WO2015118277A1 - Procede de regulation de l'atmosphere d'une enceinte frigorifique - Google Patents

Procede de regulation de l'atmosphere d'une enceinte frigorifique Download PDF

Info

Publication number
WO2015118277A1
WO2015118277A1 PCT/FR2015/050293 FR2015050293W WO2015118277A1 WO 2015118277 A1 WO2015118277 A1 WO 2015118277A1 FR 2015050293 W FR2015050293 W FR 2015050293W WO 2015118277 A1 WO2015118277 A1 WO 2015118277A1
Authority
WO
WIPO (PCT)
Prior art keywords
hygrometry
temperature
air
setpoint
internal
Prior art date
Application number
PCT/FR2015/050293
Other languages
English (en)
Inventor
Benoit DUPARC
Laurent KRZAK
Sandrine PETIT
Original Assignee
Dpkl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dpkl filed Critical Dpkl
Priority to ES15709224T priority Critical patent/ES2927796T3/es
Priority to PL15709224.8T priority patent/PL3105517T3/pl
Priority to EP15709224.8A priority patent/EP3105517B1/fr
Priority to HRP20221133TT priority patent/HRP20221133T1/hr
Priority to DK15709224.8T priority patent/DK3105517T3/da
Publication of WO2015118277A1 publication Critical patent/WO2015118277A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0413Treating air flowing to refrigeration compartments by purification by humidification
    • F25D2317/04131Control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Definitions

