WO2015118832A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2015118832A1
WO2015118832A1 PCT/JP2015/000339 JP2015000339W WO2015118832A1 WO 2015118832 A1 WO2015118832 A1 WO 2015118832A1 JP 2015000339 W JP2015000339 W JP 2015000339W WO 2015118832 A1 WO2015118832 A1 WO 2015118832A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Application number
PCT/JP2015/000339
Other languages
English (en)
French (fr)
Inventor
優 高梨
長谷川 和弘
翔 鶴田
福井 厚史
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201580007855.XA priority Critical patent/CN105981205A/zh
Priority to US15/117,304 priority patent/US20160351887A1/en
Priority to JP2015561204A priority patent/JP6512110B2/ja
Publication of WO2015118832A1 publication Critical patent/WO2015118832A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries represented by lithium-ion batteries are often used as driving power sources for portable electronic devices such as mobile phones including smartphones, portable computers, PDAs, and portable music players.
  • Non-aqueous electrolyte secondary batteries are also often used in stationary storage battery systems.
  • Measures to increase the capacity of non-aqueous electrolyte secondary batteries include measures to increase the capacity of the active material, measures to increase the filling amount of the active material per unit volume, and measures to increase the charging voltage of the battery. There is. However, when the charging voltage of the battery is increased, the crystal structure deterioration of the positive electrode active material and the reaction between the positive electrode active material and the non-aqueous electrolyte are likely to occur.
  • Patent Document 1 by mixing lithium cobaltate and lithium nickelate and further substituting nickel, manganese, aluminum, etc. for a part of cobalt and nickel, the final voltage is 4.4V on the basis of carbon. It proposes improvement of cycle characteristics and improvement of battery swelling under high temperature atmosphere of 4.2V (60 ° C, 20 days).
  • lithium cobaltate is the main positive electrode active material, and 0.02 to 0.04 mol of aluminum is substituted for the positive electrode active material in a molar ratio, and at least one or more of nickel, manganese, and magnesium are substituted. They propose battery swell in a high temperature atmosphere (60 ° C., 30 days) of 4.25 to 4.5 V on a carbon basis, and improvement of the room temperature cycle.
  • Patent Document 3 proposes improving cycle characteristics at 4.2 V on a carbon basis by coating the surface of the positive electrode active material with a compound to suppress the reaction between the active material and the non-aqueous electrolyte.
  • a nonaqueous electrolyte secondary battery includes a positive electrode having a positive electrode active material that absorbs and releases lithium ions, a negative electrode having a negative electrode active material that absorbs and releases lithium ions, and a nonaqueous electrolyte.
  • the positive electrode active material is a lithium cobalt composite oxide containing nickel, manganese and aluminum, and a rare earth compound or oxide is attached to a part of the surface.
  • M1 Ge. Since germanium is present on the surface of the active material and acts as a protective film for the positive electrode, reaction with the electrolytic solution can be prevented.
  • a part of cobalt in the lithium cobalt composite oxide is simultaneously substituted with nickel, manganese, and aluminum.
  • High capacity can be achieved by substituting a part of cobalt with nickel, and more lithium is extracted by substituting a part of cobalt with manganese and aluminum, which have strong bonds with oxygen. Even in the case of charging / discharging, it is possible to suppress the phase transition from the O3 structure to the H1-3 structure change.
  • a is preferably 0.65 ⁇ a ⁇ 0.85.
  • the filling property of the positive electrode active material and the discharge capacity are lowered, and it is impossible to realize a high capacity.
  • a> 0.85 the crystal structure stabilization effect at the time of charge and discharge of 4.53 V or more is small, and the cycle characteristics may not be improved.
  • the transition metal molar ratio is preferably 1 ⁇ Ni / Mn ⁇ 5, 10 ⁇ Ni / Al ⁇ 30, 10 ⁇ (Ni + Mn) / Al ⁇ 20.
  • the rare earth compound preferably contains at least one selected from the group consisting of erbium hydroxide and erbium oxyhydroxide.
  • the oxide preferably contains at least one selected from aluminum oxide, zirconium oxide, magnesium oxide, copper oxide, boron oxide, and lanthanum oxide.
  • the negative electrode active material in the present invention a material using a material capable of inserting and extracting lithium is preferable.
  • lithium metal, a lithium alloy, a carbon compound, a metal compound, etc. can be mentioned.
  • these negative electrode active materials may be used alone or in combination of two or more.
  • the carbon compound include carbon materials such as a carbon material having a turbulent layer structure, natural graphite, artificial graphite, and glassy carbon. These are preferable because the change in crystal structure that occurs during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained.
  • graphite is preferable because of its large capacity and high energy density.
  • lithium metal and a lithium alloy are also mentioned. Since the potential of the alloy system is higher than that of graphite, when the battery is charged / discharged at the same voltage, the positive electrode potential is also increased, so that further increase in capacity can be expected.
  • the metal of the alloy include tin, lead, magnesium, aluminum, boron, gallium, silicon, indium, zirconium, germanium, bismuth, and cadmium. In particular, it is preferable that at least one of silicon and tin is included. Silicon and tin have a large ability to occlude and release lithium, and a high energy density can be obtained.
  • constituent elements other than tin include alloys of lead, magnesium, aluminum, boron, gallium, silicon, indium, zirconium, germanium, bismuth, cadmium, etc.
  • examples thereof include at least one selected from tin, lead, magnesium, aluminum, boron, gallium, indium, zirconium, germanium, bismuth, cadmium and the like.
