WO2015111169A1 - 遠心圧縮機 - Google Patents

遠心圧縮機 Download PDF

Info

Publication number
WO2015111169A1
WO2015111169A1 PCT/JP2014/051401 JP2014051401W WO2015111169A1 WO 2015111169 A1 WO2015111169 A1 WO 2015111169A1 JP 2014051401 W JP2014051401 W JP 2014051401W WO 2015111169 A1 WO2015111169 A1 WO 2015111169A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
pressure
space
driven shaft
unit
Prior art date
Application number
PCT/JP2014/051401
Other languages
English (en)
French (fr)
Inventor
寛之 宮田
英樹 永尾
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to JP2015558648A priority Critical patent/JP6120997B2/ja
Priority to CN201480030156.2A priority patent/CN105264233B/zh
Priority to EP14880032.9A priority patent/EP2990654B1/en
Priority to PCT/JP2014/051401 priority patent/WO2015111169A1/ja
Priority to US14/893,320 priority patent/US10145381B2/en
Publication of WO2015111169A1 publication Critical patent/WO2015111169A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/163Combinations of two or more pumps ; Producing two or more separate gas flows driven by a common gearing arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • F04D29/0516Axial thrust balancing balancing pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • F04D29/286Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors multi-stage rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger

Definitions

  • the present invention relates to a centrifugal compressor.
  • Centrifugal compressors include a single-shaft multi-stage centrifugal compressor with a structure in which an impeller that compresses gas such as gas is attached to a single shaft, and a built-in speed increaser with a structure in which impellers are attached to the shaft ends of multiple pinion shafts.
  • a compressor hereinafter referred to as a geared compressor
  • a geared compressor is known in which a fluid is compressed by a plurality of compression sections each provided with an impeller provided at each of shaft ends of a plurality of pinion shafts.
  • Patent Document 1 discloses a double flow geared compressor in which a compression unit having the same configuration is provided at each end of each driven shaft that is a pinion shaft to which the rotation of the drive shaft is transmitted. Has been.
  • This geared compressor rotates two compression parts with one driven shaft, and simultaneously compresses gas from both sides so that it becomes one compression part, without increasing the diameter of the impeller, the geared compressor The overall capacity is increased.
  • the thrust force acting on the driven shaft from the compression portions at both ends is canceled, and the thrust force biased in either direction of the central axis is not applied to the driven shaft. It is preferable to do.
  • the flow resistance may be different due to the difference in the length of the pipe connected to the discharge port of the compression unit. For this reason, a difference occurs between the discharge pressures of the compression portions on both sides, a thrust force is generated, and an unintended load may be applied to the driven shaft, the thrust bearing, and the like that support the compression portion.
  • the present invention provides a centrifugal compressor capable of reducing a load caused by a difference in thrust force generated from two compression portions.
  • a centrifugal compressor includes a drive shaft that is rotationally driven, a drive gear that is connected to the drive shaft, a driven gear that transmits the rotation of the drive gear, and the driven gear.
  • a driven shaft extending to both sides in the central axis direction; a first compression portion that is provided on a first end side in the central axis direction of the driven shaft and compresses fluid by rotation of the driven shaft; and A second compression portion provided on the second end side in the central axis direction and compressing the fluid by rotation of the driven shaft; a pressure of a space on the fluid discharge side in the first compression portion; and the second compression portion And a pressure adjusting unit for uniformly adjusting the pressure of the space on the discharge side of the fluid.
  • Such a centrifugal compressor can reduce the difference between the discharge pressure of the first compression section and the discharge pressure of the second compression section. Therefore, the thrust force generated by the pressure difference between the first compression portion and the second compression portion can be reduced. Thereby, the load which arises by the difference of the thrust force which arises from two compression parts of a 1st compression part and a 2nd compression part can be reduced.
  • the centrifugal compressor according to the second aspect of the present invention includes a heat exchanger that performs heat exchange of fluid discharged from the first compression unit and the second compression unit, a discharge port of the first compression unit, and the A first connection path that connects a heat exchanger; and a second connection path that connects a discharge port of the second compression section and the heat exchanger; and the pressure adjustment section includes the first compression section.
  • the first connection path and the second connection path may be connected at a position where the distance from the discharge port is equal to the distance from the discharge port of the second compression unit.
  • the pressure in the space in the path can be made uniform.
  • the difference in the length of the first connection path and the second connection path will cause a difference in pressure loss in the first connection path and the second connection path.
  • the thrust force generated by the pressure difference between the first compression part and the second compression part can be easily reduced.
  • the load by the difference of the thrust force which arises from two compression parts of a 1st compression part and a 2nd compression part can be reduced easily.
  • the first compression section is fixed to the driven shaft, rotates with the driven shaft, and compresses the fluid.
  • the first impeller A first casing that forms a first space with a surface on the second end side in the central axis direction of the driven shaft, and the second compression portion is fixed to the driven shaft.
  • a second space that forms a second space between a second impeller that rotates together with the driven shaft and compresses fluid and a surface of the second impeller on the first end side in the central axis direction of the driven shaft.
  • the pressure adjusting unit may be provided through the first casing and the second casing so as to communicate the first space and the second space.
  • the pressure in the first space and the pressure in the second space can be made uniform. Therefore, the pressure difference can be reduced by making the pressure of the flow path on the suction port side closer to the discharge port in the first compression unit and the second compression unit. That is, the pressure in the flow path space on the fluid discharge side in the first compression section and the pressure in the flow path space on the fluid discharge side in the second compression section can be made close to each other with high accuracy. As a result, the difference generated between the discharge pressure of the first compression section and the discharge pressure of the second compression section can be further reduced. Therefore, by connecting the first space and the second space with the pressure adjusting unit, the thrust force generated by the pressure difference between the first compressing unit and the second compressing unit can be more easily reduced. Thereby, the load by the difference of the thrust force which arises from two compression parts of a 1st compression part and a 2nd compression part can be reduced further.
  • the centrifugal compressor according to the fourth aspect of the present invention is characterized in that the pressure of the discharge side space of the first compression unit and the pressure of the discharge side space of the second compression unit, which are uniformly adjusted by the pressure adjustment unit, May be provided with a differential pressure adjusting unit for adjusting the pressure to a predetermined differential pressure.
  • the difference between the pressure in the first space and the pressure in the second space can be adjusted from a uniform state, and can be adjusted to a predetermined differential pressure with high accuracy. Therefore, the thrust force acting on the driven shaft can be easily adjusted by the first compression portion and the second compression portion. Therefore, it is possible to cancel out the thrust force acting on the driven shaft, the drive shaft and the like other than the influence of the first compression portion and the second compression portion. As a result, stable operation can be performed without applying an extra load to the driven shaft or the drive shaft.
  • the drive gear and the driven gear are helical gears
  • the differential pressure adjusting unit cancels a thrust force generated by the drive gear and the driven gear. You may adjust so that it may become the differential pressure
  • the driven shaft and the drive shaft by the helical gear are configured by setting the differential pressure to cancel the thrust force generated by the drive gear and the driven gear configured by the helical gear.
  • the thrust force that worked on can be offset. Thereby, it can drive
  • the pressure of the space on the discharge side of the fluid in the first compression section and the pressure of the space on the discharge side of the fluid in the second compression section are adjusted uniformly, so that the two compression sections It is possible to reduce the load caused by the deviation of the thrust force.
  • the centrifugal compressor 1 of the present embodiment is a so-called geared compressor in which a speed increaser 10 is built.
  • the centrifugal compressor 1 of the first embodiment includes a drive source 19 that generates power, a drive shaft 2 that is rotationally driven by the drive source 19, a speed increaser 10 that shifts and transmits the rotational drive of the drive shaft 2,
  • the driven shaft 3 that outputs the power transmitted by the speed increaser 10, the plurality of compression units 4 that are driven by the power transmitted to the driven shaft 3, and the heat that cools the fluid compressed by the plurality of compression units 4
  • the exchanger 5 and the piping part 6 which is a fluid flow path are provided.
  • the drive shaft 2 is a rotation shaft that rotates around the central axis by the drive source 19.
  • the speed increaser 10 includes a drive gear 11 connected on the second end side in the central axis direction of the drive shaft 2, a first driven gear 12 and a second driven gear 13 to which the rotation of the drive gear 11 is transmitted. And having.
  • the speed increaser 10 includes a first intermediate gear 14 that transmits the rotation of the drive gear 11 to the first driven gear 12, and a second intermediate gear 15 that transmits the rotation of the drive gear 11 to the second driven gear 13. And have. That is, the gear group of the speed increaser 10 of this embodiment is arranged so as to mesh with the second intermediate gear 15, the drive gear 11, the first intermediate gear 14, and the first driven gear 12 in order from the second driven gear 13. Yes.
  • a gear group constituting the speed increaser 10 is housed in the casing 20.
  • the gear group constituting the speed increaser 10 in the present embodiment is a spur gear.
  • the first intermediate gear 14 is rotatably supported by the first intermediate shaft 17.
  • the second intermediate gear 15 is rotatably supported by the second intermediate shaft 18.
  • the first intermediate shaft 17 and the second intermediate shaft 18 are supported on the casing 20 via a bearing (not shown).
  • the driven shaft 3 has a first driven shaft 31 extending on both sides in the central axis direction of the first driven gear 12 and a second driven shaft 32 extending on both sides in the central axis direction of the second driven gear 13.
  • the first driven shaft 31 and the second driven shaft 32 are supported on the casing 20 via a bearing (not shown).
  • the compression unit 4 compresses and discharges a fluid such as a gas sucked from the suction port toward the radially outer peripheral side through a flow path formed therein.
  • the compression unit 4 includes a first compression unit 41 provided on the first end side in the central axis direction, which is the side on which the drive source 19 is provided on the first driven shaft 31, and the drive source 19 on the first driven shaft 31.
  • a second compression portion 42 provided on the second end portion side in the central axis direction opposite to the side provided with the first, and a second compression portion 42 provided on the second end portion side in the central axis direction in the second driven shaft 32.
  • a third compression part 43 and a fourth compression part 44 provided on the second driven shaft 32 on the first end side in the central axis direction.
  • the first compression unit 41 is provided at an end on the first end side in the central axis direction of the first driven shaft 31, and fluid is transferred from the suction port to the discharge port on the radially outer side by the rotation of the first driven shaft 31. Compressed and distributed.
  • the first compression unit 41 is the first-stage compression unit 4 in the centrifugal compressor 1.
  • the first compression portion 41 of the present embodiment is fixed to the first driven shaft 31 and rotates together with the first driven shaft 31 to compress the fluid, and covers the first impeller 41a and the fluid of the first impeller 41a.
  • a first casing 41b that forms a flow path.
  • the second compression section 42 is provided at the end on the second end side in the central axis direction of the first driven shaft 31, and fluid is transferred from the suction port to the discharge port on the radially outer side by the rotation of the first driven shaft 31. Compressed and distributed. That is, the second compression portion 42 is disposed at the opposite end of the first compression portion 41 with the first driven shaft 31 interposed therebetween.
  • the second compression unit 42 has the same configuration as the first compression unit 41, and compresses the fluid having the same flow rate as the first compression unit 41 by the rotation of the first driven shaft 31.
  • the second compression section 42 is the first compression section 4 in the centrifugal compressor 1 by compressing the fluid simultaneously with the first compression section 41.
  • the second compression portion 42 of the present embodiment is fixed to the first driven shaft 31 and rotates together with the first driven shaft 31 to compress the fluid, and the second impeller 42a covers the second impeller 42a. And a second casing 42b that forms a flow path.
