WO2015115292A1 - ポリイソシアネート組成物、2液硬化型ポリウレタン樹脂、塗料、接着剤およびポリイソシアネート組成物の製造方法 - Google Patents

ポリイソシアネート組成物、2液硬化型ポリウレタン樹脂、塗料、接着剤およびポリイソシアネート組成物の製造方法 Download PDF

Info

Publication number
WO2015115292A1
WO2015115292A1 PCT/JP2015/051625 JP2015051625W WO2015115292A1 WO 2015115292 A1 WO2015115292 A1 WO 2015115292A1 JP 2015051625 W JP2015051625 W JP 2015051625W WO 2015115292 A1 WO2015115292 A1 WO 2015115292A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyisocyanate composition
xylylene diisocyanate
trimethylolalkane
reaction
mass
Prior art date
Application number
PCT/JP2015/051625
Other languages
English (en)
French (fr)
Inventor
内田 隆
増井 昌和
吉田 力
朗博 今井
英樹 寺田
中嶋 辰也
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to EP15743095.0A priority Critical patent/EP3101044A4/en
Priority to CN201580006106.5A priority patent/CN105940030A/zh
Priority to JP2015559895A priority patent/JP6243929B2/ja
Priority to US15/114,583 priority patent/US20160340563A1/en
Publication of WO2015115292A1 publication Critical patent/WO2015115292A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8029Masked aromatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes

Definitions

  • the present invention relates to a polyisocyanate composition, a two-component curable polyurethane resin, a paint, an adhesive, and a method for producing a polyisocyanate composition. More specifically, the present invention relates to a polyisocyanate composition and a two-component curable type using the polyisocyanate composition. The present invention also relates to a polyurethane resin, a paint and an adhesive comprising the two-component curable polyurethane resin, and a method for producing a polyisocyanate composition for obtaining a polyisocyanate composition.
  • the two-component curable polyurethane resin is prepared by preparing a curing agent containing polyisocyanate and a main agent containing macropolyol, and blending them at the time of use. It is widely used in the fields of paints and adhesives. Has been.
  • Patent Document 1 specifically, Takenate D-110N (manufactured by Mitsui Chemicals Polyurethanes) as a trimethylolpropane modified product of xylylene diisocyanate and Takenate D-165N (Mitsui Chemicals) as a biuret modified product of hexamethylene diisocyanate. Polyurethane) or a mixture with Takenate D-170N (made by Mitsui Chemicals Polyurethane) as a trimer of hexamethylene diisocyanate is used.
  • Such a two-component curable polyurethane resin can improve the adhesion, acid / alkali resistance, solvent resistance, stain resistance and weather resistance in a well-balanced manner.
  • the equivalent ratio of isocyanate group in xylylene diisocyanate to hydroxyl group in trimethylol alkane is 2 (isocyanate group / hydroxyl group). It is preferable that it is 5 or more and 6 or less.
  • the two-component curable polyurethane resin of the present invention is characterized by containing a curing agent containing the polyisocyanate composition and a main agent containing a polyol component.
  • the coating material of the present invention is characterized by comprising the above two-component curable polyurethane resin.
  • the adhesive of the present invention is characterized by comprising the above two-component curable polyurethane resin.
  • the method for producing a polyisocyanate composition of the present invention is a method for producing a polyisocyanate composition, and after reacting xylylene diisocyanate with trimethylolalkane, an aliphatic hydrocarbon is obtained from the resulting crude product. And 3 molecules of xylylene diisocyanate and 1 molecule of trimethylolalkane by removing unreacted xylylene diisocyanate by liquid-liquid extraction using an extraction solvent containing benzene and ketones and / or alkyl esters The content of the isocyanate derivative obtained by the reaction with is characterized by obtaining a polyisocyanate composition of 45% by mass or less based on the total amount of the polyisocyanate composition.
  • the content of the isocyanate derivative obtained by the reaction of 3 molecules of xylylene diisocyanate and 1 molecule of trimethylolalkane is within the above predetermined range.
  • a two-component curable polyurethane resin excellent in adhesion and quick-drying property can be obtained.
  • the two-component curable polyurethane resin, paint and adhesive of the present invention are excellent in adhesion and quick drying.
  • FIG. 1 is a gel permeation chromatogram of the polyisocyanate composition of Example 1.
  • FIG. 2 is a gel permeation chromatogram of the polyisocyanate composition of Example 2.
  • FIG. 3 is a gel permeation chromatogram of the polyisocyanate composition of Comparative Example 1.
  • the polyisocyanate composition of the present invention can be obtained by the reaction of xylylene diisocyanate (XDI) and trimethylolalkane (TMA). As will be described in detail later, three molecules of xylylene diisocyanate and one molecule of triisylene diisocyanate are obtained.
  • An isocyanate derivative obtained by reaction with methylolalkane (hereinafter sometimes referred to as trimethylolalkane monomolecular) is contained in a predetermined ratio.
  • xylylene diisocyanate 1,2-xylylene diisocyanate (o-xylylene diisocyanate (o-XDI)), 1,3-xylylene diisocyanate (m-xylylene diisocyanate (m-XDI)), 1,4-xylylene diisocyanate (p-xylylene diisocyanate (p-XDI)) is mentioned as a structural isomer.
  • examples of the trimethylol alkane include trimethylol methane, trimethylol ethane, trimethylol n-propane, trimethylol isopropane, trimethylol n-butane, trimethylol isobutane, trimethylol s-butane, and trimethylol t.
  • An alkane having 1 to 20 carbon atoms having three methylol groups such as butane, trimethylolpentane, trimethylolhexane, trimethylolheptane, trimethyloloctane, trimethylolnonane, trimethyloldecane, trimethylolundecane, trimethyloldodecane, etc. Can be mentioned.
  • trimethylol alkanes can be used alone or in combination of two or more.
  • the trimethylol alkane is preferably an alkane having 4 or less carbon atoms having 3 methylol groups, more preferably an alkane having 3 or less carbon atoms having 3 methylol groups, and more preferably trimethylol.
  • Ethane and trimethylolpropane are mentioned, and trimethylolpropane is particularly preferred.
  • the low molecular weight polyol is a compound having two or more hydroxyl groups and a number average molecular weight of less than 400, preferably less than 300, such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2,2-trimethyl Pentanediol, 3,3-dimethylolheptane, alkane (C7-20) diol, 1,3- or 1,4-cyclohexanedimethanol and mixtures thereof, 1,3- or 1,4-cyclohexanediol and their Mixture, hydrogenated bisphenol A, 1,4-dihydroxy Dihydric alcohols such as 2-butene, 2,6-dimethyl-1-o
  • These other low molecular weight polyols can be used alone or in combination of two or more.
  • the blending ratio of trimethylol alkane is, for example, 1 mol to the total amount of 100 mol of trimethylol alkane and other low molecular weight polyol. It is at least mol, preferably at least 10 mol, for example, at most 99 mol, preferably at most 90 mol.
  • the other low molecular weight polyol is, for example, 1 mol or more, preferably 10 mol or more, for example, 99 mol or less, preferably 90 mol or less.
  • the polyisocyanate composition of the present invention is a mixture of xylylene diisocyanate and trimethylol alkane in the obtained reaction product.
  • the reaction product is shown.
  • the equivalent ratio (isocyanate group / hydroxyl group) of the isocyanate group in xylylene diisocyanate with respect to the hydroxyl group in the trimethylol alkane (and dihydric alcohol (henceforth the same) blended if necessary) ) Is, for example, 2.5 or more, preferably 2.6 or more, more preferably 2.7 or more, for example, 6 or less, preferably 5.5 or less, more preferably 5.0 or less.
  • xylylene diisocyanate and trimethylolalkane are blended and urethanized.
  • the content of the isocyanate derivative (trimethylolalkane monomolecular body) obtained by the reaction of 3 molecules of xylylene diisocyanate and 1 molecule of trimethylolalkane is adjusted to the range described later. be able to.
  • amines include tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine, and quaternary ammonium salts such as tetraethylhydroxylammonium, such as imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
  • tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine
  • quaternary ammonium salts such as tetraethylhydroxylammonium, such as imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
  • organometallic compounds include tin acetate, tin octylate, tin oleate, tin laurate, dibutyltin diacetate, dimethyltin dilaurate, dibutyltin dilaurate, dibutyltin dimercaptide, dibutyltin maleate, dibutyltin dilaurate, dibutyltin Organic tin compounds such as dineodecanoate, dioctyltin dimercaptide, dioctyltin dilaurate, dibutyltin dichloride, for example, organic lead compounds such as lead octoate and lead naphthenate, for example, organic nickel compounds such as nickel naphthenate, Examples thereof include organic cobalt compounds such as cobalt naphthenate, organic copper compounds such as copper octenoate, and organic bismuth compounds such as bismuth octylate and bismuth
  • examples of the urethanization catalyst include potassium salts such as potassium carbonate, potassium acetate, and potassium octylate.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, nitriles such as acetonitrile, alkyl esters such as methyl acetate, ethyl acetate, butyl acetate, and isobutyl acetate, such as n- Aliphatic hydrocarbons such as hexane, n-heptane and octane, for example, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, for example, aromatic hydrocarbons such as toluene, xylene and ethylbenzene, such as methyl cellosolve acetate , Ethyl cellosolve acetate, methyl carbitol acetate, ethyl carbitol acetate, ethylene glycol ethyl ether acetate, propy
  • organic solvents can be used alone or in combination of two or more.
  • the organic solvent may be contained in the polyisocyanate composition as it is, and can be removed together with unreacted xylylene diisocyanate as described below.
  • the degree of vacuum is, for example, 1 Pa or more, preferably 10 Pa or more, for example, 3000 Pa or less, preferably 1000 Pa or less.
  • the temperature condition is, for example, 100 ° C. or more, preferably 120 ° C. or more, for example, 200 ° C. or less, preferably 180 ° C. or less.
  • the first organic solvent examples include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, nonane and decane. These first organic solvents can be used alone or in combination of two or more.
  • aliphatic hydrocarbons are mentioned, More preferably, hexane is mentioned.
  • Examples of the second organic solvent include ketones such as acetone, acetonitrile, and methyl ethyl ketone, alkyl esters such as ethyl acetate and butyl acetate, and halogenated aliphatic hydrocarbons such as chloroform, such as methyl cellosolve. Examples include glycol ether esters such as acetate. These second organic solvents can be used alone or in combination of two or more.
  • the second organic solvent preferably includes ketones and alkyl esters, more preferably includes alkyl esters, and further preferably includes ethyl acetate.
  • the extraction solvent preferably includes aliphatic hydrocarbons (first organic solvent) and ketones and / or alkyl esters (second organic solvent), more preferably aliphatic. It includes the inclusion of hydrocarbons and alkyl esters, and more preferably includes hexane and ethyl acetate.
  • the blending ratio of each component in the mixed extraction solvent is such that the first organic solvent is, for example, 50 to 95 parts by weight, preferably 70 to 95 parts by weight with respect to 100 parts by weight of the mixed extraction solvent.
  • the organic solvent is, for example, 5 to 50 parts by mass, preferably 5 to 30 parts by mass.
  • the blending ratio of the polyisocyanate composition (including unreacted xylylene diisocyanate mixed) and the extraction solvent in the liquid-liquid extraction is such that the extraction solvent is, for example, 20 parts per 100 parts by mass of the polyisocyanate composition. To 300 parts by mass, preferably 30 to 200 parts by mass, and more preferably 40 to 150 parts by mass.
  • the polyisocyanate composition and the extraction solvent are, for example, at normal pressure (atmospheric pressure), for example, 25 to 65 ° C., preferably 30 to 60 ° C., more preferably 40 to 60 ° C. At 0 ° C., for example, mixing is performed for 2 to 60 minutes, preferably 5 to 40 minutes, more preferably 5 to 30 minutes.
  • liquid-liquid extraction can be repeated several times.
  • unreacted xylylene diisocyanate can be continuously extracted using an extraction tower or the like.
  • an extraction tower include an extraction tower in which dozens of shelves are incorporated inside the tower, and an extraction tower having a rotating disk type shelf.
  • the solvent is preferably removed from the polyisocyanate composition.
  • the solvent can be volatilized and removed from the polyisocyanate composition.
  • liquid-liquid extraction is preferable.
  • the residual monomer concentration (concentration of unreacted xylylene diisocyanate) is, for example, 3% by mass or less, preferably 1% by mass or less, more preferably 0.5% by mass. % Or less.
  • the residual monomer concentration can be obtained from a gel permeation chromatogram.
  • the residual monomer concentration in the gel permeation chromatogram obtained according to the examples described later is the peak area with a peak time between 27.8 minutes and 27.9 minutes. It is determined as an area ratio (%) with respect to the area of all peaks.
  • Type polyurethane resin can be obtained.
  • the content of an isocyanate derivative (trimethylol alkane monomolecular) obtained by the reaction of 3 molecules of xylylene diisocyanate and 1 molecule of trimethylol alkane can be determined by gel permeation chromatogram.
  • the content ratio of the isocyanate derivative obtained by the reaction of 3 molecules of xylylene diisocyanate and 1 molecule of trimethylolalkane is a gel permeation chromatogram obtained according to the examples described later. It is obtained as an area ratio (%) of the area of the peak having a peak time between 26.1 minutes and 26.2 minutes with respect to the area of all peaks.
  • the isocyanate group concentration of the polyisocyanate composition thus obtained is, for example, 3% by mass or more, preferably 5% by mass or more, for example, 18.0% by mass or less, preferably 15.7%. It is below mass%.
  • the average number of functional groups of the polyisocyanate composition thus obtained is, for example, 3.0 or more, preferably 4.3 or more, for example 6.0 or less, preferably 5.0 or less. is there.
  • the average number of functional groups can be determined by dividing the number average molecular weight by the equivalent of isocyanate groups.
  • the polyisocyanate composition thus obtained can be dissolved in various organic solvents and used as a curing agent for a two-component curable polyurethane resin (for example, paint, adhesive, etc.). Can be used for many industrial and industrial applications. If necessary, it can be used without a solvent.
  • a two-component curable polyurethane resin for example, paint, adhesive, etc.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, nitriles such as acetonitrile, alkyl esters such as methyl acetate, ethyl acetate, butyl acetate, and isobutyl acetate, such as n- Aliphatic hydrocarbons such as hexane, n-heptane and octane, for example, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, for example, aromatic hydrocarbons such as toluene, xylene and ethylbenzene, such as methyl cellosolve acetate , Ethyl cellosolve acetate, methyl carbitol acetate, ethyl carbitol acetate, ethylene glycol ethyl ether acetate, propy
  • examples of the organic solvent include nonpolar solvents (nonpolar organic solvents).
  • nonpolar organic solvents include aliphatic, naphthenic hydrocarbon organic solvents, and aniline points, such as 10 to 70 ° C.
  • a non-polar organic solvent having low toxicity and weak dissolving power at 12 to 65 ° C., vegetable oil represented by terpene oil, and the like can be used.
  • Such a nonpolar organic solvent is available as a commercial product.
  • Examples of such a commercial product include House (manufactured by Shell Chemical Co., aniline point 15 ° C.), Swazol 310 (manufactured by Maruzen Petroleum Co., Ltd., aniline point 16 ° C.) Essonaphtha No. 6 (manufactured by Exxon Chemical, aniline point 43 ° C.), wax (manufactured by Shell Chemical Co., aniline point 43 ° C.), Essonaphtha No.
  • the concentration of the polyisocyanate composition in the solution is, for example, 30% by mass or more, preferably 40% by mass or more, more preferably 50% by mass or more. Yes, for example, 95% by mass or less, preferably 90% by mass or less.
  • the viscosity of the solution at 25 ° C. is, for example, 10 mPa ⁇ s or more, preferably 20 mPa ⁇ s or more, more preferably 50 mPa ⁇ s. S or more, for example, 5000 mPa ⁇ s or less, preferably 4000 mPa ⁇ s or less, more preferably 3000 mPa ⁇ s or less.
  • the measuring method of a viscosity is based on the Example mentioned later.
  • the curing agent contains the above-described polyisocyanate composition as an essential component.
  • the curing agent can contain other polyisocyanates (polyisocyanates excluding the polyisocyanate composition described above) as optional components.
  • aromatic polyisocyanate examples include tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof) (TDI), phenylene diisocyanate (m-, p-phenylene diisocyanate or a mixture thereof), 4, 4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'- or 2,2'-diphenylmethane diisocyanate or mixtures thereof) (MDI), And aromatic diisocyanates such as 4,4′-toluidine diisocyanate (TODI) and 4,4′-diphenyl ether diisocyanate.
  • TODI 4,4′-toluidine diisocyanate
  • TODI 4,4′-diphenyl ether diisocyanate
  • araliphatic polyisocyanate examples include xylylene diisocyanate (XDI (monomer)), tetramethylxylylene diisocyanate (1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof) (TMXDI), and araliphatic diisocyanates such as ⁇ , ⁇ ′-diisocyanate-1,4-diethylbenzene.
  • aliphatic polyisocyanate examples include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), 1 , 5-pentamethylene diisocyanate (PDI), 1,6-hexamethylene diisocyanate (also known as hexamethylene diisocyanate) (HDI), 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6- Aliphatic diisocyanates such as diisocyanate methyl capate are listed.
  • PDI 5-pentamethylene diisocyanate
  • HDI 1,6-hexamethylene diisocyanate
  • 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate 2,6- Aliphatic diisocyanates such as diisocyanate methyl capate
  • Cyclohexane diisocyanate 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (also known as isophorone diisocyanate) (IPDI), methylenebis (cyclohexyl isocyanate) (also known as bis (isocyanatocyclohexyl) methane) (4,4 ' -, 2,4'- or 2,2'-methylenebis (cyclohexylisocyanate) These Trans, Trans-, Trans, Cis-, Cis, Cis-, The mixture) (H 12 MDI), alicyclic such as methylcyclohexane diisocyanate (methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate), norbornane diisocyanate (various isomers or mixtures thereof) (NBDI) Group diisocyanate and the like.
  • IPDI isophorone diiso
  • polyisocyanates include those derivatives (excluding xylylene diisocyanate modified with trimethylolalkane).
  • polyisocyanate derivatives include polyisocyanate multimers (eg, dimers, trimers (eg, isocyanurate-modified products, iminooxadiazinedione-modified products), pentamers, and 7-mers).
  • Allophanate-modified products for example, allophanate-modified products produced from the reaction of polyisocyanate and low-molecular weight polyol
  • polyol-modified products for example, polyol-modified products produced from the reaction of polyisocyanate and low molecular weight polyol (alcohol addition) (Excluding trimethylolalkane-modified products of xylylene diisocyanate)
  • biuret-modified products for example, biuret-modified products produced by reaction of polyisocyanate with water or amines
  • urea-modified products for example, For reaction of polyisocyanate and diamine Modified urea modified products
  • oxadiazine trione modified products for example, oxadiazine trione produced by reaction of polyisocyanate and carbon dioxide gas
  • carbodiimide modified products generated by decarboxylation condensation reaction of polyisocyanate.
  • Carbodiimide modified products uretdione modified products,
  • the blending ratio is based on 100 parts by mass of the total amount of the above-described polyisocyanate composition and other polyisocyanate.
  • the other polyisocyanate is, for example, 30 parts by mass or less, preferably 20 parts by mass or less, and usually 1 part by mass or more.
  • the low molecular weight polyol is a compound having two or more hydroxyl groups and a number average molecular weight of less than 400, preferably less than 300, such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2,2-trimethyl Pentanediol, 3,3-dimethylolheptane, alkane (C7-20) diol, 1,3- or 1,4-cyclohexanedimethanol and mixtures thereof, 1,3- or 1,4-cyclohexanediol and their Mixture, hydrogenated bisphenol A, 1,4-dihydroxy Dihydric alcohols such as 2-butene, 2,6-dimethyl-1-o
  • a trihydric alcohol such as tetramethylolmethane (pentaerythritol), a dihydric alcohol such as diglycerin, a pentahydric alcohol such as xylitol, such as sorbitol, mannitol, allitol, iditol, dulitol, altoitol, inositol, dithiol.
  • pentahydric alcohol such as xylitol, such as sorbitol, mannitol, allitol, iditol, dulitol, altoitol, inositol, dithiol.
  • hexavalent alcohols such as pentaerythritol, for example, 7-valent alcohols such as perseitol, and 8-valent alcohols such as sucrose.