  • Nonaqueous electrolyte solvent The solvent of the nonaqueous electrolyte used in the present invention is not limited, and a solvent that has been conventionally used for nonaqueous electrolyte secondary batteries can be used.
  • examples thereof include cyclic carbonates, chain carbonates, esters, cyclic ethers, chain ethers, nitriles, amides, and the like.
  • examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and the like.
  • Examples of the chain carbonate include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, and methyl isopropyl carbonate.
  • esters examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and ⁇ -butyrolactone.
  • cyclic ethers include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,4-dioxane, 1,3, Examples include 5-trioxane, furan, 2-methylfuran, 1,8-cineol, and crown ether.
  • chain ethers examples include 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl Phenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1, 1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, tetrae
  • Examples include tylene glycol dimethyl
  • nitriles include acetonitrile
  • examples of the amides include dimethylformamide.
  • those in which some or all of these hydrogens are fluorinated are preferred. Since the oxidation resistance of the nonaqueous electrolyte is improved by fluorination, decomposition of the electrolytic solution can be prevented even in a high voltage state where the oxidizing atmosphere on the surface of the positive electrode is increased. Moreover, these can be used individually or in combination of multiple, The solvent which combined the cyclic carbonate and the chain carbonate is especially preferable.
  • the structural change or active material of the positive electrode active material can be obtained even at a high temperature (45 ° C.) at a very high charging voltage of 4.6 V based on lithium.
  • the reaction with the electrolytic solution on the surface can be suppressed, and a long-life nonaqueous electrolyte secondary battery can be obtained.
  • FIG. 1 is a perspective view of a laminated nonaqueous electrolyte secondary battery according to an embodiment. It is a perspective view of the winding electrode body in an embodiment.
  • Example 1 [Preparation of positive electrode]
  • the positive electrode active material was prepared as follows. Lithium carbonate was used as a lithium source, cobalt tetroxide was used as a cobalt source, and nickel hydroxide, manganese dioxide, and aluminum hydroxide were used as nickel, manganese, and aluminum sources as cobalt substitution element sources. After dry mixing the molar ratio of cobalt, nickel, manganese and aluminum at 84: 10: 5: 1, this is mixed with lithium carbonate so that the molar ratio of lithium and transition metal is 1: 1, and the powder is pelletized. Molded and fired at 900 ° C. for 24 hours in an air atmosphere to prepare a positive electrode active material.
  • a rare earth compound was adhered to the surface by a wet method as follows. 1000 g of the positive electrode active material was mixed with 3 liters of pure water and stirred to prepare a suspension in which the positive electrode active material was dispersed. While adding an aqueous sodium hydroxide solution so that the pH of the suspension was maintained at 9, a solution in which 1.85 g of erbium nitrate pentahydrate as a rare earth compound source was dissolved was added.
  • the suspension was subjected to suction filtration, and further washed with water.
  • the powder obtained was dried at 120 ° C. and further subjected to heat treatment at 300 ° C. for 5 hours. As a result, a positive electrode active material powder in which erbium hydroxide uniformly adhered to the surface of the positive electrode active material was obtained.
  • FIG. 1 shows an SEM image of the positive electrode active material with a rare earth compound attached to the surface.
  • the positive electrode active material having a rare earth compound on the surface prepared as described above 96.5 parts by mass of the positive electrode active material having a rare earth compound on the surface prepared as described above, 1.5 parts by mass of acetylene black as a conductive agent, and 2.0% of polyvinylidene fluoride powder as a binder The mixture was mixed so as to be part by mass, and this was mixed with an N-methylpyrrolidone solution to prepare a positive electrode mixture slurry.
  • the positive electrode mixture slurry was applied to both surfaces of a 15 ⁇ m thick aluminum foil as a positive electrode current collector by a doctor blade method to form a positive electrode active material mixture layer on both surfaces of the positive electrode current collector, and then dried. It rolled using the compression roller, it cut
  • the aluminum tab as a positive electrode current collection tab was attached to the unformed part of the positive electrode active material mixture layer of a positive electrode plate, and it was set as the positive electrode.
  • the amount of the positive electrode active material mixture layer was 39 mg / cm 2, and the thickness of the positive electrode mixture layer was 120 ⁇ m.
  • Graphite, carboxymethyl cellulose as a thickener, and styrene butadiene rubber as a binder are weighed so as to have a mass ratio of 98: 1: 1 and dispersed in water to prepare a negative electrode active material mixture slurry.
  • This negative electrode active material mixture slurry was applied to both surfaces of a copper negative electrode core having a thickness of 8 ⁇ m by a doctor blade method, and then dried at 110 ° C. to remove moisture, thereby forming a negative electrode active material layer. And it rolled to the predetermined thickness using the compression roller, and cut
  • a laminate-type nonaqueous electrolyte secondary battery 20 includes a laminate outer body 21, a spirally wound electrode body 22 including a positive electrode plate and a negative electrode plate, and a positive electrode current collecting tab 23 connected to the positive electrode plate. And a negative electrode current collecting tab 24 connected to the negative electrode plate.
  • the wound electrode body 22 includes a positive electrode plate, a negative electrode plate, and a separator each having a strip shape, and the positive electrode plate and the negative electrode plate are wound in a state of being insulated from each other via the separator. Yes.
  • a concave portion 25 is formed in the laminate outer package 21, and one end side of the laminate outer package 21 is folded back so as to cover the opening portion of the concave portion 25.
  • the end portion 26 around the concave portion 25 is welded to the portion that is folded back and is opposed to the inside of the laminate outer package 21.
  • a wound electrode body 22 is housed together with a non-aqueous electrolyte inside the sealed laminate outer body 21.
