WO2015108183A1 - 銀ナノワイヤの製造方法 - Google Patents
銀ナノワイヤの製造方法 Download PDFInfo
- Publication number
- WO2015108183A1 WO2015108183A1 PCT/JP2015/051235 JP2015051235W WO2015108183A1 WO 2015108183 A1 WO2015108183 A1 WO 2015108183A1 JP 2015051235 W JP2015051235 W JP 2015051235W WO 2015108183 A1 WO2015108183 A1 WO 2015108183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silver
- pvp
- solvent
- protective agent
- aluminum nitrate
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0547—Nanofibres or nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/107—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
- B22F2009/245—Reduction reaction in an Ionic Liquid [IL]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/25—Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
- B22F2301/255—Silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the present invention relates to a method for producing silver nanowires useful as a conductive filler constituting a translucent conductor.
- a translucent conductive material a metal oxide film typified by ITO is mainly used for a translucent electrode or the like.
- the metal oxide film has drawbacks such as high film formation cost and weakness against bending, which hinders flexibility of the final product. In the translucent conductor using silver nanowires as the conductive filler, the above-mentioned drawbacks peculiar to the metal oxide film are overcome.
- a silver compound is dissolved in a polyol solvent such as ethylene glycol, and in the presence of a halogen compound and a protective agent, PVP (polyvinylpyrrolidone), a linear shape is obtained using the reducing power of the polyol of the solvent.
- a method for precipitating silver particles is known (Patent Documents 1 and 2, Non-Patent Document 1).
- silver nanowire particles whose surface is protected by PVP can be obtained.
- PVP is a very useful substance for producing silver nanowires with high yield.
- a method for producing silver nanowires with a high yield suitable for industrial production using an organic protective agent other than PVP has not been established. For example, when alkylated PVP is used instead of PVP, most of the precipitated silver particles become granular, and the yield of silver nanowires is greatly reduced.
- the present invention is intended to provide a technique for producing silver nanowires that exhibits an effect of improving the yield even for protective agents other than PVP.
- the inventors have found that the addition of aluminum nitrate in an alcohol solvent is effective in promoting the formation of wire-like silver particles.
- the present invention has been completed based on this finding.
- the purpose is to deposit a linear silver structure (referred to as “silver nanowire”) in an alcohol solvent in which a silver compound, a halogen compound, and an organic protective agent are dissolved.
- a silver nanowire a linear silver structure
- the organic protective agent is, for example, a copolymer having a polymerization composition of 100 parts by mass of vinyl pyrrolidone and 1 to 12 parts by mass of other monomers.
- alkylation PVP a PVP / PVA graft copolymer
- vinyl acetate a PVP / PVA graft copolymer
- the temperature of the precipitation reaction can be set to 60 to 185 ° C., for example.
- PVP / PVA graft copolymer is a graft copolymer in which a PVP chain and a PVA chain are linked.
- an organic protective agent can be comprised with the organic compound except PVP. Note that PVP and alkylated PVP are different substances.
- the present invention there has been provided a technique that is effective in improving the yield of silver nanowires even when an organic protective agent other than PVP is used. For this reason, this invention contributes to implementation of industrial production of the silver nanowire which has organic protective agents other than PVP on the surface.
- the degree of freedom in selecting a dispersion medium for storing or transporting silver nanowires or a translucent resin that mixes silver nanowires as a conductive filler The design freedom of products using translucent conductors is expected to increase.
- FIG. 2 is an SEM photograph of silver particles obtained in Example 1.
- FIG. 4 is an SEM photograph of silver particles obtained in Example 2.
- FIG. 4 is an SEM photograph of silver particles obtained in Example 3.
- FIG. 4 is an SEM photograph of silver particles obtained in Example 4.
- FIG. 4 is an SEM photograph of silver particles obtained in Example 5.
- FIG. 4 is an SEM photograph of silver particles obtained in Example 6.
- FIG. 4 is an SEM photograph of silver particles obtained in Example 7.
- FIG. 3 is an SEM photograph of silver particles obtained in Comparative Example 1.
- FIG. 4 is an SEM photograph of silver particles obtained in Comparative Example 2.
- FIG. 4 is an SEM photograph of silver particles obtained in Comparative Example 3.
- FIG. 4 is an SEM photograph of silver particles obtained in Comparative Example 4.
- FIG. 6 is an SEM photograph of silver particles obtained in Comparative Example 5.
- FIG. 4 is an SEM photograph of silver particles obtained in Comparative Example 6.
- FIG. 4 is an SEM photograph of silver particles obtained in Example 8.
- FIG. 4 is an SEM photograph of silver particles obtained in Example 9.
- FIG. 4 is an SEM photograph of silver particles obtained in Comparative Example 7.
- FIG. 10 is an SEM photograph of silver particles obtained in Comparative Example 8.
- the silver nanowire which is the subject of the present invention has an average length of 3 ⁇ m or more and an average width of 500 nm or less.
- a silver nanowire is a linear structure, but here, each linear structure is referred to as a “particle”.
- the line segment that maximizes the length of the line segment connecting two points on the particle surface is defined as the “major axis”, and the length of the major axis is defined as the “length” of the particle.
- the direction parallel to the major axis is called the “major axis direction”, and the particle length of the part having the longest particle length in the direction perpendicular to the major axis direction is defined as the “width” of the particle.
- the average values of “length” and “width” of individual particles are referred to as “average length” and “average width”, respectively.
