WO2015117778A1 - Schwingungsdämpfer mit einem generatoranschluss - Google Patents

Schwingungsdämpfer mit einem generatoranschluss Download PDF

Info

Publication number
WO2015117778A1
WO2015117778A1 PCT/EP2015/050199 EP2015050199W WO2015117778A1 WO 2015117778 A1 WO2015117778 A1 WO 2015117778A1 EP 2015050199 W EP2015050199 W EP 2015050199W WO 2015117778 A1 WO2015117778 A1 WO 2015117778A1
Authority
WO
WIPO (PCT)
Prior art keywords
damper
vibration damper
generator
torsion
torsion damper
Prior art date
Application number
PCT/EP2015/050199
Other languages
English (en)
French (fr)
Inventor
Robert Pradel
Helmut Baalmann
Andreas Förster
Eberhard Simon
Achim Thomae
Sebastian Schneider
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Priority to US15/116,469 priority Critical patent/US20170012495A1/en
Publication of WO2015117778A1 publication Critical patent/WO2015117778A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/14Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers accumulating utilisable energy, e.g. compressing air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/08Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/12Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted for accumulation of energy to absorb shocks or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/14Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions combined with a friction coupling for damping vibration or absorbing shock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • F16F15/0235Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means where a rotating member is in contact with fluid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1853Rotary generators driven by intermittent forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/22Rotary Damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/23Friction Damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/416Fluid actuator using a pump, e.g. in the line connecting the lower chamber to the upper chamber of the actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/60Vehicles using regenerative power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/22Vibration damping