  • the positive electrode current collecting tab 23 and the negative electrode current collecting tab 24 are arranged so as to protrude from the laminated outer package 21 sealed with the resin member 27, respectively. The electric power is supplied to the outside through this. Between each of the positive electrode current collection tab 23 and the negative electrode current collection tab 24, and the laminate exterior body 21, the resin member 27 is arrange
  • the produced positive electrode plate and negative electrode plate were wound through a separator made of a polyethylene microporous film, and a polypropylene tape was attached to the outermost periphery to produce a cylindrical wound electrode body. Next, this was pressed into a flat wound electrode body.
  • a sheet-like laminate material having a five-layer structure of polypropylene resin layer / adhesive layer / aluminum alloy layer / adhesive material layer / polypropylene resin layer is prepared, and this laminate material is folded to form a bottom portion and a cup-like shape. An electrode body storage space was formed.
  • a flat wound electrode body and a nonaqueous electrolyte were inserted into the cup-shaped electrode body storage space in a glove box under an argon atmosphere. Thereafter, the inside of the laminate exterior body was decompressed to impregnate the separator with the nonaqueous electrolyte, and the opening of the laminate exterior body was sealed. Thus, a battery A1 having a height of 62 mm, a width of 35 mm, and a thickness of 3.6 mm (a dimension excluding the sealing portion) was produced. The discharge capacity when the nonaqueous electrolyte secondary battery was charged to 4.50 V and discharged to 2.50 V was 800 mAh.
  • Example 2 A battery A2 was produced in the same manner as in Example 1 except that the positive electrode active material was prepared so that the molar ratio of cobalt, nickel, manganese, and aluminum was 79: 15: 5: 1.
  • Example 3 A battery A3 was produced in the same manner as in Example 1 except that the positive electrode active material was prepared so that the molar ratio of cobalt, nickel, manganese, and aluminum was 68: 25: 5: 2.
  • Example 1 A battery B1 was produced in the same manner as in Example 1 except that the positive electrode active material was prepared so that the molar ratio of cobalt, nickel and manganese was 90: 5: 5.
  • Example 2 A battery B2 was produced in the same manner as in Example 1 except that the positive electrode active material was prepared so that the molar ratio of cobalt, nickel, and aluminum was 89: 10: 1.
  • Example 3 A battery B3 was produced in the same manner as in Example 1 except that the positive electrode active material was prepared so that the molar ratio of cobalt and nickel was 90:10.
  • Example 4 A secondary battery B4 was produced in the same manner as in Example 1 except that the positive electrode active material was prepared so that the molar ratio of cobalt and manganese was 90:10.
  • Example 5 A battery B5 was produced in the same manner as in Example 1 except that the rare earth compound was not attached to the surface of the positive electrode active material.
  • the capacity retention rate of the batteries A1 to A3 was 88% or more, and the batteries B1 to B4 were 81% or less.
  • the batteries A1 to A3 all contain nickel, manganese, and aluminum as cobalt-substitution element sources, whereas the batteries B1 to B4 do not contain any of nickel, manganese, or aluminum. From these results, by including nickel, manganese and aluminum in the lithium cobalt composite oxide, the degradation of cycle characteristics is suppressed by suppressing the decomposition of the electrolyte by stabilizing the internal structure of the active material and stabilizing the surface structure. It is thought that it was done.
  • Example 4 A battery A4 was produced in the same manner as in Example 1 except that the erbium compound was not attached to the surface of the positive electrode active material and boron oxide was attached as follows.
  • Example 4 A battery A5 was produced in the same manner as in Example 1 except that the erbium compound was not attached to the surface of the positive electrode active material and lanthanum oxide was attached as follows.
  • the capacity maintenance ratio was 80% or more for the batteries A1, A4, A5, and 58% for B5.
  • a rare earth compound or oxide is attached to the surface of the positive electrode active material, whereas in B5, there is no deposit on the surface of the positive electrode active material. From these results, a rare earth compound or oxide is attached to a part of the surface of the positive electrode active material, which increases the reaction overvoltage at the time of charge when performing a high-potential charge / discharge reaction, and causes phase transition. It is considered that the crystal structure change on the surface of the positive electrode active material was suppressed.
  • the present invention is not limited to this, but can be applied to a cylindrical nonaqueous electrolyte secondary battery or a rectangular nonaqueous electrolyte secondary battery using a metal outer can. Is possible.
  • the non-aqueous electrolyte secondary battery according to one aspect of the present invention can be applied to applications that require a particularly high capacity and a long life, such as a mobile phone, a notebook computer, a smartphone, and a tablet terminal.
