WO2015114921A1 - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
WO2015114921A1
WO2015114921A1 PCT/JP2014/080839 JP2014080839W WO2015114921A1 WO 2015114921 A1 WO2015114921 A1 WO 2015114921A1 JP 2014080839 W JP2014080839 W JP 2014080839W WO 2015114921 A1 WO2015114921 A1 WO 2015114921A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
region
dielectric layer
photoelectric conversion
type region
Prior art date
Application number
PCT/JP2014/080839
Other languages
English (en)
French (fr)
Inventor
善之 奈須野
和仁 西村
伊坂 隆行
真也 本多
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201480074515.4A priority Critical patent/CN105940499A/zh
Priority to US15/115,011 priority patent/US20160343885A1/en
Publication of WO2015114921A1 publication Critical patent/WO2015114921A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a photoelectric conversion device.
  • n-electrode is provided on the light-receiving surface that receives sunlight
  • a p-electrode is provided on the back surface that is the opposite surface of the light-receiving surface.
  • the n-electrode provided on the light-receiving surface side is indispensable for taking out the current obtained by photoelectric conversion.
  • sunlight is incident on the substrate where the n-electrode is formed by shielding the n-electrode. Therefore, if the electrode area is large, the conversion efficiency decreases. Such loss of conversion efficiency due to the electrode on the light receiving surface side is called shadow loss.
  • FIG. 11 is a schematic cross-sectional view showing the structure of a conventional back electrode type photoelectric conversion device.
  • High-concentration p-type doping regions 52 and high-concentration n-type doping regions 53 are alternately provided on the back surface of the semiconductor substrate 50.
  • a passivation film 51 made of, for example, a silicon oxide film or a silicon nitride film is formed on the surface of the semiconductor substrate 50, thereby suppressing surface recombination.
  • a p-electrode 54 is formed in the high-concentration p-type doping region 52 and an n-electrode 55 is formed in the high-concentration n-type doping region 53 through the contact hole 56 in the p-region and the contact hole 57 in the n-region provided on the back surface, respectively.
  • the current obtained by photoelectric conversion is taken out.
  • the passivation film 51 on the light receiving surface also serves as an antireflection film.
  • the p-type doping region, the n-type doping region, the p-electrode, and the n-electrode are all formed on the back surface, and the light-receiving surface has nothing to block light, and takes almost 100% of sunlight. Can do.
  • the semiconductor substrate, the p electrode, and the n electrode are in direct contact.
  • a passivation film is further inserted between the metal electrode portion and the semiconductor substrate.
  • the open circuit voltage Voc is improved and the efficiency is improved.
  • the thickness of the passivation film needs to be thin in order to allow a sufficient tunnel current to flow.
  • the present invention has been made in view of the above, and an object thereof is to obtain a photoelectric conversion device having high conversion efficiency by reducing the series resistance between a semiconductor substrate and an electrode.
  • the photoelectric conversion device of the present invention includes a semiconductor substrate, a first conductivity type region formed in the semiconductor substrate, and an electrode electrically connected to the first conductivity type region, and the first conductivity type region is opposed to the electrode. It has an electrode region and has crystal defects in the electrode region.
  • the photoelectric conversion device of the present invention has a dielectric layer formed on a semiconductor substrate, and the first conductivity type region is provided on the dielectric layer.
  • the first conductivity type region has a non-electrode region other than the electrode region, and the first conductivity type impurity concentration of the electrode region is equal to the first conductivity type impurity concentration of the non-electrode region. It has the characteristic that it is higher than.
  • the first conductivity type region has a non-electrode region other than the electrode region, and the surface density of crystal defects in the electrode region is higher than the surface density of crystal defects in the non-electrode region. It has the characteristics.
  • the dielectric layer includes a first dielectric layer and a second dielectric layer formed on the first dielectric layer. Between the electrode and the electrode, either the first dielectric layer or the second dielectric layer is inserted.
  • the photoelectric conversion device of the present invention is characterized in that the surface density of crystal defects is 550 / cm 2 or more and 100,000 / cm 2 or less.
  • the thickness of the dielectric layer is from 0.1 nm to 4.5 nm.
  • the conversion efficiency of the photoelectric conversion device can be improved.
  • FIG. 1 is a schematic cross-sectional view of a photoelectric conversion device of the present invention.
  • an n-type region 11 doped with an n-type dopant of a first conductivity type such as phosphorus (P) is formed on the surface opposite to the light-receiving surface of an n-type silicon substrate 10, and boron (B) or the like.
  • a p-type region 12 doped with a p-type dopant which is the second conductivity type is formed.
  • the n-type region 11 and the p-type region 12 can be formed by thermally diffusing a dopant or ion-implanting dopant ions on the surface opposite to the light receiving surface of the n-type silicon substrate 10.
  • a dielectric layer 13 is formed on the n-type region 11 and the p-type region 12.
  • silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, or the like is used, and can be formed using a plasma CVD method, an ALD method (Atomic Layer Deposition), or the like.
  • silicon oxide was used as the dielectric layer.
  • n-electrode 14 is provided on the n-type region 11 via the dielectric layer 13. In the portion where the n electrode 14 is opposed to the n type region, the n type region 11 is not in contact with the n electrode 14, but the dielectric layer 13 is thin, so that the n type region 11 and the n electrode are caused by the tunnel effect. 14 is electrically connected.
  • a p-electrode 15 is provided on the p-type region 12 via the dielectric layer 13. Although the p-type region 12 is not in contact with the p-electrode 15 in the portion where the p-type region 12 is opposed to the p-electrode 15, the dielectric layer 13 is thin, so that the p-type region 12 and the p-electrode are caused by the tunnel effect. 15 is electrically connected.
  • a crystal defect region 16 is formed in the vicinity of the interface with the dielectric layer 13 in a portion where the p-type region 12 is opposed to the p-electrode 15.
  • a crystal defect region 16 including a crystal defect in a portion where the p-type region 12 is opposed to the p-electrode space charges are introduced into the interface between the p-type region and the dielectric layer, so that a thin dielectric Since the tunnel current through the layer easily flows, the series resistance of the dielectric layer 13 can be reduced. Note that the crystal defect region 16 does not need to be completely coincident with the portion where the p-type region 12 faces the p-electrode 15.
  • the light-receiving surface side of the n-type silicon substrate 10 is textured, and an antireflection film 17 made of silicon nitride, titanium oxide or the like is formed.
  • the antireflection film 17 also has a passivation function for the light receiving surface of the n-type silicon substrate 10.
  • FIG. 2 is a partially enlarged view of the photoelectric conversion device of the present invention as viewed from the electrode side, and is an enlarged view of a part of the electrode forming surface of the photoelectric conversion device 1.
  • the n-type region 11 is a circular region on the n-type silicon substrate 10 below the dielectric layer 13, and the inside of the circle is a region where the n-type dopant concentration is higher than that of the n-type silicon substrate 10. .
  • the n-electrode 14 is located above the dielectric layer 13 and is located approximately at the center of the circular n-type region 11.
  • the p-type region 12 is provided on the n-type silicon substrate 10 and is formed so as to surround the n-type region 11.
  • a circular p-electrode 15 is provided on the dielectric layer 13 and on the p-type region 12.
  • a crystal defect region 16 is provided in the p-type region 12 immediately below the p-electrode 15.
  • the p electrode 15 and the crystal defect region 16 may be formed so as to overlap each other when viewed from the normal direction of the silicon substrate, but the crystal defect region 16 is formed smaller than the p electrode 15 as shown in FIG. By doing so, the passivation property of the n-type silicon substrate under the p-electrode 15 can be further improved, which is preferable.
  • the n-type region 11 and the p-type region 12 are formed by diffusing an n-type dopant such as phosphorus and a p-type dopant such as boron on the surface opposite to the light receiving surface of the n-type silicon substrate 10, respectively.
  • the first conductivity type impurity concentration (boron concentration) is further increased by ion implantation of a p-type dopant such as boron, and the surface of the p-type region on the silicon substrate in the ion implantation region. Crystal defects are introduced into.
  • the impurity concentration (boron concentration) of the crystal defect region 16 is about 5 ⁇ 10 18 to 2 ⁇ 10 20 atoms / cm 3 .
  • the impurity concentration (boron concentration) of the p-type region 12 other than the crystal defect region 16 is about 1 ⁇ 10 17 to 1 ⁇ 10 19 atoms / cm 3 . That is, the boron concentration in the crystal defect region 16 is higher than the boron concentration outside the crystal defect region.
  • the first conductivity type impurity concentration of the first conductivity type region including the crystal defect is higher than the first conductivity type impurity concentration of the second region which is a region other than the first conductivity type region including the crystal defect. Also gets higher.
  • the surface density of crystal defects in the first conductivity type region is higher than the surface density of crystal defects in the second region.
  • n-type region and the p-type region a region that is not directly under the electrode has a relatively low surface impurity concentration to increase the passivation effect, while the region directly under the electrode is doped with impurities at a high concentration to reduce resistance loss. Therefore, high output can be obtained.
  • a p-type dopant such as boron is selected as an element to be ion-implanted to form a p-type region.
  • boron ion implantation requires annealing at a high temperature of 1050 ° C. or more as a heat treatment for removing defects caused by ion implantation. If annealing is performed at that temperature, defects caused by impurities other than dopants are generated. As a result, the bulk lifetime of the silicon substrate is greatly reduced.
  • the p-type region on the back surface is formed by a diffusion method, and then boron is ion-implanted only by the ion implantation method into the p-type region where the crystal defect region is to be formed, which is opposite to the electrode, and is doped at a high concentration.
  • a selective emitter structure is formed.
  • crystal defects resulting from the ion implantation process are formed in the ion-implanted p-type region.
  • crystal defects due to the ion implantation process are not formed in the p-type region where ions are not implanted.
  • the surface density of the crystal defects in the crystal defect region 16 is set so that the surface density of the crystal defects is relatively higher than that of the region other than the crystal defect region 16 on the same surface of the silicon substrate. What is necessary is just to introduce. More specifically, for example, when the crystal defect surface density of the region other than the crystal defect region 16 on the same surface of the silicon substrate is less than 550 / cm 2 , the region other than the crystal defect region 16 on the same surface of the silicon substrate. Crystal defects may be introduced so that the surface density of crystal defects in 550 becomes 550 / cm 2 or more.
  • the surface density D of crystal defects is calculated as follows. When the cross section of the crystal defect region 16 is observed with the cross section TEM, the crystal defect is observed as a dislocation line of the crystal lattice.
  • Boron ion implantation causes oxygen stacking faults in the p-type region immediately below the electrode, but these move to the silicon substrate surface by the annealing process and disappear on the silicon substrate surface.
  • the annealing process time is adjusted so that defects remain on the surface of the semiconductor substrate.
  • the density of crystal defects can be achieved by controlling the annealing process time. By leaving crystal defects at a predetermined density, it is possible to realize a cell structure with reduced series resistance while obtaining a passivation effect.
  • an n-type dopant such as phosphorus may be introduced directly by ion implantation instead of diffusion just below the n-electrode.
  • the surface of the silicon substrate becomes amorphous and recrystallizes in an annealing process, and crystal defects are less likely to remain than in the case of boron ion implantation. Therefore, no crystal defect region is formed immediately below the n electrode. .
  • FIG. 3 is a diagram showing the relationship between the defect density in the crystal defect region and the cell characteristics.
  • the cell characteristics were measured by changing the defect density in the crystal defect region 16 of the photoelectric conversion device in FIG. Is.
  • the highest point of cell characteristics is shown as a relative value.
  • the fill factor FF, the open circuit voltage Voc, the short circuit current Isc, and the conversion efficiency ⁇ are relative values based on the characteristics of Comparative Example 1. There are almost no crystal defects directly under the p-electrode in Comparative Example 1.
  • the annealing process after ion implantation is controlled to provide crystal defects in the p-type region immediately below the electrodes. The number of defects is changed.
  • FIG. 4 is a diagram showing the relationship between the defect density and the conversion efficiency.
  • the relationship between the defect density and the conversion efficiency ⁇ in Table 1 is shown in a graph.
  • the conversion efficiency ⁇ is a relative value when the value having no crystal defects is 1.
  • a line in which the conversion efficiency ⁇ is improved by 1% or more with respect to Comparative Example 1 in which no defect is formed (1.01 times or more) is indicated by a dotted line.
  • Table 1 when the crystal defects are 550 / cm 2 or more and 100,000 / cm 2 or less, the conversion efficiency is improved by 1% or more in relative value as compared with the comparative example having no crystal defect region. I understand.
  • FIG. 5 is a cross-sectional view showing a crystal defect, and is a cross-sectional photograph taken by a transmission electron microscope (TEM) of a cross section immediately under a p-electrode. The location of crystal defects is indicated by arrows.
  • FIG. 5A is a cross-sectional photograph of Comparative Example 1, and there is no crystal defect on the silicon substrate surface.
  • FIG. 5B is one of the cross-sectional photographs of Example 1. The defect density of the crystal defects of Example 1 was found to be about 550 / cm 2 from a plurality of TEM observation images.
  • FIG. 5C is a cross-sectional photograph of Example 2, in which more crystal defects are left. The defect density of crystal defects was found to be about 1000 / cm 2 from a plurality of TEM observation images.
  • FIG. 6 is a diagram showing the relationship between the dielectric layer thickness and the characteristics of the photoelectric conversion device.
  • FIG. 6A shows the relationship between the thickness of the dielectric layer and the conversion efficiency ⁇ in Comparative Example 1 and Examples 1 to 3.
  • FIG. 6B shows the range of the dielectric layer thickness in which the conversion efficiency ⁇ is higher in Comparative Example 1 and Examples 1 to 3 than in the case where there is no dielectric layer.
  • the numerical values are relative values based on the conversion efficiencies when the dielectric layers of Comparative Example 1 and Examples 1 to 3 are not provided. Therefore, if the numerical value is 1 or more, it indicates that the conversion efficiency ⁇ is higher than the case where there is no dielectric layer in each example.
  • Comparative Example 1 having no crystal defects, the range of the film thickness in which the effect of improving the efficiency by the dielectric layer is in the range of 0.1 nm to 1.5 nm.
  • the effective film thickness range of the layer is increased.
  • the conversion efficiency is improved with respect to the case where there is no dielectric layer immediately below the electrode in the wide range of the dielectric layer thickness of 0.1 nm to 4.5 nm.
  • the series resistance Rs between the electrode and the conductivity type layer is reduced, and the range of the thickness of the dielectric layer that improves the efficiency compared to the case without the dielectric layer is increased. . That is, the range of film thickness allowed for the dielectric layer is expanded. Further, the maximum value of the conversion efficiency when the film thickness is appropriately controlled is also increased.
  • the range of the thickness of the dielectric layer that improves the conversion efficiency spreads to the larger side.
  • the series resistance Rs between the electrode and the conductive type layer is reduced by increasing the amount of introduced defects, and therefore the series resistance Rs hardly increases even if the dielectric layer is thickened. Therefore, the open circuit voltage Voc as a passivation effect This is because both improvement and reduction in series resistance Rs can be achieved.
  • an n-type semiconductor substrate is used, but a p-type semiconductor substrate may be used.
  • FIG. 7 is a schematic cross-sectional view of the photoelectric conversion device according to the second embodiment of the present invention.
  • the configuration other than the dielectric layer and the electrode is the same as that of the photoelectric conversion device shown in FIG.
  • an n-type region 21 doped with an n-type dopant such as phosphorus (P) and a p-type dopant such as boron (B) are doped on the side opposite to the light receiving surface of the n-type silicon substrate 20.
  • a p-type region 22 is formed.
  • a dielectric layer 23 made of silicon oxide or silicon nitride is formed on the n-type region 21 and the p-type region 22.
  • an n-electrode 24 is provided on the n-type region 11 via the dielectric layer 23.
  • a p-electrode 25 is provided on the p-type region 22 via the dielectric layer 23.
  • the dielectric layer 23 immediately below the n-electrode 24 and the p-electrode 25 is thinner than other portions.
  • the dielectric layer 23 is composed of two layers, a first dielectric layer 23a and a second dielectric layer 23b.
  • the dielectric layer directly below the electrode where the p-type region 22 is opposed to the p-electrode 25 is the second dielectric layer. Only the dielectric layer 23b is present and has a reduced thickness.
  • the above structure is created by the following process, for example. First, after forming the n-type region 21 and the p-type region 22 on the opposite side of the light-receiving surface of the n-type silicon substrate 20, the crystal defect region 26 is formed on the p-type region. Subsequently, a first dielectric layer 23a is formed to a thickness of about 70 to 80 nm. Next, an opening reaching the n-type region and the p-type region is formed at a position where the n-electrode 24 and the p-electrode 25 are formed. Next, the second dielectric layer 23b can be formed by forming 0.5 to 1.5 nm, and then the n electrode 24 and the p electrode 25 are formed on the second dielectric layer 23b. .
  • the n-electrode 24 and the p-electrode 25 are respectively formed in the openings of the first dielectric layer formed thick.
  • the n-type region and the p-type region can be opposed to each other at a short distance through the thinly formed second dielectric layer.
  • the series resistance between each electrode and the conductive type region can be reduced.
  • the dielectric layer on the n-type region 21 and the p-type region 22 that is not opposed to the n-electrode 24 and the p-electrode 25 can be thickened, the passivation effect is enhanced as a result, resulting in high Voc and photoelectric conversion efficiency. Can be obtained.
  • a crystal defect region 26 is formed in the vicinity of the interface with the dielectric layer 23.
  • space charges are introduced into the interface between the p-type region and the dielectric layer, so that a tunnel current easily flows through the thin dielectric layer, so that the series resistance of the dielectric layer 23 can be reduced.
  • the surface opposite to the light receiving surface of the n-type silicon substrate 20 has minute irregularities formed by introducing crystal defects.
  • the height of the unevenness is 0.5 to 5 nm.
  • the light receiving surface side of the n-type silicon substrate 20 is textured, and an antireflection film 27 made of silicon nitride, titanium oxide or the like is formed.
  • the antireflection film 27 also has a passivation function for the light receiving surface of the silicon substrate.
  • the n electrode 24 ′ or the p electrode 25 ′ is a portion other than the opening of the dielectric layer 23a, that is, a portion where the electrode is opposed to the n-type region or the p-type region. It may also be formed on other dielectric layers. In this case, a gap is provided between the p electrode 24 'and the n electrode 25' so as not to short-circuit.
  • FIG. 8 is a schematic cross-sectional view of a photoelectric conversion device according to the third embodiment of the present invention.
  • the structure other than the dielectric layer and the electrode is the same as that of the photoelectric conversion device shown in FIG.
  • an n-type region 31 doped with an n-type dopant such as phosphorus (P) and a p-type region 32 doped with a p-type dopant such as boron (B) are provided on the opposite side of the light receiving surface of the n-type silicon substrate 30. Is formed.
  • a dielectric layer 33 of silicon oxide or silicon nitride is formed on the n-type region 31 and the p-type region 32.
  • An opening is provided in the dielectric layer 33, and an n electrode 34 is provided in the opening on the n-type region 31.
  • a p-electrode 35 is provided in the opening on the p-type region 32.
  • a crystal defect region 36 is formed in the vicinity of the interface with the p-electrode 35.
  • the light receiving surface side of the n-type silicon substrate 30 is textured, and an antireflection film 37 made of silicon nitride, titanium oxide or the like is formed.
  • the antireflection film 37 also has a passivation function for the light receiving surface of the silicon substrate.
  • FIG. 9 is a schematic cross-sectional view of a photoelectric conversion device according to the fourth embodiment of the present invention.
  • the configuration other than the dielectric layer, the electrode, and the crystal defect region is the same as that of the photoelectric conversion device shown in FIG.
  • An opening 48 is provided in the dielectric layer 43, and an n electrode 44 is provided at a position corresponding to the opening 48 a on the n-type region 41.
  • a p-electrode 45 is provided at a position corresponding to the opening 48 b on the p-type region 42.
  • the opening 48a is smaller than the n-electrode 44 on the dielectric layer 43, and the n-electrode 44a, which is the lower part of the n-electrode 44, is narrowed according to the shape of the opening 48a.
  • the opening 48b is smaller than the p-electrode 45 on the dielectric layer 43, and the p-electrode 45a, which is the lower part of the p-electrode 45, is thinner according to the shape of the opening 48b.
  • the crystal defect region 46 is in a portion where the p-type region is opposed to the opening, and the p-type region 42 is opposed to the p-electrode 45.
  • the light receiving surface side of the n-type silicon substrate 40 is textured, and an antireflection film 47 made of silicon nitride, titanium oxide or the like is formed.
  • the antireflection film 47 also has a passivation function for the light receiving surface of the silicon substrate.
  • FIG. 10 is a diagram comparing the conversion efficiencies of photoelectric conversion devices having different opening areas.
  • the photoelectric conversion device provided with the crystal defect region 46 has a higher conversion efficiency ⁇ than the conventional photoelectric conversion device without the crystal defect region. Furthermore, it can be seen that a photoelectric conversion device having an opening having a size of about 5 to 10% of the electrode area on the dielectric layer with a smaller opening has a higher conversion efficiency ⁇ .
  • the fill factor FF, the open circuit voltage Voc, and the conversion efficiency ⁇ are relative values when the conventional structure is 1.
  • the opening 48 can be made small. Since the proportion of the dielectric layer 43 is increased by reducing the opening 48, the passivation effect is improved, so that Voc, FF, and conversion efficiency can be improved.

Abstract

 半導体基板と電極の間の直列抵抗を減少させて、変換効率の良い光電変換装置を提供する。半導体基板と半導体基板に形成した第1導電型領域と、第1導電型領域と電気的に接続する電極とを有し、第1導電型領域は電極と相対する電極領域を有する光電変換装置であって、電極領域に相対する半導体基板に結晶欠陥を有することを特徴とする。

Description

光電変換装置
 本発明は光電変換装置に関するものである。
 太陽光エネルギーを直接電気エネルギーに変換する光電変換装置に対しては、近年、特に地球環境問題の観点から、次世代のエネルギー源としての期待が急激に高まっている。光電変換装置用の材料としては化合物半導体や有機材料などが利用されてきたが、現在はシリコン結晶が主流となっている。現在最も多く生産、販売されている光電変換装置では、太陽光を受ける受光面にはn電極が、受光面の反対面である裏面にはp電極が設けられている。受光面側に設けられたn電極は、光電変換により得られた電流の取り出しのために必要不可欠であるが、n電極が形成された部位の基板には該n電極による遮蔽によって太陽光が入射しないため、電極面積が大きいと変換効率が低下する。受光面側の電極によるこのような変換効率の損失をシャドウロスという。
 受光面に電極がない裏面電極型光電変換装置においては、電極によるシャドウロスがなく、入射する太陽光をほぼ100%光電変換装置に取り込むことができるため、原理的に高変換効率が実現可能である。このような裏面電極型光電変換装置の例として、特開2007-19259号公報が挙げられる。
 図11は、従来の裏面電極型の光電変換装置の構造を示す概略断面図である。半導体基板50の裏面に高濃度p型ドーピング領域52と高濃度n型ドーピング領域53が交互に設けられている。半導体基板50の表面には、たとえばシリコン酸化膜や、シリコン窒化膜などからなるパッシベーション膜51が形成されており、これによって表面再結合が抑制されている。裏面に設けられたp領域のコンタクトホール56およびn領域のコンタクトホール57をそれぞれ介し、高濃度p型ドーピング領域52にはp電極54が、高濃度n型ドーピング領域53にはn電極55がそれぞれ接続され、光電変換により得られた電流が取り出される。受光面のパッシベーション膜51は反射防止膜としての働きも兼ねている。図11からわかるように、p型ドーピング領域、n型ドーピング領域、p電極、n電極は全て裏面に形成されており、受光面には光をさえぎるものがなく、太陽光をほぼ100%取り込むことができる。
 上述の従来例においては、半導体基板とp電極とn電極が直接接触していたが、光電変換装置のさらなる高効率化の方法として、金属電極部と半導体基板の間にさらにパッシベーション膜を挿入したいわゆるコンタクトパッシベーション構造とし(金属電極/パッシベーション膜/半導体層)、半導体基板上でのキャリアの再結合を極力低減させる事で開放電圧Vocの改善および効率の改善が得られている。この場合、パッシベーション膜の膜厚は、十分なトンネル電流を流すために薄くする必要がある。参考文献1(Dimitri Zielke  Physica statuts solidi Rapid Research letters Volume 5 Issue 8 page 298-300)によればドーピング領域の上のパッシベーション膜の膜厚が2nmより大きくなると直列抵抗が大きくなる。
特開2007-19259号公報
Dimitri Zielke Physica statuts solidi Rapid Research letters Volume 5 Issue 8 page 298-300
 しかしながら、上述の光電変換装置のコンタクトパッシベーション構造においては、パッシベーション層膜厚を厚くすると直列抵抗が増加し、パッシベーション層膜厚を薄くするとキャリア再結合が増加するという、相反する課題を解決することが困難であった。また、半導体基板とp電極とn電極が直接接触している光電変換装置においても、コンタクトホール部で直列抵抗が存在し、FFの低下が存在していた。このように、従来の光電変換装置では、半導体基板と電極の間の直列抵抗が変換効率低下の原因となっていた。
 本発明は、上記に鑑みなされたものであり、半導体基板と電極の間の直列抵抗を減少させて、変換効率の高い光電変換装置を得ることを目的とする。
 本発明の光電変換装置は、半導体基板と半導体基板に形成した第1導電型領域と、第1導電型領域と電気的に接続する電極とを有し、第1導電型領域は電極と相対する電極領域を有し、電極領域に結晶欠陥を有するものである。
 また、本発明の光電変換装置は、半導体基板上に形成した誘電体層を有し、第1導電型領域は、誘電体層上に設けられてなるものである。
 また、本発明の光電変換装置は、第1導電型領域は、電極領域以外の非電極領域を有し、前記電極領域の第1導電型不純物濃度は、非電極領域の第1導電型不純物濃度よりも高いという特徴を有するものである。
 また、本発明の光電変換装置は、第1導電型領域は、電極領域以外の非電極領域を有し、電極領域における結晶欠陥の面密度は、非電極領域における結晶欠陥の面密度よりも高いという特徴を有するものである。
 また、本発明の光電変換装置は、誘電体層は、第1の誘電体層と、前記第1の誘電体層の上に形成された第2の誘電体層からなり、第1導電型領域と前記電極の間に、第1の誘電体層または第2の誘電体層のいずれかが介挿されたものである。
 また、本発明の光電変換装置は、結晶欠陥の面密度は550個/cm以上100,000個/cm以下である特徴を有するものである。
 また、本発明の光電変換装置は、誘電体層の厚さは、0.1nm以上4.5nm以下であるという特徴を有するものである。
 本発明によれば、半導体基板と電極の間の直列抵抗成分を小さくすることができるので、光電変換装置の変換効率を向上させることができる。
本発明の光電変換装置の断面模式図である。 本発明の光電変換装置の部分拡大図である。 結晶欠陥領域の欠陥の密度と、セルの特性との関係を示す図である。 欠陥密度と変換効率の関係を示すグラフである。 結晶欠陥を示す断面図である。 誘電体層厚と光電変換装置の特性の関係を示す図である。 本発明の第2の実施の形態である光電変換装置の断面模式図 本発明の第3の実施の形態である光電変換装置の断面模式図である。 本発明の第4の実施の形態である光電変換装置の断面模式図である。 開口部の違う光電変換装置の変換効率を比較した図である。 従来の光電変換装置の構造を示す概略断面図である。
 以下、図面を参照しつつ、本発明の実施の形態に係る説明する。以下の説明では同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについて詳細な説明は繰り返さない。
 (実施の形態1)
 図1は本発明の光電変換装置の断面模式図である。図1において、n型シリコン基板10の受光面と反対側の面に、リン(P)などの第1の導電型であるn型ドーパントをドープしたn型領域11と、ホウ素(B)などの第2の導電型であるp型ドーパントをドープしたp型領域12が形成されている。n型領域11およびp型領域12は、n型シリコン基板10の受光面と反対側の面に、ドーパントを熱拡散したり、ドーパントイオンをイオン注入することにより形成することができる。
 n型領域11およびp型領域12上には誘電体層13が形成されている。誘電体層としては、酸化シリコン、窒化シリコン、酸窒化シリコン、酸化アルミニウムなどが用いられ、プラズマCVD法やALD法(Atomic Layer Deposition)などを用いて形成することができる。ここでは、誘電体層として酸化シリコンを使用した。
 誘電体層13を介してn型領域11上にn電極14が設けられている。n電極14がn型領域に相対している部分において、n型領域11は、n電極14と接していないが、誘電体層13が薄いために、トンネル効果によって、n型領域11とn電極14とは電気的に接続している。
 また、誘電体層13を介してp型領域12上にp電極15が設けられている。p型領域12がp電極15に相対している部分において、p型領域12はp電極15と接していないが、誘電体層13が薄いために、トンネル効果によって、p型領域12とp電極15とは電気的に接続している。
 さらに、p型領域12がp電極15に相対している部分において、誘電体層13との界面付近に結晶欠陥領域16が形成されている。
 p型領域12がp電極15に相対する部分に、結晶欠陥を含む結晶欠陥領域16を形成することにより、p型領域と誘電体層の界面に空間電荷が導入されることで、薄い誘電体層を介したトンネル電流が流れやすくなるため、誘電体層13の直列抵抗を低減することができる。なお、結晶欠陥領域16は、p型領域12がp電極15に相対する部分と完全に一致している必要はない。
 n型シリコン基板10の受光面側は、テクスチャ加工がされてなり、窒化シリコン、酸化チタンなどからなる反射防止膜17が形成されている。反射防止膜17はn型シリコン基板10の受光面のパッシベーション機能も有する。
 図2は、本発明の光電変換装置を電極側から見た部分拡大図であり、光電変換装置1の電極形成面の一部の拡大図である。n型領域11は、誘電体層13の下方であって、n型シリコン基板10上の円形の領域で、その円形の内部はn型シリコン基板10よりもn型ドーパントの濃度が高い領域である。n電極14は、誘電体層13の上方にあって、円形のn型領域11のほぼ中央に位置している。
 p型領域12は、n型シリコン基板10上に設けられ、n型領域11を取り囲むように形成されている。円形のp電極15は、誘電体層13上にあって、p型領域12上に設けられている。p電極15直下のp型領域12に、結晶欠陥領域16が設けられている。p電極15と結晶欠陥領域16は、シリコン基板の法線方向からみたときに丁度重なり合うように形成してもよいが、図2に記載のように、結晶欠陥領域16をp電極15より小さく形成することで、p電極15下のn型シリコン基板のパッシベーション性をより向上することができるので好ましい。
 n型領域11およびp型領域12はn型シリコン基板10の受光面とは反対側の面に、それぞれ、リンなどのn型のドーパントとホウ素などのp型のドーパントを拡散させることで形成される。さらに、結晶欠陥領域16においては、ホウ素などのp型のドーパントをイオン注入することにより、第1導電型不純物濃度(ホウ素濃度)をより高めるとともに、イオン注入領域のシリコン基板上のp型領域表面には結晶欠陥が導入される。結晶欠陥領域16の不純物濃度(ホウ素濃度)5×1018~2×1020atoms/cm程度である。結晶欠陥領域16以外のp型領域12の不純物濃度(ホウ素濃度)は1×1017~1×1019atoms/cm程度である。すなわち、結晶欠陥領域16のホウ素濃度は、結晶欠陥領域以外のホウ素濃度に対して高くなる。
 その結果、結晶欠陥が含まれる第1導電型の領域の第1導電型不純物濃度は、結晶欠陥が含まれる第1導電型の領域以外の領域である第2領域の第1導電型不純物濃度よりも高くなる。
 また、第1導電型の領域における結晶欠陥の面密度は、第2領域の結晶欠陥の面密度よりも高くなる。
 n型領域およびp型領域のうち、電極直下でない領域では表面不純物濃度を比較的低く抑えてパッシベーション効果を高める一方で、電極直下の領域は不純物を高濃度にドープして抵抗ロスを低減する構造にすることで、高出力を得ることができる。
 高出力化のためにn型のシリコン基板を用いる場合には、p型領域を形成するためにイオン注入する元素はホウ素等のp型ドーパントを選択する。通常、ホウ素のイオン注入ではイオン注入に起因する欠陥を取り除くための熱処理として1050℃以上の高温のアニールが必要になるが、その温度でアニールを行うと、ドーパント以外の不純物起因の欠陥の生成などにより、シリコン基板のバルクライフタイムが大きく低下してしまう。
 そこで、裏面のp型領域は拡散法で形成し、続いて、電極に相対する部分の、結晶欠陥領域を作りたいp型領域だけにホウ素をイオン注入法でイオン注入して、高濃度にドーピングすることにより、セレクティブ・エミッタ構造を形成する。その結果、イオン注入されたp型領域には、イオン注入工程に起因する結晶欠陥が形成される。しかし、イオン注入されていないp型領域ではイオン注入工程に起因する結晶欠陥が形成されない。この状態でアニール温度を900~950℃程度に低く抑えてアニールを行うと、シリコン基板全体のバルクライフタイムを損なうことはない。また、p電極直下のp型領域にのみイオン注入により高濃度ドープするため、その部分だけ結晶欠陥が残る。このようにして、結晶欠陥領域が形成される。
 また、前記結晶欠陥領域16内の結晶欠陥の面密度は、シリコン基板の同一面の結晶欠陥領域16以外の領域と比較して、相対的に結晶欠陥の面密度が大きくなるように結晶欠陥を導入すればよい。より詳しくは、例えば、シリコン基板の同一面の結晶欠陥領域16以外の領域の結晶欠陥面密度が550個/cm未満である場合には、シリコン基板の同一面の結晶欠陥領域16以外の領域における結晶欠陥の面密度は550個/cm以上となるように、結晶欠陥を導入すればよい。すなわち、結晶欠陥領域16の周辺領域よりも結晶欠陥の面密度を高くすることで、結晶欠陥領域と誘電体層の界面に空間電荷が導入されることで光電変換装置の直列抵抗Rsを低減し、FFおよび変換効率の向上を実現することができる。
また、結晶欠陥の面密度Dは、下記のようにして算出する。断面TEMで結晶欠陥領域16の断面を観察した際に、結晶欠陥は結晶格子の転位線として観測される。ある断面において観測された結晶欠陥数がN[個]であり、結晶欠陥領域16の観察した幅をL[cm]である場合、
D=(N/L)[個/cm
として算出することができる。なぜならば、結晶欠陥の形成に関して異方性が存在しないため、直交する2つの断面でTEM観察をした場合に、どの方向においても結晶欠陥線密度はN/Lになると考えられる。したがって、面密度は、結晶欠陥の線密度N/Lの2乗として導くことができる。このようにして、断面TEM画像から結晶欠陥の面密度を算出する。また、ウェハ表面を上方からTEMで観察して結晶欠陥が確認できる場合は、ウェハ表面の観察画像から結晶欠陥の面密度を直接算出してもよい。
 ホウ素のイオン注入によって、電極直下のp型領域に酸素積層欠陥が生じるが、それらは、アニール工程によりシリコン基板表面に移動し、シリコン基板表面で消失していく。このとき、アニール工程の時間を調整して半導体基板表面に欠陥が残るようにする。結晶欠陥の密度はアニール工程の時間をコントロールすることで実現できる。結晶欠陥を所定の密度で残すことで、パッシベーション効果を得つつ直列抵抗を低減したセル構造が実現できる。
 尚、n電極直下もリンなどのn型ドーパントを拡散ではなくイオン注入により導入してもよい。その場合、シリコン基板の表面がアモルファス化し、アニール工程で再結晶するといった経過をたどり、ホウ素のイオン注入の場合と比較して結晶欠陥は残りにくいので、n電極直下には結晶欠陥領域は形成されない。
 図3は、結晶欠陥領域の欠陥の密度と、セルの特性との関係を示す図であり、図1の光電変換装置の結晶欠陥領域16の欠陥密度を変化させて、セルの特性を測定したものである。各実施例および比較例において、セル特性の最高到達点を相対値で示している。曲線因子FF、開放電圧Voc、短絡電流Isc、変換効率ηは、比較例1の特性を基準とした相対値である。比較例1のp電極直下には結晶欠陥はほとんどない。一方、実施例1乃至4、および、比較例2は、イオン注入後のアニール工程をコントロールして、電極直下のp型領域に結晶欠陥を設けたものであり、アニール条件によって結晶欠陥領域における結晶欠陥の個数を変化させている。
 実施例1乃至4は、結晶欠陥のない比較例1に比べて変換効率ηが1%以上向上している。一方、比較例2は結晶欠陥が多すぎてキャリアの再結合が増大して変換効率は向上しなかった。
 図4は、欠陥密度と変換効率の関係を示す図であり、表1における欠陥密度と変換効率ηとの関係をグラフに示したものである。変換効率ηは、結晶欠陥がないものを1としたときの相対値である。欠陥を形成しない比較例1に対して1%以上変換効率ηが向上する(1.01倍以上となる)ラインを点線で示した。表1によれば、前記結晶欠陥は550個/cm以上100,000個 /cm以下において、結晶欠陥領域がない比較例に比べて変換効率が相対値で1%以上向上していることがわかる。
 図5は、結晶欠陥を示す断面図であり、p電極直下の断面の透過型電子顕微鏡(TEM)による断面写真である。矢印で結晶欠陥の箇所を示す。図5(a)は、比較例1の断面写真であり、シリコン基板表面に結晶欠陥がない。図5(b)は、実施例1の断面写真のうちの一つである。実施例1の結晶欠陥の欠陥密度は、複数のTEM観察画像より約550個/cmであることがわかった。図5(c)は、実施例2の断面写真であり、結晶欠陥をさらに多く残した例である。結晶欠陥の欠陥密度は、複数のTEM観察画像より約1000個/cmであることがわかった。
 図6は、誘電体層厚と光電変換装置の特性の関係を示す図である。図6(a)は、比較例1、および実施例1~3において、誘電体層の厚さと変換効率ηとの関係を示したものである。図6(b)は、比較例1、および実施例1~3のそれぞれにおいて、誘電体層がないときに比べて、変換効率ηが高くなる誘電体層厚の範囲を示したものである。数値は、比較例1、および実施例1~3の誘電体層がない場合の変換効率をそれぞれ基準とした相対値である。したがって、数値が1以上であれば、各例の誘電体層がない場合に比べて変換効率ηが高いことを示している。
 結晶欠陥がない比較例1は、誘電体層による効率向上の効果がある膜厚の範囲が0.1nmから1.5nmの範囲であるが、結晶欠陥領域を設けた実施例は全て、誘電体層の効果のある膜厚の範囲が大きくなっている。特に、実施例3の場合、誘電体層の厚みが0.1nm以上4.5nm以下の広い範囲において、電極直下に誘電体層がないものに対して変換効率が向上することがわかる。
 結晶欠陥領域を形成することで、電極と導電型層の間の直列抵抗Rsが低減され、誘電体層がない場合に対して効率の向上する誘電体層の厚さの範囲が大きくなっている。すなわち、誘電体層として許容される膜厚の範囲が広がる。また、膜厚を適切にコントロールしたときの、変換効率の最大値も大きくなっている。
 また、電極層下の導電型層に導入した欠陥密度が大きくなるほど、変換効率が向上する誘電体層の膜厚の範囲が大きい側に広がる。これは、欠陥導入量の増加により電極と導電型層の間の直列抵抗Rsが低減されるため、誘電体層を厚くしても直列抵抗Rsが増加しにくいので、パッシベーション効果としての開放電圧Voc向上と直列抵抗Rs低減を両立できるからである。
 比較例1のように、変換効率が向上する誘電体層の膜厚の範囲が狭い場合は、電極直下の誘電体層の厚さがばらつくと、変換効率の低下およびばらつき増加の原因になるが、変換効率が向上する誘電体層の膜厚の範囲が広い場合には、誘電体層の厚さのばらつきが変換効率に及ぼす影響を小さくすることができる。結果として、生産条件のばらつきに対して安定して高い変換効率が得られるので、生産における平均変換効率の向上および生産歩留の向上を実現することができる。
 上記の実施例においては、n型半導体基板を使用したがp型半導体基板を用いても良い。
 (実施の形態2)
 図7は、本発明の第2の実施の形態である光電変換装置の断面模式図である。誘電体層と電極以外の構成は図1に示す光電変換装置と同じである。図7(a)において、n型シリコン基板20の受光面と反対側に、リン(P)などのn型ドーパントをドープしたn型領域21と、ホウ素(B)などのp型ドーパントをドープしたp型領域22が形成されている。n型領域21およびp型領域22上には酸化シリコンや窒化シリコンの誘電体層23が形成されている。
 また、誘電体層23を介してn型領域11上にn電極24が設けられている。また、誘電体層23を介してp型領域22上にp電極25が設けられている。n電極24およびp電極25の直下の誘電体層23は、厚さが他の部分よりも薄くなっている。誘電体層23は第1の誘電体層23aと第2の誘電体層23bの2層からなるが、p型領域22がp電極25に相対している電極直下の誘電体層は第2の誘電体層23bだけが存在し、厚さが薄くなっている。
 上記のような構造は、例えば以下に示す工程で作成される。まず、n型シリコン基板20の受光面と反対側に、n型領域21とp型領域22を形成後、p型領域上に結晶欠陥領域26を形成する。続いて、第1の誘電体層23aを70~80nm程度形成する。次に、n電極24とp電極25を形成する位置に、n型領域とp型領域に達する開口部を形成する。次に、第2の誘電体層23bを0.5~1.5nm形成し、次に、n電極24とp電極25を第2の誘電体層23b上に形成することにより作成することができる。
 このように、第1の誘電体層23aと第2の誘電体層23bとを形成することにより、n電極24、p電極25がそれぞれ、厚く形成された第1の誘電体層の開口部において、薄く形成された第2の誘電体層を介してn型領域およびp型領域と近距離で相対することができる。これにより、各電極と導電型領域間の直列抵抗を軽減することができる。さらに、n電極24、p電極25に相対していない、n型領域21およびp型領域22上の誘電体層を厚くすることができるので、結果としてパッシベーション効果を高めて高いVocおよび光電変換効率を得ることができる。
 p電極25直下のp型領域22において、誘電体層23との界面付近に結晶欠陥領域26が形成されている。これにより、p型領域と誘電体層の界面に空間電荷が導入されることで、薄い誘電体層を介したトンネル電流が流れやすくなるため、誘電体層23の直列抵抗を低減することができる。
 また、n型シリコン基板20の受光面と反対側の面は、結晶欠陥が導入されることにより、微小な凹凸が形成されている。凹凸の高さは、0.5~5nmである。このように、微小な凹凸を形成することにより、第1の誘電体層23aの開口部において、第2の誘電体層23bを介したn電極24とn型領域11の電気的な導通がとりやすくなるので、直列抵抗を低減し、FFおよび変換効率を向上することができる。
 n型シリコン基板20の受光面側は、テクスチャ加工がされてなり、窒化シリコン、酸化チタンなどで形成された、反射防止膜27が形成されている。反射防止膜27はシリコン基板受光面のパッシベーション機能も有する。
 また、図7(b)に示すように、n電極24’またはp電極25’が誘電体層23aの開口部以外の部分、すなわち、電極がn型領域またはp型領域に相対している部分以外の誘電体層上にも形成されていてもよい。この場合、p電極24’とn電極25’の間は、短絡しない程度の間隙が設けられている。
 (実施の形態3)
 図8は、本発明の第3の実施の形態である光電変換装置の断面模式図である。誘電体層と電極以外の構成は、図1に示す光電変換装置と同じである。
 図8においてn型シリコン基板30の受光面と反対側に、リン(P)などのn型ドーパントをドープしたn型領域31と、ホウ素(B)などのp型ドーパントをドープしたp型領域32が形成されている。n型領域31およびp型領域32上には酸化シリコンや窒化シリコンの誘電体層33が形成されている。誘電体層33には開口部が設けられており、n型領域31上の開口部にn電極34が設けられている。p型領域32上の開口部にp電極35が設けられている。実施の形態1および2との差異は、各導電型領域と電極が誘電体層を介さず直接接触する領域があることである。
 p型領域32がp電極35に相対している部分において、p電極35との界面付近に結晶欠陥領域36が形成されている。結晶欠陥領域36を形成することにより、欠陥を介した電流が流れやすくなるためp型領域32とp電極35の界面の直列抵抗を小さくすることができる。
 尚、結晶欠陥領域が形成されて直列抵抗が低減されたとしても、受光面と反対側の面に誘電体層のない構造では、結晶欠陥がキャリア再結合を助長する効果が大きくなるために、却って、変換効率が低下する。よって、受光面と反対側の面において、電極と各導電型領域が直接接触する領域以外の部分は、適切な厚さの誘電体層で略覆われている必要がある。
 n型シリコン基板30の受光面側は、テクスチャ加工がされてなり、窒化シリコン、酸化チタンなどで形成された、反射防止膜37が形成されている。反射防止膜37はシリコン基板受光面のパッシベーション機能も有する。
 (実施の形態4)
 図9は、本発明の第4の実施の形態である光電変換装置の断面模式図である。誘電体層と電極および結晶欠陥領域以外の構成は、図1に示す光電変換装置と同じである。
 図9において、n型シリコン基板40の受光面と反対側に、リン(P)などのn型ドーパントをドープしたn型領域41と、ホウ素(B)などのp型ドーパントをドープしたp型領域42が形成されている。n型領域41およびp型領域42上には酸化シリコンや窒化シリコンの誘電体層43が形成されている。誘電体層43には開口部48が設けられており、n型領域41上の開口部48aに対応する位置にn電極44が設けられている。また、p型領域42上の開口部48bに対応する位置であるp電極45が設けられている。
 開口部48aは、誘電体層43上にあるn電極44よりも小さくなっており、n電極44の下部であるn電極44aは、開口部48aの形状に従って細くなっている。また、開口部48bは、誘電体層43上にあるp電極45よりも小さくなっており、p電極45の下部であるp電極45aは、開口部48bの形状に従って細くなっている。結晶欠陥領域46は、p型領域が開口部に相対している部分である、p型領域42がp電極45に相対している部分にある。
 n型シリコン基板40の受光面側は、テクスチャ加工がされてなり、窒化シリコン、酸化チタンなどで形成された、反射防止膜47が形成されている。反射防止膜47はシリコン基板受光面のパッシベーション機能も有する。
 図10は、開口部の面積の異なる光電変換装置の変換効率を比較した図である。結晶欠陥領域46を設けた光電変換装置は、結晶欠陥領域のない従来の光電変換装置に比べて変換効率ηが大きくなっている。さらに、開口部を小さくして誘電体層上の電極面積の5~10%程度の面積の開口部をもった光電変換装置は、さらに変換効率ηが高くなることがわかる。同図において、曲線因子FF、開放電圧Voc、変換効率ηは、従来の構造を1としたときの相対値である。
 結晶欠陥領域46によって、直列抵抗が減少するので、開口部48を小さくすることができる。開口部48を小さくすることにより、誘電体層43の占める割合が増えるので、パッシベーション効果が向上するためVoc、FFおよび変換効率を向上することができる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10、20、30、40…n型シリコン基板
11、21、31、41…n型領域
12、22、32、42…p型領域
13、23、33、43…誘電体層
14、24、24’、34、44、44a…n電極
15、25、25’、35、45,45a…p電極
16、26、36、46…結晶欠陥領域
17、27、37、47…反射防止膜
23a…第1の誘電体層
23b…第2の誘電体層
48、48a、48b…開口部

Claims (7)

  1.  半導体基板と
     前記半導体基板に形成した第1導電型領域と、
     前記第1導電型領域と電気的に接続する電極とを有し、
     前記第1導電型領域は電極と相対する電極領域を有し、
     前記電極領域に結晶欠陥を有する光電変換装置。
  2.  前記半導体基板上に形成した誘電体層を有し、
     前記第1導電型領域は、前記誘電体層上に設けられている、
     請求項1記載の光電変換装置。
  3.  前記第1導電型領域は、
     前記電極領域以外の非電極領域を有し、
     前記電極領域の第1導電型不純物濃度は、前記非電極領域の第1導電型不純物濃度よりも高い請求項1乃至2記載記載の光電変換装置。
  4.  前記第1導電型領域は、
     前記電極領域以外の非電極領域を有し、
     前記電極領域における結晶欠陥の面密度は、前記非電極領域における結晶欠陥の面密度よりも高い請求項1乃至3記載の光電変換装置。
  5.  前記誘電体層は、第1の誘電体層と、前記第1の誘電体層の上に形成された第2の誘電体層からなり、
     前記第1導電型領域と前記電極の間に、前記第1の誘電体層または前記第2の誘電体層のいずれかが介挿された請求項1から4のいずれかに記載の光電変換装置。
  6.  前記結晶欠陥の面密度は550個/cm以上100,000個/cm以下である請求項1から5のいずれかに記載の光電変換装置。
  7.  前記誘電体層の厚さは、0.1nm以上4.5nm以下である請求項1から6のいずれかに記載の光電変換装置。
PCT/JP2014/080839 2014-01-30 2014-11-21 光電変換装置 WO2015114921A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480074515.4A CN105940499A (zh) 2014-01-30 2014-11-21 光电转换装置
US15/115,011 US20160343885A1 (en) 2014-01-30 2014-11-21 Photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014015309A JP2015142079A (ja) 2014-01-30 2014-01-30 光電変換装置
JP2014-015309 2014-01-30

Publications (1)

Publication Number Publication Date
WO2015114921A1 true WO2015114921A1 (ja) 2015-08-06

Family

ID=53756515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080839 WO2015114921A1 (ja) 2014-01-30 2014-11-21 光電変換装置

Country Status (4)

Country Link
US (1) US20160343885A1 (ja)
JP (1) JP2015142079A (ja)
CN (1) CN105940499A (ja)
WO (1) WO2015114921A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037899A (ja) * 2015-08-07 2017-02-16 シャープ株式会社 太陽電池セル
JP2019007910A (ja) * 2017-06-28 2019-01-17 株式会社東芝 結晶解析装置及び結晶解析方法
CN113284967B (zh) * 2021-07-22 2021-10-08 浙江爱旭太阳能科技有限公司 一种太阳能电池及其掺杂区结构、电池组件及光伏系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117201A (ja) * 1997-04-28 1999-01-22 Sharp Corp 太陽電池セルおよびその製造方法
JP2010251343A (ja) * 2009-04-10 2010-11-04 Mitsubishi Electric Corp 太陽電池およびその製造方法
DE102010020175A1 (de) * 2010-05-11 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Halbleiterbauteil mit defektreicher Schicht zur optimalen Kontaktierung von Emittern sowie Verfahren zu dessen Herstellung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194426A (ja) * 1988-01-29 1989-08-04 Sharp Corp 半導体装置
JP2002164555A (ja) * 2000-11-27 2002-06-07 Kyocera Corp 太陽電池およびその形成方法
JP2004193350A (ja) * 2002-12-11 2004-07-08 Sharp Corp 太陽電池セルおよびその製造方法
JP2008177296A (ja) * 2007-01-17 2008-07-31 Toyota Central R&D Labs Inc 半導体装置、pnダイオード、igbt、及びそれらの製造方法
KR101145928B1 (ko) * 2009-03-11 2012-05-15 엘지전자 주식회사 태양 전지 및 태양 전지의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117201A (ja) * 1997-04-28 1999-01-22 Sharp Corp 太陽電池セルおよびその製造方法
JP2010251343A (ja) * 2009-04-10 2010-11-04 Mitsubishi Electric Corp 太陽電池およびその製造方法
DE102010020175A1 (de) * 2010-05-11 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Halbleiterbauteil mit defektreicher Schicht zur optimalen Kontaktierung von Emittern sowie Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
CN105940499A (zh) 2016-09-14
US20160343885A1 (en) 2016-11-24
JP2015142079A (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
US10304986B2 (en) Contact for silicon heterojunction solar cells
TWI474494B (zh) 多晶矽發射極太陽能電池所用的圖案化摻雜
US9406821B2 (en) Method of fabricating a back-contact solar cell and device thereof
EP2619806B1 (en) Method of fabricating an emitter region of a solar cell
US9018516B2 (en) Solar cell with silicon oxynitride dielectric layer
JP2009164544A (ja) 太陽電池のパッシベーション層構造およびその製造方法
KR100850641B1 (ko) 고효율 결정질 실리콘 태양전지 및 그 제조방법
KR20170048515A (ko) 개선된 전면 접점 이종접합 공정
TWI667798B (zh) 具無溝槽射極區之太陽能電池
JP2017022379A (ja) 太陽電池及びその製造方法
WO2015114922A1 (ja) 光電変換装置および光電変換装置の製造方法
KR102320551B1 (ko) 태양 전지의 제조 방법
KR20180045587A (ko) 태양전지 및 이의 제조방법
WO2015114921A1 (ja) 光電変換装置
KR101886818B1 (ko) 이종 접합 실리콘 태양 전지의 제조 방법
JP5745653B2 (ja) 光起電力装置およびその製造方法、光起電力モジュール
US20170047459A1 (en) Solar cell and method for manufacturing the same
US10141467B2 (en) Solar cell and method for manufacturing the same
TW201611309A (zh) 太陽能電池的光接收表面的鈍化
WO2018109878A1 (ja) 太陽電池および太陽電池の製造方法
KR102487510B1 (ko) 간소화 침착 공정으로 제조한 태양 전지
TWI667797B (zh) 太陽能電池
TW201445755A (zh) 太陽能電池單元的製造方法
KR101344230B1 (ko) 이종접합 태양전지 및 그의 제조 방법
KR20160142169A (ko) 태양 전지의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15115011

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881346

Country of ref document: EP

Kind code of ref document: A1