Definitions

  • the invention relates to a vibration damper with a generator connection according to the preamble of patent claim 1.
  • a vibration damper for a vehicle is known, the hydraulic cylinder is connected to a generator which converts a stroke of the vibration damper at least partially into electrical energy.
  • a vibration damper is subjected to very different suggestions in normal use, which can lead to load peaks on the generator. These peak loads are z. B. noticeable as a noise or lead to damage to the system.
  • DE 10 2009 056 874 A1 proposes a reservoir filled with pressure medium via which the pressure peaks are cushioned.
  • a reservoir may result in additional expense associated with one of the conduit systems within and / or outside the vibration damper.
  • the object of the present invention is to find an alternative solution to the problem of occurring pressure peaks within the vibration damper.
  • the object is achieved in that the elastic element is designed as a torsion damper for the generator.
  • a hydraulic accumulator which requires a space that should not be underestimated, a purely mechanical torsional damper is used.
  • the torsion damper on an input element and an output element, wherein between the two elements at least one spring element is arranged.
  • a spring element virtually any spring can be used, with coil spring have been found to be particularly advantageous because of the relatively large spring travel or elastomeric springs because of the simple design and high load limit.
  • the torsion damper has a vibration damper. This vibration damper counteracts the operating movement of the torsion damper and forces him to a Abklinkfunktion.
  • the torsion damper is arranged between a turbine driven by the displacer and an electric machine as parts of the generator. It is conceivable in this arrangement that a well-known turbine as a structural unit, the torsional damper as a structural unit and the electrical machine as a structural unit are arranged in series. If the installation space conditions make it necessary, provision can also be made for the torsion damper to be arranged between the inlet side and outlet side of the turbine.
  • the turbine, the torsion damper and the electric machine are arranged in a common housing.
  • FIG. 1 schematic diagram of the vibration damper with a generator Fig. 2-4 torsion damper
  • FIG. 1 shows a schematic diagram of a vibration damper 1 of any design, ie one-tube vibration damper or Zweirohrschwingungsdämpfer.
  • a piston rod 5 is optionally guided axially movable with a piston 7 as a displacer.
  • the cylinder 3 is in its two working spaces 9; 1 1 completely filled with a pressure medium, so that a displacement movement pressure- medium through lines 13; 15 promotes a generator 17, with which the displacer is converted into electrical energy.
  • the vibration damper 1 further has in a bypass line 19 to the line 15 via a memory 21 which serves to compensate for the displacement of the piston rod 5 from the cylinder 3 pressure medium volume.
  • the accumulator 21 is pressure-biased, so that a pressure volume occurring in the working space 1 1 during a displacement entry movement is primarily supplied to the generator 17.
  • the generator 17 includes a turbine 23 which is driven by the displaced pressure medium.
  • the turbine 23 drives an electric machine 25, which generates the electrical energy.
  • the generator 17 has a torsion damper 27 as an elastic element that smoothes pressure peaks in the pressure medium or on the turbine 23.
  • the generator 17 can act as a motor even when connected to a power source.
  • the torsion damper 27 is operatively disposed between the turbine 23 and the electric machine 25. You can the torsion damper as a separate unit or as a component z. B. use the turbine. In the present case, all components of the generator 17 are arranged in a common housing 29.
  • FIGS. 2 to 4 show a first embodiment of the torsion damper 27, which has an input element 31 from the turbine 23 and an output element 33 from the electric machine 25, wherein between the two elements 31; 33 at least one spring element 35 is arranged.
  • the output element 33 has a carrier disk 37 with axial segment-like projections 39.
  • elastomer bodies are supported as spring elements 35.
  • the input member has three protrusions 39 which cooperate with six elastomeric bodies 35.
  • the elastomeric bodies 35 respectively define in pairs an engagement region 41 for the disk-shaped input element 31, FIG. 4, which has three ribs 43 which project into the engagement region 41 and essentially fill it, as shown in FIG. 2 shows.
  • the ribs 43 have torque transmission surfaces 45, just like the Jumps 39 have torque transmission surfaces 47.
  • the torque transmitting surfaces 45 in turn limit a receiving portion 49 for the projections 39 and the elastomeric body 35.
  • 33 serve bolts 51, pass through the slots 53 of the output member 33 and are fixed in mounting holes 55 of the input member 31, so that the two elements 31; 33 are held together.
  • the output part 33 has a hub flange 57 with a guide surface 59 for the input element 31.
  • a pressure peak in the hydraulic region of the vibration damper 1 also acts on a shaft 61 (FIG. 1) between the turbine 23 and the electric machine 25.
  • This shaft 23 is divided between the two shaft sections, the torsion damper 27 is arranged.
  • the pressure peak acts in the circumferential direction on the input element 31 of the torsion damper 27.
  • the electric machine 25 has an inertia which counteracts the rotational movement of the shaft 61.
  • the input torque at the input element 31 and the moment of inertia at the output element 33 of the torsion damper 27 provide for a relative movement, between the input and the output element 31; 33, which is compensated by the elastomeric elements 35.
  • FIGS 5 and 6 show a torsion damper 27 as an assembly, which is arranged on the shaft 61 between the turbine 23 and the electric machine 25.
  • the torsion damper 17 comprises as input element a hub disc 63, which has an arbitrary shaft receiving profile for torque transmission.
  • the hub disc 63 has a hub flange 65, on the side cover plates 67; 69 are attached.
  • a rivet connection 71 is shown.
  • the cover plates 67; 69 and an outer circumferential surface of the hub disc define an annular space in which a drive plate 73 is slidably mounted as an output element in the circumferential direction.
  • at least one friction disc 75 is arranged in the annular space between the drive plate 73 and a cover 67; 69.
  • All disk body 67; 69; 73 have windows 77 for receiving at least one coil spring as a spring element 35. This may cause the Mit- slave disc 73 rotationally move to the hub disc 63, wherein the coil springs 35 are biased.
  • This design of a torsion damper 27 has a vibration damper in the design of a friction damper.
  • an external excitation would lead to an infinitely long oscillatory movement between the input 61 and the output element 73.
  • the frictional relative movement between the drive plate 73 and the at least one friction plate 75 allows the oscillatory motion to decay quickly.
  • FIG. 7 shows a torsion damper 27, which is similar in construction to the principle of FIGS. 2 to 4. Deviating coil springs 35 are used instead of elastomer bodies. Furthermore, this torsion damper 27 has a vibration damper in the construction of a friction damper.
  • the output element 33 has a polygonal lateral surface 79, so that during a relative movement between the input and the output element 31; 33 causes a radial reduction of the engagement portion 41.
  • radially prestressed friction bodies 81 are dependent on the angle of rotation.
  • the friction bodies 81 guide the coil springs 35 and are supported radially between the input and the output member 31; 33 off. If the radial distance between the polygonal lateral surface 79 of the output element 33 and a concentric friction surface 83 of the input element 31 is changed, then the friction effect of the vibration damper also changes.
  • connection surfaces to the shaft 61 On the representation of the connection surfaces to the shaft 61 has been omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Vibration Prevention Devices (AREA)
  • Mechanical Operated Clutches (AREA)
  • Vibration Dampers (AREA)

Abstract

Schwingungsdämpfer (1), umfassend einen mit Druckmittel gefüllten Zylinder (3), in dem ein Verdränger einen Generator (17) antreibt, wobei der Schwingungsdämpfer (1) ein Elastizitätselement (27) aufweist, das Druckspitzen aus der Verdrängerbewegung zum Generator (17) kompensiert, wobei das Elastizitätselement (27) als ein Torsionsdämpfer (27) für den Generator (17) ausgeführt ist.

Description

Schwinqunqsdämpfer mit einem Generatoranschluss
Die Erfindung betrifft einen Schwingungsdämpfer mit einem Generatoranschluss gemäß dem Oberbegriff von Patentanspruch 1 .
Aus der DE 10 2009 056 874 A1 ist ein Schwingungsdämpfer für ein Fahrzeug bekannt, dessen Hydraulikzylinder mit einem Generator verbunden ist, der eine Hubbewegung des Schwingungsdämpfers zumindest teilweise in elektrische Energie umwandelt. Ein Schwingungsdämpfer wird im üblichen Gebrauch höchst unterschiedlichen Anregungen ausgesetzt, die zu Lastspitzen am Generator führen können. Diese Lastspitzen machen sich z. B. als ein Geräusch bemerkbar oder führen auch zu Beschädigungen am System.
Als Lösung wird in der DE 10 2009 056 874 A1 ein mit Druckmedium gefüllter Speicher vorgeschlagen, über den die Druckspitzen abgefedert werden. Ein derartiger Speicher kann jedoch zu einem Mehraufwand im Zusammenhang mit einem der Leitungssysteme innerhalb und/oder außerhalb des Schwingungsdämpfers führen.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine Alternativlösung für das Problem der auftretenden Druckspitzen innerhalb des Schwingungsdämpfers zu finden.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass das Elastizitätselement als ein Torsionsdämpfer für den Generator ausgeführt ist. Anstatt eines hydraulischen Speichers, der einen nicht zu unterschätzenden Bauraum benötigt, wird ein rein mechanischer Torsionsdämpfer eingesetzt.
In weiterer vorteilhafter Ausgestaltung weist der Torsionsdämpfer ein Eingangselement und ein Ausgangselement auf, wobei zwischen den beiden Elementen mindestens ein Federelement angeordnet ist. Als Federelement kann praktisch jede Feder verwendet werden, wobei sich Schraubenfeder wegen des vergleichsweise großen Federwegs oder Elastomerfedern wegen der einfachen Bauform und hohen Belastungsgrenze als besonders vorteilhaft herausgestellt haben. Gemäß einem vorteilhaften Unteranspruch weist der Torsionsdämpfer einen Schwingungsdämpfer auf. Dieser Schwingungsdämpfer wirkt der Betriebsbewegung des Torsionsdämpfers entgegen und zwingt ihm eine Abklinkfunktion auf.
Als besonders einfach und für die Anwendung als völlig ausreichend hat sich ein Reibungsdämpfer als Schwingungsdämpfer des Torsionsdämpfers bewährt.
Im Hinblick auf eine kompakte Bauform ist vorgesehen, dass der Torsionsdämpfer zwischen einer vom Verdränger angetriebenen Turbine und einer elektrischen Maschine als Teile des Generators angeordnet ist. Es ist bei dieser Anordnung denkbar, dass eine allgemein bekannte Turbine als Baueinheit, der Torsionsdämpfer als Baueinheit und der elektrischen Maschine als Baueinheit in Reihe angeordnet sind. Man kann, sofern die Bauraumverhältnisse es erforderlich machen auch vorsehen, dass der Torsionsdämpfer zwischen der Eingangsseite und Ausgangsseite der Turbine angeordnet ist.
In weiterer konstruktiver Ausgestaltung sind die Turbine, der Torsionsdämpfer und die elektrische Maschine in einem gemeinsamen Gehäuse angeordnet.
Anhand der folgenden Figurenbeschreibung soll die Erfindung näher erläutert werden.
Fig. 1 Prinzipdarstellung des Schwingungsdämpfers mit einem Generator Fig. 2 - 4 Torsionsdämpfer
Fig. 5 - 7 Torsionsdämpfer mit einem Reibungsdämpfer