  • non-aqueous electrolyte secondary battery 21 laminate outer package, 22 wound electrode body, 23 positive current collecting tab, 24 negative current collecting tab.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 高電圧下における正極活物質の構造変化を抑制し、高容量かつ長寿命を実現できる非水電解質二次電池を提供する。非水電解質二次電池であって、リチウムイオンを吸蔵・放出する正極活物質を有する正極と、リチウムイオンを吸蔵・放出する負極活物質を有する負極と、非水電解質とを備え、前記正極活物質はニッケル、マンガン及びアルミニウムを含有するリチウムコバルト複合酸化物であり、表面の一部に希土類化合物もしくは酸化物が付着していることを特徴とする。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池に関する。
 スマートフォンを含む携帯電話機、携帯型コンピュータ、PDA、携帯型音楽プレイヤー等の携帯型電子機器の駆動電源として、リチウムイオン電池に代表される非水電解質二次電池が多く使用されている。さらに、電気自動車やハイブリッド電気自動車の駆動用電源、太陽光発電、風力発電等の出力変動を抑制するための用途や夜間に電力をためて昼間に利用するための系統電力のピークシフト用途等の定置用蓄電池システムにおいても、非水電解質二次電池が多く使用されるようになってきている。
 しかし、適用される機器の改良に伴って、さらに消費電力が高まる傾向にあり、更なる高容量化が強く望まれている。非水電解質二次電池を高容量化する方策としては、活物質の容量を高くする方策や、単位体積当たりの活物質の充填量を増やすといった方策の他、電池の充電電圧を高くするという方策がある。但し、電池の充電電圧を高くした場合には、正極活物質の結晶構造劣化や正極活物質と非水電解液との反応が生じやすくなる。
 そこで、下記特許文献1では、コバルト酸リチウムとニッケル酸リチウムを混合し、さらにコバルトやニッケルの一部にニッケル、マンガン、アルミニウムなどをそれぞれ置換することで、炭素基準で終止電圧4.4Vでのサイクル特性の改善や、4.2Vの高温雰囲気下(60℃,20日)での電池膨れの改善を提案している。
 下記特許文献2では、コバルト酸リチウムを主たる正極活物質として、正極活物質にアルミニウムをモル比で0.02~0.04mol置換し、さらにニッケル、マンガン、マグネシウムを少なくとも1種以上置換することで、炭素基準で4.25~4.5Vの高温雰囲気下(60℃,30日)での電池膨れや、室温サイクルの改善を提案している。
 下記特許文献3では、正極活物質表面を化合物で被覆することにより、活物質と非水電解液との反応抑制することで、炭素基準で4.2Vにおけるサイクル特性の改善を提案している。
特開2007-265731号公報 特開2007-273427号公報 国際公開第2012/099265号
 しかしながら、充電電圧をより高くして正極の電圧がリチウム基準で4.5Vよりも大きくなるような場合、正極活物質の表面及び内部の結晶構造がO3構造からH1-3構造へ相転移するとともに、表面では正極の酸化雰囲気が高まるため、電解液が酸化分解しこれに起因してサイクル特性が低下してしまう。さらに、高温時のサイクルでは電解液の分解が室温以上に活性になるため、サイクル特性がさらに低下する。上記特許文献には、正極の電圧を炭素基準で4.4Vよりも大きくした場合の高温時のサイクル特性の評価はされておらず、特許文献1~2ではコバルト酸リチウムの一部を他元素で置換することにより、正極内部の相転移は抑制されるかもしれないが、表面での電解液の分解が進行する可能性がある。さらに特許文献3では電池電圧が高い場合、内部の相転移が進行する可能性がある。
 本発明の一つの局面に係る非水電解質二次電池は、リチウムイオンを吸蔵・放出する正極活物質を有する正極と、リチウムイオンを吸蔵・放出する負極活物質を有する負極と、非水電解質とを備え、前記正極活物質はニッケル、マンガン及びアルミニウムを含有するリチウムコバルト複合酸化物であり表面の一部に希土類化合物もしくは酸化物が付着されていることを特徴とする。
(正極活物質)
 本発明における正極活物質としては、一般式LiCoNiMnAlM12(M1=Si、 Ti、 Ga、 Ge、Ru、 Pb、 Sn)で表されることができる。特に、M1=Geであることが好ましい。ゲルマニウムは活物質表面に存在しこれが正極の保護膜として働くため、電解液との反応を防ぐことが可能となる。
 上記リチウムコバルト複合酸化物のコバルトの一部をニッケル、マンガン、及びアルミニウムを同時に置換することが好ましい。コバルトの一部をニッケルで置換することで高容量化が達成でき、さらに酸素との結合が強いマンガンとアルミニウムとでコバルトの一部を置換することでリチウムが多く引き抜かれた4.53V以上の充放電時の場合でもO3構造からH1-3構造変化への相転移を抑制することが可能となる。
 上記一般式におけるaは0.65≦a≦0.85が望ましい。a<0.65の場合は、正極活物質の充填性や放電容量が低下し、高容量化を実現することが出来ない。a>0.85の場合は、4.53V以上の充放電時結晶構造安定化効果が小さく、サイクル特性が改善しない可能性がある。
 上記一般式におけるb、c、dは0.65≦a≦0.85、0.05≦b≦0.25、0.03≦c≦0.05、0.005≦d≦0.02、さらに、遷移金属モル比が1≦Ni/Mn≦5、10≦Ni/Al≦30、10≦(Ni+Mn)/Al≦20が好ましい。遷移金属モル比の範囲を上記のように規定し、ニッケル比率をマンガンやアルミニウムと比べて高くすることで、ニッケルの価数が2価よりも高くなり、リチウム層に入るニッケルのカチオンミキシング量が減り、リチウムイオンの拡散速度が増加するためサイクル特性が向上する。さらに、ニッケル比率が高いために、サイクルに伴って正極活物質表面上の3価のニッケルが電解液と反応してNiOを生成し、これが正極活物質の保護膜となり、非水電解液との反応を防ぐためと考えられる。
 上記正極活物質の表面の一部に希土類化合物もしくは酸化物が付着されていることが望ましい。正極活物質の表面に希土類元素化合物や酸化物の微粒子を分散した状態で付着させると、高電位の充放電反応を行った際の正極活物質構造変化を抑制することが可能になる。この理由は明らかでないが、希土類元素化合物や酸化物を表面に付着させることで、充電時の反応過電圧が増加し、相転移による結晶構造変化を小さくすることが可能となるためと考えられる。希土類化合物は水酸化エルビウム及びオキシ水酸化エルビウムからなる群から選ばれる少なくとも1種を含むことが好ましい。また、前記酸化物としては、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム、酸化銅、酸化ホウ素、酸化ランタンから選ばれる少なくとも1種を含むことが好ましい。