  • the present invention is in the field of storage and preservation of food and food products.
  • the invention specifically targets this conservation by refrigeration and control of the atmosphere of the place of storage and preservation.
  • the invention will find a preferential application in improving the operation of refrigerated storage and food preservation containers.
  • the invention aims to optimize the operation of refrigerated chamber devices, under controlled atmosphere or not.
  • said products may be fresh and constitute perishable goods.
  • such foods may be plant products, namely fruits and vegetables. It will also find applications in the conservation of meat and fish, dairy products, including fermented as cheese, but also the field of salting such products. It also aims to preserve other natural products, such as plants, especially flowers.
  • a known solution is to perform a projection under pressure of water particles, in particular consisting of microdroplets, combined or not with water vapor, forming a cloud or dry mist which limits the deposition of water on the surface of the products.
  • water particles in particular consisting of microdroplets, combined or not with water vapor, forming a cloud or dry mist which limits the deposition of water on the surface of the products.
  • such a solution requires the installation of a complex hydraulic installation to install and maintain, requiring in particular to control the hardness of water, to limit limescale deposits in the circuit, and to treat against blooms microbial and bacterial. These operations are expensive and often require the addition of treatment agents, such as chlorine, which are detrimental to the preservation and consumption of the products.
  • the present invention aims to overcome the disadvantages of the state of the art, by matching all the components of a refrigeration system (including the compressor, the evaporator and the condenser) and by optimizing their operation according to the desired parameters, with the aim of preserving and preserving the quality of the stored products.
  • the invention aims to maintain a steady rate of humidity of the air in the refrigerating chamber, in a natural way, without the addition of water.
  • the aim of the invention is not only to maintain a hygrometry rate (for example between 90% and 100%) over a period of a few days, but to be able to keep the hygrometry rate constant throughout a conservation or refrigeration period. whose duration is typically between 2 and 12 months.
  • This object is obtained in particular by setting the fluid pressure at the outlet of the condenser.
  • this discharge pressure at the outlet of the condenser is adjusted around a set point. This setpoint is fixed in time.
  • the subject of the invention is a method for regulating the temperature and hygrometry of an internal air existing in a refrigerating chamber as a function of a temperature setpoint and a hygrometry setpoint determined by a user.
  • a variation of the temperature and the hygrometry being done by the circulation of a refrigerant in a refrigeration loop which has a compressor, a condenser and an evaporator, the regulation being done by an automaton comparing the measured temperature and the hygrometry internal air with the temperature and hygrometry instructions, characterized in that, when the internal air temperature is higher than the temperature set point, the automat activates a cold production process during which, d on the one hand, if the hygrometry of the internal air is lower than the hygrometry set point, the automaton regulates downward an airflow setpoint of an internal fan; adapted to produce a flow of air through the evaporator and regulates upward an operating setpoint of the compressor motor so as to increase the temperature of
  • the regulation method according to the invention makes it possible to limit the water stress suffered by the products, in particular fruits and vegetables, ensuring the maintenance of their density and their freshness, thus limiting their quality and their losses. nutritional.
  • This water stress is reduced, on the one hand, by maintaining a small difference in temperature between the evaporation temperature of the refrigerant within the evaporator and the temperature of the refrigerating chamber, and, secondly, by reaching the temperature at which the internal atmosphere has the hygrometry rate corresponding to that of the hygrometry setpoint (and in the case where the setpoint of hygrometry is 100%, the temperature at which the internal atmosphere becomes saturated with water vapor as it approaches the dew point) while keeping the current barometric conditions of the internal atmosphere unchanged.
  • the operation of the invention is natural, without adding any chemical agent or preservative, or treatment agent. It does not involve a hydraulic circuit, avoiding the related maintenance costs.
  • the implementation of the invention makes it possible to minimize the operating times of the various components of the refrigerating installation, to avoid certain problems related to the operation of these units (for example the disturbance of a regulator of the cooling circuit. refrigeration, shutdowns of the fans due to electrical disjunction of their motor motors of the blowers which break, the setting of ice in the evaporator), to increase the energetic efficiency, to optimize the operation and the lifetime of the refrigeration system, to reduce noise pollution and to achieve significant energy savings.
  • the invention allows the automatic defrost management of the evaporator, which consequently makes it possible to considerably limit the weight loss of the stored products and to reduce the energy expenditure of the refrigerating installation.
  • FIG. 1 diagrammatically represents the circuit of an installation in which the method according to the invention is implemented, said FIG. members of such an installation and highlighting with arrows the flow of air at the levels of the outside and inside of the enclosure to be cooled;
  • FIG. 2 represents an example of a survey of a curve of the temperatures of the air inside the enclosure during the implementation of the method according to the invention.
  • FIG. 1 represents a refrigerating installation 1 which comprises a refrigeration loop 2 and a refrigerating chamber 3 through which the refrigeration loop 2 passes so as to be able to be cooled by a refrigerant (for example freon) flowing in the refrigeration loop 2 .
  • a refrigerant for example freon
  • the refrigeration loop 2 comprises, in the refrigerant circulation direction, a compressor 4, a condenser 5, a pressure reducer 6 and an evaporator 7.
  • the compressor 4, the condenser 5 are arranged at the same time. outside the refrigerating chamber 3 while the evaporator 7 is disposed therein. To facilitate access to the expansion valve 6, it can be disposed outside the refrigerating chamber 3 (but in the immediate vicinity thereof).
  • the production of cold is carried out by a succession of changes of state of the refrigerant which are realized in the refrigeration loop 2 (the gaseous refrigerant becomes liquid in the condenser 5, it becomes partially gaseous in the expander 6, and becomes gaseous again in the evaporator 7); these changes in state generate variations in temperature and pressure of the refrigerant and the air prevailing around the heat exchangers that form the condenser 5 and the evaporator 7 (an increase in the pressure and the temperature of the refrigerant in the compressor 4, an increase in the temperature of the external air prevailing around the condenser 5, a drop in the pressure and the temperature of the refrigerant in the evaporator 7, and a decrease in the temperature of the internal air prevailing around the evaporator 7).
  • the condenser 5 is associated an external fan 8 (located outside the refrigerating chamber 3) for generating a flow of air through the condenser 5, and 1 evaporator 7 is associated an internal fan 9 (located in the refrigerating chamber 3) for generating an air flow through the evaporator 7.
  • the compressor 4, the external fan 8 and the internal fan 9 each comprise motors for varying their respective powers (compressor power 4 and fan speeds 8, 9).
  • the motor of the external fan 8 may be pole-switched or frequency-varying. It is the same for the internal fan motor 9.
  • the refrigeration loop 2 comprises a supply valve 10 which makes it possible to prevent or allow the circulation of the refrigerant in the refrigeration loop 2.
  • This supply valve 10 is preferably located outside the refrigerating chamber 3, located between the condenser 5 and the expander 6.
  • the refrigeration system also includes an automaton
  • the regulations of the compressor 4, the external fan 8 and / or the internal fan 9 are made by the controller 11.
  • the regulations of the compressor 4 and the internal fan 9 are made according to an algorithm.
  • the regulation of the external fan 8 is done according to a PID regulation.
  • the automaton 11 is also connected to different probes 12, 13, 14, 15, 16, 17, 18 making it possible to know the physical parameters of the refrigerant, the air in the refrigerating enclosure 3 and the air around it. of the expander 5 and the external fan 8.
  • these probes comprise a humidity probe 12 arranged in the refrigerating chamber 3, a first temperature sensor 13 disposed at the air suction side of the internal fan 9, a second temperature sensor 14 disposed at the air blowing side of the internal fan 9, a defrosting probe 15 disposed on the evaporator 7 so as to detect the presence of frost, a third temperature sensor 16 disposed near the external fan 8 (preferably at the air suction side). ), a first pressure sensor 17 disposed at the compressor inlet 4 and a second pressure sensor 18 disposed between the compressor 4 and the condenser 5.
  • the invention relates to a method for regulating the temperature and hygrometry of the air inside the refrigerating chamber 3 as a function of the temperature setpoint and the hygrometry setpoint which are entered in the controller 11 by a user. These temperature and hygrometry instructions depend on the products stored in the refrigerating enclosure 3.
  • the regulation is carried out by the controller 11 which compares, on the one hand, the temperature of the air inside the refrigerating chamber 3 with and the temperature setpoint, and, on the other hand, the hygrometry measured by the humidity sensor 12 with the hygrometry setpoint.
  • the controller 11 compares, on the one hand, the temperature of the air inside the refrigerating chamber 3 with and the temperature setpoint, and, on the other hand, the hygrometry measured by the humidity sensor 12 with the hygrometry setpoint.
  • the temperature which is compared with the temperature setpoint is preferably that measured by the first temperature sensor 13.
  • the controller 11 activates a cold production process so that the temperature of the air inside the refrigerating chamber 3 decreases and reaches the temperature setpoint. In the case where the temperature of the air inside the refrigerating chamber 3 is less than or equal to the temperature set point, the controller 11 activates a process for stopping cold production. Depending on the temperature variation, the controller 11 successively activates the cold production process and the cold production shutdown method.
  • the controller 11 verifies that the various members included in the refrigeration loop 2 are in a state of being able to function properly. In the case where a member is not able to function properly, the controller 11 stops the regulation process and emits an alarm.
  • the cold production method comprises a step of activating the refrigeration loop 2, followed by a series of steps for controlling the regulation of the temperature and hygrometry of the air located inside. of the refrigerating chamber 3.
  • the controller 11 opens the supply valve 10 and activates the compressor 4.
  • the controller 11 compares the hygrometry and the temperature of the air with the hygrometry and temperature instructions. It is possible that the hygrometry of the air is greater than the hygrometry setpoint, or lower than this setpoint, or equal to it. Whatever one of the three cases, in order to vary the hygrometry of the interior of the enclosure 3, the controller 11 regulates, on the one hand, a variable operating instruction of the compressor 4 to vary the temperature of the refrigerant in the evaporator 7, and, secondly, a variable air flow rate of the internal fan 9. Depending on the variation of the difference between the measured hygrometry and the hygrometry setpoint , the controller 11 regulates differently the air flow setpoints of the internal fan 9 and the compressor 4 motor running.
  • the controller 11 regulates the air flow setpoint of the internal fan 9 downwards and the compressor 4 engine operating setpoint up. Since the operating setpoint of the motor of the compressor 4 increases, the temperature of the refrigerant in the evaporator 7 increases. Since the temperature of the refrigerant in the evaporator 7 increases and the air flow rate of the internal fan 9 decreases, the water previously trapped on the heat exchange surface of the evaporator 7 is released and, accordingly the hygrometry of the air inside the refrigerating chamber 3 increases.
  • the controller 11 regulates the air flow setpoint of the internal fan 9 upwards and the Compressor motor operating setpoint 4 downward. Since the operating instruction of the motor of the compressor 4 decreases, the temperature of the refrigerant in the evaporator 7 decreases. Since the temperature of the refrigerant in the evaporator 7 decreases and the air flow rate of the internal fan 9 increases, the water contained in the air is trapped on the heat exchange surface of the evaporator 7 and as a result, the hygrometry of the air inside the refrigerating chamber 3 decreases.
  • the automaton 11 maintains the setpoint of external fan air flow 8 and compressor operating setpoint 4.
  • the heat exchange surface of the evaporator 7 depends on the products to be stored in the cooling chamber 3.
  • the ratio of the heat exchange surface of the evaporator 7 to the internal volume of the refrigerating chamber 3 can vary from 0.4 m 2 / m 3 to 1.5 m 2 / m 3 . More precisely, the more the conservation of the products will require a high hygrometry setpoint, the higher will be necessary to have a high ratio, typically for a setpoint close to 100% hygrometry, the ratio must be between 1.3 m 2 / m 3 and 1.5 m 2 / m 3 .
  • the initial value of the variable operating instruction of the motor of the compressor 4 is previously entered in the controller 11. In general, this value depends on the product stored in the cooling chamber 3. Typically the initial value of the variable operating setpoint of the compressor motor 4 corresponds to a percentage of the maximum power of this engine, for example 30%.
