WO2015115624A1 - 筒体、プラズマ装置、ガスレーザー装置、および筒体の製造方法 - Google Patents

筒体、プラズマ装置、ガスレーザー装置、および筒体の製造方法 Download PDF

Info

Publication number
WO2015115624A1
WO2015115624A1 PCT/JP2015/052768 JP2015052768W WO2015115624A1 WO 2015115624 A1 WO2015115624 A1 WO 2015115624A1 JP 2015052768 W JP2015052768 W JP 2015052768W WO 2015115624 A1 WO2015115624 A1 WO 2015115624A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
cylindrical body
plasma
gas
core
Prior art date
Application number
PCT/JP2015/052768
Other languages
English (en)
French (fr)
Inventor
幸雄 野口
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2015560056A priority Critical patent/JP6272361B2/ja
Priority to US15/115,649 priority patent/US10090628B2/en
Publication of WO2015115624A1 publication Critical patent/WO2015115624A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/032Constructional details of gas laser discharge tubes for confinement of the discharge, e.g. by special features of the discharge constricting tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0305Selection of materials for the tube or the coatings thereon

Definitions

  • the present invention relates to a cylinder, a plasma apparatus, a gas laser apparatus, and a cylinder manufacturing method.
  • a gas laser device that oscillates a gas laser is widely used.
  • a gas laser tube which is a cylindrical tube, is provided with a rare gas such as helium-neon (He—Ne) gas or argon (Ar) gas, and carbon dioxide (CO 2 gas).
  • a rare gas plasma is generated in the pipe.
  • carbon dioxide molecules (CO 2 molecules) are excited by the energy of the plasma, so that light of a specific wavelength is emitted from the carbon dioxide molecules (CO 2 molecules).
  • a material used for such a gas laser tube it is required to have high hermeticity and high permeability of high-frequency power for generating plasma. For example, materials such as quartz glass are widely used.
  • Plasma has high physical energy and high chemical reactivity because charged particles such as electrons and ions, excited molecules and atoms react with each other while moving in a complex manner.
  • the inner surface of the gas laser tube exposed to plasma is susceptible to physical damage due to the energy of the exposed plasma, and is also susceptible to changes due to chemical reactions (hereinafter, physical damage and chemical changes). Collectively expressed as corrosion).
  • the corrosion of the laser tube due to the plasma has been a cause of reducing the service life of the gas laser tube and thus the durability of the gas laser device.
  • Patent Document 1 proposes a configuration for suppressing the corrosion of a laser tube due to plasma.
  • Patent Document 1 below proposes a structure in which a protective layer made of a metal such as tungsten or molybdenum, boron carbide, or the like is formed on the inner peripheral surface of a laser tube body made of, for example, aluminum nitride.
  • a protective film is formed by an ion plating method, a CVD method, or the like.
  • a protective film formed by a general film forming method such as an ion plating method or a CVD method is a relatively strong and dense film.
  • Such a protective film has a problem that the protective film itself has high plasma resistance, but cracks, cracks, and the like are likely to occur due to a temperature change accompanying plasma generation.
  • a first cylindrical body whose inner surface is exposed; and a second cylindrical body mainly composed of alumina bonded to the outer surface of the first cylindrical body, wherein the first cylindrical body includes an oxide containing yttrium.
  • the main component The main component.
  • a plasma device comprising the above-described cylinder and an electrode for generating plasma in the internal space of the cylinder.
  • the above plasma apparatus and gas supply means for supplying a laser oscillation gas to the internal space of the plasma apparatus, and plasma is generated by the electrode in a state where the laser oscillation gas is supplied to the internal space A gas laser device that generates laser light is provided.
  • a step of preparing a rod-shaped core a step of spraying an oxide containing yttrium on the outer surface of the core to form a first cylinder, and an alumina on the outer surface of the first cylinder Spraying and forming a second cylinder mainly composed of alumina bonded to the outer surface of the first cylinder, and an assembly of the first cylinder and the second cylinder.
  • a cylindrical body having high plasma resistance can be manufactured in a short time and at a relatively low cost.
  • FIG. 2 is an enlarged sectional view of a part of the laser tube shown in FIG. 1. It is sectional drawing of one Embodiment of the gas laser apparatus comprised including the laser tube shown in FIG. 1 and FIG. (A)-(d) is sectional drawing which shows one Embodiment of the manufacturing method of a cylinder.
  • FIG. 1 is a view showing a laser tube 10 which is an embodiment of a cylindrical body.
  • FIG. 1A is a perspective view of the laser tube 10, and FIG.
  • the laser tube 10 includes a first cylindrical body 14 with an inner surface 14A exposed, and a second cylindrical body 12 mainly composed of alumina bonded to the outer surface 14B of the first cylindrical body 14, and the first cylindrical body.
  • 14 is mainly composed of an oxide containing yttrium.
  • the first cylinder 14 includes, for example, yttria (Y 2 O 3 ), which is an oxide containing yttrium, as a main component. “Included as a main component” means that the content is 50% by mass or more. It is preferable that the 1st cylinder 14 and the 2nd cylinder 12 contain 90 mass% or more of a main component.
  • each component constituting each member is determined by using an X-ray diffractometer (XRD) and then identifying the component, and then using an X-ray fluorescence analyzer (XRF) or an ICP emission spectroscopy analyzer (ICP).
  • the content of the element may be obtained by using the calculated content and converted to the content of the identified component.
  • the first cylindrical body 14 may contain other components such as oxides of Ti, Al, Si and the like in a range having sufficient plasma resistance in addition to the oxide containing yttrium. It is preferable to contain 90% by mass or more of an oxide containing yttrium in order to further increase the corrosion resistance against plasma.
  • the second cylindrical body 12 may contain other components such as zirconia (ZrO 2 ) in addition to alumina within a range in which sufficient mechanical strength can be ensured. It is preferable that 90 mass% or more of alumina is included in the point which forms the 2nd cylinder 12 stably.
  • ZrO 2 zirconia
  • the oxide containing yttrium is not limited to yttria (Y 2 O 3 ), and other elements such as aluminum (Al) such as yttrium aluminum garnet (YAG: Y 3 Al 5 O 12 :). And a complex oxide containing yttrium (Y).
  • Al aluminum
  • Al aluminum
  • YAG Y 3 Al 5 O 12 :
  • Y yttrium
  • a composite oxide of yttrium and aluminum such as YAM (2Y 2 O 3 .Al 2 O 3 ) or YAP (Y 2 O 3 .Al 2 O 3 ) may be used.
  • These oxides may be a simple substance, or a plurality of types of oxides may be mixed. These oxides containing yttrium have high corrosion resistance against plasma.
  • the laser tube 10 of the present embodiment is a cylindrical member having a pipe line 11 surrounded by the inner surface of the first cylinder 14, and helium-neon (He—Ne) gas or A rare gas such as argon (Ar) gas and carbon dioxide gas (CO 2 gas), for example, are enclosed, and plasma of the rare gas is generated in the pipe to excite carbon dioxide molecules (CO 2 molecules). Used to emit light of a specific wavelength.
  • Oxide containing yttrium has high corrosion resistance against plasma, and alumina has high mechanical strength and high thermal conductivity.
  • the first tube 14 is made of oxide containing yttrium
  • the second tube 12 is made mainly of alumina.
  • the laser tube 10 has high corrosion resistance against plasma, high mechanical strength, and high heat dissipation. high.
  • the first cylinder 14 is formed by a thermal spraying method
  • the second cylinder 12 is also formed by a thermal spraying method.
  • the 1st cylinder 14 and the 2nd cylinder 12 are firmly joined by comparatively high intensity
  • FIG. 2 is an enlarged sectional view showing a part of the laser tube 10.
  • a melted material is sprayed as fine particles onto the surface of the film formation target from the nozzle of the thermal spraying apparatus to be solidified and deposited on the surface of the film formation target.
  • the surface state and temperature of the sprayed film also change, and the direction and density of the array of fine particles 12a and 14a also change. Go. In combination with such fluctuations, a gap S is formed between the solidified and deposited flat particles 12a and 14a.
  • each fine particle 14a is also a sprayed film, and even when the rare gas plasma is generated in the pipe line 11 and the second cylinder 12 is heated with the heating of the first cylinder 14, each fine particle.
  • the internal stress in the second cylinder 12 due to the thermal expansion of 12a is reduced, and the deterioration of the second cylinder 12 due to the stress caused by the thermal expansion is small. Moreover, the stress resulting from the difference in the thermal expansion coefficient of the 1st cylinder 14 and the 2nd cylinder 12 is relieved similarly. As described above, in the laser tube 10, deterioration due to thermal expansion accompanying generation of plasma is suppressed.