- a light-transmitting conductor When a light-transmitting conductor is constructed by mixing silver nanowires into a transparent resin, silver nanowire particles are brought into contact with each other to form a conductive network, and an optical path may be secured in the gap between silver nanowire particles. is necessary. From the viewpoint of forming a conductive network, a longer wire length is advantageous. However, when the wire length is excessively long, the wires are entangled with each other to form an aggregate, which adversely affects the translucency. On the other hand, if the wire width is too small, it is disadvantageous in securing conductivity. On the other hand, if the wire width is excessive, it is disadvantageous in securing translucency.
- the average length of silver nanowires is preferably 3 to 500 ⁇ m, and more preferably 5 to 300 ⁇ m.
- the average width of the silver nanowires is preferably 10 to 500 nm, and more preferably 10 to 200 nm. Silver nanowires having such a particle size can be obtained by the production method described later.
- the particle size of the silver nanowire can be measured from an electron microscope image. Specifically, the length and width of each particle can be measured using an SEM (scanning electron microscope) photograph of a silver nanowire aggregate (powder). In order to calculate the average length and the average width, the total number of particles to be measured is 100 or more.
- wire yield In the production of silver nanowires, among silver particles obtained by reducing and precipitating silver, the number ratio of particles exhibiting a predetermined wire shape is calculated as a “wire yield”, and this is used as an index for manufacturability evaluation. be able to.
- a wire yield can be calculated
- Alcohol solvent In the present invention, a method of depositing silver in an alcohol solvent using the reducing power of the alcohol is applied.
- the type of alcohol one having an appropriate reducing power for silver and capable of depositing wire-like silver particles is selected.
- polyols typified by ethylene glycol are considered relatively suitable for the production of silver nanowires.
- Silver compound A silver compound that is soluble in a solvent is used as a silver source for reducing and depositing silver nanowires.
- silver nitrate, silver acetate, silver oxide, silver chloride and the like can be mentioned, but silver nitrate (AgNO 3 ) is easy to use in consideration of solubility in solvents and cost.
- the amount of Ag added to the total amount of alcohol solvent used can be in the range of 0.001 to 0.1 mol of Ag per liter of solvent, and more preferably in the range of 0.025 to 0.075 mol.
- Halogen compounds When the silver reduction precipitation reaction proceeds, the presence of halogen ions in the liquid is necessary. Halogen ions are considered to have an effect of promptly etching a specific crystal plane of nucleated metallic silver to promote the formation of multiple twins, thereby increasing the abundance of nuclei serving as wires.
- CTAB cetyltrimethylammonium bromide; (C 16 H 33 ) N (CH 3 ) 3 Br), TBAC (tetrabutylammonium chloride; (CH 3 CH 2 CH 2 CH 2 ) 4 NCl, sodium chloride
- Halogen compounds that are soluble in alcohol solvents such as (NaCl), potassium chloride (KCl), hydrochloric acid (HCl), etc.
- the amount of halogen added to the total amount of alcohol solvent used is 0 halogen per liter of solvent. It can be in the range of 0.0001 to 0.01 mol, and more preferably in the range of 0.0005 to 0.005 mol.
- Organic protective agent has the effect
- a dispersion medium such as a storage liquid or a resin constituting a light-transmitting conductor.
- various organic protective agents such as oleylamine are known.
- PVP polyvinylpyrrolidone
- PVP polyvinylpyrrolidone
- alkylated PVP those having an alkyl group addition amount of 10 to 70% by mass can be applied. Of these, alkylated PVP having a weight average molecular weight of 55000 ⁇ 5000 is more preferable. Alkylated PVP may be used alone or in admixture with PVP in any proportion.
- PVP / PVA graft copolymer synthesized by copolymerizing PVP and PVA (polyvinyl alcohol) can also be used.
- the mixing ratio of PVA in the PVP / PVA graft copolymer can be, for example, 1 to 12% by mass, and more effectively 1 to 7% by mass.
- Future research is expected to increase the number of applicable organic protective agents.
- the amount of the organic protective agent can be adjusted in the range of 50 to 1500 g per mol of Ag, and more preferably in the range of 100 to 500 g per mol of Ag.
- Al nitrate is dissolved in a solvent for precipitating silver.
- the inventors have conducted silver reduction precipitation in an alcohol solvent in the presence of aluminum nitrate. Even when a substance other than PVP is used as an organic protective agent, wire-like silver particles are generated. I found a phenomenon that it was easier.
- Aluminum nitrate may be added as aluminum nitrate nonahydrate Al (NO 3) 3 ⁇ 9H 2 O. If the amount of aluminum present in the solvent is small, the effect of improving the wire yield becomes insufficient. As a result of various studies, in order to improve the wire yield, the molar ratio between the total amount of Al and the total amount of Ag present in the total solvent to be subjected to the reaction (this is referred to as “Al / Ag molar ratio” in this specification). Is preferably 0.01 or more, and more preferably 0.014 or more.
- the addition of excess aluminum nitrate is not only uneconomical, but also increases the wire width and causes a decrease in translucency during the production of a translucent conductor, so the Al / Ag molar ratio. Is desirably adjusted within a range of 0.50 or less, and may be controlled to 0.40 or less.
- silver nanowires that are linear structures are obtained by reducing and depositing metallic silver by the reducing power of alcohol as a solvent in an alcohol solvent in which a silver compound is dissolved in the presence of a halogen compound and an organic protective agent.
- Techniques are known.
- PVP is considered suitable as an organic protective agent for generating wire-like silver particles.
- silver nanowires are generated using the reducing power of such an alcohol solvent.