  • These low molecular weight polyols can be used alone or in combination of two or more.
  • the high molecular weight polyol is a compound having two or more hydroxyl groups and a number average molecular weight of 400 or more, preferably 300 or more.
  • polyether polyol, polyester polyol, polycarbonate polyol, polyurethane polyol, epoxy polyol, vegetable oil polyol, polyolefin Examples include polyols, acrylic polyols, and vinyl monomer-modified polyols.
  • polyether polyols examples include polyalkylene (C2-3) polyols and polytetramethylene ether polyols.
  • polytetramethylene ether polyol examples include a ring-opening polymer obtained by cationic polymerization of tetrahydrofuran, and amorphous polytetramethylene ether glycol obtained by copolymerizing the above dihydric alcohol with a polymerization unit of tetrahydrofuran.
  • polyester polyol examples include polycondensates obtained by reacting the above-described low molecular weight polyol and polybasic acid under known conditions.
  • polybasic acid examples include oxalic acid, malonic acid, succinic acid, methyl succinic acid, glutaric acid, adipic acid, 1,1-dimethyl-1,3-dicarboxypropane, 3-methyl-3-ethylglutaric acid , Azelaic acid, sebacic acid, other saturated aliphatic dicarboxylic acids (C11-13) such as maleic acid, fumaric acid, itaconic acid, other unsaturated aliphatic dicarboxylic acids such as orthophthalic acid, isophthalic acid, terephthalic acid , Toluene dicarboxylic acid, naphthalene dicarboxylic acid, other aromatic dicarboxylic acids such as hexahydrophthalic acid, other alicyclic dicarboxylic acids such as dimer acid, hydrogenated dimer acid, het acid and other carboxylic acids, And acid anhydrides derived from these carboxylic acids, such as oxalic an
  • polyester polyols include hydroxyl group-containing vegetable oil fatty acids (for example, castor oil fatty acid containing ricinoleic acid, hydrogenated castor oil fatty acid containing 12-hydroxystearic acid, etc.) using the above-described low molecular weight polyol as an initiator.
  • examples thereof include vegetable oil-based polyester polyols obtained by subjecting hydroxycarboxylic acid to a condensation reaction under known conditions.
  • polycarbonate polyol examples include a ring-opening polymer of ethylene carbonate using the above-described low molecular weight polyol (preferably a dihydric alcohol) as an initiator, for example, 1,4-butanediol, 1,5-pentanediol, Examples thereof include amorphous polycarbonate polyols obtained by copolymerizing a dihydric alcohol such as 3-methyl-1,5-pentanediol and 1,6-hexanediol with a ring-opening polymer.
  • the polyurethane polyol is a ratio in which the equivalent ratio (OH / NCO) of the hydroxyl group (OH) to the isocyanate group (NCO) of the polyester polyol, polyether polyol and / or polycarbonate polyol obtained as described above exceeds 1, By reacting with polyisocyanate, it can be obtained as polyester polyurethane polyol, polyether polyurethane polyol, polycarbonate polyurethane polyol, or polyester polyether polyurethane polyol.
  • epoxy polyol examples include an epoxy polyol obtained by reacting the above-described low molecular weight polyol with a polyfunctional halohydrin such as epichlorohydrin or ⁇ -methylepichlorohydrin.
  • Examples of the vegetable oil polyol include hydroxyl group-containing vegetable oils such as castor oil and palm oil.
  • castor oil polyol, or ester-modified castor oil polyol obtained by reaction of castor oil fatty acid and polypropylene polyol can be used.
  • polystyrene resin examples include polybutadiene polyol, partially saponified ethylene-vinyl acetate copolymer, and the like.
  • acrylic polyol examples include a copolymer obtained by copolymerizing a hydroxyl group-containing acrylate and a copolymerizable vinyl monomer copolymerizable with the hydroxyl group-containing acrylate.
  • hydroxyl group-containing acrylates examples include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2,2-dihydroxymethylbutyl (meth) acrylate, polyhydroxyalkyl maleate, Examples thereof include polyhydroxyalkyl fumarate.
  • Preferable examples include 2-hydroxyethyl (meth) acrylate.
  • Examples of the copolymerizable vinyl monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl ( Alkyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, isononyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl acrylate, etc.
  • (Meth) acrylate (having 1 to 12 carbon atoms), for example, aromatic vinyl such as styrene, vinyltoluene and ⁇ -methylstyrene, vinyl cyanide such as (meth) acrylonitrile, Vinyl monomers containing carboxyl groups such as (meth) acrylic acid, fumaric acid, maleic acid, itaconic acid, or alkyl esters thereof such as ethylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, hexanediol di ( Alkane polyol poly (meth) acrylates such as meth) acrylate, oligoethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, for example 3- (2-isocyanate-2 And vinyl monomers containing an isocyanate group such as -propyl) - ⁇ -methylstyren
  • the acrylic polyol can be obtained by copolymerizing these hydroxyl group-containing acrylate and copolymerizable vinyl monomer in the presence of a suitable solvent and a polymerization initiator.
  • the acrylic polyol includes, for example, silicone polyol and fluorine polyol.
  • silicone polyol examples include an acrylic polyol in which a silicone compound containing a vinyl group such as ⁇ -methacryloxypropyltrimethoxysilane is blended as the copolymerizable vinyl monomer in the copolymerization of the acrylic polyol described above. .
  • the fluorine polyol for example, in the copolymerization of the acrylic polyol described above, as the copolymerizable vinyl monomer, for example, an acrylic polyol in which a fluorine compound containing a vinyl group such as tetrafluoroethylene or chlorotrifluoroethylene is blended may be mentioned. .
  • the vinyl monomer-modified polyol can be obtained by a reaction between the above-described high molecular weight polyol and a vinyl monomer.
  • examples of the vinyl monomer include the above-described alkyl (meth) acrylate, vinyl cyanide, vinylidene cyanide, and the like. These vinyl monomers can be used alone or in combination of two or more. Of these, alkyl (meth) acrylate is preferable.
  • the vinyl monomer-modified polyol is obtained by reacting these high molecular weight polyol and vinyl monomer in the presence of a radical polymerization initiator (for example, persulfate, organic peroxide, azo compound, etc.), for example. Can be obtained.
  • a radical polymerization initiator for example, persulfate, organic peroxide, azo compound, etc.
  • These high molecular weight polyols can be used alone or in combination of two or more.
  • polyol components can be used alone or in combination of two or more.
  • the polyol component is preferably a high molecular weight polyol, more preferably an acrylic polyol.
  • the hydroxyl value of the polyol component is, for example, 5 to 200 mgKOH / g, preferably 10 to 100 mgKOH / g.
  • the hydroxyl value can be determined from an acetylation method or a phthalation method according to JIS K1557-1 Method A or Method B.
  • the solvent examples include the organic solvents described above, preferably methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate and the like.
  • the main agent and the curing agent are respectively prepared, and the main agent and the curing agent are mixed immediately before use to prepare a two-component curable polyurethane resin (paint, adhesive).
  • a two-component curable polyurethane resin is applied to an object to be coated or an adherend.
  • additives for example, as paints, coloring pigments, dyes, ultraviolet absorbers, curing accelerators, light stabilizers, matting agents, etc., as adhesives, coating films
  • An oxygen acid of phosphorus or a derivative thereof, a silane coupling agent, or the like can be added to improve the adhesion of the resin.
  • color pigments and dyes include inorganic pigments such as carbon black and titanium oxide having good weather resistance, for example, organic pigments such as phthalocyanine blue, phthalocyanine green, quinacridone red, indanthrene orange, and isoindolinone-based yellow, And dyes.
  • organic pigments such as phthalocyanine blue, phthalocyanine green, quinacridone red, indanthrene orange, and isoindolinone-based yellow, And dyes.
  • ultraviolet absorbers examples include benzophenone-based, benzotriazole-based, triazine-based, and cyanoacrylate-based ultraviolet absorbers, and more specifically, tinuvin 213, tinuvin 234, tinuvin 326, tinuvin 571 (and above, ⁇ Products made in Japan and trade names).
  • Examples of the curing accelerator include dibutyltin dilaurate.
  • matting agents examples include ultrafine powder synthetic silica. If a matting agent is blended, an elegant semi-gloss and matte finish film can be formed.
  • color pigments dyes, ultraviolet absorbers, curing accelerators, light stabilizers and matting agents can be used alone or in combination of two or more.
  • oxygen acid of phosphorus examples include phosphoric acids such as hypophosphorous acid, phosphorous acid, orthophosphoric acid, hypophosphoric acid, such as metaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, polyphosphoric acid.
  • examples thereof include condensed phosphoric acids such as acid and ultraphosphoric acid.
  • Examples of phosphorus oxygen acid derivatives include phosphates such as sodium and potassium, or condensed phosphates such as monomethyl orthophosphate, monoethyl orthophosphate, monopropyl orthophosphate, monobutyl orthophosphate, mono-orthophosphate.
  • phosphates such as sodium and potassium
  • condensed phosphates such as monomethyl orthophosphate, monoethyl orthophosphate, monopropyl orthophosphate, monobutyl orthophosphate, mono-orthophosphate.
  • Monoesters such as 2-ethylhexyl, monophenyl orthophosphate, monomethyl phosphite, monoethyl phosphite, monopropyl phosphite, monobutyl phosphite, mono-2-ethylhexyl phosphite, monophenyl phosphite,
  • Silane coupling agents include, for example, the structural formula R—Si ⁇ (X) 3 or R—Si ⁇ (R ′) (X) 2 (wherein R is a vinyl group, an epoxy group, an amino group, an imino group, An organic group having an isocyanate group or a mercapto group, R ′ represents a lower alkyl group having 1 to 4 carbon atoms, and X represents a methoxy group, an ethoxy group or a chloro atom.
  • silane coupling agent examples include chlorosilanes such as vinyltrichlorosilane, such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ - (3,4-epoxy.
  • Epoxy silane such as cyclohexyl) ethyltrimethoxysilane, di ( ⁇ -glycidoxypropyl) dimethoxysilane, for example, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, Aminosilanes such as N- ⁇ - (aminoethyl) - ⁇ -propylmethyldimethoxysilane, n- (dimethoxymethylsilylpropyl) ethylenediamine, n- (triethoxysilylpropyl) ethylenediamine, N-phenyl- ⁇ -aminopropyltrimethoxysilane , Example If, vinylsilane such as vinyl triethoxysilane, for example, .gamma.-isocyanatopropyltrimethoxysilane, such as isocyanatosi
  • silane coupling agent As the silane coupling agent, the above-mentioned various silane coupling agents can be used alone or in combination.
  • additives may be blended in advance with the main agent and / or the curing agent, or may be blended with the two-component curable polyurethane resin after blending the main agent and the curing agent.
  • the mixing ratio of the additive is not particularly limited, and is appropriately set according to the purpose and use.
  • Such a two-component curable polyurethane resin is not particularly limited, and can be applied to an object to be coated such as, for example, spray coating, air spray coating, brush coating, dipping method, roll coater, or flow coater. It can be applied by a coating method, and can be applied and adhered to an adherend by an arbitrary application method such as a dry lamination method, a wet lamination method, or a direct coating method.
  • the material to be coated is not particularly limited, and for example, inorganic materials such as concrete, natural stone, and glass, for example, metals such as iron, stainless steel, aluminum, copper, brass, and titanium, such as plastic, rubber, and adhesive And organic materials such as wood.
  • the adherend is not particularly limited, and examples thereof include various building materials and various laminated films. More specifically, a packaging material such as a plastic film, a metal foil, and a metal vapor-deposited film, and a civil engineering material such as FRP and steel are included.
  • such two-component curable polyurethane resins are plastic paints, automotive paints, film coating agents, various inks, various adhesives, adhesives, sealing materials, various microcapsules, plastic lenses, artificial and synthetic leather, RIM molding. It is suitably used in a wide range of fields such as products, slush powder, elastic molded products (spandex), and urethane foam.
  • ⁇ Isocyanate group concentration (unit: mass%)> The isocyanate group concentration of the polyisocyanate composition was measured by an n-dibutylamine method according to JIS K-1556 using a potentiometric titrator. ⁇ Viscosity measurement (unit: mPa ⁇ s)> The viscosity was measured at 25 ° C. using a B-type viscometer RB85L (manufactured by Toki Sangyo Co., Ltd.).
  • Tetrahydrofuran is used as a free liquid
  • a differential refractive index detector is used as a detector
  • a flow rate is 1.0 mL / min
  • a column and a detector are each 40 ° C.
  • standard polystyrene having a molecular weight in the range of 150 to 380000 (trade name: A calibration curve was prepared using TSK standard polyethylene oxide (manufactured by Tosoh Corporation), and the number average molecular weight of the polyisocyanate composition was determined using an EMPOWER data processing apparatus (manufactured by WATERS) according to the retention time.
  • the ratio (area%) of the area of the peak having a retention time of 26.1 minutes to 26.2 minutes as the peak top with respect to the area of all peaks is calculated from the obtained chromatogram, Area%) was the content ratio of the isocyanate derivative in which 3 molecules of xylylene diisocyanate and 1 molecule of trimethylolalkane were reacted.
  • This polyisocyanate composition (E-1) has a residual monomer concentration of 2.4% by mass, a number average molecular weight of 1186, an isocyanate group concentration of 15.3% by mass, 1 molecule of TMP and 3 molecules of XDI in the GPC chart.
  • TMP1 molecular trimethylolpropane monomolecular
  • the GPC chart (gel permeation chromatogram) is shown in FIG.
  • NV solid content concentration
  • the residual monomer concentration was 1.7% by mass
  • the number average molecular weight was 1423
  • the isocyanate group concentration was 13.9% by mass
  • the area% of TMP1 molecular body in the GPC chart That is, the content ratio of TMP1 molecular body was 32%
  • the average number of isocyanate groups was 4.7.
  • the GPC chart (gel permeation chromatogram) is shown in FIG.
  • NV solid content concentration
  • NV solid content concentration
  • TMP 52.6 parts by mass of TMP was charged into the dropping funnel and heated by a ribbon heater to dissolve TMP.
  • 497.4 parts by mass of XDI was charged into a four-necked flask equipped with a stirrer, a thermometer, a reflux tube, and a nitrogen introduction tube, and the temperature was raised to 70 ° C. with stirring in a nitrogen atmosphere.
  • dissolved TMP was added dropwise over about 60 minutes, and the temperature was raised to 73 ° C. after the completion of the addition. Thereafter, the reaction was continued until the isocyanate group concentration reached the calculated value.
  • reaction liquid was passed through a thin film distillation apparatus (vacuum degree: 50 Pa, temperature: 150 ° C.) to remove unreacted XDI to obtain a polyisocyanate composition (E-4).
  • the polyisocyanate composition (E-4) thus obtained has a residual monomer concentration of 0.9% by mass, a number average molecular weight of 1175, an isocyanate group concentration of 15.6% by mass, and an area% of TMP1 molecule (ie, TMP1 molecule). Body content) was 44%, and the average number of isocyanate groups was 4.4.
  • NV solid content concentration
  • the resulting polyisocyanate composition (EI-4) had an isocyanate group concentration of 11.7%, a viscosity of 910 mPa ⁇ s / 25 ° C., and NV of 75.0%.
  • Takenate D-110N is a polyisocyanate composition obtained by setting the equivalent ratio (NCO / OH) in the reaction of TMP and XDI to 6.3 and removing unreacted XDI by liquid-liquid extraction.
  • the GPC chart (gel permeation chromatogram) is shown in FIG. Further, ethyl acetate was added so that the solid content concentration (hereinafter abbreviated as NV) was 75% by mass to obtain a polyisocyanate composition (EI-5).
  • the resulting polyisocyanate composition (EI-5) had an isocyanate group concentration of 11.8%, a viscosity of 530 mPa ⁇ s / 25 ° C., and NV of 74.9%.
  • the residual monomer concentration was 2.1% by mass
  • the number average molecular weight was 1177
  • the isocyanate group concentration was 15.7% by mass
  • the area% of TMP1 molecular body in the GPC chart That is, the content ratio of the TMP1 molecular body was 47%
  • the average number of isocyanate groups was 4.4.
  • NV solid content concentration
  • the resulting polyisocyanate composition (EI-6) had an isocyanate group concentration of 11.7%, a viscosity of 850 mPa ⁇ s / 25 ° C., and NV of 74.8%.
  • Preparation of two-component curable polyurethane resin and formation of coating film Preparation Example 1
  • this reaction mixture was applied to each standard test plate shown in Table 1, and then dried and cured at 80 ° C. for 30 minutes to obtain a polyurethane resin coating film a having a thickness of about 45 ⁇ m.
  • the obtained polyurethane resin coating film a was allowed to stand for 7 days in a room at 23 ° C. and a relative humidity of 50%.
  • Preparation Example 2 A polyurethane resin coating film b having a thickness of about 45 ⁇ m was obtained under the same conditions and operation as in Preparation Example 1, except that the polyisocyanate composition EI-2 obtained in Example 2 was used.
  • the obtained polyurethane resin coating film b was allowed to stand for 7 days in a room at 23 ° C. and a relative humidity of 50%.
  • the obtained polyurethane resin coating film c was allowed to stand for 7 days in a room at 23 ° C. and a relative humidity of 50%.
  • Preparation Example 4 A polyurethane resin coating film d having a thickness of about 45 ⁇ m was obtained under the same conditions and operation as in Preparation Example 1, except that the polyisocyanate composition EI-4 obtained in Example 4 was used.
  • the obtained polyurethane resin coating film d was allowed to stand for 7 days in a room at 23 ° C. and a relative humidity of 50%.
  • Comparative Preparation Example 1 A polyurethane resin coating film e having a thickness of about 45 ⁇ m was obtained under the same conditions and operation as in Preparation Example 1, except that the polyisocyanate composition EI-5 obtained in Comparative Example 1 was used.
  • the obtained polyurethane resin coating film e was allowed to stand for 7 days in a room at 23 ° C. and a relative humidity of 50%.
  • Paint Evaluation >> The touch-drying property, curing drying property, and substrate adhesion (substrate: metal, plastic) of the polyurethane resin coating film (hereinafter abbreviated as coating film) obtained in each of the preparation examples and the comparative preparation examples are as follows. It measured by the method of. The results are shown in Table 1.
  • Each obtained coating film was subjected to an adhesion test by a cross-cut method (conforming to JIS K5600 5-6).
  • the adhesion was evaluated according to the following classification described in JIS.
  • Classification 0 The edges of the cuts are completely smooth and there is no peeling in any grid eye.
  • Category 1 Small peeling of the coating film at the intersection of cuts. It is clearly not more than 5% that the crosscut is affected.
  • Classification 2 The coating film is peeled along the edge of the cut and / or at the intersection. The cross-cut part is clearly affected by more than 5% but not more than 15%.
  • Classification 3 The coating film is partially or completely peeled along the edge of the cut, and / or various parts of the eye are partially or completely peeled off.
  • an aluminum foil product of Toyo Aluminum, product number 9 ⁇
  • an unstretched polypropylene film RXC-22 product of Mitsui Chemicals Tosero, product number 60 ⁇
  • the adhesive strength was measured at 24 mm and by T-type peeling at a width of 15 mm and a tensile speed of 300 mm / min. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)

