WO2015111706A1 - 自動車の車体製造方法および車体構造 - Google Patents

自動車の車体製造方法および車体構造 Download PDF

Info

Publication number
WO2015111706A1
WO2015111706A1 PCT/JP2015/051861 JP2015051861W WO2015111706A1 WO 2015111706 A1 WO2015111706 A1 WO 2015111706A1 JP 2015051861 W JP2015051861 W JP 2015051861W WO 2015111706 A1 WO2015111706 A1 WO 2015111706A1
Authority
WO
WIPO (PCT)
Prior art keywords
pillar
gusset
width direction
vehicle width
roof
Prior art date
Application number
PCT/JP2015/051861
Other languages
English (en)
French (fr)
Inventor
豊也 金口
ゲルハルド レッシュ
クリスチャン テピヒ
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2015559133A priority Critical patent/JP6183473B2/ja
Publication of WO2015111706A1 publication Critical patent/WO2015111706A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/04Door pillars ; windshield pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/06Fixed roofs

Definitions

  • a metal tube is bent by three-dimensional bending to produce an upper frame in which an A-pillar upper and a roof side rail are continuously integrated, and the upper end of the A-pillar lower and the middle of the upper frame on the welding jig.
  • the present invention relates to a vehicle body manufacturing method and a vehicle body structure for welding an upper end of a last pillar and an upper end of a last pillar.
  • Patent Document 1 discloses that a roof side rail of an automobile is formed by three-dimensional hot bending a steel pipe having a closed hollow section into a predetermined shape without requiring an expensive press die.
  • Patent Document 2 discloses that an arch is integrally laser-welded via an upper gusset and a lower gusset.
  • three-dimensional bending without using a bending die has a relatively low processing accuracy, so that the position of the middle part in the front-rear direction of the three-dimensional bent roof side rail can be prevented from shifting in the vehicle width direction or the vertical direction. If the roof side rail, which is misaligned, is welded to the outer edge of the roof arch in the vehicle width direction or the upper end of the B pillar as an intermediate pillar through the gusset, there is a gap in the weld due to the position error of the roof side rail. May occur and the welding strength may decrease.
  • the present invention has been made in view of the above circumstances, and an object thereof is to firmly weld the upper end of an intermediate pillar without being affected by the dimensional accuracy of a roof side rail.
  • the upper end of the A pillar lower and the upper end of the last pillar are positioned in the vertical direction and the vehicle width direction with respect to the upper frame on the tool, and the upper end of the B pillar as an intermediate pillar is positioned in the vehicle width direction.
  • a third step of assembling the vehicle body side frame by welding the upper end of the A pillar lower, the upper end of the B pillar, and the upper end of the rearmost pillar to the upper frame via a gusset.
  • the gusset for connecting the upper end of the B pillar to the upper frame is vertically aligned with respect to the upper end of the B pillar.
  • Body manufacturing method of the motor vehicle to the first characterized in that possible is is is proposed.
  • the gusset for connecting the upper end of the B pillar to the upper frame may include a longitudinal direction of the upper frame and a longitudinal direction of the B pillar.
  • a vehicle body manufacturing method for automobiles is proposed, which is characterized by being continuously welded in the direction.
  • the gusset in addition to the first or second feature, includes a first gusset located on one side surface in the vehicle width direction and a second gusset located on the other side surface in the vehicle width direction,
  • the vehicle body side frame is turned upside down so that the first welding treatment is performed.
  • a vehicle body manufacturing method for an automobile is proposed, which is supported on a second welding jig adjacent to a tool and welds the second gusset to the other side surface of the vehicle body side frame in the vehicle width direction.
  • the first gusset and the second gusset may be joined by spot welding, friction stir welding, or self-piercing rivet joining.
  • the automobile body manufacturing method according to the fourth feature is proposed.
  • the A pillar lower and the last pillar are made of steel pipes
  • the B pillar is made of a three-dimensional bent steel pipe.
  • a lower frame to which a lower end of the A pillar lower, a lower end of the B pillar, and a lower end of the rearmost pillar are connected is a hollow closed cross section in which an inner member and an outer member formed by roll forming are joined by a joining flange.
  • a fourth step of connecting the upper ends of the B pillars of the pair of vehicle body side frames to both ends of the roof arch in the vehicle width direction in addition to any one of the first to fifth features, a fourth step of connecting the upper ends of the B pillars of the pair of vehicle body side frames to both ends of the roof arch in the vehicle width direction.
  • the gusset that connects the upper end of the B pillar to the upper frame can be adjusted in the vehicle width direction with respect to both ends of the roof arch in the vehicle width direction.
  • the upper end of the D pillar is positioned in the vertical direction and the vehicle width direction, and the intermediate pillar is used as an intermediate pillar.
  • the upper end of the C pillar is positioned in the vehicle width direction.
  • the upper end of the A pillar lower, the upper end of the B pillar, the upper end of the C pillar, and the upper end of the D pillar are placed on the upper frame.
  • the side frame of the vehicle body is assembled by welding through the gusset, and the gusset that connects the upper end of the C pillar to the upper frame can be vertically adjusted with respect to the upper end of the C pillar.
  • a method for manufacturing a vehicle body having the seventh feature is proposed.
  • the gusset for connecting the upper end of the C pillar to the upper frame may include a longitudinal direction of the upper frame and a longitudinal direction of the C pillar.
  • An automobile body manufacturing method is proposed, characterized in that it is continuously welded in the direction.
  • the gusset in addition to the seventh or eighth feature, in the third step, is located on the first gusset on the one side in the vehicle width direction and on the other side in the vehicle width direction.
  • a vehicle body manufacturing method for an automobile comprising a second gusset, wherein the first gusset and the second gusset are joined together by spot welding, friction stir welding, or self-piercing rivet joining.
  • a vehicle body structure manufactured by the vehicle body manufacturing method according to the third feature wherein the first gusset is in contact with the roof side rail in the vertical direction and the vehicle.
  • a slide contact surface that allows movement in the vehicle width direction, the positioning contact surface is continuously welded along the longitudinal direction of the roof side rail, and the slide contact surface is
  • a vehicle body structure for an automobile according to a tenth feature is proposed in which continuous welding is performed along the longitudinal direction of the pillar or the roof arch.
  • the slide contact surface of the first gusset is further continuously welded along a direction orthogonal to the longitudinal direction of the intermediate pillar or the roof arch.
  • the roof arch has a rectangular cross section that is long in the front-rear direction and short in the vertical direction, and includes reinforced beads along the longitudinal direction on the upper surface and the lower surface.
  • a vehicle body structure characterized by the above is proposed.
  • the first gusset formed in an L-shaped cross section abuts on the intermediate pillar to thereby prevent the intermediate pillar.
  • a slide contact surface that positions in the vehicle width direction and allows vertical movement; a slide contact surface that contacts the roof arch to position the roof arch in the vertical direction and allows movement in the vehicle width direction;
  • a vehicle body structure for an automobile according to a thirteenth feature is proposed in which both slide contact surfaces are continuously welded along the longitudinal direction of the intermediate pillar and the roof arch.
  • the pillar abutting surface of the first gusset that abuts on the intermediate pillar is between a bulging portion and a flange portion between the positioning abutting surface.
  • a third gusset that is continuously welded to the roof side rail in opposition, and is spot-welded in a state where the peripheral flanges of the first gusset and the second gusset are separated from each other outside the intermediate pillar or the roof arch. Then, the intermediate pillar is sandwiched from both sides in the vehicle width direction, or the roof arch is sandwiched from above and below by spot welding with the peripheral flanges of the first gusset and the third gusset spaced apart.
  • a vehicle body structure characterized by the above is proposed.
  • a vehicle body of an automobile characterized in that the metal tube roof arch is replaced with a roof arch having an open cross section.
  • a structure is proposed.
  • the B pillar 19 of the embodiment corresponds to the intermediate pillar of the present invention
  • the C pillar 20 of the embodiment corresponds to the intermediate pillar or the last pillar of the present invention
  • the D pillar 20 of the embodiment corresponds to the last pillar of the present invention
  • the lower gusset 42 of the embodiment corresponds to the first gusset of the present invention
  • the outer gusset 44 of the embodiment corresponds to the second gusset of the present invention
  • the upper gusset 43 of the embodiment corresponds to the third gusset of the present invention
  • the first welding jig 45 and the second welding jig 46 of the embodiment correspond to the welding jig of the present invention.
  • the embodiment roof side rail contact surface 42a corresponds to the positioning contact surface of the present invention
  • the roof arch contact surface 42b and the B pillar contact surface 42c of the embodiment correspond to the slide contact surface of the present invention
  • Roof arch side franc of embodiment 42d, B-pillar side flange 42e, a roof arch flange 43c and the B-pillar side flange 44c corresponds to the peripheral flange of the present invention
  • B-pillar side flange 42e of the embodiment corresponds to the flange portion of the present invention.
  • the metal tube is three-dimensionally bent in the first step to produce an upper frame in which the A pillar upper and the roof side rail are continuously integrated, and on the welding jig in the second step.
  • step 3 the upper end of the A pillar lower and the upper end of the rearmost pillar are positioned in the vertical direction and the vehicle width direction, and the upper end of the B pillar as an intermediate pillar is positioned in the vehicle width direction.
  • the vehicle body side frame is assembled by welding the upper end of the A pillar lower, the upper end of the B pillar, and the upper end of the rearmost pillar to the upper frame via a gusset.
  • the gusset that connects the upper end of the B pillar as an intermediate pillar to the upper frame can be adjusted in the vertical direction with respect to the upper end of the B pillar. Even if it exists, the B-pillar as the upper frame and the intermediate pillar can be welded through the gusset without any trouble.
  • the gusset for connecting the upper end of the B pillar to the upper frame is continuously welded in the longitudinal direction of the upper frame and the longitudinal direction of the B pillar. Also, the strength of the vehicle body side frame can be increased by firmly welding the B pillar as an intermediate pillar.
  • the gusset includes a first gusset positioned on one side surface in the vehicle width direction and a second gusset positioned on the other side surface in the vehicle width direction.
  • the first welding is performed. After welding the first gusset to one side surface in the vehicle width direction of the vehicle body side frame supported by the jig, the vehicle body side frame is reversed and supported on the second welding jig adjacent to the first welding jig. Since the second gusset is welded to the other side surface of the vehicle body side frame in the vehicle width direction, it is possible to weld the gusset to both side surfaces of the vehicle body side frame in the vehicle width direction using the same welding device. Is reduced.
  • the first gusset and the second gusset are joined by spot welding, friction stir welding, or self-piercing rivet joining.
  • the strength of the vehicle body side frame can be further increased by integration.
  • the A pillar lower and the last pillar are made of steel pipe, the required strength can be ensured even if the cross section is reduced and the weight is reduced, and the manufacture is easy. Inexpensive. Since the B pillar is made of a three-dimensional bent steel pipe, the required strength can be ensured even if the cross section is made smaller and lighter.
  • the lower frame to which the lower end of the A pillar lower, the lower end of the B pillar, and the lower end of the last pillar are connected is a hollow closed cross-section member in which an inner member and an outer member formed by roll foam are joined by a joining flange, and more Since it is easy to mold a high-strength material, it is possible to increase the strength against side collision, and it is easy to manufacture and inexpensive.
  • the method includes a fourth step of connecting the upper ends of the B pillars of the pair of vehicle body side frames to both ends in the vehicle width direction of the roof arch.
  • the gusset that connects the upper end of the B-pillar to the upper frame can be adjusted in the vehicle width direction with respect to both ends of the roof arch in the vehicle width direction.
  • the roof arch can be welded through the gusset without any trouble, and the number of parts can be reduced by using a common gusset for welding the B pillar and the roof arch.
  • the upper end of the D pillar is positioned in the vertical direction and the vehicle width direction, and the upper end of the C pillar as an intermediate pillar is positioned in the vehicle width direction.
  • the vehicle body side frame is assembled by welding the upper end of the A pillar lower, the upper end of the B pillar, the upper end of the C pillar, and the upper end of the D pillar to the upper frame via a gusset,
  • the gusset that connects the upper end of the C pillar to the upper frame can be adjusted in the vertical direction with respect to the upper end of the C pillar. Therefore, even if there is a vertical dimensional error in the upper frame, the upper frame and C The pillar can be welded through the gusset without any trouble.
  • the gusset that connects the upper end of the C pillar to the upper frame is continuously welded in the longitudinal direction of the upper frame and the longitudinal direction of the C pillar.
  • the C pillar as an intermediate pillar can be firmly welded to increase the strength of the vehicle body side frame.
  • the gusset in the third step, includes a first gusset located on one side surface in the vehicle width direction and a second gusset located on the other side surface in the vehicle width direction. Since the second gussets are joined by spot welding, friction stir welding, or self-piercing rivet joining, the strength of the vehicle body side frame can be increased by integrating the first gusset and the second gusset.
  • the first gusset is in contact with a positioning contact surface that contacts the roof side rail and is positioned in the vertical direction and the vehicle width direction, and an intermediate pillar or roof arch.
  • Positioning is provided with a slide contact surface that positions the middle pillar in the vehicle width direction and allows vertical movement, or a slide contact surface that positions the roof arch in the vertical direction and allows movement in the vehicle width direction.
  • the contact surface is continuously welded along the longitudinal direction of the roof side rail and the slide contact surface is continuously welded along the longitudinal direction of the intermediate pillar or the roof arch. Even if it is misaligned in the vehicle width direction, the first gusset and the intermediate pillar or roof arch are aligned without hindrance and continuous welding is performed. It can be bonded more firmly.
  • the slide contact surface of the first gusset is further continuously welded along the direction perpendicular to the longitudinal direction of the intermediate pillar or roof arch, the vertical load, the longitudinal direction
  • the welding strength for all the loads in the vehicle width direction and the load in the vehicle width direction can be increased.
  • the roof arch has a rectangular cross section that is long in the front-rear direction and short in the vertical direction, and has reinforcing beads along the longitudinal direction on the upper surface and the lower surface, thereby ensuring the strength of the roof arch.
  • the height in the vertical direction can be reduced to secure the ceiling height of the passenger compartment.
  • the first gusset having an L-shaped cross section contacts the intermediate pillar to position the intermediate pillar in the vehicle width direction and allows vertical movement. And a slide contact surface that abuts against the roof arch to position the roof arch in the vertical direction and allows movement in the vehicle width direction.
  • Continuous welding along the longitudinal direction of the roof arch makes it possible to minimize the number of gussets while the roof side rail is displaced in the vertical and vehicle width directions with respect to the intermediate pillar and roof arch due to dimensional errors.
  • the first gusset can be aligned with the intermediate pillar and the roof arch without any trouble, and can be firmly joined by continuous welding.
  • the pillar contact surface of the first gusset that contacts the intermediate pillar includes the bulging portion and the flange portion between the positioning contact surface, the bulging portion As a result, the rigidity of the first gusset can be increased to increase the bonding strength with the intermediate pillar, and the flange portion can be used as a mounting flange for the door trim.
  • the welding is also continuously welded to the roof side rail similarly to the first gusset.
  • a third gusset that is spot welded outside the intermediate pillar or roof arch with the peripheral flanges of the first gusset and the second gusset spaced apart, and the intermediate pillar is sandwiched from both sides in the vehicle width direction, or Since the roof arch is sandwiched from above and below by spot welding with the peripheral flanges of the first and third gussets spaced apart, the joint strength between the pillar or roof side rail and the roof arch is further improved.
  • the roof arch made of metal tube is replaced with a roof arch having an open cross section, so that the height of the roof arch is lowered to ensure the ceiling height of the vehicle compartment and the roof arch
  • the degree of freedom in designing the shape can be increased.
  • FIG. 1 is a perspective view of a vehicle body side frame of an automobile.
  • FIG. 2 is a view in the direction of the arrow 2 in FIG.
  • FIG. 3 is a view in the direction of arrows 3 in FIG.
  • FIG. 4 is a view in the direction of arrows 4 in FIG.
  • FIG. 5 is an enlarged sectional view taken along line 5-5 of FIG.
  • First embodiment 6 is an enlarged sectional view taken along line 6-6 of FIG.
  • First embodiment) 7 is an enlarged sectional view taken along line 7-7 of FIG.
  • FIG. 8 is an explanatory diagram of the first step and the second step.
  • FIG. 9 is an explanatory diagram of the third step.
  • FIG. 10 is an explanatory diagram of the third step.
  • FIG. 11 corresponds to FIG.
  • FIG. 12 corresponds to FIG. (Third embodiment)
  • the front-rear direction, the left-right direction (vehicle width direction), and the up-down direction are defined with reference to an occupant seated in the driver's seat.
  • a vehicle body side frame 11 of an automobile includes an upper frame 14 made of a steel pipe having a circular cross section in which a roof side rail 12 and an A pillar upper rear portion 13 are integrated.
  • the upper frame 14 is configured by bending a straight steel pipe into a predetermined shape by three-dimensional bending.
  • Connected to the front end of the A-pillar upper rear portion 13 is an A-pillar upper front portion 15 that is formed by welding a pressed steel plate to form a hollow closed cross section.
  • the A-pillar upper rear portion 13 and the A-pillar upper front portion 15 are connected to A.
  • a pillar upper 16 is configured.
  • a lower frame 30 that is continuous from the side sill 18 to the rear frame 29 having a hollow closed cross section is disposed, and the front portion of the A pillar upper 15 and the front end of the side sill 18 are formed in a Y shape.
  • the front and rear intermediate portions of the roof side rail 12 and the front and rear intermediate portions of the side sill 18 are connected by the B pillar 19 and the front and rear intermediate portion of the roof side rail 12 and the side sill 18 are connected to each other.
  • the rear end (front end of the rear frame 29) is connected in the vertical direction by the C pillar 20, and the rear end of the roof side rail 12 and the rear end of the rear frame 29 are connected in the vertical direction by the D pillar 20 '.
  • the side sill 18 constituting the front portion of the lower frame 30 is formed by joining a roll-formed inner member 47 and an outer member 48 at joining flanges 47a and 48a to form a hollow closed section having a large cross-sectional area, and is easy to manufacture. It has high strength against side collision.
  • the A pillar lower 17 is formed by welding a press-worked steel plate and integrally welding an upper portion 17a having a hollow closed cross section and a lower portion 17b made of a straight steel pipe having a square cross section, and the upper end of the upper portion 17a is an A pillar upper. 16 is welded via a gusset 21, and the lower end of the lower portion 17 b is welded to the side sill 18 via a gusset 22.
  • the B pillar 19 is made of a steel pipe having a quadrangular cross section that is three-dimensionally bent, and has an upper end welded to the roof side rail 12 via a gusset 23 and a lower end welded to the side sill 18 via a gusset 24.
  • the C pillar 20 is made of a steel pipe having a circular cross section that is three-dimensionally bent, and has an upper end welded to the roof side rail 12 via a gusset 25 and a lower end welded to a continuous portion of the side sill 18 and the rear frame 29 via a gusset 26.
  • the D pillar 20 ′ is made of a three-dimensional bent steel pipe having a circular cross section, and the upper end is welded to the roof side rail 12 via the gusset 27 and the lower end is welded to the rear frame 29 via the gusset 28.
  • These gussets 21 to 28 are divided into two inward and outward in the vehicle width direction.
  • the gussets 21 to 28 are divided into the upper frame 14 and the lower frame 30 with the A pillar lower 17, the B pillar 19, the C pillar 20 and the D pillar 20 'sandwiched from both sides in the vehicle width direction. Connecting.
  • the end of the roof arch 41 extending in the vehicle width direction is connected by the gusset 23 that connects the B pillar 19 to the roof side rail 12. That is, the three members of the roof side rail 12, the B pillar 19, and the roof arch 41 are integrally connected by the gusset 23.
  • the gusset 23 includes a lower gusset 42 connecting the roof side rail 12, the B pillar 19 and the roof arch 41, an upper gusset 43 connecting the roof side rail 12 and the roof arch 41, and the roof side rail 12 and the B pillar 19.
  • the outer gusset 44 is connected.
  • the lower gusset 42 is formed in an L shape when viewed in the front-rear direction, from the roof side rail contact surface 42a along the outer peripheral surface of the roof side rail 12 having a circular cross section, and from the upper end of the roof side rail contact surface 42a.
  • a roof arch contact surface 42b extending inward in the vehicle width direction and connected to the lower surface of the roof arch 41, and extending downward from the lower end of the roof side rail contact surface 42a and connected to the inner surface in the vehicle width direction of the B pillar 19 B pillar 19 contact surface 42c, a pair of front and rear roof arch side flanges 42d, 42d provided between the roof side rail contact surface 42a and the roof arch contact surface 42b, and the roof side rail contact surfaces 42a and B
  • a pair of front and rear B-pillar side flanges 42e and 42e provided between the contact surfaces 42c of the pillar 19 and the vehicle width from both front and rear sides of the upper end of the B pillar contact surface 42c.
  • the upper gusset 43 is connected to the upper surface of the roof arch 41 extending inward in the vehicle width direction from the roof side rail contact surface 43a along the outer peripheral surface of the roof side rail 12 having a circular cross section.
  • a roof arch contact surface 43b and a pair of front and rear roof arch side flanges 43c and 43c provided between the roof side rail contact surface 43a and the roof arch contact surface 43b are provided.
  • the outer gusset 44 extends downward from the roof side rail contact surface 42a along the outer peripheral surface of the roof side rail 12 having a circular cross section, and is connected to the vehicle width direction outer surface of the B pillar 19.
  • a B pillar contact surface 44b and a pair of front and rear B pillar side flanges 44c and 44c provided between the roof side rail contact surface 44a and the B pillar contact surface 44b are provided.
  • the roof arch 41 is made of a pipe material having a rectangular cross section with a small vertical dimension and a large longitudinal dimension, and groove-shaped reinforcing beads 41a and 41a extending in the vehicle width direction are formed on the upper and lower surfaces.
  • the B pillar 19 is made of a pipe material having a rectangular cross section with a small size in the vehicle width direction and a large size in the front-rear direction.
  • the roof side rail contact surface 42a is laser-welded W1 along the longitudinal direction (front-rear direction) of the roof side rail 12, and the roof arch contact surface 42b is formed on the lower surface of the roof arch 41 in the longitudinal direction ( MIG welding W2 is performed along the vehicle width direction) and MIG welding W3 is performed along the direction (front-rear direction) perpendicular to the longitudinal direction (see FIGS. 2, 3 and 5).
  • the roof side rail contact surface 43a is laser-welded W4 along the longitudinal direction (front-rear direction) of the roof side rail 12, and the roof arch contact surface 43b is the longitudinal direction (vehicle width) of the roof arch 41.
  • Laser welding W5 is performed along (direction) and laser welding W6 is performed along a direction (front-rear direction) orthogonal to the longitudinal direction (see FIGS. 2 and 5).
  • the roof arch side flanges 43c, 43c of the upper gusset 43 and the roof arch side flanges 42d, 42d of the lower gusset 42 are overlapped in the vertical direction and spot welding W7 is performed (see FIGS. 2 and 5).
  • a gap ⁇ is formed between the upper surfaces of the roof arch side flanges 42 d and 42 d of the lower gusset 42 and the lower surfaces of the roof arch side flanges 43 c and 43 c of the upper gusset 43. .
  • the lower gusset 42 is further laser-welded W8 along the longitudinal direction (vertical direction) of the B pillar 19 (see FIGS. 2 and 3).
  • the roof side rail contact surface 44a is laser-welded W9 along the longitudinal direction (front-rear direction) of the roof side rail 12
  • the B pillar contact surface 44b is the longitudinal length of the outer surface in the vehicle width direction of the B pillar 19.
  • Laser welding W10 is performed along the direction (vertical direction), and the B pillar side flanges 44c, 44c of the outer gusset 44 and the B pillar side flanges 42e, 42e of the lower gusset 42 are overlapped in the vehicle width direction to perform spot welding W11. (See FIGS. 3 and 4).
  • the lower gusset 42, the upper gusset 43, and the outer gusset 44 are positioned with respect to the roof side rail 12 in the front-rear direction, the vertical direction, and the vehicle width direction. That is, the positions of the lower gusset 42, the upper gusset 43, and the outer gusset 44 with respect to the roof side rail 12 are uniquely determined.
  • the relative position of the roof arch 41 with respect to the roof arch contact surface 42b of the lower gusset 42 and the roof arch contact surface 43b of the upper gusset 43 is adjustable in the vehicle width direction. That is, the roof arch 41 sandwiched in the vertical direction by the roof arch contact surfaces 42b and 43b is in the vehicle width direction with respect to the roof arch contact surfaces 42b and 43b as shown by arrows AA in FIGS. Relative movement is possible.
  • the B pillar 19 as an intermediate pillar with respect to the B pillar abutting surface 42c of the lower gusset 42 and the B pillar abutting surface 44b of the outer gusset 44 is provided.
  • the relative position can be adjusted in the vertical direction. That is, the B pillar 19 sandwiched in the vehicle width direction by the B pillar abutting surfaces 42c and 44b is vertically moved with respect to the B pillar abutting surfaces 42c and 44b as shown by arrows BB in FIGS. Relative movement is possible.
  • a clearance ⁇ is formed between the outer surface in the vehicle width direction of the B pillar side flanges 42e and 42e of the lower gusset 42 and the inner surface in the vehicle width direction of the B pillar side flanges 44c and 44c of the outer gusset 44.
  • the connecting portion with the pillar 20 ′ is positioned, the front-rear direction intermediate portion to which the roof arch 41 and the B pillar 19 are connected is displaced in the vehicle width direction or the vertical direction. And the connection with the upper end of the B pillar 19 as an intermediate pillar may be hindered.
  • the lower gusset 42 and the upper gusset 43 that connect the roof arch 41 to the roof side rail 12 are in contact with the roof side rail 12 and positioned in the vertical direction and the vehicle width direction.
  • 43a is continuously welded W1 and W4 along the longitudinal direction of the roof side rail 12
  • the roof arch contact surfaces 42b and 43b are continuously welded W2 and W5 along the longitudinal direction of the roof arch 41.
  • the lower gusset 42 and the upper gusset 43 On the other hand, the roof arch 41 is relatively moved in the vehicle width direction (see arrows AA in FIGS. 3 and 5), so that the roof arch 41 is aligned with the lower gusset 42 and the upper gusset 43 without any trouble, They can be welded firmly.
  • the lower gusset 42 and the upper gusset 43 and the roof arch 41 are not only continuously welded W2 and W5 along the vehicle width direction, but also continuously welded W3 and W6 in the front-rear direction perpendicular thereto.
  • the welding strength against both the load in the direction and the load in the vehicle width direction can be further increased.
  • the roof arch 41 has a rectangular cross section that is long in the front-rear direction and short in the up-down direction, and is provided with reinforcing beads 41a, 41a along the longitudinal direction on the upper surface and the lower surface, so that the height in the vertical direction is ensured while ensuring the strength of the roof arch 41.
  • the ceiling height of the passenger compartment can be secured by reducing the size of the vehicle.
  • a gap ⁇ is formed between the upper surfaces of the roof arch side flanges 42d and 42d of the lower gusset 42 and the lower surfaces of the roof arch side flanges 43c and 43c of the upper gusset 43.
  • the roof arch side flanges 42d, 42d, 43c, 43c can be reliably joined by spot welding W7 with spot welding guns and sandwiched, so that the lower gusset 42 and the upper gusset 42
  • the joint strength between the roof side rail 12 and the roof arch 41 via 43 can be increased.
  • the lower gusset 42 and the outer gusset 44 that connect the B pillar 19 as an intermediate pillar to the roof side rail 12 are in contact with the roof side rail 12 and positioned in the vertical direction and the vehicle width direction.
  • 42a and 44a, and B pillar contact surfaces 42c and 44b that contact the B pillar 19 to be positioned in the vehicle width direction and allow vertical movement, and the roof side rail contact surfaces 42a and 44a are arranged on the roof side. Since continuous welding W1 and W9 are performed along the longitudinal direction of the rail 12 and the B pillar contact surfaces 42c and 44b are continuously welded W8 and W10 along the longitudinal direction of the B pillar 19, the roof side rail 12 is moved up and down due to dimensional errors.
  • the B pillar 19 moves up and down with respect to the lower gusset 42 and the outer gusset 44. 3 and by relatively moving the arrow referenced B-B) of FIG. 5, can be a B-pillar 19 without trouble aligned to the lower gusset 42 and the outer gusset 44 is welded them firmly.
  • the lower gusset 42 is lowered by the bulging portions 42f and 42f.
  • the rigidity of the side gusset 42 can be increased to increase the bonding strength with the B pillar 19, and the B pillar side flanges 42e and 42e can be used as the mounting flanges of the door trim.
  • outer gusset 44 when the outer gusset 44 is continuously welded W10 along the longitudinal direction of the B pillar 19, the outer surfaces of the B pillar side flanges 42e and 42e of the lower gusset 42 and the inner surfaces of the B pillar side flanges 44c and 44c of the outer gusset 44.
  • a gap ⁇ is formed between the outer gusset 44 and the roof side rail so that when the outer gusset 44 is positioned and joined, it does not interfere with the lower gusset 42 due to dimensional variations. 12 and the joint surface between the outer gusset 44 and the B pillar 19 are easily brought into close contact with each other, thereby improving the quality of the laser welding W10.
  • the B-pillar side flanges 42e, 42e, 44c, and 44c can be reliably joined by spot welding W11 with a spot welding gun and clamped and joined, so the lower gusset 42 and the outer gusset 42
  • the joint strength between the roof side rail 12 and the B pillar 19 via 44 can be increased, and the support rigidity of the door trim is also improved.
  • the number of parts can be reduced by sharing the lower gusset 42 for welding the B pillar 19 and the roof arch 49 to the roof side rail 12.
  • the gusset 25 that connects the upper end of the C pillar 20 as an intermediate pillar to the roof side rail 12 can also be adjusted in the vertical direction with respect to the upper end of the C pillar 20.
  • the C pillar 20 can be aligned in the vertical direction, and they can be firmly welded.
  • a steel pipe is bent and formed by three-dimensional bending to produce an upper frame 14 in which the A pillar upper rear portion 13 and the roof side rail 12 are continuously integrated.
  • a member in which the roof side rail 12 and the A pillar upper 16 are integrated is manufactured by connecting the A pillar upper front portion 15 to the upper frame 14.
  • the roof side rail 12 and the A pillar upper 16, the A pillar lower 17 and the B pillar which are integrated at predetermined positions on the first welding jig 45 are provided.
  • C pillar 20, D pillar 20 'and lower frame 30 are placed and positioned.
  • the gussets 21 to 28 for connecting these members include a first gusset positioned on the inner side in the vehicle width direction and a second gusset positioned on the outer side in the vehicle width direction. Connect by welding.
  • the first gusset of the gusset 23 that connects the roof side rail 12 and the B pillar 19 is the lower gusset 42 described above
  • the second gusset is the outer gusset 44 described above.
  • the integrated roof side rail 12 and A pillar upper 16 positioned on the first welding jig 45, the A pillar lower 17, and the B pillar 19,
  • the roof side rail 12 is positioned vertically with respect to the upper end of the A pillar lower 17 and the upper end of the D pillar 20 ′, but the upper end of the B pillar 19 and the C pillar 20. It is possible to move in the vertical direction with respect to the upper end.
  • the eight first gussets 21i, 22i, 23i (lower gusset 42), 24i, 25i, 26i, 27i, 28i are integrated by a welding robot (not shown).
  • the roof side rail 12 and the A pillar upper 16, the A pillar lower 17, the B pillar 19, the C pillar 20, the D pillar 20 ′, and the lower frame 30 are welded to each other.
  • the unfinished vehicle body side frame 11 on the first welding jig 45 is reversed and transferred onto the second welding jig 46 for positioning.
  • втори ⁇ ески ⁇ gussets 21o, 22o, 23o outer gussets 44
  • 24o, 25o, 26o, 27o, 28o are used by a welding robot (not shown).
  • first gusset 21i, 22i, 23i lower gusset 42
  • 24i, 25i, 26i, 27i, 28i the roof side rail 12 and the A pillar upper 16 integrated with each other, and the A pillar lower 17;
  • the B pillar 19, the C pillar 20, the D pillar 20 ′, and the lower frame 30 are welded so as to be sandwiched therebetween.
  • the first welding jig 45 and the second welding jig 46 are arranged adjacent to each other, and the welding robot performs the welding operation on the first welding jig 45 and the welding on the second welding jig 46. Shared for work.
  • the upper ends of the B pillars 19, 19 of the pair of left and right vehicle body side frames 11, 11 are welded to both ends of the roof arch 41 in the vehicle width direction via a pair of upper gussets 43, 43.
  • the gussets 23 and 25 that connect the upper end of the B pillar 19 as the intermediate pillar and the upper end of the C pillar 20 as the intermediate pillar to the roof side rail 12 are Since the position can be adjusted in the vertical direction with respect to the upper end and the upper end of the C pillar 20, the B side pillar 19 and the C pillar 20 may interfere with the roof side rail 12 even if there is a vertical dimension error in the roof side rail 12. It can be welded without.
  • the first gussets 21i to 28i are welded to the inner surface in the vehicle width direction of the vehicle body side frame 11 supported by the first welding jig 45, and then the vehicle body side frame 11 is turned upside down to perform the first welding. Since the second gussets 21o to 28o are welded to the outer surface in the vehicle width direction of the vehicle body side frame 11 and supported on the second welding jig 46 adjacent to the jig 45, the vehicle body side frame using the same welding robot is used. Thus, it is possible to weld both side surfaces in the vehicle width direction of 11 and the equipment cost is reduced.
  • the strength of the vehicle body side frame 11 is integrated by integrating the first gussets 21i to 28i and the second gussets 21o to 28o. Can be increased.
  • the gusset 25 that connects the upper end of the C pillar 20 to the roof side rail 12 is continuously welded in the longitudinal direction of the roof side rail 12 and the longitudinal direction of the C pillar 20, so that the roof side rail 12 and the C pillar 20 are strengthened.
  • the strength of the vehicle body side frame 11 can be further increased by welding.
  • the vehicle body side frame 11 of the first embodiment includes the D pillar 20 'as the last pillar, but the vehicle body side frame 11 of the second embodiment does not include the D pillar 20'.
  • C pillar 20 is the last pillar. Therefore, the C pillar 20 is not adjusted in the vertical direction with respect to the roof side rail 12, and the B pillar 19 is the only intermediate pillar that is adjusted in the vertical direction with respect to the roof side rail 12.
  • the roof arch 41 of the first embodiment is made of a pipe material having a rectangular closed cross section
  • the roof arch 41 of the third embodiment is made of a plate material having an open cross section.
  • the roof arch 41 is reinforced by two groove-shaped reinforcing beads 41b and 41b that extend in the vehicle width direction and open upward.
  • Strength is ensured by forming a closed cross-section by cooperating with two groove-shaped reinforcing beads 43d and 43d that extend in the vehicle width direction and open downward.
  • the roof arch 41 is made of a plate material having an open cross section, the height of the roof arch 41 can be lowered to secure the ceiling height of the passenger compartment, and the design flexibility of the shape of the roof arch 41 can be increased.
  • the upper frame 14 is bent by three-dimensional bending, but it may be bent by three-dimensional hot bending or hydroforming.
  • steel pipe of the embodiment can be replaced with a metal pipe such as an aluminum pipe.
  • the cross-sectional shape of the frame such as the B pillar 19 may be any cross-sectional shape such as a circular cross-section, a rectangular cross-section, or a polygonal cross-section.
  • roof side rail 12 does not necessarily have a circular cross section, and may have a rectangular cross section or other irregular cross section.
  • the indoor gusset 42 is L-shaped, but it may be divided into two gussets on the roof arch 41 side and gussets on the B pillar 19 side.
  • the upper outdoor gusset 43 and the side outdoor gusset 44 are not limited to two-dimensional positioning in the vertical direction and the vehicle width direction, and may be one-dimensional positioning.
  • the upper outdoor side gusset 43 may be positioned at least in the vertical direction with respect to the roof side rail 12, and positioning in the vehicle width direction is performed by the indoor side gusset 42, so there is no problem.
  • the side outdoor side gusset 44 may be positioned at least in the vehicle width direction with respect to the roof side rail 12, and the vertical positioning is performed by the indoor side gusset 42, so there is no problem.
  • the B-pillar contact surface 42c of the indoor gusset 42 is welded W8 only in the longitudinal direction of the B-pillar 19, but it is further welded in a direction orthogonal to the longitudinal direction of the B-pillar 19. Is desirable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

第1工程で金属管を三次元曲げ加工してルーフサイドレール(12)およびAピラーアッパー(16)を一体に製造し、第2工程で溶接治具(45,46)上でルーフサイドレール(12)およびAピラーアッパー(16)に対して、Aピラーロア(17)の上端と最後尾のピラー(20,20')の上端とを上下方向および車幅方向に位置決めするとともに、中間のピラー(19)の上端を車幅方向に位置決めし、第3工程でAピラーロア(17)の上端と中間のピラー(19)の上端と最後尾のピラー(20,20')の上端とをルーフサイドレール(12)およびAピラーアッパー(16)にガセット(21,23,25,27)を介して溶接する。第3工程において、中間のピラー(19)の上端をルーフサイドレール(12)に接続するガセット(23)は、中間のピラー(19)の上端に対して上下方向に位置調整可能とする。

Description

自動車の車体製造方法および車体構造
 本発明は、金属管を三次元曲げ加工で曲げ成形してAピラーアッパーおよびルーフサイドレールが一体に連続する上部フレームを製造し、溶接治具上で上部フレームに対してAピラーロアの上端、中間のピラーの上端および最後尾のピラーの上端を溶接する自動車の車体製造方法および車体構造に関する。
 中空閉断面の鋼管を所定形状に三次元熱間曲げ加工することで、高価なプレス金型を必要とせずに自動車のルーフサイドレールを構成するものが、下記特許文献1により公知である。
 また中空閉断面のルーフサイドレールと中空閉断面のルーフアーチとを接続すべく、予め下側ガセットを溶接したルーフサイドレールと、予め上側ガセットを溶接したルーフアーチとを組み合わせ、ルーフサイドレールおよびルーフアーチを上側ガセットおよび下側ガセットを介して一体にレーザー溶接するものが、下記特許文献2により公知である。
日本特開2012-188115号公報 日本特開2010-235014号公報
 ところで、曲げ金型を用いない三次元曲げ加工は加工精度が比較的に低いため、三次元曲げ加工したルーフサイドレールの前後方向中間部の位置が車幅方向や上下方向にずれることが避けられず、位置ずれしたルーフサイドレールにルーフアーチの車幅方向外端部や中間のピラーとしてのBピラーの上端部をガセットを介して溶接しようとすると、ルーフサイドレールの位置誤差により溶接部に隙間が発生してしまい、溶接強度が低下してしまう可能性があった。
 本発明は前述の事情に鑑みてなされたもので、ルーフサイドレールの寸法精度に影響されずに中間のピラーの上端部を強固に溶接することを目的とする。
 上記目的を達成するために、本発明によれば、金属管を三次元曲げ加工で曲げ成形してAピラーアッパーおよびルーフサイドレールが一体に連続する上部フレームを製造する第1工程と、溶接治具上で前記上部フレームに対して、Aピラーロアの上端および最後尾のピラーの上端を上下方向および車幅方向に位置決めするとともに、中間のピラーとしてのBピラーの上端を車幅方向に位置決めする第2工程と、前記Aピラーロアの上端と、前記Bピラーの上端と、前記最後尾のピラーの上端とを前記上部フレームにガセットを介して溶接することで車体側部フレームを組み立てる第3工程とを含み、前記第3工程において、前記Bピラーの上端を前記上部フレームに接続する前記ガセットは、前記Bピラーの上端に対して上下方向に位置調整可能であることを第1の特徴とする自動車の車体製造方法が提案される。
 また本発明によれば、前記第1の特徴に加えて、前記第3工程において、前記Bピラーの上端を前記上部フレームに接続する前記ガセットは、前記上部フレームの長手方向および前記Bピラーの長手方向に連続溶接されることを第2の特徴とする自動車の車体製造方法が提案される。
 また本発明によれば、前記第1または第2の特徴に加えて、前記ガセットは車幅方向一側面側に位置する第1ガセットおよび車幅方向他側面側に位置する第2ガセットからなり、前記第3工程において、第1溶接治具に支持した前記車体側部フレームの車幅方向一側面に前記第1ガセットを溶接した後に、前記車体側部フレームを表裏反転して前記第1溶接治具に隣接する第2溶接治具上に支持し、前記車体側部フレームの車幅方向他側面に前記第2ガセットを溶接することを第3の特徴とする自動車の車体製造方法が提案される。
 また本発明によれば、前記第3の特徴に加えて、前記第3工程において、前記第1ガセットおよび前記第2ガセットどうしをスポット溶接、摩擦攪拌接合あるいはセルフピアスリベット結合により接合することを第4の特徴とする自動車の車体製造方法が提案される。
 また本発明によれば、前記第1~第4の何れか1つの特徴に加えて、前記Aピラーロアおよび前記最後尾のピラーは鋼管製であり、前記Bピラーは三次元曲げ加工した鋼管製であり、前記Aピラーロアの下端と、前記Bピラーの下端と、前記最後尾のピラーの下端とが接続される下部フレームは、ロールフォーム成形したインナー部材およびアウター部材を接合フランジで接合した中空閉断面部材であることを第5の特徴とする自動車の車体製造方法が提案される。
 また本発明によれば、前記第1~第5の何れか1つの特徴に加えて、一対の前記車体側部フレームの前記Bピラーの上端をルーフアーチの車幅方向両端に接続する第4工程を含み、前記第4工程において、前記Bピラーの上端を前記上部フレームに接続する前記ガセットは前記ルーフアーチの車幅方向両端に対して車幅方向に位置調整可能であることを第6の特徴とする自動車の車体製造方法が提案される。
 また本発明によれば、前記第1~第6の何れか1つの特徴に加えて、前記第2工程において、Dピラーの上端を上下方向および車幅方向に位置決めするとともに、中間のピラーとしてのCピラーの上端を車幅方向に位置決めし、前記第3工程において、前記Aピラーロアの上端と、前記Bピラーの上端と、前記Cピラーの上端と、前記Dピラーの上端とを前記上部フレームに前記ガセットを介して溶接することで前記車体側部フレームを組み立て、前記Cピラーの上端を前記上部フレームに接続する前記ガセットは、前記Cピラーの上端に対して上下方向に位置調整可能であることを第7の特徴とする自動車の車体製造方法が提案される。
 また本発明によれば、前記第7の特徴に加えて、前記第3工程において、前記Cピラーの上端を前記上部フレームに接続する前記ガセットは、前記上部フレームの長手方向および前記Cピラーの長手方向に連続溶接されることを第8の特徴とする自動車の車体製造方法が提案される。
 また本発明によれば、前記第7または第8の特徴に加えて、前記第3工程において、前記ガセットは車幅方向一側面側に位置する第1ガセットおよび車幅方向他側面側に位置する第2ガセットからなり、前記第1ガセットおよび前記第2ガセットどうしをスポット溶接、摩擦攪拌接合あるいはセルフピアスリベット結合により接合することを第9の特徴とする自動車の車体製造方法が提案される。
 また本発明によれば、前記第3の特徴に記載の自動車の車体製造方法により製造された自動車の車体構造であって、前記第1ガセットは、前記ルーフサイドレールに当接して上下方向および車幅方向に位置決めする位置決め当接面と、前記中間のピラーまたはルーフアーチに当接し、該中間のピラーを車幅方向に位置決めするとともに上下方向の移動を許容するスライド当接面、または前記ルーフアーチを上下方向に位置決めするとともに車幅方向の移動を許容するスライド当接面を備え、前記位置決め当接面を前記ルーフサイドレールの長手方向に沿って連続溶接するとともに前記スライド当接面を前記中間のピラーまたは前記ルーフアーチの長手方向に沿って連続溶接したことを第10の特徴とする自動車の車体構造が提案される。
 また本発明によれば、前記第10の特徴に加えて、前記第1ガセットの前記スライド当接面を、更に前記中間のピラーまたは前記ルーフアーチの長手方向と直交する方向に沿って連続溶接したことを第11の特徴とする自動車の車体構造が提案される。
 また本発明によれば、前記第11の特徴に加えて、前記ルーフアーチは前後方向に長く上下方向に短い矩形状断面であり、上面および下面に長手方向に沿う補強ビードを備えることを第12の特徴とする自動車の車体構造が提案される。
 また本発明によれば、前記第10~第12の何れか1つの特徴に加えて、断面L字状に形成された前記第1ガセットは、前記中間のピラーに当接して該中間のピラーを車幅方向に位置決めするとともに上下方向の移動を許容するスライド当接面と、前記ルーフアーチに当接して該ルーフアーチを上下方向に位置決めするとともに車幅方向の移動を許容するスライド当接面とを一体に備え、前記両スライド当接面を前記中間のピラーおよび前記ルーフアーチの長手方向に沿って連続溶接したことを第13の特徴とする自動車の車体構造が提案される。
 また本発明によれば、前記第13の特徴に加えて、前記中間のピラーに当接する前記第1ガセットの前記ピラー当接面は、前記位置決め当接面との間に膨出部およびフランジ部を備えることを第14の特徴とする自動車の車体構造が提案される。
 また本発明によれば、前記第13または第14の特徴に加えて、前記第1ガセットに対峙して前記ルーフサイドレールに連続溶接される前記第2ガセットに加えて、同じく前記第1ガセットに対峙して前記ルーフサイドレールに連続溶接される第3ガセットを備え、前記中間のピラーまたは前記ルーフアーチの外側で、前記第1ガセットおよび前記第2ガセットの周縁フランジどうしを離間した状態でスポット溶接して前記中間のピラーを車幅方向両側から挟み、または、前記第1ガセットおよび前記第3ガセットの周縁フランジどうしを離間した状態でスポット溶接して前記ルーフアーチを上下から挟んだことを第15の特徴とする自動車の車体構造が提案される。
 また本発明によれば、前記第10~第15の何れか1つの特徴に加えて、前記金属管製のルーフアーチを開放断面のルーフアーチで置換したことを第16の特徴とする自動車の車体構造が提案される。
 尚、実施の形態のBピラー19は本発明の中間のピラーに対応し、実施の形態のCピラー20は本発明の中間のピラーまたは最後尾のピラーに対応し、実施の形態のDピラー20′は本発明の最後尾のピラーに対応し、実施の形態の下側ガセット42は本発明の第1ガセットに対応し、実施の形態の外側ガセット44は本発明の第2ガセットに対応し、実施の形態の上側ガセット43は本発明の第3ガセットに対応し、実施の形態の第1溶接治具45および第2溶接治具46は本発明の溶接治具に対応し、実施の形態の実施のルーフサイドレール当接面42aは本発明の位置決め当接面に対応し、実施の形態のルーフアーチ当接面42bおよびBピラー当接面42cは本発明のスライド当接面に対応し、実施の形態のルーフアーチ側フランジ42d、Bピラー側フランジ42e、ルーフアーチ側フランジ43cおよびBピラー側フランジ44cは本発明の周縁フランジに対応し、実施の形態のBピラー側フランジ42eは本発明のフランジ部に対応する。
 本発明の第1の特徴によれば、第1工程で金属管を三次元曲げ加工してAピラーアッパーおよびルーフサイドレールが一体に連続する上部フレームを製造し、第2工程で溶接治具上で上部フレームに対して、Aピラーロアの上端および最後尾のピラーの上端を上下方向および車幅方向に位置決めするとともに、中間のピラーとしてのBピラーの上端を車幅方向に位置決めし、第3工程でAピラーロアの上端と、Bピラーの上端と、最後尾のピラーの上端とを上部フレームにガセットを介して溶接することで車体側部フレームを組み立てる。その第3工程において、中間のピラーとしてのBピラーの上端を上部フレームに接続するガセットは、Bピラーの上端に対して上下方向に位置調整可能であるので、上部フレームに上下方向の寸法誤差が存在しても、上部フレームおよび中間のピラーとしてのBピラーをガセットを介して支障なく溶接することができる。
 また本発明の第2の特徴によれば、第3工程において、Bピラーの上端を上部フレームに接続するガセットは、上部フレームの長手方向およびBピラーの長手方向に連続溶接されるので、上部フレームおよび中間のピラーとしてのBピラーを強固に溶接して車体側部フレームの強度を高めることができる。
 また本発明の第3の特徴によれば、ガセットは車幅方向一側面側に位置する第1ガセットおよび車幅方向他側面側に位置する第2ガセットからなり、第3工程において、第1溶接治具に支持した車体側部フレームの車幅方向一側面に第1ガセットを溶接した後に、車体側部フレームを表裏反転して第1溶接治具に隣接する第2溶接治具上に支持し、車体側部フレームの車幅方向他側面に第2ガセットを溶接するので、同一の溶接装置を用いて車体側部フレームの車幅方向両側面にガセットを溶接することが可能となって設備費が削減される。
 また本発明の第4の特徴によれば、第3工程において、第1ガセットおよび第2ガセットどうしをスポット溶接、摩擦攪拌接合あるいはセルフピアスリベット結合により接合するので、第1ガセットおよび第2ガセットを一体化して車体側部フレームの強度を更に高めることができる。
 また本発明の第5の特徴によれば、Aピラーロアおよび最後尾のピラーは鋼管製であるので、断面を小さくして軽量化しても必要な強度を確保することができ、しかも製造が容易で安価である。Bピラーは三次元曲げ加工した鋼管製であるので、断面を小さくして軽量化しても必要な強度を確保することができる。Aピラーロアの下端と、Bピラーの下端と、最後尾のピラーの下端とが接続される下部フレームは、ロールフォーム成形したインナー部材およびアウター部材を接合フランジで接合した中空閉断面部材であり、より高強度の材料を成形し易いので側面衝突に対する強度を高めることができ、しかも製造が容易で安価である。
 また本発明の第6の特徴によれば、一対の車体側部フレームのBピラーの上端をルーフアーチの車幅方向両端に接続する第4工程を含み、第4工程において、中間のピラーとしてのBピラーの上端を上部フレームに接続するガセットはルーフアーチの車幅方向両端に対して車幅方向に位置調整可能であるので、上部フレームに車幅方向の寸法誤差が存在しても、上部フレームおよびルーフアーチをガセットを介して支障なく溶接できるだけでなく、Bピラーおよびルーフアーチの溶接に共通のガセットを使用することで部品点数を削減することができる。
 また本発明の第7の特徴によれば、第2工程において、Dピラーの上端を上下方向および車幅方向に位置決めするとともに、中間のピラーとしてのCピラーの上端を車幅方向に位置決めし、第3工程において、Aピラーロアの上端と、Bピラーの上端と、Cピラーの上端と、Dピラーの上端とを上部フレームにガセットを介して溶接することで車体側部フレームを組み立て、中間のピラーとしてのCピラーの上端を上部フレームに接続するガセットは、Cピラーの上端に対して上下方向に位置調整可能であるので、上部フレームに上下方向の寸法誤差が存在しても、上部フレームおよびCピラーをガセットを介して支障なく溶接することができる。
 また本発明の第8の特徴によれば、第3工程において、Cピラーの上端を上部フレームに接続するガセットは、上部フレームの長手方向およびCピラーの長手方向に連続溶接されるので、上部フレームおよび中間のピラーとしてのCピラーを強固に溶接して車体側部フレームの強度を高めることができる。
 また本発明の第9の特徴によれば、第3工程において、ガセットは車幅方向一側面側に位置する第1ガセットおよび車幅方向他側面側に位置する第2ガセットからなり、第1ガセットおよび第2ガセットどうしをスポット溶接、摩擦攪拌接合あるいはセルフピアスリベット結合により接合するので、第1ガセットおよび第2ガセットを一体化して車体側部フレームの強度を高めることができる。
 また本発明の第10の特徴によれば、第1ガセットは、ルーフサイドレールに当接して上下方向および車幅方向に位置決めする位置決め当接面と、中間のピラーまたはルーフアーチに当接し、該中間のピラーを車幅方向に位置決めするとともに上下方向の移動を許容するスライド当接面、または該ルーフアーチを上下方向に位置決めするとともに車幅方向の移動を許容するスライド当接面を備え、位置決め当接面をルーフサイドレールの長手方向に沿って連続溶接するとともにスライド当接面を中間のピラーまたは前記ルーフアーチの長手方向に沿って連続溶接したので、ルーフサイドレールが寸法誤差で上下方向または車幅方向に位置ずれしても、第1のガセットと中間のピラーまたはルーフアーチとを支障なく位置合わせし、連続溶接により強固に接合することができる。
 また本発明の第11の特徴によれば、第1ガセットのスライド当接面を、更に中間のピラーまたはルーフアーチの長手方向と直交する方向に沿って連続溶接したので、上下方向荷重、前後方向の荷重および車幅方向の荷重の全てに対する溶接強度を高めることができる。
 また本発明の第12の特徴によれば、ルーフアーチは前後方向に長く上下方向に短い矩形状断面であり、上面および下面に長手方向に沿う補強ビードを備えるので、ルーフアーチの強度を確保しながら上下方向の高さを小さくして車室の天井高を確保することができる。
 また本発明の第13の特徴によれば、断面L字状に形成された第1ガセットは、中間のピラーに当接して該中間のピラーを車幅方向に位置決めするとともに上下方向の移動を許容するスライド当接面と、ルーフアーチに当接して該ルーフアーチを上下方向に位置決めするとともに車幅方向の移動を許容するスライド当接面と一体に備え、両スライド当接面を中間のピラーおよびルーフアーチの長手方向に沿って連続溶接したので、ガセットの数を最小限に抑えながら、ルーフサイドレールが寸法誤差で中間のピラーおよびルーフアーチに対して上下方向および車幅方向に位置ずれしても、第1のガセットと中間のピラーおよびルーフアーチとを支障なく位置合わせし、連続溶接により強固に接合することができる。
 また本発明の第14の特徴によれば、中間のピラーに当接する第1のガセットのピラー当接面は、位置決め当接面との間に膨出部およびフランジ部を備えるので、膨出部により第1のガセットの剛性を高めて中間のピラーとの接合強度を高めることができ、しかもフランジ部をドアトリムの取付フランジとして利用することができる。
 また本発明の第15の特徴によれば、第1ガセットに対峙してルーフサイドレールに連続溶接される前記第2ガセットに加えて、同じく第1ガセットに対峙してルーフサイドレールに連続溶接される第3ガセットを備え、中間のピラーまたはルーフアーチの外側で、第1ガセットおよび第2ガセッの周縁フランジどうしを離間した状態でスポット溶接して中間のピラーを車幅方向両側から挟み、または、第1ガセットおよび第3ガセットの周縁フランジどうしを離間した状態でスポット溶接してルーフアーチを上下から挟んだので、ピラーまたはルーフサイドレールとルーフアーチとの接合強度が一層向上する。
 また本発明の第16の特徴によれば、金属管製のルーフアーチを開放断面のルーフアーチで置換したので、ルーフアーチの高さを低くして車室の天井高を確保するとともにルーフアーチの形状の設計自由度が高めることができる。
図1は自動車の車体側部フレームの斜視図である。(第1の実施の形態) 図2は図1の2方向矢視図である。(第1の実施の形態) 図3は図2の3方向矢視図である。(第1の実施の形態) 図4は図2の4方向矢視図である。(第1の実施の形態) 図5は図2の5-5線拡大断面図である。(第1の実施の形態) 図6は図2の6-6線拡大断面図である。(第1の実施の形態) 図7は図2の7-7線拡大断面図である。(第1の実施の形態) 図8は第1工程および第2工程の説明図である。(第1の実施の形態) 図9は第3工程の説明図である。(第1の実施の形態) 図10は第3工程の説明図である。(第1の実施の形態) 図11は図8に対応する図である。(第2の実施の形態) 図12は図6に対応する図である。(第3の実施の形態)
11    車体側部フレーム
12    ルーフサイドレール
14    上部フレーム
16    Aピラーアッパー
17    Aピラーロア
19    Bピラー(中間のピラー)
20    Cピラー(中間のピラーまたは最後尾のピラー)
20′   Dピラー(最後尾のピラー)
21    ガセット
23    ガセット
25    ガセット
25i   第1ガセット
25o   第2ガセット
27    ガセット
30    下部フレーム
41    ルーフアーチ
41a      補強ビード
42    下側ガセット(第1ガセット)
42a      ルーフサイドレール当接面(位置決め当接面)
42b      ルーフアーチ当接面(スライド当接面)
42c      Bピラー当接面(スライド当接面)
42d      ルーフアーチ側フランジ(周縁フランジ)
42e      Bピラー側フランジ(周縁フランジまたはフランジ部)
42f      膨出部
43        上側ガセット(第3ガセット)
43c      ルーフアーチ側フランジ(周縁フランジ)
44    外側ガセット(第2ガセット)
44c      Bピラー側フランジ(周縁フランジ)
45    第1溶接治具(溶接治具)
46    第2溶接治具(溶接治具)
47    インナー部材
47a   接合フランジ
48    アウター部材
48a   接合フランジ
W1    溶接
W2    溶接
W3    溶接
W4    溶接
W7    溶接
W8    溶接
W9    溶接
W11   溶接
 以下、添付図面に基づいて本発明の実施の形態を説明する。尚、本明細書において前後方向、左右方向(車幅方向)および上下方向とは、運転席に着座した乗員を基準として定義される。
第1の実施の形態
 先ず、図1~図10に基づいて本発明の第1の実施の形態を説明する。
 図1に示すように、自動車の車体側部フレーム11は、ルーフサイドレール12およびAピラーアッパー後部13を一体化した円形断面の鋼管よりなる上部フレーム14を備える。上部フレーム14は、直線状の鋼管を三次元曲げ加工により所定形状に湾曲させたもので構成される。Aピラーアッパー後部13の前端には、プレス加工した鋼板を溶接して中空閉断面に構成したAピラーアッパー前部15が接続されており、Aピラーアッパー後部13およびAピラーアッパー前部15がAピラーアッパー16を構成する。
 上部フレーム14の下方には中空閉断面に構成したサイドシル18からリヤフレーム29へと連続する下部フレーム30が配置されており、Aピラーアッパー前部15とサイドシル18の前端とがY字状に形成されたAピラーロア17で上下方向に接続され、ルーフサイドレール12の前後方向中間部とサイドシル18の前後方向中間部とがBピラー19で接続され、ルーフサイドレール12の前後方向中間部とサイドシル18の後端(リヤフレーム29の前端)とがCピラー20で上下方向に接続され、ルーフサイドレール12の後端とリヤフレーム29の後端とがDピラー20′で上下方向に接続される。
 下部フレーム30の前部を構成するサイドシル18は、ロールフォーミング加工したインナー部材47およびアウター部材48を接合フランジ47a,48aにおいて接合して大断面積の中空閉断面に構成したもので、製造が容易で側面衝突に対して高い強度を有している。
 Aピラーロア17は、プレス加工した鋼板を溶接して中空閉断面に構成した上部17aと四角形断面の直線状の鋼管からなる下部17bとを一体に溶接したもので、上部17aの上端はAピラーアッパー16にガセット21を介して溶接され、下部17bの下端はガセット22を介してサイドシル18に溶接される。Bピラー19は三次元曲げ加工した四角形断面の鋼管からなり、上端がガセット23を介してルーフサイドレール12に溶接され、下端がガセット24を介してサイドシル18に溶接される。Cピラー20は三次元曲げ加工した円形断面の鋼管からなり、上端がガセット25を介してルーフサイドレール12に溶接され、下端がガセット26を介してサイドシル18およびリヤフレーム29の連続部に溶接される。Dピラー20′は三次元曲げ加工した円形断面の鋼管からなり、上端がガセット27を介してルーフサイドレール12に溶接され、下端がガセット28を介してリヤフレーム29に溶接される。これらのガセット21~28は車幅方向内外に2分割されており、Aピラーロア17、Bピラー19、Cピラー20およびDピラー20′を車幅方向両側から挟んで上部フレーム14および下部フレーム30に接続する。
 またAピラーロア17の下部17b、Bピラー19、Cピラー20およびDピラー20′は一定断面の鋼管製であるので、それらの断面を小さくして軽量化しても必要な強度を確保することができる。
 ルーフサイドレール12にBピラー19を接続する前記ガセット23により、車幅方向に延びるルーフアーチ41の端部が接続される。つまり、前記ガセット23によりルーフサイドレール12、Bピラー19およびルーフアーチ41の三つの部材が一体に接続される。
 次に、図2~図7に基づいて、ルーフサイドレール12、Bピラー19およびルーフアーチ41の接続部の構造を詳述する。
 ガセット23は、ルーフサイドレール12、Bピラー19およびルーフアーチ41を接続する下側ガセット42と、ルーフサイドレール12およびルーフアーチ41を接続する上側ガセット43と、ルーフサイドレール12およびBピラー19を接続する外側ガセット44とからなる。
 下側ガセット42は前後方向に見てL字状に形成されており、円形断面のルーフサイドレール12の外周面に沿うルーフサイドレール当接面42aと、ルーフサイドレール当接面42aの上端から車幅方向内側に延びてルーフアーチ41の下面に接続されるルーフアーチ当接面42bと、ルーフサイドレール当接面42aの下端から下側に延びてBピラー19の車幅方向内面に接続されるBピラー19当接面42cと、ルーフサイドレール当接面42aおよびルーフアーチ当接面42b間に設けられた前後一対のルーフアーチ側フランジ42d,42dと、ルーフサイドレール当接面42aおよびBピラー19当接面42c間に設けられた前後一対のBピラー側フランジ42e,42eと、Bピラー当接面42cの上端の前後両側から車幅方向内側に膨出する前後一対の膨出部42f,42fとを備える。
 上側ガセット43は、円形断面のルーフサイドレール12の外周面に沿うルーフサイドレール当接面43aと、ルーフサイドレール当接面42aから車幅方向内側に延びてルーフアーチ41の上面に接続されるルーフアーチ当接面43bと、ルーフサイドレール当接面43aおよびルーフアーチ当接面43b間に設けられた前後一対のルーフアーチ側フランジ43c,43cとを備える。
 外側ガセット44は、円形断面のルーフサイドレール12の外周面に沿うルーフサイドレール当接面44aと、ルーフサイドレール当接面42aから下方に延びてBピラー19の車幅方向外面に接続されるBピラー当接面44bと、ルーフサイドレール当接面44aおよびBピラー当接面44b間に設けられた前後一対のBピラー側フランジ44c,44cとを備える。
 ルーフアーチ41は上下方向寸法が小さく前後方向寸法が大きい矩形状断面のパイプ材からなり、その上下面に車幅方向に延びる溝状の補強ビード41a,41aが形成される。またBピラー19は車幅方向寸法が小さく前後方向寸法が大きい矩形状断面のパイプ材からなり、その車幅方向内外面に上下方向に延びる溝状の補強ビード19aが形成される。
 下側ガセット42は、ルーフサイドレール当接面42aがルーフサイドレール12の長手方向(前後方向)に沿ってレーザー溶接W1され、ルーフアーチ当接面42bがルーフアーチ41の下面にその長手方向(車幅方向)に沿ってMIG溶接W2されるとともに長手方向に対して直交する方向(前後方向)に沿ってMIG溶接W3される(図2、図3および図5参照)。
 上側ガセット43は、ルーフサイドレール当接面43aがルーフサイドレール12の長手方向(前後方向)に沿ってレーザー溶接W4され、ルーフアーチ当接面43bがルーフアーチ41の上面の長手方向(車幅方向)に沿ってレーザー溶接W5されるとともに長手方向に対して直交する方向(前後方向)に沿ってレーザー溶接W6される(図2および図5参照)。そして上側ガセット43のルーフアーチ側フランジ43c,43cと下側ガセット42のルーフアーチ側フランジ42d,42dとが上下方向に重ね合わされてスポット溶接W7される(図2および図5参照)。
 このとき、図6に示すように、下側ガセット42のルーフアーチ側フランジ42d,42dの上面と、上側ガセット43のルーフアーチ側フランジ43c,43cの下面との間には隙間αが形成される。
 下側ガセット42は、更にBピラー当接面42cがBピラー19の長手方向(上下方向)に沿ってレーザー溶接W8される(図2および図3参照)。そして外側ガセット44は、ルーフサイドレール当接面44aがルーフサイドレール12の長手方向(前後方向)に沿ってレーザー溶接W9され、Bピラー当接面44bがBピラー19の車幅方向外面の長手方向(上下方向)に沿ってレーザー溶接W10され、そして外側ガセット44のBピラー側フランジ44c,44cと下側ガセット42のBピラー側フランジ42e,42eとが車幅方向に重ね合わされてスポット溶接W11される(図3および図4参照)。
 このとき、下側ガセット42、上側ガセット43および外側ガセット44は、ルーフサイドレール12に対して前後方向、上下方向および車幅方向に位置決めされる。つまりルーフサイドレール12に対する下側ガセット42、上側ガセット43および外側ガセット44の位置は一義的に決定される。しかしながら、下側ガセット42のルーフアーチ当接面42bおよび上側ガセット43のルーフアーチ当接面43bに対するルーフアーチ41の相対位置は車幅方向に調節自在である。即ち、ルーフアーチ当接面42b,43bにより上下方向に挟まれたルーフアーチ41は、図3および図5において矢印A-Aで示すようにルーフアーチ当接面42b,43bに対して車幅方向に相対移動可能である。
 図7に示すように、上述したルーフアーチ41の場合と同様に、下側ガセット42のBピラー当接面42cおよび外側ガセット44のBピラー当接面44bに対する中間のピラーとしてのBピラー19の相対位置は上下方向に調節自在である。即ち、Bピラー当接面42c,44bにより車幅方向に挟まれたBピラー19は、図3および図5において矢印B-Bで示すようにBピラー当接面42c,44bに対して上下方向に相対移動可能である。
 また下側ガセット42のBピラー側フランジ42e,42eの車幅方向外面と、外側ガセット44のBピラー側フランジ44c,44cの車幅方向内面との間には隙間αが形成される。
 次に、上記構成を備えた本発明の実施の形態の作用を説明する。
 ルーフサイドレール12およびAピラーアッパー後部13を一体に三次元曲げ加工した上部フレーム14は若干の寸法誤差が発生することが避けられないため、前端のAピラーロア17との接続部および後端のDピラー20′との接続部を位置決めすると、ルーフアーチ41およびBピラー19が接続される前後方向中間部が車幅方向あるいは上下方向に位置ずれしてしまい、ルーフアーチ41の車幅方向外端部との接続や中間のピラーとしてのBピラー19の上端部との接続に支障を来す可能性がある。
 しかしながら、本実施の形態によれば、ルーフアーチ41をルーフサイドレール12に接続する下側ガセット42および上側ガセット43は、ルーフサイドレール12に当接して上下方向および車幅方向に位置決めするルーフサイドレール当接面42a,43aと、ルーフアーチ41に当接して上下方向に位置決めするとともに車幅方向の移動を許容するルーフアーチ当接面42b,43bとを備え、ルーフサイドレール当接面42a,43aをルーフサイドレール12の長手方向に沿って連続溶接W1,W4するとともにルーフアーチ当接面42b,43bをルーフアーチ41の長手方向に沿って連続溶接W2,W5したので、ルーフサイドレール12が寸法誤差で車幅方向に位置ずれしても、下側ガセット42および上側ガセット43に対してルーフアーチ41が車幅方向(図3および図5の矢印A-A参照)に相対移動することで、下側ガセット42および上側ガセット43に対してルーフアーチ41を支障なく位置合わせし、それらを強固に溶接することができる。
 また下側ガセット42および上側ガセット43とルーフアーチ41とは、車幅方向に沿って連続溶接W2,W5されるだけでなく、それと直交する前後方向にも連続溶接W3,W6されるので、前後方向の荷重および車幅方向の荷重の両方に対する溶接強度を一層高めることができる。しかもルーフアーチ41は前後方向に長く上下方向に短い矩形状断面であり、上面および下面に長手方向に沿う補強ビード41a,41aを備えるので、ルーフアーチ41の強度を確保しながら上下方向の高さを小さくして車室の天井高を確保することができる。
 また下側ガセット42のルーフアーチ側フランジ42d,42dの上面と、上側ガセット43のルーフアーチ側フランジ43c,43cの下面との間には隙間αが形成されており、これにより、上側ガセット43を位置決めして接合する際に、寸法のばらつきにより下側ガセット42と干渉することがなくなり、上側ガセット43とルーフサイドレール12との接合面や、上側ガセット43とルーフアーチ41との接合面が密着し易くなることにより、レーザー溶接W4,W5,W6の品質が向上する。また前記隙間αが存在してもルーフアーチ側フランジ42d,42d,43c,43cどうしをスポット溶接ガンでスポット溶接W7して挟圧接合することで確実に接合できるため、下側ガセット42および上側ガセット43を介してのルーフサイドレール12とルーフアーチ41との接合強度を高めることができる。
 また中間のピラーとしてのBピラー19をルーフサイドレール12に接続する下側ガセット42および外側ガセット44は、ルーフサイドレール12に当接して上下方向および車幅方向に位置決めするルーフサイドレール当接面42a,44aと、Bピラー19に当接して車幅方向に位置決めするとともに上下方向の移動を許容するBピラー当接面42c,44bとを備え、ルーフサイドレール当接面42a,44aをルーフサイドレール12の長手方向に沿って連続溶接W1,W9するとともにBピラー当接面42c,44bをBピラー19の長手方向に沿って連続溶接W8,W10したので、ルーフサイドレール12が寸法誤差で上下方向に位置ずれしても、下側ガセット42および外側ガセット44に対してBピラー19が上下方向(図3および図5の矢印B-B参照)に相対移動することで、下側ガセット42および外側ガセット44に対してBピラー19を支障なく位置合わせし、それらを強固に溶接することができる。
 しかも下側ガセット42のBピラー当接面42cはルーフサイドレール当接面42aとの間に膨出部42f,42fおよびBピラー側フランジ42e,42eを備えるので、膨出部42f,42fにより下側ガセット42の剛性を高めてBピラー19との接合強度を高めることができ、しかもBピラー側フランジ42e,42eをドアトリムの取付フランジとして利用することができる。
 また外側ガセット44をBピラー19の長手方向に沿って連続溶接W10する際に、下側ガセット42のBピラー側フランジ42e,42eの外面と、外側ガセット44のBピラー側フランジ44c,44cの内面との間には隙間αが形成されており、これにより、外側ガセット44を位置決めして接合する際に、寸法のばらつきにより下側ガセット42と干渉することがなくなり、外側ガセット44とルーフサイドレール12との接合面や、外側ガセット44とBピラー19との接合面が密着し易くなることにより、レーザー溶接W10の品質が向上する。また前記隙間αが存在してもBピラー側フランジ42e,42e,44c,44cどうしをスポット溶接ガンでスポット溶接W11して挟圧接合することで確実に接合できるため、下側ガセット42および外側ガセット44を介してのルーフサイドレール12とBピラー19との接合強度を高めることができ、かつドアトリムの支持剛性も向上する。
 更に、ルーフサイドレール12に対するBピラー19およびルーフアーチ49の溶接に下側ガセット42を共用することで部品点数を削減することができる。
 尚、本実施の形態では、ルーフサイドレール12に中間のピラーとしてのCピラー20の上端を接続するガセット25も、Cピラー20の上端に対して上下方向に位置調節自在であり、これによりガセット25に対してCピラー20を上下方向に位置合わせし、それらを強固に溶接することができる。
 次に、図8~図10に基づいて車体側部フレーム11の製造工程について説明する。
 先ず第1工程において、図8(A)に示すように、鋼管を三次元曲げ加工で曲げ成形してAピラーアッパー後部13およびルーフサイドレール12が一体に連続する上部フレーム14を製造し、この上部フレーム14にAピラーアッパー前部15を接続してルーフサイドレール12およびAピラーアッパー16を一体化した部材を製造する。第1工程では、更に下部フレーム30、Aピラーロア17、Bピラー19、Cピラー20およびDピラー20′が製造される。
 続く第2工程において、図8(B)に示すように、第1溶接治具45上の所定位置に、一体化されたルーフサイドレール12およびAピラーアッパー16と、Aピラーロア17と、Bピラー19と、Cピラー20と、Dピラー20′と、下部フレーム30とを載置して位置決めする。
 これらの部材を接続する前記ガセット21~28は、車幅方向内側に位置する第1ガセットと、車幅方向外側に位置する第2ガセットとからなり、第1ガセットおよび第2ガセットで前記各部材を挟んで溶接により接続する。本実施の形態では、ルーフサイドレール12およびBピラー19を接続するガセット23の第1ガセットは前述した下側ガセット42であり、第2ガセットは前述した外側ガセット44である。
 続く第3工程において、図9(C)に示すように、第1溶接治具45上に位置決めした一体化されたルーフサイドレール12およびAピラーアッパー16と、Aピラーロア17と、Bピラー19と、Cピラー20と、Dピラー20′と、下部フレーム30との交差部上に車幅方向内側の第1ガセット21i,22i,23i(下側ガセット42),24i,25i,26i,27i,28iを載置する。このとき、第1溶接治具45において、ルーフサイドレール12は、Aピラーロア17の上端およびDピラー20′の上端に対して上下方向に位置決めされているが、Bピラー19の上端およびCピラー20の上端に対して上下方向に移動可能になっている。
 続いて、図9(D)に示すように、図示せぬ溶接ロボットにより、8個の第1ガセット21i,22i,23i(下側ガセット42),24i,25i,26i,27i,28iを一体化されたルーフサイドレール12およびAピラーアッパー16と、Aピラーロア17と、Bピラー19と、Cピラー20と、Dピラー20′と、下部フレーム30との交差部に溶接する。
 続いて、図10(E)に示すように、第1溶接治具45上の未完成の車体側部フレーム11を表裏反転して第2溶接治具46上に移載して位置決めし、8個の第1ガセット21i,22i,23i(下側ガセット42),24i,25i,26i,27i,28iに8個の第2ガセット21o,22o,23o(外側ガセット44),24o,25o,26o,27o,28oを重ね合わされる。
 続いて、図10(F)に示すように、図示せぬ溶接ロボットにより、8個の第2ガセット21o,22o,23o(外側ガセット44),24o,25o,26o,27o,28oと、8個の第1ガセット21i,22i,23i(下側ガセット42),24i,25i,26i,27i,28iとの間に、一体化されたルーフサイドレール12およびAピラーアッパー16と、Aピラーロア17と、Bピラー19と、Cピラー20と、Dピラー20′と、下部フレーム30とを挟み込むように溶接する。このとき、第1溶接治具45および第2溶接治具46は相互に隣接して配置されており、溶接ロボットは第1溶接治具45上の溶接作業および第2溶接治具46上の溶接作業に共用される。
 そして第4工程において、左右一対の車体側部フレーム11,11のBピラー19,19の上端をルーフアーチ41の車幅方向両端に一対の上側ガセット43,43を介して溶接する。
 以上のように、第3工程において、中間のピラーとしてのBピラー19の上端および同じく中間のピラーとしてのCピラー20の上端をルーフサイドレール12に接続するガセット23,25は、Bピラー19の上端およびCピラー20の上端に対して上下方向に位置調整可能であるので、ルーフサイドレール12に上下方向の寸法誤差が存在しても、Bピラー19およびCピラー20をルーフサイドレール12に支障なく溶接することができる。
 また第3工程において、第1溶接治具45に支持した車体側部フレーム11の車幅方向内面に第1ガセット21i~28iを溶接した後に、車体側部フレーム11を表裏反転して第1溶接治具45に隣接する第2溶接治具46上に支持し、車体側部フレーム11の車幅方向外面に第2ガセット21o~28oを溶接するので、同一の溶接ロボットを用いて車体側部フレーム11の車幅方向両側面を溶接することが可能となって設備費が削減される。
 また第3工程において、第1ガセット21i~28iおよび第2ガセット21o~28oどうしをスポット溶接するので、第1ガセット21i~28iおよび第2ガセット21o~28oを一体化して車体側部フレーム11の強度を高めることができる。
 またCピラー20の上端をルーフサイドレール12に接続するガセット25は、ルーフサイドレール12の長手方向およびCピラー20の長手方向に連続溶接されるので、ルーフサイドレール12およびCピラー20を強固に溶接して車体側部フレーム11の強度を更に高めることができる。
第2の実施の形態
 次に、図11に基づいて本発明の第2の実施の形態を説明する。
 第1の実施の形態の車体側部フレーム11は最後尾のピラーとしてDピラー20′を備えているが、第2の実施の形態の車体側部フレーム11はDピラー20′を備えておらず、Cピラー20が最後尾のピラーである。従って、Cピラー20はルーフサイドレール12に対して上下方向に位置調整されず、ルーフサイドレール12に対して上下方向に位置調整される中間のピラーはBピラー19だけである。
第3の実施の形態
 次に、図12に基づいて本発明の第3の実施の形態を説明する。
 第1の実施の形態のルーフアーチ41は矩形状閉断面のパイプ材で構成されているが、第3の実施の形態のルーフアーチ41は開断面の板材で構成される。ルーフアーチ41は、車幅方向に延びて上方に開放する2本の溝状の補強ビード41b,41bにより補強されており、ルーフアーチ41の車幅方向外端部では、上部室外側ガセット43の車幅方向に延びて下方に開放する2本の溝状の補強ビード43d,43dとの協働により閉断面を構成して強度が確保される。
 しかもルーフアーチ41を開断面の板材で構成したことにより、ルーフアーチ41の高さを低くして車室の天井高を確保するとともにルーフアーチ41の形状の設計自由度が高めることができる。
 以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
 例えば、実施の形態では上部フレーム14を三次元曲げ加工で曲げ成形しているが、それを三次元熱間曲げ加工やハイドロフォーム加工で曲げ成形しても良い。
 また実施の形態の鋼管はアルミニウム管等の金属管で置き換えることができる。
 またBピラー19等のフレームの断面形状は、円形断面、矩形断面、多角形断面等の任意の断面形状であっても良い。
 また実施の形態のスポット溶接に代えて、摩擦攪拌接合(FSW)やセルフピアスリベット結合(SPR)を用いても、重ね合わせた接合フランジを隙間なく接合することができる。
 またルーフサイドレール12は必ずしも円形断面である必要はなく、矩形断面やそれ以外の異形断面であっても良い。
 また実施の形態では室内側ガセット42をL字状としているが、それをルーフアーチ41側のガセットとBピラー19側のガセットとに2分割しても良い。
 また上部室外側ガセット43および側部室外側ガセット44は、上下方向および車幅方向の二次元の位置決めを行うものに限定されず、一次元の位置決めを行うものであっても良い。例えば、上部室外側ガセット43はルーフサイドレール12に対して少なくとも上下方向の位置決めを行えば良く、車幅方向の位置決めは室内側ガセット42が行うので支障はない。同様に、側部室外側ガセット44はルーフサイドレール12に対して少なくとも車幅方向の位置決めを行えば良く、上下方向の位置決めは室内側ガセット42が行うので支障はない。
 また実施の形態では室内側ガセット42のBピラー当接面42cをBピラー19の長手方向にのみ溶接W8しているが、それを更にBピラー19の長手方向と直交する方向にも溶接することが望ましい。

Claims (16)

  1.  金属管を三次元曲げ加工で曲げ成形してAピラーアッパー(16)およびルーフサイドレール(12)が一体に連続する上部フレーム(14)を製造する第1工程と、
     溶接治具(45,46)上で前記上部フレーム(14)に対して、Aピラーロア(17)の上端および最後尾のピラー(20,20′)の上端を上下方向および車幅方向に位置決めするとともに、中間のピラーとしてのBピラー(19)の上端を車幅方向に位置決めする第2工程と、
     前記Aピラーロア(17)の上端と、前記Bピラー(19)の上端と、前記最後尾のピラー(20,20′)の上端とを前記上部フレーム(14)にガセット(21,23,25,27)を介して溶接することで車体側部フレーム(11)を組み立てる第3工程とを含み、
     前記第3工程において、前記Bピラー(19)の上端を前記上部フレーム(14)に接続する前記ガセット(23)は、前記Bピラー(19)の上端に対して上下方向に位置調整可能であることを特徴とする自動車の車体製造方法。
  2.  前記第3工程において、前記Bピラー(19)の上端を前記上部フレーム(14)に接続する前記ガセット(23)は、前記上部フレーム(14)の長手方向および前記Bピラー(19)の長手方向に連続溶接されることを特徴とする、請求項1に記載の自動車の車体製造方法。
  3.  前記ガセット(23)は車幅方向一側面側に位置する第1ガセット(42)および車幅方向他側面側に位置する第2ガセット(44)からなり、前記第3工程において、第1溶接治具(45)に支持した前記車体側部フレーム(11)の車幅方向一側面に前記第1ガセット(42)を溶接した後に、前記車体側部フレーム(11)を表裏反転して前記第1溶接治具(45)に隣接する第2溶接治具(46)上に支持し、前記車体側部フレーム(11)の車幅方向他側面に前記第2ガセット(44)を溶接することを特徴とする、請求項1または請求項2に記載の自動車の車体製造方法。
  4.  前記第3工程において、前記第1ガセット(42)および前記第2ガセット(44)どうしをスポット溶接、摩擦攪拌接合あるいはセルフピアスリベット結合により接合することを特徴とする、請求項3に記載の自動車の車体製造方法。
  5.  前記Aピラーロア(17)および前記最後尾のピラー(20,20′)は金属製であり、前記Bピラー(19)は三次元曲げ加工した金属製であり、前記Aピラーロア(17)の下端と、前記Bピラー(19)の下端と、前記最後尾のピラー(20,20′)の下端とが接続される下部フレーム(30)は、ロールフォーム成形したインナー部材(47)およびアウター部材(48)を接合フランジ(47a,48a)で接合した中空閉断面部材であることを特徴とする、請求項1~請求項4の何れか1項に記載の自動車の車体製造方法。
  6.  一対の前記車体側部フレーム(11)の前記Bピラー(19)の上端をルーフアーチ(41)の車幅方向両端に接続する第4工程を含み、前記第4工程において、前記Bピラー(19)の上端を前記上部フレーム(14)に接続する前記ガセット(23)は前記ルーフアーチ(41)の車幅方向両端に対して車幅方向に位置調整可能であることを特徴とする、請求項1~請求項5の何れか1項に記載の自動車の車体製造方法。
  7.  前記第2工程において、Dピラー(20′)の上端を上下方向および車幅方向に位置決めするとともに、中間のピラーとしてのCピラー(20)の上端を車幅方向に位置決めし、
     前記第3工程において、前記Aピラーロア(17)の上端と、前記Bピラー(19)の上端と、前記Cピラー(20)の上端と、前記Dピラー(20′)の上端とを前記上部フレーム(14)に前記ガセット(21,23,25,27)を介して溶接することで前記車体側部フレーム(11)を組み立て、前記Cピラー(20)の上端を前記上部フレーム(14)に接続する前記ガセット(25)は、前記Cピラー(20)の上端に対して上下方向に位置調整可能であることを特徴とする、請求項1~請求項6の何れか1項に記載の自動車の車体製造方法。
  8.  前記第3工程において、前記Cピラー(20)の上端を前記上部フレーム(14)に接続する前記ガセット(25)は、前記上部フレーム(14)の長手方向および前記Cピラー(20)の長手方向に連続溶接されることを特徴とする、請求項7に記載の自動車の車体製造方法。
  9.  前記第3工程において、前記ガセット(23)は車幅方向一側面側に位置する第1ガセット(25i)および車幅方向他側面側に位置する第2ガセット(25o)からなり、前記第1ガセット(25i)および前記第2ガセット(25o)どうしをスポット溶接、摩擦攪拌接合あるいはセルフピアスリベット結合により接合することを特徴とする、請求項7または請求項8に記載の自動車の車体製造方法。
  10.  請求項3に記載の自動車の車体製造方法により製造された自動車の車体構造であって、
     前記第1ガセット(42)は、前記ルーフサイドレール(12)に当接して上下方向および車幅方向に位置決めする位置決め当接面(42a)と、前記中間のピラー(19,20)またはルーフアーチ(41)に当接し、該中間のピラー(19,20)を車幅方向に位置決めするとともに上下方向の移動を許容するスライド当接面(42c)、または前記ルーフアーチ(41)を上下方向に位置決めするとともに車幅方向の移動を許容するスライド当接面(42b)を備え、前記位置決め当接面(42a)を前記ルーフサイドレール(12)の長手方向に沿って連続溶接(W1)するとともに前記スライド当接面(42c,42b)を前記中間のピラー(19,20)または前記ルーフアーチ(41)の長手方向に沿って連続溶接(W8,W2)したことを特徴とする自動車の車体構造。
  11.  前記第1ガセット(42)の前記スライド当接面(42c,42b)を、更に前記中間のピラー(19,20)または前記ルーフアーチ(41)の長手方向と直交する方向に沿って連続溶接(W3)したことを特徴とする、請求項10に記載の自動車の車体構造。
  12.  前記ルーフアーチ(41)は前後方向に長く上下方向に短い矩形状断面であり、上面および下面に長手方向に沿う補強ビード(41a)を備えることを特徴とする、請求項11に記載の自動車の車体構造。
  13.  断面L字状に形成された前記第1ガセット(42)は、前記中間のピラー(19,20)に当接して該中間のピラー(19,20)を車幅方向に位置決めするとともに上下方向の移動を許容するスライド当接面(42c)と、前記ルーフアーチ(41)に当接して該ルーフアーチ(41)を上下方向に位置決めするとともに車幅方向の移動を許容するスライド当接面(42b)とを一体に備え、前記両スライド当接面(42c,42b)を前記中間のピラー(19,20)および前記ルーフアーチ(41)の長手方向に沿って連続溶接(W8,W2)したことを特徴とする、請求項10~請求項12の何れか1項に記載の自動車の車体構造。
  14.  前記中間のピラー(19,20)に当接する前記第1ガセット(42)の前記ピラー当接面(42c)は、前記位置決め当接面(42a)との間に膨出部(42f)およびフランジ部(42e)を備えることを特徴とする、請求項13に記載の自動車の車体構造。
  15. 前記第1ガセット(42)に対峙して前記ルーフサイドレール(12)に連続溶接(W9)される前記第2ガセット(44)に加えて、同じく前記第1ガセット(42)に対峙して前記ルーフサイドレール(12)に連続溶接(W4)される第3ガセット(43)を更に備え、前記中間のピラー(19,20)または前記ルーフアーチ(41)の外側で、前記第1ガセット(42)および前記第2ガセット(44)の周縁フランジ(42e,44c)どうしを離間した状態でスポット溶接(W11)して前記中間のピラー(19,20)を車幅方向両側から挟み、または、前記第1ガセット(42)および前記第3ガセット(43)の周縁フランジ(42d,43c)どうしを離間した状態でスポット溶接(W7)して前記ルーフアーチ(41)を上下から挟んだことを特徴とする、請求項13または請求項14に記載の自動車の車体構造。
  16.  前記金属管製のルーフアーチ(41)を開放断面のルーフアーチ(41)で置換したことを特徴とする、請求項10~請求項15の何れか1項に記載の自動車の車体構造。
PCT/JP2015/051861 2014-01-27 2015-01-23 自動車の車体製造方法および車体構造 WO2015111706A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559133A JP6183473B2 (ja) 2014-01-27 2015-01-23 自動車の車体製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014012625 2014-01-27
JP2014018609 2014-02-03
JP2014-012625 2014-06-11
JP2014-018609 2014-08-26