- aluminum nitrate is dissolved in an alcohol solvent.
- the temperature at which the silver reductive precipitation reaction proceeds can be set in the range of 60 ° C. or higher and the boiling point of the solvent or lower.
- the temperature is preferably 60 to 185 ° C, more preferably 85 to 160 ° C. You may manage in the range of 100-160 degreeC.
- the reaction time may be in the range of 10 to 720 min. What is necessary is just to set the compounding quantity of each substance made to exist in a solvent in the range mentioned above.
- solution A Each substance other than the silver compound is dissolved in an alcohol solvent, and the silver compound is added to the solution A after the temperature of the solvent (hereinafter referred to as “solution A”) reaches a predetermined reaction temperature.
- the silver compound can be added by a method in which the silver compound solution (referred to as “solution B”) is mixed in the solution A after being previously dissolved in an alcohol solvent of the same type as the solvent in another container.
- solution B before being mixed with the solution A is preferably set to a temperature around normal temperature (for example, 15 to 40 ° C.).
- a silver compound that is easily soluble in an alcohol solvent such as silver nitrate, may be added to the solution A as a solid.
- a method of adding the whole amount at once, or a method of adding it intermittently or continuously within a fixed time can be adopted.
- the liquid is continuously stirred while the reaction is in progress.
- the gas phase atmosphere in contact with the liquid surface of the solution A during the progress of the reaction can be air or nitrogen.
- the slurry containing the silver nanowires is separated into solid and liquid using means such as centrifugation or decantation, and the solid content is recovered and washed.
- the solid content after washing is mainly composed of silver nanowire particles having an organic protective agent on the surface.
- This aggregate (powder) of silver nanowires can be dispersed in a suitable solvent according to the purpose and stored as a dispersion.
- This silver nanowire dispersion liquid can be used as a silver nanowire supply source in various applications.
- a translucent conductor can be constructed by mixing silver nanowires in a dispersion as a conductive filler into a translucent resin.
- Example 1 Ethylene glycol as the alcohol solvent, silver nitrate as the silver compound, sodium chloride as the halogen compound, aluminum nitrate nonahydrate as the aluminum nitrate, alkylated PVP as the organic protective agent (manufactured by ISP Technologies, GANEX P-904LC, weight average molecular weight 19000) Prepared.
- a solution A In 80 mL of ethylene glycol, 2.80 g of alkylated PVP, 0.0033 g of sodium chloride, and 0.056 g of aluminum nitrate nonahydrate were added and dissolved to obtain a solution A. In a separate container, 0.85 g of silver nitrate was dissolved in 20 mL of ethylene glycol to obtain Solution B. In this example, the Al / Ag molar ratio is 0.030. After the whole amount of the solution A was heated from normal temperature to 145 ° C. with stirring, the whole amount of the solution B was added to the solution A over 1 h. During the addition, Solution A was maintained at 145 ° C. with stirring. The temperature of the solution B to be added was normal temperature.
- the stirring state was further maintained and maintained at 145 ° C. for 2 hours.
- the silver precipitation reaction started, and it is considered that the silver precipitation reaction was almost completed while stirring at 145 ° C. for a total of 3 hours.
- the liquid level of the solution A was set to an air atmosphere during the temperature rise and during the precipitation reaction.
- the slurry-like liquid (reaction liquid) obtained was cooled to 25 ° C. after 3 hours from the start of the addition of the solution B.
- the reaction solution after cooling was centrifuged at 1000 rpm for 10 minutes, and the supernatant was removed to recover the solid content.
- the wire yield was determined by the above formula (1) according to the method described above. At that time, all silver particles observed for three randomly selected fields were used as measurement targets. The total number of measurement objects is 100 or more.
- the wire yield measurement method is common in the following examples. In this example, the Al / Ag molar ratio was 0.030, and the wire yield was as good as 83%.
- Example 2 A silver particle dispersion under the same conditions as in Example 1, except that the amount of aluminum nitrate nonahydrate added was 0.028 g and that the entire amount of Solution A was heated from room temperature to 130 ° C. with stirring. Got. An SEM photograph of the obtained silver particles is illustrated in FIG. In this example, the Al / Ag molar ratio was 0.015, and the wire yield was as good as 82%.
- Example 3 In 16 mL of ethylene glycol, 0.56 g of alkylated PVP, 0.0007 g of sodium chloride, and 0.011 g of aluminum nitrate nonahydrate were added and dissolved to obtain a solution A. In a different container, 0.17 g of silver nitrate was dissolved in 4 mL of ethylene glycol to obtain Solution B. A silver particle dispersion was obtained under the same conditions as in Example 1 except that these solutions A and B were used. An SEM photograph of the obtained silver particles is illustrated in FIG. In this example, the Al / Ag molar ratio was 0.030, and the wire yield was as good as 90%.
- Example 4 A silver particle dispersion was obtained under the same conditions as in Example 3 except that the amount of aluminum nitrate nonahydrate added was 0.022 g. An SEM photograph of the obtained silver particles is illustrated in FIG. In this example, the Al / Ag molar ratio was 0.060, and the wire yield was as good as 87%.
- Example 5 A silver particle dispersion was obtained under the same conditions as in Example 3 except that the amount of aluminum nitrate nonahydrate added was 0.045 g. An SEM photograph of the obtained silver particles is illustrated in FIG. In this example, the Al / Ag molar ratio was 0.119, and the wire yield was as good as 77%.
- Example 6 A silver particle dispersion was obtained under the same conditions as in Example 3 except that the amount of aluminum nitrate nonahydrate added was 0.090 g. An SEM photograph of the obtained silver particles is illustrated in FIG. In this example, the Al / Ag molar ratio was 0.239, and the wire yield was as good as 85%.
- Example 7 A silver particle dispersion was obtained under the same conditions as in Example 3 except that the amount of aluminum nitrate nonahydrate added was 0.134 g. An SEM photograph of the obtained silver particles is illustrated in FIG. In this example, the Al / Ag molar ratio was 0.358, and the wire yield was as good as 79%.
- Example 1 A silver particle dispersion was obtained under the same conditions as in Example 1 except that the amount of aluminum nitrate nonahydrate added was 0 g (no addition). An SEM photograph of the obtained silver particles is illustrated in FIG. In this example, since aluminum nitrate was not added, the Al / Ag molar ratio was 0, and the wire yield was as bad as 16%.
- Example 2 A silver particle dispersion was obtained under the same conditions as in Example 1 except that the amount of aluminum nitrate nonahydrate added was 0.014 g. An SEM photograph of the obtained silver particles is illustrated in FIG. In this example, the amount of aluminum nitrate added was too small and the Al / Ag molar ratio was as small as 0.007, so the wire yield was as low as 9%.
- Example 3 A silver particle dispersion was obtained under the same conditions as in Example 4 except that 0.022 g of aluminum sulfate hydrate Al 2 (SO 4 ) 3 ⁇ xH 2 O was added instead of aluminum nitrate nonahydrate. It was. An SEM photograph of the obtained silver particles is illustrated in FIG. In this case, the wire yield was as bad as 14%.
- Example 4 A silver particle dispersion was obtained under the same conditions as in Example 4 except that 0.022 g of aluminum chloride hexahydrate AlCl 3 .6H 2 O was added instead of aluminum nitrate nonahydrate. An SEM photograph of the obtained silver particles is illustrated in FIG. In this case, the wire yield was as bad as 8%.
- Example 5 A silver particle dispersion was obtained under the same conditions as in Example 4 except that 0.022 g of aluminum isopropoxide Al [OCH (CH 3 ) 2 ] 3 was added instead of aluminum nitrate nonahydrate. An SEM photograph of the obtained silver particles is illustrated in FIG. In this case, the wire yield was as bad as 13%.
- Example 6 A silver particle dispersion was obtained under the same conditions as in Example 4 except that 0.022 g of primary ammonium phosphate Al (H 2 PO 4 ) 3 was added instead of aluminum nitrate nonahydrate. An SEM photograph of the obtained silver particles is illustrated in FIG. In this case, the wire yield was 0%, and no wire-like particles were generated.
- Example 8 A PVP / PVA graft copolymer having an ethylene solvent as an alcohol solvent, silver nitrate as a silver compound, sodium chloride as a halogen compound, aluminum nitrate nonahydrate as aluminum nitrate, and a PVA blending ratio of 2% by mass as an organic protective agent was prepared.
- Solution A was obtained by adding and dissolving 0.56 g of PVP / PVA graft copolymer, 0.0007 g of sodium chloride, and 0.04 g of aluminum nitrate nonahydrate in 20 mL (22.4 g) of ethylene glycol. The whole amount of the solution A was heated from normal temperature to 175 ° C. while stirring, and when the stirring state was maintained and maintained at 145 ° C. for 30 minutes, 0.17 g of silver nitrate was put into the solution A at a time in a solid state. . The Al / Ag molar ratio is 0.12. Thereafter, the stirring state was further maintained and maintained at 175 ° C.
- reaction liquid slurry-like liquid
- the liquid level of the solution A was set to an air atmosphere during the temperature rise and during the precipitation reaction.
- the reaction solution after cooling was centrifuged at 3000 rpm for 10 min, the supernatant was removed, and the solid content was recovered. Thereafter, a washing operation in which IPA (isopropyl alcohol) was added to the solid to obtain a dispersion, and the dispersion was subjected to solid-liquid separation to recover the solid was repeated three times.
- IPA was added to the solid content after washing to obtain a silver particle dispersion. This dispersion was collected, and the solvent IPA was volatilized on an observation table, followed by observation with an SEM, and an SEM photograph of the obtained silver particles was taken. The SEM photograph is illustrated in FIG.
- the wire yield was as good as 92%.
- Example 9 A silver particle dispersion was obtained under the same conditions as in Example 8, except that 0.56 g of a random copolymer of VP (vinyl pyrrolidone) / vinyl acetate was added in place of the PVP / PVA graft copolymer. An SEM photograph of the obtained silver particles is illustrated in FIG. The wire yield was as good as 72%.
- VP vinyl pyrrolidone
- Example 7 A silver particle dispersion was obtained under the same conditions as in Example 8 except that the amount of aluminum nitrate nonahydrate added was 0 g (no addition). An SEM photograph of the obtained silver particles is illustrated in FIG. The wire yield was 62%, which was lower than that of Example 8.
- Example 8 A silver particle dispersion was obtained under the same conditions as in Example 9, except that the amount of aluminum nitrate nonahydrate added was 0 g (no addition). An SEM photograph of the obtained silver particles is illustrated in FIG. The wire yield was 65%, which was lower than that of Example 9.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明で対象としている銀ナノワイヤは、平均長さが3μm以上、平均幅が500nm以下のものである。銀ナノワイヤは線状の構造体であるが、ここでは個々の線状構造体を「粒子」と呼ぶ。粒子表面上の2点間を結ぶ線分の長さが最大となる当該線分を「長軸」と定め、長軸の長さを当該粒子の「長さ」とする。長軸に平行な方向を「長軸方向」と呼び、長軸方向に対して垂直方向の粒子長さが最も長い部分の、その粒子長さを当該粒子の「幅」とする。粒子の集合体(粉体)において、個々の粒子の「長さ」および「幅」の平均値をそれぞれ「平均長さ」および「平均幅」という。
銀ナノワイヤの製造において、銀を還元析出させることによって得られた銀粒子のうち、所定のワイヤ形状を呈する粒子の個数割合を「ワイヤ収率」として算出し、これを製造性評価の指標とすることができる。ワイヤ収率は、得られた銀粒子の集合体(粉体)についての電子顕微鏡画像から求めることができる。具体的には、例えば得られた銀粒子集合体のSEM写真を撮影し、そのSEM写真の中に写っている銀粒子の総数n0と、所定のワイヤ形状(長さ3~500μm、幅10~200nm)を呈することが明らかである銀粒子の個数n1を求め、下記(1)式によりワイヤ収率を算出する。
[ワイヤ収率(%)]=n1/n0×100 …(1)
このワイヤ収率は、製造チャージ間の製造性(製造条件がワイヤ状粒子を生成させるためにどの程度適しているか)を比較するための指標であり、ワイヤ収率が高いほど、その製造条件はワイヤ状粒子を生成させるために適していると判断できる。上記n0とn1のカウント方法は、製造チャージ間の製造性が適正に比較できるように、同一の測定基準に基づいて行う。測定用のSEM写真は、無作為に選んだ複数の視野についての写真を使用することが好ましく、測定対象の粒子(母集団)の総数は100個以上とすることが望ましい。
本発明では、アルコール溶媒中において、そのアルコールの還元力を利用して銀を析出させる手法を適用する。アルコールの種類としては、銀に対して適度な還元力を有し、ワイヤ状の銀粒子を析出させることができるものが選択される。現時点において、エチレングリコールに代表されるポリオールが銀ナノワイヤの生成に比較的適しているとされる。
銀ナノワイヤを還元析出させるための銀源として、溶媒に可溶な銀化合物を使用する。例えば、硝酸銀、酢酸銀、酸化銀、塩化銀などが挙げられるが、溶媒に対する溶解性やコストを考慮すると硝酸銀(AgNO3)が使いやすい。使用するアルコール溶媒の総量に対するAg添加量は、溶媒1L当たりAg0.001~0.1モルの範囲とすることができ、0.025~0.075モルの範囲とすることがより好ましい。
銀の還元析出反応を進行させる際には、液中に、ハロゲンイオンの存在が必要である。ハロゲンイオンは、核生成した金属銀の特定の結晶面を速やかにエッチングして多重双晶の生成を促し、それによってワイヤとなる核晶の存在比率を高める効果を有すると考えられる。ハロゲンイオン源として、CTAB(臭化セチルトリメチルアンモニウム;(C16H33)N(CH3)3Br)、TBAC(テトラブチルアンモニウムクロライド;(CH3CH2CH2CH2)4NCl、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、塩酸(HCl)等の、アルコール溶媒に可溶なハロゲン化合物を使用することができる。使用するアルコール溶媒の総量に対するハロゲンの添加量は、溶媒1L当たりハロゲン0.0001~0.01モルの範囲とすることができ、0.0005~0.005モルの範囲とすることがより好ましい。
有機保護剤は、還元反応において析出した銀粒子の表面を覆い、粗大な銀粒子への成長を抑止する作用を有する。また、得られた銀粒子の表面に存在する有機保護剤は分散媒(保存用液体や透光性導電体を構成する樹脂など)への分散性を確保する作用を有する。球状に近い銀ナノ粒子からなる銀微粉を得る場合には、適用可能な有機保護剤は、オレイルアミンをはじめ、種々のものが知られている。しかしながら、銀の析出を一方向のみへ優先的に生じさせて線状構造体である銀ナノワイヤを合成するために有効な有機保護剤としてはPVP(ポリビニルピロリドン)が知られているが、それ以外に銀ナノワイヤを歩留り良く安定的に製造するのに適した実用的な有機保護剤は見出されていないのが現状である。
本発明に従う製造方法は、銀を析出させる溶媒中に硝酸アルミニウムを溶解させておく点に特徴がある。発明者らは種々研究の結果、硝酸アルミニウム存在下のアルコール溶媒中で銀の還元析出反応を進行させたとき、有機保護剤としてPVP以外の物質を使用してもワイヤ状の銀粒子が生成しやすくなるという現象を発見した。このような現象のメカニズムについては現時点で不明であるが、硝酸塩としてのアルミニウムの添加によってワイヤ状粒子の存在割合(ワイヤ収率)が向上することから、溶媒中に溶解している硝酸アルミニウムは、線状構造体が成長するための核晶として有効な多重双晶の生成を促進する作用を有すると考えられる。また、硝酸アルミニウムには銀粒子がワイヤ状に成長するための結晶面を活性化する作用や、還元速度を向上させる作用があるのではないかと推測される。硝酸アルミニウム以外のアルミニウム塩を用いた場合には、現時点で必ずしも良好な結果は得られていない。
従来、銀化合物が溶解しているアルコール溶媒中において、ハロゲン化合物および有機保護剤の存在下で、溶媒であるアルコールの還元力により金属銀を還元析出させ、線状構造体である銀ナノワイヤを得る手法が知られている。この場合、ワイヤ状の銀粒子を生成させるための有機保護剤としてPVPが適しているとされる。本発明でも、このようなアルコール溶媒の還元力を利用して銀ナノワイヤを生成させる。ただし、本発明ではアルコール溶媒中に硝酸アルミニウムを溶解させておく。それにより、PVP以外の有機保護剤を使用した場合でもワイヤ状の銀粒子が生成しやすくなり、有機保護剤の選択の自由度が拡がる。
アルコール溶媒としてエチレングリコール、銀化合物として硝酸銀、ハロゲン化合物として塩化ナトリウム、硝酸アルミニウムとして硝酸アルミニウム九水和物、有機保護剤としてアルキル化PVP(ISP Technologies社製、GANEX P-904LC、重量平均分子量19000)を用意した。
本例ではAl/Agモル比が0.030であり、ワイヤ収率は83%と良好であった。
硝酸アルミニウム九水和物の添加量を0.028gとしたこと、および溶液Aの全量を常温から130℃まで撹拌しながら昇温したことを除き、実施例1と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図2に例示する。
本例ではAl/Agモル比が0.015であり、ワイヤ収率は82%と良好であった。
エチレングリコール16mL中に、アルキル化PVP0.56g、塩化ナトリウム0.0007g、および硝酸アルミニウム九水和物0.011gを添加して溶解させ、溶液Aを得た。これとは別の容器において、エチレングリコール4mL中に、硝酸銀0.17gを溶解させ、溶液Bを得た。これらの溶液A、Bを用いたことを除き、実施例1と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図3に例示する。
本例ではAl/Agモル比が0.030であり、ワイヤ収率は90%と良好であった。
硝酸アルミニウム九水和物の添加量を0.022gとしたことを除き、実施例3と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図4に例示する。
本例ではAl/Agモル比が0.060であり、ワイヤ収率は87%と良好であった。
硝酸アルミニウム九水和物の添加量を0.045gとしたことを除き、実施例3と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図5に例示する。
本例ではAl/Agモル比が0.119であり、ワイヤ収率は77%と良好であった。
硝酸アルミニウム九水和物の添加量を0.090gとしたことを除き、実施例3と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図6に例示する。
本例ではAl/Agモル比が0.239であり、ワイヤ収率は85%と良好であった。
硝酸アルミニウム九水和物の添加量を0.134gとしたことを除き、実施例3と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図7に例示する。
本例ではAl/Agモル比が0.358であり、ワイヤ収率は79%と良好であった。
硝酸アルミニウム九水和物の添加量を0g(無添加)としたことを除き、実施例1と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図8に例示する。
本例では硝酸アルミニウムを添加していないためAl/Agモル比は0であり、ワイヤ収率は16%と悪かった。
硝酸アルミニウム九水和物の添加量を0.014gとしたことを除き、実施例1と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図9に例示する。
本例では硝酸アルミニウムの添加量が少なすぎ、Al/Agモル比が0.007と小さかったことによりワイヤ収率は9%と悪かった。
硝酸アルミニウム九水和物に代えて、硫酸アルミニウム水和物Al2(SO4)3・xH2Oを0.022g添加したことを除き、実施例4と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図10に例示する。
この場合、ワイヤ収率は14%と悪かった。
硝酸アルミニウム九水和物に代えて、塩化アルミニウム六水和物AlCl3・6H2Oを0.022g添加したことを除き、実施例4と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図11に例示する。
この場合、ワイヤ収率は8%と悪かった。
硝酸アルミニウム九水和物に代えて、アルミニウムイソプロポキシドAl[OCH(CH3)2]3を0.022g添加したことを除き、実施例4と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図12に例示する。
この場合、ワイヤ収率は13%と悪かった。
硝酸アルミニウム九水和物に代えて、第一リン酸アンモニウムAl(H2PO4)3を0.022g添加したことを除き、実施例4と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図13に例示する。
この場合、ワイヤ収率は0%であり、ワイヤ状粒子は生成しなかった。
アルコール溶媒としてエチレングリコール、銀化合物として硝酸銀、ハロゲン化合物として塩化ナトリウム、硝酸アルミニウムとして硝酸アルミニウム九水和物、有機保護剤としてPVAの配合割合が2質量%であるPVP/PVAグラフトコポリマーを用意した。
ワイヤ収率は92%と良好であった。
PVP/PVAグラフトコポリマーに代えて、VP(ビニルピロリドン)/酢酸ビニルのランダムコポリマー0.56gを添加したことを除き、実施例8と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図15に例示する。
ワイヤ収率は72%と良好であった。
硝酸アルミニウム九水和物の添加量を0g(無添加)としたことを除き、実施例8と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図16に例示する。
ワイヤ収率は62%と、実施例8に比べ低かった。
硝酸アルミニウム九水和物の添加量を0g(無添加)としたことを除き、実施例9と同様の条件で銀粒子分散液を得た。得られた銀粒子のSEM写真を図17に例示する。
ワイヤ収率は65%と、実施例9に比べ低かった。
Claims (6)
- 銀化合物、ハロゲン化合物、および有機保護剤が溶解しているアルコール溶媒中で、銀の線状構造体(以下「銀ナノワイヤ」という)を析出させるに際し、前記溶媒中に更に硝酸アルミニウムが溶解している状態で銀の析出反応を進行させる銀ナノワイヤの製造方法。
- 溶媒中に溶解させる硝酸アルミニウムの総量を銀化合物の総量に対しAl/Agモル比で0.01~0.50とする請求項1に記載の銀ナノワイヤの製造方法。
- 有機保護剤は、ビニルピロリドンと、他のモノマーとのコポリマーである請求項1または2に記載の銀ナノワイヤの製造方法。
- 有機保護剤は、ビニルピロリドン100質量部と、他のモノマー1~12質量部との重合組成を有するコポリマーである請求項1または2に記載の銀ナノワイヤの製造方法。
- 有機保護剤は、アルキル化PVP、PVP/PVAグラフトコポリマー、酢酸ビニルの1種以上からなるものである請求項1または2に記載の銀ナノワイヤの製造方法。
- 前記析出反応を60~185℃の温度範囲で進行させる請求項1~5のいずれか1項に記載の銀ナノワイヤの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/111,500 US10213838B2 (en) | 2014-01-20 | 2015-01-19 | Silver nanowire production method |
CN201580005102.5A CN105934297B (zh) | 2014-01-20 | 2015-01-19 | 银纳米线的制造方法 |
KR1020167022438A KR20160110979A (ko) | 2014-01-20 | 2015-01-19 | 은 나노 와이어의 제조 방법 |
EP15737446.3A EP3098003B1 (en) | 2014-01-20 | 2015-01-19 | Silver nanowire production method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-008052 | 2014-01-20 | ||
JP2014008052A JP6276599B2 (ja) | 2014-01-20 | 2014-01-20 | 銀ナノワイヤの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015108183A1 true WO2015108183A1 (ja) | 2015-07-23 |
Family
ID=53543065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/051235 WO2015108183A1 (ja) | 2014-01-20 | 2015-01-19 | 銀ナノワイヤの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10213838B2 (ja) |
EP (1) | EP3098003B1 (ja) |
JP (1) | JP6276599B2 (ja) |
KR (1) | KR20160110979A (ja) |
CN (1) | CN105934297B (ja) |
WO (1) | WO2015108183A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105014095A (zh) * | 2015-07-31 | 2015-11-04 | 合肥微晶材料科技有限公司 | 一种微波醇还原制备银纳米线的方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108025367B (zh) * | 2015-09-30 | 2022-04-19 | 昭和电工株式会社 | 金属纳米线的制造方法 |
JP2017158926A (ja) * | 2016-03-11 | 2017-09-14 | パナソニックIpマネジメント株式会社 | 髪ケア装置 |
US10610935B2 (en) * | 2016-06-28 | 2020-04-07 | Research & Business Foundation Sungkyunkwan University | Metal nanowire and method of preparing the same |
KR101913304B1 (ko) | 2016-12-21 | 2018-10-30 | 서울대학교산학협력단 | 고 종횡비의 은 나노와이어의 제조 방법 |
JP2019056154A (ja) * | 2017-09-22 | 2019-04-11 | Dowaエレクトロニクス株式会社 | 銀ナノワイヤの製造法並びに銀ナノワイヤ、銀ナノワイヤインクおよび透明導電膜 |
WO2019239975A1 (ja) * | 2018-06-12 | 2019-12-19 | Dowaエレクトロニクス株式会社 | アルコール系銀ナノワイヤ分散液およびその製造方法 |
CN110480028B (zh) * | 2019-09-24 | 2022-10-21 | 昆明贵研新材料科技有限公司 | 一种利用有机卤化物辅助制备银纳米纤维的方法与应用 |
CN110508829A (zh) * | 2019-09-24 | 2019-11-29 | 昆明贵研新材料科技有限公司 | 一种高长径比银纳米纤维的制备方法与应用 |
CN110860699A (zh) * | 2019-11-24 | 2020-03-06 | 王杰 | 一种低成本制备银纳米线的方法及其应用 |
CN111001820B (zh) * | 2019-12-31 | 2022-08-19 | 海泰纳鑫科技(成都)有限公司 | 一种纳米银线及其制备方法和应用 |
CN112605380A (zh) * | 2020-11-30 | 2021-04-06 | 哈尔滨工业大学 | 一种银纳米线的过滤提纯方法 |
CN113059181A (zh) * | 2021-03-25 | 2021-07-02 | 广东工业大学 | 一种纳米银线及其制备方法与应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050056118A1 (en) | 2002-12-09 | 2005-03-17 | Younan Xia | Methods of nanostructure formation and shape selection |
JP2006233252A (ja) * | 2005-02-23 | 2006-09-07 | Mitsubishi Materials Corp | ワイヤー状の金微粒子と、その製造方法および含有組成物ならびに用途 |
US20080003130A1 (en) | 2006-02-01 | 2008-01-03 | University Of Washington | Methods for production of silver nanostructures |
WO2011071167A1 (ja) * | 2009-12-11 | 2011-06-16 | 学校法人東京理科大学 | 金-銀コアシェルナノロッド粒子及びその製造方法 |
WO2012112239A1 (en) * | 2011-02-15 | 2012-08-23 | Carestream Health, Inc. | Nanowire preparation methods, compositions, and articles |
JP2013234341A (ja) * | 2012-05-07 | 2013-11-21 | Univ Of Shiga Prefecture | 銀ナノワイヤの製造方法および銀ナノワイヤ |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100609702B1 (ko) | 2003-12-09 | 2006-08-09 | 한국전자통신연구원 | 광 네트워크 터미널 및 이를 구비한 파장분할다중 기반 광가입자망 |
KR100810846B1 (ko) | 2006-07-01 | 2008-03-06 | 엘지전자 주식회사 | 냉장고 |
US7922787B2 (en) * | 2008-02-02 | 2011-04-12 | Seashell Technology, Llc | Methods for the production of silver nanowires |
JP2009224183A (ja) * | 2008-03-17 | 2009-10-01 | Fujifilm Corp | 金属酸化物微粒子、及び透明導電膜、並びに分散液、及びデバイス |
KR101202405B1 (ko) * | 2008-05-28 | 2012-11-23 | (주)바이오니아 | 탄소나노튜브 및 금속으로 이루어진 나노복합체 및 이의제조방법 |
US9283623B2 (en) * | 2011-05-23 | 2016-03-15 | Carestream Health, Inc. | Nanowire preparation methods, compositions, and articles |
WO2013003638A2 (en) * | 2011-06-28 | 2013-01-03 | Arjun Daniel Srinivas | Transparent conductors incorporating additives and related manufacturing methods |
CN103192092B (zh) * | 2013-04-27 | 2015-09-02 | 苏州诺菲纳米科技有限公司 | 银纳米线的制造方法 |
-
2014
- 2014-01-20 JP JP2014008052A patent/JP6276599B2/ja not_active Expired - Fee Related
-
2015
- 2015-01-19 WO PCT/JP2015/051235 patent/WO2015108183A1/ja active Application Filing
- 2015-01-19 US US15/111,500 patent/US10213838B2/en not_active Expired - Fee Related
- 2015-01-19 KR KR1020167022438A patent/KR20160110979A/ko not_active Application Discontinuation
- 2015-01-19 CN CN201580005102.5A patent/CN105934297B/zh not_active Expired - Fee Related
- 2015-01-19 EP EP15737446.3A patent/EP3098003B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050056118A1 (en) | 2002-12-09 | 2005-03-17 | Younan Xia | Methods of nanostructure formation and shape selection |
JP2006233252A (ja) * | 2005-02-23 | 2006-09-07 | Mitsubishi Materials Corp | ワイヤー状の金微粒子と、その製造方法および含有組成物ならびに用途 |
US20080003130A1 (en) | 2006-02-01 | 2008-01-03 | University Of Washington | Methods for production of silver nanostructures |
WO2011071167A1 (ja) * | 2009-12-11 | 2011-06-16 | 学校法人東京理科大学 | 金-銀コアシェルナノロッド粒子及びその製造方法 |
WO2012112239A1 (en) * | 2011-02-15 | 2012-08-23 | Carestream Health, Inc. | Nanowire preparation methods, compositions, and articles |
JP2013234341A (ja) * | 2012-05-07 | 2013-11-21 | Univ Of Shiga Prefecture | 銀ナノワイヤの製造方法および銀ナノワイヤ |
Non-Patent Citations (2)
Title |
---|
J. OF SOLID STATE CHEM., vol. 100, 1992, pages 272 - 280 |
See also references of EP3098003A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105014095A (zh) * | 2015-07-31 | 2015-11-04 | 合肥微晶材料科技有限公司 | 一种微波醇还原制备银纳米线的方法 |
CN105014095B (zh) * | 2015-07-31 | 2017-02-01 | 合肥微晶材料科技有限公司 | 一种微波醇还原制备银纳米线的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20160332234A1 (en) | 2016-11-17 |
EP3098003A1 (en) | 2016-11-30 |
CN105934297A (zh) | 2016-09-07 |
JP2015137370A (ja) | 2015-07-30 |
KR20160110979A (ko) | 2016-09-23 |
JP6276599B2 (ja) | 2018-02-07 |
US10213838B2 (en) | 2019-02-26 |
EP3098003A4 (en) | 2017-12-06 |
EP3098003B1 (en) | 2019-03-13 |
CN105934297B (zh) | 2018-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6276599B2 (ja) | 銀ナノワイヤの製造方法 | |
US10578564B2 (en) | Method for producing silver nanowires, silver nanowires, and ink using same | |
Anžlovar et al. | Polyol‐mediated synthesis of zinc oxide nanorods and nanocomposites with poly (methyl methacrylate) | |
US7364716B2 (en) | Surface modified nanoparticle and method of preparing same | |
JP2018071000A (ja) | 銀ナノワイヤの製造方法 | |
US10391555B2 (en) | Silver nanowires, method for producing same, and ink | |
Geng et al. | Antimony (III)-doped PbWO4 crystals with enhanced photoluminescence via a shape-controlled sonochemical route | |
US20170120327A1 (en) | Silver nanowires, and production method and dispersion of the same | |
JP6266859B2 (ja) | 銀ナノワイヤの製造方法 | |
WO2019034623A1 (en) | PROCESS FOR PRODUCING METAL NANOWELS | |
JP2017078207A (ja) | 銀ナノワイヤおよびその製造方法並びに分散液およびインク | |
KR101604969B1 (ko) | 고압 폴리올 공법을 이용한 초미세 은 나노와이어 제조방법 및 이를 이용한 투명 전도성 전극필름 | |
KR101842763B1 (ko) | 구리 나노구조물의 제조방법 | |
TW201249568A (en) | Nanowire preparation methods, compositions, and articles | |
JP2013144822A (ja) | 金属ナノワイヤーの製造方法 | |
KR101536633B1 (ko) | 은 나노와이어의 제조방법 | |
Samberg et al. | PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method | |
JP2018070946A (ja) | 銀ナノワイヤ合成用有機保護剤並びに銀ナノワイヤおよびその製造方法 | |
KR102670864B1 (ko) | 섬유상 탄소 나노 구조체 | |
JP2010260994A (ja) | 金属含有ブロック共重合体及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15737446 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15111500 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015737446 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015737446 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167022438 Country of ref document: KR Kind code of ref document: A |