Abstract

 キシリレンジイソシアネートとトリメチロールアルカンとの反応により得られるポリイソシアネート組成物の、3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体の含有量が、ポリイソシアネート組成物の総量に対して、45質量%以下である。

Description

ポリイソシアネート組成物、2液硬化型ポリウレタン樹脂、塗料、接着剤およびポリイソシアネート組成物の製造方法
 本発明は、ポリイソシアネート組成物、2液硬化型ポリウレタン樹脂、塗料、接着剤およびポリイソシアネート組成物の製造方法に関し、詳しくは、ポリイソシアネート組成物、そのポリイソシアネート組成物が用いられる2液硬化型ポリウレタン樹脂、さらに、その2液硬化型ポリウレタン樹脂からなる塗料および接着剤、また、ポリイソシアネート組成物を得るためのポリイソシアネート組成物の製造方法に関する。
 2液硬化型ポリウレタン樹脂は、ポリイソシアネートを含む硬化剤と、マクロポリオールを含む主剤とをそれぞれ用意して、使用時にそれらを配合するものであって、塗料や接着剤などの分野において広範に使用されている。
 2液硬化型ポリウレタン樹脂として、より具体的には、例えば、キシリレンジイソシアネートのポリオール変性体(トリメチロールプロパン変性体など)と、ヘキサメチレンジイソシアネートのビウレット変性体、および/または、ヘキサメチレンジイソシアネートの三量体とを、所定の割合で含む硬化剤、および、その硬化剤を含む2液硬化型ポリウレタン樹脂が、提案されている(例えば、特許文献1参照。)。
 特許文献1において、具体的には、キシリレンジイソシアネートのトリメチロールプロパン変性体としてのタケネートD-110N(三井化学ポリウレタン社製)と、ヘキサメチレンジイソシアネートのビウレット変性体としてのタケネートD-165N(三井化学ポリウレタン社製)、または、ヘキサメチレンジイソシアネートの三量体としてのタケネートD-170N(三井化学ポリウレタン社製)との混合物が、用いられている。
 このような2液硬化型ポリウレタン樹脂によれば、密着性、耐酸・アルカリ性、耐溶剤性、耐汚染性および耐候性をバランスよく向上させることができる。
特開2010-024386号公報
 一方、2液硬化型ポリウレタン樹脂としては、密着性の更なる向上が要求されており、また、速乾性の向上が要求されている。
 本発明の目的は、密着性および速乾性の向上を図ることができるポリイソシアネート組成物、そのポリイソシアネート組成物が用いられる2液硬化型ポリウレタン樹脂、さらに、その2液硬化型ポリウレタン樹脂からなる塗料および接着剤、また、ポリイソシアネート組成物を得るためのポリイソシアネート組成物の製造方法を提供することにある。
 上記の目的を達成するため、本発明のポリイソシアネート組成物は、キシリレンジイソシアネートとトリメチロールアルカンとの反応により得られるポリイソシアネート組成物であって、3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体の含有量が、ポリイソシアネート組成物の総量に対して、45質量%以下であることを特徴としている。
 また、本発明のポリイソシアネート組成物では、キシリレンジイソシアネートとトリメチロールアルカンとの反応において、トリメチロールアルカン中の水酸基に対する、キシリレンジイソシアネート中のイソシアネート基の当量比(イソシアネート基/水酸基)が、2.5以上6以下であることが好適である。
 また、本発明のポリイソシアネート組成物では、キシリレンジイソシアネートとトリメチロールアルカンとの反応により得られる粗生成物から、液-液抽出によって未反応キシリレンジイソシアネートを除去することにより得られることが好適である。
 また、本発明の2液硬化型ポリウレタン樹脂は、上記のポリイソシアネート組成物を含む硬化剤と、ポリオール成分を含む主剤とを含むことを特徴としている。
 また、本発明の塗料は、上記の2液硬化型ポリウレタン樹脂からなることを特徴としている。
 また、本発明の接着剤は、上記の2液硬化型ポリウレタン樹脂からなることを特徴としている。
 また、本発明のポリイソシアネート組成物の製造方法は、ポリイソシアネート組成物の製造方法であって、キシリレンジイソシアネートとトリメチロールアルカンとを反応させた後、得られる粗生成物から、脂肪族炭化水素類と、ケトン類および/またはアルキルエステル類とを含む抽出溶剤を用いた液-液抽出によって、未反応キシリレンジイソシアネートを除去することにより、3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体の含有量が、ポリイソシアネート組成物の総量に対して、45質量%以下のポリイソシアネート組成物を得ることを特徴としている。
 本発明のポリイソシアネート組成物およびその製造方法によれば、3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体の含有量が、上記の所定範囲であるため、密着性および速乾性に優れる2液硬化型ポリウレタン樹脂を得ることができる。
 そのため、本発明の2液硬化型ポリウレタン樹脂、塗料および接着剤は、密着性および速乾性に優れる。
図1は、実施例1のポリイソシアネート組成物のゲルパーミエーションクロマトグラムである。 図2は、実施例2のポリイソシアネート組成物のゲルパーミエーションクロマトグラムである。 図3は、比較例1のポリイソシアネート組成物のゲルパーミエーションクロマトグラムである。
 本発明のポリイソシアネート組成物は、キシリレンジイソシアネート(XDI)と、トリメチロールアルカン(TMA)との反応により得ることができ、詳しくは後述するが、3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとが反応して得られるイソシアネート誘導体(以下、トリメチロールアルカン1分子体と称する場合がある。)を、所定の割合で含有している。
 本発明において、キシリレンジイソシアネートとしては、1,2-キシリレンジイソシアネート(o-キシリレンジイソシアネート(o-XDI))、1,3-キシリレンジイソシアネート(m-キシリレンジイソシアネート(m-XDI))、1,4-キシリレンジイソシアネート(p-キシリレンジイソシアネート(p-XDI))が、構造異性体として挙げられる。
 これらキシリレンジイソシアネートは、単独使用または2種類以上併用することができる。キシリレンジイソシアネートとして、好ましくは、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、より好ましくは、1,3-キシリレンジイソシアネートが挙げられる。
 本発明において、トリメチロールアルカンとしては、例えば、トリメチロールメタン、トリメチロールエタン、トリメチロールn-プロパン、トリメチロールイソプロパン、トリメチロールn-ブタン、トリメチロールイソブタン、トリメチロールs-ブタン、トリメチロールt-ブタン、トリメチロールペンタン、トリメチロールヘキサン、トリメチロールヘプタン、トリメチロールオクタン、トリメチロールノナン、トリメチロールデカン、トリメチロールウンデカン、トリメチロールドデカンなど、メチロール基を3つ有する炭素数1~20のアルカンが挙げられる。
 これらトリメチロールアルカンは、単独使用または2種類以上併用することができる。
 トリメチロールアルカンとして、好ましくは、メチロール基を3つ有する炭素数4以下のアルカンが挙げられ、より好ましくは、メチロール基を3つ有する炭素数3以下のアルカンが挙げられ、さらに好ましくは、トリメチロールエタン、トリメチロールプロパンが挙げられ、とりわけ好ましくは、トリメチロールプロパンが挙げられる。
 また、必要により、トリメチロールアルカンとともに、その他の低分子量ポリオール(トリメチロールアルカンを除く低分子量ポリオール(以下同様))を併用することができる。
 低分子量ポリオールは、水酸基を2つ以上有する数平均分子量400未満、好ましくは、300未満の化合物であって、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブチレングリコール、1,3-ブチレングリコール、1,2-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2,2-トリメチルペンタンジオール、3,3-ジメチロールヘプタン、アルカン(C7~20)ジオール、1,3-または1,4-シクロヘキサンジメタノールおよびそれらの混合物、1,3-または1,4-シクロヘキサンジオールおよびそれらの混合物、水素化ビスフェノールA、1,4-ジヒドロキシ-2-ブテン、2,6-ジメチル-1-オクテン-3,8-ジオール、ビスフェノールA、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコールなどの2価アルコール、例えば、グリセリンなどの3価アルコール、例えば、テトラメチロールメタン(ペンタエリスリトール)などの4価アルコールなどが挙げられる。
 これらその他の低分子量ポリオールは、単独使用または2種類以上併用することができる。
 トリメチロールアルカンと、その他の低分子量ポリオールとを併用する場合において、それらの配合割合は、トリメチロールアルカンと、その他の低分子量ポリオールとの総量100モルに対して、トリメチロールアルカンが、例えば、1モル以上、好ましくは、10モル以上であり、例えば、99モル以下、好ましくは、90モル以下である。また、その他の低分子量ポリオールが、例えば、1モル以上、好ましくは、10モル以上であり、例えば、99モル以下、好ましくは、90モル以下である。
 なお、キシリレンジイソシアネートとトリメチロールアルカンとの反応において、さらにその他の低分子量ポリオールが用いられる場合、本発明のポリイソシアネート組成物は、得られる反応生成物中におけるキシリレンジイソシアネートとトリメチロールアルカンとの反応生成物を示す。
 好ましくは、その他の低分子量ポリオールを用いることなく、トリメチロールアルカンを単独で用いる。
 そして、ポリイソシアネート組成物を得るには、トリメチロールアルカン(および、必要により配合される2価アルコール(以下同様))中の水酸基に対する、キシリレンジイソシアネート中のイソシアネート基の当量比(イソシアネート基/水酸基)が、例えば、2.5以上、好ましくは、2.6以上、より好ましくは、2.7以上、例えば、6以下、好ましくは、5.5以下、より好ましくは、5.0以下となる割合で、キシリレンジイソシアネートとトリメチロールアルカンとを配合し、ウレタン化反応させる。
 当量比が上記範囲であれば、3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体(トリメチロールアルカン1分子体)の含有量を、後述する範囲に調整することができる。
 また、ウレタン化反応における反応条件としては、例えば、窒素ガスなどの不活性ガス雰囲気、常圧(大気圧)下において、反応温度が、例えば、40℃以上、好ましくは、50℃以上、より好ましくは、60℃以上であり、例えば、120℃以下、好ましくは、100℃以下、より好ましくは、90℃以下である。また、反応時間が、例えば、0.5時間以上、好ましくは、1時間以上であり、例えば、30時間以下、好ましくは、20時間以下、より好ましくは、10時間以下である。
 また、ウレタン化反応は、反応系において、所望のイソシアネート基含有量(仕込み量から算出される、未反応のイソシアネート基濃度の理論量)となった時点で、終了する。
 また、このウレタン化反応では、必要に応じて、例えば、アミン類や有機金属化合物などの公知のウレタン化触媒を添加してもよく、また、公知の有機溶媒を添加してもよい。
 アミン類としては、例えば、トリエチルアミン、トリエチレンジアミン、ビス-(2-ジメチルアミノエチル)エーテル、N-メチルモルホリンなどの3級アミン類、例えば、テトラエチルヒドロキシルアンモニウムなどの4級アンモニウム塩、例えば、イミダゾール、2-エチル-4-メチルイミダゾールなどのイミダゾール類などが挙げられる。
 有機金属化合物としては、例えば、酢酸錫、オクチル酸錫、オレイン酸錫、ラウリル酸錫、ジブチル錫ジアセテート、ジメチル錫ジラウレート、ジブチル錫ジラウレート、ジブチル錫ジメルカプチド、ジブチル錫マレエート、ジブチル錫ジラウレート、ジブチル錫ジネオデカノエート、ジオクチル錫ジメルカプチド、ジオクチル錫ジラウリレート、ジブチル錫ジクロリドなどの有機錫系化合物、例えば、オクタン酸鉛、ナフテン酸鉛などの有機鉛化合物、例えば、ナフテン酸ニッケルなどの有機ニッケル化合物、例えば、ナフテン酸コバルトなどの有機コバルト化合物、例えば、オクテン酸銅などの有機銅化合物、例えば、オクチル酸ビスマス、ネオデカン酸ビスマスなどの有機ビスマス化合物などが挙げられる。
 さらに、ウレタン化触媒として、例えば、炭酸カリウム、酢酸カリウム、オクチル酸カリウムなどのカリウム塩が挙げられる。
 これらウレタン化触媒は、単独使用または2種類以上併用することができる。
 有機溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、例えば、アセトニトリルなどのニトリル類、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのアルキルエステル類、例えば、n-ヘキサン、n-ヘプタン、オクタンなどの脂肪族炭化水素類、例えば、シクロヘキサン、メチルシクロヘキサンなどの脂環族炭化水素類、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、メチルカルビトールアセテート、エチルカルビトールアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネートなどのグリコールエーテルエステル類、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、例えば、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、臭化メチル、ヨウ化メチレン、ジクロロエタンなどのハロゲン化脂肪族炭化水素類、例えば、N-メチルピロリドン、ジメチルホルムアミド、N,N’-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミドなどの極性非プロトン類などが挙げられる。
 これら有機溶媒は、単独使用または2種類以上併用することができる。
 なお、有機溶媒は、そのままポリイソシアネート組成物に含有されていてもよく、また、次に述べるように、未反応のキシリレンジイソシアネートとともに、除去することもできる。
 また、この反応では、得られた粗生成物から、未反応のキシリレンジイソシアネートを除去することができる。
 換言すると、ポリイソシアネート組成物は、未反応のキシリレンジイソシアネートが混入された状態、すなわち、キシリレンジイソシアネートおよびトリメチロールアルカンの反応生成物と、未反応のキシリレンジイソシアネートとの混合物として得られる。
 そして、得られるポリイソシアネート組成物中における、未反応のキシリレンジイソシアネートの濃度(以下、残存モノマー濃度と称する場合がある。)が高い場合には、ポリイソシアネート組成物から未反応のキシリレンジイソシアネートを除去し、残存モノマー濃度を低減する。
 未反応のキシリレンジイソシアネートを除去する方法としては、例えば、薄膜蒸留などの蒸留法や、例えば、液-液抽出などの抽出精製法などが挙げられる。
 薄膜蒸留法では、例えば、上記の反応により得られる粗生成物(未反応のキシリレンジイソシアネートが混入されたポリイソシアネート組成物)を、薄膜蒸留器により蒸留する。
 薄膜蒸留における条件としては、真空度が、例えば、1Pa以上、好ましくは、10Pa以上であり、例えば、3000Pa以下、好ましくは、1000Pa以下である。
 また、温度条件は、例えば、100℃以上、好ましくは、120℃以上であり、例えば、200℃以下、好ましくは、180℃以下である。
 液-液抽出では、未反応のキシリレンジイソシアネートが混入されたポリイソシアネート組成物に、抽出溶剤を接触させる。これにより、ポリイソシアネート組成物中の、未反応のキシリレンジイソシアネートを分離する。
 抽出溶剤としては、イソシアネート基に対して不活性であり、キシリレンジイソシアネートを分離できる溶剤であれば、特に制限されないが、好ましくは、複数種類の溶剤が混合された混合抽出溶剤が挙げられる。
 混合抽出溶剤として、より具体的には、例えば、溶解度パラメータ(POLYMER HANDBOOK(第4版 編者:J.BRANDRUP,E.H.IMMERGUT,and E.A.GRULKE 出版社:John Wiley & Sons,Inc. 出版年:1999)のPVII-688~VII-694 Table7参照。以下同様。)が6~8の有機溶剤(以下、第1有機溶剤と称する。)と、溶解度パラメータが8.5~12の有機溶剤(以下、第2有機溶剤と称する。)とが混合された混合抽出溶剤が、挙げられる。
 第1有機溶剤としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカンなどの脂肪族炭化水素類が挙げられる。これら第1有機溶剤は、単独使用または2種類以上併用することができる。第1有機溶剤として、好ましくは、脂肪族炭化水素類が挙げられ、より好ましくは、ヘキサンが挙げられる。