Publications (1)

Publication Number Publication Date
WO2015111706A1 true WO2015111706A1 (ja) 2015-07-30

Family

ID=53681503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051861 WO2015111706A1 (ja) 2014-01-27 2015-01-23 自動車の車体製造方法および車体構造

Country Status (2)

Country Link
JP (1) JP6183473B2 (ja)
WO (1) WO2015111706A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135566A1 (de) * 2015-08-28 2017-03-01 EDAG Engineering GmbH Fahrzeugleichtbaustruktur in flexibler fertigung
JP2018001841A (ja) * 2016-06-28 2018-01-11 ダイハツ工業株式会社 車両のセンターピラーインナ
EP3566930A1 (en) * 2018-05-08 2019-11-13 Volvo Car Corporation Vehicle structure
JP2020532687A (ja) * 2017-08-31 2020-11-12 ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. 輸送構造体におけるチューブを接続するための装置及び方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876442B1 (ko) * 2018-04-03 2018-07-09 주식회사 아이언테크 자동차의 루프프레임 조립체 제조용 지그
KR20220086174A (ko) * 2020-12-16 2022-06-23 현대자동차주식회사 프레임 연결 구조 및 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305878A (ja) * 1992-04-30 1993-11-19 Nissan Motor Co Ltd 車体強度メンバの結合構造
JPH0633922A (ja) * 1992-07-15 1994-02-08 Nippon Light Metal Co Ltd 継手及びその製造方法
JPH0780570A (ja) * 1993-09-16 1995-03-28 Honda Motor Co Ltd T字・y字形結合構造
JP2002068013A (ja) * 2000-09-05 2002-03-08 Honda Motor Co Ltd 骨格部材の接合方法
DE102005039464A1 (de) * 2005-08-20 2007-02-22 Daimlerchrysler Ag A-Säule für ein Kraftfahrzeug
JP2007514607A (ja) * 2003-12-19 2007-06-07 フェラーリ ソシエタ ペル アチオニ 多数の押し出し成形部材の組合せから構成された金属フレーム、及びその製造方法
US7293823B2 (en) * 2005-11-16 2007-11-13 Ford Global Technologies, Llc Interlocked pillar and roof rail joint
JP2010235014A (ja) * 2009-03-31 2010-10-21 Mazda Motor Corp 自動車車体におけるチューブ状フレームの連結構造及びその組立方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3959926B2 (ja) * 2000-04-12 2007-08-15 スズキ株式会社 車体構造
JP4558441B2 (ja) * 2004-10-14 2010-10-06 富士重工業株式会社 車体後部構造
JP5316566B2 (ja) * 2011-02-25 2013-10-16 マツダ株式会社 車両の上部構造
JP5714967B2 (ja) * 2011-04-13 2015-05-07 富士重工業株式会社 車体の衝撃緩衝構造

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305878A (ja) * 1992-04-30 1993-11-19 Nissan Motor Co Ltd 車体強度メンバの結合構造
JPH0633922A (ja) * 1992-07-15 1994-02-08 Nippon Light Metal Co Ltd 継手及びその製造方法
JPH0780570A (ja) * 1993-09-16 1995-03-28 Honda Motor Co Ltd T字・y字形結合構造
JP2002068013A (ja) * 2000-09-05 2002-03-08 Honda Motor Co Ltd 骨格部材の接合方法
JP2007514607A (ja) * 2003-12-19 2007-06-07 フェラーリ ソシエタ ペル アチオニ 多数の押し出し成形部材の組合せから構成された金属フレーム、及びその製造方法
DE102005039464A1 (de) * 2005-08-20 2007-02-22 Daimlerchrysler Ag A-Säule für ein Kraftfahrzeug
US7293823B2 (en) * 2005-11-16 2007-11-13 Ford Global Technologies, Llc Interlocked pillar and roof rail joint
JP2010235014A (ja) * 2009-03-31 2010-10-21 Mazda Motor Corp 自動車車体におけるチューブ状フレームの連結構造及びその組立方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135566A1 (de) * 2015-08-28 2017-03-01 EDAG Engineering GmbH Fahrzeugleichtbaustruktur in flexibler fertigung
US10286961B2 (en) 2015-08-28 2019-05-14 Edag Engineering Gmbh Lightweight vehicle structure flexibly manufactured
JP2018001841A (ja) * 2016-06-28 2018-01-11 ダイハツ工業株式会社 車両のセンターピラーインナ
JP2020532687A (ja) * 2017-08-31 2020-11-12 ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. 輸送構造体におけるチューブを接続するための装置及び方法
EP3566930A1 (en) * 2018-05-08 2019-11-13 Volvo Car Corporation Vehicle structure
CN110450858A (zh) * 2018-05-08 2019-11-15 沃尔沃汽车公司 车辆结构
US10988182B2 (en) 2018-05-08 2021-04-27 Volvo Car Corporation Vehicle structure
CN110450858B (zh) * 2018-05-08 2022-05-10 沃尔沃汽车公司 车辆结构

Also Published As

Publication number Publication date
JP6183473B2 (ja) 2017-08-23
JPWO2015111706A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6183473B2 (ja) 自動車の車体製造方法
US6092865A (en) Hydroformed space frame and method of manufacturing the same
US9108554B2 (en) Structural element for a vehicle seat
US6302478B1 (en) Hydroformed space frame joints therefor
US9162708B2 (en) Steering hanger assembly for vehicle
US9580110B2 (en) Vehicle body skeleton structure
JP4450747B2 (ja) 自動車のクロスメンバー、自動車のフレーム構造及びルーフ構造
JPH07277119A (ja) 自動車のためのロールバー
JPH07149254A (ja) 構造部材形成方法及びエンジン架台
JP5180877B2 (ja) 車体骨格構造
JP2015151067A (ja) 自動車の車体構造
CN104290817A (zh) 用于制造汽车车身部件的方法
JP6099207B2 (ja) 自動車の車体構造
JP6112666B2 (ja) 自動車の車体構造
US7455340B2 (en) Reinforced section
CN111741889A (zh) 车身结构
JP7063174B2 (ja) 車両用シートレール取り付け構造
JP2008239106A (ja) 自動車のロッカ部構造
JP2016107804A (ja) 車体フレームの補強構造
JP6137693B2 (ja) 自動車の車体構造
JP3860357B2 (ja) 自動車用の補強部材の成形方法
JP6218230B2 (ja) 自動車の車体製造方法および自動車の車体構造
JP6084544B2 (ja) 自動車用フレーム部材の製造方法
CN211196387U (zh) 驻车制动器安装点加强结构
JP6214035B2 (ja) 自動車車体の組立て方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559133

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740760

Country of ref document: EP

Kind code of ref document: A1