Die Figur 1 zeigt eine Prinzipdarstellung eines Schwingungsdämpfers 1 beliebiger Bauform, d. h. Einrohrschwingungsdämpfer oder Zweirohrschwingungsdämpfer. In einem Zylinder 3 ist eine Kolbenstange 5 ggf. mit einem Kolben 7 als Verdränger axial beweglich geführt. Der Zylinder 3 ist in seinen beiden Arbeitsräumen 9; 1 1 vollständig mit einem Druckmedium gefüllt, so dass eine Verdrängerbewegung Druck- medium durch Leitungen 13; 15 zu einem Generator 17 fördert, mit dem die Verdrängerbewegung in elektrische Energie umgewandelt wird.
Der Schwingungsdämpfer 1 verfügt des Weiteren in einer Bypassleitung 19 zur Leitung 15 über einen Speicher 21 , der zur Kompensation des von der Kolbenstange 5 aus dem Zylinder 3 verdrängten Druckmediumvolumens dient. Der Speicher 21 ist druckvorgespannt, so dass auch ein bei einer Verdrängereinfahrbewegung in den Arbeitsraum 1 1 auftretendes Druckvolumen primär dem Generator 17 zugeführt wird.
Der Generator 17 umfasst eine Turbine 23, die von dem verdrängten Druckmedium angetrieben wird. Die Turbine 23 treibt eine elektrische Maschine 25 an, die die elektrische Energie erzeugt. Des Weiteren verfügt der Generator 17 über einen Torsionsdämpfer 27 als Elastizitätselement, der Druckspitzen im Druckmedium bzw. an der Turbine 23 glättet. Der Generator 17 kann jedoch auch bei Anschluss an eine Stromquelle als Motor fungieren.
Der Torsionsdämpfer 27 ist funktional zwischen der Turbine 23 und der elektrischen Maschine 25 angeordnet. Man kann den Torsionsdämpfer als separate Baueinheit oder auch als ein Bestandteil z. B. der Turbine einsetzen. Vorliegend sind alle Komponenten des Generators 17 in einem gemeinsamen Gehäuse 29 angeordnet.
Die Figuren 2 bis 4 zeigen eine erste Ausführungsform des Torsionsdämpfers 27, der von der Turbine 23 ein Eingangselement 31 und zur elektrischen Maschine 25 ein Ausgangselement 33 aufweist, wobei zwischen den beiden Elementen 31 ; 33 mindestens ein Federelement 35 angeordnet ist. Das Ausgangselement 33 verfügt über eine Trägerscheibe 37 mit axialen segmentartigen Vorsprüngen 39. In Umfangsrich- tung stützen sich Elastomerkörper als Federelemente 35 ab. In diesem Ausführungsbeispiel verfügt das Eingangselement über drei Vorsprünge 39, die mit sechs Elastomerkörpern 35 zusammen wirken. Wie man aus der Fig. 3 entnehmen kann, begrenzen die Elastomerkörper 35 jeweils paarweise einen Eingriffsbereich 41 für das scheibenförmige Eingangselement 31 , Fig. 4, das drei Rippen 43 aufweist, die in die Eingriffsbereich 41 ragen und im Wesentlichen ausfüllen, wie die Fig. 2 zeigt. Die Rippen 43 verfügen über Drehmomentübertragungsflächen 45, genauso wie die Vor- Sprünge 39 Drehmomentübertragungsflächen 47 aufweisen. Die Drehmomentübertragungsflächen 45 begrenzen wiederum einen Aufnahmebereich 49 für die Vorsprünge 39 und die Elastomerkörper 35. Zur axialen Verbindung des Eingangs- und des Ausgangselements 31 ; 33 dienen Bolzen 51 , die Langlöcher 53 des Ausgangsteils 33 durchgreifen und in Befestigungsöffnungen 55 des Eingangselement 31 fixiert sind, so dass die beiden Elemente 31 ; 33 zusammengehalten werden. Das Ausgangsteil 33 verfügt über einen Nabenflansch 57 mit einer Führungsfläche 59 für das Eingangselement 31 .
Eine Druckspitze im hydraulischen Bereich des Schwingungsdämpfers 1 wirkt auch auf eine Welle 61 (Fig. 1 ) zwischen der Turbine 23 und der elektrischen Maschine 25. Diese Welle 23 ist geteilt ausgeführt zwischen den beiden Wellenabschnitten ist der Torsionsdämpfer 27 angeordnet. Die Druckspitze wirkt in Umfangsrichtung auf das Eingangselement 31 des Torsionsdämpfers 27. Die elektrische Maschine 25 verfügt über eine Massenträgheit, die der Drehbewegung der Welle 61 entgegenwirkt. Das Eingangsmoment am Eingangselement 31 und das Massenträgheitsmoment am Ausgangselement 33 des Torsionsdämpfers 27 sorgen für eine Relativbewegung, zwischen dem Eingangs- und dem Ausgangselement 31 ; 33, die von den Elastomerelementen 35 kompensiert wird.
Die Figuren 5 und 6 zeigen einen Torsionsdämpfer 27 als Baugruppe, der auf der Welle 61 zwischen der Turbine 23 und der elektrischen Maschine 25 angeordnet ist. Der Torsionsdämpfer 17 umfasst als Eingangselement eine Nabenscheibe 63, die zur Drehmomentübertragung ein beliebiges Wellenaufnahmeprofil aufweist. Die Nabenscheibe 63 verfügt über einen Nabenflansch 65, an dem seitlich Abdeckscheiben 67; 69 befestigt sind. Beispielhaft ist eine Nietverbindung 71 dargestellt. Die Abdeckscheiben 67; 69 und eine äußere Mantelfläche der Nabenscheibe begrenzen einen Ringraum, in dem eine Mitnehmerscheibe 73 als Ausgangselement in Umfangsrichtung verschiebbar gelagert ist. Des Weiteren ist in dem Ringraum zwischen der Mitnehmerscheibe 73 und einer Abdeckscheibe 67; 69 mindestens eine Reibscheibe 75 angeordnet. Alle Scheibenkörper 67; 69; 73 verfügen über Fenster 77 zur Aufnahme mindestens einer Schraubenfeder als Federelement 35. Dadurch kann sich die Mit- nehmerscheibe 73 rotatorisch zur Nabenscheibe 63 bewegen, wobei die Schraubenfedern 35 vorgespannt werden.
Diese Bauform eines Torsionsdämpfers 27 verfügt über einen Schwingungsdämpfer in der Bauform eines Reibungsdämpfers. Bei einer theoretischen Betrachtung des Torsionsdämpfers würde eine äußere Anregung zu einer unendlich langen Schwingbewegung zwischen dem Eingangs- 61 und dem Ausgangselement 73 führen. Die reibungsbehaftete Relativbewegung zwischen der Mitnehmerscheibe 73 und der mindestens einen Reibscheibe 75 lässt die Schwingbewegung schnell abklingen.
Die Ausführung nach Fig. 7 zeigt einen Torsionsdämpfer 27, der im Aufbau dem Prinzip nach den Fig. 2 bis 4 gleicht. Abweichend werden Schraubenfedern 35 anstelle von Elastomerkörpern eingesetzt. Des Weiteren verfügt auch dieser Torsionsdämpfer 27 über einen Schwingungsdämpfer in der Bauform eines Reibungsdämpfers. Das Ausgangselement 33 verfügt über eine polygone Mantelfläche 79, so dass bei einer Relativbewegung zwischen dem Eingangs- und dem Ausgangselement 31 ; 33 eine radiale Reduzierung des Eingriffsbereichs 41 bewirkt. Dadurch werden radial vorgespannte Reibkörper 81 drehwinkelabhängig wirksam. Die Reibkörper 81 führen die Schraubenfedern 35 und stützen sich radial zwischen dem Eingangs- und dem Ausgangselement 31 ; 33 ab. Wird der radiale Abstand zwischen der polygonen Mantelfläche 79 des Ausgangselements 33 und einer konzentrischen Reibfläche 83 des Eingangselements 31 verändert, dann verändert sich auch die Reibwirkung des Schwingungsdämpfers.
Auf die Darstellung der Anbindungsflächen an die Welle 61 wurde verzichtet.
Bezuqszeichen
I Schwingungsdämpfer 63 Nabenscheibe 3 Zylinder 65 Nabenflansch 5 Kolbenstange 67 Abdeckscheiben 7 Kolben 69 Abdeckscheiben 9 Arbeitsraum 71 Nietverbindung
I I Arbeitsraum 73 Mitnehmerscheibe 13 Leitung 75 Reibscheibe 15 Leitung 77 Fenster
17 Generator 79 Mantelfläche 19 Bypassleitung 81 Reibkörper 21 Speicher 83 Reibfläche 23 Turbine
25 elektrische Maschine
27 Torsionsdämpfer
29 Gehäuse
31 Eingangselement
33 Ausgangselement
35 Federelement
37 Trägerscheibe
39 Vorsprung
41 Eingriffsbereich
43 Rippe
45 Drehmomentübertragungsfläche
47 Drehmomentübertragungsfläche
49 Aufnahmebereich
51 Bolzen
53 Langlöcher
55 Befestigungsöffnungen
57 Nabenflansch
59 Führungsfläche
61 Welle

Claims

Patentansprüche
1 .Schwingungsdämpfer (1 ), umfassend einen mit Druckmittel gefüllten Zylinder (3), in dem ein Verdränger (5) einen Generator (17) antreibt, wobei der Schwingungsdämpfer (1 ) ein Elastizitätselement (27) aufweist, das Druckspitzen aus der Verdrängerbewegung zum Generator (17) kompensiert, dadurch gekennzeichnet, dass das Elastizitätselement als ein Torsionsdämpfer (27) für den Generator (17) ausgeführt ist.
2. Schwingungsdämpfer nach Anspruch 1 , dadurch gekennzeichnet, dass der Torsionsdämpfer (27) ein Eingangselement (31 ) und ein Ausgangselement (33) aufweist, wobei zwischen den beiden Elementen (31 ; 33) mindestens ein Federelement (35) angeordnet ist.
3. Schwingungsdämpfer nach Anspruch 1 , dadurch gekennzeichnet, dass der Torsionsdämpfer (27) einen Schwingungsdämpfer (75; 79; 81 ; 83) aufweist.
4. Schwingungsdämpfer nach Anspruch 3, dadurch gekennzeichnet, dass der Schwingungsdämpfer (75; 79; 81 ; 83) des Torsionsdämpfers als ein Reibungsdämpfer ausgeführt ist.
5. Schwingungsdämpfer nach Anspruch 1 , dadurch gekennzeichnet, dass der Torsionsdämpfer (27) zwischen einer vom Verdränger angetriebenen Turbine (23) und einer elektrischen Maschine (25) als Teile des Generators (17) angeordnet ist.
6. Schwingungsdämpfer nach Anspruch 1 , dadurch gekennzeichnet, dass die Turbine (23), der Torsionsdämpfer (27) und die elektrischen Maschine (25) in einem gemeinsamen Gehäuse (29) angeordnet sind.
PCT/EP2015/050199 2014-02-04 2015-01-08 Schwingungsdämpfer mit einem generatoranschluss WO2015117778A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/116,469 US20170012495A1 (en) 2014-02-04 2015-01-08 Vibration Damper Comprising A Generator Connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014201960.5A DE102014201960A1 (de) 2014-02-04 2014-02-04 Schwingungsdämpfer mit einem Generatoranschluss
DE102014201960.5 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015117778A1 true WO2015117778A1 (de) 2015-08-13

Family

ID=52345226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/050199 WO2015117778A1 (de) 2014-02-04 2015-01-08 Schwingungsdämpfer mit einem generatoranschluss

Country Status (3)

Country Link
US (1) US20170012495A1 (de)
DE (1) DE102014201960A1 (de)
WO (1) WO2015117778A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106151350A (zh) * 2016-08-15 2016-11-23 深圳前海零距物联网科技有限公司 自行车减震发电装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107461449B (zh) * 2017-07-19 2019-04-09 江苏理工学院 一种液压储能阻尼调节半主动悬架系统
CN108757359B (zh) * 2018-04-08 2021-04-27 安徽工程大学 汽车振动能量回收系统
CN108757360A (zh) * 2018-04-08 2018-11-06 安徽工程大学 汽车能量回收系统
JP6949442B2 (ja) * 2018-05-22 2021-10-13 株式会社免制震ディバイス 回転慣性質量ダンパ
JP6984981B2 (ja) * 2018-06-29 2021-12-22 株式会社免制震ディバイス 振動抑制装置
JP7089442B2 (ja) * 2018-09-03 2022-06-22 株式会社免制震ディバイス ダンパ
US10851807B1 (en) * 2019-12-19 2020-12-01 King Abdulaziz University Energy generating system using floor tiles and fluid/gas movement

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2247283A (en) * 1990-08-23 1992-02-26 Pierburg Gmbh Rotary positive displacement pumps
US20070295569A1 (en) * 2006-06-22 2007-12-27 Eaglepicher Automotive Hillsdale Division Torsional vibration damper
US20080000746A1 (en) * 2006-06-29 2008-01-03 Zf Friedrichshafen Ag Drivetrain arrangement and method for operating a drivetrain arrangement
DE102008063653A1 (de) * 2008-12-18 2009-09-17 Daimler Ag Dämpfervorrichtung
EP2199643A1 (de) * 2008-12-19 2010-06-23 Paul Müller GmbH & Co. KG Unternehmensbeteiligungen Drehschwingungsdämpfer und Spindel
DE102009056874A1 (de) * 2009-12-03 2010-07-22 Daimler Ag Federdämpfervorrichtung für ein Fahrzeug
FR2952858A1 (fr) * 2009-11-26 2011-05-27 Pkm Consulting Amortisseur hydraulique a recuperation d'energie
WO2014145215A2 (en) * 2013-03-15 2014-09-18 Levant Power Corporation Active suspension with on-demand energy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682980A (en) * 1996-02-06 1997-11-04 Monroe Auto Equipment Company Active suspension system
WO2007000152A1 (de) * 2005-06-29 2007-01-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Anordnung zum dämpfen von schwingungen an einem triebrad sowie triebrad für einen nebenaggregatezug eines verbrennungsmotors
DE102005047802A1 (de) * 2005-10-05 2007-04-19 Voith Turbo Gmbh & Co. Kg System zur Ermittlung von Funktions- und/oder Betriebsdaten für eine elastische Kupplung
US20070089924A1 (en) * 2005-10-24 2007-04-26 Towertech Research Group Apparatus and method for hydraulically converting movement of a vehicle wheel to electricity for charging a vehicle battery
DE102006039608A1 (de) * 2006-08-24 2008-04-10 Rolls-Royce Deutschland Ltd & Co Kg Anordnung zur Energieentnahme bei einem Zwei-Wellen-Triebwerk
DE102009005740B4 (de) * 2008-02-15 2018-12-27 Schaeffler Technologies AG & Co. KG Dämpfer für ein Nebenaggregat einer Brennkraftmaschine, insbesondere Generatordämpfer
US8966889B2 (en) * 2011-11-01 2015-03-03 Tenneco Automotive Operating Company Inc. Energy harvesting passive and active suspension
US9702349B2 (en) * 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
DE102014208320A1 (de) * 2014-05-05 2015-11-05 Bayerische Motoren Werke Aktiengesellschaft Aktives Dämpfersystem für ein Fahrzeug

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2247283A (en) * 1990-08-23 1992-02-26 Pierburg Gmbh Rotary positive displacement pumps
US20070295569A1 (en) * 2006-06-22 2007-12-27 Eaglepicher Automotive Hillsdale Division Torsional vibration damper
US20080000746A1 (en) * 2006-06-29 2008-01-03 Zf Friedrichshafen Ag Drivetrain arrangement and method for operating a drivetrain arrangement
DE102008063653A1 (de) * 2008-12-18 2009-09-17 Daimler Ag Dämpfervorrichtung
EP2199643A1 (de) * 2008-12-19 2010-06-23 Paul Müller GmbH & Co. KG Unternehmensbeteiligungen Drehschwingungsdämpfer und Spindel
FR2952858A1 (fr) * 2009-11-26 2011-05-27 Pkm Consulting Amortisseur hydraulique a recuperation d'energie
DE102009056874A1 (de) * 2009-12-03 2010-07-22 Daimler Ag Federdämpfervorrichtung für ein Fahrzeug
WO2014145215A2 (en) * 2013-03-15 2014-09-18 Levant Power Corporation Active suspension with on-demand energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106151350A (zh) * 2016-08-15 2016-11-23 深圳前海零距物联网科技有限公司 自行车减震发电装置

Also Published As

Publication number Publication date
DE102014201960A1 (de) 2015-08-06
US20170012495A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2015117778A1 (de) Schwingungsdämpfer mit einem generatoranschluss
DE19514411B4 (de) Kraftübertragungseinrichtung mit Flüssigkeitskupplung
DE4345617B4 (de) Kraftübertragungseinrichtung
DE19945475B4 (de) Kraftübertragungseinrichtung
DE10358901B4 (de) Torsionsschwingungsdämpfer
DE2855399A1 (de) Drehschwingungsdaempfer
DE19805300B4 (de) Nabenantrieb
EP2600030A2 (de) Drehmomentwandler
DE102005040771A1 (de) Antriebsstrang eines Hybridfahrzeuges
DE102007057431B4 (de) Hydrodynamische Kopplungseinrichtung
DE102008032009A1 (de) Vorrichtung zur Dämpfung von Schwingungen, insbesondere mehrstufiger Drehschwingungsdämpfer
DE102009002260A1 (de) Schwingungsdämpfer mit einer Vorrichtung zur Erzeugung elektrischer Energie
DE102012204815A1 (de) Kupplungsanordnung
DE102008033955A1 (de) Verfahren und Vorrichtung zur Verhinderung des Spiels unter Verwendung von Schraubenfedern
DE102013209117A1 (de) Nabeneinrichtung für einen Torsionsschwingungsdämpfer und entsprechender Torsionsschwingungsdämpfer
DE102014207258A1 (de) Torsionsschwingungsdämpfer mit einer Dämpfungseinrichtung, einem Tilgersystem und einer Masseeinrichtung
DE102011075240A1 (de) Hybridantriebsmodul
DE102016208830A1 (de) Hybridantriebsmodul mit integrierter Übersetzung in axialer Anordnung
DE4040606A1 (de) Schwingungsdaempfer
DE102016207130A1 (de) Schwingungsdämpfer
DE102016202314A1 (de) Verstellbarer Federträger
DE102011082370A1 (de) Drehschwingungsdämpferanordnung, insbesondere für den Antriebsstrang eines Fahrzeugs
DE102011082495B4 (de) Schwungmassenvorrichtung
DE202019106382U1 (de) Drehschwingungsdämpfvorrichtung mit zwei Flanschelementen mit unterschiedlichen Reibmomenten; Drehmomentbegrenzer; Kupplungsscheibe sowie Dämpfereinheit
DE102016205594A1 (de) Schwingungsdämpfungsanordnung, insbesondere für einen Antriebsstrang eines Fahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15700195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15116469

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15700195

Country of ref document: EP

Kind code of ref document: A1