  • the 1st cylinder 14 is formed by the thermal spraying method, and when the 2nd cylinder 12 is also formed by the thermal spraying method, that is, the outer surface 14B of the 1st cylindrical body 14 formed by the thermal spraying is sprayed.
  • the second cylinder 12 is constituted by the yttria fine particles 14 a constituting the first cylinder 14 at the boundary portion between the first cylinder 14 and the second cylinder 12.
  • the alumina fine particles 12a collide with each other to bond and grow the particles, and the fine particles 12a of the second cylindrical body 12 enter the gap S portion between the fine particles 14a.
  • the fine particle 14a and the fine particle 12a are mixed, and it has couple
  • the first cylinder 14 and the second cylinder 12 are firmly joined with a relatively high strength.
  • the thickness of the 1st cylinder 14 is 0.5 mm or more and 1 mm or less, the thickness of the 2nd cylinder 12 is 2.6 mm or more and 3.6 mm or less, and the thickness of the 2nd cylinder 12 is the 1st cylinder 14 It is larger than the thickness.
  • Alumina constituting the second cylinder 12 has a relatively high mechanical strength and a relatively high thermal conductivity. Since the thickness of the second tube 12 is relatively large in the laser tube 10, the mechanical strength of the entire laser tube 10 is relatively high, and the heat dissipation is also relatively high.
  • the arithmetic average roughness (Ra) of the inner surface of the first cylinder 14 is about 0.4 to 1.6 ⁇ m, and the arithmetic average roughness (Ra) of the outer surface 12B of the second cylinder 12 is about
  • the arithmetic average roughness (Ra) of the inner surface of the first cylinder 14 is smaller than the arithmetic average roughness (Ra) of the outer surface 12B of the second cylinder 12.
  • the surface area of the inner peripheral surface 14A that is, the inflow area of the plasma heat, is relatively small. It is hard to rise.
  • the surface area of the outer surface 12B of the second cylinder 12 is relatively large, thereby causing, for example, plasma generated in the pipe 11 Thermal energy can be efficiently radiated from the outer peripheral surface 12B, and the temperature rise of the first cylinder 14 and the second cylinder 12 can be suppressed.
  • the first cylindrical body 14 is formed by thermal spraying and the arithmetic average roughness (Ra) of the inner surface of the first cylindrical body 14 is small, there are few fine particles 14A protruding partially on the inner peripheral surface 14A. Therefore, the dropping of the fine particles 14a from the inner peripheral surface 14A is suppressed, and even when the plasma is repeatedly generated, the cleanliness inside the gas laser tube 10 can be kept high.
  • the open pore area ratio of the inner surface 14 ⁇ / b> A of the first cylinder 14 is smaller than the open pore area ratio of the outer surface 12 ⁇ / b> B of the second cylinder 12.
  • the open pore area ratio refers to the ratio of the total area of open pores excluding microcracks, which can be confirmed in the observation field, relative to the entire observation field when the surface is observed.
  • the open pore area ratio is a range in which, for example, an optical microscope is used to observe the surface to be measured at a magnification of 100, and the area is 0.15 mm 2 (the length in the horizontal direction is 1000 ⁇ m and the length in the vertical direction is 150 ⁇ m). Is photographed using a CCD camera attached to an optical microscope to obtain image data.
  • the total area of open pores can be obtained.
  • the setting conditions for the particle analysis for example, the brightness is set to dark, the binarization method is manually set, the small figure removal area is 1 ⁇ m 2 , and a threshold value that is an index indicating the brightness of the image is set in the image.
  • the peak value of the histogram indicating the brightness of each point (each pixel) is 0.3 times or less.
  • the unevenness of the inner surface 14A is smaller than the outer surface 12B, and the first Compared to the surface area of the outer surface 12B of the two cylinders 12, the surface area of the inner surface 14A of the first cylinder 14 is smaller. Thereby, radiation of heat energy from the outer surface 12B of the second cylinder 12 can be increased while suppressing heat energy flowing into the first cylinder 14 from the inner surface 14A, so that the first cylinder 14 And the temperature rise of the 2nd cylinder 12 can be controlled.
  • the open pore area ratio of the inner surface 14A of the first cylinder 14 is 0.25% or more and 0.75%
  • the open pore area ratio of the outer surface 12B of the second cylinder 12 is 0.85% or more. 5% or less.
  • the difference between the open pore area ratio of the inner surface 14A and the open pore area ratio of the outer surface 12B of the second cylinder 12 is preferably 0.1% or more.
  • FIG. 3 is a cross-sectional view of one embodiment of a plasma device and one embodiment of a gas laser device.
  • the plasma apparatus 2 is configured to apply a voltage to a laser tube (cylinder) 10 and a conduit (internal space) 11 to which the inner surface 14A of the laser tube 10 is exposed to generate an electrode (plasma in the conduit 11).
  • a cathode 5 and an anode 6) are provided.
  • the gas laser apparatus 1 shown in FIG. 3 includes the plasma apparatus 2 and gas supply means (not shown) for supplying a laser oscillation gas to a pipe line (internal space) 11 of the plasma apparatus 2. In the state where the laser oscillation gas is supplied, plasma is generated by the electrodes (cathode 5 and anode 6) to generate laser light.
  • the gas laser device 1 includes a laser tube 10, an envelope 7 disposed at both ends of the laser tube 10, a reflecting mirror 8 disposed inside the envelope 7, and electrodes (cathode 5). And an anode 6).
  • the inside of the laser tube 10 is connected to a vacuum pump and gas supply means (not shown) so that the gas flow rate and the degree of vacuum into the laser tube 10 can be adjusted.
  • argon gas plasma is applied by applying a voltage between the cathode 5 and the anode 6 in a state where the degree of vacuum is increased while flowing a rare gas such as argon and carbon dioxide gas into the laser tube 10.
  • the carbon dioxide gas is excited to excite carbon dioxide light, and the light having a specific wavelength generated due to the excitation is amplified by reciprocating between the reflecting mirrors 8 to oscillate the amplified laser light.
  • the corrosion of the laser tube 10 due to the plasma is prevented because the first cylinder 14 has high plasma resistance. Few.
  • the laser tube 10 repeats temperature rise and fall from room temperature to several hundred degrees Celsius.
  • a dense protective film plasma-resistant film
  • a dense protective film is formed on the inner peripheral surface of a laser tube body made of a ceramic material such as aluminum nitride by an ion plating method or a CVD method.
  • the strain due to this stress is locally accumulated in the high-quality protective film, and cracks or cracks may occur in the protective film at a relatively early stage (when the number of temperature changes is small). Since the laser tube 10 of the present embodiment has high durability against temperature changes, even if laser oscillation is repeated, that is, even if temperature changes accompanying plasma generation are repeated, the laser tube 10 is unlikely to be cracked or cracked.
  • the gas laser device 1 can be used repeatedly over a relatively long period.
  • FIGS. 4A to 4D are schematic cross-sectional views illustrating a method for manufacturing the laser tube 10.
  • the manufacturing method of the present embodiment includes a step of preparing a rod-shaped core 30, a step of spraying an oxide containing yttrium on the outer surface of the core 30 to form the first cylindrical body 14, and a first cylinder Spraying alumina on the outer surface 14B of the body 14 to form a second cylinder 12 mainly composed of alumina joined to the outer surface 14B of the first cylinder 14, Removing the core 30 from the assembly with the second cylinder 12, and exposing the inner surface 14A of the first cylinder 14.
  • the core 30 of this embodiment includes a rod-shaped shaft body 32 and a release agent layer 34 formed on the outer surface of the shaft body 32.
  • the release agent layer 34 has a property of being dissolved in a specific solvent such as water or an organic solvent.
  • a specific solvent such as water or an organic solvent.
  • the shaft body 32 for example, a metal such as stainless steel or aluminum, a resin, or the like may be used.
  • the release agent layer 34 for example, boron nitride powder or carbon powder can be used.
  • the arithmetic average roughness of the outer surface of the shaft body 32 is adjusted by polishing or the like. For example, the arithmetic average roughness of the surface of the release agent 34 (that is, the outer surface of the core 30) is relatively small, about 0.2 to 0.8 ⁇ m.
  • an oxide containing yttrium is sprayed on the outer surface of the core 30 to form the first cylinder 14 (FIG. 4B).
  • Various thermal spraying methods such as low-pressure plasma spraying method, atmospheric pressure plasma spraying method, flame spraying method, arc spraying method, laser spraying method, etc. can be applied as the thermal spraying method. It is preferable to use an atmospheric pressure plasma spraying method because a material having the same can be applied and a corrosion-resistant film can be formed at a lower cost than other spraying methods.
  • yttria (Y 2 O 3 ) (oxide containing yttria) powder is melted in a thermal spraying apparatus.
  • a material having an average primary particle diameter of 0.5 to 10 ⁇ m is used.
  • at least one oxide powder of Ti, Al, or Si having a particle size of about 1 ⁇ m is further added to the yttria powder at a ratio of 1% by mass or less.
  • the yttria powder tends to adhere relatively strongly to the surface of the release agent 34, and the first cylinder 14 from the core 30 can be prevented from peeling off during manufacture. it can.
  • a primary raw material obtained by adding at least one oxide powder of Ti, Al, and Si in a range of 0.001 to 3% by mass to yttria powder is used for general rolling granulation and the like.
  • a thermal spray material having an average particle size of 10 to 50 ⁇ m is obtained using a granulation method. This thermal spray material is introduced from the powder inlet of the atmospheric pressure plasma spraying apparatus.
  • the injected thermal spray material is melted by being heated to several thousand to several tens of thousands of degrees by plasma as a heat source in an atmospheric pressure plasma spraying apparatus.
  • a mixed gas of argon and hydrogen is used as a gas for ejecting the molten material during thermal spraying.
  • the thermal spray material melted simultaneously with the gas ejection is ejected toward the outer surface of the core 30.
  • the output of the apparatus is adjusted by adding hydrogen gas mainly with argon gas. At this time, the output is preferably about 40 kW, and the distance from the core 30 to the spray port of the thermal spraying apparatus is about 100 mm.
  • the thermal spray port is movable up and down and left and right while maintaining a constant distance to the base material.
  • the sprayed film (first cylindrical body 14) is formed on the entire surface of the substrate while moving in the direction at intervals of 5 mm.
  • the formed sprayed film (first cylinder 14) easily reflects the average primary particle size of the sprayed material used, and the average crystal particle size is 0.5 to 10 ⁇ m.
  • the arithmetic average roughness of the outer surface of the core 30 is relatively small, about 0.2 to 0.8 ⁇ m, and the first cylinder is formed directly on the outer surface of the core 30. Since the fine particles 14a (see FIG. 2) are densely arranged on the inner peripheral surface 14A of the No. 14 according to the surface shape of the core 30, the arithmetic average roughness is relatively about 0.4 to 1.6 ⁇ m. Can be small. Thus, by making the surface roughness of the inner peripheral surface 14A relatively low, it is possible to suppress the detachment of the fine particles 14a from the inner peripheral surface 14A and to keep the cleanliness inside the gas laser tube 10 high.
  • heat treatment can be performed to densify the formed first cylinder 14 or to further smooth the inner surface 14A of the first cylinder 14.
  • the heat treatment may be performed in an atmospheric furnace if the temperature condition is satisfied.
  • the heat treatment may be performed at a temperature of about 500 to 1400 ° C.
  • the contact interface between the fine particles 14a of the first cylinder 14 formed by the thermal spraying method is activated to promote grain growth, the first cylinder 14 is densified, and the first cylinder 14
  • It is also possible to reduce the arithmetic mean roughness by reducing the gap S between the fine particles 14a appearing on the inner peripheral surface 14A. By reducing the surface roughness of the inner peripheral surface 14A in this way, it is possible to further suppress the dropping of the fine particles 14a from the inner peripheral surface 14A and to keep the cleanliness inside the gas laser tube 10 higher.
  • the thermal spraying method, thermal spraying conditions, presence / absence of temperature treatment, conditions, and the like are not particularly limited, and the thermal spraying conditions depend on the characteristics required for the first cylinder 14 such as durability against temperature changes and the effect of suppressing the dropout of the fine particles 14a.
  • the first cylinder 14 having desired characteristics may be formed by adjusting the heat treatment conditions.
  • alumina is sprayed on the outer surface 14B of the first cylinder 14 to form a cylindrical second cylinder 12 (FIG. 4C).
  • alumina powder is first melted in a thermal spraying apparatus.
  • the alumina powder for example, a material having an average primary raw material particle size of 0.4 to 10 ⁇ m is used.
  • the alumina powder may contain impurities such as metal elements, but it is preferable to use a powder having a purity (alumina content) of about 90% by mass or more.
  • the spraying conditions of alumina may be performed by the same method and conditions as those of the first cylinder 14 described above, and can be performed according to various conditions adjusted according to the required characteristics of the first cylinder 14.
  • the yttria fine particles 14a constituting the first cylindrical body 14 are secondly formed at the boundary portion between the first cylindrical body 14 and the second cylindrical body 12.
  • the alumina fine particles 12a constituting the cylindrical body 12 collide with each other, and the respective particles are bonded and grow, and the fine particles 12a of the second cylindrical body 12 enter the gap S portion between the fine particles 14a.
  • the first cylindrical body 14 and the second cylindrical body 12 are coupled so as to mesh with each other, and the first cylindrical body 14 and the second cylindrical body 12 are firmly joined with a relatively high strength.
  • the outer surface 12B of the second cylinder 12 formed by depositing the fine particles 12a by thermal spraying is a first cylinder 14 in which the fine particles 14a (see FIG. 2) are densely arranged according to the surface of the core 30.
  • the surface roughness is large and the open pore area ratio is easily increased.
  • the core 30 is removed from the assembly of the first cylinder 14 and the second cylinder 12, and the inner surface 14A of the second cylinder 14 is exposed (FIG. 4D). )).
  • a mold release agent 34 is disposed on the outer surface portion of the core 30, and the mold release agent 34 is dissolved by a specific solvent to create a gap between the shaft body 32 and the first cylinder body 14. By removing 32, the core 30 can be easily removed.
  • the laser tube 10 for the gas laser oscillation device can be manufactured. According to the manufacturing method of this embodiment, a plasma-resistant member having high plasma resistance and high durability against temperature change can be obtained in a short time and relatively without using a large-scale film forming apparatus such as a sputtering apparatus. It can be manufactured at low cost.
  • the core 30 is composed of the shaft body 32 and the release agent 34.
  • the entire core 30 is composed of a material that dissolves in a specific solvent such as acetone, for example, and the first cylindrical body 14 is formed.
  • the second cylindrical body 12 may be formed, and the entire core 32 may be immersed in a specific solvent to dissolve the core 32.
  • the core 30 may be made of a material having thermal decomposability, and after the first cylindrical body 14 and the second cylindrical body 12 are formed, the entire core 30 may be heated to thermally decompose and evaporate. .
  • Each member structure and various conditions in this manufacturing method, such as the structure of the core 30, are not particularly limited.
  • the laser tube 10 may be manufactured by a method other than the thermal spraying method.
  • a ceramic green sheet mainly composed of an oxide containing yttrium such as yttria or YAG is wound around the surface of the core 30, and a ceramic green sheet mainly composed of alumina is wound thereon, and the whole is fired.
  • the laser tube 10 may be manufactured.
  • a pore-forming agent made of, for example, resin beads By mixing a pore-forming agent made of, for example, resin beads with these green sheets and slurry, for example, by partially adjusting the amount of the pore-forming agent, for example, the inner surface 14A of the first cylinder 14 and the first
  • the arithmetic average roughness (Ra) and the surface open porosity can be changed between the outer surface 12B of the two cylinders 12.
  • much labor and cost are required for manufacturing the green sheet and applying and drying the slurry.
  • the laser tube 10 can be manufactured with relatively little effort and cost, and the arithmetic average roughness (Ra) and the surface open pores can be formed between the inner surface 14A and the outer surface 12B. It is also relatively easy to change the rate value.
  • the gaps S between the fine particles 14a and the fine particles 12a are relatively large and large in the first cylindrical body 14 and the second cylindrical body 12, and plasma is generated. It is also preferable in that deterioration due to thermal expansion accompanying generation is suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

 内表面が露出した第1筒体と、該第1筒体の外表面に接合したアルミナを主成分とする第2筒体とを有し、前記第1筒体がイットリウムを含んだ酸化物を主成分とすることを特徴とする筒体を提供する。

Description

筒体、プラズマ装置、ガスレーザー装置、および筒体の製造方法
 本発明は、筒体、プラズマ装置、ガスレーザー装置、および筒体の製造方法に関する。
 材料の切断加工や各種測定に用いるレーザーを発振する装置として、例えばガスレーザーを発振させるガスレーザー装置が広く用いられている。ガスレーザー装置では円筒状の筒体であるガスレーザー管の管路内に、ヘリウム―ネオン(He-Ne)ガスやアルゴン(Ar)ガス等の希ガスと例えば炭酸ガス(COガス)等とを封入し、この管路内に希ガスのプラズマを生成する。そして、このプラズマのエネルギーによって例えば炭酸ガス分子(CO分子)を励起することで、この炭酸ガス分子(CO分子)から特定波長の光を発光させる。このようなガスレーザー管に用いる材料として、気密性が高く、かつプラズマを生成するための高周波電力の透過性も高いことが要求されており、例えば石英ガラス等の材料が広く用いられている。
 プラズマは電子やイオンなどの荷電粒子、励起した分子や原子などが複雑に運動しながら反応し合うので、物理的なエネルギーも高く、化学的にも反応性の高い状態になっている。このためプラズマに曝されるガスレーザー管の管路内面は、曝されるプラズマのエネルギーによる物理的ダメージを受けやすく、かつ化学的反応による変化も受けやすい(以降、物理的ダメージや化学的変化をまとめて腐食とも表現する)。プラズマによるレーザー管の腐食は、ガスレーザー管の使用寿命を低減させ、ひいてはガスレーザー装置の耐久性を低下させる原因となっていた。
 例えば下記特許文献1には、プラズマによるレーザー管の腐食を抑制するための構成が提案されている。具体的には下記特許文献1では、例えば窒化アルミニウムからなるレーザー管本体の内周面に、タングステンやモリブテンなどの金属や炭化硼素等からなる保護層を形成した構造が提案されている。下記特許文献1では、イオンプレーティング法やCVD法等によって、このような保護膜を形成している。
特開昭63―258086号公報
 例えば特許文献1のように、イオンプレーティング法やCVD法等の一般的な膜形成方法で形成される保護膜は、比較的強固な緻密質の膜である。このような保護膜は、保護膜自体の耐プラズマ性は高い一方で、プラズマ生成にともなう温度変化によって、ヒビや割れ等が発生し易いといった課題があった。
 内表面が露出した第1筒体と、該第1筒体の外表面に接合したアルミナを主成分とする第2筒体とを有し、前記第1筒体がイットリウムを含んだ酸化物を主成分とする。
 上述の筒体と、前記筒体の内部空間にプラズマを生成するための電極とを備えるプラズマ装置を提供する。
 上述のプラズマ装置と、前記プラズマ装置の前記内部空間にレーザー発振用ガスを供給するガス供給手段とを備え、前記内部空間に前記レーザー発振用ガスが供給された状態で、前記電極によってプラズマを生成してレーザー光を発生させるガスレーザー装置を提供する。
 また、棒状の中子を準備する工程と、前記中子の外表面にイットリウムを含む酸化物を溶射して、第1筒体を形成する工程と、前記第1筒体の外表面にアルミナを溶射して、該第1筒体の外表面に接合したアルミナを主成分とする第2筒体とを形成する工程と、前記第1筒体と前記第2筒体との集合体から前記中子を除去し、前記第1筒体の内表面を露出させる工程とを備えた筒体の製造方法を提供する。
 内部にプラズマを生成した場合でも、割れやヒビ等が発生し難い。また、高い耐プラズマ性を有する筒体を、短時間かつ比較的安価に製造することができる。
筒体の一実施形態である、ガスレーザー発振装置用ガスレーザー管を示した図であり、(a)は斜視図、(b)は断面図である。 図1に示すレーザー管の一部の拡大断面図である。 図1および図2に示すレーザー管を備えて構成されたガスレーザー装置の一実施形態の断面図である。 (a)~(d)は、筒体の製造方法の一実施形態を示す断面図である。
 以下、図面を参照しつつ詳細に説明する。図1は筒体の一実施形態であるレーザー管10を示した図である。図1(a)はレーザー管10の斜視図であり、(b)は断面図である。
 レーザー管10は、内表面14Aが露出した第1筒体14と、第1筒体14の外表面14Bに接合したアルミナを主成分とする第2筒体12とを有し、第1筒体14がイットリウムを含んだ酸化物を主成分とする。第1筒体14は、例えばイットリウムを含んだ酸化物であるイットリア(Y)を主成分として含む。主成分として含むとは、含有割合が50質量%以上であることをいう。第1筒体14と第2筒体12は主成分を90質量%以上含むことが好ましい。各部材を構成する成分の含有量は、X線回折装置(XRD)を用いて、成分を同定した後、蛍光X線分析装置(XRF)またはICP発光分光分析装置(Inductively Coupled Plasma:ICP)を用いて、元素の含有量を求め、同定された成分の含有量に換算すればよい。例えば第1筒体14は、イットリウムを含んだ酸化物の他に、充分な耐プラズマ性を有する範囲で、Ti、Al、Si等の酸化物などの他の成分を含んでいてもよいが、プラズマに対する耐食性をより高くする点で、イットリウムを含んだ酸化物を90質量%以上含むことが好ましい。また第2筒体12は、アルミナの他にも、充分な機械強度が確保できる範囲でジルコニア(ZrO)等の他の成分を含んでいてもよいが、例えば後述する溶射法によって高強度の第2筒体12を安定して形成する点で、アルミナを90質量%以上含むことが好ましい。
 なお、イットリウムを含む酸化物としては、イットリア(Y)に限定されず、例えば、イットリウムアルミニウムガーネット(YAG:YAl12:)などの、アルミニウム(Al)等の他の元素とイットリウム(Y)を含む複合酸化物であってもよい。また、YAM(2Y・Al)、YAP(Y・Al)等のイットリウムとアルミニウムの複合酸化物であってもよい。これら酸化物が単体であってもよく、複数種類の酸化物が混在していてもよい。これらイットリウムを含んだ酸化物はプラズマに対して高い耐食性を有している。
 本実施形態のレーザー管10は、第1筒体14の内表面で囲まれた管路11を備える円筒状の部材であって、この管路11内にヘリウム―ネオン(He-Ne)ガスやアルゴン(Ar)ガス等の希ガスと例えば炭酸ガス(COガス)等とを封入して、この管路内に希ガスのプラズマを生成して例えば炭酸ガス分子(CO分子)を励起して特定波長の光を発光させるために用いられる。
 イットリウムを含んだ酸化物はプラズマに対して高い耐食性を有しており、かつアルミナは機械的強度が高く熱伝導性も高い。このため、第1筒体14をイットリウムを含んだ酸化物とし、第2筒体12をアルミナを主成分とするレーザー管10は、プラズマに対する耐食性が高く、機械的強度が高く、かつ放熱性が高い。
 第1筒体14は、溶射法によって形成されており、第2筒体12も溶射法によって形成されている。第1筒体14および第2筒体12を溶射法で形成することで、第1筒体14および第2筒体12の温度上昇による劣化が抑制されている。また、第1筒体14および第2筒体12を溶射法で形成することで、第1筒体14と第2筒体12とが比較的高い強度で強固に接合されている。図2は、レーザー管10の一部を拡大して示す断面図である。溶射法は、成膜対象体の表面に対して、溶融させた材料を溶射装置のノズルから成膜対象体の表面に微粒子状として吹き付けて凝固、堆積させていくものである。時間とともに溶射膜が厚くなっていく(微粒子12aや14aが堆積していく)過程では、溶射膜の表面状態や温度等も変化し、微粒子12aや14aの配列の方向や密度等も変化していく。このような変動もあいまって、凝固、堆積させた扁平状の微粒子12aや14aの間には隙間Sが生じてしまう。このため、溶射法により形成した第1筒体14および第2筒体12では、例えばイオンプレーティング法やCVD法等で形成した緻密質な高密度の膜に比べて、微粒子14aや微粒子12a間の隙間Sが比較的大きくかつ多い状態となっている。
 このため、例えば管路11内に希ガスプラズマが生成されて第1筒体14が加熱され、各微粒子14aが熱膨張して各微粒子同士が押し合う形になった場合も、これら隙間Sの分だけ各微粒子14aが膨張および移動できる余裕がある。このため、管路11内に希ガスプラズマが生成されて第1筒体14が加熱された場合も、各微粒子14aの熱膨張にともなう内部応力が緩和されるので、熱膨張に起因した応力にともなう第1筒体14の劣化が小さい。第2筒体12もまた同様に溶射膜であり、管路11内に希ガスプラズマが生成されて第1筒体14の加熱にともなって第2筒体12が加熱された場合も、各微粒子12aの熱膨張にともなう第2筒体12内の内部応力が小さくなり、熱膨張に起因した応力にともなう第2筒体12の劣化が小さい。また、第1筒体14と第2筒体12の熱膨張係数の違いに起因した応力も同様に緩和される。このようにレーザー管10では、プラズマの生成にともなう熱膨張に起因した劣化が抑制されている。