(負極活物質)
 本発明における負極活物質としては、リチウムを吸蔵・放出可能な材料を用いるものが好ましい。例えば、リチウム金属、リチウム合金、炭素化合物、金属化合物等を挙げることが出来る。また、これらの負極活物質を一種類で使用してもよく、また二種類以上組み合わせて使用してもよい。炭素化合物としては、乱層構造を有する炭素材料、天然黒鉛、人造黒鉛、ガラス状炭素などの炭素材料が挙げられる。これらは、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることが出来るので好ましい。特に、黒鉛は容量が大きく、高いエネルギー密度を得ることができるため好ましい。また、リチウム金属やリチウム合金も挙げられる。合金系は黒鉛に比べて電位が高いため、同じ電圧で電池の充放電を行った場合、正極電位も高くなるため、さらなる高容量化が期待できる。合金の金属としては、スズ、鉛、マグネシウム、アルミニウム、ホウ素、ガリウム、ケイ素、インジウム、ジルコニウム、ゲルマニウム、ビスマス、カドニウム等が挙げられ、特にケイ素およびスズの少なくとも一方を含むことが好ましい。ケイ素及び、スズはリチウムを吸蔵・放出する能力が大きく、高エネルギー密度を得ることが出来る。
 スズの合金としてはスズ以外の構成元素として、鉛、マグネシウム、アルミニウム、ホウ素、ガリウム、ケイ素、インジウム、ジルコニウム、ゲルマニウム、ビスマス、カドニウム等が挙げられ、ケイ素の合金としてはケイ素以外の構成元素として、スズ、鉛、マグネシウム、アルミニウム、ホウ素、ガリウム、インジウム、ジルコニウム、ゲルマニウム、ビスマス、カドニウム等からなる少なくとも1種を挙げられる。
(非水電解質溶媒)
 本発明で用いる非水電解質の溶媒は限定するものではなく、非水電解質二次電池に従来から用いられてきた溶媒を使用することが出来る。例えば、環状炭酸エステル、鎖状炭酸エステル、エステル類、環状エーテル類、鎖状エーテル類、ニトリル類、アミド類等が挙げられる。上記環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどが挙げられる。上記鎖状炭酸エステルとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネートなどが挙げられる。上記エステル類としては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトンなどが挙げられる。上記環状エーテル類としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテルなどが挙げられる。上記鎖状エーテル類としては、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルなどが挙げられる。上記ニトリル類としては、アセトニトリル等、上記アミド類としては、ジメチルホルムアミド等が挙げられる。そして、特に、これらの水素の一部または全部をフッ素化されているものが好ましい。フッ素化により非水電解質の耐酸化性が向上するため、正極表面の酸化雰囲気が高まる高電圧状態でも電解液の分解を防ぐことが出来る。また、これらを単独または複数組み合わせて使用することができ、特に、環状カーボネートと鎖状カーボネートとを組み合わせた溶媒が好ましい。
(電解質塩)
 非水溶媒に加えるリチウム塩としては、従来の非水電解質二次電池において電解質として一般に使用されているものを用いることができ、例えば、LiPF、LiBF、LiAsF、LiClO、LiCFSO、LiN(FSO、LiN(ClF2l+1SO)(CmF2m+1SO)(l,mは1以上の整数)、LiC(CpF2p+1SO)(CqF2q+1SO) (CrF2r+1SO) (p,q,rは1以上の整数)、Li[B(C](ビス(オキサレート)ホウ酸リチウム(LiBOB))、Li[B(C)F]、Li[P(C)F]、Li[P(C]等が挙げられ、これらのリチウム塩は一種類で使用してもよく、また二種類以上組み合わせて使用してもよい。
本発明の一つの局面に係る非水電解質二次電池によれば、リチウム基準で4.6Vという非常に高い充電電圧で高温下(45℃)あっても、正極活物質の構造変化や活物質表面での電解液との反応を抑制することができ、長寿命な非水電解質二次電池が得られる。
希土類化合物が表面に付着した正極活物質のSEM画像である。 実施形態のラミネート形非水電解質二次電池の斜視図である。 実施形態における巻回電極体の斜視図である。
 以下、本発明を実施するための形態について詳細に説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するために例示するものであって、本発明をこの実施形態に限定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。最初に、正極の具体的製造方法について説明する。
<実験1>
(実施例1)
 [正極の作製]
 正極活物質は、以下のように調製した。リチウム源として炭酸リチウムを用い、コバルト源として四酸化コバルトを用い、コバルトの置換元素源となるニッケル、マンガン、アルミニウム源として、水酸化ニッケル、二酸化マンガン、水酸化アルミニウムとを用いた。コバルト、ニッケル、マンガン及びアルミニウムのモル比を84:10:5:1で乾式混合した後、これをリチウム及び遷移金属のモル比が1:1になるよう炭酸リチウムと混合し、粉末をペレットに成型して、空気雰囲気中において、900℃で24時間焼成し、正極活物質を調製した。
 次に、以下のようにして湿式法により表面に希土類化合物を付着させた。正極活物質1000gを3リットルの純水と混合して撹拌し、正極活物質が分散した懸濁液を調製した。懸濁液のpHが9を保つように水酸化ナトリウム水溶液を添加しながら、この懸濁液に希土類化合物源としての硝酸エルビウム5水和物1.85gを溶解した溶液を添加した。
 なお、懸濁液のpHが9よりも小さいと、水酸化エルビウム及びオキシ水酸化エルビニウムが析出し難くなる。また、懸濁液のpHが9よりも大きいと、これらの析出する反応速度が速くなり、正極活物質表面に対する分散状態が不均一となる。
次に、上記懸濁液を吸引濾過し、更に水洗して得られた粉末を120℃で乾燥し、さらに300℃で5時間熱処理を行った。これにより、正極活物質の表面に水酸化エルビウムが均一に付着した正極活物質粉末が得た。
