WO2015114896A1 - 成膜装置およびそれに用いる基板ホルダー - Google Patents

成膜装置およびそれに用いる基板ホルダー Download PDF

Info

Publication number
WO2015114896A1
WO2015114896A1 PCT/JP2014/078600 JP2014078600W WO2015114896A1 WO 2015114896 A1 WO2015114896 A1 WO 2015114896A1 JP 2014078600 W JP2014078600 W JP 2014078600W WO 2015114896 A1 WO2015114896 A1 WO 2015114896A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate holder
substrate
film
processing container
forming apparatus
Prior art date
Application number
PCT/JP2014/078600
Other languages
English (en)
French (fr)
Inventor
英介 森崎
弥 町山
洋克 小林
正幸 原島
志生 佐野
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2015114896A1 publication Critical patent/WO2015114896A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a film forming apparatus for forming a compound semiconductor film such as a SiC film on a substrate by induction heating, and a substrate holder used therefor.
  • Compound semiconductors such as SiC, GaN, GaAs, and AlN are expected to realize energy saving and downsizing rather than Si, and are attracting attention as next-generation semiconductors.
  • a method of forming a compound semiconductor film on a substrate and epitaxially growing it is frequently used (for example, Patent Document 1).
  • a plurality of substrates are arranged on a substrate holder and are collectively applied to the plurality of substrates from the viewpoint of improving throughput.
  • a semi-batch method for forming a film is adopted, and an induction heating method is adopted because of the necessity of high-temperature heating (for example, Patent Document 2).
  • the substrate holder is formed in a disc shape, and a plurality of substrates are arranged along the circumferential direction thereof.
  • the substrate is usually positioned by providing a plurality of recesses in the substrate holder and placing the substrate therein.
  • an object of the present invention is to provide a film forming apparatus capable of suppressing scattering of by-product particles from the substrate holder to the substrate, and a substrate holder used therefor.
  • a film forming apparatus for forming a compound semiconductor film on a substrate, a processing container in which a film forming process is performed, and a conductive material that holds a plurality of substrates in the processing container.
  • a substrate holder made of a conductive material, an induction heating coil for induction heating the substrate holder by forming an induction magnetic field in the processing container, a high frequency power source for applying high frequency power to the induction heating coil, and the processing container
  • a gas supply means for supplying a processing gas for film formation of the compound semiconductor and an exhaust means for exhausting the inside of the processing container, wherein the substrate holder accommodates a substrate arranged in a circumferential direction.
  • a film forming apparatus having a plurality of concave portions for positioning, and a connecting concave portion is formed between adjacent ones of the concave portions.
  • a plurality of substrates are held in a processing container and induction heated.
  • a substrate holder for heating the substrate held by the substrate having a plurality of recesses for accommodating and positioning the substrate arranged between the circumferential directions, and between adjacent ones of the recesses Is provided with a substrate holder in which a connection recess for connecting them is formed.
  • a SiC film is suitable as the compound semiconductor film.
  • a substrate made of graphite or SiC, or a substrate formed by coating a SiC film on a graphite body can be suitably used as the substrate holder.
  • the coating of the SiC film can be formed by placing the main body made of graphite in the processing container and performing induction heating while supplying the processing gas into the processing container.
  • the recess and the connection recess continuously form an annular recess. It is preferable that the outline of the connecting recess is curved.
  • a plurality of recesses for accommodating and positioning the substrate in the substrate holder are provided, and the connection recesses for connecting these are provided between the adjacent ones of the recesses, so that the induced current is large. There is no wall between the flowing recesses, and the amount of by-product particles scattered can be reduced. Therefore, the number of by-product particles adhering to the substrate can be reduced.
  • FIG. 1 It is sectional drawing which shows the film-forming apparatus which concerns on one Embodiment of this invention. It is a top view which shows an example of the substrate holder used for the film-forming apparatus of FIG. It is a perspective view which shows a part of board
  • FIG. 1 is a cross-sectional view illustrating a film forming apparatus according to an embodiment of the present invention
  • FIG. 2 is a plan view illustrating an example of a substrate holder used in the film forming apparatus of FIG. 1, and
  • FIG. It is a perspective view which shows a part.
  • a semi-batch type film forming apparatus that forms a SiC film as a compound semiconductor film by epitaxially growing SiC on a substrate (wafer) made of SiC will be described as an example.
  • the film forming apparatus 100 has a processing container 10 having a substantially rectangular parallelepiped shape in which a decompressed space is formed and a film forming process is performed on the substrate.
  • the processing container 10 is made of a dielectric such as quartz.
  • the processing vessel 10 is connected to an exhaust line 12, and the exhaust line 12 is provided with a vacuum pump 14 as an exhaust means and a conductance variable valve 13 as a pressure adjusting means.
  • the inside of the processing container 10 is evacuated by the vacuum pump 14 through the exhaust line 12, and the inside of the processing container 10 is adjusted to a predetermined vacuum state (depressurized state).
  • a pressure gauge 11 is installed in the processing container 10, and the pressure in the processing container is adjusted by the conductance variable valve 13 based on the measured value of the pressure gauge 11.
  • a spiral induction heating coil 16 is provided on the upper side of the processing vessel 10, and a high frequency power source 18 is connected to the induction heating coil 16 via a power supply line 17.
  • the power supply line 17 is provided with a matching circuit 19 that performs impedance adjustment.
  • An induction magnetic field is generated by supplying high-frequency power from the high-frequency power source 18 to the induction heating coil 16 via the power supply line 17, an induced current flows through the conductor in the processing container 10, and the conductor is induction-heated.
  • the film forming apparatus 100 has a processing gas supply system 20 that supplies gas into the processing container 10, and a processing gas supply pipe 21 extending from the processing gas supply system 20 is connected to the processing container 10.
  • the processing gas supply system 20 includes a supply source that supplies SiH 4 gas, C 3 H 8 gas, H 2 gas, TMA (trimethylaluminum) gas, and N 2 gas, and a piping system that connects these supply sources to the processing gas supply piping.
  • the piping system is provided with a flow controller such as an on-off valve and a mass flow controller. Then, when a SiC film is formed by epitaxial growth on the substrate in the processing container 10, SiH 4 gas, C 3 H 8 gas, and H 2 gas are contained in the processing container 10 as source gases for film formation. To be supplied. Further, the electrical characteristics of the formed SiC film can be adjusted by supplying TMA gas or N 2 gas as necessary. These processing gases are examples, and the SiC film may be formed using other gases.
  • a disk-like mounting table 30 on which a substrate holder for holding a plurality of substrates W is placed is provided horizontally in the processing container 10.
  • the mounting table 30 is supported by a cylindrical rotating shaft 31 extending downward from the center thereof.
  • the rotating shaft 31 penetrates the bottom of the processing container 10 and reaches the lower portion thereof, and is rotated by a rotation driving mechanism (not shown).
  • the mounting table 30 is rotated with the rotation of the rotation shaft 31.
  • a space between the rotary shaft 31 and the bottom of the processing container 10 is hermetically sealed by a fluid seal 32.
  • a substrate holder 34 having a disk shape smaller in diameter than the mounting table 30 is mounted on the upper surface of the mounting table 30 in a horizontal state, and a plurality of substrates W are held by the substrate holder 34. It has become. In this example, eight substrates W are arranged at equal intervals in the circumferential direction of the substrate holder 34. However, the number of substrates W held by the substrate holder 34 is not limited to this.
  • the substrate holder 34 is supported by an elevating member 35, and an elevating shaft 36 extends downward from the lower surface of the elevating member 35 through the rotary shaft 31.
  • the substrate holder 34 is moved up and down by a lifting mechanism (not shown) via the lifting shaft 36 and the lifting member 35 so that the plurality of substrates W can be transferred together with the substrate holder 34.
  • the substrate holder 34 is loaded / unloaded from a loading / unloading port (not shown) provided on the side wall of the processing container 10, and the substrate W is transferred to the substrate holder 34 outside the processing container 10.
  • the carry-in / out port is opened and closed by a gate valve (not shown).
  • the substrate holder 34 is rotated with the rotation of the mounting table 30 so that the plurality of substrates W revolve.
  • the mounting table 30 and the substrate holder 34 are made of a conductive material having high heat resistance such as graphite and SiC and easy to heat by induction heating.
  • a plurality of recesses 37 for accommodating and positioning the substrate W are formed on the surface of the substrate holder 34.
  • the recesses 37 are arranged at equal intervals in the circumferential direction of the substrate holder 34, and the adjacent recesses 37 are connected by a connecting recess 38. That is, there is no wall between the adjacent recesses 37, and the recesses 37 and the connection recesses 38 form an annular recess.
  • the substrate holder 34 may be fixed to the mounting table 30 and the substrate W may be carried in and out of the processing container 10. Further, instead of rotating the substrate holder 34 together with the mounting table 30, only the substrate holder 34 may be rotated, or the substrate holder 34 may not be rotated. Furthermore, you may have the mechanism in which the board
  • the gate valve is opened, and the substrate holder 34 on which the plurality of substrates W are placed by the transfer arm of the transfer apparatus is loaded into the processing container 10 from the loading / unloading port. 30. Then, the gate valve is closed and the inside of the processing container 10 is sealed. At this time, the plurality of substrates W are accommodated and positioned in the respective concave portions 37 formed on the surface of the substrate holder 34.
  • the mounting table 30 and the substrate holder 34 are made of a material such as graphite or SiC that has high heat resistance, is easily heated by induction heating, and easily heats the substrate W by radiation. W is efficiently heated and heated to a high temperature of 1500 to 1750 ° C., for example.
  • SiH 4 gas, C 3 H 8 gas, and H 2 gas are supplied into the processing container 10 from the processing gas supply system 20 through the processing gas supply pipe 21.
  • TMA gas or N 2 gas is added as necessary.
  • the decomposition temperature of C 3 H 8 gas is high and is 1200 ° C. or higher.
  • the substrate W is heated to a high temperature of, for example, 1500 to 1750 ° C. as described above.
  • the processing gas supplied into the processing container 10 is decomposed on the substrate W, and an SiC film can be formed on the substrate W by epitaxial growth.
  • the processing efficiency is higher than that of a single wafer type film forming apparatus.
  • the substrate holder 34 ′ provided with a plurality of circular recesses 37 ′ corresponding to the substrate W is simply used.
  • the adjacent recesses 37 are used.
  • the 3C—SiC crystal adhering to the graphite substrate holder as a by-product has poor adhesion to graphite, as shown in FIG. 5, the by-product 42 in the portion of the wall 41 heated to a higher temperature is used.
  • FIG. 6 is a diagram showing the number of downfalls with respect to the accumulated film thickness in the conventional substrate holder. As shown in this figure, it can be seen that the number of downfalls rapidly increases when the accumulated film thickness exceeds 120 ⁇ m.
  • the wall 41 through which more induced current flows is eliminated, the adjacent ones of the recesses 37 that accommodate the substrate W are connected by the connection recesses 38, and the recesses 37 and the connection recesses 38 are formed.
  • An annular recess is continuously formed.
  • the induced current tends to increase at a pointed portion or an angular portion, it is preferable to form the contour of the connecting recess 38 in a curved shape.
  • the by-product is 4H—SiC crystal and is less likely to be peeled off than the 3C—SiC crystal.
  • the substrate holder having the structure as described above is effective. From the viewpoint of reducing the amount of by-product particles scattered, it is advantageous to use SiC rather than graphite as the substrate holder 34.
  • the substrate holder 34 since SiC is more expensive than graphite, it is preferable to use as the substrate holder 34 a graphite base material pre-coated with a SiC film.
  • the substrate holder 34 is set on the mounting table 30 in the processing container 10, and the high-frequency power source 18 is turned on and high-frequency power is supplied to the induction heating coil 16 without holding the substrate W. This is performed by supplying SiH 4 gas, C 3 H 8 gas, and H 2 gas from the processing gas supply system 20 to the processing container 10 through the processing gas supply pipe 21 while heating the substrate 30 and the substrate holder 34. Can do.
  • the substrate holder when using the substrate holder of this embodiment in which a plurality of recesses for accommodating substrates are connected by connecting recesses, a plurality of recesses for accommodating substrates are formed independently without using the connecting recesses.
  • the number density of downfalls was compared with the case where the conventional substrate holder was used.
  • the material of the substrate holder was graphite, the film formation temperature was 1630 ° C., and the film formation time was 60 minutes. As a result, it was confirmed that the downfall in the conventional case was improved to 0.7 / cm 2 instead of several tens / cm 2 .
  • the number was further improved to 0.1 / cm 2. Was confirmed.
  • the present invention is not limited to the above embodiment and can be variously modified.
  • the substrate may be arranged by providing a recess 137 that accommodates the substrate in the center in addition to the recess 37 in the circumferential direction.
  • the number of circumferential recesses on the substrate holder that is, the number of substrates disposed in the circumferential direction is not limited to the above embodiment.
  • a spiral induction heating coil 16 ′ may be provided on the lower side, or a spiral induction heating coil may be provided on both upper and lower sides of the processing vessel 10.
  • an induction heating coil in which several square coils are arranged so as to surround the processing vessel may be used.
  • the SiC film is formed as the compound semiconductor film on the substrate.
  • the present invention is not limited to this, and other compound semiconductor films such as a GaN film, a GaAs film, and an AlN film are formed. Can be applied.
  • the substrate those usually used for forming these compound semiconductor films by epitaxial growth may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 基板上に化合物半導体膜を成膜する成膜装置は、処理容器内で基板ホルダー(34)に複数の基板(W)を保持した状態で、基板ホルダー(34)を誘導加熱してその熱で基板(W)を加熱しつつ、処理容器内に処理ガスを供給して成膜を行う。基板ホルダー(34)は、周方向に沿って配列された、基板(W)を収容して位置決めするための複数の凹部(37)を有し、凹部(37)の隣接するものどうしの間には、これらを連結する連結凹部(38)が形成されている。

Description

成膜装置およびそれに用いる基板ホルダー
 本発明は、誘導加熱により基板上にSiC膜等の化合物半導体膜を成膜する成膜装置、およびそれに用いる基板ホルダーに関する。
 SiC、GaN、GaAs、AlN等の化合物半導体は、Siよりも省エネルギーや小型化を実現できることが期待され、次世代半導体として注目されている。これら化合物半導体の製造には、基板上に化合物半導体膜を成膜してエピタキシャル成長させる手法が多用されている(例えば、特許文献1)。
 化合物半導体膜を成膜する際には、基板上に基板結晶と同じ方位関係を有する単結晶を良好な結晶性を保持しつつ成長させるため、1000℃以上の高温で長時間かけて成膜を行う必要がある。
 このため、シリコン基板上へのメタル成膜等のような枚葉成膜とは異なり、スループット向上の観点から、基板ホルダー上に複数の基板を配置してこれら複数の基板に対して一括して成膜処理を行うセミバッチ方式が採用され、また、高温加熱の必要性から誘導加熱方式が採用される(例えば、特許文献2)。特許文献2において、基板ホルダーは円板状に形成され、その周方向に沿って複数の基板を配置している。このようなセミバッチ方式の場合は、通常、基板の位置決めは、基板ホルダーに複数の凹部を設け、その中に基板を配置することにより行われる。
特開2001-024221号公報 特開2008-159947号公報
 しかしながら、基板ホルダーに周方向に沿って形成された複数の凹部に基板を配置し、誘導加熱して化合物半導体膜を成膜する場合には、基板ホルダーに副生成物が付着し、それが基板に飛散する場合があることが判明した。特に、基板ホルダーとしてグラファイトを用い、基板上にSiC膜を成膜する場合にこのような現象が顕著である。このように飛散する副生成物粒子は、粒子サイズが比較的大きく、基板上に付着するとデバイスに致命的な影響を与える。
 したがって、本発明の目的は、基板ホルダーから基板への副生成物粒子の飛散を抑制することができる成膜装置、およびそれに用いる基板ホルダーを提供することにある。
 本発明の一つの観点によれば、基板上に化合物半導体膜を成膜する成膜装置であって、成膜処理が行われる処理容器と、前記処理容器内で、複数の基板を保持する導電性材料からなる基板ホルダーと、前記処理容器内に誘導磁界を形成して前記基板ホルダーを誘導加熱するための誘導加熱コイルと、前記誘導加熱コイルに高周波電力を印加する高周波電源と、前記処理容器内に化合物半導体成膜用の処理ガスを供給するガス供給手段と、前記処理容器内を排気する排気手段とを備え、前記基板ホルダーは、周方向に沿って配列された、基板を収容して位置決めするための複数の凹部を有し、前記凹部の隣接するものどうしの間には、これらを連結する連結凹部が形成されている成膜装置が提供される。
 本発明の他の観点によれば、所定の処理ガスを供給して、基板上に化合物半導体膜を成膜する成膜装置において、処理容器内で複数の基板を保持し、誘導加熱されることにより保持した基板を加熱するための基板ホルダーであって、周方向に沿って配列された、基板を収容して位置決めするための複数の凹部を有し、前記凹部の隣接するものどうしの間には、これらを連結する連結凹部が形成されている基板ホルダーが提供される。
 前記化合物半導体膜としてはSiC膜の場合が好適である。このとき、前記基板ホルダーとしては、グラファイトまたはSiCで構成されたもの、あるいは、グラファイト製の本体にSiC膜をコーティングして形成されたものを好適に用いることができる。前記SiC膜のコーティングは、前記処理容器内に、前記グラファイト製の本体を配置して、前記処理容器内に前記処理ガスを供給しつつ、誘導加熱することにより形成することができる。
 前記凹部と前記連結凹部とが連続して環状凹部を構成することが好ましい。前記連結凹部の輪郭が曲線状であることが好ましい。
 本発明によれば、基板ホルダーに基板を収容して位置決めするための複数の凹部を設け、前記凹部の隣接するものどうしの間に、これらを連結する連結凹部を設けたので、誘導電流が多く流れる凹部間の壁が存在しなくなり、副生成物粒子の飛散量を少なくすることができる。したがって、基板上に付着する副生成物粒子の数を少なくすることができる。
本発明の一実施形態に係る成膜装置を示す断面図である。 図1の成膜装置に用いられる基板ホルダーの一例を示す平面図である。 図2の基板ホルダーの一部を示す斜視図である。 従来の成膜装置に用いられる基板ホルダーを示す平面図である。 従来の成膜装置において基板ホルダー上の基板にダウンフォールが発生するメカニズムを説明するための図である。 従来の基板ホルダーにおける累積膜厚に対するダウンフォールの個数を示す図である。 グラファイト製の基材にSiC膜をプリコートし、さらに連結凹部を形成した基板ホルダーを用いてSiC膜の成膜を行った際の、累積成膜時間とダウンフォール個数との関係を示す図である。 基板ホルダーの他の例を示す平面図である。 誘導加熱コイルの他の例を示す図である。 誘導加熱コイルのさらに他の例を示す図である。 誘導加熱コイルのさらにまた他の例を示す図である。
 以下、添付図面を参照して本発明の実施形態について説明する。
 図1は、本発明の一実施形態に係る成膜装置を示す断面図、図2は図1の成膜装置に用いられる基板ホルダーの一例を示す平面図、図3は図2の基板ホルダーの一部を示す斜視図である。ここでは、SiCからなる基板(ウエハ)上にSiCをエピタキシャル成長させて化合物半導体膜としてのSiC膜を成膜するセミバッチ式の成膜装置を例にとって説明する。
 成膜装置100は、内部に減圧空間が形成され、基板に成膜処理を施すための、略直方体状をなす処理容器10を有している。処理容器10は石英等の誘電体により構成されている。
 処理容器10には、排気ライン12が接続され、排気ライン12には排気手段である真空ポンプ14と圧力調整手段であるコンダクタンス可変バルブ13が設けられている。そして、真空ポンプ14により排気ライン12を介して処理容器10内が排気されて処理容器10内が所定の真空状態(減圧状態)に調整されるようになっている。また、処理容器10には、圧力計11が設置され、圧力計11の測定値に基づいてコンダクタンス可変バルブ13による処理容器内の圧力の調整が実施される。
 処理容器10の上側には、渦巻き状をなす誘導加熱コイル16が設けられており、誘導加熱コイル16には給電ライン17を介して高周波電源18が接続されている。また、給電ライン17には、インピーダンス調整を行うマッチング回路19が設けられている。そして、高周波電源18から給電ライン17を介して誘導加熱コイル16に高周波電力が供給されることにより誘導磁界が生じ、処理容器10内の導電体に誘導電流が流れてその導電体が誘導加熱される。
 また、成膜装置100は、処理容器10内にガスを供給する処理ガス供給系20を有しており、処理ガス供給系20から延びる処理ガス供給配管21が処理容器10に接続されている。
 処理ガス供給系20は、SiHガス、Cガス、Hガス、TMA(トリメチルアルミニウム)ガス、Nガスを供給する供給源と、これら供給源から処理ガス供給配管につながる配管系を有しており、配管系には開閉バルブおよびマスフローコントローラ等の流量制御器が設けられている。そして、処理容器10内の基板上に、エピタキシャル成長によりSiC膜を成膜する際に、成膜のための原料ガスとして、SiHガス、Cガス、およびHガスが処理容器10内に供給される。また、必要に応じて、TMAガスやNガスを供給することにより、形成されるSiC膜の電気的な特性を調整することができる。なお、これら処理ガスは一例であり、他のガスを用いてSiC膜を形成するようにしてもよい。
 処理容器10内には、複数枚の基板Wを保持する基板ホルダーを載置する円板状の載置台30が処理容器10内に水平に設けられている。載置台30はその中心から下方に延びる筒状の回転軸31により支持されている。回転軸31は処理容器10の底部を突き抜けてその下方に至り、図示しない回転駆動機構により回転される。そして、載置台30は、回転軸31の回転にともなって回転される。回転軸31と処理容器10の底部との間は流体シール32により気密にシールされている。
 載置台30の上面には載置台30よりも小径の円板状をなす基板ホルダー34が水平状態で載置されるようになっており、この基板ホルダー34に複数の基板Wが保持されるようになっている。本例では8枚の基板Wが基板ホルダー34の周方向に等間隔に配列されるようになっている。ただし、基板ホルダー34に保持される基板Wの枚数はこれに限るものではない。この基板ホルダー34は、昇降部材35に支持されており、昇降部材35の下面から回転軸31の中を昇降軸36が下方に延びている。そして、図示しない昇降機構により昇降軸36、昇降部材35を介して基板ホルダー34が昇降され、複数の基板Wを基板ホルダー34ごと搬送できるようになっている。基板ホルダー34は、処理容器10の側壁に設けられた搬入出口(図示せず)から搬入出され、処理容器10の外部で基板ホルダー34に対する基板Wの移載が行われるようになっている。搬出入口はゲートバルブ(図示せず)により開閉される。また、載置台30の回転とともに基板ホルダー34も回転するようになっており、複数の基板Wが公転するようになっている。
 載置台30および基板ホルダー34は、グラファイトやSiCのような耐熱性が高く、かつ誘導加熱による加熱が容易な導電性材料で構成されている。図2、3に示すように、基板ホルダー34の表面には、基板Wを収容して位置決めするための複数の凹部37が形成されている。凹部37は、基板Wの配列に対応して、基板ホルダー34の周方向に等間隔に配列されており、隣接する凹部37どうしは、連結凹部38で連結されている。すなわち、隣接する凹部37の間には壁がなく、凹部37と連結凹部38とが連続して環状凹部を構成している。
 なお、基板ホルダー34を載置台30に固定して、処理容器10内で基板Wを搬入・搬出するようにしてもよい。また、基板ホルダー34を載置台30とともに回転させるのではなく、基板ホルダー34のみを回転させるように構成してもよく、また、基板ホルダー34を回転させなくてもよい。さらに、基板Wが自転する機構を有していてもよい。
 このように構成される成膜装置においては、まず、ゲートバルブを開けて搬入出口から搬送装置の搬送アームによって複数の基板Wを載置した基板ホルダー34を処理容器10内に搬入し、載置台30上に載置する。そして、ゲートバルブを閉じて処理容器10内を密閉状態とする。このとき、複数の基板Wは、基板ホルダー34の表面に形成された各凹部37に収容され、位置決めされている。
 次いで、図示しない回転駆動機構により載置台30とともに基板ホルダー34を回転させながら、高周波電源18をオンにして誘導加熱コイル16に高周波電力を供給する。これにより、誘導加熱によって、導電体からなる載置台30および基板ホルダー34が加熱され、これらの温度が上昇する。
 このとき、載置台30および基板ホルダー34は、グラファイトやSiCのような、耐熱性が高く、誘導加熱による加熱が容易で、かつ輻射により基板Wを加熱しやすい材料で構成されているので、基板Wが効率よく加熱され、例えば1500~1750℃の高温に加熱される。
 このように基板Wが加熱された状態で、処理ガス供給系20から処理ガス供給配管21を経て、処理容器10内に、SiHガス、Cガス、およびHガスを供給する。SiC膜の電気的な特性を調整する必要がある場合等は、必要に応じて、TMAガスやNガスを加える。
 上記処理ガスの中で、Cガスの分解温度は高く、1200℃以上であるが、本実施形態では、上述のように基板Wが例えば1500~1750℃の高温に加熱されるので、処理容器10内に供給された処理ガスが基板W上で分解して、基板W上にエピタキシャル成長によりSiC膜を成膜することができる。
 このように、基板ホルダー34に複数枚の基板Wを保持した状態で一度に複数枚の基板Wを処理することができるので、枚葉式の成膜装置よりも処理効率が高い。
 この成膜の際に、基板ホルダー34の表面に副生成物が付着する。特に基板ホルダー34がグラファイトで構成されている場合には、副生成物として3C-SiC結晶が形成されやすくなる。
 図4に示すように、従来の成膜装置では、単純に基板Wに対応する円形の凹部37′を複数設けた基板ホルダー34′を用いていたが、このような形状では、隣接する凹部37′間に細い壁41が存在する。このような細い部分には誘導電流が多く流れる傾向にあるため、壁41には他の部分よりも多くの電流が流れ、他の部分よりも温度が上昇する。一方、グラファイト製の基板ホルダーに副生成物として付着した3C-SiC結晶はグラファイトに対する密着性が悪いため、図5に示すように、より高い温度に加熱された壁41の部分において副生成物42がより剥がれやすくなり、副生成物粒子43となって飛散し、基板W上に付着する。このように飛散する副生成物粒子43は、粒子サイズが比較的大きく、基板W上に付着するとダウンフォールと呼ばれる欠陥となる。ダウンフォールが発生するとその部分のデバイスに致命的な影響を与える。そして、このようなダウンフォールは、基板ホルダーに対する副生成物の膜厚が所定の厚さを超えると急激に増加する。図6は、従来の基板ホルダーにおける累積膜厚に対するダウンフォールの個数を示す図である。この図に示すように、累積膜厚が120μmを超えたあたりから、ダウンフォールの個数が急激に上昇することがわかる。
 そこで、本実施形態では、より多くの誘導電流が流れる壁41をなくし、基板Wを収容する凹部37の隣接するものどうしが連結凹部38で連結されるようにし、凹部37と連結凹部38とが連続して環状凹部を構成するようにする。
 これにより、誘導電流が多く流れて温度が他の部分よりも高くなる部位をなくすことができ、副生成物粒子の飛散量を少なくすることができる。したがって、基板上に付着する副生成物粒子の数を少なくすることができる。
 また、誘導電流は、尖った部分や角張った部分で大きくなりやすいので、連結凹部38の輪郭は曲線状に形成することが好ましい。
 基板ホルダー34がSiCで構成されている場合は、副生成物は4H-SiC結晶となり、3C-SiC結晶よりも剥がれにくいが、やはり高温部分における副生成物粒子の飛散は生じるため、本実施形態のような構造の基板ホルダーは有効である。副生成物粒子の飛散量自体を減少させる観点からは、基板ホルダー34としてグラファイトを用いるよりもSiCを用いるほうが有利である。
 しかし、SiCはグラファイトよりも高価であるため、基板ホルダー34として、グラファイト製の基材にSiC膜をプリコートしたものを用いることが好ましい。プリコート処理は、基板ホルダー34を処理容器10内の載置台30の上にセットし、基板Wを保持しない状態で、高周波電源18をオンにして誘導加熱コイル16に高周波電力を供給して載置台30および基板ホルダー34を加熱しつつ、処理ガス供給系20から処理ガス供給配管21を経て、SiHガス、Cガス、およびHガスを処理容器10内へ供給することにより行うことができる。
 このようにしてプリコートを行うことにより、グラファイト製の基材に密着性良くSiCプリコート膜が形成され、その後の成膜処理によって基板ホルダー34に副生成物として形成される3C-SiC結晶を少なくすることができ、ダウンフォールをより少なくすることができる。
 実際に、基板ホルダーとして、基板収容用の複数の凹部を連結凹部で連結した本実施形態の基板ホルダーを用いた場合と、連結凹部を用いずに基板収容用の複数の凹部を独立して形成した従来の基板ホルダーを用いた場合とで、ダウンフォールの個数密度を比較した。なお基板ホルダーの材質はグラファイトとし、成膜温度1630℃、成膜時間60minとした。その結果、従来の場合はダウンフォールが数十個/cmレベルであったものが、0.7個/cmに改善されたことが確認された。また、本実施形態の形状を有するグラファイト製の基材に膜厚34μmのSiCプリコート膜を形成した基板ホルダーを用いてダウンフォールの個数密度を測定した結果、0.1個/cmとさらに改善されたことが確認された。
 次に、上記のようなグラファイト製の基材に膜厚34μmのSiCプリコート膜を形成した基板ホルダーを用いて基板温度1725℃でSiC膜の成膜を行った際の、累積成膜時間とダウンフォール個数との関係を求めた。その結果を図7に示す。図7に示すように、ダウンフォール個数に多少ばらつきがあり、一時的に増加することがあるが、累積成膜時間が増加しても概ねダウンフォール個数10個以下を維持していることが確認された。
 なお、本発明は上記実施形態に限定されることなく種々変形可能である。例えば、上記実施形態では、基板ホルダー上に周方向に沿って複数の凹部を形成して周方向のみに基板を配置した場合を示したが、さらに他の位置に基板を配置することを排除するものではなく、例えば、図8に示すように、周方向の凹部37の他に中央にも基板を収容する凹部137を設けて基板を配置してもよい。また、基板ホルダー上の周方向の凹部の数、すなわち周方向に配置される基板の数も上記実施形態に限るものではない。
 また、上記実施形態では、誘導加熱手段として、処理容器10の上側に渦巻き状をなす誘導加熱コイル16を設けた例を示したが、これに限らず、図9に示すように、処理容器10の下側に渦巻き状の誘導加熱コイル16′を設けてもよいし、処理容器10の上下両側に渦巻き状の誘導加熱コイルを設けてもよい。また、図10に示すように処理容器10に対して縦に巻回する誘導加熱コイル161を設けてもよく、さらに、図11に示すように処理容器10に対して横に巻回する誘導加熱コイル261を設けてもよい。また、コイルを巻回するのではなく、四角状のコイルを処理容器を取り巻くように数本配列した誘導加熱コイルでもよい。
 また、上記実施形態では基板上に化合物半導体膜としてSiC膜を形成する場合について示したが、これに限らず、GaN膜、GaAs膜、AlN膜等の他の化合物半導体膜を形成する場合にも適用することができる。また、基板としては、これら化合物半導体膜をエピタキシャル成長により形成するために、通常用いるものを用いればよい。
 10;処理容器、12;排気ライン、14;真空ポンプ、16,16′,161,261;誘導加熱コイル、18;高周波電源、20;処理ガス供給系、21;処理ガス供給配管、30;載置台、34;基板ホルダー、37;凹部、38;連結凹部、100;成膜処置、W;基板

Claims (16)

  1.  基板上に化合物半導体膜を成膜する成膜装置であって、
     成膜処理が行われる処理容器と、
     前記処理容器内で、複数の基板を保持する導電性材料からなる基板ホルダーと、
     前記処理容器内に誘導磁界を形成して前記基板ホルダーを誘導加熱するための誘導加熱コイルと、
     前記誘導加熱コイルに高周波電力を印加する高周波電源と、
     前記処理容器内に化合物半導体成膜用の処理ガスを供給するガス供給手段と、
     前記処理容器内を排気する排気手段と
    を備え、
     前記基板ホルダーは、周方向に沿って配列された、基板を収容して位置決めするための複数の凹部を有し、前記凹部の隣接するものどうしの間には、これらを連結する連結凹部が形成されている成膜装置。
  2.  前記化合物半導体膜はSiC膜である、請求項1に記載の成膜装置。
  3.  前記基板ホルダーは、グラファイトで構成される、請求項2に記載の成膜装置。
  4.  前記基板ホルダーは、SiCで構成される、請求項2に記載の成膜装置。
  5.  前記基板ホルダーは、グラファイト製の本体にSiC膜をコーティングして形成されたものである、請求項2に記載の成膜装置。
  6.  前記SiC膜のコーティングは、前記処理容器内に、前記グラファイト製の本体を配置して、前記処理容器内に前記処理ガスを供給しつつ、誘導加熱することにより形成される、請求項5に記載の成膜装置。
  7.  前記凹部と前記連結凹部とが連続して環状凹部を構成する、請求項1に記載の成膜装置。
  8.  前記連結凹部の輪郭が曲線状である、請求項1に記載の成膜装置。
  9.  所定の処理ガスを供給して、基板上に化合物半導体膜を成膜する成膜装置において、処理容器内で複数の基板を保持し、誘導加熱されることにより保持した基板を加熱するための基板ホルダーであって、
     周方向に沿って配列された、基板を収容して位置決めするための複数の凹部を有し、前記凹部の隣接するものどうしの間には、これらを連結する連結凹部が形成されている、基板ホルダー。
  10.  前記化合物半導体膜はSiC膜である、請求項9に記載の基板ホルダー。
  11.  グラファイトで構成される、請求項10に記載の基板ホルダー。
  12.  SiCで構成される、請求項10に記載の基板ホルダー。
  13.  グラファイト製の本体にSiC膜をコーティングして形成されたものである、請求項10に記載の基板ホルダー。
  14.  前記SiC膜のコーティングは、前記処理容器内に、前記グラファイト製の本体を配置して、前記処理容器内に前記処理ガスを供給しつつ、誘導加熱することにより形成される、請求項13に記載の基板ホルダー。
  15.  前記凹部と前記連結凹部とが連続して環状凹部を構成する、請求項9に記載の基板ホルダー。
  16.  前記連結凹部の輪郭が曲線状である、請求項9に記載の基板ホルダー。
PCT/JP2014/078600 2014-01-28 2014-10-28 成膜装置およびそれに用いる基板ホルダー WO2015114896A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-013137 2014-01-28
JP2014013137A JP2015141966A (ja) 2014-01-28 2014-01-28 成膜装置およびそれに用いる基板ホルダー

Publications (1)

Publication Number Publication Date
WO2015114896A1 true WO2015114896A1 (ja) 2015-08-06

Family

ID=53756494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078600 WO2015114896A1 (ja) 2014-01-28 2014-10-28 成膜装置およびそれに用いる基板ホルダー

Country Status (3)

Country Link
JP (1) JP2015141966A (ja)
TW (1) TW201600633A (ja)
WO (1) WO2015114896A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6685258B2 (ja) * 2017-05-01 2020-04-22 三菱電機株式会社 炭化珪素エピタキシャル成長装置、炭化珪素エピタキシャルウエハの製造方法及び炭化珪素半導体装置の製造方法
JP7176489B2 (ja) * 2019-07-12 2022-11-22 三菱電機株式会社 炭化珪素エピタキシャル成長装置及び炭化珪素エピタキシャルウエハの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55500049A (ja) * 1978-01-16 1980-01-31
JPH05211126A (ja) * 1991-12-05 1993-08-20 Rohm Co Ltd エピタキシャル成長炉
JP2008159947A (ja) * 2006-12-25 2008-07-10 Tokyo Electron Ltd 成膜装置および成膜方法
JP2011077476A (ja) * 2009-10-02 2011-04-14 Sumco Corp エピタキシャル成長用サセプタ
JP2012004548A (ja) * 2010-06-15 2012-01-05 Samsung Led Co Ltd サセプタ及びこれを具備する化学気相蒸着装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55500049A (ja) * 1978-01-16 1980-01-31
JPH05211126A (ja) * 1991-12-05 1993-08-20 Rohm Co Ltd エピタキシャル成長炉
JP2008159947A (ja) * 2006-12-25 2008-07-10 Tokyo Electron Ltd 成膜装置および成膜方法
JP2011077476A (ja) * 2009-10-02 2011-04-14 Sumco Corp エピタキシャル成長用サセプタ
JP2012004548A (ja) * 2010-06-15 2012-01-05 Samsung Led Co Ltd サセプタ及びこれを具備する化学気相蒸着装置

Also Published As

Publication number Publication date
JP2015141966A (ja) 2015-08-03
TW201600633A (zh) 2016-01-01

Similar Documents

Publication Publication Date Title
JP5051875B2 (ja) 成膜装置および成膜方法
KR101196538B1 (ko) 처리 장치 및 처리 방법
CN110643934A (zh) 一种半导体设备
WO2014203613A1 (ja) 化合物半導体膜成膜用基板の移載装置および移載方法、ならびに化合物半導体膜の成膜システムおよび成膜方法
JP6687829B2 (ja) 誘導加熱装置
WO2015114896A1 (ja) 成膜装置およびそれに用いる基板ホルダー
JP2012151433A (ja) 熱処理装置
JP6562546B2 (ja) ウェハ支持台、ウェハ支持体、化学気相成長装置
JPH0760804B2 (ja) 半導体気相成長方法及びその装置
JP2009071210A (ja) サセプタおよびエピタキシャル成長装置
CN110643961A (zh) 一种半导体设备及其使用方法
JP5333804B2 (ja) 成膜装置および成膜方法
CN110643962A (zh) 一种半导体设备
US20230366077A1 (en) Film formation apparatus and film formation method
WO2013031430A1 (ja) 熱処理装置
US20140264954A1 (en) Passivation and warpage correction by nitride film for molded wafers
KR20150100509A (ko) 오목부에 코발트를 공급하는 방법
CN111433890B (zh) 成膜装置
KR102652637B1 (ko) 성막 방법 및 성막 장치
US20230407458A1 (en) Film formation apparatus
JP2019153630A (ja) 気相成長方法
JP2008159944A (ja) 成膜装置および成膜方法
TW202044480A (zh) 用於使基板背側損傷最小化的方法及設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881347

Country of ref document: EP

Kind code of ref document: A1