WO2015115078A1 - Agricultural field observation device and agricultural field observation system - Google Patents

Agricultural field observation device and agricultural field observation system Download PDF

Info

Publication number
WO2015115078A1
WO2015115078A1 PCT/JP2015/000314 JP2015000314W WO2015115078A1 WO 2015115078 A1 WO2015115078 A1 WO 2015115078A1 JP 2015000314 W JP2015000314 W JP 2015000314W WO 2015115078 A1 WO2015115078 A1 WO 2015115078A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
field observation
temperature
measurement
measurement data
Prior art date
Application number
PCT/JP2015/000314
Other languages
French (fr)
Japanese (ja)
Inventor
宮田 肇
慎 中野
秀樹 定方
結輝 竹中
道子 新居
柏本 隆
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015559815A priority Critical patent/JP6446671B2/en
Priority to CN201580003176.5A priority patent/CN105848467B/en
Publication of WO2015115078A1 publication Critical patent/WO2015115078A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the present invention relates to a field observation device and a field observation system for observing the state of a field to support agricultural work.
  • Patent Document 1 discloses a method of measuring the degree of ripeness of fruits using infrared spectroscopy to determine the harvest time so that stable top-quality melon can be supplied in various environments.
  • Patent Document 1 requires the introduction of an expensive measurement system in order to measure the degree of fruit ripeness.
  • a large number of work steps are required. Therefore, it is not preferable because equipment cost and work man-hours increase.
  • the present invention has been made in view of the above-mentioned problems, and is a field observation device and a field observation system capable of predicting the harvest time, etc., which is simple, inexpensive, and does not require a large number of operation steps.
  • the field observation device of the present invention includes a underground burial unit buried in a field, a measuring unit provided in the underground burial unit and having a sensor for measuring a predetermined physical quantity, and a storage unit. Further, the control unit stores the measurement data acquired by the measurement unit in the storage unit at a predetermined cycle, and the communication unit transmits the measurement data stored in the storage unit to the parent device.
  • the field observation system of this invention is equipped with the above-mentioned field observation apparatus as a child machine, and a parent machine.
  • FIG. 1 is an image diagram of a field observation system according to an embodiment of the present invention.
  • FIG. 2 is a view showing an appearance of a field observation apparatus according to an embodiment of the present invention.
  • FIG. 3 is a functional configuration diagram of the field observation system according to the embodiment of the present invention.
  • FIG. 4 is a figure which represents typically the relationship between integration ground temperature and the sugar content of melon in embodiment of this invention.
  • FIG. 5 is a flowchart showing the flow of the observation operation and the melon cultivation operation in the embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing temperature data observed by the field observation device and stored in the memory according to the embodiment of the present invention.
  • FIG. 7 is a view schematically representing accumulated land temperature data held by the management device which is a parent device in the embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of a display screen when the integrated ground temperature reaches a target value in the embodiment of the present invention.
  • FIG. 9 is a diagram showing another configuration example of the field observation device in the embodiment of the present invention.
  • FIG. 10A is a diagram showing another configuration example of the underground burial portion of the field observation device according to the embodiment of the present invention.
  • FIG. 10B is a diagram showing another configuration example of the underground burial section of the field observation device according to the embodiment of the present invention.
  • FIG. 1 is an image diagram of a field observation system 300 according to an embodiment of the present invention.
  • the field observation system 300 includes a field observation device 100 and a management device 200.
  • the field observation device 100 which is a slave unit, is buried in a field where crops such as melon are grown, for example, measures the temperature in the ground, and wirelessly transmits measurement data.
  • the management device 200 is carried by, for example, the user 1 who performs agricultural work, and operates as a parent device of the field observation device 100.
  • a transmission request is made from the management apparatus 200 to the field observation apparatus 100, and the field observation apparatus 100 transmits data to the management apparatus 200.
  • a communication form can be realized by existing near field communication such as NFC (Near Field Communication).
  • NFC Near Field Communication
  • setting data is transmitted from the management device 200 to the field observation device 100.
  • the management device 200 has a touch panel 50 so that data display and operation input can be performed.
  • FIG. 2 is a view showing the appearance of the field observation apparatus 100 according to the embodiment of the present invention.
  • the field observation device 100 includes the underground buried portion 110 buried in the field and the device body 120.
  • the underground burial unit 110 incorporates a measuring unit 10 provided with four temperature sensors 11, 12, 13, 14. Further, on the surface of the underground burial portion 110, a reference line 18 is attached which serves as a measure of the burial depth.
  • the measurement points of the respective temperature sensors 11, 12, 13, 14 are located in the underground depth assumed in advance. become.
  • the temperature sensor to be measured among the temperature sensors 11, 12, 13, 14, it is possible to set the underground depth at which the temperature is measured.
  • the field observation apparatus 100 incorporates a battery, and it shall operate
  • FIG. 3 is a functional configuration diagram of a field observation system 300 according to the embodiment of the present invention.
  • the field observation device 100 includes the measurement unit 10 described above, a control unit 20, a memory 30 as a storage unit, and a communication unit 40.
  • the control unit 20 selects a temperature sensor for storing measurement data in the memory 30 among the plurality of temperature sensors 11, 12, 13 and 14 in the measurement unit 10. Then, the control unit 20 stores the measurement data acquired by the selected temperature sensor in the memory 30 at a predetermined cycle.
  • the communication unit 40 transmits the data stored in the memory 30 to the management device 200. Further, the communication unit 40 receives setting data and the like transmitted from the management device 200.
  • the operation processing unit 25 indicated by a broken line is an arbitrary configuration and is not essential. The operation will be described later.
  • the management device 200 includes a communication unit 60, a control unit 70, a memory 80, and an arithmetic processing unit 90.
  • the communication unit 60 receives the data transmitted from the field observation device 100. Also, the communication unit 60 transmits setting data to the field observation apparatus 100.
  • the control unit 70 stores the data received by the communication unit 60 in the memory 80.
  • the arithmetic processing unit 90 performs arithmetic processing such as integration calculation of temperature values included in the measurement data stored in the memory 80.
  • the management apparatus 200 further includes a display unit 51 and an operation input unit 52. In the present embodiment, the display unit 51 and the operation input unit 52 are realized as the touch panel 50, but the present invention is not limited to this.
  • cultivation of melon is performed as an example of a crop.
  • the harvest time is determined by adjusting the number of days according to the difference in season, temperature, etc. based on the basic number of days from mating to harvest.
  • this decision depends on the grower's intuition and experience, so it is difficult to tell if the harvest time is appropriate.
  • FIG. 4 is a figure which represents typically the relationship between integration ground temperature and the sugar content of melon in embodiment of this invention.
  • the sugar content of the melon does not change significantly until the accumulated ground temperature reaches a certain large value, and then gradually increases with the increase of the accumulated ground temperature, and reaches the target value Tf of the accumulated ground temperature Almost saturated. For this reason, it is preferable to perform a harvesting operation when the integrated ground temperature reaches the target value Tf. This makes it possible to harvest the melon at the right time. Therefore, in the present embodiment, it is assumed that the field observation system 300 recommends the user 1 to perform the harvesting operation when the integrated ground temperature after the mating operation reaches the target value Tf.
  • the target value Tf here may set the general numerical value described in the farming operation manual etc., and the user 1 may set the value as original know-how.
  • FIG. 5 is a flowchart showing the flow of the observation operation and the melon cultivation operation in the embodiment of the present invention.
  • the user 1 embeds the field observation device 100 in the field where the melon is grown, and turns on the power (S11). Then, a mating work of melon is performed (S12).
  • the mating operation may be performed manually or, for example, may be performed by releasing bees in the house.
  • the user 1 performs initial setting of observation using the management device 200 (S13).
  • the management apparatus 200 transmits, to the field observation apparatus 100, setting data selected from a cycle of observation and a temperature sensor to be selected.
  • a default value is beforehand set in each field observation apparatus 100, and the user 1 may be comprised so that initialization may be performed only when changing the default value.
  • the initial setting of observation may be performed by the field observation device 100 itself instead of performing communication from the management device 200.
  • the field observation apparatus 100 may be provided with an operation unit capable of inputting a cycle of observation and selection of a temperature sensor, and the user 1 may operate the operation unit to perform initial setting.
  • the user 1 performs an operation of instructing start of observation (S14).
  • the user 1 may also perform this instruction from the management device 200 via communication or may use the field observation device 100 itself.
  • the field observation device 100 continuously observes the underground temperature (S15). That is, in the field observation apparatus 100, the control unit 20 stores the measurement data of the temperature sensor selected in the initial setting in the memory 30 in the cycle set in the initial setting. Further, while the observation is continued, the communication unit 40 checks whether there is a data transmission request from the management device 200 (S16). When there is a data transmission request from the management device 200 (S16, Yes), the field observation device 100 transmits unsent data among the measurement data stored in the memory 30 to the management device 200 (S17).
  • FIG. 6 is a view schematically showing temperature data observed by the field observation device 100 and stored in the memory 30 in the embodiment of the present invention.
  • each temperature data includes an observed day and time, a value of the observed temperature, and a transmission flag.
  • the transmission flag indicates whether the data has been transmitted to the management apparatus 200 in the past. Here, it is assumed that “1” indicates that it has been transmitted and “0” indicates that it has not transmitted.
  • the field observation device 100 transmits, to the management device 200, temperature data whose transmission flag is “0”.
  • the capacity of the memory 30 is insufficient, new temperature data may be overwritten in order from the old temperature data.
  • the management device 200 stores the temperature data transmitted from the field observation device 100 in the memory 80. Then, the arithmetic processing unit 90 integrates the temperature values from the date and time when the observation was started, and obtains the integrated ground temperature (S18). The obtained integrated ground temperature is displayed on the display unit 51.
  • FIG. 7 is a diagram schematically showing integrated land temperature data held by the management device 200 which is a parent device in the embodiment of the present invention.
  • each integrated ground temperature data includes a child device ID (ID for specifying the field observation device 100), an integrated ground temperature value, an update date and time, a start date and time, and a cycle.
  • the control unit 70 of the management device 200 determines whether the calculated integrated ground temperature has reached the target value Tf (S19). If it has reached (S19, Yes), the management device 200 displays a signal for notifying the user 1 that the accumulated ground temperature has reached the target value Tf.
  • the screen of the display unit 51 may be blinked, or one selected from specific characters and marks may be displayed on the display unit 51.
  • the management device 200 continues the observation (S15).
  • FIG. 8 is a diagram showing an example of a display screen when the integrated ground temperature reaches a target value in the embodiment of the present invention.
  • the integrated ground temperature of the three field observation devices 100 is displayed on the touch panel 50 of the management device 200. And, for example, No. Since the integrated ground temperature of the field observation apparatus 100 of 02 has reached the target value, the integrated ground temperature is highlighted and a message indicating that a harvest is recommended is displayed.
  • the underground temperature of the field is automatically measured at a predetermined cycle by the field observation device 100 embedded in the field, and the measurement data is wirelessly transmitted to the management device 200. It can be easily collected. Then, the integrated ground temperature can be calculated from the collected measurement data to predict the melon harvest time.
  • the number of temperature sensors provided in the measurement unit 10 is not limited to this. When there is only one temperature sensor, the process of selecting the temperature sensor in the initial setting is unnecessary.
  • the present invention is not limited to this.
  • the measurement data of all the temperature sensors 11, 12, 13, 14 are stored in the memory 30, and when transmitting to the management apparatus 200, only the measurement data of the temperature sensor selected in the initial setting is transmitted. It does not matter. However, in this case, a larger memory capacity is required.
  • the field processing apparatus 100 may be provided with the arithmetic processing unit 25, and the arithmetic processing unit 25 may execute integration calculation of the temperature value included in the measurement data. Absent. In this case, the integrated land temperature data obtained by the calculation is transmitted from the field observation device 100 to the management device 200.
  • the field observation apparatus 100 may be provided with the display unit 130, and the display unit 130 may display the integrated ground temperature.
  • FIG. 9 is a diagram showing another configuration example of the agricultural field observation apparatus 100 according to the embodiment of the present invention.
  • the display of the accumulated ground temperature may be performed, for example, only during a specific time (for example, the daytime when working), or when the management apparatus 200 approaches the field observation apparatus 100 and data transmission is performed. You may do it only Also, the field observation apparatus 100 determines whether the calculated integrated ground temperature has reached the target value Tf, and if it has, the display unit 130 indicates that the integrated ground temperature has reached the target value Tf. It does not matter if a signal to be transmitted to 1 is displayed.
  • FIG. 10A and FIG. 10B are figures which show the other structural example of the underground burial part 110 of the agricultural field observation apparatus 100 in embodiment of this invention.
  • a scale 19 is attached to the surface of the underground buried portion 111.
  • the user can adjust the depth of the underground burial portion 111 into the ground based on the scale 19. Thereby, the measurement point of the temperature sensor 15 can be set to a desired depth.
  • a guide portion 140 which indicates a measure of the burial depth.
  • the guide portion 140 is a light emitting element configured to be able to adjust the light emission range, and the light emission range can be adjusted by the control unit 20.
  • the field observation apparatus 100 receives data on the depth of the measurement point of the underground temperature from the management apparatus 200, and the light emission range of the guide unit 140 is received from the measurement point to the upper end of the light emission range Adjust to match the depth indicated by the data.
  • the user 1 puts the underground burial part 112 in the ground to a position where the light emission range of the guide part 140 just disappears. Thereby, the measurement point of the temperature sensor 15 can be easily set to a desired depth.
  • the depth of the underground temperature measurement point can be easily set and changed even if there is only one temperature sensor 15 built in the underground embedded portions 111 and 112. Can. Therefore, the internal configuration of the field observation apparatus 100 can be simplified, and the process of selecting the temperature sensors 11, 12, 13, 14 can be omitted. Furthermore, a configuration as shown in FIGS. 10A and 10B is provided with a plurality of temperature sensors 11, 12, 13, 14 as described in the above embodiments, and a configuration for selecting any one of the temperature sensors It is also possible to combine with
  • the integrated land temperature starting from the mating operation is observed to inform the user of the harvest time.
  • the present invention is not limited to this. That is, the target crops are not limited to melon. Further, the starting point for observing the accumulated soil temperature is not limited to the breeding work, and what is notified to the user is not limited to the harvest time.
  • the measured temperature data can be utilized by methods other than integration calculation. For example, it is possible to find out a change selected from the change in soil temperature in at least one of daytime and night and the daily change of soil temperature at a specific time, and use it in the schedule of cultivation work etc. is there.
  • a predetermined physical quantity other than the temperature may be measured. For example, by measuring at least one of the amount of moisture in the soil and the PH value and collecting measurement data, it is possible to utilize it in a schedule of cultivation work or the like.
  • the field observation device 100 is provided in the underground burial units 110, 111 and 112 and the underground burial units 110, 111 and 112 buried in the field, and the predetermined physical quantities are calculated.
  • a measurement unit 10 having a sensor to be measured, and a memory 30 which is a storage unit are provided.
  • the control unit 20 stores the measurement data acquired by the measurement unit 10 in the storage unit at a predetermined cycle, and the communication unit transmits the measurement data stored in the storage unit to the management apparatus 200 as a parent device. And 40.
  • the communication unit 40 may be configured to transmit unsent measurement data among the measurement data stored in the storage unit to the parent device when a transmission request is received from the parent device.
  • control unit 20 may be configured to set a predetermined cycle in accordance with setting data received from the parent device via the communication unit 40.
  • the measurement part 10 has several sensors from which the depth from the ground surface mutually differs, when the underground burial parts 110, 111, 112 are embed
  • the configuration capable of measuring the physical quantity at the most desirable position can be realized without bothering the user 1.
  • control unit 20 may be configured to select a sensor according to setting data received from the parent device via the communication unit 40.
  • a configuration capable of measuring the physical quantity under the conditions set on the management apparatus 200 side can be realized without bothering the user 1.
  • the sensors are temperature sensors 11 to 15 that measure temperature, and further include an arithmetic processing unit 25 that integrates the temperature value included in the measurement data stored in the storage unit at a predetermined cycle from a predetermined date and time.
  • the communication unit 40 may be configured to transmit the data of the integration result by the arithmetic processing unit 25 to the parent device when there is a transmission request from the parent device.
  • the display unit 130 may further include a display unit 130 that displays the integration result of the arithmetic processing unit 25.
  • the display unit 130 may be configured to display a signal when the integration result exceeds the target value.
  • the guide part 140 which shows the standard of the burial depth is provided in the surface of the underground burial part 112, and the standard of the burial depth which the guide part 140 shows can be adjusted by the control part 20,
  • the unit 20 is configured to adjust the standard of the embedding depth indicated by the guide unit 140 so that the measurement point of the measuring unit 10 has a predetermined depth according to the setting data received from the parent machine via the communication unit 40. It may be.
  • the measurement point of the sensor can be set to a desired depth, and a highly convenient configuration that does not burden the user 1 can be realized.
  • a field observation system 300 of the present embodiment is a system provided with the field observation apparatus 100 having the above-described configuration and a management apparatus 200 which is a master unit.
  • the sensors are temperature sensors 11 to 15 that measure temperature
  • the master unit is an arithmetic processing unit 90 that integrates the temperature value included in the measurement data transmitted from the field observation apparatus 100 from a predetermined date and time. May be provided.
  • the master unit further includes a display unit 51 for displaying the integration result by the arithmetic processing unit 90, and the display unit 51 is configured to display a signal when the integration result exceeds the target value. Good.
  • the present invention is useful as a field observation device, a field observation system and the like for observing the state of a field to support agricultural work.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Mining & Mineral Resources (AREA)
  • Animal Husbandry (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Agronomy & Crop Science (AREA)
  • Strategic Management (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

An agricultural field observation device (100) is provided with: an in-ground unit (110) that is embedded in an agricultural field; a measurement unit (10) provided in the in-ground unit and having sensors that measure prescribed physical quantities; and a storage unit. The device is also provided with: a control unit that stores measured data acquired by the measurement unit (10) in the storage unit in a prescribed cycle; and a communications unit that sends the measured data stored in the storage unit to a master unit.

Description

圃場観測装置、および圃場観測システムField observation device and field observation system
 本発明は、農作業を支援するために圃場の状態を観測する圃場観測装置、および圃場観測システムに関する。 The present invention relates to a field observation device and a field observation system for observing the state of a field to support agricultural work.
 従来、農作物、例えばメロン等の栽培において、品質の高い作物を効率よく生産するために様々な工夫がなされている。ただし、栽培者の勘や経験に頼った部分が大きいため、品質の高い作物を安定して生産し、市場に供給することは容易ではない。 Heretofore, in cultivation of agricultural products such as melons, various measures have been made to efficiently produce high quality crops. However, it is not easy to stably produce high-quality crops and supply them to the market, because they rely largely on the grower's knowledge and experience.
 特許文献1には、様々な環境でも安定した最高級のメロンが供給できるように、赤外線分光測定法を用いて果実の成熟度を測定し、収穫時期を決める方法が開示されている。 Patent Document 1 discloses a method of measuring the degree of ripeness of fruits using infrared spectroscopy to determine the harvest time so that stable top-quality melon can be supplied in various environments.
 しかしながら、特許文献1に開示された方法では、果実の成熟度を測定するために、高額な計測システムの導入が必要となる。また、果実の成熟度を継続的に測定する必要があるため、多大な作業工数が必要となる。したがって、設備コストおよび作業工数が増大するため、好ましくない。 However, the method disclosed in Patent Document 1 requires the introduction of an expensive measurement system in order to measure the degree of fruit ripeness. In addition, since it is necessary to continuously measure the degree of ripeness of fruits, a large number of work steps are required. Therefore, it is not preferable because equipment cost and work man-hours increase.
特開2006-191816号公報JP, 2006-191816, A
 本発明は、上述した課題に鑑みてなされたものであり、簡便、安価、かつ、多大な作業工数を必要とせずに、収穫時期の予測等を行うことのできる圃場観測装置、および圃場観測システムを提供するものである。 The present invention has been made in view of the above-mentioned problems, and is a field observation device and a field observation system capable of predicting the harvest time, etc., which is simple, inexpensive, and does not require a large number of operation steps. To provide
 本発明の圃場観測装置は、圃場に埋設される地中埋設部と、地中埋設部に設けられ、所定の物理量を測定するセンサを有する測定部と、記憶部と、を備えている。また、測定部によって取得された測定データを、所定の周期で、記憶部に格納する制御部と、親機に、記憶部に格納された測定データを送信する通信部とを備えている。 The field observation device of the present invention includes a underground burial unit buried in a field, a measuring unit provided in the underground burial unit and having a sensor for measuring a predetermined physical quantity, and a storage unit. Further, the control unit stores the measurement data acquired by the measurement unit in the storage unit at a predetermined cycle, and the communication unit transmits the measurement data stored in the storage unit to the parent device.
 また、本発明の圃場観測システムは、上述の、子機としての圃場観測装置と、親機とを備えている。 Moreover, the field observation system of this invention is equipped with the above-mentioned field observation apparatus as a child machine, and a parent machine.
 このような構成によれば、圃場に関する物理量を、圃場観測装置によって所定の周期で自動的に測定し、その測定データを親機に無線を介して収集することができる。したがって、収集した測定データを基にして、例えばメロン等の農作物の収穫時期の予測等を行うことができる。 According to such a configuration, it is possible to automatically measure the physical quantity related to the field by the field observation device at a predetermined cycle, and to collect the measurement data in the parent device via radio. Therefore, it is possible to predict, for example, the harvest time of a crop such as melon based on the collected measurement data.
図1は、本発明の実施の形態に係る圃場観測システムのイメージ図である。FIG. 1 is an image diagram of a field observation system according to an embodiment of the present invention. 図2は、本発明の実施の形態における圃場観測装置の外観を示す図である。FIG. 2 is a view showing an appearance of a field observation apparatus according to an embodiment of the present invention. 図3は、本発明の実施の形態に係る圃場観測システムの機能構成図である。FIG. 3 is a functional configuration diagram of the field observation system according to the embodiment of the present invention. 図4は、本発明の実施の形態における、積算地温とメロンの糖度との関係を模式的に表す図である。FIG. 4: is a figure which represents typically the relationship between integration ground temperature and the sugar content of melon in embodiment of this invention. 図5は、本発明の実施の形態における、観測動作とメロン栽培作業との流れを示すフローチャートである。FIG. 5 is a flowchart showing the flow of the observation operation and the melon cultivation operation in the embodiment of the present invention. 図6は、本発明の実施の形態において、圃場観測装置で観測されメモリに格納された温度データを模式的に表す図である。FIG. 6 is a diagram schematically showing temperature data observed by the field observation device and stored in the memory according to the embodiment of the present invention. 図7は、本発明の実施の形態において、親機である管理装置が保持する積算地温データを模式的に表す図である。FIG. 7 is a view schematically representing accumulated land temperature data held by the management device which is a parent device in the embodiment of the present invention. 図8は、本発明の実施の形態において、積算地温が目標値に達したときの表示画面の一例を示す図である。FIG. 8 is a diagram showing an example of a display screen when the integrated ground temperature reaches a target value in the embodiment of the present invention. 図9は、本発明の実施の形態における、圃場観測装置の別の構成例を示す図である。FIG. 9 is a diagram showing another configuration example of the field observation device in the embodiment of the present invention. 図10Aは、本発明の実施の形態における、圃場観測装置の地中埋設部の他の構成例を示す図である。FIG. 10A is a diagram showing another configuration example of the underground burial portion of the field observation device according to the embodiment of the present invention. 図10Bは、本発明の実施の形態における、圃場観測装置の地中埋設部の他の構成例を示す図である。FIG. 10B is a diagram showing another configuration example of the underground burial section of the field observation device according to the embodiment of the present invention.
 以下、実施の形態について、図面を参照して説明する。 Embodiments will be described below with reference to the drawings.
 図1は、本発明の実施の形態に係る圃場観測システム300のイメージ図である。 FIG. 1 is an image diagram of a field observation system 300 according to an embodiment of the present invention.
 図1に示されるように、圃場観測システム300は、圃場観測装置100および管理装置200を備えている。 As shown in FIG. 1, the field observation system 300 includes a field observation device 100 and a management device 200.
 子機である圃場観測装置100は、例えばメロン等の農作物を栽培する圃場に埋設されており、地中の温度を測定し、測定データを無線で発信する。管理装置200は、例えば農作業を行うユーザ1が携帯しており、圃場観測装置100の親機として動作する。 The field observation device 100, which is a slave unit, is buried in a field where crops such as melon are grown, for example, measures the temperature in the ground, and wirelessly transmits measurement data. The management device 200 is carried by, for example, the user 1 who performs agricultural work, and operates as a parent device of the field observation device 100.
 管理装置200を携帯したユーザ1が圃場観測装置100に近づくと、管理装置200から圃場観測装置100に送信要求がなされ、圃場観測装置100は管理装置200にデータを送信する。このような通信形態は、NFC(Near Field Communication)等の既存の近距離無線通信によって実現可能である。また、例えば、観測の初期設定等においては、管理装置200から圃場観測装置100に設定データが送信される。管理装置200は、データ表示および操作入力が可能なように、タッチパネル50を有している。 When the user 1 carrying the management apparatus 200 approaches the field observation apparatus 100, a transmission request is made from the management apparatus 200 to the field observation apparatus 100, and the field observation apparatus 100 transmits data to the management apparatus 200. Such a communication form can be realized by existing near field communication such as NFC (Near Field Communication). Also, for example, in the initial setting of observation and the like, setting data is transmitted from the management device 200 to the field observation device 100. The management device 200 has a touch panel 50 so that data display and operation input can be performed.
 図2は、本発明の実施の形態における圃場観測装置100の外観を示す図である。 FIG. 2 is a view showing the appearance of the field observation apparatus 100 according to the embodiment of the present invention.
 図2に示される例では、圃場観測装置100は、圃場に埋設される地中埋設部110と、装置本体120とを備えている。地中埋設部110には、4個の温度センサ11,12,13,14が設けられた測定部10が内蔵されている。また、地中埋設部110の表面には、埋設深さの目安となる基準線18が付されている。 In the example shown in FIG. 2, the field observation device 100 includes the underground buried portion 110 buried in the field and the device body 120. The underground burial unit 110 incorporates a measuring unit 10 provided with four temperature sensors 11, 12, 13, 14. Further, on the surface of the underground burial portion 110, a reference line 18 is attached which serves as a measure of the burial depth.
 ユーザ1が、地中埋設部110を基準線18の深さまで地中に埋めることによって、各温度センサ11,12,13,14の測定点が、予め想定された地中深さに位置することになる。温度センサ11,12,13,14の中から、測定を行う温度センサを選択することによって、温度を測定する地中深さを設定することができる。また、圃場観測装置100には、バッテリーが内蔵されており、このバッテリーによって動作するものとする。 When the user 1 embeds the underground burial portion 110 in the ground to the depth of the reference line 18, the measurement points of the respective temperature sensors 11, 12, 13, 14 are located in the underground depth assumed in advance. become. By selecting the temperature sensor to be measured among the temperature sensors 11, 12, 13, 14, it is possible to set the underground depth at which the temperature is measured. Moreover, the field observation apparatus 100 incorporates a battery, and it shall operate | move with this battery.
 図3は、本発明の実施の形態に係る圃場観測システム300の機能構成図である。 FIG. 3 is a functional configuration diagram of a field observation system 300 according to the embodiment of the present invention.
 図3に示されるように、圃場観測装置100は、上述した測定部10と、制御部20と、記憶部としてのメモリ30と、通信部40とを備えている。制御部20は、測定部10における複数の温度センサ11,12,13,14の中から、測定データをメモリ30に格納する温度センサを選択する。そして、制御部20は、選択された温度センサによって取得された測定データを、所定の周期で、メモリ30に格納する。通信部40は、メモリ30に格納されたデータを管理装置200に送信する。また、通信部40は、管理装置200から送信された設定データ等を受信する。なお、破線で示した演算処理部25については、任意の構成であり、必須ではない。その動作については後述する。 As shown in FIG. 3, the field observation device 100 includes the measurement unit 10 described above, a control unit 20, a memory 30 as a storage unit, and a communication unit 40. The control unit 20 selects a temperature sensor for storing measurement data in the memory 30 among the plurality of temperature sensors 11, 12, 13 and 14 in the measurement unit 10. Then, the control unit 20 stores the measurement data acquired by the selected temperature sensor in the memory 30 at a predetermined cycle. The communication unit 40 transmits the data stored in the memory 30 to the management device 200. Further, the communication unit 40 receives setting data and the like transmitted from the management device 200. The operation processing unit 25 indicated by a broken line is an arbitrary configuration and is not essential. The operation will be described later.
 管理装置200は、通信部60と、制御部70と、メモリ80と、演算処理部90とを備えている。通信部60は、圃場観測装置100から送信されたデータを受信する。また、通信部60は、設定データを圃場観測装置100に送信する。制御部70は、通信部60が受信したデータをメモリ80に格納する。演算処理部90は、メモリ80に格納された測定データに含まれた温度値の積算演算等の演算処理を行う。また、管理装置200は、表示部51と、操作入力部52とを備えている。本実施の形態では、表示部51および操作入力部52がタッチパネル50として実現されているが、本発明はこれに限られるものではない。 The management device 200 includes a communication unit 60, a control unit 70, a memory 80, and an arithmetic processing unit 90. The communication unit 60 receives the data transmitted from the field observation device 100. Also, the communication unit 60 transmits setting data to the field observation apparatus 100. The control unit 70 stores the data received by the communication unit 60 in the memory 80. The arithmetic processing unit 90 performs arithmetic processing such as integration calculation of temperature values included in the measurement data stored in the memory 80. The management apparatus 200 further includes a display unit 51 and an operation input unit 52. In the present embodiment, the display unit 51 and the operation input unit 52 are realized as the touch panel 50, but the present invention is not limited to this.
 本実施の形態では、農作物の一例としてメロンの栽培が行われるものとする。従来のメロン栽培では、交配から収穫までの基本日数を基にして、季節や気温等の違いに応じてその日数を調整し、収穫時期が決められている。ただし、この決定は、栽培者の勘や経験に依存しているので、収穫時期が適切かどうかが分かりにくい。一方、本願発明者らの実験によれば、メロンの果実における糖度の変化と積算地温との間に、相関があることが確認されている。すなわち、積算地温がある値になるとメロンの糖度の上昇が始まり、やがて積算地温がある値になると、メロンの糖度の上昇が止まることが確認されている。 In the present embodiment, cultivation of melon is performed as an example of a crop. In conventional melon cultivation, the harvest time is determined by adjusting the number of days according to the difference in season, temperature, etc. based on the basic number of days from mating to harvest. However, this decision depends on the grower's intuition and experience, so it is difficult to tell if the harvest time is appropriate. On the other hand, according to the experiments of the present inventors, it has been confirmed that there is a correlation between the change in sugar content of melon fruit and the accumulated soil temperature. That is, it has been confirmed that the sugar content of the melon starts to rise when the accumulated temperature reaches a certain value, and the sugar content of the melon stops rising when the accumulated temperature reaches a certain value.
 図4は、本発明の実施の形態における、積算地温とメロンの糖度との関係を模式的に表す図である。 FIG. 4: is a figure which represents typically the relationship between integration ground temperature and the sugar content of melon in embodiment of this invention.
 図4に示されるように、メロンの糖度は、積算地温がある程度大きな値になるまでは大きく変化せず、その後、積算地温の増加とともに徐々に高くなり、積算地温の目標値Tfに達したころにほぼ飽和する。このため、積算地温が目標値Tfに達したときに、収穫作業を行うことが好ましい。これにより、ちょうど良いタイミングでメロンを収穫することができる。そこで、本実施の形態では、交配作業を行ってからの積算地温が目標値Tfに達したときに、圃場観測システム300がユーザ1に収穫作業を勧めるものとする。なお、ここでの目標値Tfは、例えば、農作業マニュアル等に記載された一般的な数値を設定してもいいし、ユーザ1が独自のノウハウとした値を設定してもよい。 As shown in FIG. 4, the sugar content of the melon does not change significantly until the accumulated ground temperature reaches a certain large value, and then gradually increases with the increase of the accumulated ground temperature, and reaches the target value Tf of the accumulated ground temperature Almost saturated. For this reason, it is preferable to perform a harvesting operation when the integrated ground temperature reaches the target value Tf. This makes it possible to harvest the melon at the right time. Therefore, in the present embodiment, it is assumed that the field observation system 300 recommends the user 1 to perform the harvesting operation when the integrated ground temperature after the mating operation reaches the target value Tf. In addition, the target value Tf here may set the general numerical value described in the farming operation manual etc., and the user 1 may set the value as original know-how.
 図5は、本発明の実施の形態における、観測動作とメロン栽培作業との流れを示すフローチャートである。 FIG. 5 is a flowchart showing the flow of the observation operation and the melon cultivation operation in the embodiment of the present invention.
 ユーザ1は、メロンを栽培する圃場に、圃場観測装置100を埋設し、電源をオンする(S11)。そして、メロンの交配作業を行う(S12)。交配作業は、人手で行われる場合もあるし、例えばハウスで蜜蜂を放して行われる場合もある。 The user 1 embeds the field observation device 100 in the field where the melon is grown, and turns on the power (S11). Then, a mating work of melon is performed (S12). The mating operation may be performed manually or, for example, may be performed by releasing bees in the house.
 そして、ユーザ1は、管理装置200を用いて、観測の初期設定を行う(S13)。初期設定においては、観測を行う周期、および、選択する温度センサ等から選択される設定データを、管理装置200から圃場観測装置100に送信する。なお、観測を行う周期に関しては、各圃場観測装置100において予めデフォルト値が設定されており、ユーザ1は、このデフォルト値を変更したい場合にのみ、初期設定を行うように構成してもよい。 Then, the user 1 performs initial setting of observation using the management device 200 (S13). In the initial setting, the management apparatus 200 transmits, to the field observation apparatus 100, setting data selected from a cycle of observation and a temperature sensor to be selected. In addition, regarding the period which observes, a default value is beforehand set in each field observation apparatus 100, and the user 1 may be comprised so that initialization may be performed only when changing the default value.
 また、観測の初期設定は、管理装置200から通信を介して行う代わりに、圃場観測装置100自体で行うようにしてもかまわない。例えば、観測を行う周期、および、温度センサの選択を入力可能な操作部を圃場観測装置100に設けておいて、ユーザ1が操作部を操作して初期設定を行うようにしてもよい。 Further, the initial setting of observation may be performed by the field observation device 100 itself instead of performing communication from the management device 200. For example, the field observation apparatus 100 may be provided with an operation unit capable of inputting a cycle of observation and selection of a temperature sensor, and the user 1 may operate the operation unit to perform initial setting.
 その後、ユーザ1は、観測の開始を指示する操作を行う(S14)。この指示についても、ユーザ1が管理装置200から通信を介して行ってもよいし、圃場観測装置100自体で行うようにしてもかまわない。 Thereafter, the user 1 performs an operation of instructing start of observation (S14). The user 1 may also perform this instruction from the management device 200 via communication or may use the field observation device 100 itself.
 観測が開始されると、圃場観測装置100は、地中温度を継続して観測する(S15)。すなわち、圃場観測装置100では、制御部20が、初期設定で選択された温度センサの測定データを、初期設定で設定された周期でメモリ30に格納する。また、観測を継続している間に、通信部40が、管理装置200からデータの送信要求があるか否かをチェックする(S16)。管理装置200からデータの送信要求があったとき(S16,Yes)、圃場観測装置100は、メモリ30に格納された測定データのうち未送信のデータを、管理装置200に送信する(S17)。 When the observation is started, the field observation device 100 continuously observes the underground temperature (S15). That is, in the field observation apparatus 100, the control unit 20 stores the measurement data of the temperature sensor selected in the initial setting in the memory 30 in the cycle set in the initial setting. Further, while the observation is continued, the communication unit 40 checks whether there is a data transmission request from the management device 200 (S16). When there is a data transmission request from the management device 200 (S16, Yes), the field observation device 100 transmits unsent data among the measurement data stored in the memory 30 to the management device 200 (S17).
 図6は、本発明の実施の形態において、圃場観測装置100で観測されメモリ30に格納された温度データを模式的に表す図である。 FIG. 6 is a view schematically showing temperature data observed by the field observation device 100 and stored in the memory 30 in the embodiment of the present invention.
 図6に示されるように、各温度データは、観測された日および時刻と、観測した温度の値と、送信フラグとを含む。送信フラグは、そのデータが過去に管理装置200に送信されたか否かを表すものである。ここでは、「1」は送信済みを、「0」は未送信を表すものとする。 As shown in FIG. 6, each temperature data includes an observed day and time, a value of the observed temperature, and a transmission flag. The transmission flag indicates whether the data has been transmitted to the management apparatus 200 in the past. Here, it is assumed that “1” indicates that it has been transmitted and “0” indicates that it has not transmitted.
 圃場観測装置100は、管理装置200からデータの送信要求があったとき、送信フラグが「0」の温度データを管理装置200に送信する。なお、メモリ30の容量が不足した場合には、日時の古い温度データから順に、新しい温度データで上書きしていけばよい。 When there is a data transmission request from the management device 200, the field observation device 100 transmits, to the management device 200, temperature data whose transmission flag is “0”. When the capacity of the memory 30 is insufficient, new temperature data may be overwritten in order from the old temperature data.
 管理装置200は、圃場観測装置100から送信された温度データをメモリ80に蓄積する。そして、演算処理部90が、観測を開始した日時からの温度値を積算し、積算地温を求める(S18)。得られた積算地温は、表示部51に表示される。 The management device 200 stores the temperature data transmitted from the field observation device 100 in the memory 80. Then, the arithmetic processing unit 90 integrates the temperature values from the date and time when the observation was started, and obtains the integrated ground temperature (S18). The obtained integrated ground temperature is displayed on the display unit 51.
 図7は、本発明の実施の形態において、親機である管理装置200が保持する積算地温データを模式的に表す図である。 FIG. 7 is a diagram schematically showing integrated land temperature data held by the management device 200 which is a parent device in the embodiment of the present invention.
 図7に示される例では、各積算地温データは、子機ID(圃場観測装置100を特定するID)と、積算地温値と、更新日時と、開始日時および周期とを含む。 In the example shown in FIG. 7, each integrated ground temperature data includes a child device ID (ID for specifying the field observation device 100), an integrated ground temperature value, an update date and time, a start date and time, and a cycle.
 そして、管理装置200の制御部70は、算出した積算地温が目標値Tfに達したか否かを判断する(S19)。達している場合は(S19,Yes)、管理装置200は、積算地温が目標値Tfに達した旨をユーザ1に伝えるためのシグナルを表示する。例えば、表示部51の画面を点滅させてもよいし、あるいは、特定の文字およびマークから選択されるものを表示部51に表示してもよい。一方、目標値に達していない場合は(S19,No)、管理装置200は観測を継続する(S15)。 Then, the control unit 70 of the management device 200 determines whether the calculated integrated ground temperature has reached the target value Tf (S19). If it has reached (S19, Yes), the management device 200 displays a signal for notifying the user 1 that the accumulated ground temperature has reached the target value Tf. For example, the screen of the display unit 51 may be blinked, or one selected from specific characters and marks may be displayed on the display unit 51. On the other hand, when the target value is not reached (S19, No), the management device 200 continues the observation (S15).
 図8は、本発明の実施の形態において、積算地温が目標値に達したときの表示画面の一例を示す図である。 FIG. 8 is a diagram showing an example of a display screen when the integrated ground temperature reaches a target value in the embodiment of the present invention.
 図8に示される例では、管理装置200のタッチパネル50に、3個の圃場観測装置100の積算地温が表示されている。そして、例えば、No.02の圃場観測装置100の積算地温が目標値に達したので、その積算地温をハイライト表示するとともに、収穫を勧める旨のメッセージが表示されている。 In the example illustrated in FIG. 8, the integrated ground temperature of the three field observation devices 100 is displayed on the touch panel 50 of the management device 200. And, for example, No. Since the integrated ground temperature of the field observation apparatus 100 of 02 has reached the target value, the integrated ground temperature is highlighted and a message indicating that a harvest is recommended is displayed.
 ユーザ1は、図8に示されるようなシグナルが表示されたことを確認すると、収穫作業を行う(図5,S21)。 When the user 1 confirms that a signal as shown in FIG. 8 is displayed, the user 1 performs a harvesting operation (FIG. 5, S21).
 以上のように、本実施の形態によると、圃場の地中温度を、圃場に埋設した圃場観測装置100によって所定の周期で自動的に測定し、その測定データを管理装置200に無線を介して容易に収集することができる。そして、収集した測定データから積算地温を演算し、メロンの収穫時期の予測を行うことができる。 As described above, according to the present embodiment, the underground temperature of the field is automatically measured at a predetermined cycle by the field observation device 100 embedded in the field, and the measurement data is wirelessly transmitted to the management device 200. It can be easily collected. Then, the integrated ground temperature can be calculated from the collected measurement data to predict the melon harvest time.
 なお、以上の説明では、測定部10には4個の温度センサ11~14が設けられているものとしたが、測定部10に設ける温度センサの個数はこれに限られるものではない。なお、温度センサが1個の場合には、初期設定において温度センサを選択する処理は不要になる。 Although the four temperature sensors 11 to 14 are provided in the measurement unit 10 in the above description, the number of temperature sensors provided in the measurement unit 10 is not limited to this. When there is only one temperature sensor, the process of selecting the temperature sensor in the initial setting is unnecessary.
 また、以上の説明では、初期設定において選択された温度センサの測定データのみを、メモリ30に保存するものとしたが、本発明はこれに限られるものではない。例えば、全ての温度センサ11,12,13,14の測定データをメモリ30に蓄積するようにし、管理装置200へ送信する際には、初期設定において選択された温度センサの測定データのみを送信するようにしてもかまわない。ただしこの場合は、より大きなメモリ容量が必要となる。 In the above description, only the measurement data of the temperature sensor selected in the initial setting is stored in the memory 30, but the present invention is not limited to this. For example, the measurement data of all the temperature sensors 11, 12, 13, 14 are stored in the memory 30, and when transmitting to the management apparatus 200, only the measurement data of the temperature sensor selected in the initial setting is transmitted. It does not matter. However, in this case, a larger memory capacity is required.
 なお、図3の構成において破線で示したとおり、圃場観測装置100に演算処理部25を設けて、この演算処理部25により、測定データに含まれた温度値の積算演算を実行してもかまわない。この場合、圃場観測装置100から管理装置200へは、演算で得られた積算地温データが送信される。 As indicated by the broken line in the configuration of FIG. 3, the field processing apparatus 100 may be provided with the arithmetic processing unit 25, and the arithmetic processing unit 25 may execute integration calculation of the temperature value included in the measurement data. Absent. In this case, the integrated land temperature data obtained by the calculation is transmitted from the field observation device 100 to the management device 200.
 またこの場合、図9に示されるように、圃場観測装置100に表示部130を設けて、この表示部130に積算地温を表示するようにしてもかまわない。 Further, in this case, as shown in FIG. 9, the field observation apparatus 100 may be provided with the display unit 130, and the display unit 130 may display the integrated ground temperature.
 図9は、本発明の実施の形態における、圃場観測装置100の別の構成例を示す図である。 FIG. 9 is a diagram showing another configuration example of the agricultural field observation apparatus 100 according to the embodiment of the present invention.
 なお、積算地温の表示は、例えば、特定の時間(例:作業を行う昼間等)だけ行ってもいいし、または、管理装置200が圃場観測装置100に近づいて、データ送信が行われるときにのみ行うようにしてもかまわない。また、圃場観測装置100が、算出した積算地温が目標値Tfに達したか否かを判断し、達している場合には、表示部130に、積算地温が目標値Tfに達した旨をユーザ1に伝えるためのシグナルを表示するようにしてもかまわない。 In addition, the display of the accumulated ground temperature may be performed, for example, only during a specific time (for example, the daytime when working), or when the management apparatus 200 approaches the field observation apparatus 100 and data transmission is performed. You may do it only Also, the field observation apparatus 100 determines whether the calculated integrated ground temperature has reached the target value Tf, and if it has, the display unit 130 indicates that the integrated ground temperature has reached the target value Tf. It does not matter if a signal to be transmitted to 1 is displayed.
 図10Aおよび図10Bは、本発明の実施の形態における、圃場観測装置100の地中埋設部110の他の構成例を示す図である。 FIG. 10A and FIG. 10B are figures which show the other structural example of the underground burial part 110 of the agricultural field observation apparatus 100 in embodiment of this invention.
 図10A,図10Bでは、地中埋設部111,112に、1個の温度センサ15が設けられているものとする。 In FIGS. 10A and 10B, it is assumed that one temperature sensor 15 is provided in the underground burial portions 111 and 112.
 図10Aの構成では、地中埋設部111の表面に目盛り19が付されている。ユーザはこの目盛り19を基にして、地中埋設部111を地中に入れる深さを調整することができる。これにより、温度センサ15の測定点を所望の深さに設定することができる。 In the configuration of FIG. 10A, a scale 19 is attached to the surface of the underground buried portion 111. The user can adjust the depth of the underground burial portion 111 into the ground based on the scale 19. Thereby, the measurement point of the temperature sensor 15 can be set to a desired depth.
 図10Bの構成では、地中埋設部112の表面に、埋設深さの目安を示すガイド部140が設けられている。具体的には、例えば、ガイド部140は、発光範囲を調整可能に構成された発光素子であり、制御部20によってその発光範囲が調整可能になっている。この場合、圃場観測装置100は管理装置200から、地中温度の測定点の深さのデータを受信し、ガイド部140の発光範囲を、測定点から発光範囲の上端までの長さが、受信データが示す深さに一致するように調整する。ユーザ1は、ガイド部140の発光範囲がちょうど見えなくなる位置まで、地中埋設部112を地中に入れる。これにより、簡単に、温度センサ15の測定点を所望の深さに設定することができる。 In the configuration of FIG. 10B, on the surface of the underground burial portion 112, a guide portion 140 is provided which indicates a measure of the burial depth. Specifically, for example, the guide portion 140 is a light emitting element configured to be able to adjust the light emission range, and the light emission range can be adjusted by the control unit 20. In this case, the field observation apparatus 100 receives data on the depth of the measurement point of the underground temperature from the management apparatus 200, and the light emission range of the guide unit 140 is received from the measurement point to the upper end of the light emission range Adjust to match the depth indicated by the data. The user 1 puts the underground burial part 112 in the ground to a position where the light emission range of the guide part 140 just disappears. Thereby, the measurement point of the temperature sensor 15 can be easily set to a desired depth.
 図10A,図10Bに示される構成によると、地中埋設部111,112に内蔵する温度センサ15は1個であっても、地中温度の測定点の深さを簡易に設定、変更することができる。したがって、圃場観測装置100の内部構成が簡略化できるとともに、温度センサ11,12,13,14を選択する処理も省くことができる。さらに、図10A,図10Bに示されたような構成を、上述の実施形態で説明したような、複数の温度センサ11,12,13,14を設けて、いずれかの温度センサを選択する構成と組み合わせることも可能である。 According to the configuration shown in FIGS. 10A and 10B, the depth of the underground temperature measurement point can be easily set and changed even if there is only one temperature sensor 15 built in the underground embedded portions 111 and 112. Can. Therefore, the internal configuration of the field observation apparatus 100 can be simplified, and the process of selecting the temperature sensors 11, 12, 13, 14 can be omitted. Furthermore, a configuration as shown in FIGS. 10A and 10B is provided with a plurality of temperature sensors 11, 12, 13, 14 as described in the above embodiments, and a configuration for selecting any one of the temperature sensors It is also possible to combine with
 なお、上述の実施の形態では、メロンの栽培において、交配作業を起点とした積算地温を観測して、収穫時期をユーザに知らせるものとした。ただし、本発明はこれに限られるものではない。すなわち、対象とする農作物はメロンに限定されない。また、積算地温を観測する起点は、交配作業に限られるものではないし、ユーザに知らせるものは収穫時期に限られるものではない。 In the above-described embodiment, in the cultivation of melon, the integrated land temperature starting from the mating operation is observed to inform the user of the harvest time. However, the present invention is not limited to this. That is, the target crops are not limited to melon. Further, the starting point for observing the accumulated soil temperature is not limited to the breeding work, and what is notified to the user is not limited to the harvest time.
 また、測定された温度データは、積算演算以外の方法で活用されることも可能である。例えば、日中および夜間の少なくともいずれかにおける土中温度の変化、ならびに、特定時刻における土中温度の経日変化等から選択される変化を求めて、栽培作業のスケジュール等に活かすことも可能である。 Also, the measured temperature data can be utilized by methods other than integration calculation. For example, it is possible to find out a change selected from the change in soil temperature in at least one of daytime and night and the daily change of soil temperature at a specific time, and use it in the schedule of cultivation work etc. is there.
 また、温度以外の所定の物理量が測定される構成であってもかまわない。例えば、土中の水分量およびPH値のうち少なくともいずれかを測定し、測定データを収集することによって、栽培作業のスケジュール等に活かすことも可能である。 In addition, a predetermined physical quantity other than the temperature may be measured. For example, by measuring at least one of the amount of moisture in the soil and the PH value and collecting measurement data, it is possible to utilize it in a schedule of cultivation work or the like.
 以上述べたように、本実施の形態の圃場観測装置100は、圃場に埋設される地中埋設部110,111,112と、地中埋設部110,111,112に設けられ、所定の物理量を測定するセンサを有する測定部10と、記憶部であるメモリ30と、を備えている。また、測定部10によって取得された測定データを、所定の周期で、記憶部に格納する制御部20と、親機である管理装置200に、記憶部に格納された測定データを送信する通信部40とを備えている。 As described above, the field observation device 100 according to the present embodiment is provided in the underground burial units 110, 111 and 112 and the underground burial units 110, 111 and 112 buried in the field, and the predetermined physical quantities are calculated. A measurement unit 10 having a sensor to be measured, and a memory 30 which is a storage unit are provided. In addition, the control unit 20 stores the measurement data acquired by the measurement unit 10 in the storage unit at a predetermined cycle, and the communication unit transmits the measurement data stored in the storage unit to the management apparatus 200 as a parent device. And 40.
 このような構成によれば、圃場に関する物理量を、圃場観測装置100によって所定の周期で自動的に測定し、その測定データを親機である管理装置200に無線を介して収集することができる。したがって、収集した測定データを基にして、例えばメロン等の農作物の収穫時期の予測等を行うことができる。 According to such a configuration, it is possible to automatically measure the physical quantity related to the farm field by the farm field observation apparatus 100 at a predetermined cycle, and to collect the measurement data in the management apparatus 200 which is the parent machine via radio. Therefore, it is possible to predict, for example, the harvest time of a crop such as melon based on the collected measurement data.
 また、通信部40は、親機から送信要求があったとき、記憶部に格納された測定データのうち、未送信の測定データを、親機に送信する構成であってもよい。 The communication unit 40 may be configured to transmit unsent measurement data among the measurement data stored in the storage unit to the parent device when a transmission request is received from the parent device.
 このような構成によれば、さらに、記憶部であるメモリ30の容量を有効に利用することのできる構成を実現することができる。 According to such a configuration, it is possible to realize a configuration in which the capacity of the memory 30 which is a storage unit can be effectively used.
 また、制御部20は、親機から通信部40を介して受信した設定データに従って、所定の周期を設定する構成であってもよい。 In addition, the control unit 20 may be configured to set a predetermined cycle in accordance with setting data received from the parent device via the communication unit 40.
 このような構成によれば、さらに、ユーザ1が設定を行う必要がなく、自動的に周期を設定することができるので、ユーザ1が使いやすい構成を実現することができる。 According to such a configuration, since the user 1 does not need to perform setting and the cycle can be automatically set, a configuration easy for the user 1 to use can be realized.
 また、測定部10は、地中埋設部110,111,112が圃場に埋設されたとき、地表面からの深さが互いに異なる複数のセンサを有し、制御部20は、複数のセンサの中から、親機に測定データを送信するセンサを選択する構成であってもよい。 Moreover, the measurement part 10 has several sensors from which the depth from the ground surface mutually differs, when the underground burial parts 110, 111, 112 are embed | buried in a field, and the control part 20 is the inside of several sensors. From the above, the configuration may be such that a sensor that transmits measurement data to the parent device is selected.
 このような構成によれば、最も望ましい位置で物理量を測定することのできる構成を、ユーザ1の手を煩わせることなく実現することができる。 According to such a configuration, the configuration capable of measuring the physical quantity at the most desirable position can be realized without bothering the user 1.
 また、制御部20は、親機から通信部40を介して受信した設定データに従って、センサの選択を行う構成であってもよい。 In addition, the control unit 20 may be configured to select a sensor according to setting data received from the parent device via the communication unit 40.
 このような構成によれば、さらに、管理装置200側で設定された条件で物理量を測定することのできる構成を、ユーザ1の手を煩わせることなく実現することができる。 According to such a configuration, a configuration capable of measuring the physical quantity under the conditions set on the management apparatus 200 side can be realized without bothering the user 1.
 また、センサは、温度を測定する温度センサ11~15であり、所定の周期で記憶部に格納された測定データに含まれた温度値を、所定の日時から積算する演算処理部25をさらに備え、通信部40は、親機からの送信要求があったとき、演算処理部25による積算結果のデータを、親機に送信する構成であってもよい。 The sensors are temperature sensors 11 to 15 that measure temperature, and further include an arithmetic processing unit 25 that integrates the temperature value included in the measurement data stored in the storage unit at a predetermined cycle from a predetermined date and time. The communication unit 40 may be configured to transmit the data of the integration result by the arithmetic processing unit 25 to the parent device when there is a transmission request from the parent device.
 このような構成によれば、さらに、圃場観測装置100側で積算を行うことができるので、親機である管理装置200側での処理を軽くすることのできる構成を実現することができる。 According to such a configuration, since integration can be performed on the field observation device 100 side, it is possible to realize a configuration capable of reducing the processing on the management device 200 side which is the parent device.
 さらに、演算処理部25による積算結果を表示する表示部130をさらに備え、表示部130は、積算結果が目標値を超えているとき、シグナルを表示する構成であってもよい。 Furthermore, the display unit 130 may further include a display unit 130 that displays the integration result of the arithmetic processing unit 25. The display unit 130 may be configured to display a signal when the integration result exceeds the target value.
 このような構成によれば、さらに、ユーザ1が管理装置200を持たない状態でも、収穫時期を判断することのできる構成を実現することができる。 According to such a configuration, it is possible to realize a configuration in which the harvest time can be determined even when the user 1 does not have the management device 200.
 また、地中埋設部112の表面には、埋設深さの目安を示すガイド部140が設けられており、ガイド部140が示す埋設深さの目安は、制御部20によって調整可能であり、制御部20は、親機から通信部40を介して受信した設定データに従って、測定部10の測定点が所定の深さになるように、ガイド部140が示す埋設深さの目安を調整する構成であってもよい。 Moreover, the guide part 140 which shows the standard of the burial depth is provided in the surface of the underground burial part 112, and the standard of the burial depth which the guide part 140 shows can be adjusted by the control part 20, The unit 20 is configured to adjust the standard of the embedding depth indicated by the guide unit 140 so that the measurement point of the measuring unit 10 has a predetermined depth according to the setting data received from the parent machine via the communication unit 40. It may be.
 このような構成によれば、センサの測定点を所望の深さに設定することができるとともに、ユーザ1に負担のかからない、利便性の高い構成を実現することができる。 According to such a configuration, the measurement point of the sensor can be set to a desired depth, and a highly convenient configuration that does not burden the user 1 can be realized.
 また、本実施の形態の圃場観測システム300は、上述した構成の圃場観測装置100と、親機である管理装置200とを備えたシステムである。 In addition, a field observation system 300 of the present embodiment is a system provided with the field observation apparatus 100 having the above-described configuration and a management apparatus 200 which is a master unit.
 このような構成によれば、圃場に関する物理量を、圃場観測装置100によって所定の周期で自動的に測定し、その測定データを親機である管理装置200に無線を介して収集することができる。したがって、収集した測定データを基にして、例えばメロン等の農作物の収穫時期の予測等を行うことができる。 According to such a configuration, it is possible to automatically measure the physical quantity related to the farm field by the farm field observation apparatus 100 at a predetermined cycle, and to collect the measurement data in the management apparatus 200 which is the parent machine via radio. Therefore, it is possible to predict, for example, the harvest time of a crop such as melon based on the collected measurement data.
 また、センサは、温度を測定する温度センサ11~15であり、親機は、圃場観測装置100から送信された測定データに含まれた温度値を、所定の日時から、積算する演算処理部90を備える構成であってもよい。 Also, the sensors are temperature sensors 11 to 15 that measure temperature, and the master unit is an arithmetic processing unit 90 that integrates the temperature value included in the measurement data transmitted from the field observation apparatus 100 from a predetermined date and time. May be provided.
 このような構成によれば、さらに、親機である管理装置200側で温度値の積算を行う構成を実現することができる。また、圃場観測装置100側の演算負担を軽くすることのできる構成を実現することができる。 According to such a configuration, it is possible to realize a configuration in which the temperature value is integrated on the side of the management device 200 which is the parent device. Moreover, the structure which can lighten the calculation burden by the field observation apparatus 100 side can be implement | achieved.
 また、親機は、演算処理部90による積算結果を表示するための表示部51をさらに備え、表示部51は、積算結果が目標値を超えているとき、シグナルを表示する構成であってもよい。 Further, the master unit further includes a display unit 51 for displaying the integration result by the arithmetic processing unit 90, and the display unit 51 is configured to display a signal when the integration result exceeds the target value. Good.
 このような構成によれば、さらに、管理装置200を有するユーザ1に、必要な情報、たとえば収穫時期等を報知することができる。特に、圃場観測装置100が複数ある場合には、複数の圃場観測装置100からの情報を一つの管理装置200で知ることができる。 According to such a configuration, it is possible to further notify the user 1 having the management device 200 of necessary information, such as harvest time and the like. In particular, when there are a plurality of field observation apparatuses 100, information from a plurality of field observation apparatuses 100 can be known by one management apparatus 200.
 以上述べたように、本発明によれば、簡便、安価、かつ、多大な作業工数を必要とせずに、収穫時期の予測等を行うことができる、という格別な効果を奏することができる。よって、本発明は農作業を支援するために圃場の状態を観測する圃場観測装置、および圃場観測システム等として有用である。 As described above, according to the present invention, it is possible to achieve the remarkable effect that it is possible to predict the harvest time etc. without requiring a simple, inexpensive, and a large number of operation steps. Therefore, the present invention is useful as a field observation device, a field observation system and the like for observing the state of a field to support agricultural work.
 1  ユーザ
 10  測定部
 11,12,13,14,15  温度センサ
 18  基準線
 19  目盛り
 20  制御部
 25  演算処理部
 30  メモリ
 40  通信部
 50  タッチパネル
 51  表示部
 52  操作入力部
 60  通信部
 70  制御部
 80  メモリ
 90  演算処理部
 100  圃場観測装置
 110,111,112  地中埋設部
 120  装置本体
 130  表示部
 140  ガイド部
 200  管理装置
 300  圃場観測システム
Reference Signs List 1 user 10 measurement unit 11, 12, 13, 14, 15 temperature sensor 18 reference line 19 scale 20 control unit 25 calculation processing unit 30 memory 40 communication unit 50 touch panel 51 display unit 52 operation input unit 60 communication unit 70 control unit 80 memory DESCRIPTION OF SYMBOLS 90 operation processing part 100 field observation apparatus 110, 111, 112 underground burial part 120 apparatus main body 130 display part 140 guide part 200 management apparatus 300 field observation system

Claims (11)

  1. 圃場に埋設される地中埋設部と、
    前記地中埋設部に設けられ、所定の物理量を測定するセンサを有する測定部と、
    記憶部と、
    前記測定部によって取得された測定データを、所定の周期で、前記記憶部に格納する制御部と、
    親機に、前記記憶部に格納された前記測定データを送信する通信部とを備えた
    圃場観測装置。
    Underground burial section buried in the field,
    A measuring unit provided in the underground burial unit and having a sensor for measuring a predetermined physical quantity;
    A storage unit,
    A control unit which stores measurement data acquired by the measurement unit in the storage unit at a predetermined cycle;
    A field observation device comprising a parent unit and a communication unit for transmitting the measurement data stored in the storage unit.
  2. 前記通信部は、前記親機から送信要求があったとき、前記記憶部に格納された前記測定データのうち、未送信の測定データを、前記親機に送信する
    請求項1に記載の圃場観測装置。
    The field observation according to claim 1, wherein the communication unit transmits unsent measurement data among the measurement data stored in the storage unit to the parent device when there is a transmission request from the parent device. apparatus.
  3. 前記制御部は、前記親機から前記通信部を介して受信した設定データに従って、前記所定の周期を設定する
    請求項1に記載の圃場観測装置。
    The field observation device according to claim 1, wherein the control unit sets the predetermined cycle in accordance with setting data received from the parent device via the communication unit.
  4. 前記測定部は、前記地中埋設部が前記圃場に埋設されたとき、地表面からの深さが互いに異なる複数の前記センサを有し、
    前記制御部は、前記複数のセンサの中から、前記親機に前記測定データを送信するセンサを選択する
    請求項1に記載の圃場観測装置。
    The measurement unit includes a plurality of sensors having different depths from the ground surface when the underground burial unit is buried in the field.
    The field observation device according to claim 1, wherein the control unit selects a sensor that transmits the measurement data to the parent device from the plurality of sensors.
  5. 前記制御部は、前記親機から前記通信部を介して受信した設定データに従って、前記センサの選択を行う
    請求項4に記載の圃場観測装置。
    The field observation device according to claim 4, wherein the control unit selects the sensor according to setting data received from the parent device via the communication unit.
  6. 前記センサは、温度を測定し、
    前記所定の周期で前記記憶部に格納された前記測定データに含まれた温度値を、所定の日時から積算する演算処理部をさらに備え、
    前記通信部は、前記親機からの前記送信要求があったとき、前記演算処理部による積算結果のデータを、前記親機に送信する
    請求項1に記載の圃場観測装置。
    The sensor measures the temperature,
    The arithmetic processing unit further integrates a temperature value included in the measurement data stored in the storage unit in the predetermined cycle from a predetermined date and time.
    The agricultural field observation apparatus according to claim 1, wherein the communication unit transmits data of an integration result by the operation processing unit to the parent device when the transmission request is received from the parent device.
  7. 前記演算処理部による積算結果を表示する表示部をさらに備え、
    前記表示部は、前記積算結果が目標値を超えているとき、シグナルを表示する
    請求項6に記載の圃場観測装置。
    The display device further includes a display unit that displays an integration result by the arithmetic processing unit,
    The field observation device according to claim 6, wherein the display unit displays a signal when the integration result exceeds a target value.
  8. 前記地中埋設部の表面には、埋設深さの目安を示すガイド部が設けられており、
    前記ガイド部が示す埋設深さの目安は、前記制御部によって調整可能であり、
    前記制御部は、前記親機から前記通信部を介して受信した設定データに従って、前記測定部の測定点が所定の深さになるように、前記ガイド部が示す埋設深さの目安を調整する
    請求項1に記載の圃場観測装置。
    The surface of the underground burial portion is provided with a guide portion that indicates a measure of the burial depth,
    The indication of the burial depth indicated by the guide portion is adjustable by the control portion,
    The control unit adjusts an indication of the embedment depth indicated by the guide unit so that the measurement point of the measurement unit has a predetermined depth according to the setting data received from the parent device via the communication unit. The field observation device according to claim 1.
  9. 請求項1から請求項8までのいずれか1項に記載の圃場観測装置と、前記親機とを備えた圃場観測システム。 The field observation system provided with the field observation device according to any one of claims 1 to 8 and the parent device.
  10. 前記センサは、温度を測定し、
    前記親機は、前記圃場観測装置から送信された測定データに含まれた温度値を、所定の日時から、積算する演算処理部を備える
    請求項9に記載の圃場観測システム。
    The sensor measures the temperature,
    The field observation system according to claim 9, wherein the parent device comprises an arithmetic processing unit that integrates the temperature value included in the measurement data transmitted from the field observation device from a predetermined date and time.
  11. 前記親機は、
    前記演算処理部による積算結果を表示するための表示部をさらに備え、
    前記表示部は、前記積算結果が目標値を超えているとき、シグナルを表示する
    請求項10に記載の圃場観測システム。
    The parent machine is
    The display device further includes a display unit for displaying an integration result by the arithmetic processing unit,
    The field observation system according to claim 10, wherein the display unit displays a signal when the integration result exceeds a target value.
PCT/JP2015/000314 2014-01-28 2015-01-26 Agricultural field observation device and agricultural field observation system WO2015115078A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015559815A JP6446671B2 (en) 2014-01-28 2015-01-26 Field observation device and field observation system
CN201580003176.5A CN105848467B (en) 2014-01-28 2015-01-26 Farmland observation device and farmland observation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-013747 2014-01-28
JP2014013747 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015115078A1 true WO2015115078A1 (en) 2015-08-06

Family

ID=53756660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000314 WO2015115078A1 (en) 2014-01-28 2015-01-26 Agricultural field observation device and agricultural field observation system

Country Status (3)

Country Link
JP (1) JP6446671B2 (en)
CN (1) CN105848467B (en)
WO (1) WO2015115078A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164097A1 (en) 2016-03-25 2017-09-28 日本電気株式会社 Information processing device, control method for information processing device, and recording medium having control program for information processing device recorded therein

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210730A (en) * 1984-04-04 1985-10-23 Agency Of Ind Science & Technol Underground temperature measuring apparatus
JPH03155715A (en) * 1989-11-13 1991-07-03 Satake Eng Co Ltd Device of calculating maturation period of rice
JPH05336843A (en) * 1992-06-05 1993-12-21 Saakuru Tekko:Kk Multifunctional thermometer system
JP2008256510A (en) * 2007-04-04 2008-10-23 Matsushita Electric Works Ltd Data collector
JP2012200194A (en) * 2011-03-25 2012-10-22 Tokyo Electric Power Co Inc:The Apparatus and method for measuring soil temperature

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242948A (en) * 1988-03-24 1989-09-27 Showa Kiki Kogyo Kk Detector for dewatering soil in pot
JP2006191816A (en) * 2005-01-11 2006-07-27 Cosmo Plant Kk Method for cultivating melon and cultivation device used for the method
JP2010075172A (en) * 2008-08-29 2010-04-08 Seiko Instruments Inc Plant raising guide system, plant environment measuring device, and plant raising controlling device
CN102997964B (en) * 2012-12-07 2015-01-28 西北农林科技大学 Soil multiparameter sensing measurement system
CN203148876U (en) * 2013-04-09 2013-08-21 沈序珍 Portable automatic detector for soil humidity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210730A (en) * 1984-04-04 1985-10-23 Agency Of Ind Science & Technol Underground temperature measuring apparatus
JPH03155715A (en) * 1989-11-13 1991-07-03 Satake Eng Co Ltd Device of calculating maturation period of rice
JPH05336843A (en) * 1992-06-05 1993-12-21 Saakuru Tekko:Kk Multifunctional thermometer system
JP2008256510A (en) * 2007-04-04 2008-10-23 Matsushita Electric Works Ltd Data collector
JP2012200194A (en) * 2011-03-25 2012-10-22 Tokyo Electric Power Co Inc:The Apparatus and method for measuring soil temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164097A1 (en) 2016-03-25 2017-09-28 日本電気株式会社 Information processing device, control method for information processing device, and recording medium having control program for information processing device recorded therein

Also Published As

Publication number Publication date
JP6446671B2 (en) 2019-01-09
CN105848467A (en) 2016-08-10
JPWO2015115078A1 (en) 2017-03-23
CN105848467B (en) 2019-05-03

Similar Documents

Publication Publication Date Title
JP2010075172A (en) Plant raising guide system, plant environment measuring device, and plant raising controlling device
KR102403449B1 (en) plant growth control system
JP6276100B2 (en) Crop growth observation system
WO2007091586A1 (en) Plant growing system using portable telephone
US20140258173A1 (en) Programmable plant system
US20210337748A1 (en) Plant growth control system
CN106331127A (en) Planting equipment and management method, device and system thereof and server
WO2015092800A1 (en) Method and system for treating crop according to predicted yield
JP2019082765A (en) Information processing system and program
JP2018007630A (en) Cultivation support device
JP2022133359A (en) Information processing device, information processing method and program
WO2015115078A1 (en) Agricultural field observation device and agricultural field observation system
KR20160044817A (en) Greenhouse control system and control method thereof
JP6318068B2 (en) Remote server
US20220225583A1 (en) Management device for cultivation of fruit vegetable plants and fruit trees, learning device, management method for cultivation of fruit vegetable plants and fruit trees, learning model generation method, management program for cultivation of fruit vegetable plants and fruit trees, and learning model generation program
KR101418973B1 (en) System for monitoring and auto controlling environment of water culture
WO2014118825A1 (en) Cultivation system, cultivation program, and cultivation method
KR20150083393A (en) System and method for sharing information about cultivating crops
KR20190064079A (en) The control method of fertilizing liquid to use culture-media and drainage
JP6288444B2 (en) Cultivation support method
KR20100073700A (en) Pet-pot integrated with culturing-environment sensors and emotional interface
JP2003296865A (en) Remote monitoring system, server, program for making computer function as server and computer readable recording medium having the program recorded thereon
CN107505869A (en) The method for automatically controlling fish farm shoal of fish growth population
Flynn Probing the benefits of soil moisture monitoring
JP2002108972A (en) Owner farm system utilizing internet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743972

Country of ref document: EP

Kind code of ref document: A1