WO2015109994A1 - 一种新型锂离子液流电池 - Google Patents

一种新型锂离子液流电池 Download PDF

Info

Publication number
WO2015109994A1
WO2015109994A1 PCT/CN2015/071125 CN2015071125W WO2015109994A1 WO 2015109994 A1 WO2015109994 A1 WO 2015109994A1 CN 2015071125 W CN2015071125 W CN 2015071125W WO 2015109994 A1 WO2015109994 A1 WO 2015109994A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
current collecting
conductive
reaction chamber
collecting layer
Prior art date
Application number
PCT/CN2015/071125
Other languages
English (en)
French (fr)
Inventor
陈永翀
冯彩梅
张艳萍
张萍
王秋平
Original Assignee
北京好风光储能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京好风光储能技术有限公司 filed Critical 北京好风光储能技术有限公司
Priority to US15/110,044 priority Critical patent/US10236514B2/en
Publication of WO2015109994A1 publication Critical patent/WO2015109994A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0293Matrices for immobilising electrolyte solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the field of chemical energy storage batteries, and particularly relates to a lithium ion liquid flow battery.
  • Lithium-ion flow battery is a newly developed chemical battery technology. It combines the advantages of lithium-ion battery and flow battery. It is a new type of output power and energy storage capacity independent of each other, high energy density and low cost. Rechargeable battery. Lithium-ion liquid flow batteries have a very broad market prospect in wind power generation, photovoltaic power generation, power grid peaking, distributed power stations, and municipal transportation.
  • the lithium ion flow battery is composed of a positive suspension tank, a negative suspension tank, a battery reactor, a liquid pump or a pneumatic control system, and a sealed pipeline.
  • the positive suspension liquid pool holds a mixture of the positive electrode material particles, the conductive agent and the electrolyte
  • the negative electrode suspension pool holds the mixture of the negative electrode material particles, the conductive agent and the electrolyte.
  • the structure of the lithium ion flow battery reactor includes: a positive current collecting layer, a positive electrode reaction chamber, a positive electrode inlet port, a positive electrode outlet port, a separator layer, a negative electrode current collecting layer, a negative electrode reaction chamber, a negative electrode inlet port, and a negative electrode liquid outlet. mouth.
  • the positive electrode suspension enters the positive electrode reaction chamber of the battery reactor from the positive electrode inlet port, and flows out from the positive electrode outlet port after completion of the reaction, and returns to the positive electrode suspension pool through the sealed pipe under the action of the liquid pump pushing or the air pressure control system; meanwhile,
  • the negative electrode suspension enters the negative reaction chamber of the battery reactor from the negative liquid inlet port, and flows out from the negative electrode outlet port after completion of the reaction, and returns to the negative electrode suspension liquid pool through the sealed pipe under the action of the liquid pump push or the air pressure control system.
  • the battery reaction chamber is an important component of the lithium ion flow battery reactor.
  • the electrode suspension flows intermittently or continuously in the reaction chamber of the battery to complete the charge and discharge reaction of the battery.
  • An electron non-conductive separation layer is disposed between the positive electrode reaction chamber and the negative electrode reaction chamber of the lithium ion flow battery reactor, and the conductive particles (positive electrode active material particles and conductive agent particles) in the positive electrode suspension and the negative electrode suspension are The conductive particles (the anode active material particles and the conductive agent particles) are spaced apart from each other to prevent direct contact of the conductive particles to cause a short circuit inside the battery.
  • the electrode suspension of the lithium ion flow battery is more viscous and the flow is relatively difficult. Therefore, the design of the reaction chamber of the battery reactor is very high, and if the reaction chamber is too narrow, it will be disadvantageous to the electrode.
  • the flow of the suspension Previously, the general design of a lithium ion flow battery reactor structure was The dry isolation layers are arranged equidistantly in parallel, and the spaces between the separation layers alternately form a positive reaction chamber and a negative reaction chamber, the positive current collecting layer is located in the middle of the positive reaction chamber, and the positive suspension is in the gap between the positive current collecting layer and the diaphragm.
  • the space is continuously or intermittently flowed; the anode current collector layer is located in the middle of the anode reaction chamber, and the anode suspension liquid flows continuously or intermittently in the gap space between the anode current collector layer and the separator, as shown in FIG. That is to say, the interstitial space between the current collecting layer and the isolating layer forms an electrochemical reaction chamber of the battery, and when the battery is operated, the positive electrode suspension (16) is in the positive electrode current collecting layer of the positive electrode reaction chamber (14) (11)
  • the gap space between the spacer layer (13) flows continuously or intermittently, and electrons are transferred between the cathode suspension (16) and the cathode current collector layer (11); similarly, the anode suspension (17) is in the anode reaction chamber.
  • the gap between the anode current collecting layer (12) and the separator (13) in (15) flows continuously or intermittently, and electrons are transferred between the anode suspension (17) and the anode current collecting layer (12);
  • the positive electrode suspension (16) in the chamber and the negative electrode suspension (17) in the negative reaction chamber are subjected to lithium ion exchange transport through the separator (13).
  • the problem with the above design is that, from the viewpoint of the fluidity of the electrode suspension, the larger the distance between the current collector layer and the separation layer (ie, the larger the space of the reaction chamber), the more favorable the flow of the viscous electrode suspension, if the spacing is too small. It will make the electrode suspension flow difficult; however, from the perspective of the polarization internal resistance, the smaller the distance between the current collector and the isolation layer (ie, the smaller the space of the reaction chamber), the more favorable it is to reduce the internal resistance of the current collector. If the spacing is too large, the conduction distance of electrons and ions in the electrode suspension will increase, the internal resistance of the battery will increase, and the charge-discharge conversion efficiency will decrease. Therefore, the above-mentioned mutual constraints make the size of the reaction chamber not flexible, which affects the performance of the lithium ion flow battery.
  • the present invention provides a novel lithium ion flow battery, which changes the structure and placement position of the current collecting layer, and places the positive current collecting layer and the negative current collecting layer in the isolation layer, respectively.
  • the two sides are in close contact with the isolation layer to form a sandwich composite structure layer, and a gap between adjacent sandwich composite structure layers forms a battery reaction chamber.
  • Such a structural design allows the size of the cell reaction chamber to be flexibly adjusted according to the viscosity of the electrode suspension without increasing the polarization internal resistance of the battery.
  • the invention solves the contradiction between the size of the battery reaction chamber and the internal resistance of the battery in the existing lithium ion flow battery.
  • a novel lithium ion liquid flow battery comprises a positive current collecting layer, a negative current collecting layer, a positive electrode reaction chamber, a negative electrode reaction chamber, a separation layer, a positive electrode suspension and a negative electrode suspension, wherein the positive electrode suspension is continuous in the positive electrode reaction chamber Or intermittent flow, the negative electrode suspension flows continuously or intermittently in the negative reaction chamber to form a positive electrode reaction.
  • the current collecting layer of the cavity is a positive current collecting layer, and the current collecting layer constituting the negative electrode reaction cavity is a negative current collecting layer; the positive current collecting layer and the negative current collecting layer are respectively located on both sides of the isolation layer and closely close to the isolation layer Contacting, a sandwich composite structure layer constituting a positive current collecting layer, a separation layer and a negative current collecting layer, wherein the plurality of sandwich composite structural layers are sequentially arranged in the order in which the same polarity current collecting layers are relatively placed, wherein two adjacent positive electrode sets are arranged
  • the spacing between the flow layer and the positive current collecting layer is 1 to 10 mm, and the gap between them constitutes a positive reaction chamber, and the positive suspension continuously or intermittently flows in the positive reaction chamber; adjacent two negative current collecting layers and negative electrode sets
  • the spacing between the flow layers is 1 to 10 mm, the gap between them constitutes a negative reaction chamber, and the negative suspension continuously or intermittently flows in the negative reaction chamber.
  • the spacing of the adjacent two sandwich composite structures is from 1 to 10 mm, preferably from 2 to 5 mm.
  • the electrode suspension of the new lithium ion flow battery flows in the gap between the isotropic current layers, instead of flowing in the gap between the isolation layer and the current collecting layer, so the battery pole
  • the internal resistance is basically independent of the size of the reaction chamber.
  • the cathode current collecting layer and/or the anode current collecting layer is an electron conducting layer having a through-hole structure with a thickness of 0.01 to 1000 ⁇ m, and has a through-hole porosity of 30% to 99% and a pore diameter ranging from 10 nm to 2 mm. .
  • the porous electronic conductive layer is a porous mixture of a conductive filler and a binder, wherein the conductive filler has a mass fraction of 30% to 95%; and the conductive filler is titanium powder, copper powder, aluminum powder, silver powder, lithium-rich silicon.
  • Powder, lithium-rich tin-based metal alloy conductive particles, or the conductive filler is one or more of carbon black, carbon nanotubes, carbon fiber, graphene;
  • the binder is polyvinyl chloride, polyethylene , polypropylene, polystyrene, polytetrafluoroethylene, polyterephthalate, polyamide, polyimide, polyether nitrile, polymethyl acrylate, polyvinylidene fluoride, polyurethane, polyacrylonitrile, butyl Benzene rubber, sodium carboxymethyl cellulose, modified polyolefin, polyacetylene, polypyrrole and its derivatives, polythiophene and its derivatives, polyaniline and its derivatives, polyparaphenylene vinyl and its derivatives, poly One or more of benzene and its derivatives, polyfluorene and its derivatives.
  • the porous electronically conductive layer is a metal conductive layer having a via structure.
  • the metal conductive layer is woven by a wire or a wire coated with a conductive carbon material coating, the mesh is square, diamond or rectangular; or the metal conductive layer is a porous metal foam layer having a through hole structure
  • the metal conductive layer is made of a porous metal plate or a metal foil by mechanical stamping or chemical etching, and the mesh is round and elliptical. Shape, semicircle, square, hexagon, triangle, diamond, trapezoid or non-specular polygon.
  • the porous metal plate or metal foil When the porous metal plate or metal foil is used for the positive current collecting layer, it is aluminum, alloy aluminum, stainless steel, silver, tin, nickel or titanium, preferably aluminum; when the porous metal plate or metal foil is used for the negative current collecting layer It is copper, stainless steel, nickel, titanium, silver, tin, tin-plated copper, nickel-plated copper or silver-plated copper, preferably nickel-plated copper. Further, the surface of the metal plate or metal foil is coated with a coating of a conductive carbon material.
  • the porous electronic conductive layer is one or more of a polyester porous conductive cloth, a carbon fiber conductive cloth, a metal wire and an organic fiber mixed conductive cloth; or the porous electronic conductive layer is surface-coated with conductive carbon A material coating or a porous organic material coated with a metal film, including natural cotton, polyester, aramid, nylon, polypropylene, polyethylene, polytetrafluoroethylene, and other organic materials having good electrolyte resistance.
  • the cathode current collecting layer and/or the anode current collecting layer is a polymer electrolyte layer to which the above conductive filler is added, wherein the conductive filler has a mass fraction of 10% to 90%; and the polymer electrolyte layer is a polymer A gel polymer electrolyte composite composed of a matrix, a liquid organic plasticizer and a lithium salt.
  • the cathode current collecting layer and/or the anode current collecting layer are a current collecting layer composed of any two or more of the above several current collecting layers.
  • the isolation layer is made of an electronically insulating material and has a thickness of 0.01 to 1 mm.
  • the isolation layer is located between the positive current collecting layer and the negative current collecting layer, and is in close contact with the positive electrode current collecting layer and the negative electrode current collecting layer to constitute the sandwich composite structural layer.
  • the function of the isolation layer is to prevent direct contact between the positive current collector layer and the negative current collector layer on both sides of the isolation layer to cause internal short circuit of the battery, and at the same time, the isolation layer allows lithium ions to pass.
  • the separator is polyethylene, polypropylene, polyvinylidene fluoride or other electronically non-conductive porous polymer material; or the separator is a glass fiber nonwoven fabric, a synthetic fiber nonwoven fabric, a ceramic fiber paper or a composite porous material of an inorganic non-conductive inorganic non-metal material and an organic polymer; or a material of the isolation layer is a gel polymer composed of a three-part composite of an electron non-conductive polymer matrix, a liquid organic plasticizer and a lithium salt. Electrolyte composite.
  • the number of the separation layers between the positive electrode current collector layer and the negative electrode current collector layer may be one or more layers.
  • the current collecting layer and the separating layer may be composited by vacuum evaporation, electroplating, electroless plating, casting, spin coating, spray coating, hot pressing, screen printing, inkjet printing, bonding, mechanical pressing, and the like.
  • Collector layer and isolation The layers are capable of forming a tightly bonded sandwich composite structural layer.
  • the positive electrode suspension is a mixture of positive electrode active material particles, a conductive agent and an electrolyte, and the positive electrode active material is lithium-containing lithium iron phosphate, lithium manganese phosphate, lithium-doped manganese oxide, lithium cobalt oxide, lithium.
  • the positive electrode active material is lithium-containing lithium iron phosphate, lithium manganese phosphate, lithium-doped manganese oxide, lithium cobalt oxide, lithium.
  • conductive agent is carbon black, carbon fiber, Ketchen black a mixture of one or more of graphene and metal particles.
  • the negative electrode suspension is a mixture of a negative active material particle, a conductive agent and an electrolyte
  • the negative active material is an aluminum-based alloy capable of reversibly intercalating lithium, a silicon-based alloy, a tin-based alloy, a lithium titanium oxide, and a carbon material.
  • the conductive agent is a mixture of one or more of carbon black, carbon fiber, ketjen black, graphene, metal particles.
  • a conducting fluid is disposed in the reaction chamber, and the conducting fluid is in direct contact with the current collecting layer of the same polarity on both sides of the reaction chamber, and the reaction chamber is partitioned into a plurality of parallel flow channels, and the reaction chamber is in the reaction chamber.
  • the flowing electrode suspension acts as a flow guiding, and at the same time, supports the sandwich composite structure layer on both sides of the battery reaction chamber.
  • the cross-sectional shape of the fluid guiding body in the reaction chamber includes one or more of a rectangular wave, a sine wave, a square wave, a triangular wave, a trapezoidal wave, a sawtooth wave, a pulse wave, or a profiled wave having convex and concave undulations.
  • the guiding fluid may be a non-conductive insulating plastic plate, or may be a conductive graphite plate, a conductive metal plate or a plastic plate coated with a metal film.
  • the conducting fluid can conduct electricity, the guiding fluid has the above-mentioned diversion and support functions. It is also possible to provide metal wires at both ends of the fluid guiding body to form the tabs, and the electrons collected by the current collecting layer are transmitted and taken out through the conducting fluid, so that the conducting fluid can also function as an electron drainage at this time.
  • the working principle of the lithium ion flow battery of the invention is as follows:
  • the positive electrode suspension of the lithium ion flow battery of the invention is located in the positive reaction chamber, the negative electrode suspension is located in the negative reaction chamber, and the positive reaction chamber and the negative reaction chamber are separated by the sandwich composite structure layer, and the adjacent sandwich composite structure
  • the isotropic collector layers of the layers are placed opposite each other with a distance of 1 to 10 mm, preferably 2 to 5 mm.
  • the electrons inside the negative active material particles in the negative electrode suspension pass through the conductive agent in the negative electrode suspension, enter the negative current collecting layer of the sandwich composite structure layer, and flow into the outside of the battery through the negative electrode tab of the negative electrode current collecting layer.
  • the circuit after the work is done by the external circuit, flows from the positive electrode to the positive current collecting layer of the sandwich composite structure layer, and passes through the conductive agent in the positive electrode suspension to enter the positive active material of the positive electrode suspension. Inside the particle, an electrochemical process of discharging is completed. The process of charging the battery is the opposite.
  • the positive electrode suspension in the positive electrode reaction chamber is in a state of continuous flow or intermittent flow, and is in contact with the conductive agent particles by the contact of the positive electrode active material particles and the surface of the positive electrode current collector layer.
  • a network of electronic conductive channels is formed.
  • the negative electrode suspension in the negative reaction chamber is also similar.
  • the positive electrode suspension and the negative electrode suspension are transported by lithium ions through the interlayer in the middle of the sandwich composite structure layer, and electrons are collected and transported through the positive electrode current collecting layer and the negative electrode current collecting layer on both sides of the sandwich composite structure layer.
  • the current collecting layer must be an electronic conductive layer with a through hole, or the current collecting layer is a polymer electrolyte layer to which an electronic conductive material is added, so that when the battery is operated, Lithium ions can migrate between the positive electrode reaction chamber and the negative electrode reaction chamber through the electrolyte or polymer electrolyte in the current collector layer; at the same time, electrons can communicate with the outer circuit of the battery through the current collecting layer of the current collector, in the positive electrode suspension Transfer between the suspension and the negative suspension.
  • the design of the sandwich composite structure layer is composed of the positive current collecting layer, the separation layer and the negative current collecting layer, so that the size of the battery reaction chamber can be flexibly designed according to the viscosity of the electrode suspension without increasing the polarization internal resistance of the battery, and solving The existing lithium ion flow battery has a contradiction between the size of the reaction chamber of the battery and the internal resistance of the battery;
  • the sandwich composite structure layer design enables the electrode suspension to achieve good current collecting and conducting effects with less conductive agent. Therefore, compared with the existing lithium ion flow battery, the new lithium ion flow battery reduces the requirement for the electronic conductivity of the electrode suspension, that is, the content of the electrode suspension conductive agent can be reduced, and the energy of the electrode suspension can be increased. Density and fluidity;
  • FIG. 1 is a schematic structural view of a conventional lithium ion flow battery
  • FIG. 2 is a schematic structural view of a lithium ion flow battery of the present invention.
  • FIG 3 is a schematic view showing the structure of a fluid guiding body in a reaction chamber of a battery according to the present invention.
  • the conventional lithium ion flow battery includes a cathode current collecting layer 11, a cathode current collecting layer 12, a separator layer 13, a cathode electrode suspension 16 and a cathode suspension 17.
  • the space between the adjacent isolation layers 13 sequentially forms a positive electrode reaction chamber 14 and a negative electrode reaction chamber 15, the positive electrode current collecting layer 11 is located in the positive electrode reaction chamber 14, and the negative electrode current collecting layer 12 is located in the negative electrode reaction chamber 15.
  • the positive electrode suspension 16 in the positive electrode reaction chamber 14 and the negative electrode suspension 17 in the negative electrode reaction chamber 15 are subjected to lithium ion exchange transport through the separator 13.
  • the structure of the battery reactor is such that the smaller the spacing between the current collecting layer and the separating layer is, the more favorable the transfer of ions and electrons, but reducing the spacing between the current collecting layer and the separating layer increases the flow of the suspension. Resistance is not conducive to the flow of the electrode suspension. Therefore, this is a contradiction.
  • the lithium ion flow battery of the present invention changes the position and structure of the current collecting layer, so that the size of the battery reaction chamber can be flexibly designed, and the structural design of the existing lithium ion flow battery reactor is solved. There are serious contradictions in the aspect.
  • the lithium ion flow battery includes a cathode current collecting layer 21, a cathode current collecting layer 22, a separator layer 23 between the cathode current collecting layer and the anode current collecting layer, and a cathode suspension 26 and a cathode suspension 27.
  • the cathode current collecting layer 21 and the anode current collecting layer 22 are respectively located on both sides of the separator 23 and are in close contact with the separator 23 to constitute the sandwich composite structure layer.
  • the space between the adjacent positive electrode current collecting layers 21 constitutes the positive electrode reaction chamber 24
  • the positive electrode suspension 26 flows continuously or intermittently in the positive electrode reaction chamber 24
  • the space between the adjacent negative electrode current collecting layers 22 constitutes a negative electrode reaction.
  • Cavity 25, negative suspension 27 in the negative The chamber 25 should flow continuously or intermittently.
  • FIG. 3 it is a schematic structural view of a fluid guiding body provided in the reaction chamber of the present invention.
  • the fluid guiding body 31 is in direct contact with the current collecting layer of the same polarity on both sides of the reaction chamber, and the reaction chamber is partitioned into a plurality of spaces to play a role of guiding the electrode suspension flowing in the reaction chamber, and at the same time, the battery reaction chamber
  • the sandwich composite layer on both sides serves as a support.
  • the cross-sectional shape of the fluid guide 31 in the reaction chamber includes one or more of a rectangular wave, a sine wave, a square wave, a triangular wave, a trapezoidal wave, a sawtooth wave, a pulse wave, or a profiled wave having convex and concave undulations.
  • the guiding fluid 31 may be a non-conductive insulating plastic plate, or may be a conductive graphite plate, a conductive metal plate or a plastic plate coated with a metal film.
  • the conducting fluid can conduct electricity, the guiding fluid has the above-mentioned diversion and support functions. It is also possible to provide metal wires at both ends of the fluid guiding body to form the tabs, and the electrons collected by the current collecting layer are transmitted and taken out through the conducting fluid, so that the conducting fluid can also function as an electron drainage at this time.
  • This embodiment provides a sandwich composite structure layer of a lithium ion flow battery.
  • the structure of the lithium ion flow battery reaction chamber is shown in Figure 2.
  • a PP/PE/PP composite porous film is selected as the separation layer 23; and the positive electrode current collecting layer 21 and the negative electrode current collecting layer 22 are sprayed on both surfaces of the separation layer 23, respectively.
  • the positive electrode current collecting layer 21 is a conductive coating formed of a mixture of carbon nanotubes and polyvinylidene fluoride, wherein the mass percentage of the carbon nanotubes is 90%, and the thickness of the positive electrode current collecting layer is 20 ⁇ m.
  • the anode current collecting layer 22 is a conductive coating layer formed by a mixture of carbon fibers and polyvinylidene fluoride, wherein the content of the carbon fibers is 90%; and the thickness of the anode current collecting layer is 20 ⁇ m.
  • two adjacent positive electrode current collecting layers 21 provided with the positive electrode suspension 26 form a positive electrode reaction chamber 24.
  • the distance between two adjacent positive electrode current collecting layers 21 forming the positive electrode reaction chamber 24 is 2 mm, that is, the positive electrode.
  • the width of the reaction chamber is 2 mm; correspondingly, two adjacent anode current collector layers 22 provided with the anode suspension 27 form the anode reaction chamber 25, and in the present embodiment, two adjacent anode current collectors of the anode reaction chamber 25 are formed.
  • the layer 22 has a pitch of 2 mm, that is, the width of the negative reaction chamber is 2 mm.
  • An aluminum foil is taken out as a positive electrode terminal at both ends of the positive electrode current collecting layer, and each positive electrode terminal is taken out as a positive electrode tab through a wire connection; a copper foil is taken out as a negative electrode terminal at both ends of the negative electrode current collecting layer, and each negative electrode terminal is taken out as a negative electrode through a wire connection. Extremely ear.
  • This embodiment provides another sandwich composite structure layer of a lithium ion flow battery, wherein the structure of the lithium ion flow battery is similar to that of the above embodiment, and the structure diagram shown in FIG. 2 can be referred to again.
  • a conductive polymer electrolyte membrane is selected as a separator, and the conductive polymer electrolyte membrane is a gel polymer electrolyte composite composed of a polymer matrix, a liquid organic plasticizer and a lithium salt;
  • Both the flow layer and the negative current collecting layer are made of a porous carbon fiber conductive cloth, wherein the thickness of the positive electrode current collecting layer is 900 ⁇ m, and the thickness of the negative electrode current collecting layer is the same as the thickness of the positive electrode current collecting layer, which is also 900 ⁇ m; the positive current collecting layer, The separator and the anode current collector layer are bonded to form a sandwich composite structure layer.
  • the width of the positive electrode reaction chamber 24 is 5 mm, and the width of the negative electrode reaction chamber 25 is 5 mm.
  • This embodiment provides another sandwich composite structure layer of a lithium ion flow battery, the structure of which is similar to that of the above two embodiments, and the structure diagram shown in FIG. 2 can be seen again.
  • two layers of PE porous membranes were selected as the separator.
  • the positive current collecting layer is a composite structure of a porous aluminum foil and a porous conductive coating, and has a thickness of 0.08 mm, wherein the aluminum foil has a thickness of 0.05 mm, the aluminum foil mesh has a square shape, the mesh diameter is 0.5 mm, and the through-hole porosity is 60%.
  • the negative current collecting layer is a composite structure of a porous copper foil and a porous conductive coating, and has a thickness of 0.08 mm, wherein the copper foil has a thickness of 0.05 mm, the copper foil mesh is circular, the mesh diameter is 0.5 mm, and the through-hole porosity is It is 60%.
  • the porous conductive coating is a mixture of carbon powder and polyvinylidene fluoride, wherein the content of the carbon powder is 70%; the mixture of the carbon powder and the polyvinylidene fluoride is sprayed on the surface of the porous aluminum foil or the porous copper foil.
  • a porous conductive coating was formed, and the thickness of the conductive coating was 0.02 mm.
  • the positive electrode current collecting layer, the separator layer and the negative electrode current collecting layer constitute the sandwich composite structure layer by mechanical press bonding.
  • the width of the positive electrode reaction chamber 24 formed is 10 mm, and the width of the negative electrode reaction chamber 25 is 10 mm.
  • the constituent materials of the positive current collecting layer and the negative current collecting layer may be any known or unknown suitable materials.
  • the thickness of the material may be other suitable thicknesses; the width of the positive and negative reaction chambers may be other suitable thicknesses, which is not limited in the present invention.
  • the thicknesses of the positive electrode current collecting layer and the negative electrode current collecting layer may be the same or different, and the widths of the positive electrode reaction chamber and the negative electrode reaction chamber may be the same or different, and the present invention is not limited thereto.

Abstract

一种锂离子液流电池,包括:正极集流层(21)、负极集流层(22)、正极反应腔(24)、负极反应腔(25)、隔离层(23)、正极悬浮液(26)和负极悬浮液(27),其中正极集流层和负极集流层分别位于隔离层的两侧且与隔离层紧密接触,构成正极集流层、隔离层与负极集流层的夹心复合结构层;若干个夹心复合结构层按照相同极性集流层相对放置的顺序依次排列,电极悬浮液在相邻夹心复合结构层之间的电池反应腔内连续或间歇流动。使得电池反应腔的大小可以根据电极悬浮液的粘度灵活设计而不会增加电池的极化内阻,解决了现有锂离子液流电池在电池反应腔大小和电池极化内阻之间存在的制约矛盾。

Description

一种新型锂离子液流电池 技术领域
本发明属于化学储能电池领域,特别涉及锂离子液流电池。
背景技术
锂离子液流电池是最新发展起来的一种化学电池技术,它综合了锂离子电池和液流电池的优点,是一种输出功率和储能容量彼此独立、能量密度大,成本较低的新型可充电池。锂离子液流电池在风力发电、光伏发电、电网调峰、分布电站、市政交通等方面具有非常广阔的市场前景。
锂离子液流电池由正极悬浮液池、负极悬浮液池、电池反应器、液泵或气压控制系统及密封管道组成。其中,正极悬浮液池盛放正极材料颗粒、导电剂和电解液的混合物,负极悬浮液池盛放负极材料颗粒、导电剂和电解液的混合物。锂离子液流电池反应器的结构包括:正极集流层、正极反应腔、正极进液口、正极出液口、隔离层、负极集流层、负极反应腔、负极进液口和负极出液口。正极悬浮液由正极进液口进入电池反应器的正极反应腔,完成反应后由正极出液口流出,在液泵推动或气压控制系统作用下通过密封管道返回正极悬浮液池;与此同时,负极悬浮液由负极进液口进入电池反应器的负极反应腔,完成反应后由负极出液口流出,在液泵推动或气压控制系统作用下通过密封管道返回负极悬浮液池。
电池反应腔是锂离子液流电池反应器的重要组成部分,电极悬浮液在电池反应腔内间歇或连续流动,完成电池的充放电反应。锂离子液流电池反应器的正极反应腔与负极反应腔之间设置有电子不导电的隔离层,将正极悬浮液中的导电颗粒(正极活性材料颗粒和导电剂颗粒)和负极悬浮液中的导电颗粒(负极活性材料颗粒和导电剂颗粒)相互隔开,避免导电颗粒直接接触导致电池内部的短路。
与全钒液流电池的电解液相比,锂离子液流电池的电极悬浮液更加黏稠,流动相对困难,因此对于电池反应器的反应腔设计要求很高,反应腔若过于窄小将不利于电极悬浮液的流动。之前,锂离子液流电池反应器结构的一般设计是,若 干个隔离层等距平行排列,隔离层之间的空间交替构成正极反应腔和负极反应腔,正极集流层位于正极反应腔的中间,正极悬浮液在正极集流层与隔膜之间的间隙空间连续或间歇流动;负极集流层位于负极反应腔的中间,负极悬浮液在负极集流层与隔膜之间的间隙空间连续或间歇流动,如图1所示。也就是说,集流层与隔离层之间的间隙空间形成了电池的电化学反应腔,当电池工作时,正极悬浮液(16)在正极反应腔内(14)的正极集流层(11)与隔离层(13)之间的间隙空间连续或间歇流动,电子在正极悬浮液(16)与正极集流层(11)之间传递;类似的,负极悬浮液(17)在负极反应腔(15)内的负极集流层(12)与隔离层(13)之间的间隙空间连续或间歇流动,电子在负极悬浮液(17)与负极集流层(12)之间传递;正极反应腔内的正极悬浮液(16)和负极反应腔内的负极悬浮液(17)通过隔离层(13)进行锂离子交换传输。
上述设计存在的问题是,从电极悬浮液流动性的角度考虑,集流层与隔离层的间距越大(即反应腔的空间越大)越有利于黏稠电极悬浮液的流动,若间距太小会使电极悬浮液流动困难;但是,从极化内阻的角度考虑,集流层与隔离层的间距越小(即反应腔的空间越小)则越有利于减小集流内阻,若间距太大,会增加电极悬浮液中电子和离子的导电距离,使电池内阻增大,充放电转换效率降低。因此,上述相互制约的因素使得反应腔的大小不能灵活设计,影响了锂离子液流电池的性能发挥。
发明内容
为解决上述矛盾问题,本发明提供一种新型锂离子液流电池,该锂离子液流电池改变了集流层的结构和放置位置,将正极集流层和负极集流层分别放置在隔离层的两侧并与隔离层紧密接触,构成夹心复合结构层,相邻夹心复合结构层之间的间隙形成了电池反应腔。这样的结构设计使得电池反应腔的大小可以根据电极悬浮液的粘度灵活调节而不增加电池的极化内阻。本发明解决了现有锂离子液流电池在电池反应腔大小和电池极化内阻之间存在的制约矛盾。
本发明的目的是通过下述方式实现的:
一种新型锂离子液流电池,包括正极集流层、负极集流层、正极反应腔、负极反应腔、隔离层、正极悬浮液和负极悬浮液,其中,正极悬浮液在正极反应腔内连续或间歇流动,负极悬浮液在负极反应腔内连续或间歇流动,构成正极反应 腔的集流层为正极集流层,构成负极反应腔的集流层为负极集流层;所述正极集流层和负极集流层分别位于所述隔离层的两侧且与隔离层紧密接触,构成正极集流层、隔离层与负极集流层的夹心复合结构层,所述若干个夹心复合结构层按照相同极性集流层相对放置的顺序依次排列,其中相邻两个正极集流层与正极集流层之间的间距为1~10mm,它们之间的空隙构成正极反应腔,正极悬浮液在正极反应腔内连续或间歇流动;相邻两个负极集流层与负极集流层之间的间距为1~10mm,它们之间的空隙构成负极反应腔,负极悬浮液在负极反应腔内连续或间歇流动。
根据本发明,所述相邻的两个夹心复合结构层间距为1~10mm,优选为2~5mm。
与现有锂离子液流电池相比,新型锂离子液流电池的电极悬浮液在同性集流层之间的间隙流动,而不是在隔离层与集流层之间的间隙流动,因此电池极化内阻与反应腔的大小基本无关,我们可以根据电极悬浮液的粘度灵活设计反应腔的空间大小而不影响电池的内阻性能。因此,本发明解决了现有锂离子液流电池在反应腔大小和电池极化内阻之间存在的制约矛盾。
根据本发明,所述正极集流层和/或负极集流层是厚度为0.01~1000μm的具有通孔结构的电子导电层,其通孔孔隙率为30%~99%,孔径范围10nm~2mm。
所述多孔电子导电层为导电填料与粘结剂的多孔混合物,其中,导电填料的质量分数为30%~95%;所述导电填料是钛粉、铜粉、铝粉、银粉、富锂硅粉、富锂锡粉类金属合金导电颗粒,或者,所述导电填料是碳黑、碳纳米管、碳纤维、石墨烯中的一种或几种;所述粘结剂为聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚四氟乙烯、聚对苯二甲酸酯、聚酰胺、聚酰亚胺、聚醚腈、聚丙烯酸甲酯、聚偏氟乙烯、聚氨酯、聚丙烯腈、丁苯橡胶、羧甲基纤维素钠、改性聚烯烃、聚乙炔、聚吡咯及其衍生物、聚噻吩及其衍生物、聚苯胺及其衍生物、聚对苯撑乙烯及其衍生物、聚对苯及其衍生物、聚芴及其衍生物中的一种或几种。
或者,所述多孔电子导电层为具有通孔结构的金属导电层。所述金属导电层为金属丝或表面附有导电碳材料涂层的金属丝编织而成,网孔为方形、菱形或长方形;或者,所述金属导电层为具有通孔结构的多孔泡沫金属层;或者,所述金属导电层为多孔金属板或金属箔经机械冲压或化学腐蚀而成,网孔为圆形、椭圆 形、半圆形、方形、六角形、三角形、菱形、梯形或不规格多边形。所述多孔金属板或金属箔用于正极集流层时为铝、合金铝、不锈钢、银、锡、镍或钛,优选为铝;所述多孔金属板或金属箔用于负极集流层时为铜、不锈钢、镍、钛、银、锡、镀锡铜、镀镍铜或镀银铜,优选为镀镍铜。进一步地,所述金属板或金属箔的表面涂覆有导电碳材料涂层。
或者,所述多孔电子导电层为涤纶多孔丝导电布、碳纤维导电布、金属丝与有机纤维丝混合导电布中的一种或几种;或者,所述多孔电子导电层为表面涂覆导电碳材料涂层或者镀有金属薄膜的多孔有机材料,所述多孔有机材料包括天然棉麻、涤纶、芳纶、尼龙、聚丙烯、聚乙烯、聚四氟乙烯及其它耐电解液性能良好的有机物。
或者,所述正极集流层和/或负极集流层为添加有上述导电填料的聚合物电解质层,其中,导电填料的质量分数为10%~90%;所述聚合物电解质层为聚合物基体、液体有机增塑剂和锂盐三部分复合构成的凝胶聚合物电解质复合材料。
或者,所述正极集流层和/或负极集流层为上述几种集流层中的任意两种或几种复合组成的集流层。
所述隔离层由电子绝缘材料构成,厚度为0.01~1mm。
所述隔离层位于正极集流层和负极集流层之间,并与正极集流层和负极集流层紧密接触,构成所述夹心复合结构层。隔离层的作用是防止位于隔离层两侧的正极集流层和负极集流层直接接触而导致电池内部短路,同时,隔离层允许锂离子通过。所述隔离层为聚乙烯、聚丙烯、聚偏氟乙烯或其它电子不导电的多孔聚合物材料;或者,所述的隔离层为玻璃纤维无纺布、合成纤维无纺布、陶瓷纤维纸或其它电子不导电的无机非金属材料与有机聚合物的复合多孔材料;或者,隔离层的材料采用电子不导电的聚合物基体、液体有机增塑剂和锂盐三部分复合构成的凝胶聚合物电解质复合材料。
正极集流层和负极集流层之间隔离层的数量可以为一层或多层。
集流层与隔离层之间可以采用真空蒸镀、电镀、化学镀、流延、旋涂、喷涂、热压、丝网印刷、喷墨打印、粘接、机械压合等方法进行复合,使集流层和隔离 层能够形成紧密贴合的夹心复合结构层。
所述正极悬浮液为正极活性材料颗粒、导电剂与电解液的混合物,所述正极活性材料为含锂的磷酸亚铁锂、磷酸锰锂、掺杂锂锰氧化物、锂钴氧化物、锂镍锰氧化物、锂镍钴氧化物、锂镍锰钴氧化物、锂镍锰铁氧化物以及其它含锂金属氧化物的一种或几种混合物;导电剂为炭黑、碳纤维、科琴黑、石墨烯、金属颗粒中的一种或几种的混合物。
所述负极悬浮液为负极活性材料颗粒、导电剂与电解液的混合物,负极活性材料为能够可逆嵌锂的铝基合金、硅基合金、锡基合金、锂钛氧化物、碳材料的一种或几种混合物;导电剂为炭黑、碳纤维、科琴黑、石墨烯、金属颗粒中的一种或几种的混合物。
或者,进一步的,在反应腔内设有导流体,所述导流体与反应腔两侧同极性的集流层直接接触,将反应腔隔成若干个平行的流道,对在反应腔内流动的电极悬浮液起到导流的作用,同时,对电池反应腔两侧的夹心复合结构层起到支撑作用。导流体在反应腔内的剖面形状包括矩形波、正弦波、方波、三角波、梯形波、锯齿波、脉冲波、或者具有凸凹起伏的异型波中的一种或多种。导流体可以为不导电的绝缘塑料板,也可以为导电石墨板、导电金属板或表面镀有金属膜的塑料板,当导流体能够导电时,导流体除具有上述导流和支撑作用外,还可以在导流体的两端设有金属线形成极耳,将集流层所收集到的电子通过导流体进行传输和引出,因此这时候导流体还可以起到电子引流的作用。
本发明锂离子液流电池的工作原理如下:
本发明锂离子液流电池的正极悬浮液位于正极反应腔内,负极悬浮液位于负极反应腔内,所述正极反应腔和负极反应腔由所述夹心复合结构层隔开,相邻夹心复合结构层的同性集流层相对放置,距离为1~10mm,优选为2~5mm。电池放电时,锂离子从负极悬浮液中的负极活性材料颗粒脱嵌,进入电解液,并穿过夹心复合结构层向正极反应区域迁移,嵌入到正极悬浮液中的正极活性材料颗粒中。与此同时,负极悬浮液中的负极活性材料颗粒内部的电子通过负极悬浮液里面导电剂的传输,进入夹心复合结构层的负极集流层,通过负极集流层的负极极耳流入电池的外部回路,通过外部电路做功后,由正极极耳流入夹心复合结构层的正极集流层,通过正极悬浮液里面导电剂的传输,进入到正极悬浮液的正极活性材 料颗粒内部,完成一个放电的电化学过程。电池充电的过程与之相反。
在上述放电和充电过程中,正极反应腔中的正极悬浮液处于连续流动或间歇流动的状态,并通过正极活性材料颗粒与导电剂颗粒的接触以及导电剂颗粒与正极集流层的表面接触,形成网络状的电子导电通道。负极反应腔中的负极悬浮液也与此类似。电池工作时,正极悬浮液和负极悬浮液通过夹心复合结构层中间的隔离层进行锂离子传输,并通过夹心复合结构层两侧的正极集流层和负极集流层进行电子的收集和传输。
因此,需要特别指出的是,所述集流层必须是带有通孔的电子导电层,或者,所述集流层为添加有电子导电材料的聚合物电解质层,这样,当电池工作时,锂离子能够通过集流层中的电解液或聚合物电解质,在正极反应腔和负极反应腔之间迁移;同时,电子能通过集流层的集流,与电池外回路连通,在正极悬浮液和负极悬浮液之间传递。
本发明的优势在于:
1)由正极集流层、隔离层和负极集流层构成夹心复合结构层的设计,使得电池反应腔的大小可以根据电极悬浮液的粘度灵活设计而不会增加电池的极化内阻,解决了现有锂离子液流电池在电池反应腔大小和电池极化内阻之间存在的制约矛盾;
2)所述夹心复合结构层设计使得电极悬浮液在较少导电剂的情况下能够实现良好的集流和导电效果。因此,与现有锂离子液流电池比较而言,新型锂离子液流电池降低了对电极悬浮液电子导电性的要求,即可以降低电极悬浮液导电剂的含量,提高了电极悬浮液的能量密度和流动性;
3)即使在电极悬浮液粘度很大的情况下,可以任意加大电池反应腔的大小,降低粘性电极悬浮液在电池反应腔中的流动阻力,从而降低电极悬浮液的驱动损耗,提高电池的能量效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的 一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有锂离子液流电池结构示意图;
图2为本发明锂离子液流电池结构示意图;
图3为本发明在电池反应腔内设有导流体的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,通过实施例对本发明做进一步说明。
如图1所示,现有锂离子液流电池包括正极集流层11、负极集流层12、隔离层13、正极极悬浮液16和负极悬浮液17。相邻隔离层13之间的空间依次形成正极反应腔14和负极反应腔15,正极集流层11位于正极反应腔14内,负极集流层12位于负极反应腔15内。电池工作时,正极反应腔14内的正极悬浮液16和负极反应腔15内的负极悬浮液17通过隔离层13进行锂离子交换传输。因此,该电池反应器的结构使得集流层与隔离层之间的间距越小越有利于离子和电子的传输,但减小集流层与隔离层之间的间距会增大悬浮液的流动阻力,不利于电极悬浮液的流动。因此,这是一个矛盾。
如图2所示,本发明中的锂离子液流电池将集流层的位置和结构进行了改变,使得电池反应腔的尺寸能够灵活设计,解决了现有锂离子液流电池反应器结构设计方面存在的严重矛盾。该锂离子液流电池包括正极集流层21、负极集流层22、位于正极集流层和负极集流层之间的隔离层23,以及正极悬浮液26、负极悬浮液27。正极集流层21和负极集流层22分别位于隔离层23的两侧,并与隔离层23紧密接触,构成了所述夹心复合结构层。由此,相邻正极集流层21之间的空间构成了正极反应腔24,正极悬浮液26在正极反应腔24内连续或间歇流动,相邻负极集流层22之间的空间构成负极反应腔25,负极悬浮液27在负极反 应腔25内连续或间歇流动。上述结构设计使得电池反应腔的大小与电池极化内阻基本无关,即使增大相邻夹心复合结构层之间的间距,也不会影响集流层的集流效果。
如图3所示,为本发明在反应腔内设有导流体的结构示意图。导流体31与反应腔两侧同极性的集流层直接接触,将反应腔隔成多个空间,对在反应腔内流动的电极悬浮液起到导流的作用,同时,对电池反应腔两侧的夹心复合结构层起到支撑作用。导流体31在反应腔内的剖面形状包括矩形波、正弦波、方波、三角波、梯形波、锯齿波、脉冲波、或者具有凸凹起伏的异型波中的一种或多种。导流体31可以为不导电的绝缘塑料板,也可以为导电石墨板、导电金属板或表面镀有金属膜的塑料板,当导流体能够导电时,导流体除具有上述导流和支撑作用外,还可以在导流体的两端设有金属线形成极耳,将集流层所收集到的电子通过导流体进行传输和引出,因此这时候导流体还可以起到电子引流的作用。
实施例1
本实施例提供锂离子液流电池的一种夹心复合结构层。
锂离子液流电池反应腔的结构如图2所示。本实施例中选用PP/PE/PP复合多孔膜作为隔离层23;在隔离层23的两个表面分别喷涂正极集流层21和负极集流层22。正极集流层21为碳纳米管与聚偏氟乙烯的混合物所形成的导电涂层,其中碳纳米管的质量百分比为90%,正极集流层的厚度为20μm。负极集流层22为碳纤维与聚偏氟乙烯的混合物所形成的导电涂层,其中碳纤维的含量为90%;负极集流层的厚度为20μm。
进一步的,设置有正极悬浮液26的两相邻正极集流层21形成正极反应腔24,在本实施例中,形成正极反应腔24的两相邻正极集流层21间距为2mm,即正极反应腔的宽度为2mm;相对应的,设置有负极悬浮液27的两相邻负极集流层22形成负极反应腔25,在本实施例中,形成负极反应腔25的两相邻负极集流层22间距为2mm,即负极反应腔的宽度为2mm。
正极集流层两端引出铝箔作为正极端子,各个正极端子之间通过导线连接引出作为正极极耳;负极集流层两端引出铜箔作为负极端子,各个负极端子之间通过导线连接引出作为负极极耳。
实施例2
本实施例提供了锂离子液流电池的另一种夹心复合结构层,其中,锂离子液流电池的结构与上述实施例类似,可以再次参见图2所示的结构示意图。
本实施例中,选用导电聚合物电解质膜作为隔离层,所述导电聚合物电解质膜为聚合物基体、液体有机增塑剂和锂盐三部分复合构成的凝胶聚合物电解质复合材料;正极集流层和负极集流层都选用多孔的碳纤维导电布,其中,正极集流层的厚度为900μm,负极集流层的厚度与正极集流层的厚度相同,也为900μm;正极集流层、隔离层和负极集流层粘接构成夹心复合结构层。
其中,本实施例中,正极反应腔24的宽度为5mm,负极反应腔25的宽度为5mm。
实施例3
本实施例提供锂离子液流电池的另一种夹心复合结构层,其结构与上述两实施例的结构相似,可以再次参见图2所示的结构示意图。
本实施例中,选用两层PE多孔膜作为隔离层。
正极集流层为多孔铝箔与多孔导电涂层的复合结构,厚度为0.08mm,其中,铝箔厚度为0.05mm,铝箔网孔为方形,网孔直径为0.5mm,通孔孔隙率为60%。负极集流层为多孔铜箔与多孔导电涂层的复合结构,厚度为0.08mm,其中,铜箔厚度为0.05mm,铜箔网孔为圆形,网孔直径为0.5mm,通孔孔隙率为60%。
进一步的,所述多孔导电涂层为碳粉与聚偏氟乙烯的混合物,其中碳粉的含量为70%;碳粉与聚偏氟乙烯的混合物通过喷涂的方式在多孔铝箔或多孔铜箔表面形成多孔导电涂层,导电涂层的厚度为0.02mm。
上述正极集流层、隔离层和负极集流层通过机械压合构成所述夹心复合结构层。
在本实施例中,所形成的正极反应腔24的宽度为10mm,负极反应腔25的宽度为10mm。
需要指出的,上述仅为本发明的优选实施例,对本发明的技术方案不构成限制,本发明实施例中,正极集流层和负极集流层的组成材料可以为任意已知或未知的适合的材料,其厚度也可以为其他适合的厚度;正极反应腔和负极反应腔的宽度可以为其他适合的厚度,本发明对此不做限制。
此外,正极集流层和负极集流层的厚度可以相同也可以不同,正极反应腔与负极反应腔的宽度可以相同也可以不同,本发明对此不做限制。
最后需要注意的是,公布实施方式的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。

Claims (10)

  1. 一种新型锂离子液流电池,包括正极集流层、负极集流层、正极反应腔、负极反应腔、隔离层、正极悬浮液和负极悬浮液,其中,正极悬浮液在正极反应腔内连续或间歇流动,负极悬浮液在负极反应腔内连续或间歇流动,构成正极反应腔的集流层为正极集流层,构成负极反应腔的集流层为负极集流层;其特征在于:所述正极集流层和负极集流层分别位于所述隔离层的两侧且与隔离层紧密接触,构成正极集流层、隔离层与负极集流层的夹心复合结构层;所述若干个夹心复合结构层按照相同极性集流层相对放置的顺序依次排列,其中,相邻两个正极集流层与正极集流层之间的间距为1~10mm,它们之间的空隙构成正极反应腔,相邻两个负极集流层与负极集流层之间的间距为1~10mm,它们之间的空隙构成负极反应腔。
  2. 如权利要求1所述的锂离子液流电池,其特征在于:形成所述正极反应腔的两相邻正极集流层的间距优选为2~5mm,形成所述负极反应腔的两相邻负极集流层的间距优选为2~5mm。
  3. 如权利要求1所述的锂离子液流电池,其特征在于:所述正极集流层和/或负极集流层是厚度为0.01~1000μm的具有通孔结构的电子导电层,其通孔孔隙率为30%~99%,孔径范围10nm~2mm;
    所述多孔电子导电层为导电填料与粘结剂的多孔混合物,其中,导电填料的质量分数为30%~95%;所述导电填料是钛粉、铜粉、铝粉、银粉、富锂硅粉、富锂锡粉类金属合金导电颗粒,或者,所述导电填料是碳黑、碳纳米管、碳纤维、石墨烯中的一种或几种;所述粘结剂为聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚四氟乙烯、聚对苯二甲酸酯、聚酰胺、聚酰亚胺、聚醚腈、聚丙烯酸甲酯、聚偏氟乙烯、聚氨酯、聚丙烯腈、丁苯橡胶、羧甲基纤维素钠、改性聚烯烃、聚乙炔、聚吡咯及其衍生物、聚噻吩及其衍生物、聚苯胺及其衍生物、聚对苯撑乙烯及其衍生物、聚对苯及其衍生物、聚芴及其衍生物中的一种或几种;
    或者,所述多孔电子导电层为具有通孔结构的金属导电层,所述金属导电层为金属丝或表面附有导电碳材料涂层的金属丝编织而成,网孔为方形、菱形或长方形;或者,所述金属导电层为具有通孔结构的多孔泡沫金属层;或者,所述金属导电层为多孔金属板或金属箔经机械冲压或化学腐蚀而成,网孔为圆形、椭圆形、半圆形、方形、六角形、三角形、菱形、梯形或不规格多边形,所述多孔金属板或金属箔用于正极集流层时为铝、合金铝、不锈 钢、银、锡、镍或钛,优选为铝;所述多孔金属板或金属箔用于负极集流层时为铜、不锈钢、镍、钛、银、锡、镀锡铜、镀镍铜或镀银铜,优选为镀镍铜;进一步地,所述金属板或金属箔的表面涂覆有导电碳材料涂层;
    或者,所述多孔电子导电层为涤纶多孔丝导电布、碳纤维导电布、金属丝与有机纤维丝混合导电布中的一种或几种;或者所述多孔电子导电层为表面涂覆导电碳材料涂层或者镀有金属薄膜的多孔有机材料,所述多孔有机材料包括天然棉麻、涤纶、芳纶、尼龙、聚丙烯、聚乙烯、聚四氟乙烯及其它耐电解液的有机物。
  4. 如权利要求1所述的锂离子液流电池,其特征在于:所述正极集流层和/或负极集流层为添加有如权利要求3中所述的导电填料的聚合物电解质层,其中,导电填料的质量分数为10%~90%;所述聚合物电解质层为聚合物基体、液体有机增塑剂和锂盐三部分复合构成的凝胶聚合物电解质复合材料。
  5. 如权利要求1所述的锂离子液流电池,其特征在于:所述正极集流层和/或负极集流层为如权利要求3和权利要求4中所述集流层中的任意两种或几种复合组成的集流层。
  6. 如权利要求1所述的锂离子液流电池,其特征在于:所述隔离层为聚乙烯、聚丙烯、聚偏氟乙烯或其它电子不导电的多孔聚合物材料;或者,所述隔离层为玻璃纤维无纺布、合成纤维无纺布、陶瓷纤维纸或其它电子不导电的无机非金属材料与有机聚合物的复合多孔材料;或者,隔离层的材料采用电子不导电的聚合物基体、液体有机增塑剂和锂盐三部分复合构成的凝胶聚合物电解质复合材料。
  7. 如权利要求1所述的锂离子液流电池,其特征在于:所述正极集流层或负极集流层与隔离层之间采用真空蒸镀、电镀、化学镀、流延、旋涂、喷涂、热压、丝网印刷、喷墨打印、粘接或机械压合方法中的一种或几种进行复合,使正极集流层、隔离层和负极集流层能够形成紧密贴合的夹心复合结构层。
  8. 如权利要求1所述的锂离子液流电池,其特征在于:所述正极悬浮液为正极活性材料颗粒、导电剂与电解液的混合物,所述正极活性材料为含锂的磷酸亚铁锂、磷酸锰锂、掺杂锂锰氧化物、锂钴氧化物、锂镍锰氧化物、锂镍钴氧化物、锂镍锰钴氧化物、锂镍锰铁氧化物以及其它含锂金属氧化物的一种或几种混合物;导电剂为炭黑、碳纤维、科琴黑、石墨烯、金属颗粒中的一种或几种的混合物。
  9. 如权利要求1所述的锂离子液流电池,其特征在于:所述负极悬浮液为负极活性材料颗粒、导电剂与电解液的混合物,负极活性材料为能够可逆嵌锂的铝基合金、硅基合金、锡基合金、锂钛氧化物、碳材料的一种或几种混合物;导电剂为炭黑、碳纤维、科琴黑、石墨烯、金属颗粒中的一种或几种的混合物。
  10. 如权利要求1所述的锂离子液流电池,其特征在于:所述反应腔内进一步设有导流体,所述导流体与反应腔两侧同极性的集流层直接接触,将反应腔隔成若干个平行的流道;导流体在反应腔内的剖面形状包括矩形波、正弦波、方波、三角波、梯形波、锯齿波、脉冲波、或者具有凸凹起伏的异型波中的一种或多种;导流体为绝缘塑料板、导电石墨板、导电金属板或表面镀有金属膜的塑料板中的一种。
PCT/CN2015/071125 2014-01-21 2015-01-20 一种新型锂离子液流电池 WO2015109994A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/110,044 US10236514B2 (en) 2014-01-21 2015-01-20 Lithium ion flow battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410027599.8 2014-01-21
CN201410027599.8A CN104795583B (zh) 2014-01-21 2014-01-21 一种锂离子液流电池

Publications (1)

Publication Number Publication Date
WO2015109994A1 true WO2015109994A1 (zh) 2015-07-30

Family

ID=53560237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071125 WO2015109994A1 (zh) 2014-01-21 2015-01-20 一种新型锂离子液流电池

Country Status (3)

Country Link
US (1) US10236514B2 (zh)
CN (1) CN104795583B (zh)
WO (1) WO2015109994A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819710A (zh) * 2018-02-12 2020-10-23 Hilabs公司 流体电池、其制造方法及应用

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106469825B (zh) * 2015-08-21 2019-03-29 北京好风光储能技术有限公司 一种高功率大容量锂离子电池及其制备方法
CN106469821B (zh) * 2015-08-21 2019-03-29 北京好风光储能技术有限公司 一种半流态锂液流电池
CN105421040B (zh) * 2015-12-29 2018-06-22 广州市新景机电股份有限公司 一种导电布及其专用生产设备和生产方法
CN105753429A (zh) * 2016-01-28 2016-07-13 绵阳靓固科技有限公司 一种粘结剂
CN108242530B (zh) * 2016-12-23 2022-02-22 北京好风光储能技术有限公司 一种锂浆料电池及其负极片
CN107171002B (zh) * 2016-03-08 2020-02-07 北京好风光储能技术有限公司 一种半固态锂液流电池反应器、电池系统及工作方法
US10868337B2 (en) 2016-03-08 2020-12-15 Beijing Hawaga Power Storage Technology Company Ltd Cell-core for lithium slurry battery, and lithium slurry battery module
CN107681115B (zh) * 2016-08-01 2020-08-04 北京好风光储能技术有限公司 一种锂浆料电池的负极片
CN107681114B (zh) * 2016-08-01 2020-08-14 北京好风光储能技术有限公司 一种正极片及制备工艺、以及含有该正极片的锂浆料电池
CN108346804B (zh) * 2017-01-22 2021-02-12 北京好风光储能技术有限公司 一种多格电极片及含有该电极片的锂浆料电池
CN107403943B (zh) * 2016-05-20 2019-07-16 北京好风光储能技术有限公司 一种通过压缩气体驱动的锂液流电池系统
CN106099179A (zh) * 2016-06-15 2016-11-09 上海电气集团股份有限公司 一种流体电池正、负极悬浮电解液及其制备方法
CN107887566B (zh) * 2016-09-30 2020-08-04 北京好风光储能技术有限公司 一种锂离子液流电池系统的驱动控制方法
CN106784855A (zh) * 2016-12-02 2017-05-31 西安瑟福能源科技有限公司 一种无人机用高温型锂离子电池的制造方法
CN108346772B (zh) * 2017-01-22 2021-06-15 北京好风光储能技术有限公司 一种锂浆料电池及其非对称式电极片
KR102127037B1 (ko) 2017-02-28 2020-06-25 주식회사 엘지화학 전극 구조체 및 이를 포함하는 레독스 흐름 전지
US11233276B2 (en) 2017-04-07 2022-01-25 Beijing Hawaga Power Storage Technology Company Ltd. Lithium slurry battery system
CN107482243A (zh) * 2017-08-11 2017-12-15 北京理工大学 一种醌基液流电池的流动电极及其低成本制备方法
KR20190045872A (ko) * 2017-10-24 2019-05-03 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 다공질층
CN109065814A (zh) * 2018-08-09 2018-12-21 中南大学 适用于沉积型浆料电池的导电复合隔膜
CN109103458A (zh) * 2018-09-10 2018-12-28 深圳市华慧品牌管理有限公司 一种新型可充电锂电池及其制造方法
CN109244599B (zh) * 2018-10-30 2021-09-21 宁德时代新能源科技股份有限公司 一种具有快速加热功能的复合负极极片、及采用其的电芯和电池
US10917973B1 (en) * 2020-02-26 2021-02-09 Compass Technology Company Limited Method of direct embedding a lithium ion battery on a flexible printed circuit board
CN111725482B (zh) * 2020-07-27 2023-07-18 江西星盈科技有限公司 一种厚电极和电池
US20220255129A1 (en) * 2021-02-02 2022-08-11 Global Graphene Group, Inc. Phosphazene compound-based electrolyte compositions, quasi-solid and solid-state electrolytes, and lithium batteries
WO2023225072A1 (en) * 2022-05-18 2023-11-23 The Regents Of The University Of California Flow-assisted battery
WO2024000449A1 (zh) * 2022-06-30 2024-01-04 京东方科技集团股份有限公司 调光结构及调光装置
CN114927715B (zh) * 2022-07-22 2022-11-11 深圳大学 一种半固态悬浮液流电池电解液及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101593841A (zh) * 2008-05-30 2009-12-02 比亚迪股份有限公司 一种氧化还原液流电池和氧化还原液流电池组
CN103187551A (zh) * 2011-12-30 2013-07-03 北京好风光储能技术有限公司 一种锂离子液流电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722226B2 (en) * 2008-06-12 2014-05-13 24M Technologies, Inc. High energy density redox flow device
KR101721269B1 (ko) * 2008-06-12 2017-03-29 메사추세츠 인스티튜트 오브 테크놀로지 고 에너지 밀도 산화환원 유동 장치
WO2010009058A1 (en) * 2008-07-15 2010-01-21 Gridshift, Inc. Electrochemical devices, systems, and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101593841A (zh) * 2008-05-30 2009-12-02 比亚迪股份有限公司 一种氧化还原液流电池和氧化还原液流电池组
CN103187551A (zh) * 2011-12-30 2013-07-03 北京好风光储能技术有限公司 一种锂离子液流电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819710A (zh) * 2018-02-12 2020-10-23 Hilabs公司 流体电池、其制造方法及应用
CN111819710B (zh) * 2018-02-12 2023-04-04 Hilabs公司 流体电池、其制造方法及应用

Also Published As

Publication number Publication date
US20160329569A1 (en) 2016-11-10
US10236514B2 (en) 2019-03-19
CN104795583A (zh) 2015-07-22
CN104795583B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2015109994A1 (zh) 一种新型锂离子液流电池
CN111261948B (zh) 一种圆柱形锂浆料电池及其制备方法
CN107681115B (zh) 一种锂浆料电池的负极片
CN107093773B (zh) 电池
CN103187551B (zh) 一种锂离子液流电池
CN106159302B (zh) 一种锂浆料电池反应器
WO2017152836A1 (zh) 一种锂浆料电池电芯及模块
CN107978732B (zh) 极片及电池
CN107171002B (zh) 一种半固态锂液流电池反应器、电池系统及工作方法
CN107305942B (zh) 一种卷绕式负极片以及设有该负极片的电芯及锂浆料电池
CN107681114B (zh) 一种正极片及制备工艺、以及含有该正极片的锂浆料电池
CN110957462B (zh) 一种双极性电极片及其制备方法,以及双极性电池
CN102683740B (zh) 锂离子电池
CN103247779A (zh) 一种电化学活性极片的制作方法
CN108346772B (zh) 一种锂浆料电池及其非对称式电极片
CN103545530B (zh) 集流体、锂离子电池电极及锂离子电池
CN115714163B (zh) 预锂负极片及其制备方法、预锂电芯和锂离子电池
CN108346804B (zh) 一种多格电极片及含有该电极片的锂浆料电池
CN109088093B (zh) 静态沉积型浆料电池
CN206878104U (zh) 新型流场的液流电池电极
US20190058206A1 (en) Redox flow battery
CN219610486U (zh) 复合集流体、极片及电池
CN105390298A (zh) 一种锂离子电容器负极单元、电芯及锂离子电容器
CN111193074B (zh) 一种可拆卸式锂浆料电池的复合单元以及包含其的锂浆料电池
CN205452051U (zh) 锂离子电容器负极单元、电芯及锂离子电容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740863

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15110044

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE112(1) EPC ( EPO FORM 1205A DATED 20-12-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 15740863

Country of ref document: EP

Kind code of ref document: A1