 図1に正極活物質の表面に希土類化合物を付着させたもののSEM像を示す。このように、正極活物質の表面に、エルビウム化合物が均一に分散した状態で付着していることが確認された。エルビウム化合物の平均粒子径は100nm以下であった。また、高周波誘導結合プラズマ発光分光分析法を用いてこのエルビウム化合物の付着量を測定したところ、正極活物質に対してエルビウム元素換算で0.07質量部であった。
 上述のようにして調製された表面に希土類化合物を有する正極活物質を96.5質量部、導電剤としてのアセチレンブラックを1.5質量部、結着剤としてのポリフッ化ビニリデン粉末を2.0質量部となるよう混合し、これをN-メチルピロリドン溶液と混合して正極合剤スラリーを調製した。次いで、正極合剤スラリーを正極集電体としての厚さ15μmのアルミニウム箔の両面にドクターブレード法により塗布して正極集電体の両面に正極活物質合剤層を形成し、乾燥した後、圧縮ローラーを用いて圧延し、所定サイズに裁断して正極板を作製した。そして、正極板の正極活物質合剤層の未形成部分に正極集電タブとしてのアルミニウムタブを取り付けて、正極とした。正極活物質合剤層の量は39mg/cmとし、正極合剤層の厚みは120μmとした。
[負極板の作製]
 黒鉛と、増粘剤としてのカルボキシメチルセルロースと、結着材としてのスチレンブタジエンゴムとを、質量比で98:1:1となるように秤量し、水に分散させて負極活物質合剤スラリーを調製した。この負極活物質合剤スラリーを、厚さ8μmの銅製の負極芯体の両面にドクターブレード法により塗布した後、110℃で乾燥させて水分を除去して、負極活物質層を形成した。そして、圧縮ローラーを用いて所定の厚さに圧延し、所定サイズに裁断して負極極板を作製した。
[非水電解液の調整]
 非水溶媒として、フルオロエチレンカーボネート(FEC)と、フッ素化プロピオンカーボネート(FMP)を用意した。25℃における体積比で、FEC:FMP=20:80となるように混合した。この非水溶媒に、ヘキサフルオロリン酸リチウムを濃度が1mol/Lとなるように溶解して、非水電解質を調製した。
[非水電解質二次電池の作製]
 次に、非水電解質二次電池としての特性の評価について説明する。まず、非水電解質二次電池の製造方法について、図2及び図3を用いて説明する。ラミネート形非水電解質二次電池20は、ラミネート外装体21と、正極板と負極板とを備え偏平状に形成された巻回電極体22と、正極板に接続された正極集電タブ23と、負極板に接続された負極集電タブ24とを有している。巻回電極体22は、それぞれが帯状である正極板、負極板及びセパレーターを有し、正極板と負極板とがセパレーターを介して互いに絶縁された状態で巻回されるようにして構成されている。
 ラミネート外装体21には凹部25が形成されており、このラミネート外装体21の一端側がこの凹部25の開口部分を覆うように折り返されている。凹部25の周囲にある端部26と折り返されて対向する部分とは溶着され、ラミネート外装体21の内部が封止されるようになっている。封止されたラミネート外装体21の内部には、巻回電極体22が非水電解液とともに収納されている。
 正極集電タブ23及び負極集電タブ24は、それぞれ樹脂部材27を介して封止されたラミネート外装体21から突出するようにして配置され、これら正極集電タブ23及び負極集電タブ24を介して電力が外部に供給されるようになっている。正極集電タブ23及び負極集電タブ24のそれぞれとラミネート外装体21との間には、密着性向上及びラミネート材のアルミニウム合金層を介する短絡防止の目的で、樹脂部材27が配置されている。
次に、作製した正極板及び負極板を、ポリエチレン製微多孔質膜からなるセパレーターを介して巻回し、最外周にポリプロピレン製のテープを張り付けて円筒状の巻回電極体を作製した。次いで、これをプレスして偏平状の巻回電極体とした。また、ポリプロピレン樹脂層/接着剤層/アルミニウム合金層/接着材層/ポリプロピレン樹脂層の5層構造からなるシート状のラミネート材を用意し、このラミネート材を折り返して底部を形成するとともにカップ状の電極体収納空間を形成した。
 次いで、アルゴン雰囲気下のグローブボックス内で偏平状の巻回電極体と非水電解質とをカップ状の電極体収納空間に挿入した。この後、ラミネート外装体内部を減圧してセパレーター内部に非水電解質を含浸させ、ラミネート外装体の開口部を封止した。このようにして、高さ62mm、幅35mm、厚み3.6mm(封止部を除外した寸法)の電池A1を作製した。なお、当該非水電解質二次電池を4.50Vまで充電し、2.50Vまで放電したときの放電容量は800mAhであった。
(実施例2)
 コバルト、ニッケル、マンガン及びアルミニウムのモル比を79:15:5:1になるように正極活物質を調製したこと以外は、実施例1と同様にして電池A2を作製した。
(実施例3)
 コバルト、ニッケル、マンガン及びアルミニウムのモル比を68:25:5:2になるように正極活物質を調製したこと以外は、実施例1と同様にして電池A3を作製した。
(比較例1)
 コバルト、ニッケル及びマンガンのモル比を90:5:5になるように正極活物質を調製したこと以外は、実施例1と同様にして電池B1を作製した。
(比較例2)
 コバルト、ニッケル及びアルミニウムのモル比を89:10:1になるように正極活物質を調製したこと以外は、実施例1と同様にして電池B2を作製した。
(比較例3)
 コバルト及びニッケルのモル比を90:10になるように正極活物質を調製したこと以外は、実施例1と同様にして電池B3を作製した。
(比較例4)
 コバルト及びマンガンのモル比を90:10になるように正極活物質を調製したこと以外は、実施例1と同様にして次電池B4を作製した。
(比較例5)
 正極活物質の表面に希土類化合物を付着させなかったこと以外は、実施例1と同様にして電池B5を作製した。
 [充放電サイクルの条件]
 上記電池について、下記の条件で充放電試験を行った。
 400mAの定電流で電池電圧が4.50Vとなるまで充電し、電池電圧が各値に達した後は、各値の定電圧で40mAとなるまで充電を行った。そして、800mAの定電流で電池電圧が2.50Vとなるまで放電を行い、このときに流れた電気量を測定して1回目の放電容量を求めた。負極に用いられる黒鉛の電位は、リチウム基準で約0.1Vである。このため、電池電圧4.50Vにおいて正極電位はリチウム基準で4.53V以上4.60V程度となる。上記と同じ条件で充放電を繰り返して100回目の放電容量を測定し、容量維持率を以下の式を用いて算出した。また、測定温度は45℃で行った。容量維持率(%)=(100回目の放電容量/1回目の放電容量)×100
