WO2015111753A1 - パッケージ形成方法及びmems用パッケージ - Google Patents

パッケージ形成方法及びmems用パッケージ Download PDF

Info

Publication number
WO2015111753A1
WO2015111753A1 PCT/JP2015/052181 JP2015052181W WO2015111753A1 WO 2015111753 A1 WO2015111753 A1 WO 2015111753A1 JP 2015052181 W JP2015052181 W JP 2015052181W WO 2015111753 A1 WO2015111753 A1 WO 2015111753A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
package
substrate
bonding
metal thin
Prior art date
Application number
PCT/JP2015/052181
Other languages
English (en)
French (fr)
Inventor
優一 倉島
高木 秀樹
敦彦 前田
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2015559162A priority Critical patent/JP6281883B2/ja
Priority to EP15740967.3A priority patent/EP3101687B1/en
Priority to KR1020167015425A priority patent/KR101907907B1/ko
Priority to US15/112,222 priority patent/US9751754B2/en
Priority to CN201580005772.7A priority patent/CN105934820B/zh
Publication of WO2015111753A1 publication Critical patent/WO2015111753A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0118Bonding a wafer on the substrate, i.e. where the cap consists of another wafer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0172Seals
    • B81C2203/019Seals characterised by the material or arrangement of seals between parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • B81C2203/035Soldering

Definitions

  • the present invention relates to a package for hollow sealing in a device and a method of forming the same, and more particularly, a package suitable for accommodating a precision mechanism such as a micro electro mechanical system (MEMS) in a hollow sealed internal space. And a method for forming the same.
  • MEMS micro electro mechanical system
  • MEMS Micro Electro Mechanical Systems
  • a hollow package is provided to physically protect micro movable parts from the external environment.
  • a sealing frame (sealing pattern) or bump electrode having a height of several micrometers to several tens of micrometers is formed on a sealing substrate by metal plating, and MEMS is used.
  • a method is known in which this is placed on a substrate and bonded by thermocompression bonding.
  • Gold (Au) which has excellent electrical properties such as high electrical conductivity, high deformability, and high corrosion resistance, as well as excellent workability, is used as the material for the sealing frame and bump electrode. Yes.
  • thermocompression bonding is performed at a temperature lower than the melting temperature of the bonding material without causing a liquid phase.
  • a method of softening and joining is disclosed.
  • the bonding surface is highly smoothed (roughness is reduced), or the bonding surface is highly purified to be cleaned and deoxygenated, so that thermocompression bonding can be performed at a relatively low pressure.
  • materials for bonding pure metals such as Au, Sn, Cu, and Al, and single phases of alloys such as AuSn, Au5Sn, and AuIn, or a mixed phase of these, sandwiching the bonding interface, respectively. It states that you can choose materials.
  • Non-Patent Document 1 a sputtering film of titanium and gold is provided on a wafer made of silicon or glass at a thickness of 50 nm and 200 nm, respectively, and a predetermined sealing frame is formed with a photoresist.
  • a package forming method is disclosed in which a sealing material made of gold particles is provided on a frame using a screen mask and the wafers are thermocompression bonded. The two wafers are said to be heated to 300 degrees in a vacuum chamber and bonded at a pressing pressure of 73 MPa for 30 minutes. By using gold particles as the sealing material, the pressure is reduced because it is porous and easily deforms during bonding.
  • Non-Patent Document 2 a gold stud bump is formed on a gold thin film on a silicon substrate and coined with a silicon chip to obtain a gold bump having a smooth top surface.
  • a low-temperature bonding method is disclosed in which surface activation is performed by plasma and bonding is performed by superimposing similarly surface-activated gold thin film electrodes. According to such a method, heating is performed at 150 ° C. in the atmosphere, and the bonding is performed at a pressing pressure of 320 MPa in about 30 seconds. In coining, by sharpening the tip of the bump, deformation is easily caused by stress concentration, and a smooth top surface can be formed even at a low temperature and a low pressing pressure.
  • thermocompression bonding method heating and pressurization are required to improve adhesion at the bonding interface, and the bonding interface is deformed.
  • thermal stress may be generated at the joint between different materials on the substrate, and the substrate may be deformed or broken.
  • the characteristics of the device may be deteriorated and the alignment accuracy may be lowered.
  • the time required for such a process becomes relatively long.
  • the present invention has been made in view of the circumstances as described above, and the object of the present invention relates to a method of forming a package for hollow sealing in an element, and in particular, in a hollow sealed internal space.
  • a package suitable for housing precision features such as a microelectromechanical system (MEMS) and a method for forming the same.
  • MEMS microelectromechanical system
  • the present invention relates to a package forming method for hollow-sealing a precision mechanical element on a mechanical substrate, wherein a temporary thin film made of an easily polishing material is chemically mechanically polished, and a metal thin film is formed by sputtering along the smooth polished surface.
  • a temporary substrate removing step that exposes the new surface at the tip of the sealing frame, and a noble metal thin film is provided around the precision mechanical element on the mechanical substrate, and the new surface of the sealing frame is brought into close contact therewith and bonded at room temperature.
  • a second joining step is provided.
  • a smooth new surface made of a noble metal obtained by transferring the smooth surface of the temporary substrate to one end surface of the sealing frame can be easily formed, and can be bonded to the smooth surface made of the noble metal of the mechanical substrate at room temperature.
  • the package of the machine substrate can be formed without requiring excessive heating or pressurization, and therefore, for example, a precision mechanism (mechanical element) such as a micro electromechanical system is accommodated in the hollow sealed internal space. It makes possible a package suitable for.
  • the first joining step includes a step of forming the sealing frame by a plating method, and in the sacrificial thin film forming step, the metal thin film is made of titanium or chromium,
  • the method may include a step of providing a seed metal thin film made of a noble metal on the surface.
  • the sealing frame can be efficiently formed by metal plating without affecting the new surface at the tip of the sealing frame.
  • the noble metal may be gold.
  • the second bonding step may include a step of activating the bonding surface by plasma ashing. According to this invention, room temperature bonding can be more reliably performed, and a package more suitable for accommodating a precision mechanism object (mechanical element) such as a microelectromechanical system in a hollow sealed internal space can be formed. .
  • the room temperature bonding may be performed at a temperature of at least 200 degrees or less. According to this invention, the thermal deformation of the mechanical substrate can be prevented, and a package more suitable for accommodating a precise precision mechanism object in the hollow sealed internal space can be formed.
  • the MEMS package obtained by the manufacturing method described above is characterized in that the internal vacuum state of at least 10 ⁇ 4 Pa can be maintained for 6 months. According to such a package, the operation of the internal MEMS can be maintained for a long period of time.
  • FIGS. 2 to 4 as appropriate along FIG. 1 showing the flow of the package process.
  • a substrate 1 made of an easy-polishing material is prepared, and an ultra-smooth surface 1a on the nanometer order is provided on one surface.
  • the substrate 1 is polished by CMP (Chemical Mechanical Polishing) or the like until the substrate 1 is smoothed at the atomic level with high accuracy to give an ultra-smooth surface 1a.
  • CMP Chemical Mechanical Polishing
  • the substrate 1 does not remain in the final package structure (see FIG. 4B)
  • the material of the package structure there is no particular limitation on the material of the package structure.
  • Si, sapphire substrate, quartz substrate, and glass are preferable.
  • a sacrificial thin film 11 having a thickness of about several tens of nanometers is sputtered (for example, vapor deposition, ion beam sputtering, etc.) on the ultra-smooth surface 1a of the substrate 1.
  • the sacrificial thin film 11 has a smooth upper surface to which the super-smooth surface 1a of the substrate 1 is transferred. As long as the sacrificial thin film 11 is island-shaped and generates pinholes so that the super-smooth surface 1a can be transferred, the thin film function is not lost. It is preferable that the thickness is as thin as possible.
  • the sacrificial thin film 11 is a material that does not easily react with the seed thin film 12 and the plating film 14 formed on the sacrificial thin film 11 and is easy to peel off the seed thin film 12 and the plating film 14 by chemical selective etching as described later. Thickness etc. are selected. For example, it is preferable to use Ti that is selectively etched with a hydrofluoric acid-containing aqueous solution together with the seed thin film 12 and the plating film 14 made of Au in the transfer step S4 described later. Further, Cr may be used for the sacrificial thin film 11 and an etchant capable of selectively etching this may be combined.
  • a seed thin film 12 that gives an electrodeposition surface of the plating film 14 is formed by sputtering.
  • the seed thin film 12 is made of a noble metal as a conductive material, such as Au.
  • a resist 13 is provided on the sacrificial thin film 11 so as to invert the desired sealing frame pattern.
  • a plating film 14 made of a noble metal is provided on the seed thin film 12 through the window portion of the resist 13.
  • the plating film 14 is Au plating provided by electrolytic plating.
  • a sealing substrate 21 made of Si provided with a metal thin film 14 ′ made of Au on one side is prepared. Place on top. And as shown in FIG.3 (b), it mutually press-fits, heating.
  • the metal thin film 14 ′ may be provided on the entire surface of the sealing substrate 21, or may be provided in a form corresponding to the sealing frame pattern.
  • a sealing cover 14a in which the metal thin film 14 'is integrated is formed.
  • a smooth surface on the upper surface of the sacrificial thin film 11, that is, a smooth new surface obtained by transferring the super-smooth surface 1a of the substrate 1 appears.
  • Metal bonding sealing step: S5 As shown in FIG. 4A, in the MEMS substrate 31 on which the MEMS device 31a is formed, a surface as smooth as the super smooth surface 1a of the substrate 1 is formed, and a metal made of, for example, Au is formed thereon. A thin film 31b is provided. The metal thin film 31b may be provided on the entire surface of the MEMS substrate 31, or may be provided in a form corresponding to the sealing frame pattern. An adhesive layer (not shown) or the like may be provided between the MEMS substrate 31 and the metal thin film 31b.
  • construction can be performed at a lower temperature and a lower pressure than the conventional method, and it is possible to suppress the deterioration of the operation reliability of the MEMS device including the precision mechanism, and the cost can also be suppressed. is there.
  • the sealing wall 14b may be formed such that only the metal bonding portion 14d between the activated surfaces is Au, and the other portion 14c is made of another material. . That is, in the process shown in FIG. 2D, other materials are provided on the seed thin film 12 through the window portion of the resist 13, or other than Au is directly provided on the seed thin film 12 made of Au. A plating film 14 made of a material is provided. In such a case, the amount of expensive Au used can be suppressed, and the material cost can be reduced.
  • the substrate 1 made of Si is smooth polished using abrasive grains made of colloidal silica, and the sacrificial thin film 11 made of Ti is formed on the super smooth surface 1 a by 30 nm, Further, the seed thin film 12 made of Au was 50 nm, and the plating film 14 made of Au was 10 ⁇ m. Thereafter, the seed thin film 12 was left and only the sacrificial thin film 11 was chemically and selectively etched with 10% HF. The surface roughness of the portion corresponding to the tip surface 14a1 of the wall portion of the sealing cover 14a thus obtained was observed with an atomic force microscope.
  • FIG. 6B shows the measurement results of the surface when the seed thin film 12 and the plating film 14 are applied on the substrate 1 made of ordinary Si.
  • a 3 mm-square square frame (width: 0.1 mm) specimen manufactured in the same manner as in the smoothness evaluation described above was joined to a substrate simulating the MEMS substrate 31 to create a tensile specimen.
  • This was attached to an Instron type tensile tester (manufactured by Shimadzu Corporation; AGS-10 kN), and the bonding strength was measured at a pulling speed of 0.5 (mm / min).
  • the breaking strength at this time was 318 N on average, and a joining strength almost equal to that obtained when the sealing substrate 21 and the MEMS substrate 31 were joined by the thermocompression bonding method was obtained.
  • a joining strength almost equal to that obtained when the sealing substrate 21 and the MEMS substrate 31 were joined by the thermocompression bonding method was obtained.
  • the tensile test piece as a comparative example in which Au plating was applied to a normal Si substrate, only an average strength of 33N and 1/10 was obtained in the same test.
  • the SOI substrate 21 has a thin film part 21 ′ having a thickness of about 10 ⁇ m supported around the periphery, and changes with time of elastic deformation generated in the film part 21 ′ when the internal space is evacuated. Can be evaluated for hermetic sealing performance of the entire package. That is, the sealing frame 14a and the metal thin film 31b are provided to the support portion of the SOI substrate 21 and the MEMS substrate (Si substrate) 31, respectively. These surfaces are activated with argon plasma in the same manner as in the above example, then bonded in vacuum, and left in the atmosphere.
  • the airtightness of the entire package is high, the vacuum in the internal space is maintained, and the amount of dent deformation generated in the film part 21 ′ does not change with time.
  • the airtightness of the entire package is low, the air enters the internal space from the outside of the package, so the difference between the external atmospheric pressure and the internal space pressure decreases with time and occurs accordingly.
  • the amount of dent deformation of the film portion 21 ′ also decreases.
  • the SOI substrate 21 is a plate-like body having a length and width of 6 mm square and a thickness of 500 ⁇ m. From the Au having a width of 100 ⁇ m and a height of 10 ⁇ m by the temporary substrate shape transfer method using the sacrificial thin film 11 as described above. A sealing frame 14a was obtained. On the other hand, a thin film 31b made of Au having a thickness of 50 nm was applied to the smooth surface on the MEMS substrate (Si substrate) 31 by ion beam sputtering. After that, the surfaces were activated with argon plasma and bonded in vacuum (10 ⁇ 4 Pa).
  • Comparative Example 1 the film portion 21 ′ was indented and deformed by a depth of up to about 35 ⁇ m immediately after vacuum sealing, the indentation was gradually released, and the indentation deformation was resolved after 10 days. .
  • the deformation amount was 30 ⁇ m immediately after vacuum sealing, but the dent amount was reduced to 13 ⁇ m after 5 days.
  • the dent was not eliminated even after 6 months from the vacuum sealing, and airtightness in a vacuum state of at least about 10 ⁇ 4 Pa could be ensured even during the period. This shows that even when a gas such as dry air or inert gas is sealed inside the package, it can be stably maintained for a long period of time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)

Abstract

 中空封止された内部空間に微小電気機械システム(MEMS)のような精密機構物を収容するのに適したパッケージ及びその形成方法の提供。 易研磨材料からなる仮基板を化学的機械研磨しこの平滑研磨面に沿ってスパッタリングによって金属薄膜を与える犠牲薄膜形成ステップと、この金属薄膜の上に少なくとも貴金属を接触させてなる封止枠を形成しこの上に基板を接合させる第1の接合ステップと、を含む。その上で、金属薄膜を仮基板とともに除去して封止枠の先端に新生面を露出させる仮基板除去ステップと、機械基板における精密機械素子の周囲にスパッタリングによって貴金属薄膜を与えこの上に封止枠の新生面を密着させて常温接合させる第2の接合ステップと、を含む。かかる方法で得られるパッケージは、少なくとも10-4Paのその内部の真空状態を6ヶ月間に亘って維持し得る。

Description

パッケージ形成方法及びMEMS用パッケージ
 本発明は、素子における中空封止のためのパッケージ及びその形成方法に関し、特に、中空封止された内部空間に微小電気機械システム(MEMS)のような精密機構物を収容するのに適したパッケージ及びその形成方法に関する。
 微細な機械要素に電子回路要素を組み合わせた微小電気機械システム(MEMS:Micro Electro Mechanical Systems)では、微細な可動部を外部環境から物理的に保護するための中空パッケージが与えられる。このようなパッケージの1つの形成方法として、封止基板上に金属メッキによって数マイクロメートルから数十マイクロメートル程度の高さの封止枠(封止パターン)やバンプ電極を形成しておき、MEMS基板上にこれを被せて熱圧着させて接合させる方法が知られている。封止枠やバンプ電極の材料には、高い電気伝導性と、高い変形能、高い耐腐食性などの優れた物理特性を有するとともに、施工容易性にも優れる金(Au)が多く用いられている。
 例えば、特許文献1では、パッケージの形成方法として、各種の接合方法の利点と欠点を挙げた上で、熱圧着を接合材料の融解温度よりも低い温度で行って、液相を生じさせることなく軟化させて接合させる方法を開示している。かかる方法では、接合表面を高度に平滑化させ(粗度を下げること)、あるいは接合表面を極めて純度高く洗浄し脱酸素させる工程などを不要とできて、比較的低圧力で熱圧着できるとしている。接合のための材料としては、Au、Sn、Cu、Alなどの純粋な金属、及び、例えば、AuSn、Au5Sn、AuInなどの合金の単一相、又は、これらの混合相について接合界面を挟むそれぞれの材料に選択し得ることを述べている。
 更に、非特許文献1では、シリコン又はガラスからなるウェハの上にチタン及び金のスパッタ薄膜をそれぞれ50nm及び200nmの厚さで与えて、フォトレジストにより所定の封止枠を形成した後に、封止枠の上にスクリーンマスクを用いて金粒子からなるシール材を与えてかかるウェハ同士を熱圧着するパッケージの形成方法を開示している。2枚のウェハは、真空チャンバ内で300度に加熱され、押しつけ圧73MPa、30分で接合されると述べている。シール材に金粒子を使うことで、ポーラス状であって接合時に変形し易くなるため、押しつけ圧を低減できるとしている。
 また、非特許文献2では、シリコン基板上の金薄膜の上に金スタッドバンプを形成し、シリコンチップでコイニングして平滑な頂面を有する金バンプを得た上で、この平滑面を窒素大気プラズマで表面活性化し、同様に表面活性化した金薄膜電極を重ね合わせることで接合させる低温接合方法を開示している。かかる方法では、大気中で150度に加熱し、押しつけ圧320MPaで、30秒ほどで接合されると述べている。コイニングにおいて、バンプ先端を先鋭化させておくことで応力集中によって変形し易くなり、低温且つ低押しつけ圧でも平滑な頂面を形成できるのである。
特開2012-009862号公報
S.Ishizuka, N.Akiyama, T.Ogashiwa, T.Nishimori, H.Ishida, S.Shoji, J.Mizuno、Low-temperature wafer bonding for MEMS packaging utilizing screen-printed sub-micron size Au particle patterns、Microelectronic Engineering Volume 88, Issue 8, August 2011, pp2275-2277 山本道貴、日暮栄治、須賀唯知、澤田廉士、「N2大気圧プラズマによる表面活性化を用いた光素子の低温接合」、2013年度精密工学会春季大会学術講演会講演論文集
 上記したように、熱圧着法では、接合界面での密着性を上げるために加熱・加圧が必要となり、接合界面に変形が与えられる。ここで、加熱工程では、基板上の異種材料同士の接合部に熱応力を生じさせ、基板を変形又は破壊させてしまうことがある。また、デバイスとしての特性の劣化や、アライメント精度の低下を生じさせ得るといったことも指摘される。更に、かかる工程に必要な時間が比較的長くなるといったことも問題となる。
 本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、素子における中空封止のためのパッケージの形成方法に関し、特に、中空封止された内部空間に微小電気機械システム(MEMS)のような精密機構物を収容するのに適したパッケージ及びその形成方法にある。
 本発明は、機械基板上に精密機械素子を中空封止するためのパッケージ形成方法であって、易研磨材料からなる仮基板を化学的機械研磨しこの平滑研磨面に沿ってスパッタリングによって金属薄膜を与える犠牲薄膜形成ステップと、前記金属薄膜の上に少なくとも貴金属を接触させてなる封止枠を形成しこの上に基板を接合させる第1の接合ステップと、前記金属薄膜を前記仮基板とともに除去して前記封止枠の先端に新生面を露出させる仮基板除去ステップと、前記機械基板における前記精密機械素子の周囲に貴金属薄膜を与えこの上に前記封止枠の前記新生面を密着させて常温接合させる第2の接合ステップと、を含むことを特徴とする。
 かかる発明によれば、封止枠の一端面に仮基板の平滑面を転写した貴金属からなる平滑な新生面を容易に形成でき、機械基板の貴金属からなる平滑面と常温接合可能である。これにより、過度な加熱や加圧を必要とせず機械基板のパッケージを形成できるから、例えば、中空封止された内部空間に微小電気機械システムのような精密機構物(機械素子)を収容するのに適したパッケージを可能とさせる。
 上記した発明において、前記第1の接合ステップは、めっき法によって前記封止枠を形成するステップを含み、更に、前記犠牲薄膜形成ステップにおいて、前記金属薄膜はチタン又はクロムからなり、前記金属薄膜の表面に貴金属からなるシード金属薄膜を付与するステップを含むことを特徴とするとしてもよい。かかる発明によれば、封止枠の先端の新生面に影響を与えることなく、封止枠を金属メッキによって効率よく形成できるのである。
 上記した発明において、前記貴金属は金であることを特徴としてもよい。また、前記第2の接合ステップは、プラズマアッシングによって接合面を活性化させるステップを含むことを特徴としてもよい。かかる発明によれば、常温接合をより確実に出来て、中空封止された内部空間に微小電気機械システムのような精密機構物(機械素子)を収容するのにより適したパッケージを形成できるのである。
 上記した発明において、前記常温接合は少なくとも200度以下で行われることを特徴としてもよい。かかる発明によれば、機械基板の熱変形を防止でき中空封止された内部空間により精密な精密機構物を収容するのにより適したパッケージを形成できるのである。
上記した製造方法によって得られるMEMS用パッケージでは、少なくとも10-4Paのその内部の真空状態を6ヶ月間に亘って維持し得ることを特徴とする。かかるパッケージによれば、この内部のMEMSの動作を長期間に亘って維持し得るのである。
本発明によるパッケージ形成方法の工程図である。 本発明によるパッケージ形成方法のメッキ膜形成ステップまでの断面図である。 本発明によるパッケージ形成方法の転写ステップの断面図である。 本発明によるパッケージ形成方法の金属接合封止ステップの断面図である。 本発明による他のパッケージ形成方法における金属接合封止ステップ後の断面図である。 表面粗さの測定結果を示すグラフである。 封止性能評価のための実験方法を示す図である。 封止性能評価の結果を示すグラフである。
 以下に、本発明によるパッケージ形成方法の1つの実施例について、パッケージ工程のフローを示す図1に沿って、適宜、図2乃至4を参照しながら説明する。
[平滑基板準備ステップ:S1]
 図2(a)に示すように、易研磨材料からなる基板1を用意し、ナノメートルオーダーで超平滑な面1aを一面に与える。詳細には、CMP(化学的機械研磨:Chemical Mechanical Polishing)などによって基板1を高精度に原子レベルで平滑となるまでに研磨し、超平滑面1aを与える。後述するように、基板1は最終的なパッケージ構造(図4(b)参照)には残存しないから、特にパッケージ構造の材料としての限定はないが、上記した研磨を良好にできる易研磨材料、例えば、Siやサファイア基板,石英基板,ガラスであることが好ましい。
[メッキ膜形成ステップ:S2]
 図2(b)に示すように、基板1の超平滑面1aの上には、厚さにおいて数十nm程度の犠牲薄膜11をスパッタ(例えば、蒸着やイオンビームスパッタなどを含む。以下、同じ。)で成膜する。かかる犠牲薄膜11は基板1の超平滑面1aを転写した平滑な上面を有し、超平滑面1aを転写できるよう、島状となり又ピンホールを発生させることで薄膜としての機能を失わない限り、なるべく薄いことが好ましい。一方で、犠牲薄膜11は、この上に形成されるシード薄膜12及びメッキ膜14と反応しにくく、且つ、後述するような化学的選択エッチングによりシード薄膜12及びメッキ膜14を剥離させやすい材料及び厚さなどを選択される。例えば、後述する転写ステップS4において、Auからなるシード薄膜12及びメッキ膜14とともにフッ酸含有水溶液によって選択的にエッチングされるTiなどであることが好ましい。また、犠牲薄膜11にCrを用い、これを選択的にエッチングし得るエッチャントを組合せてもよい。
 犠牲薄膜11の上には、メッキ膜14の電着面を与えるシード薄膜12をスパッタで成膜する。シード薄膜12は、導電性材料としての貴金属、例えば、Auの如きからなる。
図2(c)に示すように、犠牲薄膜11の上には、所望の封止枠パターンを反転して象るようにレジスト13を与える。その上で、図2(d)に示すように、レジスト13の窓部を介してシード薄膜12の上に貴金属からなるメッキ膜14を与える。典型的には、メッキ膜14は、電解メッキによって与えられるAuメッキである。なお、犠牲薄膜11が導電性材料からなる場合にこの上に直接、メッキ膜14を形成できればシード薄膜12を省略できる場合もある。
[エッチングステップ:S3]
 更に、図2(e)に示すように、レジスト13をアセトンなどで溶解し、更に所定の溶液やガスを用いてメッキ膜14の下部を除いてシード薄膜12を除去する。これにより、犠牲薄膜11及びメッキ膜14の間のシード薄膜12とメッキ膜14とからなる封止枠パターンを基板1の上に形成できる。
[転写ステップ:S4]
 図3(a)に示すように、例えば、Auからなる金属薄膜14’を一面に与えられたSiからなる封止基板21を用意し、この金属薄膜14’側を基板1上のメッキ膜14の上に配置する。そして、図3(b)に示すように、加熱しながら互いを圧着させる。なお、金属薄膜14’は封止基板21の一面全体に与えられていても良いが、封止枠パターンと対応するような形で与えられていても良い。
 図3(c)に示すように、シード薄膜12及びメッキ膜14を侵さず、犠牲薄膜11だけを化学的に選択エッチングすると、基板1上のシード薄膜12及びメッキ膜14と封止基板21上の金属薄膜14’が一体となった封止カバー14aが形成される。ここで、封止カバー14aの壁部の先端面14a1には、犠牲薄膜11の上面の平滑面、すなわち、基板1の超平滑面1aを転写した平滑な新生面が出現する。
[金属接合封止ステップ:S5]
 図4(a)に示すように、MEMSデバイス31aの形成されたMEMS基板31において、基板1の超平滑面1aと同程度に平滑な表面を形成し、この上に、例えば、Auからなる金属薄膜31bを与える。かかる金属薄膜31bは、MEMS基板31の一面全体に与えられていても良いが、封止枠パターンと対応するような形で与えられていても良い。なお、MEMS基板31と金属薄膜31bとの間には図示しない接着層などを与えても良い。
 封止カバー14aの先端面14a1及び金属薄膜31bについて、酸素又はアルゴンなどのプラズマアッシングにより表面の有機物等を取り除き、それぞれの面を表面活性化させる。
  図4(b)に示すように、封止基板21とMEMS基板31とを突き合わせ、200度以下の常温域で保持すると、封止カバー14aの先端面14a1及び金属薄膜31bの活性化された面同士が金属接合し、一体化した封止壁14bを含む強固なパッケージ構造体を得られるのである。
 以上のようなパッケージ工程では、従来の方法よりも、より低温且つ低圧で施工が可能であり、精密機構物を含むMEMSデバイスの動作信頼性を損なうことを抑制でき、しかもコストをも抑制できるのである。
 なお、図5に示すように、封止壁14b(図4参照)は、活性化された面同士の金属接合部14dのみをAuとし、それ以外の部分14cを他の材料によるものとしてもよい。つまり、図2(d)に示す工程において、レジスト13の窓部を介してシード薄膜12の上に他の材料を与える、若しくは、Auからなるシード薄膜12の上に直接、Au以外の他の材料からなるメッキ膜14を与えるのである。かかる場合、高価なAuの使用量を抑制できて、材料コストを低減でき得る。
[平滑性評価]
 図6には、封止カバー14aの壁部の先端面14a1の表面粗さを原子間力顕微鏡により測定した結果を示した。
詳細には、図2乃至図4を参照しつつ説明すると、Siからなる基板1にコロイダルシリカからなる砥粒を用いて平滑研磨し、その超平滑面1aにTiからなる犠牲薄膜11を30nm、さらにAuからなるシード薄膜12を50nm、Auからなるメッキ膜14を10μm与えた。その後、シード薄膜12を残し、犠牲薄膜11だけを10%HFにより化学的に選択エッチングした。これにより得られる封止カバー14aの壁部の先端面14a1に対応する部分について、その表面粗さを原子間力顕微鏡で観察した。
まず、図6(a)は、3μm角の範囲を測定した結果である。これによると、Sq=0.84nmであって優れた平滑性を有していた。この時の超平滑面1aはSq=0.2nmであり、ここに犠牲層薄膜11を施したところSq=0.6nmであった。
一方、図6(b)には、通常のSiからなる基板1の上にシード薄膜12及びメッキ膜14を施した際のその表面の測定結果である。ここでは、表面粗さはSq=16.2nmであり、平滑性が実施例と比べ大幅に劣っていることが判る。
[接合性評価]
次に、封止基板21とMEMS基板31の接合性を引っ張り試験によって評価した。
詳細には、上記した平滑性評価と同様に製作した3mm角の正方形枠(幅0.1mm)試片について、MEMS基板31を模した基板に接合し引っ張り試験片を作成した。これをインストロン型引っ張り試験器(島津製作所製;AGS-10kN)に取付け、0.5(mm/分)の引っ張り速度で接合強度を測定した。
このときの破断強度は、平均で318Nであり、封止基板21とMEMS基板31とを熱圧着法で接合した場合とほぼ同程度の接合強度を得られた。一方、通常のSi基板にAuメッキを与えた比較例としての引っ張り試験片では、同様の試験において平均33Nと1/10の強度しか得られなかった。
[封止性能評価]
 次に、SOI(Silicon On Insulator)基板を封止基板として用いてパッケージ全体の気密封止の性能を評価した。
図7に示すように、SOI基板21は周囲を支持された厚さ10μm程度の薄い膜部21’を有し、内部空間を真空にしたときに膜部21’に生じた弾性変形の経時変化を測定することでパッケージ全体の気密封止の性能を評価できる。つまり、SOI基板21の支持部及びMEMS基板(Si基板)31にそれぞれ封止枠14a及び金属薄膜31bを与える。これらの表面を上記実施例と同様にアルゴンプラズマにて活性化後、真空中で接合させ、これを大気中に放置する。
 このとき、パッケージ全体の気密性が高ければ、内部空間の真空が維持され、膜部21’に生じたへこみ変形量は経時変化しない。しかし、パッケージ全体の気密性が低い場合にあっては、パッケージ外部から大気が内部空間に侵入するため、外部の大気圧と内部空間の気圧との差が時間とともに減少し、それに従って生じていた膜部21’のへこみ変形量も減少していくのである。
詳細には、SOI基板21は、縦横6mm角、厚さ500μmの板状体であり、これに上記したような犠牲薄膜11を用いた仮基板形状転写法によって幅100μm、高さ10μmのAuからなる封止枠14aを与えた。一方、MEMS基板(Si基板)31上の平滑面にはイオンビームスパッタで厚さ50nmのAuからなる薄膜31bを与えた。その上で、表面をアルゴンプラズマにて活性化後、真空中(10-4Pa)で接合させた。ここでは、上記したような実施例としての接合試験片とともに、比較例1として封止枠14aをメッキそのまま(荒れた表面を有する)で室温且つ真空中(10-4Pa)で接合した比較試験片、比較例2として比較例1と同様の封止枠14aを高温且つ真空中(10-4Pa)で高い押付圧力(200℃で基板全体への圧力5MPa)をもって平滑基板に押しつけて平滑化し接合させた比較試験片の3種類を用意した。
図8に示すように、比較例1では、膜部21’が真空封止直後に最大35μm程度の深さだけへこみ変形し、徐々にへこみが解放され10日後にはへこみ変形が解消していた。また比較例2では、真空封止直後には変形量が30μmであったが、5日後には13μmまでへこみ量が減少していた。これに対して、実施例では、真空封止後6ヶ月経てもへこみを解消しておらず、少なくとも10-4Pa程度の真空状態の気密性を当該期間にあっても確保できていた。このことは、パッケージ内部に乾燥大気や不活性ガスなどのガス類を封止した場合にあっても、これを長期間安定的に維持できることを示している。
 以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。
 1   基板
11   犠牲薄膜
12   シード薄膜
13   レジスト
14   メッキ膜
21   封止基板
31   MEMS基板
31a  MEMSデバイス
31b  金属薄膜

 

Claims (6)

  1.  機械基板上に精密機械素子を中空封止するためのパッケージ形成方法であって、
    易研磨材料からなる仮基板を化学的機械研磨しこの平滑研磨面に沿ってスパッタリングによって金属薄膜を与える犠牲薄膜形成ステップと、
    前記金属薄膜の上に少なくとも貴金属を接触させてなる封止枠を形成しこの上に基板を接合させる第1の接合ステップと、
    前記金属薄膜を前記仮基板とともに除去して前記封止枠の先端に新生面を露出させる仮基板除去ステップと、
    前記機械基板における前記精密機械素子の周囲に貴金属薄膜を与えこの上に前記封止枠の前記新生面を密着させて常温接合させる第2の接合ステップと、を含むことを特徴とするパッケージ形成方法。
  2.  前記第1の接合ステップはめっき法によって前記封止枠を形成するステップを含み、
    更に、前記犠牲薄膜形成ステップにおいて、前記金属薄膜はチタン又はクロムからなり、前記金属薄膜の表面に貴金属からなるシード金属薄膜を付与するステップを含むことを特徴とする請求項1記載のパッケージ形成方法。
  3. 前記貴金属は金であることを特徴とする請求項2記載のパッケージ形成方法。
  4. 前記第2の接合ステップは、プラズマアッシングによって接合面を活性化させるステップを含むことを特徴とする請求項3記載のパッケージ形成方法。
  5. 前記常温接合は少なくとも200度以下で行われることを特徴とする請求項4記載のパッケージ形成方法。
  6. 請求項1乃至5のうちの1つの製造方法によって得られるMEMS用パッケージであって、少なくとも10-4Paのその内部の真空状態を6ヶ月間に亘って維持し得ることを特徴とするMEMS用パッケージ。
PCT/JP2015/052181 2014-01-27 2015-01-27 パッケージ形成方法及びmems用パッケージ WO2015111753A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015559162A JP6281883B2 (ja) 2014-01-27 2015-01-27 パッケージ形成方法
EP15740967.3A EP3101687B1 (en) 2014-01-27 2015-01-27 Package formation method and mems package
KR1020167015425A KR101907907B1 (ko) 2014-01-27 2015-01-27 패키지 형성 방법 및 mems용 패키지
US15/112,222 US9751754B2 (en) 2014-01-27 2015-01-27 Package formation method and MEMS package
CN201580005772.7A CN105934820B (zh) 2014-01-27 2015-01-27 封装体形成方法以及mems用封装体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014012308 2014-01-27
JP2014-012308 2014-01-27

Publications (1)

Publication Number Publication Date
WO2015111753A1 true WO2015111753A1 (ja) 2015-07-30

Family

ID=53681549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052181 WO2015111753A1 (ja) 2014-01-27 2015-01-27 パッケージ形成方法及びmems用パッケージ

Country Status (6)

Country Link
US (1) US9751754B2 (ja)
EP (1) EP3101687B1 (ja)
JP (1) JP6281883B2 (ja)
KR (1) KR101907907B1 (ja)
CN (1) CN105934820B (ja)
WO (1) WO2015111753A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135650A1 (ja) * 2017-01-19 2018-07-26 株式会社村田製作所 電子部品及び電子部品の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015013827A1 (en) 2013-08-02 2015-02-05 Motion Engine Inc. Mems motion sensor for sub-resonance angular rate sensing
US20170030788A1 (en) 2014-04-10 2017-02-02 Motion Engine Inc. Mems pressure sensor
US11674803B2 (en) 2014-06-02 2023-06-13 Motion Engine, Inc. Multi-mass MEMS motion sensor
US11287486B2 (en) 2014-12-09 2022-03-29 Motion Engine, Inc. 3D MEMS magnetometer and associated methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910963A (ja) * 1995-06-27 1997-01-14 Mitsubishi Heavy Ind Ltd 常温接合方法
JPH0964544A (ja) * 1995-08-24 1997-03-07 Dainippon Printing Co Ltd 多層プリント配線板およびその製造方法
JP2005276910A (ja) * 2004-03-23 2005-10-06 Kyocera Corp セラミック基板および電子部品収納用パッケージならびに電子装置
WO2005122217A1 (en) * 2004-06-09 2005-12-22 The Regents Of The University Of California Thermosetting polymer bonding for micro electro-mechanical systems
JP2009170445A (ja) * 2008-01-10 2009-07-30 Nissan Motor Co Ltd 半導体装置の製造方法および半導体装置
JP2012009862A (ja) 2010-06-23 2012-01-12 Commissariat A L'energie Atomique & Aux Energies Alternatives 二つの要素を低温熱圧着により封止する方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743945B2 (ja) * 2000-09-01 2011-08-10 株式会社神戸製鋼所 接続装置の製造方法
US6822326B2 (en) * 2002-09-25 2004-11-23 Ziptronix Wafer bonding hermetic encapsulation
US7138293B2 (en) * 2002-10-04 2006-11-21 Dalsa Semiconductor Inc. Wafer level packaging technique for microdevices
US20050077342A1 (en) * 2003-10-10 2005-04-14 Chien-Hua Chen Securing a cover for a device
KR100661350B1 (ko) * 2004-12-27 2006-12-27 삼성전자주식회사 Mems 소자 패키지 및 그 제조방법
JP5409084B2 (ja) * 2009-04-06 2014-02-05 キヤノン株式会社 半導体装置の製造方法
JP2013211443A (ja) * 2012-03-30 2013-10-10 Toyohashi Univ Of Technology 発光装置の製造方法
JP2014003106A (ja) * 2012-06-15 2014-01-09 Sumitomo Chemical Co Ltd 複合基板および複合基板の製造方法
JP2014003105A (ja) * 2012-06-15 2014-01-09 Sumitomo Chemical Co Ltd 複合基板の製造方法および複合基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910963A (ja) * 1995-06-27 1997-01-14 Mitsubishi Heavy Ind Ltd 常温接合方法
JPH0964544A (ja) * 1995-08-24 1997-03-07 Dainippon Printing Co Ltd 多層プリント配線板およびその製造方法
JP2005276910A (ja) * 2004-03-23 2005-10-06 Kyocera Corp セラミック基板および電子部品収納用パッケージならびに電子装置
WO2005122217A1 (en) * 2004-06-09 2005-12-22 The Regents Of The University Of California Thermosetting polymer bonding for micro electro-mechanical systems
JP2009170445A (ja) * 2008-01-10 2009-07-30 Nissan Motor Co Ltd 半導体装置の製造方法および半導体装置
JP2012009862A (ja) 2010-06-23 2012-01-12 Commissariat A L'energie Atomique & Aux Energies Alternatives 二つの要素を低温熱圧着により封止する方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
H. ISHIDA ET AL.: "Low-temperature, surface- compliant wafer bonding using sub-micron gold particles for wafer-level MEMS packaging", ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC, 29 May 2012 (2012-05-29), pages 1140 - 1145, XP032210732 *
MICHITAKA YAMAMOTO; EIJI HIGURASHI; TADATOMO SUGA; RENSHI SAWADA: "Low-temperature bonding of laser diode chips using N atmospheric-pressure plasma activation", PROCEEDINGS OF JSPE SEMESTRIAL MEETING 2013 JSPE SPRING CONFERENCE, 2013
S.ISHIZUKA; N.AKIYAMA; T.OGASHIWA; T.NISHIMORI; H.ISHIDA; S.SHOJI; J.MIZUNO: "Low-temperature wafer bonding for MEMS packaging utilizing screen-printed sub-micron size Au particle patterns", MICROELECTRONIC ENGINEERING, vol. 88, no. 8, August 2011 (2011-08-01), pages 2275 - 2277, XP028098109, DOI: doi:10.1016/j.mee.2011.02.083
See also references of EP3101687A4 *
Y. KURASHIMA ET AL.: "Room temperature wafer bonding of metal films using flattening by thermal imprint process", MICROELECTRONIC ENGINEERING, vol. 112, pages 52 - 56, XP028727948 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135650A1 (ja) * 2017-01-19 2018-07-26 株式会社村田製作所 電子部品及び電子部品の製造方法
JPWO2018135650A1 (ja) * 2017-01-19 2019-12-12 株式会社村田製作所 電子部品及び電子部品の製造方法
US11722112B2 (en) 2017-01-19 2023-08-08 Murata Manufacturing Co., Ltd. Manufacturing method for electronic component

Also Published As

Publication number Publication date
US9751754B2 (en) 2017-09-05
US20160332870A1 (en) 2016-11-17
KR101907907B1 (ko) 2018-10-15
KR20160087830A (ko) 2016-07-22
JP6281883B2 (ja) 2018-02-21
EP3101687B1 (en) 2020-12-09
CN105934820A (zh) 2016-09-07
JPWO2015111753A1 (ja) 2017-03-23
EP3101687A1 (en) 2016-12-07
EP3101687A4 (en) 2017-11-22
CN105934820B (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
JP6281883B2 (ja) パッケージ形成方法
JP5270104B2 (ja) マイクロ電子コンポジット特にmemsの密閉キャビティ内の被包構造
US9511997B2 (en) MEMS device with a capping substrate
US20230357002A1 (en) Packaging method and associated packaging structure
US20060228869A1 (en) MEMS packaging structure and methods
US9561954B2 (en) Method of fabricating MEMS devices having a plurality of cavities
TWI700238B (zh) 藉由將表面粗糙化而改良靜摩擦之方法
TWI383948B (zh) 用於mems裝置製造之抗粘著塗層的選擇性紫外光臭氧乾蝕刻
US9761557B2 (en) CMOS-MEMS integration by sequential bonding method
Al Farisi et al. Low-temperature hermetic thermo-compression bonding using electroplated copper sealing frame planarized by fly-cutting for wafer-level MEMS packaging
JP2011529798A (ja) マイクロ構造体を封入する方法及びデバイス
US10112822B2 (en) Semiconductor device
Farrens et al. Wafer level packaging: Balancing device requirements and materials properties
Yufeng et al. MEMS vacuum packaging technology and applications
Gao et al. Patterned Al-Ge wafer bonding for reducing in-process side leakage of eutectic
Malik et al. Al-Al thermocompression bonding for wafer-level MEMS packaging
Okada et al. Room temperature vacuum sealing using surfaced activated bonding with Au thin films [microresonator example]
Kurashima et al. Room temperature wafer scale bonding of electroplated Au patterns processed by surface planarization
WO2017213652A1 (en) Thermocompression bonding with raised feature
Rabold et al. Low Temperature Wafer Bonding: Plasma Assisted Silicon Direct Bonding vs. Silicon-Gold Eutectic Bonding
CN107161944A (zh) 用于具有集成微机电系统的器件的结构
Takigawa et al. Room-temperature hermetic packaging using ultrasonic cu–cu bonding with compliant rim
Knechtel Wafer bonding technologies in industrial MEMS processing-potentials and challenges
US20160343684A1 (en) Thermocompression bonding with raised feature
Mahajerin Thin Film Encapsulation Methods for Large Area MEMS Packaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559162

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167015425

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15112222

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015740967

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015740967

Country of ref document: EP