  • the variation of the value of the operating setpoint of the compressor motor 4 is determined by the controller 11 from the difference between the humidity measured by the humidity sensor 12 and the hygrometry setpoint.
  • the value of the variation of the operating setpoint of the compressor motor 4 corresponds to a percentage of the maximum power of this engine, for example 10%.
  • the initial value of the variable setpoint of the air flow rate of the internal fan 9 is previously entered in the controller 11. In general, this value depends on the product stored in the cooling chamber 3 and takes into account the fact that the temperature of the air prevailing in the refrigerating chamber 3 is well above the set point. In general, the initial value of the variable setpoint of the air flow rate of the internal fan 9 corresponds to a relatively high percentage of the maximum power of the internal fan motor 9 (typically 50%). The variation of the setpoint value of the air flow rate of the internal fan 9 is determined by the controller 11.
  • This variation of the value of the setpoint of the air flow of the internal fan 9 can be determined from the difference between the humidity measured by the humidity sensor 12 and the humidity setpoint or from the difference between the temperature of the air in the refrigerating enclosure and the temperature setpoint. It is preferable to determine the variation of the value of the setpoint of the air flow of the internal fan 9 from the difference between the measured hygrometry and the hygrometry setpoint.
  • the value of the variation of the variable setpoint of the air flow of the internal fan 9 may correspond to a percentage of the maximum power of the motor of the internal fan 9.
  • the setpoint of the air flow rate of the internal fan 9 can be determined as a function of either the difference between the temperature setpoint and the measured temperature, or the difference between the hygrometry setpoint and the measured hygrometry, according to what is used. The greater the difference, the higher the air flow setpoint of the internal fan 9 is high. Thus, for a difference greater than or equal to 7 ° C., the set point may be 100% of the power of the motor of the internal fan 9; for a difference of between 5 ° C. and 7 ° C., the set point may be 80% of the power of the internal fan motor 9; for a difference of between 3 ° C.
  • the set point may be 65% of the power of the motor of the internal fan 9; for a difference of between 1 ° C. and 3 ° C., the set point may be 50% of the power of the motor of the internal fan 9; and for a difference of less than 1 ° C, the setpoint may be 30% of the power of the internal fan motor 9).
  • the variation of the value of the setpoint of the air flow rate of the internal fan 9 is determined from the difference between the measured hygrometry and the hygrometry setpoint and the difference between the measured temperature and the temperature setpoint, the choice of the difference used being determined from the speed of the drop in the temperature of the air inside the refrigerating chamber 3.
  • the variation of the value of the air flow setpoint of the internal fan 9 is determined from the difference between the measured hygrometry and the setpoint of hygrometry, and, when the speed of the drop in the temperature of the air inside the refrigerating chamber 3 becomes less than or equal to the minimum speed, the variation of the value of the flow instruction of Internal fan air 9 is determined from the difference between the measured temperature and the temperature set point.
  • the minimum rate of decrease in air temperature can be expressed as a rate of temperature drop (eg, 0.1 ° C in 5 minutes) or as a minimum difference between the measured air temperature in the air.
  • the air flow setpoint is as much as the difference is large, and, when the variation of the value of the setpoint of the air flow rate of the internal fan 9 is determined from the difference between the measured temperature and the temperature setpoint, so to increase the speed of the decrease of the air temperature, the air flow setpoint is increased by a fixed value (for example a percentage of the maximum power of the internal fan motor 9 - here, 10% ).
  • the variation of the value of the air flow set point is again determined from the difference between the measured hygrometry and the set point of hygrometry, and if it remains lower than or equal to the minimum speed, the variation of the value of the setpoint of the air flow rate of the internal fan 9 continues to be determined is determined from the difference between the measured temperature and the temperature setpoint.
  • the controller 11 regulates the operation of the motor of the compressor 4 to regulate the temperature of the refrigerant in the evaporator 7, the constant maintenance of the pressure of the refrigerant at the outlet of the compressor 4 is no longer regulated by the latter. . Therefore, during the whole series of control steps of the regulation of the temperature and hygrometry of the air inside the refrigerating chamber 3, the controller 11 activates the fan external 8 to a variable air flow setpoint so as to maintain constant the pressure of the refrigerant at the outlet of the condenser 5 (and therefore at the inlet of the expander 6) throughout the duration of the cold production processes of the control method of the temperature and hygrometry of the air inside the refrigerating chamber 3.
  • the pressure of the refrigerant at the outlet of the condenser 5 can thus be set at 20 bar.
  • the initial value of the variable setpoint of the air flow rate of the external fan 8 is previously entered in the controller 11.
  • this initial value of the variable setpoint of the air flow rate of the external fan 8 corresponds to a percentage of the maximum power of the external fan motor 8 (in general, this value is zero, but, depending on the type of products kept in the refrigerating chamber 3, it may be non-zero, for example between 5 and 20%).
  • the variation of the value of the air flow setpoint of the external fan 8 is determined by the controller 11 from, mainly from the difference between the fixed pressure setpoint at the outlet of the condenser 5 and the pressure measured by the second pressure sensor 18 which depends on the operating setpoint of the compressor 4. Preferably, it is also determined according to the temperature measured by the third temperature sensor 16.
  • the air flow setpoint of the external fan 8 is determined so as to extract the number of calories required of the refrigerant to reach the fixed pressure setpoint. Thus, if the operating instruction of the motor of the compressor 4 increases, the controller 11 increases the value of the air flow setpoint of the external fan 8 so as to extract a greater number of calories at the condenser 5.
  • the controller 11 decreases the value of the air flow setpoint of the external fan 8 or stops the external fan 8 so as to extract a smaller number of calories at the condenser 5 Typically the value of the variation of the variable setpoint of the external fan 8 air flow corresponds to a percentage of the maximum power of the external fan motor 8.
  • the pressure of the refrigerant at the outlet of the condenser 5 is kept constant and serves as an equilibrium point for the refrigerant, and the controller 11 can simultaneously and with extreme precision regulate the power of the compressor motor. 4, the temperature of the refrigerant in the evaporator 7, the speed of the air flow of the internal fan 9 and the temperature and humidity of the air inside the refrigerating chamber 3.
  • the method of stopping cold production comprises a step of deactivating the refrigeration loop 2, followed by a series of steps controlling the regulation of the hygrometry of the air located inside the refrigerator. refrigerating chamber 3.
  • the controller 11 deactivates the compressor 4 and the external fan 8 and closes the supply valve 10.
  • the controller 11 compares the hygrometry measured by the humidity sensor 12 with the hygrometry setpoint. It is possible that the hygrometry of the air is lower than the hygrometry setpoint, or greater than or equal to this setpoint.
  • the controller 11 regulates differently the variable air flow rate setpoint of the internal fan 9 in order to vary the hygrometry of the inside of the enclosure 3.
  • the controller 11 regulates the air flow setpoint of the internal fan 9 so that the hygrometry measured is close to the hygrometry setpoint.
  • the controller regulates the setpoint of the air flow of the internal fan downward.
  • the regulation of the air flow rate of the internal fan 9 can be carried out as a function of the difference between the hygrometry setpoint and the measured hygrometry, the larger the difference being, the higher the air flow set point being.
  • the controller 11 stops the internal fan 9.
  • the initial value of the variable setpoint of the air flow rate of the internal fan 9 is previously entered in the controller 11. In general, this value depends on the product stored in the cooling chamber 3 and takes into account the fact that the temperature of the air prevailing in the refrigerating chamber is equal to the set point. In general, the initial value of the variable setpoint of the air flow rate of the internal fan 9 corresponds to a small percentage of the maximum power of the internal fan motor 9 (typically 10%).
  • the variation of the value of the setpoint of the air flow of the internal fan 9 is determined by the controller 11. Preferably, this variation of the value of the setpoint of the air flow rate of the internal fan 9 is determined from the difference between the hygrometry measured by the humidity sensor 12 and the hygrometry setpoint. The value of the variation of the variable setpoint of the air flow rate of the internal fan 9 may correspond to a percentage of the maximum power of the internal fan motor 9.
  • the method according to the present invention makes it possible to precisely regulate the temperature and hygrometry of the air which is inside the refrigerating chamber 3 by varying the air flow rate of the internal fan 9.
  • hygrometry which can be between 50% to 100% hygrometry can be respected to at least 1%.
  • the control method according to the invention makes it possible to obtain a temperature differential of between 0.2 ° C. and 3 ° C. (and not between 3 ° C.). C and 10 ° C as in known refrigerators). This lowering of the temperature differential also allows energy savings and, when the temperature of the air inside the cooling chamber 3 is less than 0 ° C., a decrease in the risk of frost on the surfaces of heat exchange of the evaporator 7.
  • the defrosting probe 15 allows the controller 11 to activate a defrosting process only if necessary (and not systematically as in the known refrigeration devices) and only for the necessary time.
  • the controller 11 When the defrost probe 15 indicates the presence of frost, the controller 11 is active the internal fan 9 (if stopped) or increases its air flow setpoint (if enabled) so that the frost melted by the action of forced air.
  • the triggering of the deicing process can also be realized because of the measurement by the second temperature sensor 14 of a value indicating the presence of ice (frost). It is possible to use the latent heat of melting ice. This type of defrosting allows in particular to raise the hygrometry rate.
  • the present invention makes it possible to have a small difference between the temperatures measured by the first and second temperature probes 13, 14 (less than 3 ° C.) and to continuously adjust the air flow rate of the internal fan 9, the flow rate This results in the fact that the evaporation of water on the surface of the stored products is minimal or even zero.
  • This hygrometry management is carried out precisely thanks to a very small variation of the air temperature in the refrigerating chamber 3, unless ventilation and especially to a management of different parameters according to the diagram of the humid air, these parameters being measured in real time in the cooling chamber 3.
  • FIG. 2 shows, as a function of time, a curve 100 illustrating the evolution of the air temperatures measured inside the cooling chamber 3.
  • the time line of the abscissae is not regular but the duration of each of its time intervals is stipulated.
  • the implementation of the method makes it possible to manage the temperature to the nearest 0.1 ° C.
  • the hygrometry setpoint of the air in the refrigerating chamber 3 is 96% and the temperature setpoint of this air is 0 ° C. As illustrated in Figure 2, it is the refrigerant (curve 101) which is cooled before air (curve 100).
  • Point 102 corresponds to the opening of the supply valve 10, the temperatures of the air and the refrigerant are close to 2 ° C.
  • the humidity of the air is 98%
  • its temperature is 1.9 ° C
  • the temperature of the refrigerant in the evaporator 7 is -5 ° C
  • the air flow rate setpoint of the internal fan 9 is 60% of the maximum power of the fan motor , this 60% corresponds to a stirring rate of 30 volumes of the refrigerating chamber 3 per hour.
  • the humidity of the air is 99%, its temperature is 1.6 ° C, that of the refrigerant is - 7 ° C and the air flow setpoint is always 60%.
  • the humidity of the air is 91%, its temperature is 1.4 ° C, that of the refrigerant is 0.2 ° C and the air flow set point is 20%.
  • the humidity of the air is 94%, its temperature is 1.2 ° C, that of the refrigerant is - 2 ° C and the air flow set point is always 20%.
  • the humidity of the air is 98%, its temperature is 0.9 ° C, that of the refrigerant is -5 ° C and the air flow set point is 40%.
  • the humidity of the air is 94%, its temperature is 0.6 ° C, that of the refrigerant is -7 ° C and the air flow setpoint is again 60% .
  • the hygrometry of the air is 96%, its temperature is 0.5 ° C, that of the refrigerant is -0.5 ° C and the air flow setpoint is again 20%.
  • the humidity of the air is 99%, its temperature is 0.3 ° C, that of the refrigerant is -4 ° C and the air flow setpoint is again 40% .
  • the hygrometry of the air is 96%, its temperature is 0 ° C and the internal fan 9 is stopped (until the hygrometry rate or the temperature varies again) .
  • the method according to the invention makes it possible to accurately control the hygrometry rate of the interior of the refrigerating chamber 3, from a point of equilibrium fixed at the level of the condenser 5 and maintained around a fixed set pressure through ventilation management at this level, as well as the management of the ventilation inside said enclosure 3.
  • said fluid may consist of a coolant, including glycol water.
  • the management of the ventilation is then carried out in the same way to control the hygrometry of the interior of the enclosure 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