 また、第1筒体14は溶射法によって形成されており、第2筒体12も溶射法によって形成されている場合、すなわち溶射によって形成された第1筒体14の外表面14Bに、溶射によって第2筒体12が形成されている場合、第1筒体14と第2筒体12の境界部分においては、第1筒体14を構成するイットリアの微粒子14aに、第2筒体12を構成するアルミナの微粒子12aが衝突して、それぞれの粒子が結合して粒成長するとともに、微粒子14a同士にあった隙間S部分に、第2筒体12の微粒子12aが入り込んでいる。このため、第1筒体14と第2筒体12との境界部分では、微粒子14aと微粒子12aとが混在し、第1筒体14と第2筒体12とが噛み合うように結合しており、第1筒体14と第2筒体12とが比較的高い強度で強固に接合されている。
 第1筒体14の厚みは0.5mm以上1mm以下であり、第2筒体12の厚みは2.6mm以上3.6mm以下であって、第2筒体12の厚みは第1筒体14の厚みよりも大きい。第2筒体12を構成するアルミナは機械強度が比較的高く、また熱伝導性も比較的高い。レーザー管10は第2筒体12の厚さが比較的大きいので、レーザー管10全体の機械的強度は比較的高く、かつ放熱性も比較的高い。
 また、第1筒体14の内表面の算術平均粗さ(Ra)は約0.4~1.6μm程度であり、第2筒体12の外表面12Bの算術平均粗さ(Ra)は約1.6~3.2μm程度であり、第1筒体14の内表面の算術平均粗さ(Ra)は、第2筒体12の外表面12Bの算術平均粗さ(Ra)よりも小さい。プラズマに曝される内周面14Aの表面粗さが比較的小さいレーザー管10では、内周面14Aの表面積、すなわちプラズマの熱の流入面積が比較的小さいので、第1筒体14の温度が上昇し難い。一方、第2筒体12の外表面12Bの算術平均粗さは比較的大きいので、第2筒体12の外表面12Bの表面積は比較的大きく、これにより例えば管路11内に生成したプラズマによる熱エネルギーを効率的にこの外周面12Bから放射して、第1筒体14および第2筒体12の温度上昇を抑制することができる。
 また、第1筒体14が溶射によって形成されており、第1筒体14の内表面の算術平均粗さ(Ra)が小さい場合は、内周面14Aにおいて部分的に突出した微粒子14Aが少ないので、内周面14Aからの微粒子14aの脱落が抑制されており、繰り返しプラズマを生成した場合も、ガスレーザー管10内部の清浄度を高く保つことができる。
 また、第1筒体14の内表面14Aの開気孔面積割合が、第2筒体12の外表面12Bの開気孔面積割合よりも小さい。開気孔面積割合とは、表面を観察した際の観察視野全体の面積に対する、観察視野内で確認できる、マイクロクラックを除く開気孔の合計面積の割合をいう。開気孔面積割合は、例えば光学顕微鏡を用いて測定対象表面を100倍の倍率で観察し、面積が0.15mm(横方向の長さが1000μm、縦方向の長さが150μm)となる範囲を光学顕微鏡付属のCCDカメラを用いて撮影し、画像データを取得する。得られた画像データを用いて、画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)による粒子解析を行なうことで、開気孔の合計面積を求めることができる。なお、粒子解析の設定条件としては、例えば、明度を暗に設定し、2値化の方法を手動、小図形除去面積を1μm、画像の明暗を示す指標であるしきい値を、画像内の各点(各ピクセル)が有する明るさを示すヒストグラムのピーク値の0.3倍以下とする。
 第1筒体14の内表面14Aの開気孔面積割合が、第2筒体12の外表面12Bの開気孔面積割合よりも小さい場合、外表面12Bに比べて内表面14Aの凹凸が小さく、第2筒体12の外表面12Bの表面積に比べて、第1筒体14の内表面14Aの表面積がより小さい。これにより、内表面14Aから第1筒体14に流入する熱エネルギーを抑制しつつ、第2筒体12の外表面12Bからの熱エネルギーの放射を大きくすることができるので、第1筒体14および第2筒体12の温度上昇を抑制することができる。また、第1筒体14の内表面14Aの開気孔面積割合を比較的小さくすることで、内表面14Aの開気孔からの微粒子14aの脱落が抑制されており、繰り返しプラズマを生成した場合も、ガスレーザー管10内部の清浄度を高く保つことができる。例えば第1筒体14の内表面14Aの開気孔面積割合は0.25%以上0.75%であり、第2筒体12の外表面12Bの開気孔面積割合は0.85%以上1.5%以下である。内表面14Aの開気孔面積割合と、第2筒体12の外表面12Bの開気孔面積割合との差は0.1%以上であることが好ましい。
 図3は、プラズマ装置の一実施形態およびガスレーザー装置の一実施形態の断面図である。プラズマ装置2は、レーザー管(筒体)10と、レーザー管10の内表面14Aが曝された管路(内部空間)11に電圧を印加して管路11にプラズマを生成するための電極(陰極5および陽極6)を備える。図3に示すガスレーザー装置1は、このプラズマ装置2と、プラズマ装置2の管路(内部空間)11にレーザー発振用ガスを供給するガス供給手段(図示せず)とを備え、管路11にレーザー発振用ガスが供給された状態で、電極(陰極5および陽極6)によってプラズマを生成してレーザー光を発生させる。
 より具体的には、ガスレーザー装置1は、レーザー管10と、レーザー管10の両端に配置された外囲器7と、外囲器7の内部に配置された反射鏡8と電極(陰極5および陽極6)を備えている。レーザー管10内は図示しない真空ポンプやガス供給手段と接続しており、レーザー管10内へのガス流量や真空度を調整することができる構成となっている。ガスレーザー装置1では、レーザー管10内に例えばアルゴン等の希ガスと炭酸ガス等を流入させつつ真空度を高めた状態で、陰極5と陽極6の間に電圧を印加してアルゴンガスのプラズマを生成させて炭酸ガスを励起し、この励起に起因して発生した特定波長の光を反射鏡8の間を往復させることにより増幅させ、増幅したレーザー光を発振することができる。
 レーザー管10をこのようなガスレーザー装置1に用いた場合、管路11において希ガスプラズマを生成した際も、第1筒体14が高い耐プラズマ性を有するのでプラズマによるレーザー管10の腐食は少ない。
 ガスレーザー装置におけるプラズマは数百℃まで温度が上昇するので、レーザー管10は、室温から数百℃までの温度上昇および下降を繰り返すことになる。例えば従来のレーザー管のように、窒化アルミニウム等のセラミックス材料からなるレーザー管本体の内周面に、イオンプレーティング法やCVD法等によって緻密質の保護膜(耐プラズマ膜)を形成している場合、プラズマによる温度上昇および温度下降の際、保護膜自体の熱膨張にともなう内部応力や、レーザー管本体と保護膜との熱膨張係数の違いに起因した応力が保護膜内に発生し、緻密質の保護膜内にはこの応力による歪が局所的に蓄積されていき、比較的早い段階で(温度変化の回数が少ない段階で)保護膜にヒビや割れ等が発生することがあった。本実施形態のレーザー管10は温度変化に対する耐久性も高いので、レーザー発振を繰り返しても、すなわちプラズマ生成にともなう温度変化を繰り返してもレーザー管10には割れやヒビ等が発生し難いので、ガスレーザー装置1を、比較的長い期間にわたって繰り返し使用することができる。
 次に、本筒体の製造方法の一例について、上述のレーザー管10の製造を一実施形態として説明する。図4(a)~(d)はレーザー管10の製造方法について説明する概略断面図である。
 本実施形態の製造方法は、棒状の中子30を準備する工程と、中子30の外表面にイットリウムを含む酸化物を溶射して、第1筒体14を形成する工程と、第1筒体14の外表面14Bにアルミナを溶射して、該第1筒体14の外表面14Bに接合したアルミナを主成分とする第2筒体12とを形成する工程と、第1筒体14と第2筒体12との集合体から中子30を除去し、第1筒体14の内表面14Aを露出させる工程とを備えている。
 まず棒状の中子30を準備する(図4(a))。本実施形態の中子30は、棒状の軸体32と、軸体32の外表面に形成された離型剤層34とからなる。離型剤層34は水または有機溶剤等の特定の溶媒に溶解する性質をもつ。軸体32としては、例えばステンレスやアルミニウム等の金属や樹脂等を用いればよい。離型剤層34として、例えば、ボロンナイトライド粉末やカーボン粉末等を用いることができる。軸体32の外表面は研磨等で算術平均粗さが調整されている。例えば離型剤34の表面(すなわち中子30の外表面)の算術平均粗さは、約0.2~0.8μm程度と比較的小さくされている。
 次に、中子30の外表面にイットリウムを含む酸化物を溶射して第1筒体14を形成する(図4(b))。溶射法として、減圧プラズマ溶射法、大気圧プラズマ溶射法、フレーム溶射法、アーク溶射法、レーザー溶射法等、様々な溶射法が適用可能であるが、特に高温の熱源を利用可能で高融点を有する材料も適用可能であり、他の溶射法より比較的安価に耐食膜を形成できることから大気圧プラズマ溶射法を用いることが好ましい。
 まず、イットリア(Y)(イットリアを含む酸化物)の粉末を溶射装置において溶融する。イットリア粉末としては、一次原料平均粒子径0.5~10μmの材料を用いる。本実施形態ではイットリア粉末に、さらに1質量%以下の割合で粒径1μm程度のTi、Al、Siのいずれか少なくとも1種の酸化物粉末を添加する。これらの添加物を含有していると、イットリア粉末が離型剤34の表面に比較的強く付着しやすく、製造中に中子30からの第1筒体14が剥離することを抑制することができる。より具体的には、イットリア粉末へ0.001~3質量%の範囲でTi、Al、Siのいずれか少なくとも1種の酸化物粉末を添加した1次原料を一般的な転動造粒等の造粒方法を用いて平均粒径10~50μmの溶射材料を得る。この溶射材料を大気圧プラズマ溶射装置の粉末投入口から投入する。
 投入された溶射材料は、大気圧プラズマ溶射装置において、熱源であるプラズマにより数千~数万度に加熱され溶融する。溶射時に溶融材料を噴出するためのガスとしては、アルゴンと水素の混合ガスを用いる。このガスの噴出と同時に溶融した溶射材料を、中子30の外表面に向かって噴出するが、装置の出力調整は、アルゴンガスを主体として水素ガスを添加する形で行う。このとき、出力は40kW前後がよく、中子30から溶射装置の噴出口までの距離としては、100mm前後とする。さらに、溶射口は基材表面に均一に溶射膜を形成するために、基材までの距離を一定に保ちながら上下左右に可動するが、その可動速度は例えば左右方向に30m/min前後、上下方向には5mm間隔で移動しながら、基材表面全体に溶射膜(第1筒体14)を形成していく。形成された溶射膜(第1筒体14)は、用いた溶射材料の1次原料平均粒径が反映され易く、その平均結晶粒子径は0.5~10μmとなる。
 上述のように中子30の外表面の算術平均粗さは約0.2~0.8μm程度と比較的小さくされており、この中子30の外表面に直接形成される、第1筒体14の内周面14Aは、中子30の表面形状に応じて微粒子14a(図2参照)が緻密に配置されるので、算術平均粗さの値が0.4~1.6μm程度と比較的小さくすることができる。このように内周面14Aの表面粗さを比較的低くすることで、内周面14Aからの微粒子14aの脱落を抑制し、ガスレーザー管10内部の清浄度を高く保つことができる。
 また、溶射膜を形成した後、熱処理を行って、形成した第1筒体14を緻密化したり、第1筒体14の内表面14Aをさらに平滑化することもできる。熱処理は温度条件さえ満たせば大気中雰囲気炉で実施すれば良く、例えば500~1400℃程度の温度で実施すればよい。このような熱処理によって、溶射法により形成した第1筒体14の微粒子14a同士の接触界面を活性化させて粒成長を促し、第1筒体14を緻密化するとともに、第1筒体14の内周面14Aに表れている微粒子14a同士の隙間Sを低減させて算術平均粗さをより低くすることもできる。このように内周面14Aの表面粗さを低減することで、内周面14Aからの微粒子14aの脱落をさらに抑制し、ガスレーザー管10内部の清浄度をさらに高く保つことができる。
 なお、溶射方法や溶射条件、温度処理の有無や条件等は特に限定されず、温度変化に対する耐久性や微粒子14aの脱落抑制の効果など、第1筒体14に求める特性に応じて、溶射条件や熱処理条件を調整することで、所望の特性をもつ第1筒体14を形成すればよい。
 次に、第1筒体14の外表面14Bにアルミナを溶射し、筒状の第2筒体12を形成する(図4(c))。アルミナの溶射もイットリアの溶射と同様に、まずアルミナの粉末を溶射装置において溶融する。アルミナ粉末として、例えば一次原料平均粒子径0.4~10μmの材料を用いる。アルミナ粉末は、金属元素等の不純物を含んでいてもよいが、純度(アルミナの含有割合)が約90質量%以上のものを用いることが好ましい。アルミナの溶射条件は、上述の第1筒体14と同様の方法および条件で行えばよく、要求する第1筒体14の特性に応じて調整した各種条件に沿って行うことができる。上述のように、溶射によって第2筒体12を形成する場合、第1筒体14と第2筒体12の境界部分においては、第1筒体14を構成するイットリアの微粒子14aに、第2筒体12を構成するアルミナの微粒子12aが衝突して、それぞれの粒子が結合して粒成長するとともに、微粒子14a同士にあった隙間S部分に、第2筒体12の微粒子12aが入り込んでおり、第1筒体14と第2筒体12とが噛み合うように結合し、第1筒体14と第2筒体12とが比較的高い強度で強固に接合されている。また、溶射によって微粒子12aが堆積されて形成された第2筒体12の外表面12Bは、中子30の表面に応じて微粒子14a(図2参照)が緻密に配置された第1筒体14の内表面14Aに比べて、表面粗さが大きくかつ開気孔面積割合を大きくし易い。
 第2筒体12を形成した後、第1筒体14と第2筒体12との集合体から中子30を除去し、第2筒体14の内表面14Aを露出させる(図4(d))。中子30の外表面部分は離型剤34が配置されており、この離型剤34を特定溶媒によって溶解させ、軸体32と第1筒体14との間に隙間を生じさせて軸体32を取り外すことで、中子30は容易に除去することができる。このような工程を経て、ガスレーザー発振装置用のレーザー管10を製造することができる。本実施形態の製造方法によれば、スパッタ装置等の大掛かりな成膜装置を用いることなく、高い耐プラズマ性を有し、かつ温度変化に対する耐久性も高い耐プラズマ部材を、短時間かつ比較的安価に製造することができる。
 なお、本実施形態では、中子30を軸体32と離型剤34とで構成したが、例えば中子30全体を例えばアセトン等の特定溶媒に溶解する材質で構成し、第1筒体14と第2筒体12とを形成した後に全体を特定溶媒に浸漬して中子32を溶解させてもよい。また、中子30を熱分解性を有する材質で構成し、第1筒体14と第2筒体12とを形成した後に全体を加熱して中子30を熱分解させて蒸発させてもよい。中子30の構成等、本製造方法における各部材構成や各種条件は特に限定されない。
 本実施形態では、溶射法によってレーザー管10を製造する例を説明したが、溶射法以外の方法でレーザー管10を製造してもよい。例えば、中子30の表面に、イットリアやYAG等のイットリウムを含む酸化物を主成分とするセラミックグリーンシートを巻き付け、その上にアルミナを主成分とするセラミックグリーンシートを巻きつけて全体を焼成して、レーザー管10を製造してもよい。また、中子30の表面にイットリウムを含む酸化物の粉末を含むスラリーを塗布して乾燥する工程を繰り返し、その上にアルミナ粉末を含むスラリーを塗布して乾燥する工程を繰り返した後に、全体を焼成してレーザー管10を製造してもよい。これらグリーンシートやスラリーに例えば樹脂ビーズ等からなる造孔剤を混ぜておき、例えばこの造孔剤の量を部分的に調整しておくことで、例えば第1筒体14の内表面14Aと第2筒体12の外表面12Bとで、算術平均粗さ(Ra)や表面開気孔率の値を変えることができる。グリーンシートを用いた製造方法や、スラリーを用いた製造方法では、グリーンシートの製造や、スラリーの塗布・乾燥などに多大な手間とコストがかかる。加えて、グリーンシートを用いた製造方法やスラリーを用いた製造方法では、例えば造孔剤等を用いても、その分布を調整することは難しく、内表面14Aと外表面12Bとで、算術平均粗さ(Ra)や表面開気孔率の値を変えることが難しい。一方、上述の溶射法による製造方法では、比較的少ない手間とコストでレーザー管10を製造することができるとともに、内表面14Aと外表面12Bとで、算術平均粗さ(Ra)や表面開気孔率の値を変えることも比較的容易である。また上述のように、溶射法で製造した場合、第1筒体14や第2筒体12の内部に微粒子14aや微粒子12a間の隙間Sが比較的大きくかつ多い状態となっており、プラズマの生成にともなう熱膨張に起因した劣化が抑制されている点でも好ましい。
 上述の筒体、プラズマ装置、ガスレーザー装置、および筒体の製造方法の構成や各種条件は特に限定されない。本発明の要旨を逸脱しない範囲において、各種の改良および変更を行なってもよいのはもちろんである。
 5 陰極
 6 陽極
 7 外囲器
 8 反射鏡
 10 レーザー管(筒体)
 11 管路
 12 第2筒体
 14 第1筒体

Claims (9)

  1.  内表面が露出した第1筒体と、該第1筒体の外表面に接合したアルミナを主成分とする第2筒体とを有し、
     前記第1筒体がイットリウムを含んだ酸化物を主成分とすることを特徴とする筒体。
  2.  前記第1筒体の前記内表面の算術平均粗さ(Ra)は、前記第2筒体の外表面の算術平均粗さ(Ra)よりも小さいことを特徴とする請求項1記載の筒体。
  3.  前記第1筒体の前記内表面の開気孔面積割合は、前記第2筒体の外表面の開気孔面積割合よりも小さいことを特徴とする請求項1または2記載の筒体。
  4.  前記第2筒体の厚みは、前記第1筒体の厚みよりも大きいことを特徴とする請求項1~3のいずれかに記載の筒体。
  5.  前記第1筒体の厚みは、0.5mm以上1mm以下であり、
    前記第2筒体の厚みは、2.6mm以上3.6mm以下 であることを特徴とする請求項4に記載の筒体。
  6.  前記第1筒体は、溶射法によって形成されており、
     前記第2筒体は、溶射法によって形成されていることを特徴とする請求項1~5のいずれかに記載の筒体。
  7.  請求項1~6のいずれかに記載の筒体と、
    前記筒体の内部空間にプラズマを生成するための電極とを備えることを特徴とするプラズマ装置。
  8.  請求項7に記載のプラズマ装置と、
    前記プラズマ装置の前記内部空間にレーザー発振用ガスを供給するガス供給手段とを備え、
    前記内部空間に前記レーザー発振用ガスが供給された状態で、前記電極によってプラズマを生成してレーザー光を発生させることを特徴とするガスレーザー装置。
  9.  棒状の中子を準備する工程と、
    前記中子の外表面にイットリウムを含む酸化物を溶射して、イットリウムを含む酸化物を主成分とする第1筒体を形成する工程と、
    前記第1筒体の外表面にアルミナを溶射して、該第1筒体の外表面に接合したアルミナを主成分とする第2筒体とを形成する工程と、
    前記第1筒体と前記第2筒体との集合体から前記中子を除去し、前記第1筒体の内表面を露出させる工程とを備えたことを特徴とする筒体の製造方法。
PCT/JP2015/052768 2014-01-30 2015-01-30 筒体、プラズマ装置、ガスレーザー装置、および筒体の製造方法 WO2015115624A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015560056A JP6272361B2 (ja) 2014-01-30 2015-01-30 プラズマ用筒体、プラズマ装置、ガスレーザー装置、およびプラズマ用筒体の製造方法
US15/115,649 US10090628B2 (en) 2014-01-30 2015-01-30 Cylinder, plasma apparatus, gas laser apparatus, and method of manufacturing cylinder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-015015 2014-01-30
JP2014015015 2014-01-30

Publications (1)

Publication Number Publication Date
WO2015115624A1 true WO2015115624A1 (ja) 2015-08-06

Family

ID=53757191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052768 WO2015115624A1 (ja) 2014-01-30 2015-01-30 筒体、プラズマ装置、ガスレーザー装置、および筒体の製造方法

Country Status (3)

Country Link
US (1) US10090628B2 (ja)
JP (1) JP6272361B2 (ja)
WO (1) WO2015115624A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210057864A1 (en) * 2019-08-19 2021-02-25 Iradion Laser, Inc. Enhanced waveguide surface in gas lasers
JPWO2021060180A1 (ja) * 2019-09-27 2021-04-01

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102082602B1 (ko) * 2018-03-08 2020-04-23 토토 가부시키가이샤 복합 구조물 및 복합 구조물을 구비한 반도체 제조 장치 그리고 디스플레이 제조 장치

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227183A (ja) * 1983-06-07 1984-12-20 Hamamatsu Photonics Kk 希ガス・ハロゲン・エキシマレ−ザ装置
JPH02159356A (ja) * 1988-12-13 1990-06-19 Yamaha Corp 複合材の製造方法
JPH02289306A (ja) * 1989-04-28 1990-11-29 Fujikura Ltd セラミック製管状体の製造方法
JPH1045461A (ja) * 1996-07-31 1998-02-17 Kyocera Corp 耐食性部材
JP2000191370A (ja) * 1998-12-28 2000-07-11 Taiheiyo Cement Corp 処理容器用部材
JP2002192655A (ja) * 2000-12-26 2002-07-10 Kyocera Corp 耐食性部材
JP2004296910A (ja) * 2003-03-27 2004-10-21 Kyocera Corp エキシマレーザ装置
JP2006128603A (ja) * 2004-09-30 2006-05-18 Ngk Insulators Ltd セラミックス部材及びその製造方法
JP2008156160A (ja) * 2006-12-25 2008-07-10 Kyocera Corp 耐食性部材およびその製造方法
JP2009176459A (ja) * 2008-01-22 2009-08-06 Ushio Inc エキシマ放電ランプ
JP2015048273A (ja) * 2013-08-31 2015-03-16 京セラ株式会社 耐プラズマ部材および耐プラズマ部材の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3001371C2 (de) * 1980-01-16 1983-10-27 Langlet, Weber KG Oberflächenveredlung Nachf., 5270 Gummersbach Verfahren zur Herstellung eines keramischen, bindemittelfreien Hohlkörpers
IT1148956B (it) * 1982-06-15 1986-12-03 Selenia Industire Elettroniche Laser a gas impulsanti in struttura sigillata
JPH0630345B2 (ja) 1987-04-15 1994-04-20 住友電気工業株式会社 ガスレ−ザ−管用プラズマ細管
US4988479A (en) * 1988-10-06 1991-01-29 Yamaha Corporation Method for producing a composite material
JP4663927B2 (ja) * 2001-08-29 2011-04-06 信越化学工業株式会社 希土類含有酸化物部材
JP5474576B2 (ja) * 2009-01-14 2014-04-16 ギガフォトン株式会社 レーザ光増幅器及びそれを用いたレーザ装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227183A (ja) * 1983-06-07 1984-12-20 Hamamatsu Photonics Kk 希ガス・ハロゲン・エキシマレ−ザ装置
JPH02159356A (ja) * 1988-12-13 1990-06-19 Yamaha Corp 複合材の製造方法
JPH02289306A (ja) * 1989-04-28 1990-11-29 Fujikura Ltd セラミック製管状体の製造方法
JPH1045461A (ja) * 1996-07-31 1998-02-17 Kyocera Corp 耐食性部材
JP2000191370A (ja) * 1998-12-28 2000-07-11 Taiheiyo Cement Corp 処理容器用部材
JP2002192655A (ja) * 2000-12-26 2002-07-10 Kyocera Corp 耐食性部材
JP2004296910A (ja) * 2003-03-27 2004-10-21 Kyocera Corp エキシマレーザ装置
JP2006128603A (ja) * 2004-09-30 2006-05-18 Ngk Insulators Ltd セラミックス部材及びその製造方法
JP2008156160A (ja) * 2006-12-25 2008-07-10 Kyocera Corp 耐食性部材およびその製造方法
JP2009176459A (ja) * 2008-01-22 2009-08-06 Ushio Inc エキシマ放電ランプ
JP2015048273A (ja) * 2013-08-31 2015-03-16 京セラ株式会社 耐プラズマ部材および耐プラズマ部材の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210057864A1 (en) * 2019-08-19 2021-02-25 Iradion Laser, Inc. Enhanced waveguide surface in gas lasers
JPWO2021060180A1 (ja) * 2019-09-27 2021-04-01
WO2021060180A1 (ja) * 2019-09-27 2021-04-01 京セラ株式会社 プラズマ処理装置用部材、その製造方法およびプラズマ処理装置
JP7329610B2 (ja) 2019-09-27 2023-08-18 京セラ株式会社 プラズマ処理装置用部材、その製造方法およびプラズマ処理装置

Also Published As

Publication number Publication date
US10090628B2 (en) 2018-10-02
JPWO2015115624A1 (ja) 2017-03-23
JP6272361B2 (ja) 2018-01-31
US20170179669A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6639584B2 (ja) プラズマ処理装置用の部品の製造方法
WO2015151857A1 (ja) 耐プラズマ部品及び耐プラズマ部品の製造方法及び耐プラズマ部品の製造に用いる膜堆積装置
JP6272361B2 (ja) プラズマ用筒体、プラズマ装置、ガスレーザー装置、およびプラズマ用筒体の製造方法
US9388086B2 (en) Method of fabricating optical ceramics containing compositionally tailored regions in three dimension
JP2017028268A (ja) エッチングチャンバ部材としての、焼結ナノ結晶粒化イットリウムをベースとしたセラミックの使用
JP2012191200A (ja) プラズマ処理装置
JP2003146751A (ja) 耐プラズマ性部材及びその製造方法
JP2007217782A (ja) 希土類元素のフッ化物皮膜を有する耐食性皮膜およびその製造方法
TW201800367A (zh) 陶瓷燒結體之製造方法、以及陶瓷成形體之製造方法及製造裝置
JP2010070854A (ja) 耐食性部材およびこれを用いた半導体製造装置
KR100859672B1 (ko) 용사 코팅 방법
JP5031259B2 (ja) 耐食性部材とその製造方法およびこれを用いた半導体・液晶製造装置
CN112334433B (zh) 陶瓷烧结体和等离子体处理装置用构件
JP2009029686A (ja) 耐食性部材およびその製造方法ならびに処理装置
JP2009280483A (ja) 耐食性部材およびその製造方法ならびに処理装置
KR102395660B1 (ko) 용사 재료 및 그 용사 재료로 제조된 용사 피막
CN108754390A (zh) 熔炼放射性金属用小口径石墨坩埚防护涂层的制备方法
KR20090101245A (ko) 세라믹 부재 및 내식성 부재
JP2015048273A (ja) 耐プラズマ部材および耐プラズマ部材の製造方法
CN104018135A (zh) 一种用于短弧高压气体放电灯阳极表面粗糙化的方法
JP7343685B2 (ja) 光学ガラス製造装置用部材
JP7122206B2 (ja) 溶射膜
JP7211664B2 (ja) 耐食性セラミックス
JP7329610B2 (ja) プラズマ処理装置用部材、その製造方法およびプラズマ処理装置
WO2016017378A1 (ja) 複層コート部材及び複層コート部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560056

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15115649

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743094

Country of ref document: EP

Kind code of ref document: A1