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 電池A1~A3、電池B1~B4の結果を比較すると、電池A1~A3では容量維持率が88%以上となり、電池B1~B4では81%以下となった。電池A1~A3ではコバルト置換元素源としてのニッケル、マンガン、アルミニウムを全て含有しているのに対し、電池B1~B4ではニッケル、マンガン、アルミニウムのいずれかが含まれていない。これらの結果から、リチウムコバルト複合酸化物にニッケル、マンガン及びアルミニウムを含有させることで、活物質の内部構造の安定化及び表面構造の安定化による電解液の分解抑制により、サイクル特性の低下が抑制されたと考えられる。
 電池A1及び電池B5との比較により、リチウムコバルト複合酸化物にニッケル、マンガン及びアルミニウムを含有している正極活物質を用いても、希土類化合物を付着していない正極活物質を用いた場合には、サイクル特性の低下を抑制することができないことがわかる。
<実験2>
(実施例4)
 正極活物質の表面にエルビウム化合物を付着させず、以下のようにして酸化ホウ素を付着させたこと以外は、実施例1と同様にして電池A4を作製した。
 [酸化ホウ素の付着方法]
 正極活物質に対し0.5質量%のBと正極活物質とを乾式混合後、300℃で5時間熱処理を行い、表面にBが付着した正極活物質を得た。
(実施例4)
 正極活物質の表面にエルビウム化合物を付着させず、以下のようにして酸化ランタンを付着させたこと以外は、実施例1と同様にして電池A5を作製した。
 [酸化ランタンの付着方法]
正極活物質に対し0.5質量%のLaと正極活物質とを乾式混合後、300℃で5時間熱処理を行い、表面にLaが付着した正極活物質を得た。
 [充放電サイクルの条件]
実験1と同様の条件で100サイクル後の容量維持率を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 電池A1、A4、A5と電池B5を比較すると、電池A1、A4、A5では容量維持率が80%以上となり、B5では58%となった。電池A1、A4、A5では正極活物質の表面に希土類化合物もしくは酸化物が付着されているのに対し、B5では正極活物質の表面に付着物がない。これらの結果から、正極活物質の表面の一部に希土類化合物もしくは酸化物が付着されていることで、高電位の充放電反応を行った際の充電時の反応過電圧が増加し、相転移による正極活物質表面の結晶構造変化が抑制されたと考えられる。
 ラミネート形非水電解質二次電池の例を示したが、これに限らず、金属製の外装缶を使用した円筒形非水電解質二次電池や角形非水電解質二次電池等に対しても適用可能である。
 本発明の一局面の非水電解質二次電池は、例えば、携帯電話、ノートパソコン、スマートフォン、タブレット端末等の特に高容量かつ長寿命が必要とされる用途に適用することができる。
 20 非水電解質二次電池、21 ラミネート外装体、22 巻回電極体、23 正極集電タブ、24 負極集電タブ。

Claims (7)

  1.  リチウムイオンを吸蔵・放出する正極活物質を有する正極と、リチウムイオンを吸蔵・放出する負極活物質を有する負極と、非水電解質とを備え、前記正極活物質はニッケル、マンガン及びアルミニウムを含有するリチウムコバルト複合酸化物であり、表面の一部に希土類化合物もしくは酸化物が付着されていることを特徴とする非水電解質二次電池。
  2.  前記正極活物質の組成式がLiCoNiMnAl(M=Si, Ti, Ga, Ge, Ru,Pb, Sn)(0.65≦a≦0.85、0.05≦b≦0.25、0.03≦c≦0.05、0.005≦d≦0.02、0≦e≦0.02)で示され、遷移金属モル比が1≦Ni/Mn≦5、10≦Ni/Al≦30、10≦(Ni+Mn)/Al≦20であることを特徴とする請求項1に記載の非水電解質二次電池。
  3.  前記正極の電位がリチウム基準で4.53V以上となるように充電されることを特徴とする請求項1または請求項2に記載の非水電解質二次電池。
  4.  前記希土類化合物は水酸化エルビウム及びオキシ水酸化エルビウムの少なくとも1種を含む請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記酸化物は酸化ホウ素または酸化ランタンであることを特徴とする請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記非水電解質はフッ素化溶媒を含む請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記フッ素化溶媒がフルオロエチレンカーボネート、フッ素化プロピオン酸メチル及びフッ素化メチルエチルカーボネートを含む請求項6に記載の非水電解質二次電池。
PCT/JP2015/000339 2014-02-10 2015-01-27 非水電解質二次電池 WO2015118832A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580007855.XA CN105981205A (zh) 2014-02-10 2015-01-27 非水电解质二次电池
US15/117,304 US20160351887A1 (en) 2014-02-10 2015-01-27 Nonaqueous electrolyte secondary battery
JP2015561204A JP6512110B2 (ja) 2014-02-10 2015-01-27 非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014022965 2014-02-10
JP2014-022965 2014-02-10

Publications (1)

Publication Number Publication Date
WO2015118832A1 true WO2015118832A1 (ja) 2015-08-13

Family

ID=53777647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000339 WO2015118832A1 (ja) 2014-02-10 2015-01-27 非水電解質二次電池

Country Status (4)

Country Link
US (1) US20160351887A1 (ja)
JP (1) JP6512110B2 (ja)
CN (1) CN105981205A (ja)
WO (1) WO2015118832A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994212B (zh) * 2017-10-27 2019-10-18 合肥国轩高科动力能源有限公司 一种锂离子电池层状正极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005196992A (ja) * 2003-12-26 2005-07-21 Hitachi Ltd リチウム二次電池用正極材料及び電池
JP2009004316A (ja) * 2007-06-25 2009-01-08 Sony Corp 非水電解質二次電池用正極活物質およびその製造方法、並びに非水電解質二次電池
JP2011071046A (ja) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011171113A (ja) * 2010-02-18 2011-09-01 Sanyo Electric Co Ltd リチウム二次電池用正極活物質及びその製造方法並びにそれを用いたリチウム二次電池
JP2012043794A (ja) * 2010-08-17 2012-03-01 Umicore Sa Li蓄電池内での高い安全性と高出力とを兼備する正電極材料
WO2012099265A1 (ja) * 2011-01-21 2012-07-26 三洋電機株式会社 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池
WO2013108571A1 (ja) * 2012-01-17 2013-07-25 三洋電機株式会社 非水電解質二次電池の正極及び非水電解質二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265731A (ja) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd リチウムイオン二次電池
JP5747457B2 (ja) * 2010-01-06 2015-07-15 三洋電機株式会社 リチウム二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005196992A (ja) * 2003-12-26 2005-07-21 Hitachi Ltd リチウム二次電池用正極材料及び電池
JP2009004316A (ja) * 2007-06-25 2009-01-08 Sony Corp 非水電解質二次電池用正極活物質およびその製造方法、並びに非水電解質二次電池
JP2011071046A (ja) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011171113A (ja) * 2010-02-18 2011-09-01 Sanyo Electric Co Ltd リチウム二次電池用正極活物質及びその製造方法並びにそれを用いたリチウム二次電池
JP2012043794A (ja) * 2010-08-17 2012-03-01 Umicore Sa Li蓄電池内での高い安全性と高出力とを兼備する正電極材料
WO2012099265A1 (ja) * 2011-01-21 2012-07-26 三洋電機株式会社 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池
WO2013108571A1 (ja) * 2012-01-17 2013-07-25 三洋電機株式会社 非水電解質二次電池の正極及び非水電解質二次電池

Also Published As

Publication number Publication date
JP6512110B2 (ja) 2019-05-15
JPWO2015118832A1 (ja) 2017-03-23
CN105981205A (zh) 2016-09-28
US20160351887A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6414589B2 (ja) 非水電解質二次電池
JP6428647B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
KR101811935B1 (ko) 비수 전해액 이차 전지
JP5260821B2 (ja) リチウムイオン二次電池
US10553862B2 (en) Positive electrode active material for secondary battery and secondary battery
WO2012014793A1 (ja) リチウムイオン二次電池
CN107636869B (zh) 二次电池用正极活性物质
JP6443339B2 (ja) 非水電解質二次電池用正極
JP2007200862A (ja) 非水電解質二次電池
WO2014068831A1 (ja) 非水電解質二次電池
US20170062818A1 (en) Non-aqueous electrolyte secondary battery
JP2021108305A (ja) 正極及び該正極を含むリチウム電池
CN112313817A (zh) 正极材料和二次电池
WO2020026487A1 (ja) 正極活物質および二次電池
US10749167B2 (en) Lithium ion secondary battery and method of manufacturing the same
WO2016103592A1 (ja) 正極活物質及び非水電解質二次電池
JPWO2014068931A1 (ja) 非水電解質二次電池
JP2008251526A (ja) 非水電解質二次電池および正極
JP6237792B2 (ja) 非水電解質二次電池
WO2015118832A1 (ja) 非水電解質二次電池
JP2013137939A (ja) 非水電解質二次電池
CN109478644B (zh) 非水电解质二次电池用正极、正极活性物质及其制造方法、及非水电解质二次电池
WO2022203048A1 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2012018916A (ja) 非水電解質および非水電解質電池
TW201503471A (zh) 鋰離子蓄電池用正極材料,鋰離子蓄電池用正極以及鋰離子蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561204

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15117304

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746239

Country of ref document: EP

Kind code of ref document: A1