L'invention concerne un procédé de régulation de la température et de l'hygrométrie d'un air interne régnant dans une enceinte frigorifique (3) en fonction d'une consigne de température et d'une consigne d'hygrométrie déterminées par un utilisateur, la variation de la température et de l'hygrométrie se faisant par la circulation d'un fluide frigorigène dans une boucle de réfrigération (2) qui possède un compresseur (4), un condenseur (5) et un évaporateur (7), la régulation se faisant par un automate (11) comparant la température et l'hygrométrie mesurées de l'air interne avec les consignes de température et d'hygrométrie. Selon l'invention, quand la température de l'air interne est supérieure à la consigne de température, l'automate (11) active un procédé de production de froid pendant lequel, d'une part, si l'hygrométrie de l'air interne est inférieure à la consigne d'hygrométrie, l'automate (11) régule à la baisse une consigne de débit d'air d'un ventilateur interne (9) adapté à produire un débit d'air au travers de l'évaporateur (7) et régule à la hausse une consigne de fonctionnement du moteur du compresseur (4) de façon à augmenter la température du fluide frigorigène dans l'évaporateur (7) et, en conséquence, à augmenter l'hygrométrie de l'air interne, si l'hygrométrie de l'air interne est supérieure à la consigne d'hygrométrie, l'automate (11) régule à la hausse la consigne de débit d'air du ventilateur interne (9) et à la baisse la consigne de fonctionnement du moteur compresseur (4) de façon à diminuer la température du fluide frigorigène dans l'évaporateur (7) et, en conséquence, à diminuer l'hygrométrie de l'air interne, et si l'hygrométrie de l'air interne est égale à la consigne d'hygrométrie, l'automate (11) maintient inchangées les consignes de débit d'air du ventilateur interne (9) et de fonctionnement du moteur du compresseur (4), et, d'autre part, l'automate (11) active un ventilateur externe (8) adapté à produire un débit d'air au travers du condenseur (5) à une consigne de débit d'air de façon à maintenir constante la pression du fluide frigorigène en sortie du condenseur (5) pendant toute la durée des procédés de production de froid du procédé de régulation, et, quand la température de l'air interne est inférieure ou égale à la consigne de température, l'automate (11) active un procédé d'arrêt de production de froid, et, si l'hygrométrie de l'air interne est inférieure à la consigne d'hygrométrie, l'automate (11) régule la consigne du débit d'air du ventilateur interne (9), et si l'hygrométrie de l'air interne est supérieure ou égale à la consigne d'hygrométrie, l'automate (11) arrête le ventilateur interne (9).