  • the third compression portion 43 is provided at the end portion on the second end side in the central axis direction of the second driven shaft 32, and fluid is transferred from the suction port to the discharge port on the radially outer side by the rotation of the second driven shaft 32. Compressed and distributed.
  • the third compression unit 43 is the second-stage compression unit 4 in the centrifugal compressor 1.
  • the third compression portion 43 of the present embodiment is fixed to the second driven shaft 32, rotates with the second driven shaft 32, compresses the fluid, and covers the third impeller 43a to cover the fluid. And a third casing 43b that forms a flow path.
  • the fourth compression unit 44 is provided at an end portion on the second end side in the central axis direction of the second driven shaft 32, and fluid is transferred from the suction port to the discharge port on the radially outer side by the rotation of the second driven shaft 32. Compressed and distributed. That is, the fourth compression portion 44 is disposed at the opposite end of the third compression portion 43 with the second driven shaft 32 interposed therebetween.
  • the fourth compression unit 44 is the third-stage compression unit 4 in the centrifugal compressor 1.
  • the fourth compression portion 44 of the present embodiment is fixed to the second driven shaft 32, rotates with the second driven shaft 32, compresses the fluid, and covers the fourth impeller 44a. And a fourth casing 44b that forms a flow path.
  • the heat exchanger 5 reduces the power required for driving the centrifugal compressor 1 by intermediately cooling the fluid in the compression process.
  • the heat exchanger 5 of the present embodiment includes a first heat exchanger 51 that performs cooling by exchanging heat of the fluid compressed by the first compression unit 41 and the second compression unit 42, and a third compression unit 43. And a second heat exchanger 52 for cooling the compressed fluid.
  • the first heat exchanger 51 includes two inlet nozzles and one outlet nozzle.
  • the first stage heat exchanger 5 cools the two systems of fluid discharged from the first compressor 41 and the second compressor 42 and joins the two systems of fluid.
  • the first heat exchanger 51 is disposed between the first compression unit 41, the second compression unit 42, and the third compression unit 43.
  • the first heat exchanger 51 of the present embodiment is disposed on the second end side in the central axis direction of the drive shaft 2, which is a position closer to the second compression part 42 than the first compression part 41.
  • the second heat exchanger 52 includes one inlet nozzle and one outlet nozzle.
  • the second stage heat exchanger 5 cools the fluid discharged from the third compression unit 43 and sends it to the fourth compression unit 44.
  • the piping part 6 is a pipe that forms a flow path through which the fluid compressed by each compression part 4 flows.
  • the piping part 6 includes a first compression part discharge pipe 61 that connects the first compression part 41 to the first heat exchanger 51, and a second compression part that connects the second compression part 42 to the first heat exchanger 51. It has a discharge pipe 62 and a third compression section suction pipe 63 that connects the first heat exchanger 51 to the third compression section 43.
  • the piping part 6 includes a third compression part discharge pipe 64 that connects the third compression part 43 to the second heat exchanger 52, and a fourth compression part that connects the second heat exchanger 52 to the fourth compression part 44.
  • the piping unit 6 includes a pressure adjusting unit 7 for uniformly adjusting the pressure at the discharge port of the first compression unit 41 and the pressure at the discharge port of the second compression unit 42.
  • the first compression section discharge pipe 61 is a first connection path connecting the discharge port of the first compression section 41 and the first heat exchanger 51, and the fluid compressed by the first compression section 41 is subjected to the first heat. Distribute to the exchanger 51.
  • the first compression section discharge pipe 61 connects the discharge port of the first compression section 41 and one of the inlet nozzles of the first heat exchanger 51.
  • the 2nd compression part discharge piping 62 is the 2nd connection way which connects the discharge port of the 2nd compression part 42, and the 1st heat exchanger 51, Comprising: The fluid compressed by the 2nd compression part 42 is made into the 1st heat. Distribute to the exchanger 51.
  • the second compression section discharge pipe 62 connects the discharge port of the second compression section 42 and one of the inlet nozzles on the side where the first compression section discharge pipe 61 of the first heat exchanger 51 is not connected. Yes.
  • the third compression section suction pipe 63 is a pipe that joins the fluid from the first compression section 41 and the fluid from the second compression section 42 that are cooled by the first heat exchanger 51 to the third compression section 43. And the outlet nozzle of the 1st heat exchanger 51 and the suction inlet of the 3rd compression part 43 are connected.
  • the third compression section discharge pipe 64 is a flow path for flowing the fluid compressed by the third compression section 43 to the second heat exchanger 52, and the discharge port of the third compression section 43 and the second heat exchanger 52. Is connected to the inlet nozzle.
  • the fourth compression section suction pipe 65 is a pipe through which the fluid from the third compression section 43 cooled by the second heat exchanger 52 flows to the fourth compression section 44, and is an outlet nozzle of the second heat exchanger 52. To the suction port of the fourth compression portion 44.
  • the fourth compression section discharge pipe 66 is a pipe that circulates the fluid compressed by the fourth compression section 44 to a predetermined plant P that is a supply destination of the compressed fluid, from the discharge port of the fourth compression section 44. It is connected to equipment (not shown) of the plant P.
  • the pressure adjusting unit 7 uniformly adjusts the pressure in the discharge side space of the first compression unit 41 and the pressure in the discharge side space of the second compression unit 42.
  • a first compression section discharge pipe 61 that is a first connection path and a second compression section discharge pipe 62 that is a second connection path are connected.
  • the pressure adjusting unit 7 includes a distance l from the discharge port of the first compression unit 41 in the first compression unit discharge pipe 61 and a distance from the discharge port of the second compression unit 42 in the second compression unit discharge pipe 62. Communicate at a position where l is the same.
  • the centrifugal compressor 1 according to the first embodiment having the above-described configuration.
  • the centrifugal compressor 1 of the embodiment as described above when the fluid to be compressed is simultaneously sucked into the suction ports of the first compression unit 41 and the second compression unit 42, respectively, the first compression unit 41 and the second compression unit 42 are used.
  • the first-stage compression is performed by
  • the first compression section discharge pipe 61 and the second compression section discharge pipe 62 are the pressure adjustment section 7 at a position where the distances l from the discharge ports of the first compression section 41 and the second compression section 42 are the same. Connected by some piping. Therefore, the pressure in the vicinity of the pressure adjustment unit 7 in the first compression section discharge pipe 61 and the pressure in the vicinity of the pressure adjustment section 7 in the second compression section discharge pipe 62 are made uniform. . That is, the pressure in the space in the first compression section discharge pipe 61 that is the space on the fluid discharge side in the first compression section 41 and the second compression section discharge pipe that is the space on the fluid discharge side in the second compression section 42. The pressure in the space in 62 is almost uniform at the portion where the pressure adjusting unit 7 is connected.
  • the state where the pressure is uniform means a state where the first compression portion 41 side and the second compression portion 42 side can be regarded as having substantially no influence on the first driven shaft 31 and the like.
  • the fluid compressed by the first compressor 41 flows through the first compressor discharge pipe 61 and flows into the inlet nozzle of the first heat exchanger 51.
  • the fluid compressed by the second compression section 42 flows through the second compression section discharge pipe 62 and flows into the inlet nozzle of the first heat exchanger 51.
  • the fluid that has flowed into the two inlet nozzles of the first heat exchanger 51 from the first compression section discharge pipe 61 and the second compression section discharge pipe 62 is merged in the first heat exchanger 51 and subjected to intermediate cooling. Thereafter, when the gas flows through the third compression portion suction pipe 63 and flows into the suction port of the third compression portion 43, the second compression is performed by the third compression portion 43.
  • the fluid compressed by the third compression unit 43 flows through the third compression unit discharge pipe 64 and flows into the second heat exchanger 52.
  • the fluid that has flowed into the second heat exchanger 52 is intercooled in the second heat exchanger 52, then flows through the fourth compression section suction pipe 65 and flows into the suction port of the fourth compression section 44. Thereafter, the fluid is subjected to third-stage compression in the fourth compression unit 44 and then supplied to equipment of a predetermined plant P that is a supply destination of the compressed fluid.
  • the pressure adjusting unit 7 makes the pressure on the discharge side of the fluid in the first compression unit 41 and the second compression unit 42 uniform so that the discharge pressure of the first compression unit 41 is increased. And the discharge pressure of the second compression unit 42 can be reduced. Therefore, the thrust force generated by the pressure difference between the first compression part 41 and the second compression part 42 can be reduced. Thereby, the load which arises by the difference of the thrust force which arises from the two compression parts 4 of the 1st compression part 41 and the 2nd compression part 42 can be reduced.
  • first compression section discharge pipe 61 and the second compression section discharge pipe 62 are arranged at the same distance l from the discharge port of the first compression section 41 and the second compression section 42 by the pipe that is the pressure adjusting section 7. Is connected. Therefore, the pressure in the space in the first compression portion discharge pipe 61 that is connected to the discharge port of the first compression portion 41 and is the space on the discharge side of the fluid in the first compression portion 41, and the discharge port of the second compression portion 42 And the pressure in the space in the second compression section discharge pipe 62, which is the space on the fluid discharge side in the second compression section 42, can be made uniform.
  • the pressure loss in the two pipes will be reduced. There will be a difference. That is, in this case, a difference occurs between the pressure in the first compression section discharge pipe 61 and the pressure in the second compression section discharge pipe 62, and the discharge pressure of the first compression section 41 and the discharge pressure of the second compression section 42 are There will be a difference.
  • the discharge pressure of the first compression section 41 and the second compression section are equalized because the pressure in the space at the same position where the distances l from the discharge ports of the first compression section 41 and the second compression section 42 are equal is equal.
  • the difference in the discharge pressure of 42 can be easily reduced. Therefore, the thrust force generated by the pressure difference between the first compression part 41 and the second compression part 42 can be easily reduced. Thereby, the load which arises by the difference of the thrust force which arises from the two compression parts 4 of the 1st compression part 41 and the 2nd compression part 42 can be reduced easily.
  • centrifugal compressor 1 of the second embodiment will be described with reference to FIG.
  • symbol is attached
  • the centrifugal compressor 1 of the second embodiment is different from the first embodiment with respect to the position to which the pressure adjusting unit 7 is connected.
  • the centrifugal compressor 1 according to the second embodiment is formed between the first impeller 41a of the first compressor 41 and the first casing 41b in place of the pressure adjuster 7, as shown in FIG. And a space pressure adjusting unit that connects the space and a space formed between the second impeller a of the second compression unit and the second casing b.
  • the first casing A1 is formed so as to form a first space A1 between the first impeller 41a and the surface on the second end side in the central axis direction of the first driven shaft 31.
  • 41b is arranged.
  • the first space A1 is a space in the first casing 41b, and is a space defined by the first impeller 41a and the wall surface of the first casing 41b.
  • the first space A1 is a space sandwiched between the bottom surface of the first impeller 41a on the second end side in the central axis direction of the first driven shaft 31 of the disk and the bottom of the first casing 41b.
  • the second casing 42b is formed so as to form a second space A2 between the surface of the second impeller 42a and the first end shaft side in the central axis direction of the first driven shaft 31. Is arranged.
  • the second space A2 is a space in the second casing 42b, and is a space defined by the second impeller 42a and the wall surface of the second casing 42b.
  • the second space A2 is a space sandwiched between the bottom surface on the first end side in the central axis direction of the first driven shaft 31 of the disk of the second impeller 42a and the bottom portion of the second casing 42b.
  • the space pressure adjusting unit 70 is provided through the first casing 41b and the second casing 42b so as to communicate the first space A1 and the second space A2.
  • the space pressure adjusting unit 70 of the present embodiment has a first through hole 71 that penetrates the bottom surface of the first casing 41b that is a surface on the second end side in the central axis direction of the first driven shaft 31 in the first casing 41b.