 第2有機溶剤としては、例えば、アセトン、アセトニトリル、メチルエチルケトンなどのケトン類、例えば、酢酸エチル、酢酸ブチルなどのアルキルエステル類、例えば、クロロホルムなどのハロゲン化脂肪族炭化水素類、例えば、メチルセルソルブアセテートなどのグリコールエーテルエステル類などが挙げられる。これら第2有機溶剤は、単独使用または2種類以上併用することができる。第2有機溶剤として、好ましくは、ケトン類、アルキルエステル類が挙げられ、より好ましくは、アルキルエステル類が挙げられ、さらに好ましくは、酢酸エチルが挙げられる。
 すなわち、抽出溶剤として、好ましくは、脂肪族炭化水素類(第1有機溶剤)と、ケトン類および/またはアルキルエステル類(第2有機溶剤)とを含むことが挙げられ、より好ましくは、脂肪族炭化水素類とアルキルエステル類とを含むことが挙げられ、さらに好ましくは、ヘキサンと酢酸エチルとからなることが挙げられる。
 混合抽出溶剤は、第1有機溶剤と第2有機溶剤とが公知の方法により混合、攪拌されることによって、調製される。
 混合抽出溶剤における、各成分の配合割合は、混合抽出溶剤100質量部に対して、第1有機溶剤が、例えば、50~95質量部、好ましくは、70~95質量部であって、第2有機溶剤が、例えば、5~50質量部、好ましくは、5~30質量部である。
 また、未反応のキシリレンジイソシアネートが混入されたポリイソシアネート組成物の粘度が低い場合などには、抽出溶剤として、第1有機溶剤のみを用いることもできる。
そして、液-液抽出法では、ポリイソシアネート組成物と抽出溶剤とを混合、攪拌することにより、ポリイソシアネート組成物中の未反応のキシリレンジイソシアネートを、抽出溶剤へと液-液抽出する。
 液-液抽出におけるポリイソシアネート組成物(混入される未反応のキシリレンジイソシアネートを含む。)と抽出溶剤との配合割合は、ポリイソシアネート組成物100質量部に対して、抽出溶剤が、例えば、20~300質量部、好ましくは、30~200質量部、より好ましくは、40~150質量部である。
 また、液-液抽出では、ポリイソシアネート組成物と抽出溶剤とを、例えば、常圧(大気圧)下、例えば、25~65℃、好ましくは、30~60℃、より好ましくは、40~60℃において、例えば、2~60分間、好ましくは、5~40分間、より好ましくは、5~30分間混合する。
 これにより、未反応のキシリレンジイソシアネートを、抽出溶剤中へと抽出する。
次いで、この方法では、ポリイソシアネート組成物と抽出溶剤との混合物を、例えば、2~60分間静置し、その後、抽出溶剤(未反応のキシリレンジイソシアネートが抽出された抽出溶剤)を、公知の方法により除去する。
 なお、1回の液-液抽出により未反応のキシリレンジイソシアネートを十分に除去できない場合には、複数回、繰り返し液-液抽出することもできる。
 繰り返し液-液抽出する場合、ポリイソシアネート組成物の平均分子量を調節する観点から、繰り返し回数は、例えば、3回以上、好ましくは、5回以上であり、例えば、20回以下、好ましくは、15回以下である。
 また、液-液抽出法では、例えば、抽出塔などを用いて、未反応のキシリレンジイソシアネートを、連続的に抽出することもできる。このような抽出塔としては、例えば、塔内部に棚板が数十段組み込まれた抽出塔や、棚板が回転円盤型の抽出塔などが挙げられる。
これにより、ポリイソシアネート組成物に混入される未反応のキシリレンジイソシアネートを除去し、残存モノマー濃度を低減することができる。
 また、液-液抽出により、抽出溶剤がポリイソシアネート組成物中に混入する場合には、好ましくは、溶剤をポリイソシアネート組成物中から除去する。
 溶剤をポリイソシアネート組成物中から除去する方法としては、溶剤の種類などにもよるが、例えば、減圧下において、例えば、40~120℃に加熱する。これにより、溶剤を揮発させ、ポリイソシアネート組成物中から除去することができる。
 未反応のキシリレンジイソシアネートを除去する方法として、好ましくは、液-液抽出が挙げられる。
 液-液抽出によれば、未反応のキシリレンジイソシアネートを除去し、残存モノマー濃度を低減するとともに、3分子のキシリレンジイソシアネートと1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体(トリメチロールアルカン1分子体)の含有量を、後述する範囲に調整することができる。
 このようにして得られるポリイソシアネート組成物において、残存モノマー濃度(未反応のキシリレンジイソシアネートの濃度)は、例えば、3質量%以下、好ましくは、1質量%以下、より好ましくは、0.5質量%以下である。
 なお、残存モノマー濃度は、ゲルパーミエーションクロマトグラムにより求めることができる。
 より具体的には、残存モノマー濃度は、後述する実施例に準拠して得られるゲルパーミエーションクロマトグラムにおいて、保持時間27.8分から27.9分の間をピークトップとするピークの面積の、全ピークの面積に対する面積率(%)として求められる。
 そして、このようにして得られるポリイソシアネート組成物において、3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体(トリメチロールアルカン1分子体)の含有量は、ポリイソシアネート組成物の総量に対して、45質量%以下、好ましくは、44質量%以下、より好ましくは、43質量%以下、通常、20質量%以上である。
 3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体(トリメチロールアルカン1分子体)の含有量が上記範囲であれば、密着性および速乾性に優れる2液硬化型ポリウレタン樹脂を得ることができる。
 なお、3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体(トリメチロールアルカン1分子体)の含有量は、ゲルパーミエーションクロマトグラムにより求めることができる。
 より具体的には、3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体の含有割合は、後述する実施例に準拠して得られるゲルパーミエーションクロマトグラムにおいて、保持時間26.1分から26.2分の間をピークトップとするピークの面積の、全ピークの面積に対する面積率(%)として求められる。
 また、このようにして得られるポリイソシアネート組成物の数平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)測定による標準ポリスチレン換算で、例えば、1000以上、好ましくは、1150以上であり、例えば、5000以下、好ましくは、4000以下である。
 また、このようにして得られるポリイソシアネート組成物のイソシアネート基濃度は、例えば、3質量%以上、好ましくは、5質量%以上であり、例えば、18.0質量%以下、好ましくは、15.7質量%以下である。
 また、このようにして得られるポリイソシアネート組成物の平均官能基数は、例えば、3.0以上、好ましくは、4.3以上であり、例えば、6.0以下、好ましくは、5.0以下である。
 なお、平均官能基数は、数平均分子量を、イソシアネート基の当量で除することにより求めることができる。
 そして、このようにして得られるポリイソシアネート組成物は、各種有機溶剤に溶解させて、2液硬化型ポリウレタン樹脂(例えば、塗料、接着剤など)の硬化剤として用いることができ、さらに、その他、数多くの産業用途、工業的用途に使用できる。また、必要であれば、無溶剤にて使用することもできる。
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、例えば、アセトニトリルなどのニトリル類、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのアルキルエステル類、例えば、n-ヘキサン、n-ヘプタン、オクタンなどの脂肪族炭化水素類、例えば、シクロヘキサン、メチルシクロヘキサンなどの脂環族炭化水素類、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、メチルカルビトールアセテート、エチルカルビトールアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート、エチル-3-エトキシプロピオネートなどのグリコールエーテルエステル類、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、例えば、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、臭化メチル、ヨウ化メチレン、ジクロロエタンなどのハロゲン化脂肪族炭化水素類、例えば、N-メチルピロリドン、ジメチルホルムアミド、N,N’-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミドなどの極性非プロトン類などが挙げられる。
 さらに、有機溶剤としては、例えば、非極性溶剤(非極性有機溶剤)が挙げられ、これら非極性溶剤としては、脂肪族、ナフテン系炭化水素系有機溶剤、アニリン点が、例えば、10~70℃、好ましくは、12~65℃の、低毒性で溶解力の弱い非極性有機溶剤や、ターペン油に代表される植物性油などが挙げられる。
 かかる非極性有機溶剤は、市販品として入手可能であり、そのような市販品としては、例えば、ハウス(シェル化学製、アニリン点15℃)、スワゾール310(丸善石油製、アニリン点16℃)、エッソナフサNo.6(エクソン化学製、アニリン点43℃)、ロウス(シェル化学製、アニリン点43℃)、エッソナフサNo.5(エクソン製、アニリン点55℃)、ペガゾール3040(モービル石油製、アニリン点55℃)などの石油炭化水素系有機溶剤、その他、メチルシクロヘキサン(アニリン点40℃)、エチルシクロヘキサン(アニリン点44℃)、ガムテレピンN(安原油脂製、アニリン点27℃)などのターペン油類などが挙げられる。
 ポリイソシアネート組成物が有機溶剤に溶解される場合には、その溶液におけるポリイソシアネート組成物の濃度は、例えば、30質量%以上、好ましくは、40質量%以上、より好ましくは、50質量%以上であり、例えば、95質量%以下、好ましくは、90質量%以下である。
 また、上記の割合でポリイソシアネート組成物が有機溶剤に溶解される場合には、その溶液のイソシアネート基濃度は、例えば、3.0質量%以上、好ましくは、5.0質量%以上であり、例えば、20質量%以下、好ましくは、18質量%以下である。
 また、上記の割合でポリイソシアネート組成物が有機溶剤に溶解される場合には、その溶液の25℃における粘度は、例えば、10mPa・s以上、好ましくは、20mPa・s以上、より好ましくは、50mPa・s以上であり、例えば、5000mPa・s以下、好ましくは、4000mPa・s以下、より好ましくは、3000mPa・s以下である。なお、粘度の測定方法は、後述する実施例に準拠する。
 そして、上記のポリイソシアネート組成物(キシリレンジイソシアネートのトリメチロールアルカン変性体)では、3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体の含有量が、上記の所定範囲であるため、密着性および速乾性に優れる2液硬化型ポリウレタン樹脂を得ることができる。
 2液硬化型ポリウレタン樹脂は、硬化剤と主剤とが、それぞれ独立したパッケージとして調製され、それらが使用時に配合される組成物である。
 本発明の2液硬化型ポリウレタン樹脂において、硬化剤は、必須成分として、上記したポリイソシアネート組成物を含んでいる。
 また、硬化剤は、任意成分として、その他のポリイソシアネート(上記したポリイソシアネート組成物を除くポリイソシアネート)を含むことができる。
 その他のポリイソシアネートとしては、例えば、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネート、脂肪族ポリイソシアネート、脂環族ポリイソシアネートなどのポリイソシアネート単量体などが挙げられる。
 芳香族ポリイソシアネートとしては、例えば、トリレンジイソシアネート(2,4-または2,6-トリレンジイソシアネートもしくはその混合物)(TDI)、フェニレンジイソシアネート(m-、p-フェニレンジイソシアネートもしくはその混合物)、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート(NDI)、ジフェニルメタンジイソシネート(4,4’-、2,4’-または2,2’-ジフェニルメタンジイソシネートもしくはその混合物)(MDI)、4,4’-トルイジンジイソシアネート(TODI)、4,4’-ジフェニルエーテルジイソシアネートなどの芳香族ジイソシアネートなどが挙げられる。
 芳香脂肪族ポリイソシアネートとしては、例えば、キシリレンジイソシアネート(XDI(単量体))、テトラメチルキシリレンジイソシアネート(1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物)(TMXDI)、ω,ω’-ジイソシアネート-1,4-ジエチルベンゼンなどの芳香脂肪族ジイソシアネートなどが挙げられる。
 脂肪族ポリイソシアネートとしては、例えば、トリメチレンジイソシアネート、1,2-プロピレンジイソシアネート、ブチレンジイソシアネート(テトラメチレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート)、1,5-ペンタメチレンジイソシアネート(PDI)、1,6-ヘキサメチレンジイソシアネート(別名:ヘキサメチレンジイソシアネート)(HDI)、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカプエートなどの脂肪族ジイソシアネートなどが挙げられる。
 脂環族ポリイソシアネートとしては、例えば、水添キシリレンジイソシアネート(HXDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロペンテンジイソシアネート、シクロヘキサンジイソシアネート(1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート)、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(別名:イソホロンジイソシアネート)(IPDI)、メチレンビス(シクロヘキシルイソシアネート)(別名:ビス(イソシアナトシクロヘキシル)メタン)(4,4’-、2,4’-または2,2’-メチレンビス(シクロヘキシルイソシアネート)これらのTrans,Trans-体、Trans,Cis-体、Cis,Cis-体、もしくはその混合物)(H12MDI)、メチルシクロヘキサンジイソシアネート(メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート)、ノルボルナンジイソシアネート(各種異性体もしくはその混合物)(NBDI)などの脂環族ジイソシアネートなどが挙げられる。
 その他のポリイソシアネートには、それら誘導体(キシリレンジイソシアネートのトリメチロールアルカン変性体を除く)が含まれる。
 ポリイソシアネートの誘導体としては、例えば、ポリイソシアネートの多量体(例えば、2量体、3量体(例えば、イソシアヌレート変性体、イミノオキサジアジンジオン変性体)、5量体、7量体など)、アロファネート変性体(例えば、ポリイソシアネートと、低分子量ポリオールとの反応より生成するアロファネート変性体など)、ポリオール変性体(例えば、ポリイソシアネートと低分子量ポリオールとの反応より生成するポリオール変性体(アルコール付加体)など)(キシリレンジイソシアネートのトリメチロールアルカン変性体を除く)、ビウレット変性体(例えば、ポリイソシアネートと、水やアミン類との反応により生成するビウレット変性体など)、ウレア変性体(例えば、ポリイソシアネートとジアミンとの反応により生成するウレア変性体など)、オキサジアジントリオン変性体(例えば、ポリイソシアネートと炭酸ガスとの反応により生成するオキサジアジントリオンなど)、カルボジイミド変性体(ポリイソシアネートの脱炭酸縮合反応により生成するカルボジイミド変性体など)、ウレトジオン変性体、ウレトンイミン変性体などが挙げられる。
 これらの誘導体は、単独使用または2種類以上併用することができる。
 その他のポリイソシアネート(上記したポリイソシアネート組成物を除くポリイソシアネート)が配合される場合には、その配合割合は、上記したポリイソシアネート組成物と、その他のポリイソシアネートとの総量100質量部に対して、その他のポリイソシアネートが、例えば、30質量部以下、好ましくは、20質量部以下であり、通常、1質量部以上である。
 なお、好ましくは、硬化剤として、上記のポリイソシアネート組成物(キシリレンジイソシアネートのトリメチロールアルカン変性体)を単独で使用する。
 本発明において、主剤は、ポリオール成分を含み、ポリオール成分としては、低分子量ポリオールおよび高分子量ポリオールが挙げられる。