Description

PROCEDE DE REGULATION DE L'ATMOSPHERE D'UNE ENCEINTE
FRIGORIFIQUE
La présente invention entre dans le domaine du stockage et de la conservation de produits alimentaires et agroalimentaires. L'invention vise spécifiquement cette conservation par réfrigération et contrôle de l'atmosphère du lieu de stockage et de conservation.
L'invention trouvera une application préférentielle dans l'amélioration du fonctionnement des enceintes frigorifiques de stockage et de conservation de produits alimentaires . En particulier, l'invention vise à optimiser le fonctionnement des dispositifs de chambre réfrigérée, sous atmosphère contrôlée ou non .
Au sens de la présente invention, on notera que lesdits produits peuvent être frais et constituent des denrées périssables. De façon non limitative, de telles denrées peuvent être des produits végétaux, à savoir des fruits et des légumes. Elle trouvera aussi des applications dans la conservation des viandes et des poissons, des produits laitiers, notamment fermentés comme le fromage, mais aussi le domaine de la salaison de tels produits. Elle vise aussi la conservation d'autres produits naturels, comme les plantes, notamment les fleurs .
De manière connue, la conservation de végétaux destinés à la consommation s'effectue par stockage en chambre froide, à des températures généralement comprises entre -2 et 4 degrés Celsius (°C) . Cette conservation sous atmosphère froide et confinée limite le dessèchement des végétaux et ralentit la plasmolyse, à savoir le stress hydrique qui tend à diminuer le poids du produit, ses qualités organoleptiques et nutritionnelles de l'aliment, mais dégrade aussi leur aspect esthétique. Au niveau du consommateur, ce phénomène se traduit par une perte de la « fraîcheur » d'un produit. En outre, la perte en eau accélère la sénescence des produits, à l'inverse du but recherché de conserver plus longuement lesdits produits. Plus précisément, au cours du refroidissement, la température du produit est supérieure à la température de vapeur saturante de l'atmosphère à l'intérieur de l'enceinte. Ainsi, la pression de la vapeur d'eau à la surface du produit est toujours supérieure à celle qui règne au sein de l'atmosphère, même quand cette dernière est pratiquement saturante. Cet état génère un effet d'évapotranspiration et de dessèchement au niveau des produits .
En vue d'optimiser la conservation, il est donc nécessaire de contrôler l'atmosphère réfrigérée, en particulier l'hygrométrie, afin de maintenir la turgescence et les échanges hygrométriques entre les produits et l'atmosphère réfrigérée, limitant ainsi la perte en eau du produit. Toutefois, la présence d'eau sous forme liquide, notamment par dépôt sous forme de buée ou rosée en surface des produits, favorise localement les nécroses ainsi que le développement microbien et bactérien. En particulier, pour tout produit arrivé au stade de flétrissement , l'humidification favorisera et accélérera son pourrissement .
Une solution connue consiste à effectuer une projection sous pression de particules d'eau, notamment constituées de microgouttelettes, combinée ou non à de la vapeur d'eau, formant un nuage ou brouillard sec qui limite le dépôt d' eau en surface des produits. Toutefois, une telle solution nécessite l'implantation d'une installation hydraulique complexe à installer et à entretenir, obligeant notamment à contrôler la dureté de l'eau, pour limiter les dépôts calcaires dans le circuit, ainsi qu'à la traiter contre les proliférations microbiennes et bactériennes . Ces opérations sont coûteuses et nécessitent souvent l'adjonction des agents de traitement, comme le chlore, préjudiciables à la conservation et la consommation des produits .
En outre, l'injection d'eau peut provoquer la formation de givre, voire de gel, au sein des enceintes réfrigérées à des températures inférieures à zéro degrés Celsius . Il est alors nécessaire de dégivrer l'installation, opération coûteuse. Par ailleurs, pour certains produits, il est nécessaire de contrôler les échanges gazeux au sein de l'enceinte. A titre d'exemple, un fruit climactérique, comme la pomme, la poire ou même la banane, dégage de l'éthylène par phénomène de respiration. Ce composant agit comme hormone végétale, accélérant le développement cellulaire et la maturation. Il est donc nécessaire de contrôler la teneur en éthylène dans l'atmosphère de l'enceinte, afin de contrôler le vieillissement de tels fruits.
Une solution consiste à injecter dans l'enceinte un agent chimique pour contrôler les teneurs en gaz . En reprenant l'exemple susmentionné, afin de contrer les effets de l'éthylène, on injecte un gaz de type cyclopropène (ou « 1- méthylcyclopropène » dit « MCP ») . Toutefois, ce gaz est coûteux et complexe à fabriquer, instable, même s'il est non toxique en vue de la consommation des produits ainsi traités.
Enfin, peu importe le système envisagé, lors de la manutention des produits en vue de les stocker ou de les extraire de l'enceinte, le contrôle de la température et de l'atmosphère est particulièrement difficile. En général, en particulier au moment du stockage de nouveaux produits provenant d'une atmosphère ambiante, l'ouverture de l'enceinte engendre un renouvellement de l'air et un apport calorifique sous forme de chaleur. En réponse à cet apport de chaleur, les systèmes existants opèrent une hausse brutale dans leur fonctionnement, en particulier concernant leur réfrigération pour revenir à la température de consigne désirée. On constate alors une perte en masse des produits allant de 5 à 10 %. Outre, l'aspect économique préjudiciable et la déperdition d'énergie constatée, cette perte s'accompagne inévitablement une diminution des qualités des produits, comme détaillé précédemment .
La présente invention a pour but de pallier les inconvénients de l'état de la technique, en mettant en adéquation tous les organes d'une installation frigorifique (notamment le compresseur, l' évaporateur et le condenseur) et en optimisant leur fonctionnement selon les paramètres souhaités, dans le but de conserver et préserver la qualité des denrées stockées .
Pour ce faire, l'invention vise à maintenir de façon constante le taux d'hygrométrie de l'air dans l'enceinte frigorifique, de façon naturelle, sans adjonction d'eau. L'invention vise non seulement à maintenir un taux d'hygrométrie (par exemple entre 90% et 100%) sur une période de quelques jours, mais de pouvoir de garder constant le taux d'hygrométrie tout au long d'une conservation ou réfrigération dont la durée est typiquement comprise entre 2 et 12 mois .
Ce but est obtenu notamment en fixant la pression du fluide en sortie du condenseur. En particulier, cette pression de refoulement en sortie du condenseur est ajustée autour d'un point de consigne. Ce point de consigne est fixe dans le temps.
Une fois la pression de refoulement en sortie du condenseur fixée, il est alors possible de faire varier précisément le fonctionnement des autres organes de l'installation frigorifique, pour obtenir les conditions optimales pour réguler l'hygrométrie.
L'invention a pour objet un procédé de régulation de la température et de l'hygrométrie d'un air interne régnant dans une enceinte frigorifique en fonction d' une consigne de température et d' une consigne d' hygrométrie déterminées par un utilisateur, la variation de la température et de l'hygrométrie se faisant par la circulation d'un fluide frigorigène dans une boucle de réfrigération qui possède un compresseur, un condenseur et un évaporateur, la régulation se faisant par un automate comparant la température et l'hygrométrie mesurées de l'air interne avec les consignes de température et d'hygrométrie, caractérisé en ce que, quand la température de l'air interne est supérieure à la consigne de température, l'automate active un procédé de production de froid pendant lequel, d'une part, si l'hygrométrie de l'air interne est inférieure à la consigne d'hygrométrie, l'automate régule à la baisse une consigne de débit d'air d'un ventilateur interne adapté à produire un débit d'air au travers de l' évaporateur et régule à la hausse une consigne de fonctionnement du moteur du compresseur de façon à augmenter la température du fluide frigorigène dans l' évaporateur et, en conséquence, à augmenter l'hygrométrie de l'air interne, si l'hygrométrie de l'air interne est supérieure à la consigne d'hygrométrie, l'automate régule à la hausse la consigne de débit d'air du ventilateur interne et à la baisse la consigne de fonctionnement du moteur du compresseur de façon à diminuer la température du fluide frigorigène dans 1 ' évaporateur et, en conséquence, à diminuer l'hygrométrie de l'air interne, et si l'hygrométrie de l'air interne est égale à la consigne d'hygrométrie, l'automate maintient inchangées les consignes de débit d'air du ventilateur interne et de fonctionnement du moteur du compresseur, et, d'autre part, l'automate active un ventilateur externe adapté à produire un débit d' air au travers du condenseur à une consigne de débit d' air de façon à maintenir constante la pression du fluide frigorigène en sortie du condenseur pendant toute la durée des procédés de production de froid du procédé de régulation, et en ce que, quand la température de l'air interne est inférieure ou égale à la consigne de température, l'automate active un procédé d'arrêt de production de froid, et, si l'hygrométrie de l'air interne est inférieure à la consigne d'hygrométrie, l'automate régule la consigne du débit d'air du ventilateur interne, et si l'hygrométrie de l'air interne est supérieure ou égale à la consigne d'hygrométrie, l'automate arrête le ventilateur interne .
Ainsi, le procédé de régulation selon l'invention permet de limiter le stress hydrique subi par les produits, en particulier les fruits et les légumes, assurant le maintien de leur masse volumique et de leur fraîcheur, limitant d'autant leur qualité et leurs pertes nutritionnelles.
Ce stress hydrique est réduit, d'une part, en maintenant un écart de température faible entre la température d' évaporation du fluide frigorigène au sein de l' évaporateur et la température de l'enceinte frigorifique, et, d'autre part, en atteignant la température à laquelle 1 ' atmosphère interne a le taux d'hygrométrie correspondant à celui de la consigne d'hygrométrie (et dans le cas où la consigne d'hygrométrie est de 100%, la température à laquelle l'atmosphère interne devient saturé de vapeur d'eau en s 'approchant du point de rosée) tout en gardant inchangées les conditions barométriques courantes de 1' atmosphère interne .
En outre, le fonctionnement de l'invention est naturel, sans ajout d'aucun agent chimique ou conservateur, ni d'agent de traitement. Il ne fait pas intervenir de circuit hydraulique, évitant les coûts d'entretien y relatifs.
Par ailleurs, la mise en œuvre de l'invention permet de minimiser les durées de fonctionnement des différents organes de l'installation frigorifique, d'éviter certains problèmes liés au fonctionnement de ces organes (par exemple le dérèglement d'un détendeur du circuit de réfrigération, les arrêts des ventilateurs pour cause de disjonction électrique de leurs moteurs motorisations des souffleries qui disjonctent, la prise en glace de l' évaporâteur) , d'augmenter le rendement énergétique, d'optimiser le fonctionnement et la durée de vie de l'installation frigorifique, de diminuer les nuisances sonores et de réaliser une économie d' énergie importante considérable .
De façon subsidiaire, l'invention permet la gestion automatique du dégivrage de l' évaporateur, ce qui permet, en conséquence, de limiter considérablement la perte de poids des produits stockés et de diminuer les dépenses énergétiques de l'installation frigorifique.
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui va suivre des modes de réalisation non limitatifs de l'invention, en référence aux figures annexées, dans lesquelles :
- la figure 1 représente schématiquement le circuit d'une installation au sein de laquelle est mis en œuvre le procédé selon l'invention, ladite figure, montrant les différents organes d'une telle installation et mettant en évidence par des flèches la circulation de l'air aux niveaux de l'extérieur et de l'intérieur de l'enceinte à refroidir ; et
- la figure 2 représente un exemple de relevé d'une courbe des températures de l'air à l'intérieur de l'enceinte lors de la mise en œuvre du procédé selon l'invention.
La figure 1 représente une installation frigorifique 1 qui comprend une boucle de réfrigération 2 et une enceinte frigorifique 3 traversée par la boucle de réfrigération 2 de façon à pouvoir être refroidie par un fluide frigorigène (par exemple du fréon) circulant dans la boucle de réfrigération 2.
Afin de pouvoir produire du froid, la boucle de réfrigération 2 comprend, dans le sens de circulation du fluide frigorigène, un compresseur 4, un condenseur 5, un détendeur 6 et un évaporateur 7. Le compresseur 4, le condenseur 5 sont disposés à l'extérieur de l'enceinte frigorifique 3 alors que 1' évaporateur 7 y est disposé à l'intérieur. Afin de faciliter un accès au détendeur 6, celui-ci peut être disposé hors de l'enceinte frigorifique 3 (mais à proximité immédiate de celui- ci) .
La production de froid est réalisée par une succession de changements d'état du fluide frigorigène qui se réalisent dans la boucle de réfrigération 2 (le fluide frigorigène gazeux devient liquide dans le condenseur 5, il devient partiellement gazeux dans le détendeur 6, et redevient gazeux dans 1' évaporateur 7) ; ces changements d'état génèrent des variations de température et de pression du fluide frigorigène et de l'air régnant autour des échangeurs de chaleur que forment le condenseur 5 et l' évaporateur 7 (une augmentation de la pression et de la température du fluide frigorigène dans le compresseur 4, une augmentation de la température de l'air externe régnant autour du condenseur 5, une baisse de la pression et de la température du fluide frigorigène dans l' évaporateur 7, et une baisse de la température de l'air interne régnant autour de 1 ' évaporateur 7).
Afin d'augmenter les échanges thermiques au niveau du condenseur 5 et de 1 ' évaporateur 7, au condenseur 5 est associé un ventilateur externe 8 (situé hors de l'enceinte frigorifique 3) permettant de générer un débit d' air au travers du condenseur 5, et à 1 ' évaporateur 7 est associé un ventilateur interne 9 (situé dans l'enceinte frigorifique 3) permettant de générer un débit d'air au travers de l' évaporateur 7.
Le compresseur 4 , le ventilateur externe 8 et le ventilateur interne 9 comprennent chacun des moteurs permettant de faire varier leurs puissances respectives (puissance du compresseur 4 et vitesses des ventilateurs 8, 9) . Le moteur du ventilateur externe 8 peut être à commutation de pôle ou à variation de fréquence . Il en est de même du moteur du ventilateur interne 9.
Par ailleurs, la boucle de réfrigération 2 comprend une vanne d'approvisionnement 10 qui permet d'empêcher ou d'autoriser la circulation du fluide frigorigène dans la boucle de réfrigération 2. Cette vanne d'approvisionnement 10 est de préférence située hors de l'enceinte frigorifique 3, située entre le condenseur 5 et le détendeur 6.
L'installation frigorifique comprend également un automate
11 permettant de réguler le compresseur 4, le ventilateur externe 8, le ventilateur interne 9 et la vanne d'approvisionnement 10 en fonction d'une consigne de température et d'une consigne d'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3. Les régulations du compresseur 4, du ventilateur externe 8 et/ou du ventilateur interne 9 sont faites par l'automate 11. Les régulations du compresseur 4 et du ventilateur interne 9 sont faites suivant un algorithme. La régulation du ventilateur externe 8 est faite suivant une régulation PID.
L'automate 11 est par ailleurs relié à différentes sondes 12, 13, 14, 15, 16, 17, 18 permettant de connaître les paramètres physiques du fluide frigorigène, de l'air dans l'enceinte frigorifique 3 et de l'air autour du détendeur 5 et du ventilateur externe 8. Dans le présent mode de réalisation, ces sondes comprennent une sonde d'hygrométrie 12 disposée dans l'enceinte frigorifique 3, une première sonde de température 13 disposée au niveau du côté de l'aspiration de l'air du ventilateur interne 9, une seconde sonde de température 14 disposée au niveau du côté du soufflage de l'air du ventilateur interne 9, une sonde de dégivrage 15 disposée sur 1 ' évaporateur 7 de manière à détecter la présence de givre, une troisième sonde de température 16 disposée à proximité du ventilateur externe 8 (de préférence au niveau du côté de l'aspiration de l'air), une première sonde de pression 17 disposée en entrée compresseur 4 et une seconde sonde de pression 18 disposée entre le compresseur 4 et le condenseur 5.
L'invention concerne un procédé de régulation de la température et de 1 ' hygrométrie de 1 ' air se trouvant à l'intérieur de l'enceinte frigorifique 3 en fonction de la consigne de température et de la consigne d'hygrométrie qui sont rentrées dans l'automate 11 par un utilisateur. Ces consignes de température et d' hygrométrie dépendent des produits conservés dans l'enceinte frigorifique 3.
La régulation est réalisée par l'automate 11 qui compare, d'une part, la température de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 avec et la consigne de température, et, d'autre part, l'hygrométrie mesurée par la sonde d'hygrométrie 12 avec la consigne d'hygrométrie. Dans le cas où, dans l'enceinte frigorifique il y a une première sonde de température 13 disposée au niveau du côté de l'aspiration de l'air du ventilateur interne 9 et une seconde sonde de température 14 disposée au niveau du côté du soufflage de l'air du ventilateur interne 9, la température qui est comparée à la consigne de température est de préférence celle mesurée par la première sonde de température 13.
Pendant le procédé de régulation, il est possible que la température de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 soit supérieure à la consigne de température ou qu'elle soit inférieure ou égale à cette consigne. Dans le cas où la température de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 est supérieure à la consigne de température, l'automate 11 active un procédé de production de froid de façon à ce que la température de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 baisse et atteigne la consigne de température. Dans le cas où la température de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 est inférieure ou égale à la consigne de température, l'automate 11 active un procédé d'arrêt de production de froid. En fonction de la variation de la température, l'automate 11 active successivement le procédé de production de froid et le procédé d'arrêt de production de froid.
De préférence, préalablement à l'activâtion de chaque procédé de production de froid, l'automate 11 vérifie que les différents organes compris dans la boucle de réfrigération 2 sont en état de pouvoir fonctionner correctement . Dans le cas où un organe n'est pas en état de fonctionner correctement, l'automate 11 arrête le procédé de régulation et émet une alarme .
Le procédé de production de froid comprend une étape d'activation de la boucle de réfrigération 2, suivie d'une série d'étapes de contrôle de la régulation de la température et de l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3.
Pendant l'étape d'activation de la boucle de réfrigération
2, l'automate 11 ouvre la vanne d'approvisionnement 10 puis active le compresseur 4.
Pour rappel, pendant l'ensemble de la série des étapes de contrôle de la régulation de la température et de l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique
3, l'automate 11 compare l'hygrométrie et la température de l'air avec les consignes d'hygrométrie et de température. Il est possible que l'hygrométrie de l'air soit supérieure à la consigne d'hygrométrie, ou inférieure à cette consigne, ou égale à celle-ci. Quel que soit l'un des trois cas, afin de faire varier l'hygrométrie de l'intérieur de l'enceinte 3, l'automate 11 régule, d'une part, une consigne variable de fonctionnement du compresseur 4 pour faire varier la température du fluide frigorigène dans 1 ' évaporateur 7, et, d'autre part, une consigne variable de débit d'air du ventilateur interne 9. En fonction de la variation de l'écart entre l'hygrométrie mesurée et la consigne d'hygrométrie, l'automate 11 régule différemment les consignes de débit d'air du ventilateur interne 9 et de fonctionnement du moteur du compresseur 4.
Si l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 est inférieure à la consigne d'hygrométrie, l'automate 11 régule la consigne de débit d'air du ventilateur interne 9 à la baisse et la consigne de fonctionnement du moteur du compresseur 4 à la hausse. Du fait que la consigne de fonctionnement du moteur du compresseur 4 augmente, la température du fluide frigorigène dans 1' évaporateur 7 augmente. Du fait que la température du fluide frigorigène dans l' évaporateur 7 augmente et que le débit d'air du ventilateur interne 9 baisse, l'eau précédemment piégée sur la surface d'échange thermique de l' évaporateur 7 est libérée et, en conséquence, l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 augmente.
Si l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 est supérieure à la consigne d'hygrométrie, l'automate 11 régule la consigne de débit d'air du ventilateur interne 9 à la hausse et la consigne de fonctionnement du moteur du compresseur 4 à la baisse. Du fait que la consigne de fonctionnement du moteur du compresseur 4 baisse, la température du fluide frigorigène dans l' évaporateur 7 baisse. Du fait que la température du fluide frigorigène dans 1' évaporateur 7 baisse et que le débit d'air du ventilateur interne 9 augmente, l'eau contenue dans l'air est piégée sur la surface d'échange thermique de l' évaporateur 7 et, en conséquence, l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 diminue.
Si l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 est égale à la consigne d'hygrométrie, l'automate 11 maintient égales la consigne de débit d' air du ventilateur externe 8 et la consigne de fonctionnement du compresseur 4.
La surface d'échange thermique de 1 ' évaporateur 7 dépend des produits à conserver dans l'enceinte frigorifique 3. Ainsi, selon la respiration cellulaire des produits, le rapport de la surface d'échange thermique de l' évaporateur 7 sur le volume interne de l'enceinte frigorifique 3 peut varier de 0,4 m2/m3 à 1,5 m2/m3. Plus précisément, plus la conservation des produits demandera une consigne d'hygrométrie élevée, plus il sera nécessaire d'avoir un rapport élevé, typiquement pour une consigne proche de 100 % d'hygrométrie, le rapport devra être compris entre 1,3 m2/m3 et 1,5 m2/m3.
La valeur initiale de la consigne variable de fonctionnement du moteur du compresseur 4 est préalablement rentrée dans l'automate 11. En général, cette valeur dépend du produit conservé dans l'enceinte frigorifique 3. Typiquement la valeur initiale de la consigne variable de fonctionnement du moteur du compresseur 4 correspond à un pourcentage de la puissance maximale de ce moteur, par exemple 30 %.
La variation de la valeur de la consigne de fonctionnement du moteur du compresseur 4 est déterminée par l'automate 11 à partir de l'écart entre l'hygrométrie mesurée par la sonde d' hygrométrie 12 et la consigne d' hygrométrie . Typiquement la valeur de la variation de la consigne de fonctionnement du moteur du compresseur 4 correspond à un pourcentage de la puissance maximale de ce moteur, par exemple 10 %.
La valeur initiale de la consigne variable du débit d' air du ventilateur interne 9 est préalablement rentrée dans l'automate 11. En général, cette valeur dépend du produit conservé dans l'enceinte frigorifique 3 et tient compte du fait que la température de l'air régnant dans l'enceinte frigorifique 3 est bien au-dessus de la consigne. En général, la valeur initiale de la consigne variable du débit d'air du ventilateur interne 9 correspond à un pourcentage relativement élevé de la puissance maximale du moteur du ventilateur interne 9 (typiquement, 50 %) . La variation de la valeur de la consigne du débit d' air du ventilateur interne 9 est déterminée par l'automate 11.
Cette variation de la valeur de la consigne du débit d'air du ventilateur interne 9 peut être déterminée à partir de l'écart entre l'hygrométrie mesurée par la sonde d'hygrométrie 12 et la consigne d'hygrométrie ou à partir de l'écart entre la température de l'air régnant dans l'enceinte frigorifique et la consigne de température. Il est préférable de déterminer la variation de la valeur de la consigne du débit d'air du ventilateur interne 9 à partir de l'écart entre l'hygrométrie mesurée et la consigne d' hygrométrie .
La valeur de la variation de la consigne variable du débit d'air du ventilateur interne 9 peut correspondre à un pourcentage de la puissance maximale du moteur du ventilateur interne 9.
La consigne du débit d'air du ventilateur interne 9 peut être déterminée en fonction, soit de l'écart entre la consigne de température et la température mesurée, soit de l'écart entre la consigne d'hygrométrie et l'hygrométrie mesurée, selon ce qui est utilisé. Plus l'écart est important, plus la consigne du débit d'air du ventilateur interne 9 est élevée. Ainsi, pour un écart supérieur ou égal à 7 °C, la consigne peut être de 100 % de la puissance du moteur du ventilateur interne 9 ; pour un écart compris entre 5 °C et 7 °C, la consigne peut être de 80 % de la puissance du moteur du ventilateur interne 9 ; pour un écart compris entre 3 °C et 5 °C, la consigne peut être de 65 % de la puissance du moteur du ventilateur interne 9 ; pour un écart compris entre 1 °C et 3 °C, la consigne peut être de 50 % de la puissance du moteur du ventilateur interne 9 ; et pour un écart inférieur à 1°C, la consigne peut être de 30 % de la puissance du moteur du ventilateur interne 9) .