  • a second through hole 72 penetrating the bottom surface of the second casing 42b, which is a surface on the first end side in the central axis direction of the first driven shaft 31 in the second casing 42b, the first through hole 71 and the first It has a space pressure adjusting unit main body 73 that is a pipe having a small diameter of about 5 mm that connects the two through holes 72.
  • the fluid sucked from the suction port of the first compression unit 41 is compressed by the rotation of the first impeller 41a. Then, the fluid flows toward the discharge port of the first compression unit 41. Since the first impeller 41a rotates with respect to the first casing 41b, a minute gap is formed between the first casing 41b and the first impeller 41a so as not to inhibit the flow of fluid.
  • the first space A1 communicates with the flow path on the fluid discharge side through this minute gap. Therefore, the pressure in the first space A1 is substantially equal to the pressure corresponding to the discharge-side flow path through which the compressed fluid flows.
  • the fluid sucked from the suction port of the second compression section 42 is compressed by the rotation of the second impeller 42a. Then, the fluid flows toward the discharge port of the second compressor. Since the second impeller 42a rotates relative to the second casing 42b, a minute gap is formed between the second casing 42b and the second impeller 42a so as not to inhibit the flow of fluid.
  • the second space A2 communicates with the flow path on the fluid discharge side through this minute gap. Therefore, the pressure in the second space A2 is substantially equal to the pressure corresponding to the discharge-side flow path through which the compressed fluid flows.
  • the pressure in the first space A1 and the second space A2 are communicated.
  • the pressure with the space A2 is uniform. That is, the fluid pressure in the flow path on the discharge side of the fluid in the first compression section 41 communicating with the first space A1 with a minute gap and the fluid in the second compression section 42 communicating with the second space A2 with a minute gap.
  • the pressure in the space in the flow path on the discharge side is almost constant.
  • the fluid compressed by the first compression unit 41 flows through the first compression unit discharge pipe 61 and flows into the inlet nozzle of the first heat exchanger 51.
  • the fluid compressed by the second compression section 42 flows through the second compression section discharge pipe 62 and flows into the inlet nozzle of the first heat exchanger 51.
  • the centrifugal compressor 1 As described above, the first space A ⁇ b> 1 and the second space A ⁇ b> 2 are connected via the first through hole 71 and the second through hole 72 by the pipe that is the space pressure adjusting unit main body 73.
  • the pressure in the first space A1 and the pressure in the second space A2 can be made uniform. Therefore, the pressure difference can be reduced by making the pressure in the flow path closer to the suction port than the discharge port in the first compression unit 41 and the second compression unit 42 become uniform.
  • the pressure in the flow path space on the fluid discharge side in the first compression section 41 and the pressure in the flow path space on the fluid discharge side in the second compression section 42 can be made close to each other with high accuracy.
  • the difference generated between the discharge pressure of the first compression unit 41 and the discharge pressure of the second compression unit 42 can be further reduced. Therefore, by connecting the first space A1 and the second space A2 with the space pressure adjusting portion main body 73, the thrust force generated by the pressure difference between the first compression portion 41 and the second compression portion 42 can be further reduced. Can do. Thereby, the load by the difference of the thrust force which arises from the two compression parts 4 of the 1st compression part 41 and the 2nd compression part 42 can be reduced further.
  • first space A1 and the second space A2 are spaces facing the first casing 41b and the second casing 42b, respectively, only the first through hole 71 and the second through hole 72 are provided in each casing 20.
  • the space pressure adjusting unit 70 that connects the first space A1 and the second space A2 can be provided.
  • centrifugal compressor 1 of the third embodiment will be described with reference to FIG.
  • symbol is attached
  • the centrifugal compressor 1 of the third embodiment is different from the first embodiment in that a difference is caused again in the pressure made uniform by the pressure adjusting unit 7.
  • the centrifugal compressor 1 of the third embodiment has a differential pressure adjusting unit 8 provided in the spatial pressure adjusting unit 70 of the second embodiment as shown in FIG.
  • the gear group of the speed increaser 10 of the centrifugal compressor 1 of the present embodiment is constituted by a helical gear. That is, the drive gear 11a, the first driven gear 12a, the second driven gear 13a, the first intermediate gear 14a, and the second intermediate gear 15a are all helical gears.
  • the differential pressure adjusting unit 8 has a predetermined pressure difference between the pressure on the discharge side of the first compression unit 41 and the pressure on the discharge side of the second compression unit 42, which is uniformly adjusted by the space pressure adjusting unit 70. Adjust to achieve differential pressure.
  • the differential pressure adjusting unit 8 according to the present embodiment is configured so that the pressure in the first space A1 and the pressure in the second space A2 are made uniform by the space pressure adjusting unit 70 according to the thrust force generated in the first driven shaft 31. Adjust to make a difference.
  • the differential pressure adjusting unit 8 calculates a predetermined differential pressure based on the displacement measuring unit 81 that measures the displacement of the first driven shaft 31 in the central axis direction and the measured displacement of the first driven shaft 31.
  • a valve unit 83 that adjusts the opening amount of the space pressure adjustment unit main body 73 based on the calculation result of the differential pressure control unit 82.
  • the displacement measuring unit 81 measures a relative displacement amount of the first driven shaft 31 in the central axis direction with respect to the casing 20 by a displacement sensor installed in the casing 20.
  • the displacement measuring unit 81 outputs the measurement result to the differential pressure control unit 82.
  • the differential pressure control unit 82 includes a displacement input unit 82a to which the measurement result of the displacement measurement unit 81 is input, a thrust force calculation unit 82b that calculates a thrust force acting on the first driven shaft 31 based on the input displacement, Based on the thrust force calculated by the thrust force calculation unit 82b, a differential pressure calculation unit 82c that calculates a differential pressure in the first space A1 and the second space A2, and a valve unit based on the calculation result of the differential pressure calculation unit 82c 83 has a valve adjusting portion 82d for instructing the opening amount.
  • the displacement input unit 82 a receives information on the relative displacement amount in the central axis direction of the first driven shaft 31 with respect to the casing 20 measured by the displacement measuring unit 81.
  • the displacement input unit 82a sends information on the input relative displacement amount to the thrust force calculation unit 82b.
  • the thrust force calculator 82b calculates how much thrust force is acting on the first driven shaft 31 based on the received information on the relative displacement amount.
  • the thrust force calculation unit 82b sends the calculated thrust force to the differential pressure calculation unit 82c.
  • the differential pressure calculation unit 82c Based on the received thrust force, the differential pressure calculation unit 82c generates a thrust force on the first driven shaft 31 by the first driven gear 12a connected to the drive gear 11a of the speed increaser 10 via the first intermediate gear 14a. The pressure difference between the pressure in the first space A1 and the pressure in the second space A2 is calculated so as to cancel out the above.
  • the differential pressure calculation unit 82c sends information to the valve adjustment unit 82d with the calculated differential pressure as a predetermined differential pressure.
  • the valve adjustment unit 82d calculates the opening amount of the valve unit 83 based on the received information on the predetermined differential pressure, and sends an instruction to the valve unit 83 as a signal so that the calculated opening amount is obtained.
  • the valve part 83 is provided in the middle of the piping which is the space pressure adjusting part main body 73.
  • the valve unit 83 adjusts the flow rate of the pipe by opening and closing the valve based on the signal input from the valve adjustment unit 82d.
  • the centrifugal compressor 1 of the third embodiment having the above configuration.
  • the gear group constituting the speed increaser 10 is formed of a helical gear
  • the rotation of the drive shaft 2 is transmitted and the first intermediate gear 14a and A thrust force acts on one of the first driven gear 12a and the like in the central axis direction. That is, a thrust force is exerted on the first driven shaft 31 connected to the first driven gear 12a in either direction of the central axis.
  • the first driven shaft 31 moves to the first end side or the second end side in the central axis direction with respect to the casing 20.
  • a displacement measuring unit 81 provided in the casing 20 measures a relative displacement amount in the central axis direction with respect to the casing 20.
  • the displacement measuring unit 81 outputs information on the measured relative displacement amount to the displacement input unit 82 a of the differential pressure control unit 82.
  • the displacement input unit 82a to which the information on the relative displacement amount is input sends the input information to the thrust force calculation unit 82b.
  • the thrust force calculation unit 82b calculates the thrust force acting on the first driven shaft 31 by the gear group of the gearbox 10 based on the received displacement amount information.
  • the thrust force calculation unit 82b sends information on the calculated thrust force to the differential pressure calculation unit 82c.
  • the differential pressure calculation unit 82c based on the received thrust force information, the pressure in the first space A1 and the pressure in the second space A2, which are differential pressures for canceling the thrust force acting on the first driven shaft 31. Is calculated as a predetermined differential pressure.
  • the differential pressure calculation unit 82c sends information on the calculated predetermined differential pressure to the valve adjustment unit 82d.
  • the valve adjustment unit 82d Based on the received information on the predetermined differential pressure, the valve adjustment unit 82d calculates the opening amount of the valve unit 83 and sends an instruction to the valve unit 83 as a signal.
  • the valve unit 83 adjusts the amount of communication of the piping that is the space pressure adjusting unit main body 73 so that the instructed opening amount is obtained. As a result, the pressure between the first space A1 and the second space A2 is shifted by a predetermined differential pressure.
  • the fluid compressed by the first compressor 41 flows through the first compressor discharge pipe 61 and flows into the inlet nozzle of the first heat exchanger 51.
  • the fluid compressed by the second compression section 42 flows through the second compression section discharge pipe 62 and flows into the inlet nozzle of the first heat exchanger 51.
  • the first driven shaft 31 moves toward the smaller thrust force in the central axis direction. Therefore, the first driven shaft 31 is returned to the position before the first driven shaft 31 is moved by the thrust force acting from the gearbox 10 constituted by a helical gear while the rotation of the drive shaft 2 is transmitted.
  • the pressure in the first space A1 and the pressure in the second space A2 that can be uniformly adjusted by the space pressure adjusting unit 70 are calculated by the differential pressure calculating unit 82c.
  • the opening amount of the valve portion 83 is adjusted so that the differential pressure becomes the same.
  • the difference between the pressure in the first space A1 and the pressure in the second space A2 can be adjusted from a uniform state, and can be adjusted to a predetermined differential pressure with high accuracy. Therefore, the thrust force acting on the first driven shaft 31 by the first compression part 41 and the second compression part 42 can be easily adjusted.
  • the thrust force acting on the first driven shaft 31 and the drive shaft 2 connected to the first driven shaft 31 other than the influence of the first compression portion 41 and the second compression portion 42 can be easily canceled.
  • the first driven shaft 31 and the drive shaft 2 that are the speed increaser 10 can be stably operated without applying an extra load.
  • the gear group such as the drive gear 11a and the first driven gear 12a is a helical gear
  • the predetermined differential pressure calculated by the differential pressure calculation unit 82c is canceled out by the thrust force generated by these gear groups.
  • the thrust force acting on the first driven shaft 31 and the drive shaft 2 connected to the first driven shaft 31 by the helical gear can be offset.
  • the first driven shaft 31 and the drive shaft 2 can be operated more stably without applying an extra load.
  • the compression unit 4 is not limited to a three-stage configuration like the centrifugal compressor 1 of the present embodiment. That is, a two-stage configuration without the fourth compression unit 44 may be employed, or a fifth or sixth compression unit may be provided and a four-stage or more configuration may be employed.
  • the pressure of the space on the discharge side of the fluid in the first compression section and the pressure of the space on the discharge side of the fluid in the second compression section are adjusted uniformly, so that the two compression sections It is possible to reduce the load caused by the deviation of the thrust force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 この遠心圧縮機は、回転駆動される駆動軸(2)と、駆動軸(2)に接続される駆動歯車(11)と、駆動歯車(11)の回転が伝達される従動歯車(12、13)と、従動歯車(12、13)の中心軸方向の両端側へと延びる従動軸(3)と、従動軸(3)の中心軸方向の第一の端部側に設けられる第一圧縮部(41)と、従動軸(3)の中心軸方向の第二の端部側に設けられる第二圧縮部(42)と、第一圧縮部(41)における流体の吐出側の空間の圧力と第二圧縮部(42)における流体の吐出側の空間の圧力とを均一に調整するための圧力調整部(7)とを備える。

Description

遠心圧縮機
 本発明は、遠心圧縮機に関する。
 遠心圧縮機などの回転機械にあっては、回転するインペラの半径方向に通過させる際に発生する遠心力によって気体を圧縮するものである。遠心圧縮機としては、ガス等の気体を圧縮するインペラを一本の軸に取り付ける構造の一軸多段型遠心圧縮機と、複数のピニオン軸の軸端にインペラを取り付ける構造の増速機内蔵型遠心圧縮機(以下、ギアド圧縮機と称する)とが知られている。ギアド圧縮機は、複数のピニオン軸の軸端にそれぞれ設けられたインペラを備えた複数の圧縮部によって流体を圧縮する形態のものが知られている。
 このようなギアド圧縮機として、例えば、特許文献1では、駆動軸の回転が伝達されるピニオン軸である従動軸の各々の両端に同じ構成の圧縮部を設けたダブルフローギアド圧縮機が開示されている。このギアド圧縮機は、一つの従動軸で二つの圧縮部を回転させ、両側から同時に気体を圧縮して一つの圧縮部のようにすることで、インペラの径を大きくすることなく、ギアド圧縮機全体として大容量化を図っている。
特開2013-036375号公報
 上述したようなダブルフローギアド圧縮機では、両端の圧縮部から従動軸に対して働くスラスト力を相殺して、従動軸に中心軸方向のどちらか一方に偏ったスラスト力が働かない状態とすることが好ましい。ところが、ダブルフローギアド圧縮機の設置状況によっては、圧縮部の吐出口に接続される配管の長さの差に起因して流路抵抗が異なってしまう場合がある。そのため、両側の圧縮部の吐出圧力に差が生じて、スラスト力が生じ、圧縮部を支持する従動軸やそのスラスト軸受等に意図しない負荷がかかることがある。
 本発明は、二つの圧縮部から生じるスラスト力の差によって生じる負荷を低減することが可能な遠心圧縮機を提供する。
 本発明の第一の態様に係る遠心圧縮機は、回転駆動される駆動軸と、前記駆動軸に接続される駆動歯車と、前記駆動歯車の回転が伝達される従動歯車と、前記従動歯車の中心軸方向の両側へと延びる従動軸と、前記従動軸の中心軸方向の第一の端部側に設けられ、前記従動軸の回転によって流体を圧縮する第一圧縮部と、前記従動軸の中心軸方向の第二の端部側に設けられ、前記従動軸の回転によって流体を圧縮する第二圧縮部と、前記第一圧縮部における流体の吐出側の空間の圧力と前記第二圧縮部における流体の吐出側の空間の圧力とを均一に調整するための圧力調整部とを備える。
 このような遠心圧縮機によれば、第一圧縮部の吐出圧力と第二圧縮部の吐出圧力との差を軽減することができる。したがって、第一圧縮部と第二圧縮部との圧力差により生じるスラスト力を軽減できる。これにより、第一圧縮部及び第二圧縮部の二つの圧縮部から生じるスラスト力の差によって生じる負荷を低減することができる。
 本発明の第二の態様に係る遠心圧縮機は、前記第一圧縮部及び前記第二圧縮部から吐出される流体の熱交換を行う熱交換器と、前記第一圧縮部の吐出口と前記熱交換器とを接続する第一接続路と、前記第二圧縮部の吐出口と前記熱交換器とを接続する第二接続路と、を備え、前記圧力調整部は、前記第一圧縮部の吐出口からの距離と、前記第二圧縮部の吐出口からの距離とが同じとなる位置で、前記第一接続路と前記第二接続路とを接続してもよい。
 このような遠心圧縮機によれば、第一圧縮部における流体の吐出側の空間である第一接続路内の空間の圧力と、第二圧縮部における流体の吐出側の空間である第二接続路内の空間の圧力とを均一とすることができる。例えば、遠心圧縮機の設置場所等のレイアウトの都合上、第一接続路と第二接続路との長さに違いが出ることで、第一接続路及び第二接続路における圧力損失に差が生じてしまう場合であっても、第一圧縮部の吐出圧力と第二圧縮部の吐出圧力に生じる差を容易に軽減することができる。したがって、第一圧縮部と第二圧縮部との圧力差により生じるスラスト力を容易に軽減できる。これにより、第一圧縮部及び第二圧縮部の二つの圧縮部から生じるスラスト力の差による負荷を容易に低減することができる。
 本発明の第三の態様に係る遠心圧縮機は、前記第一圧縮部は、前記従動軸に対して固定されて該従動軸とともに回転して流体を圧縮する第一インペラと、前記第一インペラの前記従動軸の中心軸方向の第二の端部側の面との間に第一空間を形成する第一ケーシングとを有し、前記第二圧縮部は、前記従動軸に対して固定されて該従動軸とともに回転して流体を圧縮する第二インペラと、前記第二インペラの前記従動軸の中心軸方向の第一の端部側の面との間に第二空間を形成する第二ケーシングとを有し、前記圧力調整部は、前記第一空間及び前記第二空間を連通させるように、前記第一ケーシング及び前記第二ケーシングを貫通して設けられてもよい。
 このような遠心圧縮機によれば、第一空間の圧力と第二空間との圧力を均一にすることができる。そのため、第一圧縮部及び第二圧縮部内の吐出口よりも吸込口側の流路の圧力を均一に近づけて圧力差を小さくすることができる。即ち、第一圧縮部における流体の吐出側の流路の空間の圧力と、第二圧縮部における流体の吐出側の流路の空間の圧力とを高い精度で均一に近づけるとすることができる。その結果、第一圧縮部の吐出圧力と第二圧縮部の吐出圧力とに生じる差をより一層軽減することができる。したがって、第一空間と第二空間とを圧力調整部で接続することで、第一圧縮部と第二圧縮部との圧力差により生じるスラスト力を容易により一層軽減できる。これにより、第一圧縮部及び第二圧縮部の二つの圧縮部から生じるスラスト力の差による負荷をより一層低減することができる。
 本発明の第四の態様に係る遠心圧縮機は、前記圧力調整部によって均一に調整された前記第一圧縮部の吐出側の空間の圧力と前記第二圧縮部の吐出側の空間の圧力とを、所定の差圧となるよう調整する差圧調整部を備えていてもよい。
 このような遠心圧縮機によれば、第一空間の圧力と第二空間の圧力との差を均一な状態から調整することができ、所定の差圧に高い精度で調整することができる。そのため、第一圧縮部及び第二圧縮部により従動軸に働くスラスト力を容易に調整することができる。したがって、第一圧縮部及び第二圧縮部の影響以外で従動軸や駆動軸等に働いたスラスト力を相殺することができる。これにより、従動軸や駆動軸に余計な負荷をかけることなく安定して運転することができる。
 本発明の第五の態様に係る遠心圧縮機は、前記駆動歯車及び前記従動歯車がはすば歯車であり、前記差圧調整部は、前記駆動歯車と前記従動歯車とによって生じるスラスト力を相殺する差圧となるよう調整してもよい。
 このような構成の遠心圧縮機によれば、はすば歯車で構成された駆動歯車や従動歯車により生じるスラスト力を相殺する差圧とすることで、はすば歯車による従動軸や駆動軸等に働いたスラスト力を相殺することができる。これにより、従動軸や駆動軸に余計な負荷をかけることなくより安定して運転することができる。
 上記した遠心圧縮機によれば、第一圧縮部における流体の吐出側の空間の圧力と第二圧縮部における流体の吐出側の空間の圧力とを均一に調整することで、二つの圧縮部のスラスト力のずれによって生じる負荷を低減することができる。
本発明の第一実施形態に係る遠心圧縮機を示す模式図である。 本発明の第一実施形態に係る遠心圧縮機の第一圧縮部及び第二圧縮部を示す拡大図である。 本発明の第二実施形態に係る遠心圧縮機の第一圧縮部及び第二圧縮部を示す拡大図である。 本発明の第三実施形態に係る遠心圧縮機の第一圧縮部及び第二圧縮部を示す拡大図である。
《第一実施形態》
 以下、本発明における第一実施形態について図1及び図2を参照して説明する。
 図1に示すように、本実施形態の遠心圧縮機1は、増速機10を内蔵したいわゆるギアド圧縮機である。第一実施形態の遠心圧縮機1は、動力を発生させる駆動源19と、駆動源19によって回転駆動される駆動軸2と、駆動軸2の回転駆動を変速、伝達させる増速機10と、増速機10によって伝達された動力が出力される従動軸3と、従動軸3に伝達された動力により駆動する複数の圧縮部4と、複数の圧縮部4で圧縮された流体を冷却する熱交換器5と、流体の流路である配管部6とを備える。
 駆動軸2は、駆動源19によって中心軸回りに回転する回転軸である。
 増速機10は、駆動軸2の中心軸方向の第二の端部側で接続される駆動歯車11と、駆動歯車11の回転がそれぞれ伝達される第一従動歯車12及び第二従動歯車13と、を有する。増速機10は、第一従動歯車12に対して駆動歯車11の回転を伝達する第一中間歯車14と、第二従動歯車13に対して駆動歯車11の回転を伝達する第二中間歯車15とを有する。即ち、本実施形態の増速機10の歯車群は、第二従動歯車13から順に第二中間歯車15、駆動歯車11、第一中間歯車14、第一従動歯車12と互いに噛み合って配置されている。増速機10を構成する歯車群は、ケーシング20の内部に収められている。本実施形態における増速機10を構成する歯車群は、平歯車である。
 第一中間歯車14は、第一中間軸17によって回転可能に支持されている。また、第二中間歯車15は、第二中間軸18によって回転可能に支持されている。第一中間軸17及び第二中間軸18は、ケーシング20に図示しない軸受を介して支持されている。
 従動軸3は、第一従動歯車12の中心軸方向の両側に延びる第一従動軸31と、第二従動歯車13の中心軸方向の両側に延びる第二従動軸32とを有する。第一従動軸31及び第二従動軸32は、ケーシング20に図示しない軸受を介して支持されている。
 圧縮部4は、吸込口より吸い込まれたガス等の流体を、その内部に形成された流路を介して径方向外周側に向かって圧縮して吐出するものである。圧縮部4は、第一従動軸31において駆動源19が設けられた側である中心軸方向の第一の端部側に設けられる第一圧縮部41と、第一従動軸31において駆動源19が設けられた側と反対側となる中心軸方向の第二の端部側に設けられる第二圧縮部42と、第二従動軸32において中心軸方向の第二の端部側に設けられる第三圧縮部43、第二従動軸32において中心軸方向の第一の端部側に設けられる第四圧縮部44とを有する。
 第一圧縮部41は、第一従動軸31の中心軸方向の第一の端部側の端部に設けられ、第一従動軸31の回転によって流体を吸込口から径方向外側の吐出口に向かって圧縮して流通させる。第一圧縮部41は、遠心圧縮機1における一段目の圧縮部4である。本実施形態の第一圧縮部41は、第一従動軸31に対して固定されて第一従動軸31とともに回転して流体を圧縮する第一インペラ41aと、第一インペラ41aを覆って流体の流路を形成する第一ケーシング41bとを有する。
 第二圧縮部42は、第一従動軸31の中心軸方向の第二の端部側の端部に設けられ、第一従動軸31の回転によって流体を吸込口から径方向外側の吐出口に向かって圧縮して流通させる。即ち、第二圧縮部42は、第一圧縮部41に対して第一従動軸31を挟んで反対側の端部に配置されている。第二圧縮部42は、第一圧縮部41と同様の構成をしており、第一圧縮部41と同じ流量の流体を第一従動軸31の回転によって圧縮する。第二圧縮部42は、第一圧縮部41と同時に流体を圧縮することで遠心圧縮機1における一段目の圧縮部4となっている。本実施形態の第二圧縮部42は、第一従動軸31に対して固定されて第一従動軸31とともに回転して流体を圧縮する第二インペラ42aと、第二インペラ42aを覆って流体の流路を形成する第二ケーシング42bとを有する。
 第三圧縮部43は、第二従動軸32の中心軸方向の第二の端部側の端部に設けられ、第二従動軸32の回転によって流体を吸込口から径方向外側の吐出口に向かって圧縮して流通させる。第三圧縮部43は、遠心圧縮機1における二段目の圧縮部4である。本実施形態の第三圧縮部43は、第二従動軸32に対して固定されて第二従動軸32とともに回転して流体を圧縮する第三インペラ43aと、第三インペラ43aを覆って流体の流路を形成する第三ケーシング43bとを有する。
 第四圧縮部44は、第二従動軸32の中心軸方向の第二の端部側の端部に設けられ、第二従動軸32の回転によって流体を吸込口から径方向外側の吐出口に向かって圧縮して流通させる。即ち、第四圧縮部44は、第三圧縮部43に対して第二従動軸32を挟んで反対側の端部に配置されている。第四圧縮部44は、遠心圧縮機1における三段目の圧縮部4である。本実施形態の第四圧縮部44は、第二従動軸32に対して固定されて第二従動軸32とともに回転して流体を圧縮する第四インペラ44aと、第四インペラ44aを覆って流体の流路を形成する第四ケーシング44bとを有する。
 熱交換器5は、圧縮過程での流体を中間的に冷却することによって、遠心圧縮機1の駆動に必要とされる動力を低減させる。本実施形態の熱交換器5は、第一圧縮部41及び第二圧縮部42で圧縮された流体の熱交換を行うことで冷却を行う第一熱交換器51と、第三圧縮部43で圧縮された流体の冷却を行う第二熱交換器52とを有する。
 第一熱交換器51は、二つの入口ノズルと一つの出口ノズルを備えている。第一段熱交換器5は、第一圧縮部41及び第二圧縮部42から吐出される二系統の流体を冷却するとともに、二系統の流体を合流させる。第一熱交換器51は、第一圧縮部41及び第二圧縮部42と、第三圧縮部43との間に配置されている。本実施形態の第一熱交換器51は、第一圧縮部41よりも第二圧縮部42に近い位置である駆動軸2の中心軸方向の第二の端部側に配置されている。
 第二熱交換器52は、一つの入口ノズルと一つの出口ノズルを備えている。第二段熱交換器5は、第三圧縮部43から吐出される流体を冷却し、第四圧縮部44へ送り出す。
 配管部6は、各圧縮部4で圧縮された流体を流通する流路を形成する配管である。配管部6は、第一圧縮部41から第一熱交換器51までを接続する第一圧縮部吐出配管61と、第二圧縮部42から第一熱交換器51までを接続する第二圧縮部吐出配管62と、第一熱交換器51から第三圧縮部43までを接続する第三圧縮部吸込配管63とを有する。配管部6は、第三圧縮部43から第二熱交換器52までを接続する第三圧縮部吐出配管64と、第二熱交換器52から第四圧縮部44までを接続する第四圧縮部吸込配管65と、第四圧縮部44から所定のプラントPまでを接続する第四圧縮部吐出配管66とを有する。配管部6は、第一圧縮部41の吐出口の圧力と第二圧縮部42の吐出口の圧力とを均一に調整するための圧力調整部7を有する。
 第一圧縮部吐出配管61は、第一圧縮部41の吐出口と第一熱交換器51とを接続する第一接続路であって、第一圧縮部41で圧縮された流体を第一熱交換器51まで流通させる。また、第一圧縮部吐出配管61は、第一圧縮部41の吐出口と第一熱交換器51の入口ノズルの一つとを接続している。
 第二圧縮部吐出配管62は、第二圧縮部42の吐出口と第一熱交換器51とを接続する第二接続路であって、第二圧縮部42で圧縮された流体を第一熱交換器51まで流通させる。また、第二圧縮部吐出配管62は、第二圧縮部42の吐出口と第一熱交換器51の第一圧縮部吐出配管61が接続されていない側の入口ノズルの一つとを接続している。
 第三圧縮部吸込配管63は、第一熱交換器51で冷却された第一圧縮部41からの流体と第二圧縮部42からの流体とを合流させて第三圧縮部43まで流通させる配管であって、第一熱交換器51の出口ノズルと第三圧縮部43の吸込口とを接続している。
 第三圧縮部吐出配管64は、第三圧縮部43で圧縮された流体を第二熱交換器52まで流通させる流路であって、第三圧縮部43の吐出口と第二熱交換器52の入口ノズルとを接続している。
 第四圧縮部吸込配管65は、第二熱交換器52で冷却された第三圧縮部43からの流体を第四圧縮部44まで流通させる配管であって、第二熱交換器52の出口ノズルから第四圧縮部44の吸込口に接続されている。
 第四圧縮部吐出配管66は、第四圧縮部44で圧縮された流体を圧縮された流体の供給先である所定のプラントPまで流通させる配管であって、第四圧縮部44の吐出口からプラントPの不図示の機器に接続されている。
 圧力調整部7は、第一圧縮部41の吐出側の空間の圧力と第二圧縮部42の吐出側の空間の圧力とを均一に調整する。圧力調整部7は、図2に示すように。第一接続路である第一圧縮部吐出配管61と第二接続路である第二圧縮部吐出配管62とを接続している。本実施形態の圧力調整部7は、第一圧縮部吐出配管61における第一圧縮部41の吐出口からの距離lと第二圧縮部吐出配管62における第二圧縮部42の吐出口からの距離lとが同じとなる位置で連通させる。
 次に、上記構成の第一実施形態の遠心圧縮機1の作用について説明する。
 上記のような実施形態の遠心圧縮機1では、圧縮すべき流体が第一圧縮部41及び第二圧縮部42の吸込口にそれぞれ同時に吸い込まれると、第一圧縮部41及び第二圧縮部42によって一段目の圧縮が行われる。
 ここで、第一圧縮部41及び第二圧縮部42の吐出口からの距離lが同じとなる位置で、第一圧縮部吐出配管61と第二圧縮部吐出配管62とが圧力調整部7である配管によって接続されている。そのため、第一圧縮部吐出配管61内の圧力調整部7が接続されている付近の圧力と第二圧縮部吐出配管62内の圧力調整部7が接続されている付近の圧力とが均一になる。即ち、第一圧縮部41における流体の吐出側の空間である第一圧縮部吐出配管61内の空間の圧力と、第二圧縮部42における流体の吐出側の空間である第二圧縮部吐出配管62内の空間の圧力とが、圧力調整部7が接続されている部分でほぼ均一の状態となっている。
 なお、ここでいう圧力が均一な状態とは、第一圧縮部41側と第二圧縮部42側とで実質的に第一従動軸31等に影響を及ぼさないとみなせる程度の差しかない状態をいう。
 この状態で、第一圧縮部41によって圧縮された流体は、第一圧縮部吐出配管61内を流れて、第一熱交換器51の入口ノズルに流入する。同時に、第二圧縮部42によって圧縮された流体も、第二圧縮部吐出配管62内を流れて、第一熱交換器51の入口ノズルに流入する。
 第一圧縮部吐出配管61と第二圧縮部吐出配管62とから第一熱交換器51の二つの入口ノズルに流入した流体は、第一熱交換器51内で合流され、中間冷却される。その後、第三圧縮部吸込配管63内を流通して第三圧縮部43の吸込口に流入すると、第三圧縮部43によって二段目の圧縮が行われる。第三圧縮部43によって圧縮された流体は、第三圧縮部吐出配管64内を流れて、第二熱交換器52に流入する。第二熱交換器52に流入した流体は、第二熱交換器52内で中間冷却された後、第四圧縮部吸込配管65内を流通して第四圧縮部44の吸込口に流入する。その後、流体は第四圧縮部44において三段目の圧縮が施された後、圧縮された流体の供給先である所定のプラントPの機器に供給される。
 上記のような遠心圧縮機1によれば、圧力調整部7により第一圧縮部41及び第二圧縮部42における流体の吐出側の圧力を均一にすることで、第一圧縮部41の吐出圧力と第二圧縮部42の吐出圧力との差を軽減することができる。したがって、第一圧縮部41と第二圧縮部42との圧力差により生じるスラスト力を軽減できる。これにより、第一圧縮部41及び第二圧縮部42の二つの圧縮部4から生じるスラスト力の差によって生じる負荷を低減することができる。
 また、圧力調整部7である配管によって、第一圧縮部41及び第二圧縮部42の吐出口からの距離lが同じ位置で、第一圧縮部吐出配管61と第二圧縮部吐出配管62とが接続されている。そのため、第一圧縮部41の吐出口と接続されて第一圧縮部41における流体の吐出側の空間である第一圧縮部吐出配管61内の空間の圧力と、第二圧縮部42の吐出口と接続されて第二圧縮部42における流体の吐出側の空間である第二圧縮部吐出配管62内の空間の圧力とを均一とすることができる。例えば、遠心圧縮機1の設置場所等のレイアウトの都合上、第一圧縮部吐出配管61と第二圧縮部吐出配管62との配管の長さに違いが出ると、二つの配管における圧力損失に差が生じてしまう。即ち、この場合では第一圧縮部吐出配管61内の圧力と第二圧縮部吐出配管62内の圧力とに差が生じ、第一圧縮部41の吐出圧力と第二圧縮部42の吐出圧力とに差が生じる。ところが、第一圧縮部41及び第二圧縮部42の吐出口からの距離lが等しく同じ位置の空間の圧力が均一にされていることで、第一圧縮部41の吐出圧力と第二圧縮部42の吐出圧力に生じる差を容易に軽減することができる。したがって、第一圧縮部41と第二圧縮部42との圧力差により生じるスラスト力を容易に軽減できる。これにより、第一圧縮部41及び第二圧縮部42の二つの圧縮部4から生じるスラスト力の差によって生じる負荷を容易に低減することができる。
《第二実施形態》
 次に、図3を参照して第二実施形態の遠心圧縮機1について説明する。
 第二実施形態においては第一実施形態と共通の構成要素には同一の符号を付して詳細な説明を省略する。この第二実施形態の遠心圧縮機1は、圧力調整部7の接続される位置について、第一実施形態と相違する。
 即ち、第二実施形態の遠心圧縮機1は、図3に示すように、圧力調整部7に代わって、第一圧縮部41の第一インペラ41aと第一ケーシング41bとの間に形成される空間と、第二圧縮部42の第二インペラ42aと第二ケーシング42bとの間に形成される空間とを接続する空間圧力調整部70とを備える。
 第二実施形態の第一圧縮部41では、第一インペラ41aの第一従動軸31の中心軸方向の第二の端部側の面との間に第一空間A1を形成するよう第一ケーシング41bが配置されている。
 第一空間A1は、第一ケーシング41b内の空間であって、第一インペラ41aと第一ケーシング41bの壁面とによって画成される空間である。第一空間A1は、第一インペラ41aのディスクの第一従動軸31の中心軸方向の第二の端部側の底面と、第一ケーシング41bの底部とによって挟まれた空間である。
 第二実施形態の第二圧縮機では、第二インペラ42aの第一従動軸31の中心軸方向の第一の端部側の面との間に第二空間A2を形成するよう第二ケーシング42bが配置されている。
 第二空間A2は、第二ケーシング42b内の空間であって、第二インペラ42aと第二ケーシング42bの壁面とによって画成される空間である。第二空間A2は、第二インペラ42aのディスクの第一従動軸31の中心軸方向の第一の端部側の底面と、第二ケーシング42bの底部とによって挟まれた空間である。
 空間圧力調整部70は、第一空間A1及び第二空間A2を連通させるように、第一ケーシング41b及び第二ケーシング42bを貫通して設けられる。本実施形態の空間圧力調整部70は、第一ケーシング41bにおける第一従動軸31の中心軸方向の第二の端部側の面である第一ケーシング41bの底面を貫通する第一貫通孔71と、第二ケーシング42bにおける第一従動軸31の中心軸方向の第一の端部側の面である第二ケーシング42bの底面を貫通する第二貫通孔72と、第一貫通孔71と第二貫通孔72とを接続する5mm程度の小径の配管である空間圧力調整部本体73とを有する。
 次に、上記構成の第二実施形態の遠心圧縮機1の作用について説明する。
 第一圧縮部41の吸込口から吸い込まれた流体は、第一インペラ41aが回転することで圧縮される。そして、第一圧縮部41の吐出口に向かって流体は流れていく。第一インペラ41aは第一ケーシング41bに対して回転するために、第一ケーシング41bと第一インペラ41aとの間には流体の流れを阻害しないような微小な隙間が形成されている。第一空間A1はこの微小な隙間によって流体の吐出側の流路と連通している。そのため、第一空間A1内の圧力は、圧縮された流体が流通する吐出側の流路に対応する圧力とほぼ同等となっている。
 同様に、第二圧縮部42の吸込口から吸い込まれた流体は、第二インペラ42aが回転することで圧縮される。そして、第二圧縮機の吐出口に向かって流体は流れていく。第二インペラ42aは第二ケーシング42bに対して回転するために、第二ケーシング42bと第二インペラ42aとの間には流体の流れを阻害しないような微小な隙間が形成されている。第二空間A2はこの微小な隙間によって流体の吐出側の流路と連通している。そのため、第二空間A2内の圧力は、圧縮された流体が流通する吐出側の流路に対応する圧力とはほぼ同等となっている。
 第一空間A1と第二空間A2とを第一貫通孔71と第二貫通孔72とを介して空間圧力調整部本体73である配管によって連通させることで、第一空間A1の圧力と第二空間A2との圧力が均一となっている。即ち、第一空間A1と微小な隙間で連通する第一圧縮部41における流体の吐出側の流路の空間の圧力と、第二空間A2と微小な隙間で連通する第二圧縮部42における流体の吐出側の流路の空間の圧力とが、ほとんど一定の状態となっている。この状態で第一圧縮部41によって圧縮された流体は、第一圧縮部吐出配管61内を流れて、第一熱交換器51の入口ノズルに流入する。同時に、第二圧縮部42によって圧縮された流体も、第二圧縮部吐出配管62内を流れて、第一熱交換器51の入口ノズルに流入する。
 上記のような遠心圧縮機1によれば、空間圧力調整部本体73である配管によって第一貫通孔71と第二貫通孔72とを介して、第一空間A1と第二空間A2とを接続することで、第一空間A1の圧力と第二空間A2との圧力を均一にすることができる。そのため、第一圧縮部41内及び第二圧縮部42内の吐出口よりも吸込口側の流路の圧力を均一に近づけて圧力差を小さくすることができる。即ち、第一圧縮部41における流体の吐出側の流路の空間の圧力と、第二圧縮部42における流体の吐出側の流路の空間の圧力とを高い精度で均一に近づけることができる。その結果、第一圧縮部41の吐出圧力と第二圧縮部42の吐出圧力とに生じる差をより一層軽減することができる。したがって、第一空間A1と第二空間A2とを空間圧力調整部本体73で接続することで、第一圧縮部41と第二圧縮部42との圧力差により生じるスラスト力をより一層軽減することができる。これにより、第一圧縮部41及び第二圧縮部42の二つの圧縮部4から生じるスラスト力の差による負荷をより一層低減することができる。
 また、第一空間A1と第二空間A2とがそれぞれ第一ケーシング41bと第二ケーシング42bとに面する空間であるため、各ケーシング20に第一貫通孔71及び第二貫通孔72を設けるだけで第一空間A1及び第二空間A2を接続する空間圧力調整部70を設けることができる。
《第三実施形態》
 次に、図4を参照して第三実施形態の遠心圧縮機1について説明する。
 第三実施形態においては第一実施形態と共通の構成要素には同一の符号を付して詳細な説明を省略する。この第三実施形態の遠心圧縮機1は、圧力調整部7によって均一にされた圧力に再び差を生じさせる点について、第一実施形態と相違する。
 即ち、第三実施形態の遠心圧縮機1は、図4に示すように、第二実施形態の空間圧力調整部70に設けられる差圧調整部8を有する。また、本実施形態の遠心圧縮機1の増速機10の歯車群は、はすば歯車で構成されている。即ち、駆動歯車11a、第一従動歯車12a、第二従動歯車13a、第一中間歯車14a、及び第二中間歯車15aはすべてはすば歯車である。
 差圧調整部8は、空間圧力調整部70が均一に調整した第一圧縮部41の吐出側の空間の圧力と第二圧縮部42の吐出側の空間の圧力との差圧が、所定の差圧となるよう調整する。本実施形態の差圧調整部8は、第一従動軸31に生じるスラスト力に応じて、空間圧力調整部70によって均一にされている第一空間A1の圧力と第二空間A2の圧力とに差が生じるように調整する。具体的には差圧調整部8は、第一従動軸31の中心軸方向の変位を測定する変位測定部81と、測定された第一従動軸31の変位に基づいて所定の差圧を算出する差圧制御部82と、差圧制御部82の算出結果に基づいて空間圧力調整部本体73の開放量を調整する弁部83とを有する。
 変位測定部81は、ケーシング20に設置された変位センサによって第一従動軸31のケーシング20に対する中心軸方向の相対変位量を測定する。変位測定部81は、差圧制御部82に測定結果を出力する。
 差圧制御部82は、変位測定部81の測定結果が入力される変位入力部82aと、入力された変位に基づいて第一従動軸31に働くスラスト力を算出するスラスト力算出部82bと、スラスト力算出部82bで算出したスラスト力に基づいて、第一空間A1と第二空間A2とにおける差圧を算出する差圧算出部82cと、差圧算出部82cの算出結果に基づいて弁部83に開放量を指示する弁調整部82dとを有する。
 変位入力部82aは、変位測定部81によって測定されたケーシング20に対する第一従動軸31の中心軸方向の相対変位量の情報が入力される。変位入力部82aは、入力された相対変位量の情報をスラスト力算出部82bに送る。
 スラスト力算出部82bは、受け取った相対変位量の情報に基づいて、第一従動軸31にどれだけのスラスト力が働いているかを算出する。スラスト力算出部82bは、算出したスラスト力を差圧算出部82cに送る。
 差圧算出部82cは、受け取ったスラスト力に基づいて、増速機10の駆動歯車11aと第一中間歯車14aを介して接続される第一従動歯車12aによって第一従動軸31に生じるスラスト力を相殺させるように第一空間A1の圧力と第二空間A2の圧力との差圧を算出する。差圧算出部82cは、算出した差圧を所定の差圧として情報を弁調整部82dに送る。
 弁調整部82dは、受け取った所定の差圧の情報に基づいて、弁部83の開放量を算出し、算出した開放量となるように弁部83に指示を信号として送る。
 弁部83は、空間圧力調整部本体73である配管の途中に設けられている。弁部83は、弁調整部82dから入力される信号に基づいて、弁を開閉することで配管の流量を調整する。
 次に、上記構成の第三実施形態の遠心圧縮機1の作用について説明する。
 第三実施形態の遠心圧縮機1は、増速機10を構成する歯車群がはすば歯車で形成されているため、駆動軸2の回転が伝達される中で、第一中間歯車14aや第一従動歯車12a等に中心軸方向のいずれか一方に向かってスラスト力が働く。即ち、第一従動歯車12aと接続されている第一従動軸31にも中心軸方向のいずれか一方に向かってスラスト力が働く。その結果、第一従動軸31は、ケーシング20に対して中心軸方向の第一の端部側か第二の端部側のいずれかに移動する。
 第一従動軸31が移動すると、ケーシング20に設けられた変位測定部81によってケーシング20に対する中心軸方向の相対変位量が測定される。変位測定部81は、測定した相対変位量の情報を差圧制御部82の変位入力部82aに対して出力する。相対変位量の情報が入力された変位入力部82aは、入力された情報をスラスト力算出部82bに送る。スラスト力算出部82bは、受け取った変位量の情報に基づいて、増速機10の歯車群によって第一従動軸31に働いているスラスト力を算出する。スラスト力算出部82bは、算出したスラスト力の情報を差圧算出部82cに送る。差圧算出部82cは、受け取ったスラスト力の情報に基づいて、第一従動軸31に働いているスラスト力を相殺するための差圧である第一空間A1の圧力と第二空間A2の圧力との差を所定の差圧として算出する。差圧算出部82cは、算出した所定の差圧の情報を弁調整部82dに送る。弁調整部82dは、受け取った所定の差圧の情報に基づいて、弁部83の開放量を算出して弁部83に指示を信号として送る。信号を受けた弁部83は、指示された開放量となるように、空間圧力調整部本体73である配管を連通させる量を調整する。その結果、第一空間A1と第二空間A2との圧力が所定の差圧だけずれた状態となる。
 この状態で、第一圧縮部41によって圧縮された流体は、第一圧縮部吐出配管61内を流れて、第一熱交換器51の入口ノズルに流入する。同時に、第二圧縮部42によって圧縮された流体も、第二圧縮部吐出配管62内を流れて、第一熱交換器51の入口ノズルに流入する。第一圧縮部41から圧縮された流体が吐出される吐出圧力と第二圧縮部42から圧縮された流体が吐出される吐出圧力とによって、第一圧縮部41から第一従動軸31に働くスラスト力と第二圧縮部42から第一従動軸31に働くスラスト力とに差が生じる。中心軸方向のスラスト力の小さい方に向かって第一従動軸31が移動する。したがって、第一従動軸31は、駆動軸2の回転が伝達される中で、はすば歯車で構成された増速機10から働くスラスト力により移動する前の位置に戻される。
 上記のような遠心圧縮機1によれば、空間圧力調整部70によって均一に調整可能とされた第一空間A1の圧力と第二空間A2の圧力とを、差圧算出部82cで算出した所定の差圧となるように弁部83の開放量を調整する。その結果、第一空間A1の圧力と第二空間A2の圧力との差を均一な状態から調整することができ、所定の差圧に高い精度で調整することができる。そのため、第一圧縮部41及び第二圧縮部42により第一従動軸31に働くスラスト力を容易に調整することができる。したがって、第一圧縮部41及び第二圧縮部42の影響以外で第一従動軸31や第一従動軸31に接続される駆動軸2等に働いたスラスト力を容易に相殺することができる。これにより、増速機10である第一従動軸31や駆動軸2に余計な負荷をかけることなく安定して運転することができる。
 また、駆動歯車11aや第一従動歯車12a等の歯車群が、はすば歯車である場合に、差圧算出部82cで算出する所定の差圧を、これらの歯車群により生じるスラスト力を相殺する差圧とすることで、はすば歯車による第一従動軸31や第一従動軸31に接続される駆動軸2等に働いたスラスト力を相殺することができる。これにより、第一従動軸31や駆動軸2に余計な負荷をかけることなくより安定して運転することができる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 なお、圧縮部4は、本実施形態の遠心圧縮機1のように三段の構成であることに限定されるものではない。即ち、第四圧縮部44がない二段の構成であってもよく、第五圧縮部や第六圧縮部を有して四段以上の構成としてもよい。
 上記した遠心圧縮機によれば、第一圧縮部における流体の吐出側の空間の圧力と第二圧縮部における流体の吐出側の空間の圧力とを均一に調整することで、二つの圧縮部のスラスト力のずれによって生じる負荷を低減することができる。
1            遠心圧縮機
19          駆動源
2            駆動軸
10          増速機
11、11a         駆動歯車
12、12a         第一従動歯車
13、13a         第二従動歯車
14、14a         第一中間歯車
15、156a              第二中間歯車
17          第一中間軸
18          第二中間軸
20          ケーシング
3            従動軸
31          第一従動軸
32          第二従動軸
4            圧縮部
41          第一圧縮部
41a        第一インペラ
41b        第一ケーシング
42          第二圧縮部
42a        第二インペラ
42b        第二ケーシング
43          第三圧縮部
43a        第三インペラ
43b        第三ケーシング
44          第四圧縮部
44a        第四インペラ
44b        第四ケーシング
5            熱交換器
51          第一熱交換器
52          第二熱交換器
6            配管部
61          第一圧縮部吐出配管
62          第二圧縮部吐出配管
63          第三圧縮部吸込配管
64          第三圧縮部吐出配管
65          第四圧縮部吸込配管
66          第四圧縮部吐出配管
7            圧力調整部
l            (吐出口からの)距離
70          空間圧力調整部
71          第一貫通孔
72          第二貫通孔
73          空間圧力調整部本体
A1          第一空間
A2          第二空間
8            差圧調整部
81          変位測定部
82          差圧制御部
82a        変位入力部
82b        スラスト力算出部
82c        差圧算出部
82d        弁調整部
83          弁部
P            プラント

Claims (5)

  1.  回転駆動される駆動軸と、
     前記駆動軸に接続される駆動歯車と、
     前記駆動歯車の回転が伝達される従動歯車と、
     前記従動歯車の中心軸方向の両端側へと延びる従動軸と、
     前記従動軸の中心軸方向の第一の端部側に設けられ、前記従動軸の回転によって流体を圧縮する第一圧縮部と、
     前記従動軸の中心軸方向の第二の端部側に設けられ、前記従動軸の回転によって流体を圧縮する第二圧縮部と、
     前記第一圧縮部における流体の吐出側の空間の圧力と前記第二圧縮部における流体の吐出側の空間の圧力とを均一に調整するための圧力調整部とを備える遠心圧縮機。
  2.  前記第一圧縮部及び前記第二圧縮部から吐出される流体の熱交換を行う熱交換器と、
     前記第一圧縮部の吐出口と前記熱交換器とを接続する第一接続路と、
     前記第二圧縮部の吐出口と前記熱交換器とを接続する第二接続路と、を備え、
     前記圧力調整部は、前記第一圧縮部の吐出口からの距離と、前記第二圧縮部の吐出口からの距離とが同じとなる位置で、前記第一接続路と前記第二接続路とを接続する請求項1に記載の遠心圧縮機。
  3.  前記第一圧縮部は、
     前記従動軸に対して固定されて該従動軸とともに回転して流体を圧縮する第一インペラと、前記第一インペラの前記従動軸の中心軸方向の第二の端部側の面との間に第一空間を形成する第一ケーシングとを有し、
     前記第二圧縮部は、
     前記従動軸に対して固定されて該従動軸とともに回転して流体を圧縮する第二インペラと、前記第二インペラの前記従動軸の中心軸方向の第一の端部側の面との間に第二空間を形成する第二ケーシングとを有し、
     前記圧力調整部は、前記第一空間及び前記第二空間を連通させるように、前記第一ケーシング及び前記第二ケーシングを貫通して設けられる請求項1または請求項2に記載の遠心圧縮機。
  4.  前記圧力調整部によって均一に調整された前記第一圧縮部の吐出側の空間の圧力と前記第二圧縮部の吐出側の空間の圧力とを、所定の差圧となるよう調整する差圧調整部を備える請求項1から請求項3のいずれか一項に記載の遠心圧縮機。
  5.  前記駆動歯車及び前記従動歯車がはすば歯車であり、
     前記差圧調整部は、前記駆動歯車と前記従動歯車とによって生じるスラスト力を相殺する差圧となるよう調整する請求項4に記載の遠心圧縮機。
PCT/JP2014/051401 2014-01-23 2014-01-23 遠心圧縮機 WO2015111169A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015558648A JP6120997B2 (ja) 2014-01-23 2014-01-23 遠心圧縮機
CN201480030156.2A CN105264233B (zh) 2014-01-23 2014-01-23 离心压缩机
EP14880032.9A EP2990654B1 (en) 2014-01-23 2014-01-23 Centrifugal compressor
PCT/JP2014/051401 WO2015111169A1 (ja) 2014-01-23 2014-01-23 遠心圧縮機
US14/893,320 US10145381B2 (en) 2014-01-23 2014-01-23 Geared centrifugal compressor with pressure adjustment portion to balance axial thrust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051401 WO2015111169A1 (ja) 2014-01-23 2014-01-23 遠心圧縮機

Publications (1)

Publication Number Publication Date
WO2015111169A1 true WO2015111169A1 (ja) 2015-07-30

Family

ID=53681000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051401 WO2015111169A1 (ja) 2014-01-23 2014-01-23 遠心圧縮機

Country Status (5)

Country Link
US (1) US10145381B2 (ja)
EP (1) EP2990654B1 (ja)
JP (1) JP6120997B2 (ja)
CN (1) CN105264233B (ja)
WO (1) WO2015111169A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223433A (ja) * 2015-06-01 2016-12-28 株式会社Ihi 遠心圧縮機、及び回転機械
CN108779777A (zh) * 2016-03-08 2018-11-09 流体处理有限责任公司 在多级泵中平衡轴向力的中心衬套

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105650005A (zh) * 2016-03-23 2016-06-08 上海钛灵特压缩机有限公司 对称布置离心压缩机
CN106321468B (zh) * 2016-10-18 2020-02-21 沈阳斯特机械制造有限公司 一种多轴离心压缩机
WO2021079242A1 (en) * 2019-10-23 2021-04-29 Inamdar Archana Sachin A centrifugal compressor assembly
CN117905711A (zh) * 2024-03-20 2024-04-19 江苏海拓宾未来工业科技集团有限公司 一种多轴离心压缩机及其叶轮的故障诊断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375392A (ja) * 1986-09-19 1988-04-05 Hitachi Ltd 一軸多段遠心圧縮機
JPH0518394A (ja) * 1990-02-06 1993-01-26 Deutsche Babcock Borsig Ag 歯車伝動式ターボコンプレツサ
JP2005248832A (ja) * 2004-03-04 2005-09-15 Ishikawajima Harima Heavy Ind Co Ltd ターボ圧縮機
JP2013036375A (ja) 2011-08-05 2013-02-21 Mitsubishi Heavy Industries Compressor Corp 遠心圧縮機
JP2013083168A (ja) * 2011-10-06 2013-05-09 Ihi Corp ターボ圧縮機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2814254A (en) * 1954-04-16 1957-11-26 David P Litzenberg Motor driven pumps
GB842722A (en) * 1955-09-19 1960-07-27 Gutehoffnungshuette Sterkrade Improvements relating to centrifugal compressors
US3861820A (en) * 1973-04-10 1975-01-21 Ingersoll Rand Co Centrifugal gas compressor unit
JPH0640951Y2 (ja) * 1986-04-01 1994-10-26 三菱重工業株式会社 遠心圧縮機
US4725196A (en) 1986-09-19 1988-02-16 Hitachi, Ltd. Single-shaft multi-stage centrifugal compressor
US5402631A (en) * 1991-05-10 1995-04-04 Praxair Technology, Inc. Integration of combustor-turbine units and integral-gear pressure processors
KR960003681B1 (ko) 1991-05-10 1996-03-21 유니온 카바이드 인더스트리얼 개시즈 테크놀로지 코포레이션 연소기-터빈 유니트 및 압축기 병합 방법 및 시스템
DE4239138A1 (de) * 1992-11-20 1994-05-26 Bhs Voith Getriebetechnik Gmbh Verdichteranlage
DE4241141A1 (de) * 1992-12-07 1994-06-09 Bhs Voith Getriebetechnik Gmbh Verdichteranlage mit einem im Antriebsstrang zwischen einer Antriebseinheit und einem Verdichterbereich der Anlage eingeschalteten Zahnradgetriebe
JP2000028169A (ja) * 1998-07-07 2000-01-25 Nippon Sanso Kk 高清浄乾燥空気の循環供給装置及び方法
JP5163932B2 (ja) * 2007-03-16 2013-03-13 株式会社Ihi 歯車駆動ターボ圧縮機
GB2469015B (en) 2009-01-30 2011-09-28 Compair Uk Ltd Improvements in multi-stage centrifugal compressors
DE102009038786A1 (de) * 2009-08-25 2011-05-05 Siemens Aktiengesellschaft Verdichter
KR101237972B1 (ko) * 2010-10-25 2013-02-28 삼성테크윈 주식회사 압축 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375392A (ja) * 1986-09-19 1988-04-05 Hitachi Ltd 一軸多段遠心圧縮機
JPH0518394A (ja) * 1990-02-06 1993-01-26 Deutsche Babcock Borsig Ag 歯車伝動式ターボコンプレツサ
JP2005248832A (ja) * 2004-03-04 2005-09-15 Ishikawajima Harima Heavy Ind Co Ltd ターボ圧縮機
JP2013036375A (ja) 2011-08-05 2013-02-21 Mitsubishi Heavy Industries Compressor Corp 遠心圧縮機
JP2013083168A (ja) * 2011-10-06 2013-05-09 Ihi Corp ターボ圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2990654A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223433A (ja) * 2015-06-01 2016-12-28 株式会社Ihi 遠心圧縮機、及び回転機械
CN108779777A (zh) * 2016-03-08 2018-11-09 流体处理有限责任公司 在多级泵中平衡轴向力的中心衬套

Also Published As

Publication number Publication date
JPWO2015111169A1 (ja) 2017-03-23
CN105264233B (zh) 2017-10-27
US10145381B2 (en) 2018-12-04
EP2990654B1 (en) 2018-01-10
EP2990654A4 (en) 2016-06-08
CN105264233A (zh) 2016-01-20
US20160131155A1 (en) 2016-05-12
JP6120997B2 (ja) 2017-04-26
EP2990654A1 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP6120997B2 (ja) 遠心圧縮機
JP5863320B2 (ja) 遠心圧縮機
JP4947405B2 (ja) ターボ圧縮機
JP6206638B2 (ja) 遠心圧縮機
JP2007177695A (ja) ターボ圧縮機
JP5383632B2 (ja) スクリュ圧縮機
US3105632A (en) High pressure centrifugal compressor
WO2016135439A1 (en) Gas supply apparatus
JP7246417B2 (ja) 多段スクリュー圧縮機
CN105518309B (zh) 旋转机械
US20130336828A1 (en) Roots pump and exhaust method
KR101964226B1 (ko) 압축 시스템
US8668481B2 (en) Pump assembly, in particular for helicopter lubrication
IL259915A (en) Install a rotary Stirling cycle and method
CN207945084U (zh) 气缸组件及包括其的压缩机
US10578159B1 (en) Self-metering hydrostatic thrust bearing
JP5397117B2 (ja) ギアポンプ
JP2011111950A (ja) 多段遠心圧縮機の容量制御方法
JP2016511356A (ja) 連続可変パラメータを有する液圧式ギアモーター、ギアポンプ及び変速装置
JP6049807B2 (ja) 遠心圧縮機
US20190136856A1 (en) Hydraulic motor disc valve optimization
JP7179316B2 (ja) 多段ルーツ式ポンプ
JP2005240693A (ja) 流体の流量調整装置並びにスクロール圧縮機
JP2005325731A (ja) 高圧スクリュー圧縮機及びそれを用いたガス供給設備
US20130089455A1 (en) Delivery unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480030156.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015558648

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14893320

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014880032

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE