WO2015109683A1 - 基于新生态界面活性高效制备高铁酸盐的方法 - Google Patents

基于新生态界面活性高效制备高铁酸盐的方法 Download PDF

Info

Publication number
WO2015109683A1
WO2015109683A1 PCT/CN2014/076682 CN2014076682W WO2015109683A1 WO 2015109683 A1 WO2015109683 A1 WO 2015109683A1 CN 2014076682 W CN2014076682 W CN 2014076682W WO 2015109683 A1 WO2015109683 A1 WO 2015109683A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
sodium
potassium
iron
new ecological
Prior art date
Application number
PCT/CN2014/076682
Other languages
English (en)
French (fr)
Inventor
马军
刘玉蕾
肖佳月
赵晓丹
Original Assignee
哈尔滨工业大学
马军
刘玉蕾
肖佳月
赵晓丹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学, 马军, 刘玉蕾, 肖佳月, 赵晓丹 filed Critical 哈尔滨工业大学
Publication of WO2015109683A1 publication Critical patent/WO2015109683A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0027Mixed oxides or hydroxides containing one alkali metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0081Mixed oxides or hydroxides containing iron in unusual valence state [IV, V, VI]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead

Definitions

  • the invention relates to a preparation method of a compound, in particular to a preparation method of ferrate.
  • Ferrate has strong oxidizing properties over a wide range of pH and can oxidize many organic and inorganic materials. Such as NH 2+ , S 2 O 3 2- , SCN - , H 2 and other inorganic compounds; heavy metals such as arsenic, chromium; radioactive materials such as uranium; alcohol, acid, amine, ketone, hydroquinone, phenol and other organic compounds. It is an ideal, efficient, and highly selective oxidant without causing any damage to humans and other organisms and the environment. Secondly, ferrate ions can kill E. coli and common bacteria in aqueous solution, and can also remove harmful organic substances in the sewage, -NO 2- and highly toxic CN - .
  • ferrate is also an ideal treatment agent for industrial wastewater and drinking water.
  • the investment cost is high, which limits the large-scale application of the high-speed rail.
  • Patent US A process for the preparation of ferrate using potassium hydroxide, chlorine, ferric chloride and silicates or iodates is described in 06,331,949.
  • Japanese patent Kokai published to T. Morishita on June 7, 1980 80/75926 describes the preparation of ferrate using molten iron or iron oxide, potassium nitrate and potassium hydroxide.
  • Patent EP19820305914 uses high alkaline potassium hypochlorite and iron salts to prepare high iron.
  • Patent US In 5,217,584 ⁇ -iron oxide is used as an iron source, and a sodium salt or a potassium salt containing iodine or hydrazine is used as a stabilizer, and high-iron is produced by using hypochlorous acid at a reaction temperature of 18 to 25 ° C and a reaction time of 1 to 6 hours.
  • a method for rapidly preparing a ferrate solution using triiron tetroxide as an iron source under microwave irradiation is described in the patent CN101497461A.
  • the object of the present invention is to solve the technical problem that the existing method for preparing ferrate is complicated and the stability of the obtained product is poor, and a method for efficiently preparing ferrate based on the new ecological interface activity is provided.
  • the method for efficiently preparing ferrate based on the new ecological interface activity is as follows:
  • the iron salt is added to the alkaline solution having a pH of 5 to 9 to be hydrolyzed to produce a new ecological iron solution having an iron equivalent concentration of 0.0001 to 1 mol/L;
  • step b measuring 5 ⁇ 100mL of the new ecological iron solution in step a, according to the new ecological iron and oxidant molar ratio of 1: 0.1 ⁇ 20 to add the corresponding amount of oxidant, and mix them to obtain a mixed solution;
  • Adding a stabilizer according to the molar ratio of iron equivalent concentration to stabilizer in the liquid obtained by the separation in step c is 1:0.1-10, that is, a ferrate solution is obtained, and the yield is 78-98%.
  • the method of the invention utilizes hydrolysis of a divalent or trivalent iron salt and a weak base solution to produce a new ecological iron, and releases a part of energy while hydrolyzing the iron ion, so that the heat generated by the reaction between the oxidant, the alkali and the new ecological iron is greatly reduced. Therefore, the method can be carried out in a wide temperature range without an operation such as an ice bath; secondly, the new ecological iron produced is larger than the surface, and the reaction activity is strong, so that the reaction can be rapidly and stably generated; in addition, the present invention prepares ferrate.
  • Stabilization of one or more combinations of sodium perchlorate, sodium carbonate, potassium carbonate, sodium pyrophosphate, sodium silicate, peracetic acid, hydrogen peroxide, sodium hypochlorite, potassium hypochlorite and sodium phosphate added during the process The agent can greatly improve the stability of the produced ferrate solution and can be stored for 3 to 15 days.
  • the iron salt is added to the alkaline solution having a pH of 5 to 9 to be hydrolyzed to produce a new ecological iron solution having an iron equivalent concentration of 0.0001 to 1 mol/L;
  • step b measuring 5 ⁇ 100mL of the new ecological iron solution in step a, according to the new ecological iron and oxidant molar ratio of 1: 0.1 ⁇ 20 to add the corresponding amount of oxidant, and mix them to obtain a mixed solution;
  • the stabilizer is added in a ratio of 1:0.1 to 10, that is, a ferrate solution is obtained, and the yield is 80 to 98%.
  • Embodiment 2 The present embodiment differs from Embodiment 1 in that the iron salt described in the step a is one of iron nitrate, ferrous nitrate, iron sulfate, ferrous sulfate, ferric chloride and ferrous chloride. kind or a combination of several of them. Others are the same as in the first embodiment.
  • the ratio between the components is an arbitrary ratio.
  • This embodiment differs from one or two of the specific embodiments in that the alkali solution described in the step a is sodium phosphate, disodium hydrogen phosphate solution, sodium metaaluminate, sodium borate, sodium acetate solution, One or a combination of several of sodium bicarbonate solution, sodium carbonate solution, sodium silicate solution, potassium carbonate solution, and potassium hydrogencarbonate solution. Others are different from one or two of the specific embodiments.
  • the ratio between the components is an arbitrary ratio.
  • This embodiment differs from one of the specific embodiments 1 to 3 in that the oxidizing agent described in step b is perchloric acid, peracetic acid, sodium peroxodisulfate, potassium peroxydisulfate, potassium monopersulfate, One or a combination of several of sodium hypochlorite, potassium hypochlorite, and ozone. Others are the same as one of the specific embodiments one to three.
  • the ratio between the components is an arbitrary ratio.
  • the present embodiment differs from one of the specific embodiments 1 to 4 in that the alkali particles described in the step c are potassium hydroxide and/or sodium hydroxide, and the alkali solution described in the step c is potassium hydroxide. Solution and / or sodium hydroxide solution. Others are the same as one of the specific embodiments one to four.
  • the ratio between the components is an arbitrary ratio.
  • Specific Embodiment 6 This embodiment differs from one of the specific embodiments 1 to 5 in that the stabilizer described in the step d is sodium perchlorate, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate or sodium pyrophosphate. And one or a combination of several of peracetic acid, hydrogen peroxide, sodium hypochlorite, potassium hypochlorite and sodium phosphate. Others are the same as one of the specific embodiments one to five.
  • the ratio between the components is an arbitrary ratio.
  • Embodiment 7 The method for efficiently preparing ferrate in the present embodiment based on the new ecological interface activity is as follows:
  • the iron salt is added to the alkaline solution having a pH of 5 to 9 to be hydrolyzed to produce a new ecological iron solution having an iron equivalent concentration of 0.0001 to 1 mol/L;
  • step b Measure 5 to 100 mL of the new ecological iron solution in step a, and add 5 to 100 mL of a lye solution having a molar concentration of 0.1 to 16 mol/L or 0.2 to 70 g of alkali particles to the new ecological iron solution, and stir and mix;
  • the stabilizer solution is added in a ratio of 1:0.1 to 10 to obtain a ferrate solution, and the yield is 78 to 98%.
  • Embodiment 8 This embodiment differs from the specific embodiment 7 in that
  • the iron salt described in the step a is one or a combination of several of ferric nitrate, ferrous nitrate, ferric sulfate, ferrous sulfate, ferric chloride and ferrous chloride;
  • the alkali solution described in the step a is sodium phosphate, disodium hydrogen phosphate solution, sodium metaaluminate, sodium borate, sodium acetate solution, sodium hydrogencarbonate solution, sodium carbonate solution, sodium silicate solution, potassium carbonate solution and hydrogen carbonate.
  • the alkali particles described in the step b are potassium hydroxide and/or sodium hydroxide, and the alkali solution described in the step b is a potassium hydroxide solution and/or a sodium hydroxide solution;
  • the oxidizing agent described in the step c is one or a combination of several of perchloric acid, peracetic acid, sodium peroxodisulfate, potassium peroxydisulfate, potassium monopersulfate, sodium hypochlorite, potassium hypochlorite and ozone;
  • the stabilizer described in the step d is one of sodium perchlorate, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, sodium pyrophosphate, peracetic acid, hydrogen peroxide, sodium hypochlorite, potassium hypochlorite and sodium phosphate. kind or a combination of several of them. . Others are the same as in the seventh embodiment.
  • the ratio between the components is an arbitrary ratio.
  • the ratio between the components is an arbitrary ratio.
  • the ratio between the components is an arbitrary ratio.
  • the ratio between the components is an arbitrary ratio.
  • the ratio between the components is an arbitrary ratio.
  • the iron salt is added to the alkaline solution having a pH of 5 to 9 to be hydrolyzed to produce a new ecological iron solution having an iron equivalent concentration of 0.0001 to 1 mol/L;
  • step b measuring 5 ⁇ 100mL of the new ecological iron solution in step a, according to the new ecological iron and oxidant according to a molar ratio of 1: 0.1 ⁇ 20 to add the corresponding amount of oxidant, and mix to obtain a mixed solution;
  • step d adding the product obtained in step c to the mixed liquid of step b under the condition of 5 to 60 ° C, stirring and mixing for 0.1 to 30 minutes, until the solution completely turns purple-black, and performing solid-liquid separation by centrifugation or filtration, that is, a ferrate solution having a yield of 84 to 98%;
  • the molar ratio of the stabilizer in step c to the new ecological iron in step b is from 0.1 to 10:1.
  • Embodiment 9 differs from Embodiment 9 in that
  • the iron salt described in the step a is one or a combination of several of ferric nitrate, ferrous nitrate, ferric sulfate, ferrous sulfate, ferric chloride and ferrous chloride;
  • the alkali solution described in the step a is sodium phosphate, disodium hydrogen phosphate solution, sodium metaaluminate, sodium borate, sodium acetate solution, sodium hydrogencarbonate solution, sodium carbonate solution, sodium silicate solution, potassium carbonate solution and hydrogen carbonate.
  • the oxidizing agent described in the step b is one or a combination of several of perchloric acid, peracetic acid, sodium peroxodisulfate, potassium peroxydisulfate, potassium monopersulfate, sodium hypochlorite, potassium hypochlorite and ozone;
  • the alkali particles described in the step c are potassium hydroxide and/or sodium hydroxide, and the alkali solution described in the step b is a potassium hydroxide solution and/or a sodium hydroxide solution;
  • the stabilizer described in step c is one of sodium perchlorate, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, sodium pyrophosphate, peracetic acid, hydrogen peroxide, sodium hypochlorite, potassium hypochlorite and sodium phosphate. kind or a combination of several of them.
  • the ratio between the components is an arbitrary ratio.
  • the ratio between the components is an arbitrary ratio.
  • the ratio between the components is an arbitrary ratio.
  • the ratio between the components is an arbitrary ratio.
  • the ratio between the components is an arbitrary ratio.
  • the method for efficiently preparing ferrate based on the new ecological interface activity is as follows:
  • step b measuring 5mL of the new ecological iron solution in step a, according to the new ecological iron and peracetic acid molar ratio of 1:0.1 ⁇ 0.2 added peracetic acid, and mixed to obtain a mixed solution;
  • step c at 5 ° C, add 5mL molar concentration of 0.1 ⁇ 0.2mol / L sodium hydroxide to the mixture of step b, stir and mix for 25 ⁇ 30min, until the solution completely turns purple black, using centrifugation or filtration Perform solid-liquid separation;
  • the sodium perchlorate solution is added to obtain a ferrate solution, and the yield is 87 to 90%.
  • the ferrate solution prepared in this experiment can be stored for 5 to 15 days.
  • the method for efficiently preparing ferrate based on the new ecological interface activity is as follows:
  • the iron salt ferric sulfate is added to the alkaline solution having a pH of 8 to 9 at room temperature for 5 to 30 minutes to produce a new ecological iron solution having an iron equivalent concentration of 0.001 to 0.005 mol/L;
  • step b measuring 5mL of the new ecological iron solution in step a, according to the new ecological iron and potassium hypochlorite molar ratio of 1:1 ⁇ 2 added potassium hypochlorite, and mixed to obtain a mixed solution;
  • step b Add 5 mL of potassium hydroxide with a molar concentration of 1 to 2 mol/L to the mixture of step b at 15 ° C, stir and mix for 2.5 to 5 minutes, until the solution completely turns purple-black, by centrifugation or filtration. Solid-liquid separation;
  • the sodium perchlorate solution is added to obtain a ferrate solution, and the yield is 95 to 98%. .
  • the iron salt is a mixture of iron nitrate, ferrous nitrate, iron sulfate, ferrous sulfate and ferrous chloride in any ratio.
  • the lye is a mixture of sodium phosphate, disodium hydrogen phosphate solution, sodium metaaluminate, sodium borate, sodium acetate, sodium hydrogencarbonate, sodium carbonate, sodium silicate, potassium carbonate solution and potassium hydrogencarbonate in any ratio. .
  • the ferrate solution prepared in this experiment can be stored for 5 to 14 days.
  • the method for efficiently preparing ferrate based on the new ecological interface activity is as follows:
  • the iron salt is added to the sodium carbonate solution having a pH of 7-8 to be hydrolyzed at room temperature for 5 to 30 minutes to produce a new ecological iron solution having an iron equivalent concentration of 0.0001 to 0.0005 mol/L;
  • step b measuring 10mL of the new ecological iron solution in step a, according to the molar ratio of the new ecological iron solution and potassium perpersulfate 1:2 ⁇ 3 added potassium monopersulfate, and mixed to obtain a mixed solution;
  • step c at 20 ° C, add 15mL molar concentration of 6 ⁇ 8mol / L potassium hydroxide to the mixture in step b, stir and mix for 1.5 ⁇ 3min, until the solution completely turns purple black, using centrifugation or filtration Perform solid-liquid separation;
  • the ferrate solution is obtained, and the yield is 94-98%.
  • the iron salt is a mixture of iron nitrate, ferrous nitrate, iron sulfate, ferrous sulfate and ferrous chloride in any ratio.
  • the ferrate solution prepared in this experiment can be stored for 6 to 15 days.
  • the method for efficiently preparing ferrate based on the new ecological interface activity is as follows:
  • the iron salt is added to a potassium carbonate solution having a pH of 7 to 9 at room temperature for 5 to 30 minutes to produce a new ecological iron solution having an iron equivalent concentration of 0.01 to 0.02 mol/L;
  • step b Measure 20mL of the new ecological iron solution in step a, add the oxidant according to the molar ratio of the new ecological iron to the oxidant of 1:0.1-0.2, and mix to obtain a mixed liquid;
  • step c at a temperature of 35 ° C, add 20mL molar concentration of 6 ⁇ 8mol / L potassium hydroxide to the mixture of step b, stir and mix for 15 ⁇ 20min, until the solution completely turns purple black, by centrifugation or filtration Solid-liquid separation;
  • the iron salt is a mixture of iron nitrate, ferrous nitrate, iron sulfate, ferrous sulfate and ferrous chloride in any ratio.
  • the oxidizing agent is a composition composed of perchloric acid, peracetic acid, sodium peroxodisulfate, potassium peroxydisulfate, potassium monopersulfate, sodium hypochlorite, potassium hypochlorite and ozone in any ratio.
  • the ferrate solution prepared in this experiment can be stored for 7 to 15 days.
  • the method for efficiently preparing ferrate based on the new ecological interface activity is as follows:
  • the iron salt is added to a sodium acetate solution having a pH of 5 to 7 at room temperature for 5 to 30 minutes to produce a new ecological iron solution having an iron equivalent concentration of 0.007 to 0.01 mol/L;
  • step b measuring 10mL of the new ecological iron solution in step a, according to the new ecological iron and oxidant molar ratio of 1:0.1 ⁇ 0.2 added oxidant, and mixed to obtain a mixed solution;
  • step b at 25 ° C, add 4.5 ⁇ 5g sodium hydroxide or potassium hydroxide particles to the mixture of step b, stir and mix for 2 ⁇ 5min, until the solution completely turns purple black, by centrifugation or filtration method Liquid separation
  • the sodium perchlorate solution is added to obtain a ferrate solution, and the yield is 82-85%. .
  • the iron salt is a mixture of iron nitrate, ferrous nitrate, iron sulfate, ferrous sulfate and ferrous chloride in any ratio.
  • the oxidizing agent is a composition composed of perchloric acid, peracetic acid, sodium peroxodisulfate, potassium peroxydisulfate, potassium monopersulfate, sodium hypochlorite, potassium hypochlorite and ozone in any ratio.
  • the ferrate solution prepared in this experiment can be stored for 8 to 15 days.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一种基于新生态界面活性高效制备高铁酸盐的方法。该方法如下:a、制备新生态铁溶液;b、将氧化剂加入步骤a中的铁溶液中;c、向步骤b的混合液中加入碱液或碱颗粒,搅拌混合,进行固液分离;d、向步骤c中分离所得的液体中加入稳定剂,即得高铁酸盐溶液。产率为78〜98%。该高铁溶液稳定性好,可以保存3〜15天。

Description

基于新生态界面活性高效制备高铁酸盐的方法 技术领域
本发明涉及一种化合物的制备方法,特别是涉及一种高铁酸盐的制备方法。
背景技术
高铁酸盐在较宽范围的pH下具有强氧化性,可以氧化许多有机和无机物质。如NH2+、S2O3 2-、SCN -、H 2等无机化合物;砷、铬等重金属;铀等放射性物质;醇、酸、胺、羟酮、氢醌、苯酚等有机化合物。而不会对人类及其它生物和环境带来任何破坏,是理想、高效、高选择性的氧化剂。其次,高铁酸根离子在水溶液中还能杀死大肠杆菌和一般细菌,还能除去污水中的有害有机物、-NO2-及剧毒CN -等。另外高铁酸根离子分解产生的 Fe(OH)3可以作为吸附剂,吸附各种阴阳离子,起到很好的净水作用。所以高铁酸盐也是工业废水及饮用水理想的处理剂。但是由于现有的高铁酸盐的制备方法过程复杂,投资成本高,限制了高铁的大规模应用。
目前应用比较普遍的方法是化学湿法制备高铁酸盐。关于应用湿法制备高铁酸盐,国内国外学者都做了许多研究。在专利US 06,331,949中描述了应用氢氧化钾、氯气、氯化铁及硅酸盐或碘酸盐制备高铁酸盐的方法。1980年6月7日发表到T. Morishita的日本专利Kokai 80/75926,描述了应用熔融的铁或氧化铁、硝酸钾和氢氧化钾来制备高铁酸盐。专利EP19820305914应用强碱性的次氯酸钾、铁盐制备高铁,由于产生的高铁溶液不是很稳定,该专利采用二甲亚砜、二甲基砜,甲醇等纯化高铁。专利US 5,217,584中利用β-氧化铁作为铁源,利用包含碘或碲的钠盐或钾盐作为稳定剂,利用次氯酸产生高铁,反应温度18~25℃,反应时间1~6h。在专利CN101497461A描述了一种在微波辐射条件下以四氧化三铁为铁源快速制备高铁酸盐溶液的方法。
在上述查阅的专利文献中未见到以新生态铁为铁源制备高铁酸盐溶液的方法。其中的化学湿法制备的文章大都是以铁盐如氯化铁、硫酸铁或硝酸铁为铁原料。
技术问题
本发明的目的是为了解决现有的制备高铁酸盐的方法操作过程复杂,所得产物稳定性差的技术问题,提供了一种基于新生态界面活性高效制备高铁酸盐的方法。
技术解决方案
基于新生态界面活性高效制备高铁酸盐的方法如下:
a、将铁盐加入pH为5~9的碱溶液中水解,产生铁当量浓度为0.0001~1mol/L新生态铁溶液;
b、量取5~100mL步骤a中的新生态铁溶液,按新生态铁与氧化剂摩尔比为1:0.1~20加入相应量的氧化剂,使其混合,得混合液;
c、在5~60℃条件下,向步骤b的混合液中加入5~100mL摩尔浓度为0.1~16mol/L的碱液或0.2~70g碱颗粒,搅拌混合0.1~30min,待溶液完全变为紫黑色,利用离心或过滤的方法进行固液分离;
d、按照步骤c中分离所得的液体中铁当量浓度与稳定剂摩尔比为1:0.1~10加入稳定剂,即得高铁酸盐溶液,产率为78~98%。
有益效果
本发明方法利用二价或三价铁盐和弱碱溶液水解产生新生态铁,在铁离子水解的同时释放了一部分能量,使得氧化剂、碱与新生态铁之间的反应产生的热量大量减少,所以本方法可以在较宽的温度范围内实施,无需冰浴等操作;其次是产生的新生态铁比表面大,反应活性强,使得反应能够快速稳定的发生;另外本发明在制备高铁酸盐过程中加入了高氯酸钠、碳酸钠、碳酸钾、焦磷酸钠、硅酸钠、过氧乙酸、过氧化氢、次氯酸钠、次氯酸钾及磷酸钠中的一种或一种以上的组合的稳定剂,使得所产生高铁酸盐溶液稳定性得到很大提高,可以保存3~15天。
本发明的实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式基于新生态界面活性高效制备高铁酸盐的方法如下:
a、将铁盐加入pH为5~9的碱溶液中水解,产生铁当量浓度为0.0001~1mol/L新生态铁溶液;
b、量取5~100mL步骤a中的新生态铁溶液,按新生态铁与氧化剂摩尔比为1:0.1~20加入相应量的氧化剂,使其混合,得混合液;
c、在5~60℃条件下,向步骤b的混合液中加入5~100mL摩尔浓度为0.1~16mol/L的碱液或0.2~70g碱颗粒,搅拌混合0.1~30min,待溶液完全变为紫黑色,利用离心或过滤的方法进行固液分离;
d、按照步骤c中分离所得的液体中铁当量浓度与稳定剂摩尔比为1:0.1~10的比例加入稳定剂,即得高铁酸盐溶液,产率为80~98%。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤a中所述的铁盐为硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁、氯化铁及氯化亚铁中的一种或其中几种的组合。其它与具体实施方式一相同。
本实施方式中所述的铁盐为组合物时,各成分间为任意比。
具体实施方式三:本实施方式与具体实施方式一或二之一不同的是步骤a中所述的碱溶液是磷酸钠、磷酸氢二钠溶液、偏铝酸钠、硼酸钠、乙酸钠溶液、碳酸氢钠溶液、碳酸钠溶液、硅酸钠溶液、碳酸钾溶液及碳酸氢钾溶液的一种或其中的几种的组合。其它与具体实施方式一或二之一不相同。
本实施方式中所述的碱溶液为组合物时,各成分间为任意比。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤b中所述的氧化剂为高氯酸、过氧乙酸、过二硫酸钠、过二硫酸钾、单过硫酸钾、次氯酸钠、次氯酸钾及臭氧中的一种或其中几种的组合。其它与具体实施方式一至三之一相同。
本实施方式中所述的氧化剂为组合物时,各成分间为任意比。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤c中所述的碱颗粒为氢氧化钾和/或氢氧化钠,步骤c中所述的碱液为氢氧化钾溶液和/或氢氧化钠溶液。其它与具体实施方式一至四之一相同。
本实施方式中所述的碱液为组合物时,各成分间为任意比。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤d中所述的稳定剂是高氯酸钠、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、焦磷酸钠、过氧乙酸、过氧化氢、次氯酸钠、次氯酸钾及磷酸钠中的一种或者其中几种的组合。其它与具体实施方式一至五之一相同。
本实施方式中所述的稳定剂为组合物时,各成分间为任意比。
具体实施方式七:本实施方式基于新生态界面活性高效制备高铁酸盐的方法如下:
a、将铁盐加入pH为5~9的碱溶液中水解,产生铁当量浓度为0.0001~1mol/L新生态铁溶液;
b、量取5~100mL步骤a中的新生态铁溶液,向新生态铁溶液中加入5~100mL摩尔浓度为0.1~16mol/L的碱液或0.2~70g碱颗粒,搅拌使其混合;
c、在5~60℃条件下,按照新生态铁与氧化剂的摩尔比为1:0.1~20向步骤b所得的混合物中加入氧化剂,搅拌混合0.1~30min,待溶液完全变为紫黑色,利用离心或过滤的方法进行固液分离;
d、按照步骤c中固液分离的液体中铁当量浓度与稳定剂摩尔比为1:0.1~10的比例加入稳定剂溶液,即得高铁酸盐溶液,产率为78~98%。
具体实施方式八:本实施方式与具体实施方式七不同的是
步骤a中所述的铁盐为硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁、氯化铁及氯化亚铁中的一种或其中几种的组合;
步骤a中所述的碱溶液是磷酸钠、磷酸氢二钠溶液、偏铝酸钠、硼酸钠、乙酸钠溶液、碳酸氢钠溶液、碳酸钠溶液、硅酸钠溶液、碳酸钾溶液及碳酸氢钾溶液的一种或其中的几种的组合;
步骤b中所述的碱颗粒为氢氧化钾和/或氢氧化钠,步骤b中所述的碱液为氢氧化钾溶液和/或氢氧化钠溶液;
步骤c中所述的氧化剂为高氯酸、过氧乙酸、过二硫酸钠、过二硫酸钾、单过硫酸钾、次氯酸钠、次氯酸钾及臭氧中的一种或其中几种的组合;
步骤d中所述的稳定剂是高氯酸钠、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、焦磷酸钠、过氧乙酸、过氧化氢、次氯酸钠、次氯酸钾及磷酸钠中的一种或者其中几种的组合。。其它与具体实施方式七相同。
本实施方式中所述的铁盐为组合物时,各成分间为任意比。
本实施方式中所述的碱溶液为组合物时,各成分间为任意比。
本实施方式中所述的氧化剂为组合物时,各成分间为任意比。
本实施方式中所述的碱液为组合物时,各成分间为任意比。
本实施方式中所述的稳定剂为组合物时,各成分间为任意比。
具体实施方式九:本实施方式基于新生态界面活性高效制备高铁酸盐的方法如下:
a、将铁盐加入pH为5~9的碱溶液中水解,产生铁当量浓度为0.0001~1mol/L新生态铁溶液;
b、量取5~100mL步骤a中的新生态铁溶液,按新生态铁与氧化剂按照摩尔比为1:0.1~20加入相应量的氧化剂,使其混合,得混合液;
c、将5~100mL摩尔浓度为0.1~16mol/L的碱液或0.2~70g碱颗粒与稳定剂混合;
d、在5~60℃条件下,向步骤b的混合液中加入步骤c所得的产物,搅拌混合0.1~30min,待溶液完全变为紫黑色,利用离心或过滤的方法进行固液分离,即得高铁酸盐溶液,产率为84~98%;
步骤c中稳定剂与步骤b中新生态铁的摩尔比为0.1~10:1。
具体实施方式十:本实施方式与具体实施方式九不同的是
步骤a中所述的铁盐为硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁、氯化铁及氯化亚铁中的一种或其中几种的组合;
步骤a中所述的碱溶液是磷酸钠、磷酸氢二钠溶液、偏铝酸钠、硼酸钠、乙酸钠溶液、碳酸氢钠溶液、碳酸钠溶液、硅酸钠溶液、碳酸钾溶液及碳酸氢钾溶液的一种或其中的几种的组合;
步骤b中所述的氧化剂为高氯酸、过氧乙酸、过二硫酸钠、过二硫酸钾、单过硫酸钾、次氯酸钠、次氯酸钾及臭氧中的一种或其中几种的组合;
步骤c中所述的碱颗粒为氢氧化钾和/或氢氧化钠,步骤b中所述的碱液为氢氧化钾溶液和/或氢氧化钠溶液;
步骤c中所述的稳定剂是高氯酸钠、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、焦磷酸钠、过氧乙酸、过氧化氢、次氯酸钠、次氯酸钾及磷酸钠中的一种或者其中几种的组合。
其它与具体实施方式九相同。
本实施方式中所述的铁盐为组合物时,各成分间为任意比。
本实施方式中所述的碱溶液为组合物时,各成分间为任意比。
本实施方式中所述的氧化剂为组合物时,各成分间为任意比。
本实施方式中所述的碱液为组合物时,各成分间为任意比。
本实施方式中所述的稳定剂为组合物时,各成分间为任意比。
采用下述实验验证本发明效果:
实验一:
基于新生态界面活性高效制备高铁酸盐的方法如下:
a、将硝酸铁加入pH值为5~6的硼酸钠溶液室温水解5~30min,产生铁当量浓度为0.0001~0.0005mol/L新生态铁溶液;
b、量取5mL步骤a中的新生态铁溶液,按新生态铁与过氧乙酸摩尔比为1:0.1~0.2加入过氧乙酸,使其混合,得混合液;
c、在5℃条件下,向步骤b的混合液中加入5mL摩尔浓度为0.1~0.2mol/L氢氧化钠,搅拌混合25~30min,待溶液完全变为紫黑色,利用离心或过滤的方法进行固液分离;
d、按照步骤c中分离所得的液体中铁当量浓度与高氯酸钠摩尔比为1:1~2加入高氯酸钠溶液,即得高铁酸盐溶液,产率为87~90%。
本实验制备的高铁酸盐溶液可以保存5~15天。
实验二:
基于新生态界面活性高效制备高铁酸盐的方法如下:
a、将铁盐硫酸铁加入pH值为8~9的碱溶液室温水解5~30min,产生铁当量浓度为0.001~0.005mol/L新生态铁溶液;
b、量取5mL步骤a中的新生态铁溶液,按新生态铁与次氯酸钾摩尔比为1:1~2加入次氯酸钾,使其混合,得混合液;
c、在15℃条件下,向步骤b的混合液中加入5mL摩尔浓度为1~2mol/L氢氧化钾,搅拌混合2.5~5min,待溶液完全变为紫黑色,利用离心或过滤的方法进行固液分离;
d、按照步骤c中固液分离的液体中铁当量浓度与高氯酸钠摩尔比为1:3~5的比例加入高氯酸钠溶液,即得高铁酸盐溶液,产率为95~98%。
所述的铁盐为硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁及氯化亚铁按任意比组成的混合物。
所述的碱液为磷酸钠、磷酸氢二钠溶液、偏铝酸钠、硼酸钠、乙酸钠、碳酸氢钠、碳酸钠、硅酸钠、碳酸钾液及碳酸氢钾按任意比组成的混合物。
本实验制备的高铁酸盐溶液可以保存5~14天。
实验三:
基于新生态界面活性高效制备高铁酸盐的方法如下:
a、将铁盐加入pH值为7~8的碳酸钠溶液室温水解5~30min,产生铁当量浓度为0.0001~0.0005mol/L新生态铁溶液;
b、量取10mL步骤a中的新生态铁溶液,按新生态铁溶液与单过硫酸钾的摩尔比为1:2~3加入单过硫酸钾,使其混合,得混合液;
c、在20℃条件下,向步骤b中的混合液中加入15mL摩尔浓度为6~8mol/L氢氧化钾,搅拌混合1.5~3min,待溶液完全变为紫黑色,利用离心或过滤的方法进行固液分离;
d、按照步骤c中固液分离的液体中铁当量浓度与硅酸钠摩尔比为1:0.1~5的比例加入硅酸钠,即得高铁酸盐溶液,产率为94~98%。
所述的铁盐为硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁及氯化亚铁按任意比组成的混合物。
本实验制备的高铁酸盐溶液可以保存6~15天。
实验四:
基于新生态界面活性高效制备高铁酸盐的方法如下:
a、将铁盐加入pH值为7~9的碳酸氢钾溶液室温水解5~30min,产生铁当量浓度为0.01~0.02mol/L新生态铁溶液;
b、量取20mL步骤a中的新生态铁溶液,按新生态铁与氧化剂的摩尔比为1:0.1~0.2加入氧化剂,使其混合,得混合液;
c、在35℃条件下,向步骤b的混合液中加入20mL摩尔浓度为6~8mol/L氢氧化钾,搅拌混合15~20min,待溶液完全变为紫黑色,利用离心或过滤的方法进行固液分离;
d、按照步骤c中固液分离的液体中铁当量浓度与高氯酸钠摩尔比为1:4~5的比例加入高氯酸钠,即得高铁酸盐溶液,产率为89~93%。
所述的铁盐为硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁及氯化亚铁按任意比组成的混合物。
所述的氧化剂为高氯酸、过氧乙酸、过二硫酸钠、过二硫酸钾、单过硫酸钾、次氯酸钠、次氯酸钾及臭氧按任意比组成的组合物。
本实验制备的高铁酸盐溶液可以保存7~15天。
实验五:
基于新生态界面活性高效制备高铁酸盐的方法如下:
a、将铁盐加入pH值为5~7的乙酸钠溶液室温水解5~30min,产生铁当量浓度为0.007~0.01mol/L新生态铁溶液;
b、量取10mL步骤a中的新生态铁溶液,按新生态铁与氧化剂的摩尔比为1:0.1~0.2加入氧化剂,使其混合,得混合液;
c、在25℃条件下,向步骤b的混合液中加入4.5~5g氢氧化钠或氢氧化钾颗粒,搅拌混合2~5min,待溶液完全变为紫黑色,利用离心或过滤的方法进行固液分离;
d、按照步骤c中固液分离的液体中铁当量浓度与高氯酸钠摩尔比为1:0.1~0.5的比例加入高氯酸钠溶液,即得高铁酸盐溶液,产率为82~85%。
所述的铁盐为硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁及氯化亚铁按任意比组成的混合物。
所述的氧化剂为高氯酸、过氧乙酸、过二硫酸钠、过二硫酸钾、单过硫酸钾、次氯酸钠、次氯酸钾及臭氧按任意比组成的组合物。
本实验制备的高铁酸盐溶液可以保存8~15天。

Claims (10)

  1. 基于新生态界面活性高效制备高铁酸盐的方法,其特征在于基于新生态界面活性高效制备高铁酸盐的方法如下: a、将铁盐加入pH为5~9的碱溶液中水解,产生铁当量浓度为0.0001~1mol/L新生态铁溶液; b、量取5~100mL步骤a中的新生态铁溶液,按新生态铁与氧化剂摩尔比为1:0.1~20加入相应量的氧化剂,使其混合,得混合液;
    c、在5~60℃条件下,向步骤b的混合液中加入5~100mL摩尔浓度为0.1~16mol/L的碱液或0.2~70g碱颗粒,搅拌混合0.1~30min,待溶液完全变为紫黑色,利用离心或过滤的方法进行固液分离;
    d、按照步骤c中分离所得的液体中铁当量浓度与稳定剂摩尔比为1:0.1~10加入稳定剂,即得高铁酸盐溶液。
  2. 根据权利要求1所述基于新生态界面活性高效制备高铁酸盐的方法,其特征在于步骤a中所述的铁盐为硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁、氯化铁及氯化亚铁中的一种或其中几种的组合。
  3. 根据权利要求1所述基于新生态界面活性高效制备高铁酸盐的方法,其特征在于步骤a中所述的碱溶液是磷酸钠、磷酸氢二钠溶液、偏铝酸钠、硼酸钠、乙酸钠溶液、碳酸氢钠溶液、碳酸钠溶液、硅酸钠溶液、碳酸钾溶液及碳酸氢钾溶液的一种或其中的几种的组合。
  4. 根据权利要求1所述基于新生态界面活性高效制备高铁酸盐的方法,其特征在于步骤b中所述的氧化剂为高氯酸、过氧乙酸、过二硫酸钠、过二硫酸钾、单过硫酸钾、次氯酸钠、次氯酸钾及臭氧中的一种或其中几种的组合。
  5. 根据权利要求1、2、3或4所述基于新生态界面活性高效制备高铁酸盐的方法,其特征在于步骤c中所述的碱颗粒为氢氧化钾和/或氢氧化钠,步骤c中所述的碱液为氢氧化钾溶液和/或氢氧化钠溶液。
  6. 根据权利要求1、2、3或4所述基于新生态界面活性高效制备高铁酸盐的方法,其特征在于步骤d中所述的稳定剂是高氯酸钠、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、焦磷酸钠、过氧乙酸、过氧化氢、次氯酸钠、次氯酸钾及磷酸钠中的一种或者其中几种的组合。
  7. 基于新生态界面活性高效制备高铁酸盐的方法,其特征在于基于新生态界面活性高效制备高铁酸盐的方法如下:
    a、将铁盐加入pH为5~9的碱溶液中水解,产生铁当量浓度为0.0001~1mol/L新生态铁溶液;
    b、量取5~100mL步骤a中的新生态铁溶液,向新生态铁溶液中加入5~100mL摩尔浓度为0.1~16mol/L的碱液或0.2~70g碱颗粒,搅拌使其混合;
    c、在5~60℃条件下,按照新生态铁与氧化剂的摩尔比为1:0.1~20向步骤b所得的混合物中加入氧化剂,搅拌混合0.1~30min,待溶液完全变为紫黑色,利用离心或过滤的方法进行固液分离;
    d、按照步骤c中固液分离的液体中铁当量浓度与稳定剂摩尔比为1:0.1~10的比例加入稳定剂溶液,即得高铁酸盐溶液。
  8. 根据权利要求7所述基于新生态界面活性高效制备高铁酸盐的方法,其特征在于
    步骤a中所述的铁盐为硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁、氯化铁及氯化亚铁中的一种或其中几种的组合;
    步骤a中所述的碱溶液是磷酸钠、磷酸氢二钠溶液、偏铝酸钠、硼酸钠、乙酸钠溶液、碳酸氢钠溶液、碳酸钠溶液、硅酸钠溶液、碳酸钾溶液及碳酸氢钾溶液的一种或其中的几种的组合;
    步骤b中所述的碱颗粒为氢氧化钾和/或氢氧化钠,步骤b中所述的碱液为氢氧化钾溶液和/或氢氧化钠溶液;
    步骤c中所述的氧化剂为高氯酸、过氧乙酸、过二硫酸钠、过二硫酸钾、单过硫酸钾、次氯酸钠、次氯酸钾及臭氧中的一种或其中几种的组合;
    步骤d中所述的稳定剂是高氯酸钠、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、焦磷酸钠、过氧乙酸、过氧化氢、次氯酸钠、次氯酸钾及磷酸钠中的一种或者其中几种的组合。
  9. 基于新生态界面活性高效制备高铁酸盐的方法,其特征在于基于新生态界面活性高效制备高铁酸盐的方法如下:
    a、将铁盐加入pH为5~9的碱溶液中水解,产生铁当量浓度为0.0001~1mol/L新生态铁溶液;
    b、量取5~100mL步骤a中的新生态铁溶液,按新生态铁与氧化剂按照摩尔比为1:0.1~20加入相应量的氧化剂,使其混合,得混合液;
    c、将5~100mL摩尔浓度为0.1~16mol/L的碱液或0.2~70g碱颗粒与稳定剂混合;
    d、在5~60℃条件下,向步骤b的混合液中加入步骤c所得的产物,搅拌混合0.1~30min,待溶液完全变为紫黑色,利用离心或过滤的方法进行固液分离,即得高铁酸盐溶液;
    步骤c中稳定剂与步骤b中新生态铁的摩尔比为0.1~10:1
  10. 根据权利要求9所述基于新生态界面活性高效制备高铁酸盐的方法,其特征在于
    步骤a中所述的铁盐为硝酸铁、硝酸亚铁、硫酸铁、硫酸亚铁、氯化铁及氯化亚铁中的一种或其中几种的组合;
    步骤a中所述的碱溶液是磷酸钠、磷酸氢二钠溶液、偏铝酸钠、硼酸钠、乙酸钠溶液、碳酸氢钠溶液、碳酸钠溶液、硅酸钠溶液、碳酸钾溶液及碳酸氢钾溶液的一种或其中的几种的组合;
    步骤b中所述的氧化剂为高氯酸、过氧乙酸、过二硫酸钠、过二硫酸钾、单过硫酸钾、次氯酸钠、次氯酸钾及臭氧中的一种或其中几种的组合;
    步骤c中所述的碱颗粒为氢氧化钾和/或氢氧化钠,步骤b中所述的碱液为氢氧化钾溶液和/或氢氧化钠溶液;
    步骤c中所述的稳定剂是高氯酸钠、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、焦磷酸钠、过氧乙酸、过氧化氢、次氯酸钠、次氯酸钾及磷酸钠中的一种或者其中几种的组合。
PCT/CN2014/076682 2014-01-22 2014-04-30 基于新生态界面活性高效制备高铁酸盐的方法 WO2015109683A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410029552.5A CN103771531B (zh) 2014-01-22 2014-01-22 基于新生态界面活性制备高铁酸盐的方法
CN201410029552.5 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015109683A1 true WO2015109683A1 (zh) 2015-07-30

Family

ID=50564369

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2014/076682 WO2015109683A1 (zh) 2014-01-22 2014-04-30 基于新生态界面活性高效制备高铁酸盐的方法
PCT/CN2015/071374 WO2015110050A1 (zh) 2014-01-22 2015-01-22 基于新生态界面活性高效制备高铁酸盐的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071374 WO2015110050A1 (zh) 2014-01-22 2015-01-22 基于新生态界面活性高效制备高铁酸盐的方法

Country Status (3)

Country Link
US (2) US10196279B2 (zh)
CN (1) CN103771531B (zh)
WO (2) WO2015109683A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771531B (zh) * 2014-01-22 2015-06-03 哈尔滨工业大学 基于新生态界面活性制备高铁酸盐的方法
CN105314727A (zh) * 2014-05-29 2016-02-10 谈丽娜 一种高铁酸盐的制备方法
CN104828920A (zh) * 2015-05-18 2015-08-12 陈雷 一种聚合氯化高铁絮凝剂的制备方法
CN107999031A (zh) * 2017-11-27 2018-05-08 安徽工程大学 一种原水除锰剂及其在净水中的应用
US10836648B2 (en) * 2018-03-09 2020-11-17 James Mueller Ex situ ferrate generation
CN108383236B (zh) * 2018-03-30 2022-02-11 哈尔滨工业大学 一种利用高铁酸盐活化微生物絮体以提高凝聚及脱磷性能的方法
CN114835214B (zh) * 2022-05-23 2023-08-22 常州清流环保科技有限公司 一种稳定化高铁酸盐水处理药剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746994A (en) * 1996-08-09 1998-05-05 New Mexico State University Technology Transfer Corporation Method for synthesizing ferrate and ferrate produced thereby
CN103145189A (zh) * 2013-03-01 2013-06-12 凤台精兴生物科技有限公司 一种高铁酸钾的制备方法
CN103449528A (zh) * 2013-08-09 2013-12-18 华南理工大学 一种超声波活化制备高铁酸盐的方法
CN103449527A (zh) * 2013-08-09 2013-12-18 华南理工大学 一种水力空化活化制备高铁酸盐的方法
CN103449529A (zh) * 2013-08-09 2013-12-18 华南理工大学 一种脉冲超声和水力空化耦合协同活化制备高铁酸盐的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9404191D0 (en) * 1994-03-04 1994-04-20 Imperial College Preparations and uses of polyferric sulphate
US6521265B1 (en) * 2000-02-09 2003-02-18 Biolife, L.L.C. Method for applying a blood clotting agent
FR2856051B1 (fr) * 2003-06-11 2005-09-09 Inertec Procede de synthese de ferrates
CN101497461B (zh) * 2009-03-16 2013-06-05 黄河水利职业技术学院 微波辐射快速制备高铁酸盐溶液的方法
US8961921B2 (en) * 2009-09-28 2015-02-24 Florida Institute Of Technology Apparatus and method for producing liquid ferrate
CN103771531B (zh) * 2014-01-22 2015-06-03 哈尔滨工业大学 基于新生态界面活性制备高铁酸盐的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746994A (en) * 1996-08-09 1998-05-05 New Mexico State University Technology Transfer Corporation Method for synthesizing ferrate and ferrate produced thereby
CN103145189A (zh) * 2013-03-01 2013-06-12 凤台精兴生物科技有限公司 一种高铁酸钾的制备方法
CN103449528A (zh) * 2013-08-09 2013-12-18 华南理工大学 一种超声波活化制备高铁酸盐的方法
CN103449527A (zh) * 2013-08-09 2013-12-18 华南理工大学 一种水力空化活化制备高铁酸盐的方法
CN103449529A (zh) * 2013-08-09 2013-12-18 华南理工大学 一种脉冲超声和水力空化耦合协同活化制备高铁酸盐的方法

Also Published As

Publication number Publication date
US20170001878A1 (en) 2017-01-05
WO2015110050A1 (zh) 2015-07-30
US20190144297A1 (en) 2019-05-16
CN103771531A (zh) 2014-05-07
CN103771531B (zh) 2015-06-03
US10196279B2 (en) 2019-02-05
US11198619B2 (en) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2015109683A1 (zh) 基于新生态界面活性高效制备高铁酸盐的方法
ZA889514B (en) Water containing hardenable foam compositions from inorganic components and process for their production
WO2012145930A1 (zh) 一种颗粒物中所含持久性有机污染物的处理方法
CN108410526A (zh) 一种废有机溶剂资源化利用方法
CN103361596A (zh) 表面改性处理的氧化盐
JP2007268513A (ja) 廃棄物の処理方法
KR20130108222A (ko) 강도증진용 시멘트 혼합제를 이용한 시멘트 조성물
KR101392271B1 (ko) 강도증진용 시멘트 혼합제 및 이를 이용한 시멘트 조성물
KR20030039813A (ko) 산업부산물을 가공 미분쇄한 콘크리트용 분말혼화재
TWI761284B (zh) 無機膠結材的製造方法及其所形成之固化物
JP7341633B2 (ja) 有機汚染土壌の浄化方法
WO2011138695A2 (en) Method for treatment of substrates and treatment composition for said method
CN104446649A (zh) 一种石材处理剂
KR100834589B1 (ko) 니트로 톨루엔류 제조 과정에서 발생하는 폐기물을 이용한분산제의 제조 방법 및 그 분산제
EP4303193A1 (en) Mixed oxidizing agent for treating refractory wastewater and method for treating wastewater using oxidizing agent
KR102585985B1 (ko) 유기오염물 및 암모니아성 질소를 동시 제거하는 난분해성 폐수 처리 방법
KR100592870B1 (ko) 제강슬래그를 이용한 콘크리트
JPH02184549A (ja) 非塩基反応性骨材および塩基・骨材反応抑制方法
US20220364190A1 (en) Tannery product for oxidative hair removal treatment of animal hides and skins and relative method
JPS60231665A (ja) 安定化塩素化イソシアヌル酸組成物
CN86102210B (zh) 用于钢水脱硫的处理剂及钢水的处理方法
Gabagnou et al. Modern unhairing technologies for effective control of H2S release from Beamhouse operations
CN105886691B (zh) 一种提高熔铁除渣性能的铸铁熔剂
US827158A (en) Composition of matter to be used in making waterproof and polishable cements.
KR960011054B1 (ko) 자외선 투과유리의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879582

Country of ref document: EP

Kind code of ref document: A1