De préférence, la variation de la valeur de la consigne du débit d' air du ventilateur interne 9 est déterminée à partir de l'écart entre l'hygrométrie mesurée et la consigne d'hygrométrie et de l'écart entre la température mesurée et la consigne de température, le choix de l'écart utilisé étant déterminé à partir de la vitesse de la baisse de la température de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3. De préférence, tant que la vitesse de la baisse de la température de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 est supérieure à une vitesse minimale, la variation de la valeur de la consigne du débit d'air du ventilateur interne 9 est déterminée à partir de l'écart entre l'hygrométrie mesurée et la consigne d'hygrométrie, et, quand la vitesse de la baisse de la température de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 devient inférieure ou égale à la vitesse minimale, la variation de la valeur de la consigne du débit d'air du ventilateur interne 9 est déterminée à partir de l'écart entre la température mesurée et la consigne de température. La vitesse minimale de la baisse de la température de l'air peut être exprimée par une vitesse de baisse de température (par exemple, 0,1 °C en 5 minutes) ou par un écart minimal entre la température mesurée de l'air dans l'enceinte frigorigène et la température du fluide frigorigène dans l' évaporateur 7 (par exemple 0,5 °C) . De préférence, quand la variation de la valeur de la consigne du débit d'air du ventilateur interne 9 est déterminée à partir de l'écart entre l'hygrométrie mesurée et la consigne d'hygrométrie, la consigne du débit d'air est d'autant plus élevée que l'écart est important, et, quand la variation de la valeur de la consigne du débit d' air du ventilateur interne 9 est déterminée à partir de l'écart entre la température mesurée et la consigne de température, afin d'augmenter la vitesse de la baisse de la température de l'air, la consigne du débit d'air est augmentée d'une valeur fixe (par exemple un pourcentage de la puissance maximale du moteur du ventilateur interne 9 - ici, 10 %) . Si, du fait de l'augmentation de la consigne du débit d'air pour augmenter la vitesse de la baisse de la température de l'air, la vitesse de la baisse de la température devient supérieure à la vitesse minimale de baisse, alors la variation de la valeur de la consigne du débit d' air est à nouveau déterminée à partir de l'écart entre l'hygrométrie mesurée et la consigne d'hygrométrie, et si elle reste inférieure ou égale à la vitesse minimale, la variation de la valeur de la consigne du débit d'air du ventilateur interne 9 continue d'être déterminée est déterminée à partir de l'écart entre la température mesurée et la consigne de température .
Du fait que l'automate 11 régule le fonctionnement du moteur du compresseur 4 pour réguler la température du fluide frigorigène dans 1 ' évaporateur 7, le maintien constant de la pression du fluide frigorigène en sortie du compresseur 4 n'est plus régulé par ce dernier. De ce fait, pendant l'ensemble de la série des étapes de contrôle de la régulation de la température et de 1 ' hygrométrie de 1 ' air se trouvant à l'intérieur de l'enceinte frigorifique 3, l'automate 11 active le ventilateur externe 8 à une consigne variable de débit d'air de façon à maintenir constante la pression du fluide frigorigène en sortie du condenseur 5 (et donc en entrée du détendeur 6) pendant toute la durée des procédés de production de froid du procédé de régulation de la température et de l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3. La pression du fluide frigorigène en sortie du condenseur 5 peut ainsi être fixée à 20 bars.
La valeur initiale de la consigne variable du débit d' air du ventilateur externe 8 est préalablement rentrée dans l'automate 11. En général, cette valeur initiale de la consigne variable du débit d' air du ventilateur externe 8 correspond à un pourcentage de la puissance maximale du moteur du ventilateur externe 8 (en général, cette valeur est nulle, mais, selon le type de produits conservés dans l'enceinte frigorifique 3, elle peut être non nulle, par exemple comprise entre 5 et 20%) .
La variation de la valeur de la consigne du débit d' air du ventilateur externe 8 est déterminée par l'automate 11 à partir, principalement de l'écart entre la consigne fixe de pression en sortie du condenseur 5 et la pression mesurée par la seconde sonde de pression 18 qui dépend de la consigne de fonctionnement du compresseur 4. De préférence, elle est également déterminée en fonction de la température mesurée par la troisième sonde de température 16. La consigne du débit d'air du ventilateur externe 8 est déterminée de façon à extraire le nombre de calories nécessaires du fluide frigorigène pour atteindre la consigne fixe de pression. Ainsi, si la consigne de fonctionnement du moteur du compresseur 4 augmente, l'automate 11 augmente la valeur de la consigne du débit d' air du ventilateur externe 8 de façon à extraire un plus grand nombre de calories au niveau du condenseur 5. Et si la consigne de fonctionnement du compresseur 4 diminue, l'automate 11 diminue la valeur de la consigne du débit d'air du ventilateur externe 8 ou arrête le ventilateur externe 8 de façon à extraire un plus petit nombre de calories au niveau du condenseur 5. Typiquement la valeur de la variation de la consigne variable du débit d' air du ventilateur externe 8 correspond à un pourcentage de la puissance maximale du moteur du ventilateur externe 8 .
De ce fait, la pression du fluide frigorigène en sortie du condenseur 5 est maintenue constante et sert de point d'équilibre pour le fluide frigorigène, et l'automate 11 peut simultanément, et avec une extrême précision, réguler la puissance du moteur du compresseur 4, la température du fluide frigorigène dans l' évaporâteur 7, la vitesse du débit d'air du ventilateur interne 9 et la température et l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3.
Le procédé d'arrêt de production de froid comprend une étape de désactivation de la boucle de réfrigération 2, suivie d'une série d'étapes de contrôle de la régulation de l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3.
Pendant l'étape de désactivation de la boucle de réfrigération 2, l'automate 11 désactive le compresseur 4 et le ventilateur externe 8 et ferme la vanne d'approvisionnement 10.
Pendant l'ensemble de la série des étapes de contrôle de la régulation de l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3, l'automate 11 compare l'hygrométrie mesurée par la sonde d'hygrométrie 12 avec la consigne d'hygrométrie. Il est possible que l'hygrométrie de l'air soit inférieure à la consigne d'hygrométrie, ou supérieure ou égale à cette consigne. L'automate 11 régule différemment la consigne variable de débit d' air du ventilateur interne 9 afin de faire varier l'hygrométrie de l'intérieur de l'enceinte 3.
Si l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 est inférieure à la consigne d'hygrométrie, l'automate 11 régule la consigne de débit d'air du ventilateur interne 9 de façon à ce que l'hygrométrie mesurée se rapproche de la consigne d'hygrométrie. Typiquement, l'automate régule la consigne du débit d'air du ventilateur interne à la baisse. La régulation du débit d'air du ventilateur interne 9 peut être réalisée en fonction de l'écart entre la consigne d'hygrométrie et l'hygrométrie mesurée, plus l'écart étant important, plus la consigne du débit d'air étant élevée .
Si l'hygrométrie de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 est supérieure ou égale à la consigne d'hygrométrie, l'automate 11 arrête le ventilateur interne 9.
La valeur initiale de la consigne variable du débit d' air du ventilateur interne 9 est préalablement rentrée dans l'automate 11. En général, cette valeur dépend du produit conservé dans l'enceinte frigorifique 3 et tient compte du fait que la température de l'air régnant dans l'enceinte frigorifique est égale à la consigne. En général, la valeur initiale de la consigne variable du débit d' air du ventilateur interne 9 correspond à un pourcentage faible de la puissance maximale du moteur du ventilateur interne 9 (typiquement, 10 %) . La variation de la valeur de la consigne du débit d'air du ventilateur interne 9 est déterminée par l'automate 11. De préférence, cette variation de la valeur de la consigne du débit d' air du ventilateur interne 9 est déterminée à partir de l'écart entre l'hygrométrie mesurée par la sonde d'hygrométrie 12 et la consigne d'hygrométrie. La valeur de la variation de la consigne variable du débit d' air du ventilateur interne 9 peut correspondre à un pourcentage de la puissance maximale du moteur du ventilateur interne 9.
Le procédé conforme à la présente invention permet de réguler précisément la température et l'hygrométrie de l'air qui se trouve à l'intérieur de l'enceinte frigorifique 3 en faisant varier le débit d'air du ventilateur interne 9. La consigne d'hygrométrie, pouvant être comprise entre 50 % à 100 % d'hygrométrie peut être respectée à au moins 1 % près.
Par ailleurs, en comparant les températures mesurées par les première et seconde sondes de température 13, 14, il est possible de réduire le différentiel de températures entre la température de l'air se trouvant à l'intérieur de l'enceinte frigorifique 3 et la température d' évaporation du fluide frigorigène au niveau de l' évaporateur 7. Ainsi, le procédé de régulation selon l'invention permet d'obtenir un différentiel de températures compris entre 0,2 °C et 3 °C (et non entre 3 °C et 10 °C comme dans les dispositifs frigorifiques connus) . Cette baisse du différentiel de températures permet aussi une économie d'énergie et, quand la température de l'air à l'intérieur de l'enceinte frigorifique 3 est inférieure à 0 °C, une diminution du risque de givre sur les surfaces d'échange thermique de l' évaporateur 7.
Dans le cas où la température de l'air à l'intérieur de l'enceinte frigorifique 3 est inférieure à 0 °C, outre le fait que le risque de givre est considérablement diminué, la sonde de dégivrage 15 permet à l'automate 11 d'activer un procédé de dégivrage uniquement si nécessaire (et non pas de façon systématique comme dans les dispositifs frigorifiques connus) et uniquement pendant le temps nécessaire .
Quand la sonde de dégivrage 15 indique la présence de givre, l'automate 11 soit active le ventilateur interne 9 (s'il est arrêté) soit augmente sa consigne de débit d'air (s'il est activé) de sorte que le givre fonde par l'action de l'air forcé .
Le déclenchement du procédé de dégivrage peut également être réalisé du fait de la mesure par la seconde sonde de température 14 d'une valeur indiquant la présence de glace (de givre) . Il est possible d'utiliser la chaleur latente de la fusion de la glace. Ce type de dégivrage permet notamment de faire remonter le taux d'hygrométrie.
La présente invention permet d' avoir un écart faible entre les températures mesurées par les première et seconde sondes de température 13, 14 (inférieur à 3°C) et d'ajuster en permanence le débit d'air du ventilateur interne 9, le débit d'air du ventilateur externe 8 et le fonctionnement du compresseur 4. Il en découle que 1 ' évaporâtion d'eau à la surface des denrées stockées est minimale, voire nulle.
Cette gestion de l'hygrométrie est effectuée précisément grâce à une variation très faible de la température de l'air dans l'enceinte frigorifique 3, à moins de ventilation et surtout à une gestion de différents paramètres suivant le diagramme de l'air humide, ces paramètres étant mesurés en temps réel dans l'enceinte frigorifique 3.
A titre d'exemple, la figure 2 montre, en fonction du temps, une courbe 100 illustrant l'évolution des températures de l'air mesurées à l'intérieur de l'enceinte frigorifique 3. La ligne temporelle des abscisses n'est pas régulière mais la durée de chacun de ses intervalles de temps y est stipulée. La mise en œuvre du procédé permet de gérer la température à 0,1 °C près.
Dans l'exemple, la consigne d'hygrométrie de l'air dans l'enceinte frigorifique 3 est de 96 % et la consigne de température de cet air est de 0°C. Comme illustré sur la figure 2, c'est le fluide frigorigène (courbe 101) qui est refroidi avant l'air (courbe 100).
Plusieurs points de contrôle 102 à 110 ont été mis en évidence sur la figure 2.
Le point 102 correspond à l'ouverture de la vanne d'approvisionnement 10, les températures de l'air et du fluide frigorigène sont proches de 2 °C.
Au point 103, l'hygrométrie de l'air est de 98 %, sa température est de 1,9 °C, la température du fluide frigorigène dans l' évaporateur 7 est de -5 °C, et la consigne de débit d'air du ventilateur interne 9 est de 60 % de la puissance maximale du moteur du ventilateur, ces 60 % correspondent à un taux de brassage de 30 volumes de l'enceinte frigorifique 3 par heure .
Au point 104, l'hygrométrie de l'air est de 99 %, sa température est de 1,6 °C, celle du fluide frigorigène est de - 7 °C et la consigne de débit d' air est toujours de 60 % .
Au point 105, l'hygrométrie de l'air est de 91 %, sa température est de 1,4 °C, celle du fluide frigorigène est de 0,2 °C et la consigne du débit d'air est de 20 %.
Au point 106, l'hygrométrie de l'air est de 94 %, sa température est de 1,2 °C, celle du fluide frigorigène est de - 2 °C et la consigne du débit d'air est toujours de 20 %.
Au point 107, l'hygrométrie de l'air est de 98 %, sa température est de 0,9 °C, celle du fluide frigorigène est de - 5 °C et la consigne du débit d'air est de 40 %.
Au point 108, l'hygrométrie de l'air est de 94 %, sa température est de 0,6 °C, celle du fluide frigorigène est de - 7 °C et la consigne du débit d'air est à nouveau de 60 %.
Au point 109, l'hygrométrie de l'air est de 96 %, sa température est de 0,5 °C, celle du fluide frigorigène est de - 0,5 °C et la consigne du débit d'air est à nouveau de 20 %.
Au point 110, l'hygrométrie de l'air est de 99 %, sa température est de 0,3 °C, celle du fluide frigorigène est de - 4 °C et la consigne du débit d'air est à nouveau de 40 %.
En fin de cycle, au point 111, l'hygrométrie de l'air est de 96 %, sa température est de 0 °C et le ventilateur interne 9 est arrêté (jusqu'à ce que le taux d'hygrométrie ou la température varie de nouveau) .
Ainsi, le procédé selon l'invention permet de contrôler avec exactitude le taux d'hygrométrie de l'intérieure de l'enceinte frigorifique 3, à partir d'un point d'équilibre fixé au niveau du condenseur 5 et maintenu autour d'une pression de consigne fixe au travers de la gestion de la ventilation à ce niveau, ainsi que la gestion de la ventilation à l'intérieur de ladite enceinte 3. Selon un mode alternatif de réalisation, ledit fluide peut être constitué d'un liquide réfrigérant, notamment de l'eau glycolée. La gestion de la ventilation s'effectue alors de la même façon pour contrôler l'hygrométrie de l'intérieur de l'enceinte 3.

Claims

REVENDICATIONS
Procédé de régulation de la température et de l'hygrométrie d'un air interne régnant dans une enceinte frigorifique (3) en fonction d'une consigne de température et d'une consigne d'hygrométrie déterminées par un utilisateur, la variation de la température et de l'hygrométrie se faisant par la circulation d'un fluide frigorigène dans une boucle de réfrigération (2) qui possède un compresseur (4) , un condenseur (5) et un évaporateur (7) , la régulation se faisant par un automate (11) comparant la température et l'hygrométrie mesurées de l'air interne avec les consignes de température et d'hygrométrie, caractérisé en ce que, quand la température de l'air interne est supérieure à la consigne de température, l'automate (11) active un procédé de production de froid pendant lequel, d'une part, si l'hygrométrie de l'air interne est inférieure à la consigne d'hygrométrie, l'automate (11) régule à la baisse une consigne de débit d'air d'un ventilateur interne (9) adapté à produire un débit d'air au travers de 1' évaporateur (7) et régule à la hausse une consigne de fonctionnement du moteur du compresseur (4) de façon à augmenter la température du fluide frigorigène dans 1' évaporateur (7) et, en conséquence, à augmenter l'hygrométrie de l'air interne, si l'hygrométrie de l'air interne est supérieure à la consigne d'hygrométrie, l'automate (11) régule à la hausse la consigne de débit d'air du ventilateur interne (9) et à la baisse la consigne de fonctionnement du moteur compresseur (4) de façon à diminuer la température du fluide frigorigène dans l' évaporateur (7) et, en conséquence, à diminuer l'hygrométrie de l'air interne, et si l'hygrométrie de l'air interne est égale à la consigne d'hygrométrie, l'automate (11) maintient inchangées les consignes de débit d'air du ventilateur interne (9) et de fonctionnement du moteur du compresseur (4), et, d'autre part, l'automate (11) active un ventilateur externe (8) adapté à produire un débit d'air au travers du condenseur (5) à une consigne de débit d'air de façon à maintenir constante la pression du fluide frigorigène en sortie du condenseur (5) pendant toute la durée des procédés de production de froid du procédé de régulation, et en ce que, quand la température de l'air interne est inférieure ou égale à la consigne de température, l'automate (11) active un procédé d'arrêt de production de froid, et, si l'hygrométrie de l'air interne est inférieure à la consigne d'hygrométrie, l'automate (11) régule la consigne du débit d'air du ventilateur interne (9), et si l'hygrométrie de l'air interne est supérieure ou égale à la consigne d'hygrométrie, l'automate (11) arrête le ventilateur interne (9) .
PCT/FR2015/050293 2014-02-06 2015-02-06 Procede de regulation de l'atmosphere d'une enceinte frigorifique WO2015118277A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES15709224T ES2927796T3 (es) 2014-02-06 2015-02-06 Procedimiento de regulación de la atmósfera de un recinto frigorífico
PL15709224.8T PL3105517T3 (pl) 2014-02-06 2015-02-06 Sposób regulacji atmosfery w komorze chłodniczej
EP15709224.8A EP3105517B1 (fr) 2014-02-06 2015-02-06 Procédé de regulation de l'atmosphère d'une enceinte frigorifique
HRP20221133TT HRP20221133T1 (hr) 2014-02-06 2015-02-06 Postupak reguliranja atmosfere u rashladnom prostoru
DK15709224.8T DK3105517T3 (da) 2014-02-06 2015-02-06 Fremgangsmåde til regulering af atmosfære i kølerum

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1450901 2014-02-06
FR1450901A FR3017200A1 (fr) 2014-02-06 2014-02-06 Procede de regulation de l'atmosphere d'une enceinte frigorifique.
PCT/FR2014/050767 WO2015118232A1 (fr) 2014-02-06 2014-03-31 Procede de regulation de l'atmosphere d'une enceinte frigorifique
FRPCT/FR2014/050767 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015118277A1 true WO2015118277A1 (fr) 2015-08-13

Family

ID=50729638

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2014/050767 WO2015118232A1 (fr) 2014-02-06 2014-03-31 Procede de regulation de l'atmosphere d'une enceinte frigorifique
PCT/FR2015/050293 WO2015118277A1 (fr) 2014-02-06 2015-02-06 Procede de regulation de l'atmosphere d'une enceinte frigorifique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050767 WO2015118232A1 (fr) 2014-02-06 2014-03-31 Procede de regulation de l'atmosphere d'une enceinte frigorifique

Country Status (9)

Country Link
EP (1) EP3105517B1 (fr)
DK (1) DK3105517T3 (fr)
ES (1) ES2927796T3 (fr)
FR (2) FR3017200A1 (fr)
HR (1) HRP20221133T1 (fr)
HU (1) HUE060069T2 (fr)
PL (1) PL3105517T3 (fr)
PT (1) PT3105517T (fr)
WO (2) WO2015118232A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796241B2 (en) 2020-10-14 2023-10-24 Viking Range, Llc Method and apparatus for controlling humidity within a compartment of refrigeration appliance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105940981B (zh) * 2016-06-15 2023-06-23 广西壮族自治区农业科学院甘蔗研究所 一种利用1-mcp研究苗期甘蔗抗旱性的装置
US10955164B2 (en) 2016-07-14 2021-03-23 Ademco Inc. Dehumidification control system
FR3122722B1 (fr) * 2021-05-05 2023-04-07 Dpkl Procédé de pilotage de la température et de l’hygrométrie de l’air contenu dans une enceinte réfrigérée

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062276A (en) * 1990-09-20 1991-11-05 Electric Power Research Institute, Inc. Humidity control for variable speed air conditioner
US20070137227A1 (en) * 2003-06-11 2007-06-21 Bsh Bosch Und Siemens Hausgerate Refrigeration device comprising controlled de-humidification
EP2447651A1 (fr) * 2010-10-27 2012-05-02 Whirlpool Corporation Appareil de réfrigération doté de contrôle de l'humidité et procédé de contrôle d'un tel appareil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2546084A1 (fr) * 2011-07-12 2013-01-16 A.P. Møller - Mærsk A/S Contrôle de l'humidité dans un conteneur de transport réfrigéré doté d'un compresseur à fonctionnement intermittent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062276A (en) * 1990-09-20 1991-11-05 Electric Power Research Institute, Inc. Humidity control for variable speed air conditioner
US20070137227A1 (en) * 2003-06-11 2007-06-21 Bsh Bosch Und Siemens Hausgerate Refrigeration device comprising controlled de-humidification
EP2447651A1 (fr) * 2010-10-27 2012-05-02 Whirlpool Corporation Appareil de réfrigération doté de contrôle de l'humidité et procédé de contrôle d'un tel appareil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796241B2 (en) 2020-10-14 2023-10-24 Viking Range, Llc Method and apparatus for controlling humidity within a compartment of refrigeration appliance

Also Published As

Publication number Publication date
PT3105517T (pt) 2022-09-23
EP3105517B1 (fr) 2022-08-10
DK3105517T3 (da) 2022-10-03
ES2927796T3 (es) 2022-11-11
FR3017201A1 (fr) 2015-08-07
EP3105517A1 (fr) 2016-12-21
HRP20221133T1 (hr) 2022-11-25
WO2015118232A1 (fr) 2015-08-13
HUE060069T2 (hu) 2023-01-28
PL3105517T3 (pl) 2022-10-31
FR3017200A1 (fr) 2015-08-07
FR3017201B1 (fr) 2019-08-02

Similar Documents

Publication Publication Date Title
FR3017201B1 (fr) Procede de regulation de l'atmosphere d'une enceinte frigorifique
EP3166421B1 (fr) Installation de decongelation ou de temperage de produits alimentaires congeles
AU2018233477B2 (en) Ripening chamber and method for ripening fruit
CH424446A (fr) Appareil pour conserver des matières animales et végétales périssables
JP6362467B2 (ja) 真空冷却装置
EP4086544A1 (fr) Procédé de pilotage de la température et de l'hygrométrie de l air contenu dans une enceinte réfrigérée
FR2977013A1 (fr) Procede et dispositif de refrigeration par le vide.
WO2020175102A1 (fr) Procédé de séchage d'aliments, réfrigérateur, stockage et procédé de production d'aliments séchés
JP3099013B2 (ja) 生鮮品の貯蔵方法
FR2589330A1 (fr) Procede de conservation a l'etat frais des fruits et legumes decoupes prets a dresser et des viandes piecees cuites ou precuites
CA3062711A1 (fr) Procede d'enrobage continu de produits alimentaires, notamment surgeles, avec chauffage maitrise de rotor(s)
RU2467262C2 (ru) Установка для сверхбыстрой заморозки пищевых продуктов путем прямого контакта с дозированным жидким азотом
FR2996985A1 (fr) Procede de fermentation
EA045301B1 (ru) Способ регулирования температуры и влажности воздуха, содержащегося в закрытом охлаждаемом пространстве
FR2957494A1 (fr) Dispositif compact, manuel ou tout automatique, pour le prerefroidissment sous vide, rapide, homogene et a coeur, de tous types de produits agro-alimentaires et vegetaux, frais, ultra-frais,....
KR100422020B1 (ko) 곡물 보관용 저온진공용기 시스템
CH512881A (fr) Procédé et dispositif pour la conservation du pain à l'état frais
CN115978875A (zh) 冰箱的控制方法及冰箱
CN115978874A (zh) 冰箱的控制方法及冰箱
FR2844871A1 (fr) Meubles frigorifiques de vente comportant des moyens de degivrage et/ou de rechauffement des allees
FR2908873A1 (fr) Refroidissement par circulation d'un fluide
JPS6312271A (ja) 冷凍品の解凍及び冷蔵方法
CA3050007A1 (fr) Procede et systeme de controle d'atmosphere de denrees
JPH0779666B2 (ja) 食品の解凍装置
BE431363A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15709224

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015709224

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015709224

Country of ref document: EP