 低分子量ポリオールは、水酸基を2つ以上有する数平均分子量400未満、好ましくは、300未満の化合物であって、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブチレングリコール、1,3-ブチレングリコール、1,2-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2,2-トリメチルペンタンジオール、3,3-ジメチロールヘプタン、アルカン(C7~20)ジオール、1,3-または1,4-シクロヘキサンジメタノールおよびそれらの混合物、1,3-または1,4-シクロヘキサンジオールおよびそれらの混合物、水素化ビスフェノールA、1,4-ジヒドロキシ-2-ブテン、2,6-ジメチル-1-オクテン-3,8-ジオール、ビスフェノールA、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコールなどの2価アルコール、例えば、グリセリン、トリメチロールプロパン、トリイソプロパノールアミンなどの3価アルコール、例えば、テトラメチロールメタン(ペンタエリスリトール)、ジグリセリンなどの4価アルコール、例えば、キシリトールなどの5価アルコール、例えば、ソルビトール、マンニトール、アリトール、イジトール、ダルシトール、アルトリトール、イノシトール、ジペンタエリスリトールなどの6価アルコール、例えば、ペルセイトールなどの7価アルコール、例えば、ショ糖などの8価アルコールなどが挙げられる。
 これら低分子量ポリオールは、単独使用または2種類以上併用することができる。
 高分子量ポリオールは、水酸基を2つ以上有する数平均分子量400以上、好ましくは、300以上の化合物であって、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリウレタンポリオール、エポキシポリオール、植物油ポリオール、ポリオレフィンポリオール、アクリルポリオール、および、ビニルモノマー変性ポリオールが挙げられる。
 ポリエーテルポリオールとしては、例えば、ポリアルキレン(C2~3)ポリオール、ポリテトラメチレンエーテルポリオールなどが挙げられる。
 ポリアルキレン(C2~3)ポリオールとしては、例えば、上記した低分子量ポリオールまたは芳香族/脂肪族ポリアミンを開始剤とする、エチレンオキサイド、プロピレンオキサイドなどのアルキレンオキサイドの付加重合物(2種以上のアルキレンオキサイドのランダムおよび/またはブロック共重合体を含む。)が挙げられる。具体的には、例えば、ポリエチレングリコール、ポリプロピレングリコール、エチレンオキサイド-プロピレンオキサイド共重合体(ランダムおよび/またはブロック共重合体)などが挙げられる。
 ポリテトラメチレンエーテルポリオールとしては、例えば、テトラヒドロフランのカチオン重合により得られる開環重合物や、テトラヒドロフランの重合単位に上記した2価アルコールを共重合した非晶性ポリテトラメチレンエーテルグリコールなどが挙げられる。
 ポリエステルポリオールとしては、例えば、上記した低分子量ポリオールと多塩基酸とを、公知の条件下、反応させて得られる重縮合物が挙げられる。
 多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタール酸、アジピン酸、1,1-ジメチル-1,3-ジカルボキシプロパン、3-メチル-3-エチルグルタール酸、アゼライン酸、セバシン酸、その他の飽和脂肪族ジカルボン酸(C11~13)、例えば、マレイン酸、フマル酸、イタコン酸、その他の不飽和脂肪族ジカルボン酸、例えば、オルソフタル酸、イソフタル酸、テレフタル酸、トルエンジカルボン酸、ナフタレンジカルボン酸、その他の芳香族ジカルボン酸、例えば、ヘキサヒドロフタル酸、その他の脂環族ジカルボン酸、例えば、ダイマー酸、水添ダイマー酸、ヘット酸などのその他のカルボン酸、および、それらカルボン酸から誘導される酸無水物、例えば、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水2-アルキル(C12~C18)コハク酸、無水テトラヒドロフタル酸、無水トリメリット酸、さらには、これらのカルボン酸などから誘導される酸ハライド、例えば、シュウ酸ジクロライド、アジピン酸ジクロライド、セバシン酸ジクロライドなどが挙げられる。
 また、ポリエステルポリオールとして、例えば、上記した低分子量ポリオールを開始剤として、ヒドロキシル基含有植物油脂肪酸(例えば、リシノレイン酸を含有するひまし油脂肪酸、12-ヒドロキシステアリン酸を含有する水添ひまし油脂肪酸など)などのヒドロキシカルボン酸を、公知の条件下、縮合反応させて得られる植物油系ポリエステルポリオールなどが挙げられる。
 また、ポリエステルポリオールとして、例えば、上記した低分子量ポリオール(好ましくは、2価アルコール)を開始剤として、例えば、ε-カプロラクトン、γ-バレロラクトンなどのラクトン類を開環重合して得られる、ポリカプロラクトンポリオール、ポリバレロラクトンポリオール、さらには、それらに上記した2価アルコールを共重合したラクトン系ポリエステルポリオールなどが挙げられる。
 ポリカーボネートポリオールとしては、例えば、上記した低分子量ポリオール(好ましくは、2価アルコール)を開始剤とするエチレンカーボネートの開環重合物や、例えば、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオールや1,6-ヘキサンジオールなどの2価アルコールと、開環重合物とを共重合した非晶性ポリカーボネートポリオールなどが挙げられる。
 また、ポリウレタンポリオールは、上記により得られたポリエステルポリオール、ポリエーテルポリオールおよび/またはポリカーボネートポリオールを、イソシアネート基(NCO)に対する水酸基(OH)の当量比(OH/NCO)が1を超過する割合で、ポリイソシアネートと反応させることによって、ポリエステルポリウレタンポリオール、ポリエーテルポリウレタンポリオール、ポリカーボネートポリウレタンポリオール、あるいは、ポリエステルポリエーテルポリウレタンポリオールなどとして得ることができる。
 エポキシポリオールとしては、例えば、上記した低分子量ポリオールと、例えば、エピクロルヒドリン、β-メチルエピクロルヒドリンなどの多官能ハロヒドリンとの反応により得られるエポキシポリオールが挙げられる。
 植物油ポリオールとしては、例えば、ひまし油、やし油などのヒドロキシル基含有植物油などが挙げられる。例えば、ひまし油ポリオール、または、ひまし油脂肪酸とポリプロピレンポリオールとの反応により得られるエステル変性ひまし油ポリオールなどが挙げられる。
 ポリオレフィンポリオールとしては、例えば、ポリブタジエンポリオール、部分ケン価エチレン-酢酸ビニル共重合体などが挙げられる。
 アクリルポリオールとしては、例えば、ヒドロキシル基含有アクリレートと、ヒドロキシル基含有アクリレートと共重合可能な共重合性ビニルモノマーとを、共重合させることによって得られる共重合体が挙げられる。
 ヒドロキシル基含有アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2,2-ジヒドロキシメチルブチル(メタ)アクリレート、ポリヒドロキシアルキルマレエート、ポリヒドロキシアルキルフマレートなどが挙げられる。好ましくは、2-ヒドロキシエチル(メタ)アクリレートなどが挙げられる。
 共重合性ビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシルアクリレートなどのアルキル(メタ)アクリレート(炭素数1~12)、例えば、スチレン、ビニルトルエン、α-メチルスチレンなどの芳香族ビニル、例えば、(メタ)アクリロニトリルなどのシアン化ビニル、例えば、(メタ)アクリル酸、フマル酸、マレイン酸、イタコン酸などのカルボキシル基を含むビニルモノマー、または、そのアルキルエステル、例えば、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、オリゴエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなどのアルカンポリオールポリ(メタ)アクリレート、例えば、3-(2-イソシアネート-2-プロピル)-α-メチルスチレンなどのイソシアネート基を含むビニルモノマーなどが挙げられる。
 そして、アクリルポリオールは、これらヒドロキシル基含有アクリレート、および、共重合性ビニルモノマーを、適当な溶剤および重合開始剤の存在下において共重合させることにより得ることができる。
 また、アクリルポリオールには、例えば、シリコーンポリオールやフッ素ポリオールが含まれる。
 シリコーンポリオールとしては、例えば、上記したアクリルポリオールの共重合において、共重合性ビニルモノマーとして、例えば、γ-メタクリロキシプロピルトリメトキシシランなどのビニル基を含むシリコーン化合物が配合されたアクリルポリオールが挙げられる。
 フッ素ポリオールとしては、例えば、上記したアクリルポリオールの共重合において、共重合性ビニルモノマーとして、例えば、テトラフルオロエチレン、クロロトリフルオロエチレンなどのビニル基を含むフッ素化合物が配合されたアクリルポリオールが挙げられる。
 ビニルモノマー変性ポリオールは、上記した高分子量ポリオールと、ビニルモノマーとの反応により得ることができる。
 高分子量ポリオールとして、好ましくは、ポリエーテルポリオール、ポリエステルポリオールおよびポリカーボネートポリオールから選択される高分子量ポリオールが挙げられる。
 また、ビニルモノマーとしては、例えば、上記したアルキル(メタ)アクリレート、シアン化ビニルまたはシアン化ビニリデンなどが挙げられる。これらビニルモノマーは、単独使用または2種類以上併用することができる。また、これらのうち、好ましくは、アルキル(メタ)アクリレートが挙げられる。
 そして、ビニルモノマー変性ポリオールは、これら高分子量ポリオール、および、ビニルモノマーを、例えば、ラジカル重合開始剤(例えば、過硫酸塩、有機過酸化物、アゾ系化合物など)の存在下などにおいて反応させることにより得ることができる。
 これら高分子量ポリオールは、単独使用または2種類以上併用することができる。
 これらポリオール成分は、単独使用または2種類以上併用することができる。
 ポリオール成分として、好ましくは、高分子量ポリオール、さらに好ましくは、アクリルポリオールが挙げられる。
 ポリオール成分の水酸基価は、例えば、5~200mgKOH/g、好ましくは、10~100mgKOH/gである。なお、水酸基価は、JISK1557-1のA法またはB法に準拠するアセチル化法またはフタル化法などから求めることができる。
 また、ポリオール成分の重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)測定による標準ポリスチレン換算で、例えば、2000~100000、好ましくは、5000~50000である。
 そして、上記したポリオール成分は、必要により溶剤に溶解され、主剤として調製される。
 溶剤としては、例えば、上記した有機溶媒が挙げられ、好ましくは、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチルなどが挙げられる。
 そして、上記した2液硬化型ポリウレタン樹脂は、硬化剤および主剤を使用時に配合し、混合撹拌することにより、塗料(2液硬化型塗料)、接着剤(2液硬化型接着剤)などとして好適に用いられる。
 より具体的には、まず、上記主剤と上記硬化剤とをそれぞれ用意し、使用直前に主剤と硬化剤とを混合して、2液硬化型ポリウレタン樹脂(塗料、接着剤)を調製し、その2液硬化型ポリウレタン樹脂を、被塗物または被着物に塗布する。
 主剤および硬化剤の配合割合は、例えば、主剤(ポリオール成分)中の水酸基に対する、硬化剤(ポリイソシアネート組成物)中のイソシアネート基の当量比(NCO/OH)として、例えば、0.5~1.5、好ましくは、0.8~1.2となる割合である。
 なお、本発明では、必要に応じて、公知の添加剤、例えば、塗料としては、着色顔料、染料、紫外線吸収剤、硬化促進剤、光安定剤、つや消し剤など、接着剤としては、塗膜の付着性向上のためのリンの酸素酸またはその誘導体やシランカップリング剤などを配合することができる。
 着色顔料、染料としては、例えば、耐候性の良好なカーボンブラック、酸化チタンなどの無機顔料、例えば、フタロシアニンブルー、フタロシアニングリーン、キナクリドンレッド、インダンスレンオレンジ、イソインドリノン系イエローなどの有機顔料、染料などが挙げられる。
 紫外線吸収剤としては、例えば、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、シアノアクリレート系の紫外線吸収剤が挙げられ、より具体的には、チヌビン213、チヌビン234、チヌビン326、チヌビン571(以上、チバ・ジャパン社製、商品名)などが挙げられる。
 硬化促進剤としては、例えば、ジブチル錫ジラウレートなどが挙げられる。
 光安定剤としては、例えば、ヒンダードアミン系光安定剤(例えば、アデカスタブLA62、アデカスタブLA67(以上、アデカアーガス化学社製、商品名)、チヌビン765、チヌビン144、チヌビン770、チヌビン622(以上、チバ・ジャパン社製、商品名)など)、ブレンド系光安定剤(例えば、チヌビンB75、チヌビンPUR866(以上、チバ・ジャパン社製、商品名)など)などが挙げられる。
 つや消し剤としては、例えば、超微粉合成シリカなどが挙げられる。つや消し剤を配合すれば、優雅な半光沢、つや消し仕上げの塗膜を形成することができる。
 これら着色顔料、染料、紫外線吸収剤、硬化促進剤、光安定剤およびつや消し剤は、単独使用または2種類以上併用することができる。
 リンの酸素酸またはその誘導体において、リンの酸素酸としては、例えば、次亜リン酸、亜リン酸、オルトリン酸、次リン酸などのリン酸類、例えば、メタリン酸、ピロリン酸、トリポリリン酸、ポリリン酸、ウルトラリン酸などの縮合リン酸類などが挙げられる。
 また、リンの酸素酸の誘導体としては、例えば、ナトリウム、カリウムなどのリン酸塩または縮合リン酸塩、例えば、オルトリン酸モノメチル、オルトリン酸モノエチル、オルトリン酸モノプロピル、オルトリン酸モノブチル、オルトリン酸モノ-2-エチルヘキシル、オルトリン酸モノフェニル、亜リン酸モノメチル、亜リン酸モノエチル、亜リン酸モノプロピル、亜リン酸モノブチル、亜リン酸モノ-2-エチルヘキシル、亜リン酸モノフェニルなどのモノエステル類、例えば、オルトリン酸ジ-2-エチルヘキシル、オルトリン酸ジフェニル、オルトリン酸トリメチル、オルトリン酸トリエチル、オルトリン酸トリプロピル、オルトリン酸トリブチル、オルトリン酸トリ-2-エチルヘキシル、オルトリン酸トリフェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジプロピル、亜リン酸ジブチル、亜リン酸ジ-2-エチルヘキシル、亜リン酸ジフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリプロピル、亜リン酸トリブチル、亜リン酸トリ-2-エチルヘキシル、亜リン酸トリフェニルなどのジ、トリエステル類、または、縮合リン酸とアルコール類とから得られるモノ、ジ、トリエステル類などが挙げられる。
 リンの酸素酸またはその誘導体は、上記した各種リンの酸素酸またはその誘導体を、単独使用または複数種類併用することができる。
 シランカップリング剤は、例えば、構造式R-Si≡(X)またはR-Si≡(R’)(X)(式中、Rは、ビニル基、エポキシ基、アミノ基、イミノ基、イソシアネート基またはメルカプト基を有する有機基を示し、R’は炭素数1~4の低級アルキル基を示し、Xはメトキシ基、エトキシ基またはクロル原子を示す。)で示される。
 シランカップリング剤として、具体的には、例えば、ビニルトリクロルシランなどのクロロシラン、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ジ(γ-グリシドキシプロピル)ジメトキシシランなどのエポキシシラン、例えば、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-プロピルメチルジメトキシシラン、n-(ジメトキシメチルシリルプロピル)エチレンジアミン、n-(トリエトキシシリルプロピル)エチレンジアミン、N-フェニル-γ-アミノプロピルトリメトキシシランなどのアミノシラン、例えば、ビニルトリエトキシシランなどのビニルシラン、例えば、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルトリエトキシシランなどのイソシアナトシランなどが挙げられる。
 シランカップリング剤は、上記した各種シランカップリング剤を、単独使用または複数種類併用することができる。
 これら添加剤は、予め、上記主剤および/または硬化剤に配合してもよく、あるいは、主剤および硬化剤を配合した後の2液硬化型ポリウレタン樹脂に配合することもできる。
 なお、添加剤の配合割合は、特に制限されず、目的および用途に応じて、適宜設定される。
 そして、このような2液硬化型ポリウレタン樹脂は、特に制限されず、被塗物に対して、例えば、スプレー塗装、エアスプレー塗装、はけ塗り、浸漬法、ロールコーター、フローコーターなどの任意の塗装方法により塗装することができ、また、被着物に対して、例えば、ドライラミネート法、ウェットラミネート法、ダイレクトコート法などの任意の塗工方法により塗工し、接着させることができる。
 また、被塗物としては、特に制限されず、例えば、コンクリート、自然石、ガラスなどの無機物、例えば、鉄、ステンレス、アルミニウム、銅、真鍮、チタンなどの金属、例えば、プラスチック、ゴム、接着剤、木材などの有機物が挙げられる。
 また、被着物としては、特に制限されず、例えば、各種建材および各種積層フィルムが挙げられる。より具体的には、プラスチックフィルム、金属箔、金属蒸着フィルムなどの包装材料、FRP、鋼材などの土木材料などが挙げられる。
 そして、このような2液硬化型ポリウレタン樹脂、さらに、この2液硬化型ポリウレタン樹脂が用いられる塗料および接着剤は、密着性および速乾性に優れる。
 とりわけ、このような2液硬化型ポリウレタン樹脂は、プラスチック塗料、自動車塗料、フィルムコート剤、各種インキ、各種接着剤、粘着剤、シーリング材、各種マイクロカプセル、プラスチックレンズ、人工および合成皮革、RIM成形品、スラッシュパウダー、弾性成形品(スパンデックス)、ウレタンフォームなどの幅広い分野において、好適に用いられる。
 以下に、実施例および比較例を挙げて、本発明を詳しく説明するが、本発明はこれらに限定されるものではない。なお、以下の説明において、特に言及がない限り、「部」および「%」は質量基準である。なお、以下に示す実施例の数値は、実施形態において記載される対応する数値(すなわち、上限値または下限値)に代替することができる。また、製造例などに用いられる測定方法を、以下に示す。
<固形分濃度(単位:質量%)>
 ポリイソシアネート組成物の固形分濃度は、JIS K5601 1-2に準拠して得られる固形分(加熱残分)から求めた。
<イソシアネート基濃度(単位:質量%)>
 ポリイソシアネート組成物のイソシアネート基濃度は、電位差滴定装置を用いて、JIS K-1556に準拠したn-ジブチルアミン法により測定した。
<粘度測定(単位:mPa・s)>
 粘度は、B型粘度計RB85L(東機産業社製)を用いて、25℃で測定した。
<ゲルパーミエーションクロマトグラフ(ポリイソシアネート組成物の数平均分子量、3分子のキシリレンジイソシアネートと1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体の含有量、残存モノマー濃度)>
 各実施例および各比較例において得られるポリイソシアネート組成物を、メタノールと反応させ、得られるメチルウレタン化物を試料とした。
 そして、上記の試料40mgを、テトラヒドロフラン4mlに溶解させて、サンプルを調製した。
 Alliance(WATERS社製)において、カラムPlgel 5μmMixed-C(測定分子量範囲;100-1000000、Polymerlab社製)3本を直列に連結した。
 テトラヒドロフランを遊離液として使用し、検出器として示差屈折率検出器を用い、流量を1.0mL/min、カラムおよび検出器をそれぞれ40℃として、分子量150-3800000の範囲の標準ポリスチレン(商品名:TSK標準ポリエチレンオキシド、東ソー社製)により、検量線を作成し、保持時間によりEMPOWERデータ処理装置(WATERS社製)を使用して、ポリイソシアネート組成物の数平均分子量を求めた。
 また、同装置にて、得られたクロマトグラムから保持時間26.1分から26.2分をピークトップとするピークの面積の、全ピークの面積に対する割合(面積%)を求め、その面積割合(面積%)を、3分子のキシリレンジイソシアネートと1分子のトリメチロールアルカンとが反応したイソシアネート誘導体の含有割合とした。
 さらに、保持時間27.8分から27.9分をピークトップとするピークの面積の、全ピークの面積に対する割合(面積%)を求め、その面積割合(面積%)を、残存モノマー濃度とした。
<ポリイソシアネート組成物の製造>
  実施例1(ポリイソシアネート組成物(EI-1)の製造)
 トリメチロールプロパン(以下、TMPと略記する。)中の水酸基に対するm-キシシレンジイソシアネート(三井化学製タケネート500、以下XDIと略記する。)中のイソシアネート基の当量比(NCO/OH)が4.5となるように、TMPとXDIとを、ウレタン化反応させた。
 すなわち、滴下ロートにTMPを52.6質量部仕込み、リボンヒーターにより加熱し、TMPを溶解させた。次いで、攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、XDIを497.4質量部装入し、窒素雰囲気下、攪拌しながら70℃まで昇温した。次いで、溶解したTMPを約60分間かけて、滴下し、滴下終了後73℃まで昇温した。その後、イソシアネート基濃度が計算値に達するまで、反応を継続した。
 次いで、この反応溶液を55℃まで降温した後、混合抽出溶剤(n-ヘキサン/酢酸エチル=76/24(質量比))を240質量部加え、10分間撹拌し、5分間静置した後、抽出溶剤層を除去した。同抽出操作を10回繰り返した。
 その後、得られた反応液から、減圧下、83℃に加熱して、反応液中に残留する抽出溶剤を除去し、ポリイソシアネート組成物(E-1)を得た。
 このポリイソシアネート組成物(E-1)の残存モノマー濃度は2.4質量%、数平均分子量は1186、イソシアネート基濃度は15.3質量%、GPCのチャートにおけるTMPの1分子とXDIの3分子とが反応したイソシアネート誘導体(トリメチロールプロパン1分子体(以下、TMP1分子体と略記する。))の面積%(すなわち、TMP1分子体の含有割合)は42%であり、平均イソシアネート基数は4.3であった。
 このGPCのチャート(ゲルパーミエーションクロマトグラム)を図1に示す。
 さらに、固形分濃度(以下、NVと略記する。)が75質量%となるよう酢酸エチルを加え、ポリイソシアネート組成物(EI-1)を得た。
 得られたポリイソシアネート組成物(EI-1)のイソシアネート基濃度は11.4%、粘度は930mPa・s/25℃、NVは74.8%であった。
  実施例2(ポリイソシアネート組成物(EI-2)の製造)
 TMPとXDIとの反応における当量比(NCO/OH)を3とした以外は、実施例1と同様の方法にて、ポリイソシアネート組成物(E-2)を得た。
 得られたポリイソシアネート組成物(E-2)の残存モノマー濃度は1.7質量%、数平均分子量は1423、イソシアネート基濃度は13.9質量%、GPCのチャートにおけるTMP1分子体の面積%(すなわち、TMP1分子体の含有割合)は32%であり、平均イソシアネート基数は4.7であった。
 このGPCのチャート(ゲルパーミエーションクロマトグラム)を図2に示す。
 さらに、固形分濃度(以下、NVと略記する。)が75質量%となるよう酢酸エチルを加え、ポリイソシアネート組成物(EI-2)を得た。
 得られたポリイソシアネート組成物(EI-2)のイソシアネート基濃度は10.4%、粘度は2180mPa・s/25℃、NVは74.8%であった。
  実施例3(ポリイソシアネート組成物(EI-3)の製造)
 TMPとXDIとの反応における当量比(NCO/OH)を6.3とし、TMP(滴下後)とXDIとの反応温度を90℃として、また、溶剤抽出時の混合抽出溶剤比率をn-ヘキサン/酢酸エチル=68/32(質量比)とした以外は、実施例1と同様の方法にて、ポリイソシアネート組成物(E-3)を得た。
 得られたポリイソシアネート組成物(E-3)の残存モノマー濃度は2.0質量%、数平均分子量は1165、イソシアネート基濃度は15.6質量%、GPCのチャートにおけるTMP1分子体の面積%(すなわち、TMP1分子体の含有割合)は44%であり、平均イソシアネート基数は4.3であった。
 さらに、固形分濃度(以下、NVと略記する。)が75質量%となるよう酢酸エチルを加え、ポリイソシアネート組成物(EI-3)を得た。
 得られたポリイソシアネート組成物(EI-3)のイソシアネート基濃度は11.7%、粘度は880mPa・s/25℃、NVは74.8%であった。
  実施例4(ポリイソシアネート組成物(EI-4)の製造)
 TMP中の水酸基に対するXDI中のイソシアネート基の当量比(NCO/OH)が4.5となるように、TMPとXDIとを、ウレタン化反応させた。
 すなわち、滴下ロートにTMPを52.6質量部仕込み、リボンヒーターにより加熱し、TMPを溶解させた。次いで、攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、XDIを497.4質量部装入し、窒素雰囲気下、攪拌しながら70℃まで昇温した。次いで、溶解したTMPを約60分間かけて、滴下し、滴下終了後73℃まで昇温した。その後、イソシアネート基濃度が計算値に達するまで、反応を継続した。
 得られた反応液を薄膜蒸留装置(真空度50Pa、温度150℃)に通液して未反応のXDIを除去し、ポリイソシアネート組成物(E-4)を得た。
 得られたポリイソシアネート組成物(E-4)の残存モノマー濃度は0.9質量%、数平均分子量は1175、イソシアネート基濃度は15.6質量%、TMP1分子体の面積%(すなわち、TMP1分子体の含有割合)は44%であり、平均イソシアネート基数は4.4であった。
 さらに、固形分濃度(以下、NVと略記する。)が75質量%となるよう酢酸エチルを加え、ポリイソシアネート組成物(EI-4)を得た。
 得られたポリイソシアネート組成物(EI-4)のイソシアネート基濃度は11.7%、粘度は910mPa・s/25℃、NVは75.0%であった。
  比較例1(ポリイソシアネート組成物(EI-5)の製造)
 市販のタケネートD-110N(XDIのTMP変性体、三井化学社製)を、ポリイソシアネート組成物(E-5)とした。
 なお、タケネートD-110Nは、TMPとXDIとの反応における当量比(NCO/OH)を6.3とし、未反応XDIを液-液抽出により除去して得られるポリイソシアネート組成物である。
 また、ポリイソシアネート組成物(E-5)の残存モノマー濃度は0.7質量%、GPCにより得られた測定される数平均分子量は1188、イソシアネート基濃度は15.8質量%、GPCのチャートにおけるTMP1分子体の面積%(すなわち、TMP1分子体の含有割合)は50%であり、平均イソシアネート基数は4.5であった。
 このGPCのチャート(ゲルパーミエーションクロマトグラム)を図3に示す。
さらに、固形分濃度(以下、NVと略記する。)が75質量%となるよう酢酸エチルを加え、ポリイソシアネート組成物(EI-5)を得た。
得られたポリイソシアネート組成物(EI-5)のイソシアネート基濃度11.8%、粘度530mPa・s/25℃、NV74.9%であった。
  比較例2
 TMPとXDIとの反応における当量比(NCO/OH)を2.0とした以外は、実施例1と同様の方法にて、TMPとXDIとを反応させたところ、反応30分後に微小ゲルが発生し、最終的に反応液が増粘し、ポリイソシアネート組成物を得ることができなかった。
  比較例3(ポリイソシアネート組成物(EI-6)の製造)
 溶剤抽出時の混合抽出溶剤比率をn-ヘキサン/ベンゼン=68/32(質量比)とした以外は、実施例3と同様の方法にて、ポリイソシアネート組成物(E-6)を得た。
 得られたポリイソシアネート組成物(E-6)の残存モノマー濃度は2.1質量%、数平均分子量は1177、イソシアネート基濃度は15.7質量%、GPCのチャートにおけるTMP1分子体の面積%(すなわち、TMP1分子体の含有割合)は47%であり、平均イソシアネート基数は4.4であった。
 さらに、固形分濃度(以下、NVと略記する。)が75質量%となるよう酢酸エチルを加え、ポリイソシアネート組成物(EI-6)を得た。
 得られたポリイソシアネート組成物(EI-6)のイソシアネート基濃度は11.7%、粘度は850mPa・s/25℃、NVは74.8%であった。
<2液硬化型ポリウレタン樹脂の調製および塗膜の形成>
  調製例1
 実施例1で得られたポリイソシアネート組成物EI-1と、アクリルポリオール(三井化学社製、商品名:オレスターQ666、以下、Q666と略する。)とを、アクリルポリオール中の水酸基に対するポリイソシアネート組成物中のイソシアネート基の当量比(NCO/OH)が1.0となる割合で配合し、シンナー(酢酸エチル/酢酸ブチル/プロピレングリコールメチルエーテルアセテート=1/1/1(質量比)の混合溶媒)で固形分50%に調整して、23℃で10分間攪拌し、反応混合液を得た。
 次いで、この反応混合液を、表1に示す各標準試験板に塗布し、その後、80℃で30分にて乾燥、硬化させ、厚みが約45μmのポリウレタン樹脂塗膜aを得た。
 得られたポリウレタン樹脂塗膜aを、23℃、相対湿度50%の室内にて7日間静置した。
  調製例2
 実施例2で得られたポリイソシアネート組成物EI-2を用いた以外は、調製例1と同様の条件および操作にて、厚みが約45μmのポリウレタン樹脂塗膜bを得た。
 得られたポリウレタン樹脂塗膜bを、23℃、相対湿度50%の室内にて7日間静置した。
  調製例3
 実施例3で得られたポリイソシアネート組成物EI-3を用いた以外は、調製例1と同様の条件および操作にて、厚みが約45μmのポリウレタン樹脂塗膜cを得た。
 得られたポリウレタン樹脂塗膜cを、23℃、相対湿度50%の室内にて7日間静置した。
  調製例4
 実施例4で得られたポリイソシアネート組成物EI-4を用いた以外は、調製例1と同様の条件および操作にて、厚みが約45μmのポリウレタン樹脂塗膜dを得た。
 得られたポリウレタン樹脂塗膜dを、23℃、相対湿度50%の室内にて7日間静置した。
  比較調製例1
 比較例1で得られたポリイソシアネート組成物EI-5を用いた以外は、調製例1と同様の条件および操作にて、厚みが約45μmのポリウレタン樹脂塗膜eを得た。
 得られたポリウレタン樹脂塗膜eを、23℃、相対湿度50%の室内にて7日間静置した。
<<塗料評価>>
 各調製例および各比較調製例で得られたポリウレタン樹脂塗膜(以下、塗膜と略する。)の指触乾燥性、硬化乾燥性、基材密着性(基材;金属、プラスチック)を以下の方法で測定した。その結果を表1に示す。
<指触乾燥性(単位:秒)>
 各調製例において、テストピースとしてガラス板(JIS R 3202)を用い、100μmのアプリケータで混合液を塗装し、塗った面の中央に触れてみて、試料で指先が汚れない状態になるまでの時間である(JIS K 5600-1-1に準拠)。その結果を表1に示す。
<硬化乾燥性(単位:分)>
 各調製例において、テストピースとしてガラス板(JIS R 3202)を用い、100μmのアプリケータで混合液を塗装し、試験片の中央を親指と人差し指とで強く挟んでみて、塗面に指紋によるへこみが付かず、塗膜の動きが感じられず、また、塗面を指先で急速に繰り返しこすってみて、すり跡が付かない状態になるまでの時間をさす(JIS K 5600-1-1に準拠)。その結果を表1に示す。
<基材密着性>
 各調製例において、金属テストピース(鋼板;JIS G 3141 SPCC SB)、および、プラスチックテストピース(ナイロン;NY、JIS K 6920)を用いた。
 得られた各塗膜に対し、碁盤目法(JIS K5600 5-6に準拠)によって密着試験を行った。なお、密着性においては、JIS記載の以下の分類に従って評価した。
分類0;カットの縁が完全に滑らかで、どの格子の目にも剥がれがない。
分類1;カットの交差点における塗膜の小さな剥がれ。クロスカット部分で影響を受けるのは、明確に5%を上回ることはない。
分類2;塗膜がカットの縁に沿って、及び/又は交差点において剥がれている。クロスカット部分で影響を受けるのは明確に5%を超えるが15%を上回ることはない。
分類3;塗膜がカットの縁に沿って、部分的又は全面的に大剥がれを生じており、及び/又は目のいろいろな部分が、部分的又は全面的に剥がれている。クロスカット部分で影響を受けるのは、明確に15%を超えるが35%を上回ることはない。
分類4;塗膜がカットの縁に沿って、部分的又は全面的に大剥がれを生じており、及び/又は数ヶ所の目が部分的又は全面的に剥がれている。クロスカット部分で影響を受けるのは、明確に35%を上回ることはない。
分類5;分類4でも分類できない剥がれ程度のいずれか。
 その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<<接着剤評価>>
(ラミネート接着剤用硬化剤の調製例1、2、3、4、比較調製例1)
 各実施例および各比較例で調製したポリイソシアネート組成物(EI-1からEI-5)と、タケネートD-140N(イソホロンジイソシアネートのTMPアダクト体酢酸エチル溶液、固形分75%、三井化学社製)とを、質量比3対1で混合し、それぞれをラミネート接着剤用硬化剤AEI-1、AEI-2、AEI-3、AEI-4、AEI-5とした。
(ラミネート接着剤の評価実施例1から4、評価比較例1)
 タケラックA-505(三井化学社製,末端水酸基含有ウレタン樹脂,固形分50%)と、上記のラミネート接着剤用硬化剤の調製で得られたAEI-1からAEI-5とを、質量比9対1で混合し、全体の固形分を酢酸エチルにて25質量%として、ラミネート接着剤を調製した。
 この接着剤を用いて、アルミニウム箔(東洋アルミ製、品番9μ)と、無延伸ポリプロピレンフィルムRXC-22(三井化学東セロ社製、品番60μ)とを、乾燥塗布量が3.5g/mとなるように塗工して貼りあわせ、40℃で保管し、経時での接着強度を測定した。
 なお、接着強度は、24℃下において、T型剥離により、15mm幅、引張速度300mm/分にて測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれる。
 本発明のポリイソシアネート組成物およびその製造方法、また、そのポリイソシアネート組成物を用いて得られる2液硬化型ポリウレタン樹脂、塗料および接着剤は、プラスチック用塗料、自動車用塗料、フィルムコート剤、各種インキ、各種接着剤、粘着剤、シーリング材、各種マイクロカプセル、プラスチックレンズ、人工および合成皮革、RIM成形品、スラッシュパウダー、弾性成形品(スパンデックス)、ウレタンフォームなどの幅広い分野において、好適に用いられる。
 

Claims (7)

  1.  キシリレンジイソシアネートとトリメチロールアルカンとの反応により得られるポリイソシアネート組成物であって、
     3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体の含有量が、ポリイソシアネート組成物の総量に対して、45質量%以下であること
    を特徴とする、ポリイソシアネート組成物。
  2.  キシリレンジイソシアネートとトリメチロールアルカンとの反応において、
     トリメチロールアルカン中の水酸基に対する、キシリレンジイソシアネート中のイソシアネート基の当量比(イソシアネート基/水酸基)が、2.5以上6以下である
    ことを特徴とする、請求項1に記載のポリイソシアネート組成物。
  3.  キシリレンジイソシアネートとトリメチロールアルカンとの反応により得られる粗生成物から、液-液抽出によって未反応キシリレンジイソシアネートを除去することにより得られることを特徴とする、請求項1に記載のポリイソシアネート組成物。
  4.  ポリイソシアネート組成物を含む硬化剤と、
     ポリオール成分を含む主剤と
    を含み、
     前記ポリイソシアネート組成物は、
     キシリレンジイソシアネートとトリメチロールアルカンとの反応により得られるポリイソシアネート組成物であって、
     3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体の含有量が、ポリイソシアネート組成物の総量に対して、45質量%以下であること
    を特徴とする、2液硬化型ポリウレタン樹脂。
  5.  2液硬化型ポリウレタン樹脂からなり、
     前記2液硬化型ポリウレタン樹脂は、
     ポリイソシアネート組成物を含む硬化剤と、
     ポリオール成分を含む主剤と
    を含み、
     前記ポリイソシアネート組成物は、
     キシリレンジイソシアネートとトリメチロールアルカンとの反応により得られるポリイソシアネート組成物であって、
     3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体の含有量が、ポリイソシアネート組成物の総量に対して、45質量%以下であること
    を特徴とする、塗料。
  6.  2液硬化型ポリウレタン樹脂からなり、
     前記2液硬化型ポリウレタン樹脂は、
     ポリイソシアネート組成物を含む硬化剤と、
     ポリオール成分を含む主剤と
    を含み、
     前記ポリイソシアネート組成物は、
     キシリレンジイソシアネートとトリメチロールアルカンとの反応により得られるポリイソシアネート組成物であって、
     3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体の含有量が、ポリイソシアネート組成物の総量に対して、45質量%以下であること
    を特徴とする、接着剤。
  7.  ポリイソシアネート組成物の製造方法であって、
     キシリレンジイソシアネートとトリメチロールアルカンとを反応させた後、
     得られる粗生成物から、脂肪族炭化水素類と、ケトン類および/またはアルキルエステル類とを含む抽出溶剤を用いた液-液抽出によって、未反応キシリレンジイソシアネートを除去することにより、
     3分子のキシリレンジイソシアネートと、1分子のトリメチロールアルカンとの反応により得られるイソシアネート誘導体の含有量が、ポリイソシアネート組成物の総量に対して、45質量%以下のポリイソシアネート組成物を得る
    ことを特徴とする、ポリイソシアネート組成物の製造方法。
     
PCT/JP2015/051625 2014-01-28 2015-01-22 ポリイソシアネート組成物、2液硬化型ポリウレタン樹脂、塗料、接着剤およびポリイソシアネート組成物の製造方法 WO2015115292A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15743095.0A EP3101044A4 (en) 2014-01-28 2015-01-22 Polyisocyanate composition, two-pack-type curable polyurethane resin, coating material, adhesive, and process for producing polyisocyanate composition
CN201580006106.5A CN105940030A (zh) 2014-01-28 2015-01-22 多异氰酸酯组合物、二液固化型聚氨酯树脂、涂料、粘接剂及制造多异氰酸酯组合物的方法
JP2015559895A JP6243929B2 (ja) 2014-01-28 2015-01-22 ポリイソシアネート組成物の製造方法
US15/114,583 US20160340563A1 (en) 2014-01-28 2015-01-22 Polyisocyanate composition, two-component curable polyurethane resin, coating, adhesive, and method for producing polyisocyanate composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-013579 2014-01-28
JP2014013579 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015115292A1 true WO2015115292A1 (ja) 2015-08-06

Family

ID=53756868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051625 WO2015115292A1 (ja) 2014-01-28 2015-01-22 ポリイソシアネート組成物、2液硬化型ポリウレタン樹脂、塗料、接着剤およびポリイソシアネート組成物の製造方法

Country Status (5)

Country Link
US (1) US20160340563A1 (ja)
EP (1) EP3101044A4 (ja)
JP (1) JP6243929B2 (ja)
CN (1) CN105940030A (ja)
WO (1) WO2015115292A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409566A (zh) * 2017-04-10 2021-02-26 三井化学株式会社 苯二甲撑二异氰酸酯组合物、苯二甲撑二异氰酸酯改性物组合物、二液型树脂原料及树脂
FR3095448B1 (fr) 2019-04-26 2022-12-23 Bostik Sa Adhesif de lamination pour sterilisation
KR20210023483A (ko) * 2019-08-23 2021-03-04 한화솔루션 주식회사 폴리이소시아네이트 조성물의 제조방법
CN114437312A (zh) * 2020-11-06 2022-05-06 杭州布朗生物医药科技有限公司 一种脂肪族聚异氰酸酯固化剂的合成方法
CN112625212A (zh) * 2021-01-14 2021-04-09 甘肃银光聚银化工有限公司 一种间苯二甲基二异氰酸酯固化剂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092046A (ja) * 2005-09-01 2007-04-12 Mitsui Chemicals Polyurethanes Inc 水性ポリウレタン樹脂、ガスバリア性組成物およびガスバリア性積層フィルム
WO2009014162A1 (ja) * 2007-07-24 2009-01-29 Mitsubishi Gas Chemical Company, Inc. ポリウレタン樹脂組成物
JP2009035605A (ja) * 2007-07-31 2009-02-19 Mitsui Chemicals Polyurethanes Inc 水性樹脂組成物およびガスバリア性組成物
JP2010024386A (ja) 2008-07-22 2010-02-04 Mitsui Chemicals Polyurethanes Inc 硬化剤および二液硬化型ポリウレタン組成物
JP2011074380A (ja) * 2009-09-07 2011-04-14 Lintec Corp 保護フィルム及び保護フィルムの製造方法
JP2014058685A (ja) * 2013-11-15 2014-04-03 Mitsui Chemicals Inc 接着剤

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA672598A (en) * 1963-10-22 Windemuth Erwin Polyurethane plastics and method of making the same
BE715556A (ja) * 1967-05-23 1968-10-16
GB2093049B (en) * 1981-02-09 1985-01-23 Takeda Chemical Industries Ltd A method of curing compounds containing isocyanate groups
DE60312924T2 (de) * 2002-06-04 2007-09-06 Mitsubishi Gas Chemical Co., Inc. Polyurethan mit Gasbarriere Eigenschaften als Klebstoff für Laminate und daraus hergestellte Filme und Anstriche
JP4214379B2 (ja) * 2003-01-07 2009-01-28 三菱瓦斯化学株式会社 空気入りタイヤ
JP2004231730A (ja) * 2003-01-29 2004-08-19 Mitsubishi Gas Chem Co Inc ガスバリア性コートフィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092046A (ja) * 2005-09-01 2007-04-12 Mitsui Chemicals Polyurethanes Inc 水性ポリウレタン樹脂、ガスバリア性組成物およびガスバリア性積層フィルム
WO2009014162A1 (ja) * 2007-07-24 2009-01-29 Mitsubishi Gas Chemical Company, Inc. ポリウレタン樹脂組成物
JP2009035605A (ja) * 2007-07-31 2009-02-19 Mitsui Chemicals Polyurethanes Inc 水性樹脂組成物およびガスバリア性組成物
JP2010024386A (ja) 2008-07-22 2010-02-04 Mitsui Chemicals Polyurethanes Inc 硬化剤および二液硬化型ポリウレタン組成物
JP2011074380A (ja) * 2009-09-07 2011-04-14 Lintec Corp 保護フィルム及び保護フィルムの製造方法
JP2014058685A (ja) * 2013-11-15 2014-04-03 Mitsui Chemicals Inc 接着剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"POLYMER HANDBOOK", 1999, JOHN WILEY & SONS, INC, pages: VII-688 - VII-694
See also references of EP3101044A4

Also Published As

Publication number Publication date
JP6243929B2 (ja) 2017-12-06
EP3101044A1 (en) 2016-12-07
EP3101044A4 (en) 2017-09-20
CN105940030A (zh) 2016-09-14
JPWO2015115292A1 (ja) 2017-03-23
US20160340563A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6599418B2 (ja) 接着剤組成物および方法
JP5225813B2 (ja) ポリイソシアネート組成物、ポリウレタン樹脂およびポリイソシアネート組成物の製造方法
JP5254121B2 (ja) ポリイソシアヌレート組成物およびその製造方法、および、ポリウレタン樹脂
JP6250138B2 (ja) イソシアヌレート組成物
JP6482663B2 (ja) ポリイソシアネート組成物、ポリウレタン樹脂、二液硬化型ポリウレタン組成物、コーティング材料および接着材料
EP2036933B1 (en) Aqueous polyurethane resin
KR100942404B1 (ko) 2 액 경화형 수성 우레탄알키드 수지 조성물 및 그 용도
JP6243929B2 (ja) ポリイソシアネート組成物の製造方法
JP6502049B2 (ja) ポリイソシアネート組成物、塗料組成物及び塗装方法
JP5270446B2 (ja) ポリイソシアネート組成物およびポリウレタン樹脂
WO2019124511A1 (ja) ブロックイソシアネート
JP6042699B2 (ja) ポリイソシアネート組成物およびポリウレタン樹脂
JP5570043B2 (ja) 乾燥速度が速くかつ耐性が改善されたソフトフィール塗料用硬化性組成物
JP5726275B2 (ja) 接着剤
CN104918975B (zh) 衍生自叔烷基缩水甘油酯的水性聚氨酯分散体
WO2015115291A1 (ja) ポリイソシアネート組成物、2液硬化型ポリウレタン樹脂、塗料および接着剤
KR20170115566A (ko) 도료용 우레탄 수지 조성물 및 그 조성물을 사용한 촉감 도료
JP6851326B2 (ja) 複層塗膜形成方法
JP6495449B2 (ja) ポリイソシアネート組成物、ポリウレタン樹脂および二液硬化型ポリウレタン組成物
JP2005042001A (ja) 塗料組成物、塗膜形成方法および塗装物品
KR102455218B1 (ko) 2k 폴리우레탄 접착제를 위한 플라스틱 접착 촉진
JP6626423B2 (ja) ポリイソシアネート組成物およびポリウレタン樹脂
CN113508149B (zh) 封端异氰酸酯、多层膜的制造方法及多层膜
CN111662430A (zh) 封端多异氰酸酯组合物、水系涂料组合物及涂膜
WO2019112930A1 (en) Adhesive compositions and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559895

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015743095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15114583

Country of ref document: US

Ref document number: 2015743095

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE