。なお、図4に示すような光取り出し効率の曲線において、d=0nmの時に光取り出し効率が15%以下である場合は、第1の範囲における光路長は0とし、第2の範囲から、光取り出し効率が15%以上となる厚みdの範囲を順番に抽出する。 From the above results, the range of the thickness d in which the light extraction efficiency is 15% or more is extracted in order from the smaller d (first range, second range,..., Nth range). Then, the optical path length (n × d / λ) at the upper and lower limit values of d in each range is calculated. If the refractive index n of the second metal oxide layer 14 at the wavelength λ at each upper and lower limit value is as shown in Table 2, the optical path length of the upper and lower limit values of d in each range is calculated as shown in Table 2. In the light extraction efficiency curve as shown in FIG. 4, when the light extraction efficiency is 15% or less when d = 0 nm, the optical path length in the first range is 0, and from the second range, A range of thickness d in which the extraction efficiency is 15% or more is extracted in order.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図5は、シミュレーションに用いた光の波長λと、表2に示す光路長の各範囲における下限値及び上限値との関係を示すグラフである。図5には、波長λ[nm]をx、n×d[nm]/λ[nm]をyとする各範囲の上限値及び下限値のそれぞれの一次回帰直線及び一次回帰式が示されている。 FIG. 5 is a graph showing the relationship between the wavelength λ of light used in the simulation and the lower limit value and the upper limit value in each range of the optical path length shown in Table 2. FIG. 5 shows a linear regression line and a linear regression equation of the upper limit value and the lower limit value of each range where the wavelength λ [nm] is x and n × d [nm] / λ [nm] is y. Yes.
 図5に示される、横軸(x軸)と点線との間の領域、及び、実線と一点鎖線の間の領域では、光取り出し効率を高く(例えば15%以上)することができる。この領域は、それぞれ、以下の式(1)及び式(2)で表される。
  0<n×d/λ≦0.0008×λ-0.3393・・・(1)
  0.0012×λ-0.3302≦n×d/λ≦0.0015×λ-0.1975・・・(2)
In the region between the horizontal axis (x-axis) and the dotted line and the region between the solid line and the alternate long and short dash line shown in FIG. 5, the light extraction efficiency can be increased (for example, 15% or more). This region is expressed by the following formulas (1) and (2), respectively.
0 <n × d / λ ≦ 0.0008 × λ−0.3393 (1)
0.0012 × λ−0.3302 ≦ n × d / λ ≦ 0.0015 × λ−0.1975 (2)
 式(1)及び式(2)中、dは0を超え且つ210nm以下である。波長λにおけるnは、例えば1.8~2.2である。なお、有機デバイスの発光層40からの光が複数の波長を含む場合は、複数の波長の中の少なくとも一つの波長において上記式(1)又は式(2)を満たせばよい。有機デバイスの発光層40からの光の波長は、例えば、400~700nmであってよい。 In the formula (1) and the formula (2), d exceeds 0 and is 210 nm or less. N at the wavelength λ is, for example, 1.8 to 2.2. In addition, when the light from the light emitting layer 40 of an organic device contains a several wavelength, what is necessary is just to satisfy | fill said Formula (1) or Formula (2) in at least 1 wavelength among several wavelengths. The wavelength of light from the light emitting layer 40 of the organic device may be, for example, 400 to 700 nm.
 上記式(1)を満たすように第2の金属酸化物層14の組成及び厚みdの少なくとも一方を調整することによって、側面20aから取り出される光の割合、すなわち、光取り出し効率を十分に高くすることができる。これは、発光層40から直接取り出される光と、各層の境界で反射した光との位相差が揃うこと、また、透明基材11と透明電極20の界面での全反射が低減していることに起因しているものと推察される。 By adjusting at least one of the composition and thickness d of the second metal oxide layer 14 so as to satisfy the above formula (1), the ratio of light extracted from the side surface 20a, that is, the light extraction efficiency is sufficiently increased. be able to. This is because the phase difference between the light directly extracted from the light emitting layer 40 and the light reflected at the boundary of each layer is uniform, and total reflection at the interface between the transparent substrate 11 and the transparent electrode 20 is reduced. It is inferred that this is caused by
 光路長(n×d/λ)は、光取り出し効率を一層高くする観点から、式(1-1)又は式(2-1)を満たすことが好ましく、式(1-2)又は式(2-2)を満たすことがより好ましい。以下の各式におけるn,d,λは、式(1)及び式(2)と同義である。
  0<n×d/λ≦0.0006×λ-0.2605・・・(1-1)
  0.0011×λ-0.1910≦n×d/λ≦0.0014×λ-0.1914・・・(2-1)
  0<n×d/λ≦0.0004×λ-0.1817・・・(1-2)
  0.0012×λ-0.2304≦n×d/λ≦0.0015×λ-0.24595・・・(2-2)
The optical path length (n × d / λ) preferably satisfies the formula (1-1) or the formula (2-1) from the viewpoint of further increasing the light extraction efficiency, and the formula (1-2) or the formula (2) -2) is more preferable. N, d, and λ in the following expressions are synonymous with the expressions (1) and (2).
0 <n × d / λ ≦ 0.0006 × λ−0.2605 (1-1)
0.0011 × λ−0.1910 ≦ n × d / λ ≦ 0.0014 × λ−0.1914 (2-1)
0 <n × d / λ ≦ 0.0004 × λ−0.1817 (1-2)
0.0012 × λ−0.2304 ≦ n × d / λ ≦ 0.0015 × λ−0.24595 (2-2)
 一実施形態に係る透明導電体10の製造方法は、発光層40から発光される光の波長λ[nm]に基づいて、上記式(1)又は式(2)を満たすように、第2の金属酸化物層14の厚みd[nm]及び屈折率nの少なくとも一方を調整する。これによって、高い光取り出し効率を有する透明導電体10を製造することができる。 The manufacturing method of the transparent conductor 10 according to the embodiment includes the second method so as to satisfy the above formula (1) or formula (2) based on the wavelength λ [nm] of the light emitted from the light emitting layer 40. At least one of the thickness d [nm] and the refractive index n of the metal oxide layer 14 is adjusted. Thereby, the transparent conductor 10 having high light extraction efficiency can be manufactured.
 図6は、発光層40に緑色発光するAlq3[トリス(8-キノリノラト)アルミニウム]を用いた有機ELデバイスに流した電流値と発光効率(EQE)の関係を示すグラフである。図6の黒丸、白四角、及び黒三角のプロットは、図2に示す有機デバイス100において、それぞれ、第2の金属酸化物層14の厚みdが10nmの場合、100nmの場合、及び40nmの場合の発光効率の変化を示している。このうち、黒三角は、透明導電体10の透過率が最大となる条件であり、光路長が式(1)及び式(2)を満足しない従来例の透明導電体である。図6に示すとおり、第2の金属酸化物層14が、式(1)又は式(2)を満たす厚みdを有することによって、発光効率を高くすることができる。また、第2の金属酸化物層14の厚みdを変えて発光効率を調節することができる。 FIG. 6 is a graph showing the relationship between the current value passed through the organic EL device using Alq3 [tris (8-quinolinolato) aluminum] emitting green light in the light emitting layer 40 and the light emission efficiency (EQE). The black circles, white squares, and black triangles in FIG. 6 are plotted in the organic device 100 shown in FIG. 2 when the thickness d of the second metal oxide layer 14 is 10 nm, 100 nm, and 40 nm, respectively. The change in luminous efficiency is shown. Among these, the black triangle is a condition for maximizing the transmittance of the transparent conductor 10, and is a conventional transparent conductor whose optical path length does not satisfy the expressions (1) and (2). As shown in FIG. 6, when the second metal oxide layer 14 has a thickness d that satisfies the formula (1) or the formula (2), the luminous efficiency can be increased. Further, the luminous efficiency can be adjusted by changing the thickness d of the second metal oxide layer 14.
 以上、幾つかの実施形態を説明したが、本発明は上述の実施形態に限定されるものではない。有機デバイスは、有機EL照明又は有機ELディスプレイ等であってよく、その構造は図2の構造に限定されない。 Although several embodiments have been described above, the present invention is not limited to the above-described embodiments. The organic device may be organic EL lighting or an organic EL display, and the structure thereof is not limited to the structure shown in FIG.
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
[実験例1]
(透明導電体の作製)
 図1に示すような積層構造を有する透明導電体を作製した。透明導電体は、透明基材、第1の金属酸化物層、金属層、及び第2の金属酸化物層がこの順で積層された積層構造を有していた。この透明導電体を以下の要領で作製した。
[Experimental Example 1]
(Production of transparent conductor)
A transparent conductor having a laminated structure as shown in FIG. 1 was produced. The transparent conductor had a laminated structure in which a transparent substrate, a first metal oxide layer, a metal layer, and a second metal oxide layer were laminated in this order. This transparent conductor was produced as follows.
 市販のガラス基板(コーニング製、商品名:EAGLE XG、厚み:0.7mm)を準備した。このガラス基板を透明基材として用いた。DCマグネトロンスパッタリングによって、透明基材の上に、第1の金属酸化物層、金属層、及び第2の金属酸化物層を順次形成した。 A commercially available glass substrate (manufactured by Corning, trade name: EAGLE XG, thickness: 0.7 mm) was prepared. This glass substrate was used as a transparent substrate. A first metal oxide layer, a metal layer, and a second metal oxide layer were sequentially formed on the transparent substrate by DC magnetron sputtering.
 酸化亜鉛、酸化インジウム、及び酸化チタンの3成分で構成されるターゲットを用いて、アルゴンガスと酸素ガスの混合ガス雰囲気の減圧下(0.5Pa)、DCマグネトロンスパッタリングによって、透明基材上に第1の金属酸化物層(厚み:40nm)を形成した。第1の金属酸化物層において、酸化亜鉛、酸化インジウム、及び酸化チタンを、それぞれ、ZnO、In、及びTiOに換算したときに、上記3成分の合計に対し、ZnOの含有量は74mol%、Inの含有量は15mol%、及びTiOの含有量は11mol%であった。第1の金属酸化物層の波長450nmにおける屈折率は2.1であった。 Using a target composed of three components of zinc oxide, indium oxide, and titanium oxide, the first material was formed on the transparent substrate by DC magnetron sputtering under reduced pressure (0.5 Pa) in a mixed gas atmosphere of argon gas and oxygen gas. 1 metal oxide layer (thickness: 40 nm) was formed. In the first metal oxide layer, when zinc oxide, indium oxide, and titanium oxide are converted into ZnO, In 2 O 3 , and TiO 2 , respectively, the content of ZnO with respect to the total of the above three components Was 74 mol%, the content of In 2 O 3 was 15 mol%, and the content of TiO 2 was 11 mol%. The refractive index of the first metal oxide layer at a wavelength of 450 nm was 2.1.
 Ag、Pd及びCuの銀合金で構成されるターゲットを用いて、アルゴンガス雰囲気の減圧下(0.5Pa)、DCマグネトロンスパッタリングによって、第1の金属酸化物層の上に銀合金を主成分して含有する金属層(厚み:10nm)を形成した。銀合金の各金属の質量比率は、Ag:Pd:Cu=99.0:0.7:0.3であった。 Using a target composed of a silver alloy of Ag, Pd, and Cu, a silver alloy is mainly contained on the first metal oxide layer by DC magnetron sputtering under reduced pressure (0.5 Pa) in an argon gas atmosphere. To form a metal layer (thickness: 10 nm). The mass ratio of each metal of the silver alloy was Ag: Pd: Cu = 99.0: 0.7: 0.3.
 ITOで構成されるターゲットを用いて、アルゴンガスと酸素ガスの混合ガス雰囲気の減圧下(0.5Pa)、DCマグネトロンスパッタリングによって、金属層の上に第2の金属酸化物層(厚み:40nm、ITO層)を形成した。第2の金属酸化物層の波長450nmにおける屈折率は1.9であった。 Using a target composed of ITO, a second metal oxide layer (thickness: 40 nm, thickness: 40 nm) on the metal layer by DC magnetron sputtering under reduced pressure (0.5 Pa) in a mixed gas atmosphere of argon gas and oxygen gas. ITO layer) was formed. The refractive index of the second metal oxide layer at a wavelength of 450 nm was 1.9.
(透明導電体の評価)
 作製した透明導電体の全光線透過率(透過率)を、ヘイズメーター(商品名:NDH-7000、日本電色工業社製)を用いて測定した。全光線透過率は88%であった。
(Evaluation of transparent conductor)
The total light transmittance (transmittance) of the produced transparent conductor was measured using a haze meter (trade name: NDH-7000, manufactured by Nippon Denshoku Industries Co., Ltd.). The total light transmittance was 88%.
 作製した透明導電体の表面抵抗値を、4端子抵抗率計(商品名:ロレスタGP、三菱化学株式会社製)を用いて測定した。表面抵抗値は10Ω/sq.であった。 The surface resistance value of the produced transparent conductor was measured using a 4-terminal resistivity meter (trade name: Loresta GP, manufactured by Mitsubishi Chemical Corporation). The surface resistance value is 10 Ω / sq. Met.
 作製した透明導電体の第2の金属酸化物層の表面における仕事関数を、光電子分光装置(理研計器株式会社製、商品名:FAC-1)を用いて測定した。仕事関数は、5.2eVであった。 The work function on the surface of the second metal oxide layer of the produced transparent conductor was measured using a photoelectron spectrometer (trade name: FAC-1 manufactured by Riken Keiki Co., Ltd.). The work function was 5.2 eV.
 波長520nmの緑色発光素子を用いて、作製した透明導電体の光取り出し効率のシミュレーションを行った。その結果、光取り出し効率は15%未満であった。 Using a green light emitting element with a wavelength of 520 nm, the light extraction efficiency of the produced transparent conductor was simulated. As a result, the light extraction efficiency was less than 15%.
 発光波長が450nm、520nm、及び610nmの場合において、上述の透明導電体において、第2の金属酸化物層の厚みdを変えたときの光取り出し効率をシミュレーションした。シミュレーション結果は、図7に示すとおりであった。図7に示すとおり、波長に応じて第2の金属酸化物層の厚みdを調整することによって、光取り出し効率を高くできることが確認された。 In the case where the emission wavelength is 450 nm, 520 nm, and 610 nm, the light extraction efficiency was simulated when the thickness d of the second metal oxide layer was changed in the above-described transparent conductor. The simulation result was as shown in FIG. As shown in FIG. 7, it was confirmed that the light extraction efficiency can be increased by adjusting the thickness d of the second metal oxide layer according to the wavelength.
 発光波長が450nmの場合、d=0nmの時に光取り出し効率が15%以下であることから、第2の範囲が、光取り出し効率を高くできる厚みdの最小範囲となる。したがって、第2の範囲に相当する上記式(2)を満たす範囲に厚みdを設定すれば、光取り出し効率を高くできると考えられる。そこで、λ=450nmの場合に、上記式(2)を満たす、第2の金属酸化物層の厚みdの範囲を算出した。その結果、式(2)を満たすdの範囲は約50nm≦d≦約113nmであった。図7によれば、この厚みdの範囲では、光取り出し効率が概ね12%以上となることが確認された。 When the emission wavelength is 450 nm, the light extraction efficiency is 15% or less when d = 0 nm. Therefore, the second range is the minimum range of the thickness d that can increase the light extraction efficiency. Therefore, it is considered that the light extraction efficiency can be increased if the thickness d is set in a range that satisfies the above formula (2) corresponding to the second range. Therefore, when λ = 450 nm, the range of the thickness d of the second metal oxide layer that satisfies the above formula (2) was calculated. As a result, the range of d satisfying the formula (2) was about 50 nm ≦ d ≦ about 113 nm. According to FIG. 7, it was confirmed that the light extraction efficiency is approximately 12% or more in the range of the thickness d.
 発光波長が520nmの場合において、上述の透明導電体において、第2の金属酸化物層の厚みdを変えたときの光取り出し効率と透過率をシミュレーションした。シミュレーション結果は、図8に示すとおりであった。図8中、点線は透過率を示し、実線は520nmにおける光取り出し効率を示す。図8に示すとおり、光取り出し効率と透過率は互いに正比例の関係にはなく、透過率を高くしても、光取り出し効率を高くはできないことが確認された。また、厚みdを所定の範囲にすれば、透過率が60%以下であっても、光取り出し効率を15%以上にできることが確認された。 When the emission wavelength was 520 nm, the light extraction efficiency and transmittance when the thickness d of the second metal oxide layer was changed in the above-described transparent conductor were simulated. The simulation result was as shown in FIG. In FIG. 8, the dotted line indicates the transmittance, and the solid line indicates the light extraction efficiency at 520 nm. As shown in FIG. 8, it was confirmed that the light extraction efficiency and the transmittance are not directly proportional to each other, and the light extraction efficiency cannot be increased even if the transmittance is increased. Further, it was confirmed that if the thickness d is in a predetermined range, even if the transmittance is 60% or less, the light extraction efficiency can be 15% or more.
[実験例2(比較例)]
 実験例1の透明導電体に代えて、実験例1で用いた市販のガラス基板の上に、ITO単層を形成したときの光取り出し効率を、実験例1と同様にしてシミュレーションにより求めた。シミュレーション結果は、図9に示すとおりであった。
[Experimental example 2 (comparative example)]
Instead of the transparent conductor of Experimental Example 1, the light extraction efficiency when an ITO single layer was formed on the commercially available glass substrate used in Experimental Example 1 was determined by simulation in the same manner as in Experimental Example 1. The simulation result was as shown in FIG.
 図9に示すとおり、ITO単層の場合、光取り出し効率の発光波長及びITO層の厚みに殆ど依存しないことが確認された。 As shown in FIG. 9, in the case of an ITO single layer, it was confirmed that it hardly depends on the emission wavelength of the light extraction efficiency and the thickness of the ITO layer.
 本開示によれば、発光層からの光の取り出し効率を十分に高くすることが可能な透明導電体及びその製造方法が提供される。また、透明導電体を備える有機デバイスが提供される。 According to the present disclosure, a transparent conductor capable of sufficiently increasing the light extraction efficiency from the light emitting layer and a method for manufacturing the transparent conductor are provided. Moreover, an organic device provided with a transparent conductor is provided.
 10…透明導電体、11…透明基材、12…第1の金属酸化物層、14…第2の金属酸化物層、14a…表面、18…金属層、20…透明電極、20a…側面、30…正孔注入層、32…正孔輸送層、40…発光層、50…電子輸送層、52…電子注入層、60…金属電極、80…電源、100…有機デバイス、150…積層体。 DESCRIPTION OF SYMBOLS 10 ... Transparent conductor, 11 ... Transparent base material, 12 ... 1st metal oxide layer, 14 ... 2nd metal oxide layer, 14a ... Surface, 18 ... Metal layer, 20 ... Transparent electrode, 20a ... Side surface, DESCRIPTION OF SYMBOLS 30 ... Hole injection layer, 32 ... Hole transport layer, 40 ... Light emitting layer, 50 ... Electron transport layer, 52 ... Electron injection layer, 60 ... Metal electrode, 80 ... Power supply, 100 ... Organic device, 150 ... Laminate.

Claims (5)

  1.  発光層を有する有機デバイス用の透明導電体であって、
     透明基材、第1の金属酸化物層、銀又は銀合金を含む金属層、及び第2の金属酸化物層をこの順に備え、
     前記発光層からの光の波長をλ[nm]、λにおける前記第2の金属酸化物層の屈折率をn、及び前記第2の金属酸化物層の厚みをd[nm]としたときに、下記式(1)又は(2)を満たす透明導電体。
      0<n×d/λ≦0.0008×λ-0.3393・・・(1)
      0.0012×λ-0.3302≦n×d/λ≦0.0015×λ-0.1975・・・(2)
     [式(1)及び式(2)中、dは0を超え且つ210nm以下である。]
    A transparent conductor for an organic device having a light emitting layer,
    A transparent substrate, a first metal oxide layer, a metal layer containing silver or a silver alloy, and a second metal oxide layer are provided in this order,
    When the wavelength of light from the light emitting layer is λ [nm], the refractive index of the second metal oxide layer at λ is n, and the thickness of the second metal oxide layer is d [nm]. A transparent conductor satisfying the following formula (1) or (2).
    0 <n × d / λ ≦ 0.0008 × λ−0.3393 (1)
    0.0012 × λ−0.3302 ≦ n × d / λ ≦ 0.0015 × λ−0.1975 (2)
    [In Formula (1) and Formula (2), d is more than 0 and 210 nm or less. ]
  2.  前記透明基材とは反対側の表面をなす前記第2の金属酸化物層は、主成分として酸化インジウムを含有する、請求項1に記載の透明導電体。 2. The transparent conductor according to claim 1, wherein the second metal oxide layer forming a surface opposite to the transparent substrate contains indium oxide as a main component.
  3.  前記透明基材とは反対側の表面をなす前記第2の金属酸化物層の仕事関数が4.7eV以上である、請求項1又は2に記載の透明導電体。 The transparent conductor according to claim 1 or 2, wherein a work function of the second metal oxide layer forming a surface opposite to the transparent substrate is 4.7 eV or more.
  4.  透明基材、第1の金属酸化物層、銀又は銀合金を含む金属層、及び第2の金属酸化物層をこの順に備える、有機デバイス用の透明導電体の製造方法であって、
     前記有機デバイスの発光層から発光される光の波長λ[nm]に基づいて、下記式(1)又は(2)を満たすように、前記第1の金属酸化物層よりも前記発光層側に設けられる前記第2の金属酸化物層の厚みd[nm]及びλにおける前記第2の金属酸化物層の屈折率nの少なくとも一方を調整する、透明導電体の製造方法。
      0<n×d/λ≦0.0008×λ-0.3393・・・(1)
      0.0012×λ-0.3302≦n×d/λ≦0.0015×λ-0.1975・・・(2)
     [式(1)及び式(2)中、dは0を超え且つ210nm以下である。]
    A method for producing a transparent conductor for an organic device, comprising a transparent substrate, a first metal oxide layer, a metal layer containing silver or a silver alloy, and a second metal oxide layer in this order,
    Based on the wavelength λ [nm] of light emitted from the light emitting layer of the organic device, the light emitting layer side is closer to the first metal oxide layer so as to satisfy the following formula (1) or (2). A method for producing a transparent conductor, wherein at least one of a refractive index n of the second metal oxide layer at a thickness d [nm] and λ of the second metal oxide layer provided is adjusted.
    0 <n × d / λ ≦ 0.0008 × λ−0.3393 (1)
    0.0012 × λ−0.3302 ≦ n × d / λ ≦ 0.0015 × λ−0.1975 (2)
    [In Formula (1) and Formula (2), d is more than 0 and 210 nm or less. ]
  5.  透明基材、第1の金属酸化物層、銀又は銀合金を含む金属層、第2の金属酸化物層、及び発光層をこの順に備える有機デバイスであって、
     前記発光層からの光の波長をλ[nm]、λにおける前記第2の金属酸化物層の屈折率をn、及び前記第2の金属酸化物層の厚みをd[nm]としたときに、下記式(1)又は(2)を満たす有機デバイス。
      0<n×d/λ≦0.0008×λ-0.3393・・・(1)
      0.0012×λ-0.3302≦n×d/λ≦0.0015×λ-0.1975・・・(2)
     [式(1)及び式(2)中、dは0を超え且つ210nm以下である。]
     
    An organic device comprising a transparent substrate, a first metal oxide layer, a metal layer containing silver or a silver alloy, a second metal oxide layer, and a light emitting layer in this order,
    When the wavelength of light from the light emitting layer is λ [nm], the refractive index of the second metal oxide layer at λ is n, and the thickness of the second metal oxide layer is d [nm]. An organic device satisfying the following formula (1) or (2).
    0 <n × d / λ ≦ 0.0008 × λ−0.3393 (1)
    0.0012 × λ−0.3302 ≦ n × d / λ ≦ 0.0015 × λ−0.1975 (2)
    [In Formula (1) and Formula (2), d is more than 0 and 210 nm or less. ]
PCT/JP2019/012532 2018-04-06 2019-03-25 Transparent conductor, method for manufacturing same, and organic device WO2019194010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018073678A JP2021106072A (en) 2018-04-06 2018-04-06 Transparent conductor, manufacturing method of the same, and organic device
JP2018-073678 2018-04-06

Publications (1)

Publication Number Publication Date
WO2019194010A1 true WO2019194010A1 (en) 2019-10-10

Family

ID=68100615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012532 WO2019194010A1 (en) 2018-04-06 2019-03-25 Transparent conductor, method for manufacturing same, and organic device

Country Status (2)

Country Link
JP (1) JP2021106072A (en)
WO (1) WO2019194010A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021213144A1 (en) * 2020-04-23 2021-10-28 京东方科技集团股份有限公司 Organic light-emitting diode device and manufacturing method therefor, and display panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351170A (en) * 1999-06-10 2000-12-19 Gunze Ltd Transparent conductive laminate
WO2014109265A1 (en) * 2013-01-11 2014-07-17 コニカミノルタ株式会社 Transparent electrode and electronic device
JP2015115180A (en) * 2013-12-11 2015-06-22 コニカミノルタ株式会社 Transparent conductive body
WO2015194320A1 (en) * 2014-06-17 2015-12-23 コニカミノルタ株式会社 Transparent conductor and touchscreen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351170A (en) * 1999-06-10 2000-12-19 Gunze Ltd Transparent conductive laminate
WO2014109265A1 (en) * 2013-01-11 2014-07-17 コニカミノルタ株式会社 Transparent electrode and electronic device
JP2015115180A (en) * 2013-12-11 2015-06-22 コニカミノルタ株式会社 Transparent conductive body
WO2015194320A1 (en) * 2014-06-17 2015-12-23 コニカミノルタ株式会社 Transparent conductor and touchscreen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021213144A1 (en) * 2020-04-23 2021-10-28 京东方科技集团股份有限公司 Organic light-emitting diode device and manufacturing method therefor, and display panel

Also Published As

Publication number Publication date
JP2021106072A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
US20150144900A1 (en) Layered structure for oled device, method for manufacturing the same, and oled device having the same
US10128457B2 (en) Light-emitting device and power-generating device
JP2005129496A (en) Organic electroluminescent element
JP2005347235A (en) Manufacturing method of organic luminescent surface device and organic luminescent surface device
JPWO2012057043A1 (en) Organic EL device, translucent substrate, and manufacturing method of organic EL device
JP2018152358A (en) Transparent conductive oxide coating for solar device and organic light emitting diode
KR20140000426A (en) Substrate for oled and method for fabricating thereof
US11510292B2 (en) Transparent conductor and organic device
JP2010056211A (en) Organic el device and process of reproducing the same
WO2019194010A1 (en) Transparent conductor, method for manufacturing same, and organic device
JP6340674B2 (en) Light extraction substrate for organic light emitting device, manufacturing method thereof, and organic light emitting device including the same
KR101917609B1 (en) Organic light emitting diode with light extracting electrode
US20170358763A1 (en) Flexible substrate and method of manufacturing same
US8067886B2 (en) Composite optical destructive electrode for high contrast electroluminescent devices
JP2006139932A (en) Organic electroluminescent element and its manufacturing method
JP7383922B2 (en) Transparent conductors and organic devices
US20150155521A1 (en) Transparent supported electrode for oled
JP2007294438A (en) Organic el element
EP3087622B1 (en) Light extracting electrode and organic light emitting diode with light extracting electrode
JP7505865B2 (en) Transparent conductors and organic devices
JP2001076884A (en) Organic el panel
JP2004247106A (en) Organic el element and manufacturing method of same
KR20130027728A (en) Flexible organic light emitting diode and manufacturing method thereof
WO2014185224A1 (en) Organic led element and method for producing organic led element
KR101616209B1 (en) Organic light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19780627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP