WO2015108015A1 - 露光装置、レジストパターン形成方法及び記憶媒体 - Google Patents

露光装置、レジストパターン形成方法及び記憶媒体 Download PDF

Info

Publication number
WO2015108015A1
WO2015108015A1 PCT/JP2015/050593 JP2015050593W WO2015108015A1 WO 2015108015 A1 WO2015108015 A1 WO 2015108015A1 JP 2015050593 W JP2015050593 W JP 2015050593W WO 2015108015 A1 WO2015108015 A1 WO 2015108015A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
substrate
pattern
irradiation region
wafer
Prior art date
Application number
PCT/JP2015/050593
Other languages
English (en)
French (fr)
Inventor
誠司 永原
豪介 白石
志村 悟
吉原 孝介
真一路 川上
勝 友野
寺下 裕一
弘悟 溝口
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020167019174A priority Critical patent/KR102276749B1/ko
Priority to US15/109,917 priority patent/US10101669B2/en
Priority to EP15737732.6A priority patent/EP3098834A4/en
Publication of WO2015108015A1 publication Critical patent/WO2015108015A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2063Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam for the production of exposure masks or reticles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus

Definitions

  • the present invention relates to a technique for exposing the entire surface of a substrate after pattern exposure to the substrate.
  • a technique for forming a resist pattern on a semiconductor wafer or a glass substrate for a liquid crystal display a technique using a chemically amplified resist is known.
  • this type of resist is exposed to light using a pattern mask (pattern exposure) by an exposure machine, an acid is generated at the exposed portion, and when further heated, the acid diffuses and becomes alkali-soluble, for example.
  • a pattern is formed by supplying the liquid to the resist film.
  • EUV Extreme (Ultra Violet) exposure
  • Patent Document 1 discloses a method of using a chemically amplified resist, performing a first pattern by light exposure, and then performing a second pattern exposure by an electron beam.
  • the method disclosed in this document requires pattern exposure in two stages and requires heating of the wafer after each exposure, and further improvement is required from the viewpoint of throughput.
  • Patent Document 2 discloses a resist composition and a resist pattern forming method for forming a resist pattern by EUV.
  • the resist composition itself is a problem, and the problem to be solved is greatly different from the present invention.
  • the present invention has been made under such a background.
  • a resist film is exposed to a pattern exposure region after pattern exposure to obtain a resist pattern having high resolution and high uniformity in the plane of the substrate. It is in providing the technique which can form.
  • the exposure apparatus of the present invention An apparatus that exposes a pattern exposure region after performing pattern exposure on a substrate on which a resist film is formed using a pattern mask; An exposure unit for exposing the substrate on the mounting unit; And a control unit that outputs a control signal for adjusting an exposure amount in accordance with each of a plurality of regions on the substrate based on information obtained in advance.
  • the exposure apparatus of another invention is An apparatus for exposing a pattern exposure region after performing pattern exposure on a substrate on which a resist film is formed using a pattern mask, A first exposure unit having a first placement unit for placing the substrate and a first exposure unit for exposing the entire pattern exposure region of the substrate on the first placement unit; A second placement unit to be placed; a second exposure unit to expose a plurality of regions of the substrate on the second placement unit; and a plurality of pieces on the substrate based on information obtained in advance A second exposure unit having a control unit that outputs a control signal for adjusting an exposure amount of the second exposure unit in accordance with each of the areas; It is provided with.
  • the resist pattern forming method of the present invention comprises: A step of pattern exposure using a pattern mask for a resist film formed on a substrate using a resist; A step of determining an exposure amount according to each of a plurality of regions on the substrate based on information obtained in advance; Then, based on the exposure amount determined in the step, exposing the pattern exposure region of the substrate, Thereafter, a step of heating the substrate, And a step of developing the substrate.
  • the resist pattern forming method of another invention is as follows: A pattern exposure step of pattern exposure using a pattern mask for a resist film formed on a substrate using a resist; A first exposure step of exposing the entire pattern exposure region on the substrate exposed in the pattern exposure step; A step of determining an exposure amount corresponding to each of a plurality of regions in a pattern region on the substrate exposed in the pattern exposure step based on information obtained in advance; A second exposure step of exposing a plurality of regions on the substrate based on the exposure amount determined in this step; Thereafter, a step of heating the substrate, And a step of developing the substrate.
  • the storage medium of the present invention is A storage medium storing a computer program used in an apparatus for exposing a substrate after pattern exposure to a substrate on which a resist film is formed,
  • the computer program includes a group of steps so as to implement the resist pattern forming method described above.
  • the surface of the resist pattern obtained from the resist film (which is not limited to the line width of the line pattern but has a broad meaning including the hole diameter of the hole pattern).
  • the exposure amount is adjusted according to the area on the substrate based on information that affects the internal distribution. Therefore, a highly uniform resist pattern can be formed in the plane of the substrate.
  • the substrate when performing exposure on a substrate after pattern exposure, the substrate is divided into a first exposure for exposing the entire substrate and a second exposure for exposing a plurality of regions of the substrate.
  • the in-plane exposure amount is adjusted by the second exposure. Therefore, the exposure amount can be easily adjusted.
  • FIG. 1 is a plan view of a system in which a pattern exposure machine is connected to a coating / developing apparatus according to a first embodiment of the present invention.
  • 2 is a perspective view of the system.
  • FIG. 1 is a schematic perspective view of a collective exposure apparatus according to a first embodiment of the present invention. It is explanatory drawing which showed irradiation of the light to the wafer from the light source in the said batch exposure apparatus. It is a perspective view of the LCD shutter and mask in the said batch exposure apparatus. It is explanatory drawing of the control mechanism in the said batch exposure apparatus. It is explanatory drawing which showed a mode that the irradiation area
  • FIG. 7 is an explanatory diagram showing a flow of wafer processing in the first to fourth embodiments of the present invention. It is explanatory drawing which shows typically the high illumination intensity exposure and low illumination intensity exposure in the 4th Embodiment of this invention. It is a top view which shows the structure of the batch exposure module used for the 4th Embodiment of this invention. It is explanatory drawing which shows the example of the wavelength used for the high illumination intensity exposure and low illumination intensity exposure performed in the 4th Embodiment of this invention.
  • FIG. 1 is a plan view of a system in which a pattern exposure machine C6 is connected to the coating and developing apparatus 8, and FIG. 2 is a perspective view of the system.
  • the coating / developing apparatus 8 is provided with a carrier block C 1, and the wafer W in the sealed carrier C placed on the placing table 81 is taken out by the delivery arm 82.
  • the delivery arm 82 has a role of delivering the developed wafer W to the inspection module C2, receiving the inspected wafer W from the inspection module C2, and returning it to the carrier C.
  • the inspection module C2 is a module for inspecting the line width of the pattern formed on the processed wafer W as will be described later.
  • the wafer W transferred to the inspection module C2 is once transferred onto the transfer stage U3, and then transferred onto the transfer stage U4 in the processing block C3 connected to the subsequent stage of the inspection module C2 by the transfer arm D1.
  • the processing block C3 is provided with a shelf unit U5, a coating module 83 for coating a resist solution, which will be described in detail later on the wafer W, and a developing module 84 for performing development processing on the exposed wafer W. It has been.
  • the processing block C3 further includes units U1 and U2 in which processing modules 85 for performing heat treatment or the like on the wafer W are stacked, a transfer arm A1, a transfer arm D2, and a transfer arm D3.
  • the transfer arm A1 is a transfer stage.
  • the transfer arm D2 transfers the wafer W between the transfer stages U4, and the transfer arm D3 has a role of transferring the wafers W between the transfer stage U4 and the shelf unit U5.
  • the wafer W on which the resist solution has been applied to the surface is transferred onto a delivery stage U6 in a batch exposure module C4 that is a module for performing batch exposure described later, and subsequently, in the batch exposure module C4. It is carried onto the transfer stage U7 in the interface block C5 by the transfer arm D4. Then, the wafer W carried onto the delivery stage U7 is carried onto the delivery stage U8 in the subsequent pattern exposure machine C6 by the transfer arm D5, and then, for example, pattern exposure by EUV is performed.
  • the transfer arm D6 has a role of transferring the wafer W in the pattern exposure machine C6.
  • the wafer W is transferred again into the interface block C5, returned to the collective exposure module C4, adjusted in temperature with a cooling plate (not shown), and then stored in the collective exposure module C4.
  • the batch exposure described later is performed in the batch exposure apparatus 1.
  • the cooling plate is laminated on the delivery stage U6 in the batch exposure module C4, for example.
  • the wafer W that has been subjected to the batch exposure is returned to the processing block C3, and a heating process (PEB (Post-exposure Bake)) is performed by the heating modules in the units U1 and U2.
  • PEB Post-exposure Bake
  • the wafer W that has finished the PEB is carried into the developing module 84, and after the pattern is developed with, for example, a developer, the wafer W is returned to the inspection module C2 via the delivery stage U4.
  • the inspection device 861 inspects the line width of the pattern. Specifically, the line width of the pattern formed on the wafer W is detected, and the position in the wafer W and the line width of the pattern are associated with each other and stored as pattern information in the storage unit in the inspection apparatus 861 (862). . After the inspection, the wafer W is transferred onto the transfer stage U3, and the wafer W is returned to the carrier C by the transfer arm 82 of the carrier block C1.
  • the resist used in this embodiment is a resist called a photosensitized chemically amplified resist.
  • acid and a photosensitizer are generated in the resist by light having a wavelength used for pattern exposure, for example, EUV or EB (electron beam).
  • the batch exposure described later is performed.
  • the light used for the batch exposure is selected at a wavelength at which only the generated photosensitizer absorbs the light, and only the portion subjected to the pattern exposure is again acid and photosensitized.
  • a chemical is generated. That is, only in the pattern portion formed by pattern exposure, the acid grows by batch exposure. Then, the polymer in the resist becomes soluble in the developer by the catalytic reaction with the acid generated by the above-described reaction in the pattern portion by PEB at the subsequent stage.
  • the batch exposure apparatus 1 includes a stage 13 that is supported by a stage support unit 14 and is a wafer mounting unit that can rotate with respect to the stage support unit 14.
  • the stage support unit 14 is configured to be movable in the X direction by an X moving mechanism 12 formed by combining, for example, a ball screw or a motor.
  • An exposure unit 11 is provided above the stage 13, and the stage 13 and the exposure unit 11 are disposed in a housing (not shown) for partitioning from the outside of the batch exposure apparatus 1.
  • L1 is an irradiation area (exposure area) of light from the exposure unit 11 described later.
  • the exposure unit 11 includes a light source 21 made of, for example, a Xe-Hg lamp and an optical path member.
  • a light source 21 made of, for example, a Xe-Hg lamp and an optical path member.
  • the optical path member includes a reflecting mirror M1, an LCD (liquid crystal display) shutter 22, which is a transmission filter, a mask 23, a reflecting mirror M2, and the like.
  • the light from the light source 21 is reflected by the reflecting mirror M 1 so as to enter the LCD shutter 22, and the light transmitted through the LCD shutter 22 passes through the mask 23.
  • the mask 23 is for restricting the irradiation area on the wafer W.
  • an opening 231 having a length dimension (for example, 300 mm) corresponding to the diameter of the wafer W and a predetermined opening width is provided. Is formed.
  • the opening width for example, a dimension of 1 mm can be mentioned, but a dimension corresponding to one chip of a chip group formed on the wafer W may be used.
  • the light that has passed through the mask 23 reaches the wafer W through the reflecting mirror M2, and forms a strip-shaped irradiation region L1 as shown in FIGS.
  • the LCD shutter 22 includes a plurality of shutter portions 221 arranged in a matrix, for example, on a glass substrate, and a transistor for setting each shutter portion 221 in a light transmitting state or a light shielding state is provided in each shutter portion. 221 is provided correspondingly.
  • the LCD shutter 22 corresponds to a light control plate.
  • the shutter drive circuit unit 24 shown in FIG. 4 is a circuit unit for controlling on / off of the transistor.
  • the wafer W is divided into a plurality of regions in a matrix shape. If the area of each shutter portion 221 is called a pixel, a plurality of pixels are included in an area corresponding to each divided area of the wafer W in the pixel group of the LCD shutter 22. Therefore, each divided region is irradiated to each divided region of the wafer W by adjusting the number of pixels to be turned on among the plurality of pixels corresponding to the divided region in the region of the LCD shutter 22 not covered with the mask. The exposure amount to be adjusted is adjusted. In other words, the light emission pattern of the exposure unit 11 is adjusted, and the illuminance pattern of the irradiation region L1 on the wafer W is adjusted.
  • the pixel to be turned on is a pixel in which a transistor is turned on and enters a light transmission state.
  • Information about which pixel to turn on in the pixel group is held by the control unit 100 described later.
  • the LCD shutter 22 and the shutter drive circuit unit 24 correspond to an exposure amount adjustment unit for adjusting the exposure amount with which the wafer W is irradiated.
  • the coating / developing apparatus 8 includes a control unit 100 as shown in FIG. In FIG. 6, portions related to the batch exposure apparatus 1 and the inspection apparatus 861 are illustrated, and the control unit 100 includes a bus 101, a program storage unit 102, a CPU 103, and a memory (storage unit) 104.
  • a program in the program storage unit 102 controls the exposure amount adjustment unit based on pattern information transmitted from the inspection apparatus 861 (862) in which the position of the wafer W is associated with the line width of the pattern. Creating and storing data in the memory 104;
  • the pattern information is information that affects the in-plane distribution of the line width of the resist pattern obtained from the resist film.
  • the wafer W is divided into a plurality of areas in a matrix.
  • the position of the wafer W associated with the line width of the pattern in the pattern information transmitted from the inspection apparatus 861 (862) is subdivided from the divided area of the wafer W associated with the magnitude of the exposure amount. ing.
  • the average value of the line width is obtained from the value of the line width of the pattern information included in the divided area for each divided area, and the average value is handled (evaluated) as the line width of the divided area.
  • the line width becomes thin when the exposure amount is large, and becomes thick when the exposure amount is small. Therefore, in this case, in order to align the line width between the divided areas, it is only necessary to increase the exposure amount for the divided areas having a larger line width than the desired line width, and the line width is larger than the desired line width. For thin divided regions, the exposure amount may be reduced.
  • a plurality of levels for example, four levels of exposure amounts for convenience are assigned and normalized, and the position of the divided area and the assigned exposure amount standard value are associated with each other in the memory 104.
  • This data processing is performed by a program.
  • the exposure amount irradiated to the divided area of the wafer W is determined by turning on / off the pixel group of the LCD shutter 22.
  • the standard value of the exposure amount is, for example, an address of a transistor to be turned on in the area of the LCD shutter 22 corresponding to each divided area.
  • Tr1 is turned on in the case of the first stage exposure amount
  • Tr1 and Tr2 are turned on in the case of the second stage light amount
  • Tr1 to Tr3 are turned on in the case of the third stage exposure amount
  • all transistors Tr1 to Tr3 are turned on in the case of the fourth stage exposure amount.
  • Tr4 is turned on.
  • An example of a control signal sent from the control unit 100 to the shutter drive circuit unit 24 is an on / off command for a switching element corresponding to a word line of a transistor group constituting a pixel and a switching element corresponding to a bit line.
  • the on / off duty ratio (ratio between the off time and the on time) of the pixel group may be adjusted.
  • the X coordinate is a coordinate managed by the drive system of the X moving mechanism 12.
  • the X moving mechanism 12 is configured by a ball screw mechanism, Identified by a concatenated encoder.
  • the horizontally elongated irradiation region L1 on the wafer W moves. Therefore, for example, information corresponding to a transistor to be turned on for the LCD shutter 22 in the region corresponding to the opening 231 of the mask is stored for each X coordinate interval corresponding to one side in the X direction of the divided region.
  • the irradiation pattern of the irradiation region L1 is determined based on the information read from the storage unit every time the irradiation region L1 crosses the divided regions arranged in the X direction.
  • the width dimension of the strip-shaped irradiation region L1 is set to a value smaller than one side of the divided region in the X direction, for example.
  • the method of adjusting the exposure of each part of the wafer W by scanning the irradiation region L1 relatively and continuously with respect to the wafer W as described above is such that the line width of the pattern on the wafer W is the diameter of the wafer W. It is suitable for the case where it changes continuously or stepwise in the X direction over the whole or a part thereof.
  • the line widths of the patterns are uniform in the Y direction of the wafer W placed on the stage 13, but the line widths gradually increase in the X direction, or approximately 3 in the X direction, for example.
  • An example where the line width is distributed in stages is given.
  • a method of setting the exposure amount of the entire irradiation region L1 to the same value and changing the set value of the exposure amount according to the position of the X coordinate of the irradiation region L1 can be adopted.
  • the exposure amount is adjusted to an appropriate value in the Y direction as described above, that is, an appropriate light emission pattern is obtained. By forming, it becomes a suitable usage mode.
  • the illuminance pattern in the Y direction is adjusted according to the position in the X direction of the irradiation region L1, as a result, the exposure amount is adjusted according to the position in the X direction and the Y direction on the wafer W. Therefore, it is possible to adjust the fine exposure amount and contribute to further improvement of the in-plane uniformity of the line width of the resist pattern.
  • the exposure amount distribution (illuminance pattern) remains fixed. That is, the irradiation region L1 may be scanned with respect to the wafer W in the X direction without changing the illuminance pattern according to the position of the X coordinate. Even in this case, the exposure amount is adjusted in accordance with the position of the wafer W.
  • the program in the program storage unit 102 incorporates commands (each step) to send a control signal from the control unit 100 to each part of the coating and developing apparatus 8 to advance the coating / developing process described later.
  • This program is stored in a storage medium such as a computer storage medium such as a flexible disk, a compact disk, a hard disk, or an MO (magneto-optical disk) and installed in the control unit 100.
  • the coating and developing device 8 Form a pattern on a test wafer using, for example, the same resist as the resist used for the wafer and a pattern exposure mask before starting processing in the coating and developing device for the product wafer (product wafer). To do. Next, the test wafer is subjected to batch exposure in the same manner as the product wafer, except that the reference exposure amount is used in the batch exposure apparatus 1 and then developed. “Batch exposure is performed in the same manner as the product wafer” means that the size of the irradiation region L1 with respect to the test wafer, the scan direction of the irradiation region with respect to the test wafer, and the scan speed are the same as in the case of the product wafer.
  • the pattern obtained on the test wafer is inspected by the inspection device 861 (862), and pattern information in which the line width of the pattern is associated with the position of the wafer W is acquired as described above.
  • the control unit 100 receives this pattern information online, for example, and determines the position of the wafer W, for example, the position of the divided area and the standardized exposure value (parameter value corresponding to the exposure value) as described above.
  • the associated data (data for adjusting the exposure amount) is created.
  • sequentially from the first wafer of the lot, resist coating and pattern exposure by the pattern exposure machine C6 are performed, and after temperature adjustment as described above, the batch exposure apparatus 1
  • the wafer W is carried in and batch exposure is performed on the wafer W.
  • the operation of the batch exposure apparatus 1 will be described with reference to FIG. 7.
  • the position of the wafer W is adjusted using the X moving mechanism 12 so that the light irradiation region L1 from the exposure unit 11 is positioned at one end of the wafer W.
  • the irradiation region L1 is a belt-like region that covers the entire diameter of the wafer W and extends in the Y direction.
  • the X movement mechanism 12 moves the wafer W in the X direction at a constant speed, and scans the irradiation region L1 to the other end of the wafer W.
  • the CPU 103 reads an exposure value corresponding to the position of the wafer W in the Y direction, for example, the standardized exposure value described above, from the memory 104 by a program, and outputs a control signal to the shutter drive circuit unit 24.
  • the position of the wafer W in the memory space is divided into a matrix, and the shutter portion (pixel) group of the LCD shutter 22 included in each divided area corresponds to the exposure amount value of the divided area.
  • the number of shutter portions becomes the light transmission region. In this way, the light emission amount of the exposure unit 11 is adjusted according to the position of the wafer W in the Y direction, and thus the exposure amount is adjusted.
  • the line width of the test wafer pattern is determined from one end to the other end determined based on the notch of the wafer (from one end to the other end in the Y direction of the collective exposure apparatus 1). If the wafer W is gradually becoming thinner, the exposure amount of the irradiated area of the product wafer W is adjusted so as to decrease stepwise from one end to the other end of the wafer W.
  • the irradiation area L1 on the wafer W may be scanned only once, but after the first exposure, the stage 13 is rotated 180 ° after the first exposure, and then one end of the wafer W is again relieved.
  • the irradiation region L1 may be scanned from the side to the other end side.
  • the exposure from one end side to the other end side of the wafer W and the rotation of the wafer W by 180 ° by the rotation of the stage 13 may be repeated a plurality of times.
  • the wafer W that has been subjected to pattern exposure and collective exposure in this way is carried into, for example, a PEB unit that constitutes the unit U1 that performs PEB in the processing block C3.
  • the exposed part becomes soluble in the developer.
  • the wafer W is carried into the developing module 84, for example, a developing solution is supplied and development is performed, and a resist pattern is formed.
  • a photosensitized chemically amplified resist is used, pattern exposure is performed to generate an acid and a photosensitizer in the resist, and then the wafer W is used with a wavelength longer than the wavelength of the pattern exposure. Then, the entire surface exposure (collective exposure) is performed to generate further acid from the photosensitizer. Therefore, a resist pattern with high line width accuracy can be formed with a small exposure amount, and a reduction in throughput can be suppressed.
  • the same processing as that of the product wafer is performed, and batch exposure is performed with a reference exposure amount in the batch exposure apparatus 1, and the line width of the resist pattern obtained by heating and development is set in the inspection apparatus.
  • the exposure amount when the product wafer is collectively exposed is adjusted according to the position of the wafer W based on the line width information. Accordingly, the growth of the acid in the collective exposure is controlled with appropriateness according to the site in the plane, so that the pattern line width in the plane of the wafer W can be adjusted.
  • the pattern information of the resist pattern is acquired using the test wafer.
  • the pattern information obtained by the inspection apparatus for the resist pattern formed on the wafer of the same lot in advance may be used.
  • pattern information obtained by inspecting the wafer by a stand-alone inspection apparatus outside the coating and developing apparatus is input into the control unit 100 offline, and data for adjusting the light amount is created based on the pattern information. Also good.
  • information obtained in advance which is a basis for creating exposure adjustment data, is not limited to pattern information, but may be any information that affects the in-plane distribution of the line width of the resist pattern. It may be information indicating the characteristics of the exposure machine C6 or information indicating the characteristics of the heating unit that performs PEB.
  • the shutter portion 221 (pixel portion) around the region corresponding to the mask opening 231 in the LCD shutter 22 is used.
  • the method may be performed by turning off and regulating the light transmission region.
  • a MEMS (Micro Electro Mechanical Systems) shutter is used instead of the LCD shutter 22 , and the minute shutter installed for each pixel is opened and closed at high speed in the MEMS shutter. May be controlled.
  • LEDs light emitting diodes
  • FIG. 8 a horizontally long irradiation region L1 may be formed.
  • a plurality of LEDs 211 are arranged in a row so that the length of the irradiation region L1 corresponds to the diameter dimension of the wafer W can be given.
  • the setting value of the light emission intensity of all the LEDs 211 forming the irradiation region L1 is set to the same value, and this setting value is set according to the value of the X coordinate of the wafer W.
  • the method of changing for each can be mentioned.
  • the set value may be determined so that the emission intensity of some or all of the LEDs 211 is different from each other.
  • the light emission intensity of the LED 211 can be changed by changing the value of the drive current of each LED 211.
  • a switching element provided in the LED drive circuit unit 25 is used as the data of the light emission intensity setting value in the memory 104.
  • the on / off duty ratio can be given. Note that the adjustment of the light emission intensity of the LED 211 may be combined with the adjustment of the exposure amount using the shutter unit 221 described above.
  • the adjustment of the exposure amount according to the position of the wafer W in the batch exposure apparatus 1 is performed by changing the relative moving speed between the irradiation region L1 and the wafer W instead of adjusting the light emission intensity on the exposure unit 11 side.
  • the adjustment may be performed according to the position of W and by adjusting the irradiation time according to the position of the wafer W.
  • the adjustment of the light emission intensity and the adjustment of the moving speed may be combined.
  • the length dimension of the strip-shaped irradiation region L1 is not limited to a dimension that covers the diameter of the wafer W, and may be a dimension corresponding to the radius of the wafer W, for example. In this case, for example, a sequence of scanning the other half surface of the wafer W after scanning the half surface of the wafer W by the irradiation region L1 can be employed.
  • a batch exposure apparatus 1 according to the second embodiment will be described with reference to FIGS. 9 and 10.
  • the same parts as those according to the first embodiment will be denoted by the same reference numerals, and description thereof will be omitted.
  • the wafer W on which the pattern is formed by the pattern exposure machine C6 is carried into the batch exposure apparatus 1.
  • a strip-shaped irradiation region L1 that is the same as or slightly longer than the diameter of the wafer W is formed in the exposure unit 11 as in the first embodiment.
  • the wafer W is rotated, for example, by half rotation (180 °), Alternatively, the irradiation region L1 is scanned over the entire wafer W by being rotated by an integral multiple of half rotation.
  • the wafer W is divided into a plurality of wafers in a circumferential shape, for example, 360 degrees each from 0 degree to 360 degrees with a diameter passing through the center O of the wafer W as a reference line.
  • the control unit 100 determines a light amount value based on the pattern information for every 360 divided regions (angle regions). As an example, light amount adjustment data in which a normalized light amount value (the number of pixels turned on in each divided region) is set for each divided region as illustrated in the first embodiment is created.
  • the exposure unit 11 adjusts the amount of light for each rotation position of the wafer W based on this data.
  • one end side of the irradiation region L1 is positioned continuously to the central region including the center O of the wafer W, and therefore the light amount of the other region is changed for the central region. Is set to be less. That is, if the corresponding light emission amounts are aligned in the irradiation region L1, the exposure amount of the central region of the wafer W becomes larger than the exposure amount on the peripheral side of the region. By changing, the difference in exposure amount is corrected.
  • the length dimension of the irradiation region L1 may be slightly longer than the radius of the wafer W as shown in FIG.
  • the wafer W is rotated once or rotated a plurality of times (360 ° ⁇ integer) so that the irradiation region L1 extends over the entire wafer W.
  • the light amount is reduced in the central region. It is set so as to be smaller than the light quantity of the other parts.
  • the length dimension of the irradiation region L1 is set slightly shorter than the radius of the wafer W, and one end of the irradiation region L1 is positioned at a portion off the center O of the wafer W, so that the irradiation region L1 is located with respect to the wafer W.
  • the irradiation region L1 may be moved a little in the radial direction of the wafer W and then positioned on the center O of the wafer W so that the region including the center O is exposed. At this time, the exposure amount of the region other than the region including the center O of the wafer W in the irradiation region L1 may be zero.
  • a moving mechanism X moving mechanism 12 in FIG.
  • the irradiation area L1 may be set larger than the mask size of one exposure at the time of pattern exposure as described above, and the relative movement of the irradiation area L1 may be combined with rotation and linear movement.
  • the irradiation region L1 is a belt-like region having a length corresponding to the diameter of the wafer W, and this irradiation region L1 is, for example, radially measured by the X moving mechanism 12 And then moving the irradiation region L relative to the center of the wafer W as the center of rotation.
  • Examples of the relative rotation operation of the irradiation region L include a method of rotating the wafer W around the center of the wafer W as a rotation center.
  • a method of rotating the wafer W around the center of the wafer W as a rotation center for example, an example in which the entire surface of the wafer W is scanned by the irradiation region L1 can be given.
  • the length of the irradiation area L1 is set to a dimension slightly longer than the radius of the wafer W, and the wafer W is rotated once while the irradiation area L1 is positioned on the radius of the wafer W.
  • the exposure amount of the irradiation region L1 located in the region including the center O of the wafer W may be zero. In this case, after that, the exposure is performed in the irradiation region L1 located in the region including the center O of the wafer W, and the exposure amount is set to zero for the other regions in the irradiation region L1.
  • the exposure amount of the irradiation region L1 is uniformly changed according to the position of the irradiation region L1 in the circumferential direction of the wafer W (the divided region in the circumferential direction of the wafer W). Not limited to this, the illuminance pattern in the length direction may be adjusted.
  • the irradiation area L1 is kept at the diameter of the wafer W while the irradiation area L1 is kept in the diameter of the wafer W. If it is moved in the direction, the influence of light deflection of the exposure unit 11 can be reduced.
  • the light emission pattern may be adjusted using the LCD shutter 22 or the MEMS shutter, as in the first embodiment.
  • the irradiation region L1 may be formed by turning off pixels other than the pixels of the LCD shutter 22 corresponding to the opening 231 of the mask.
  • the exposure unit 11 side may be moved, or both the wafer W and the exposure unit 11 side may be moved.
  • the irradiation region L1 for the wafer W is moved relatively and continuously in a state where the wafer W is exposed to the belt-shaped irradiation region L1.
  • the third embodiment is a mode in which step exposure is performed like pattern exposure in the pattern exposure machine C6.
  • the stage 13 can be moved in both the X and Y directions by the X moving mechanism 12 and the Y moving mechanism 16 as shown in FIG. It is configured.
  • the coating / developing apparatus 8 includes a control unit 100 as shown in FIG.
  • the light irradiation area at the time of batch exposure is formed as an area corresponding to the exposure shot area when pattern exposure is performed by the pattern exposure machine C6.
  • a shot area (irradiation area) having a size corresponding to one chip on a wafer is sequentially pulsed (intermittently) moved with respect to each chip.
  • the wafer is intermittently moved one chip at a time relative to the shot area, and exposure is performed when the wafer is stopped.
  • n shot areas each having a size corresponding to one chip are formed (n is an integer of 2 or more), the wafer is moved intermittently by n chips, and n chips are simultaneously transferred when the wafer is stopped. In some cases, exposure is performed.
  • the test wafer is subjected to pattern exposure by the pattern exposure machine C6 in the same manner as in the first embodiment.
  • a test wafer is carried into the batch exposure apparatus 1, and step exposure by the irradiation region L2 is sequentially performed according to, for example, a reference exposure amount according to the exposure order of the pattern exposure region (step exposure region or shot region) in the pattern exposure machine C6. Go.
  • the test wafer is heated and developed to form a resist pattern, and the inspection device 861 (862) inspects the line width of the test wafer.
  • the process recipe, pattern mask, and resist type for the test wafer are set to be the same as those for the product wafer.
  • the control unit 100 of the batch exposure apparatus 1 creates data in which information corresponding to the standard value of the light amount for each chip is associated with the position of each chip (position in the X and Y directions) according to the inspection result. Stored in the memory 104. Further, the data on the order of movement and the timing of movement of the irradiation areas by the pattern exposure machine C6 is fetched and stored in the memory 104.
  • the resist coating and the pattern exposure by the pattern exposure machine C6 are sequentially performed from the first wafer of the lot and carried into the batch exposure apparatus 1.
  • the action of the batch exposure will be described with reference to FIG. 15.
  • the X movement mechanism 12 and the Y movement mechanism 16 are used to place the light irradiation area L2 from the light source 21 on one end P of the wafer W. Adjust the position.
  • the irradiation region L2 is the entire step exposure region at the time of pattern exposure.
  • the irradiation region L2 is set to an irradiation region having the same size as the shot region, but is different from the irradiation region at the time of pattern exposure in that a pattern mask is not used.
  • FIG. 15 shows an example of movement of the irradiation region L2 during batch exposure when the shot region during pattern exposure moves intermittently with respect to the wafer W.
  • the irradiation region L2 moves intermittently from one end P to the other end Q as indicated by an arrow, and is exposed, for example, for each chip. If the projection area of the light irradiation area on the exposure unit 11 side is regarded as the irradiation area L2, it can be said that the irradiation area L2 is exposed only when stopped on the chip.
  • the irradiation region L2 is formed on the wafer W only when the wafer W is stopped. It will be exposed only on the chip.
  • the exposure amount is adjusted according to the position of the irradiation region L2 on the chip position (wafer W).
  • the exposure amount of one step (shot) may be determined collectively for each position of the irradiation region L2 (as the same exposure amount in the irradiation region L2).
  • the pixel on the LCD shutter 22 is turned on,
  • the illuminance distribution may be adjusted for each position of the irradiation region L2 in the irradiation region L2 by controlling off. Then, as shown in FIG.
  • the order of shots (P1 ′, P2 ′, P3 ′%) At the time of collective exposure is changed to the order of shots (P1, P2, P3%) At the time of pattern exposure.
  • the exposure timing of each shot at the time of batch exposure (the start time of each shot following the first shot) is matched with the shot timing at the time of pattern exposure.
  • the orientation of the wafer W carried into the batch exposure apparatus 1 is always constant with reference to, for example, a notch. Accordingly, the time from the first shot to the start of the n-th (n is an integer) shot is equal between the pattern exposure and the batch exposure.
  • the uniformity of the pattern line width in the surface of the wafer W can be improved as in the first embodiment.
  • the irradiation time may be adjusted, or both may be combined.
  • step exposure (shot exposure) is performed in the batch exposure apparatus 1 as in the third embodiment, instead of exposing the entire shot area at the same time, irradiation smaller than the shot area is performed.
  • the irradiation region L2 may be formed by scanning the region. FIG. 17 shows such an example. Similarly to the example shown in FIG. 15, the irradiation region L2 is moved intermittently in the X direction sequentially for each column of chips, and the width of the region R of one chip is set. A belt-like irradiation region L3 having a corresponding length is moved relatively on the wafer W in the X direction.
  • the small band-shaped irradiation region L3 is formed by the mask, the LCD shutter 22, or the like as described above.
  • the exposure amount distribution in the length direction of the irradiation region L3 is adjusted according to the position of the irradiation region L3, X in the irradiation region L2 corresponding to one shot region. Fine adjustment of the exposure amount according to the position in the Y direction can be performed.
  • the band-shaped irradiation region L3 having a width of one chip may be moved relatively on the wafer W in the Y direction. Such an example can be said to be a technique in which step exposure and scan type exposure described in the first embodiment are combined.
  • a buffer area is provided in the transfer path of the wafer W from the pattern exposure machine C6 to the batch exposure apparatus 1, and the buffer time is set. May be present. Since the wafer W is not always discharged from the pattern exposure machine C6 to the coating and developing apparatus at a constant time interval, if the timing of payout between the wafers W is early, each wafer W is kept waiting in the buffer area. In the meantime, the time from the end of the pattern exposure until the batch exposure is performed is equal.
  • the length of the buffer time is determined in advance by simulating in advance the variation in time from the start of pattern exposure to the start of PEB and corresponding to the latest start time of PEB.
  • the time from the end of the process to the start of PEB is also uniform among the wafers W.
  • FIG. 18 shows a configuration example in which the wavelength of irradiation light at the time of collective exposure is changed according to the type of resist used.
  • the light from the light source 21 composed of an Xe—Hg lamp is transmitted through the polarizing filter 41 (the polarizing filter 41a, 41b or 41c in the example of FIG. 18) and irradiated onto the wafer W.
  • the polarizing filters 41a, 41b, and 41c have different wavelengths of light to be transmitted.
  • the polarizing filters 41a, 41b, and 41c are arranged along the circumferential direction of the rotating plate, and the used polarizing filter 41 is positioned on the optical path according to the type of resist used. By selecting them, the exposure wavelength at the time of batch exposure can be set.
  • the exposure wavelength may be selected by adjusting the angle of the diffraction grating G1 for the irradiation light during the batch exposure.
  • a diffraction grating G1 constituting a reflecting mirror is disposed between a light source 21 composed of a Xe-Hg lamp and an opening of a mask 23, and the angle of the diffraction grating G1 is selected according to the wavelength used.
  • the light of a desired wavelength can be separated.
  • light having a desired wavelength may be separated using a prism.
  • the pattern obtained using the test wafer is inspected for a sidewall angle (SWA: inclination angle of the line side wall) ⁇ , and the inspection result of the ⁇ is fed back from the inspection device 861 (862) to perform the batch exposure apparatus 1.
  • SWA sidewall angle
  • FIG. 20A shows an outline of the processing sequence of the wafer W in the first to third embodiments (hereinafter referred to as “previous embodiment”).
  • the pattern exposure unit C6 performs pattern exposure
  • the batch exposure apparatus 1 see FIG. 1 in the batch exposure module C4 performs batch exposure.
  • the heat treatment (PEB) in the processing block C3 development processing is performed.
  • the collective exposure in the collective exposure module C4 performed after the pattern exposure is performed with a high illumination exposure (process) corresponding to the first exposure process.
  • low-illuminance exposure (process) corresponding to the second exposure process.
  • the collective exposure performed in the previous embodiment and the high illuminance exposure and low illuminance exposure performed in the fourth embodiment will be described with reference to the schematic diagram shown in FIG.
  • the role of collective exposure is to correct irregularities in the line widths of patterns obtained by performing pattern exposure and development as described above.
  • the amount of acid generated by increasing the exposure amount of the batch exposure for the part where the line width of the undissolved part by the developer is too wide (the line width of the dissolved part is too narrow).
  • the amount is increased.
  • the amount of acid generation is reduced by reducing the exposure amount of the batch exposure for the portion where the line width of the undissolved portion by the developer is too narrow (the line width of the dissolved portion is too wide).
  • the 21 indicates a state in which the area on the wafer W is divided. Although one divided area actually corresponds to, for example, one chip or a plurality of chips on the wafer W, it is assumed that it is divided vertically and horizontally as 4 ⁇ 4 for the sake of convenience due to space limitations.
  • the number in the square is the exposure amount irradiated to the divided area, and if the area of the divided area is equal, it also represents the illuminance.
  • the batch exposure of the previous embodiment corresponds to FIG.
  • the first embodiment has already been described with respect to the exposure amount stored in the memory space of FIG. 6, the numbers described in the squares are determined in the description, for example, and the exposure amount irradiated to each divided region It is.
  • the exposure amount in this example is a numerical value schematically shown, but it can also be said to be the ratio of the exposure amount of other divided regions when the exposure amount for a certain divided region is 100%.
  • the batch exposure apparatus 1 performs exposure at a size of 99.5, 100, or 100.5 depending on the divided area.
  • FIGS. 21A and 21B show the exposure amount and the low illuminance exposure (second exposure step) for each divided region in the high illuminance exposure (first exposure step) performed in the fourth embodiment. This corresponds to the exposure amount for each divided area. Even if the exposure amount at the time of collective exposure is adjusted according to the position of the pattern exposure region, the adjustment range is very small. For this reason, in the fourth embodiment, first, the entire pattern exposure region is exposed over the entire surface of the pattern exposure region (over the entire surface of the wafer W), for example, by a high illuminance exposure. The exposure is performed with a different exposure amount.
  • the minimum exposure value for batch exposure in each divided area is estimated in advance for a lot of wafers, and a margin is taken with respect to the minimum value to reduce the exposure amount by the margin.
  • the amount is set as a high illuminance exposure.
  • the exposure amount with low illuminance is, for example, about 1% at most with respect to the exposure amount with high illuminance.
  • FIG. 21 for example, high-illuminance exposure is performed as shown in (a), and then low-illuminance exposure is performed as shown in (b), thereby performing collective exposure as in the previous embodiment as shown in (c). It shows that the result is done.
  • FIG. 22 shows an example of a collective exposure module C4 used in the fourth embodiment.
  • the collective exposure module C4 includes a high illuminance exposure unit 1-1 corresponding to a first exposure unit that performs high illuminance exposure, and And a low illuminance exposure unit 1-2 corresponding to a second exposure unit that performs low illuminance exposure .
  • the transfer arm D4 has a role of delivering the wafer W among the delivery stage U6, the high illumination exposure unit 1-1, the low illumination exposure unit 1-2, and a cooling plate (not shown).
  • a placement unit for placing the wafer W is provided on each of the high illumination exposure unit 1-1 and the low illumination exposure unit 1-2.
  • the exposure unit 1-2 may be adjacent to each other, and the common placement unit may be moved between the units 1-1 and 1-2 by a moving mechanism.
  • Each of the high illuminance exposure unit 1-1 and the low illuminance exposure unit 1-2 may have the same configuration as the collective exposure apparatus 1 used in the previous embodiment.
  • the high illuminance exposure unit 1-1 differs from the batch exposure apparatus 1 in that the entire surface of the wafer W is exposed with the same exposure amount, and the low illuminance exposure unit 1-2 is exposed based on data in the memory 104. Although the amount is adjusted, it differs from the batch exposure apparatus 1 in that the exposure amount is small.
  • the high-illuminance exposure unit 1-1 scans, for example, a strip-shaped irradiation area extending in the Y direction formed on the wafer W in the X direction as shown in FIGS. 3 and 7, or as shown in FIGS.
  • the entire surface of the wafer W is exposed so that the illuminance is constant over the entire surface of the wafer W, for example, by rotating the band-shaped irradiation region relative to the wafer W.
  • a method of scanning the above-described irradiation region at a constant speed with the same exposure amount can be employed.
  • high illuminance exposure may be performed by a method of intermittently moving the shot area as in the third embodiment, but from the viewpoint of obtaining a high throughput, the methods of the first and second embodiments are more suitable. It is a good idea. *
  • the divided areas on the wafer W are stored in the memory 104 .
  • Data that associates the position of the exposure and the exposure amount for example, a standard value of the exposure amount, and is configured so that the exposure amount is adjusted based on this data. Is not limited to the order of high illuminance exposure and low illuminance exposure, but may be the order of low illuminance exposure and high illuminance exposure as shown in FIG.
  • the high illuminance exposure is not limited to the exposure so that the illuminance is constant over the entire surface of the wafer W (over the entire surface of the pattern exposure region). Further, the exposure may be performed so that the illuminance increases or decreases over time, or the illuminance is locally changed. Further, in the high illumination exposure, for example, the entire surface of the wafer W may be simultaneously irradiated without using a mask. In this case, a normal illumination distribution is formed on the entire surface of the wafer W. In illuminance exposure, the exposure amount of each divided region may be determined in consideration of this illuminance distribution.
  • the adjustment width corresponds to, for example, a combination of pixel on / off patterns in the case of the LCD shutter 22 used in the first embodiment, and switching of the drive current supply circuit in the case of using the light emitting diode 211.
  • This corresponds to the variable range of the duty ratio of the element on / off. For this reason, it is easy to adjust the exposure amount in the surface of the wafer W, and it is possible to perform a highly reliable adjustment, and as a result, good uniformity of the line width of the pattern in the surface is obtained.
  • FIG. 23 shows the relationship between the absorbance of the resist applied and formed on the wafer W and the wavelength of light
  • the wavelength ⁇ 1 corresponding to the peak of absorbance is a photosensitizer generated by pattern exposure.
  • exposure may be performed at the wavelength ⁇ 1, but each wavelength of high illuminance exposure and low illuminance exposure may be different.
  • the high illuminance exposure may be performed at ⁇ 1 and the low illuminance exposure may be performed at ⁇ 2 slightly lower than the absorbance peak.
  • the reaction amount of the photosensitizer with respect to the exposure amount in the low illuminance exposure is Since it is small, that is, the change in the line width of the pattern is slow, there is an advantage that the adjustment range of the exposure amount adjustment unit with respect to the change amount of the exposure amount can be further increased, and the exposure adjustment is further facilitated.
  • the fourth embodiment as an example, it is described that about 99% of the batch exposure is performed with high illumination exposure. However, 95%, 90% or less of the batch exposure is performed with high illumination exposure. The remaining exposure may be performed with low illumination exposure.
  • the exposure amount is adjusted for each region on the wafer W with high illuminance.
  • the exposure is performed at a low illuminance, but the present invention is not limited to such a method.
  • the first and second exposure processes have the same illuminance. You may employ

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

[課題]レジストパターンを形成するにあたって、パターンの線幅について解像度が高く、ウエハW上での高い面内均一性が得られる技術を提供すること。 [解決手段]レジスト膜を基板上に形成し、パターン露光機C6によるパターン露光を行った後に、一括露光装置1を用いてパターン露光領域の全体を露光する。この際、事前に検査装置861(862)から得られたレジストパターンの線幅の面内分布の情報に基づいて、ウエハW上の露光位置に応じて露光量を調整する。露光量の調整手法としては、ウエハWの直径に対応する帯状の照射領域を移動させながら露光量を調整する手法、パターン露光のショット領域に応じた照射領域を間欠的に移動させて各チップに対する露光量を調整する手法などが挙げられる。

Description

露光装置、レジストパターン形成方法及び記憶媒体
 本発明は、基板に対して、パターン露光後に基板の全面を露光する技術に関する。
 半導体ウエハや液晶ディスプレイ用のガラス基板などにレジストパターンを形成する手法として、化学増幅型レジストを用いる手法が知られている。この種のレジストは、露光機によりパターンマスクを用いた露光(パターン露光)を行うと、露光された部位に酸が発生し、更に加熱すると酸が拡散して例えばアルカリ溶解性となり、このため現像液をレジスト膜に供給することによりパターンが形成される。
 一方、回路の微細化が進んでいることから、レジストパターン形成プロセスに対して微細なパターンに対しても高い解像度が要求されており、この要求に応える手法の一つとして、極端紫外線(EUV:Extreme Ultra Violet)露光が知られている。しかしながら、EUV露光は、露光光源の光強度を大きくすると装置が大掛かりになってコストが嵩むことから、光強度を大きくすることができず、このためスループット(単位時間当たりの処理枚数)が低いという課題がある。
 特許文献1には、化学増幅型のレジストを用い、光による露光にて第1のパターン形成を行った後に電子線にて第2のパターン露光を行う方法が開示されている。しかし当該文献にて開示されている方法は、2段階にわたるパターン露光を必要とする上、各露光後にウエハに対する加熱を必要としており、スループットの観点から更なる改良が必要である。さらに特許文献2には、EUVによるレジストパターン形成用のレジスト組成物及びレジストパターン形成方法が開示されている。しかし当該文献においてはレジスト組成物そのものが課題となっており、本発明とは解決しようとする課題が大きく異なる。
特開平11-162844号 特開2006-78744号
 本発明は、このような背景の下になされたものであり、レジスト膜に対して、パターン露光の後にパターン露光領域を露光して、解像度高く、基板の面内にて均一性の高いレジストパターンを形成することのできる技術を提供することにある。
 本発明の露光装置は、
 レジスト膜を形成した基板に対して、パターンマスクを用いてパターン露光を行った後に、パターン露光領域を露光する装置であって
 基板を載置する載置部と、
 この載置部上の基板を露光する露光部と、
 事前に得られた情報に基づいて、基板上の複数の領域の各々に応じて露光量を調整するための制御信号を出力する制御部と、を備えたことを特徴とする。
 他の発明の露光装置は、
 レジスト膜を形成した基板に対して、パターンマスクを用いてパターン露光を行った後に、パターン露光領域を露光する装置であって、
 基板を載置する第1の載置部と、この第1の載置部上の基板のパターン露光領域の全体を露光する第1の露光部と、を有する第1の露光ユニットと、基板を載置する第2の載置部と、この第2の載置部上の基板の複数の領域を露光する第2の露光部と、事前に得られた情報に基づいて、基板上の複数の領域の各々に応じて前記第2の露光部の露光量を調整するための制御信号を出力する制御部と、を有する第2の露光ユニットと、
 を備えたことを特徴とする。
 本発明のレジストパターン形成方法は、
 レジストを用いて基板上に成膜したレジスト膜に対して、パターンマスクを用いてパターン露光する工程と、
 事前に得られた情報に基づいて、基板上の複数の領域の各々に応じた露光量を決定する工程と、
 その後、前記工程で決定された露光量に基づいて、基板のパターン露光領域を露光する工程と、
 しかる後、基板を加熱する工程と、
 続いて基板を現像する工程と、を含むことを特徴とする。
 他の発明のレジストパターン形成方法は、
 レジストを用いて基板上に成膜したレジスト膜に対して、パターンマスクを用いてパターン露光するパターン露光工程と、
 このパターン露光工程で露光された基板上のパターン露光領域の全体を露光する第1の露光工程と、
 事前に得られた情報に基づいて、前記パターン露光工程で露光された基板上のパターン領域における複数の領域の各々に応じた露光量を決定する工程と、
 この工程で決定された露光量に基づいて、前記基板上の複数の領域を露光する第2の露光工程と、
 しかる後、基板を加熱する工程と、
 続いて基板を現像する工程と、を含むことを特徴とする。
 本発明の記憶媒体は、
 レジスト膜を形成した基板に対して、パターン露光後に基板を露光する装置に用いられるコンピュータプログラムを記憶した記憶媒体であって、
 前記コンピュータプログラムは、上述のレジストパターン形成方法を実施するようにステップ群が組まれていることを特徴とする。
 本発明は、パターン露光の後に基板の露光を行うにあたって、レジスト膜から得られるレジストパターンの線幅(ラインパターンの線幅に限らず、ホールパターンのホール径なども含む広い意味である)の面内分布について影響を及ぼす情報に基づいて、基板上の領域に応じて露光量を調整するようにしている。従って、基板の面内にて均一性の高いレジストパターンを形成することができる。
 また他の発明は、パターン露光の後に基板に露光を行うにあたって、基板の全体を露光する第1の露光と基板の複数の領域を露光する第2の露光とに分け、事前の情報に基づく基板の面内の露光量の調整を第2の露光により行うようにしている。従って露光量の調整が容易である。
本発明の第1の実施形態に係る塗布・現像装置にパターン露光機が接続されたシステムの平面図である。 前記システムの斜視図である。 本発明の第1の実施形態に係る一括露光装置の概略斜視図である。 前記一括露光装置における光源からウエハへの光の照射を示した説明図である。 前記一括露光装置におけるLCDシャッタ及びマスクの斜視図である。 前記一括露光装置における制御機構の説明図である。 前記一括露光装置における照射領域の移動する様子を示した説明図である。 前記一括露光装置において光源にLEDを用いた場合の光源の制御機構を示した説明図である。 本発明の第2の実施形態に係る一括露光装置の概略斜視図である。 前記第2の実施形態に係る一括露光装置における照射領域の移動する様子を示した説明図である。 前記第2の実施形態の変形例に係る一括露光装置における照射領域の移動する様子を示した説明図である。 本発明の第3の実施形態に係る一括露光装置の概略斜視図である。 前記第3の実施形態の一括露光装置に係る光源からウエハへの光の照射を示した説明図である。 前記第3の実施形態に係る一括露光装置における制御機構の説明図である。 前記第3の実施形態に係る一括露光装置における照射領域の移動する様子を示した説明図である。 前記第3の実施形態における一括露光とパターン露光とを対応付けて示す説明図である。 前記第3の実施形態の変形例を示す説明図である。 本発明の一括露光装置において波長の切り替えを偏光フィルタにより行う場合の説明図である。 本発明の一括露光装置において波長の切り替えを回折格子により行う場合の説明図である。 本発明の第1~第4の実施形態におけるウエハの処理の流れを示す説明図である。 本発明の第4の実施形態における高照度露光と低照度露光とを模式的に示す説明図である。 本発明の第4の実施形態に用いられる一括露光モジュールの構成を示す平面図である。 本発明の第4の実施形態で行われる高照度露光及び低照度露光に使用される波長の例を示す説明図である。
 [第1の実施形態]
 本発明の実施形態である露光装置を含む塗布、現像装置8の構成について図1及び図2を参照しながら説明する。図1は塗布、現像装置8にパターン露光機C6が接続されたシステムの平面図であり、図2は同システムの斜視図である。この塗布、現像装置8にはキャリアブロックC1が設けられており、載置台81上に載置された密閉型のキャリアC内のウエハWは受け渡しアーム82により取り出される。受け渡しアーム82は、現像済みのウエハWを検査モジュールC2に受け渡し、検査モジュールC2から検査後のウエハWを受けとってキャリアCに戻す役割を持っている。前記検査モジュールC2は、後述するように処理済のウエハW上に形成されたパターンの線幅を検査するためのモジュールである。
 検査モジュールC2に搬送されたウエハWは一旦受け渡しステージU3上に搬入された後、搬送アームD1により、検査モジュールC2の後段に接続された処理ブロックC3内の受け渡しステージU4上へと搬入される。処理ブロックC3には受け渡しステージU4の他に、棚ユニットU5、ウエハWに対し後に詳述するレジスト液の塗布を行う塗布モジュール83、露光後のウエハWに対し現像処理を行う現像モジュール84が設けられている。更に処理ブロックC3は、ウエハWに対して熱処理等を行う処理モジュール85が積層されたユニットU1、U2及び搬送アームA1、搬送アームD2、搬送アームD3を備えており、搬送アームA1は、受け渡しステージU4及び各モジュールの間でウエハWを搬送する役割がある。また、搬送アームD2は、受け渡しステージU4の間でウエハWを搬送し、搬送アームD3は、受け渡しステージU4及び棚ユニットU5との間でウエハWを搬送する役割がある。
 表面に対しレジスト液の塗布が行われたウエハWは、後述する一括露光を行うためのモジュールである一括露光モジュールC4内の受け渡しステージU6上へと搬送され、引き続いて当該一括露光モジュールC4内の搬送アームD4によってインターフェイスブロックC5内の受け渡しステージU7上へと搬入される。そして、受け渡しステージU7上に搬入されたウエハWは、搬送アームD5によって後段のパターン露光機C6内の受け渡しステージU8上へと搬入された後、例えばEUVによるパターン露光が行われる。搬送アームD6はパターン露光機C6内でウエハWを搬送する役割を持つ。
 パターン露光を終えたウエハWは、再びインターフェイスブロックC5内へと搬入された後、一括露光モジュールC4内へと戻され、図示しない冷却プレートにて温度調整がされた後、一括露光モジュールC4内の一括露光装置1内にて、後述する一括露光が行われる。冷却プレートは例えば一括露光モジュールC4内の受け渡しステージU6に対して積層されている。一括露光を終えたウエハWは処理ブロックC3内へと戻され、ユニットU1、U2内の加熱モジュールにて加熱処理(PEB(Post-exposure Bake))が行われる。PEBを終えたウエハWは現像モジュール84内へと搬入され、例えば現像液によりパターンの現像が行われた後、受け渡しステージU4を経由し検査モジュールC2内へと戻される。
 検査モジュールC2内においては、検査装置861(862)においてパターンの線幅の検査が行われる。具体的には、ウエハWに形成されたパターンの線幅を検出し、ウエハW内の位置とパターンの線幅とを対応付けてパターン情報として検査装置861(862)内の記憶部に記憶する。検査を終えたウエハWは受け渡しステージU3上に受け渡され、キャリアブロックC1の受け渡しアーム82によってウエハWはキャリアCに戻される。
 ここで本実施形態に用いられるレジストについて説明する。本実施形態に用いられるレジストは、光増感化学増幅型レジストと呼ばれるレジストである。このレジストは、パターン露光に用いられる波長の光、例えばEUVやEB(電子線)によって、当該レジスト中に酸と光増感剤とが発生する。引き続いて後述の一括露光を行うが、この一括露光に用いられる光は、発生した光増感剤のみが光を吸収する波長が選択され、パターン露光を行った部分のみに再び酸と光増感剤とが発生する。即ち、パターン露光によって形成されたパターン部分においてのみ、一括露光により酸が増殖する。そして後段のPEBにより、パターン部においてレジスト中のポリマーが、上述した反応により発生した酸との触媒反応により現像液に対して可溶となる。
 次いで本発明の一括(全面)露光装置1について説明する。
 一括露光装置1は、図3に示すようにステージ支持部14に支持され、ステージ支持部14に対して回転することができるウエハ載置部であるステージ13を備えている。ステージ支持部14は、例えばボールねじやモータなどを組み合わせてなるX移動機構12によりX方向に移動自在に構成されている。ステージ13の上方には、露光部11が設けられており、ステージ13及び露光部11は、一括露光装置1の外部と区画するための筐体(図示せず)内に配置されている。図3中L1は後述する露光部11からの光の照射領域(露光領域)である。
 露光部11は、図4に示すように例えばXe-Hgランプからなる光源21及び光路部材を備えている。図3では、光源21及び光路部材などを収納しているケース体を露光部11として示している。光路部材は、反射鏡M1、透過フィルタであるLCD(液晶ディスプレイ)シャッタ22、マスク23及び反射鏡M2などからなり、図示していないが、レンズなども含まれる。光源21からの光は反射鏡M1にてLCDシャッタ22へと入射するように反射され、LCDシャッタ22を透過した光はマスク23を通過する。
 マスク23は、ウエハWにおける照射領域を規制するためのものであり、図5に示すようにウエハWの直径に相当する長さ寸法(例えば300mm)と所定の開口幅とを有する開口部231が形成されている。開口幅の一例としては、例えば1mmの寸法を挙げることができるが、ウエハW上に形成されるチップ群の1チップに対応した寸法であってもよい。マスク23を通過した光は反射鏡M2を介してウエハW上に到達し、図3及び図4に示すように帯状の照射領域L1を形成する。
 LCDシャッタ22は、図5に示すようにガラス基板上に例えばマトリックス状に配置された複数のシャッタ部221を備え、各シャッタ部221を光透過状態または遮光状態にするためのトランジスタが各シャッタ部221に対応して設けられている。LCDシャッタ22は、光制御板に相当する。図4に示すシャッタ駆動回路部24は、トランジスタのオン、オフを制御するための回路部である。
 一方、後述する制御部100内のメモリ104(図6参照)のメモリ空間においては、ウエハWはマトリックス状に複数の領域に分割されている。各シャッタ部221の領域をピクセルと呼ぶことにすると、LCDシャッタ22のピクセル群のうち、ウエハWの各分割領域に対応する領域には複数のピクセルが含まれている。従って各分割領域は、マスクで覆われていないLCDシャッタ22の領域において分割領域に対応する複数のピクセルのうち、オンにするピクセルの数を調整することにより、ウエハWの各分割領域に照射される露光量が調節される。このことは言い換えると露光部11の発光パターンが調整され、ウエハW上の照射領域L1の照度パターンが調整されるということである。
 オンにするピクセルとは、詳しくはトランジスタをオンにして光透過状態となるピクセルである。ピクセル群のうち、どのピクセルをオンにするかについての情報は、後述する制御部100が保持している。この例では、LCDシャッタ22及びシャッタ駆動回路部24は、ウエハWに照射される露光量を調整するための露光量調整部に相当する。
 塗布、現像装置8は図6に示すように制御部100を備えている。図6においては一括露光装置1及び検査装置861に関する部分を記載しており、制御部100は、バス101、プログラム格納部102、CPU103、メモリ(記憶部)104を備えている。プログラム格納部102内のプログラムは、検査装置861(862)から送信されてきた、ウエハWの位置とパターンの線幅とを対応付けたパターン情報に基づいて、露光量調整部を制御するためのデータを作成してメモリ104に記憶するステップを含む。パターン情報は、レジスト膜から得られるレジストパターンの線幅の面内分布について影響を及ぼす情報である。
 既述のようにメモリ空間においては、ウエハWはマトリックス状に複数の領域に分割されている。一方、検査装置861(862)から送信されてきたパターン情報におけるパターンの線幅の大きさと対応付けられるウエハWの位置は、露光量の大きさと対応付けられるウエハWの分割領域よりも細分化されている。このため、分割領域毎に分割領域内に含まれるパターン情報の線幅の値から線幅の平均値を求めて、その平均値を分割領域の線幅として取り扱う(評価する)。例えばポジティブのレジストを用いたレジストパターンにおける非溶解部分をパターンの線幅とすると、線幅は露光量が多いと細くなり、露光量が少ないと太くなる。従ってこの場合、線幅を各分割領域の間で揃えるためには、所望の線幅よりも線幅が太い分割領域については、露光量を多くすればよく、所望の線幅よりも線幅が細い分割領域については、露光量を少なくすればよい。
 この観点から、各分割領域の線幅に応じて、複数段階例えば便宜上4段階の露光量を割り当てて規格化し、分割領域の位置と、割り当てられた露光量の規格値とを対応付けてメモリ104に格納する。このデータ処理は、プログラムにより行われる。この例においては、既述のようにウエハWの分割領域に照射される露光量は、LCDシャッタ22のピクセル群のオン・オフによって決定される。露光量の規格値とは、例えば各分割領域に対応するLCDシャッタ22の領域内においてオンにすべきトランジスタのアドレスである。
 例えばある分割領域に4個のトランジスタTr1~Tr4が含まれ、露光量の規格値が第1段階~第4段階であるとすると、第1段階の露光量の場合にはTr1がオンになり、第2段階の光量の場合にはTr1、Tr2がオンになり、第3段階の露光量の場合にはTr1~Tr3がオンになり、第4段階の露光量の場合には全てのトランジスタTr1~Tr4がオンになる。制御部100からシャッタ駆動回路部24に送られる制御信号の一例としては、ピクセルを構成するトランジスタ群のワード線に対応するスイッチング素子及びビット線に対応するスイッチング素子に対するオン・オフ指令が挙げられる。
 またLCDシャッタ22を用いて露光量を調整する手法としては、ピクセル群のオン、オフのデューティー比(オフの時間とオンの時間との比率)を調整するようにしてもよい。
 一方、分割領域の位置を特定する平面座標のうち、X座標はX移動機構12の駆動系が管理する座標であり、例えばボールねじ機構によりX移動機構12が構成されている場合にはモータに連結されたエンコーダにより特定される。そしてこのX座標が変化することによりウエハW上の横長な照射領域L1が移動していく。従って、例えば分割領域のX方向の一辺に相当するX座標の間隔毎に、マスクの開口部231に対応する領域のLCDシャッタ22についてオンにすべきトランジスタに相当する情報を記憶しておくことにより、照射領域L1がX方向に並ぶ分割領域を跨ぐごとに記憶部から読み出された情報に基づいて、照射領域L1の照射パターンが決定される。 
 この例では、帯状の照射領域L1の幅寸法は、例えば分割領域のX方向の一辺よりも小さい値に設定されている。
 ところで、このように照射領域L1をウエハWに対して相対的かつ連続的にスキャンして、ウエハWの各部位の露光を調整する手法は、ウエハW上のパターンの線幅がウエハWの直径全体に亘って、あるいはその一部においてX方向に連続的にあるいは段階的に変化する場合に好適である。一例としては、ステージ13に載置されたウエハWのY方向においてはパターンの線幅が揃っているが、X方向には徐々に線幅が大きくなっている場合、あるいはX方向に例えば概ね3段階くらいに線幅が分布している例などを挙げることができる。この場合には、照射領域L1全体の露光量を同じ値に設定し、照射領域L1のX座標の位置に応じて露光量の設定値を変える手法などを採用できる。
 またウエハWのY方向においてはパターンの線幅が揃っていない場合であっても、Y方向において露光量を既述のようにして適切な値に調整することにより、即ち、適切な発光パターンを形成することにより、好適な使用態様となる。この場合には、照射領域L1のX方向の位置に応じてY方向の照度パターンが調整されるので、結果として、ウエハW上のX方向及びY方向の位置に応じて露光量が調整されるので、きめこまかい露光量の調整を行うことができ、レジストパターンの線幅の面内均一性のより一層の向上に寄与するこ
とができる。
 更にまた、Y方向の露光量が等しい場合において、あるいはY方向の露光量が揃わずに所定の山谷を持った分布パターンが存在する場合において、その露光量分布(照度パターン)を固定したまま、つまりX座標の位置に応じて照度パターンを変えずにX方向に照射領域L1をウエハWに対して走査するようにしてもよい。この場合であっても、ウエハWの位置に応じて露光量を調整した態様の一つである。
 プログラム格納部102内のプログラムは、制御部100から塗布、現像装置8各部に制御信号を送り、後述の塗布・現像処理を進行させるように命令(各ステップ)が組み込まれている。このプログラムは、コンピュータ記憶媒体例えばフレキシブルディスク、コンパクトディスク、ハードディスク、MO(光磁気ディスク)等の記憶媒体に格納されて制御部100にインストールされる。
 続いて塗布、現像装置8の作用について説明する。
 製品であるウエハ(製品ウエハ)に対して塗布、現像装置内にて処理を開始する前に、例えばそのウエハに用いられるレジストと同一のレジスト、及びパターン露光マスクを用いてテストウエハにパターンを形成する。次いでテストウエハに対し一括露光装置1にて基準となる露光量を用いる他は、製品ウエハと同一にして一括露光を行い、次いで現像を行う。「製品ウエハと同一にして一括露光を行う」とは、テストウエハに対する照射領域L1の大きさ、テストウエハに対する照射領域のスキャン方向、スキャン速度が製品ウエハの場合と同一であるということである。
 そしてテストウエハにて得られたパターンについて検査装置861(862)にて検査を行い、既述のようにしてパターンの線幅の大きさとウエハWの位置とを対応付けたパターン情報を取得する。制御部100は、このパターン情報を例えばオンラインにより受取り、既述のようにしてウエハWの位置、例えば分割領域の位置と規格化された露光量値(露光量値に応じたパラメータ値)とを対応付けたデータ(露光量調整用のデータ)を作成する。そしてロットの先頭ウエハから順次、図1、図2にて説明したように、レジスト塗布、パターン露光機C6によるパターン露光を行い、既述のように温調を行った後、一括露光装置1に搬入し、ウエハWに対し一括露光を行う。
 図7を用いて一括露光装置1の動作について説明すると、先ず露光部11からの光の照射領域L1がウエハWの一端に位置するようにX移動機構12を用いてウエハWの位置を調整する。照射領域L1はウエハWの直径全体をカバーし、Y方向に伸びる帯状の領域である。しかる後に照射領域L1を形成した状態で、X移動機構12によりウエハWをX方向に等速で移動させ、ウエハWの他端まで照射領域L1をスキャンする。このときCPU103は、プログラムによりメモリ104から、ウエハWのY方向の位置に応じた露光量値例えば既述の規格された露光量値を読み出してシャッタ駆動回路部24に制御信号を出力する。既述のようにメモリ空間においてウエハWの位置はマトリックス状に分割されており、各分割領域に含まれるLCDシャッタ22のシャッタ部(ピクセル)群のうち、その分割領域の露光量値に応じた数だけシャッタ部が光透過領域となる。このようにしてウエハWのY方向の位置に応じて露光部11の発光量の調整が行われ、以て露光量の調整が行われる。
 具体的な例を挙げると、テストウエハのパターン(非溶解部)の線幅について、ウエハのノッチを基準として決めた一端から他端に向かって(一括露光装置1のY方向の一端から他端に向かって)徐々に細くなっていた場合には、製品のウエハWにおける照射領域の露光量は、ウエハWの一端から他端に亘って、段階的に少なくなるように調整される。
 ウエハWへの照射領域L1のスキャンは1回でもよいが、露光用の光の偏向による影響を緩和するために、1回目の露光後にステージ13を180°回転させた後、再びウエハWの一端側から他端側へと照射領域L1をスキャンしてもよい。または、ウエハWに対する一端側から他端側への露光と、ステージ13の回転によるウエハWの180°回転とを複数回繰り返すようにしてもよい。
 こうしてパターン露光及び一括露光を終えたウエハWは処理ブロックC3内のPEBを行う例えばユニットU1を構成するPEBユニット内に搬入され、ウエハWに対してPEBが行われ、レジスト膜のうちパターン露光により露光された部位が現像液に対して可溶となる。しかる後ウエハWは現像モジュール84に搬入され、例えば現像液が供給されて現像が行われ、レジストパターンが形成される。
 上述の実施形態においては、光増感化学増幅型レジストを用い、パターン露光を行ってレジスト中に酸と光増感剤とを発生させ、次いでパターン露光の波長よりも長い波長を用いてウエハWに対して全面露光(一括露光)を行って光増感剤から更に酸を発生させている。このため少ない露光量により線幅精度の高いレジストパターンを形成することができ、スループットの低下を抑えることができる。
 そして、事前にテストウエハを用いて、製品ウエハと同様の処理を行うと共に一括露光装置1において基準となる露光量により一括露光を行い、加熱、現像により得られるレジストパターンの線幅を検査装置にて検査し、その線幅情報に基づいて、製品ウエハを一括露光するときの露光量をウエハWの位置に応じて調整するようにしている。従って、一括露光における酸の増殖を面内の部位に応じて適切性をもってコントロールしているので、ウエハWの面内におけるパターン線幅を調整することができる。
 上述の実施形態では、レジストパターンのパターン情報をテストウエハを用いて取得しているが、例えば先行する同じロットのウエハに形成されたレジストパターンについて検査装置により得られたパターン情報を用いてもよい。また塗布、現像装置の外のスタンドアローンの検査装置によりウエハを検査して得られたパターン情報をオフラインにより制御部100内に入力し、このパターン情報に基づいて光量調整用のデータを作成してもよい。
 更にまた露光量調整用のデータを作成するための基となる、事前に得られる情報はパターン情報に限らず、レジストパターンの線幅の面内分布について影響を及ぼす情報であればよく、例えばパターン露光機C6の特性を示す情報、あるいはPEBを行う加熱ユニットの特性を示す情報などであってもよい。
 また、照射領域L1の形成方法としては、マスク23により光の透過領域を規制することに代えて、LCDシャッタ22におけるマスクの開口部231に相当する領域の周囲のシャッタ部221(ピクセル部)をオフにして、光透過領域を規制する方法により行ってもよい。
 本実施形態の一括露光装置1においては、LCDシャッタ22に代えて、MEMS(Micro Electro Mechanical Systems)シャッタを用い、当該MEMSシャッタにおいて、画素ごとに設置した微小なシャッタを高速に開閉することによって光量を制御してもよい。
 また帯状の照射領域L1を形成して、ウエハWの各部位の露光量を調整するためには、光源21として、上述してきた例におけるXe-Hgランプの代替として複数の発光ダイオード(LED)211を用い、図8に示すような横長の照射領域L1を形成してもよい。一例として、照射領域L1の長さがウエハWの直径寸法に相当するように複数のLED211を一列に配列する例を挙げることができる。なお、メモリ104内のデータの手法としては、照射領域L1を形成するすべてのLED211の発光強度の設定値を例えば同一の値とし、ウエハWのX座標の値に応じてこの設定値をLED211群ごとに変化させる手法を挙げることができる。この場合、LED211の一部あるいは全部の発光強度が互いに異なるように設定値を決めてもよい。
 LED211の発光強度は、個々のLED211を駆動電流の値を変化させることにより変更することができ、メモリ104内における発光強度の設定値のデータとしては、LED駆動回路部25に設けられたスイッチング素子のオン、オフのデューティー比を挙げることができる。なお、LED211の発光強度の調整と、既述のシャッタ部221を用いた露光量の調整とを組み合わせてもよい。
 また、一括露光装置1におけるウエハWの位置に応じた露光量の調整は、露光部11側の発光強度を調整することに代えて、照射領域L1とウエハWとの相対的な移動速度をウエハWの位置に応じて調整し、ウエハWの位置に応じた照射時間を調整することにより行ってもよい。更にはまた、発光強度の調整と移動速度の調整とを組み合わせてもよい。
 また、帯状の照射領域L1の長さ寸法は、ウエハWの直径をカバーする寸法であることに限られず、例えばウエハWの半径に相当する寸法であってもよい。この場合、照射領域L1により例えばウエハWの半分の面を走査した後、ウエハWの残りの半分の面を走査するシーケンスを採用することができる。
 [第2の実施形態]
 第2の実施形態に係る一括露光装置1について図9及び図10を参照しながら説明する。なお、以降の実施形態の説明においては、第1の実施形態に係る部分と同一の部分については同一の符号を付し、説明を省略する。
 先ずパターン露光機C6にてパターンが形成されたウエハWを一括露光装置1内に搬入する。続いて露光部11において第1の実施形態と同様にしてウエハWの直径と同じかあるいはそれよりも少し長い帯状の照射領域L1を形成する。そして照射領域L1をウエハWの直径に位置させた状態で、ウエハWを支持するステージ13に接続された回転機構15を回転させることにより、ウエハWを例えば半回転(180°)回転させて、あるいは半回転の整数倍だけ回転させて照射領域L1をウエハW全体に亘ってスキャンさせる。
 この場合制御部100のメモリ空間では、ウエハWは周方向に扇型に複数、例えばウエハWの中心Oを通る直径を基準線として0度から360度まで1度ずつ360個に分割される。制御部100は、360個の分割領域(角度領域)ごとにパターン情報に基づいて光量値を決める。一例としては分割領域ごとに第1の実施形態にて例示したように規格化された光量値(各分割領域に含まれるピクセルのオンの数)を設定した光量調整用のデータを作成する。
 そしてウエハWを回転させると、露光部11はこのデータに基づいてウエハWの回転位置ごとに光量が調整される。ウエハWが1回転する間、ウエハWの中心Oを含む中心部領域に連続して照射領域L1の一端側が位置することになるため、当該中心部領域については、光量をそれ以外の部位の光量よりも少なくなるように設定される。即ち、照射領域L1内に対応する発光量が揃っていると、ウエハWの中心部領域の露光量がその領域の周縁側の露光量よりも多くなってしまうため、両者の領域の発光量を変えることにより露光量の差を補正する。
 本実施形態においては、照射領域L1の長さ寸法は図11に示すようにウエハWの半径よりも若干長い寸法であってもよい。この場合には、照射領域L1をウエハWの半径上に位置させた状態で、ウエハWを1回転させて、あるいは複数回(360°×整数)回転させて照射領域L1をウエハW全体に亘ってスキャンさせる。この場合にも、ウエハWが1回転する間、ウエハWの中心Oを含む中心部領域に照射領域L1の一端側が連続して位置することになるため、当該中心部領域については、光量がそれ以外の部位の光量よりも少なくなるように設定される。
 また、照射領域L1の長さ寸法をウエハWの半径よりも少し短く設定し、照射領域L1の一端がウエハWの中心Oから外れた部位に位置させて、照射領域L1をウエハWに対して相対的に1回転させ、次いで照射領域L1をウエハWの半径方向に少し移動させ、ウエハWの中心O上に位置させて当該中心Oを含む領域を露光するようにしてもよい。このとき、照射領域L1におけるウエハWの中心Oを含む領域以外の領域については、露光量をゼロとしてもよい。このような手法は、図3に示したようにウエハWを径方向に移動させるための移動機構(図3ではX移動機構12)を用いることにより実施できる。
 本発明は、このように照射領域L1をパターン露光時における1回の露光のマスクサイズよりも大きく設定し、照射領域L1の相対的移動について回転と直線移動とを組み合わせてもよい。このような例としては、例えば図9に示したように照射領域L1をウエハWの直径に対応する長さ寸法の帯状領域とし、この照射領域L1を例えばX移動機構12によりウエハWの径方向に移動させ、次いで照射領域LをウエハWの中心を回転中心として相対的に回転させる手法を挙げることができる。照射領域Lの相対的回転動作は、ウエハWの中心部を回転中心としてウエハWを回転させる手法を挙げることができる。この場合、ウエハWの径方向の移動パターンの例としては、例えばウエハWの全面を照射領域L1により走査する例が挙げられる。
 更にまた、照射領域L1の長さをウエハWの半径よりも若干長い寸法に設定し、照射領域L1をウエハWの半径上に位置させた状態で、ウエハWを1回転させると共に、ウエハWが回転しているときには、ウエハWの中心Oを含む領域に位置する照射領域L1の露光量をゼロとしてもよい。この場合には、その後、ウエハWの中心Oを含む領域に位置する照射領域L1において露光し、照射領域L1におけるその他の領域については露光量をゼロにする。
 このように照射領域L1を周回させる実施形態においては、ウエハWの周方向の照射領域L1の位置(ウエハWの周方向の分割領域)に応じて、照射領域L1の露光量を一律に変更することに限らず、長さ方向の照度パターンを調整するようにしてもよい。
 また例えばウエハWの直径よりも長い照射領域L1を形成し、ウエハWを回転させる間に、照射領域L1がウエハWの直径に位置している状態を維持しながら照射領域L1をウエハWの直径方向に動かすようにすれば、露光部11の光の偏向の影響を緩和することができる。
 本実施形態においても、第1の実施形態と同様に、LCDシャッタ22、あるいはMEMSシャッタを用いて発光パターンを調整してもよい。また図8と同様に、光源21としてLEDを用い、各LEDの発光量を調整することにより発光パターンを調整することも可能である。
 また、マスク23を用いる代わりとして、マスクの開口部231に対応するLCDシャッタ22の各ピクセル以外のピクセルをオフにして照射領域L1を形成するようにしてもよい。
 さらにまた、ウエハW側を移動させる代わりに露光部11側を移動させてもよいし、あるいはウエハWと露光部11側の双方を移動させてもよい。
 [第3の実施形態]
 第1の実施形態及び第2の実施形態においては、ウエハWに対して帯状の照射領域L1にて露光した状態にてウエハWに対する照射領域L1を相対的且つ連続的に移動させているが、第3の実施形態は、パターン露光機C6におけるパターン露光のようにステップ露光を行う態様である。
 具体的には、第3の実施形態にかかる一括露光装置1は、図12に示すように、ステージ13がX移動機構12及びY移動機構16によりX、Y方向の双方に移動可能となるように構成されている。また、塗布、現像装置8は、図14に示すように制御部100を備えている。
 本実施形態の一括露光時の光の照射領域については、パターン露光機C6にてパターン露光が行われるときの露光ショット領域に対応する領域として形成される。パターン露光機C6にて行われるパターン露光においては、ウエハ上の1チップに相当する大きさのショット領域(照射領域)を、各チップに対して順次パルス的に(間欠的に)移動させていく。例えばショット領域に対して1チップ分ずつウエハを間欠的に移動させ、ウエハが停止しているときに露光が行われる。また1チップに相当する大きさのショット領域をn(nは2以上の整数)個形成し、nチップ分ずつウエハを間欠的に移動させ、ウエハが停止しているときにnチップ分を同時に露光する場合もある。
 従って、一括露光装置1においては、図13に示す照射領域L2を、パターン露光が行われたときのショット領域(1チップ分あるいはnチップ分のショット領域)と同じ領域として形成する。照射領域L2を規制する手法としては、例えば縦横のサイズを自由に変更できる移動式の遮光シャッタを用いてもよいし、LCDシャッタ22やMEMSシャッタにおける照射領域L2に対応する以外の領域のピクセルをオフにして光透過領域を規制してもよい。あるいは第1の実施形態のように、照射領域L2に対応する開口部を備えたマスクを用いてもよい。制御部100内のプログラムは、照射領域L2を形成するための工程、ウエハWに一括露光を行う時の露光量の調整に関する工程を実行するようにステップが組まれている。
 次に本実施形態の作用について説明する。先ずテストウエハについて第1の実施形態と同様に、テストウエハをパターン露光機C6にてパターン露光を行う。次いで一括露光装置1にテストウエハを搬入し、パターン露光機C6におけるパターン露光領域(ステップ露光領域あるいはショット領域)の露光順序に従って、例えば基準となる露光量により照射領域L2によるステップ露光を順次行っていく。
 続いてテストウエハに対して加熱、現像処理を行って、レジストパターンを形成し、検査装置861(862)にて、テストウエハの線幅を検査する。テストウエハに対するプロセスレシピ、パターンマスク及びレジストの種別は、製品ウエハと同じに設定されている。そして一括露光装置1の制御部100では、検査結果に応じて、各チップに対する光量の規格値に相当する情報と各チップの位置(X、Y方向の位置)とを対応付けたデータを作成してメモリ104に記憶する。またパターン露光機C6による照射領域の移動順序及び移動のタイミングのデータを取り込みメモリ104に記憶する。
 次にロットの先頭ウエハから順次、図1、図2にて説明したように、レジスト塗布、パターン露光機C6によるパターン露光を行い、一括露光装置1に搬入する。図15を用いて当該一括露光の作用について説明すると、先ず光源21からの光の照射領域L2がウエハWの一端Pに位置するようにX移動機構12及びY移動機構16を用いてウエハWの位置を調整する。この照射領域L2は既述のようにパターン露光時における1回のステップ露光領域の全体である。照射領域L2は、ショット領域と同じ大きさの照射領域に設定されているが、パターンマスクを用いていない点でパターン露光時の照射領域とは異なる。
 図15はパターン露光時のショット領域がウエハWに対して間欠的に移動したときの一括露光時における照射領域L2の移動例を示している。一括露光時においては、パターン露光時と同様に照射領域L2は矢印にて示したように一端Pから各チップ上を間欠的に他端Qまで移動し、例えば各チップごとに露光される。露光部11側の光照射領域の投影領域を照射領域L2として捉えると、照射領域L2は、チップ上にて停止しているときだけ露光されるといえる。また露光部11側から光が発せられている状態をウエハW上の照射領域L2として捉えると、照射領域L2は、ウエハWの停止時だけウエハW上に形成され、結果としてウエハW上の各チップ上にだけ露光されることになる。
 この実施形態においても、既述のように各チップに対する光量の規格値に相当する情報と各チップの位置(X、Y方向の位置)とを対応付けたデータに基づいて、ウエハW上の各チップの位置(ウエハW)上の照射領域L2の位置に応じた露光量に調整される。1回のステップ(ショット)の露光量は、照射領域L2の位置ごとに一括して(照射領域L2内で同じ露光量として)決められていてもよいが、例えばLCDシャッタ22のピクセルのオン、オフを制御して、照射領域L2内にて照射領域L2の位置ごとに照度分布が調整されていてもよい。
 そして図16に示すように、一括露光時におけるショット(ステップ露光)の順序(P1´、P2´、P3´・・・)をパターン露光時のショットの順序(P1、P2、P3・・・)に合わせると共に、一括露光時における各ショットの露光のタイミング(1番目のショットを行ってから続く各ショットの開始時間)をパターン露光時のショットのタイミングに合わせている。なお、一括露光装置1に搬入されるウエハWの向きは、例えばノッチを基準に常に一定である。従って、1番目のショットが行われてから、n(nは整数)番目のショットが開始されるまでの時間は、パターン露光及び一括露光の間で揃うことになる。このように処理することにより、各チップの間で、あるいはチップのグループの間で、パターンの線幅の面内均一性の調整が行いやすくなる。
 このような実施形態においても、第1の実施形態と同様に、ウエハWの面内におけるパターン線幅の均一性を高めることができる。
 そして一括露光時に各ショットの露光量を調整するためには、既述のように露光部11の光強度の調整に限らず照射時間を調整してもよいし、両方を組み合わせてもよい。
 また、一括露光装置1において第3の実施形態のようにステップ露光(ショット露光)を行う場合には、1回のショット領域内全体を同時に露光することに代えて、当該ショット領域よりも小さい照射領域を走査することにより、照射領域L2を形成してもよい。図17は、このような例を示しており、図15に示す例と同様に照射領域L2をチップの各列ごとに順次X方向に間欠的に移動させると共に、1チップの領域Rの幅に相当する長さ寸法の帯状の照射領域L3を、ウエハW上をX方向へと相対的に移動させている。小さな帯状の照射領域L3は、既述のようにマスクやLCDシャッタ22などにより形成される。この場合には、照射領域L3の位置に応じて当該照射領域L3の長さ方向の露光量分布を調整するように構成すれば、1回のショット領域に対応する照射領域L2内にて、X、Y方向の位置に応じたきめ細かい露光量の調整を行うことができる。また、1チップの幅寸法の帯状の照射領域L3を、ウエハW上をY方向へと相対的に移動させてもよい。このような例は、いわばステップ露光と第1の実施形態に記載したスキャンタイプの露光とを組み合わせた手法ということができる。
 [本発明の変形例]
 また、本発明の一括露光装置1を含めた塗布、現像装置8によるウエハWの処理においては、パターン露光機C6から一括露光装置1までのウエハWの搬送経路にバッファ領域を設けて、バッファ時間が存在するようにしてもよい。パターン露光機C6からは常に一定の時間間隔でウエハWが塗布、現像装置に払い出されるわけではないので、ウエハW間の払い出しのタイミングが早い場合にはバッファ領域にて待たせることにより各ウエハW間にて、パターン露光が終了してから一括露光が行われるまでの時間が揃う。
 そしてこのバッファ時間の長さについては、パターン露光の開始からPEBの開始可能までの時間のバラツキを予めシミュレートし、最も遅いPEBの開始可能時間に対応して決定することにより、一括露光装置1の処理が終了してからPEBが開始されるまでの時間についてもウエハWの間で揃う。
 また、本発明の一括露光装置1においては、使用するレジストの種類に応じて一括露光時の照射光の波長を変化させる構成例を図18に示す。この例では、Xe-Hgランプからなる光源21からの光を偏光フィルタ41(図18の例においては偏光フィルタ41a、41bまたは41c)によって透過しウエハW上に照射する。偏光フィルタ41a、41b、41cは夫々透過する光の波長が異なっており、例えば回転板の周方向に沿って配置され、使用するレジストの種類に応じて、使用する偏光フィルタ41を光路上に位置させて選択することにより、一括露光時の露光波長を設定することができる。
 あるいは、図19に示すように、一括露光時の照射光を回折格子G1の角度を調整することにより露光波長を選択する構成としてもよい。この例では、Xe-Hgランプからなる光源21とマスク23の開口部との間に反射鏡を構成する回折格子G1を配置し、使用する波長に応じて回折格子G1の角度を選択することにより、所望の波長の光が分離できる。また、回折格子G1の代替として、プリズムを用いて所望の波長の光を分離してもよい。
 また、テストウエハを用いて得られたパターンについて、サイドウォールアングル(SWA:線側壁の傾斜角)θを検査し、当該θの検査結果を検査装置861(862)からフィードバックして一括露光装置1の照射光の波長を調整することにより、SWAを調整することも可能である。この場合、θが目標値θに比して小さい場合には、偏光フィルタ41を交換し、または回折格子G1の角度を変化させることにより照射光を長波長にし、θが目標値θに比して大きい場合には照射光を短波長とする。
 [第4の実施形態]
 本発明の第4の実施形態が第1~第3の実施形態と異なる個所は次の通りである。図20(a)は、第1~第3の実施形態(以下、「先の実施形態」という)におけるウエハWの処理の順序の概略を示している。先の実施形態では、ウエハWはレジスト膜が形成された後、パターン露光機C6にてパターン露光され、次いで一括露光モジュールC4内の一括露光装置1(図1参照)にて一括露光され、更に処理ブロックC3内にて加熱処理(PEB)された後、現像処理される。
 これに対して第4の実施形態では、図20(b)に示すようにパターン露光の後に行われる一括露光モジュールC4内の一括露光を、第1の露光工程に相当する高照度露光(工程)と第2の露光工程に相当する低照度露光(工程)とに分けて行うようにしている。なお、図20では、一括露光の前にウエハWに対して行われる冷却プレートによる温度調整の記載を省略している。
 先の実施形態にて行われる一括露光と、第4の実施形態にて行われる高照度露光及び低照度露光と、について図21に示した模式図を参照しながら説明する。一括露光の役割は、既述のようにパターン露光、現像を行って得られたパターンの線幅の不揃いを修正するためのものである。即ち、一括露光を行わない場合に現像液による非溶解部分の線幅が広すぎる(溶解した部分の線幅が狭すぎる)部位に対しては、一括露光の露光量を多くして酸の発生量を多くしている。また、現像液による非溶解部分の線幅が狭すぎる(溶解した部分の線幅が広すぎる)部位に対しては、一括露光の露光量を少なくして酸の発生量を少なくしている。こうして一括露光時の露光量をウエハの位置に応じてつまりパターン露光領域の位置に応じて調整することで、結果として線幅の面内均一性を確保しようとするものである。
 図21におけるマス目は、ウエハW上の領域を分割した状態を示している。1個の分割領域は、実際には例えばウエハW上の1チップ、あるいは複数チップに相当するが、紙面の制約から便宜上4×4として縦横に分割されているものとする。またマス目の中の数字は、分割領域に照射される露光量であり、分割領域の面積が等しいものとすると、照度を表していることにもなる。先の実施形態の一括露光は、図21(c)に相当する。第1の実施形態について図6のメモリ空間に記憶する露光量に関して既に説明しているが、マス目の中に記載した数字は、例えば当該説明において決定され、各分割領域に照射される露光量である。この例の露光量は模式的に示した数値であるが、ある分割領域に対する露光量を100%としたときの他の分割領域の露光量の割合とも言うことができる。先の実施形態では、図21(c)に示すように一括露光装置1にて、分割領域に応じて、99.5、100、100.5のいずれかの大きさで露光される。
 一方、図21(a)、(b)は、第4の実施形態において行われる高照度露光(第1の露光工程)における各分割領域に対する露光量と低照度露光(第2の露光工程)における各分割領域に対する露光量とに夫々対応している。一括露光時の露光量をパターン露光領域の位置に応じて調整するといっても、その調整幅は微量である。このため第4の実施形態では、先ず高照度露光によりパターン露光領域全面に亘って(ウエハW全面に亘って)例えば一定の露光量で露光し、その後に低照度露光により、各分割領域に応じた露光量で露光するようにしている。
 高照度露光の露光量については、ウエハのロットに対して事前に各分割領域における一括露光時の露光量の最小値を見込んでおき、その最小値に対してマージンをとってマージン分だけ低い露光量を高照度の露光量として設定する。このため低照度の露光量は例えば高照度の露光量に対して高々1%程度である。図21は例えば(a)に示すように高照度露光を行い、次いで(b)のように低照度露光を行うことにより、(c)に示すように、先の実施形態のように一括露光を行った結果になることを示している。
 図22は第4の実施形態に用いられる一括露光モジュールC4の一例を示しており、この一括露光モジュールC4は、高照度露光を行う第1の露光ユニットに相当する高照度露光ユニット1-1と低照度露光を行う第2の露光ユニットに相当する低照度露光ユニット1-2とを備えている。この場合、搬送アームD4は、受渡しステージU6、高照度露光ユニット1-1、低照度露光ユニット1-2及び図示しない冷却プレートの間でウエハWを受け渡す役割を有する。 
 図22の例では、高照度露光ユニット1-1及び低照度露光ユニット1-2の夫々にウエハWを載置する載置部が設けられているが、高照度露光ユニット1-1及び低照度露光ユニット1-2を互いに隣接させ、共通の載置部が両ユニット1-1、1-2間を移動機構により移動する構成であってもよい。
 高照度露光ユニット1-1及び低照度露光ユニット1-2の各々は、先の実施形態で使用した一括露光装置1と同じ構成のものを使用することができる。そして、高照度露光ユニット1-1は、ウエハWの全面を同じ露光量で露光する点において一括露光装置1と異なり、また低照度露光ユニット1-2は、メモリ104内のデータに基づいて露光量の調整が行われるが、露光量が小さいという点で一括露光装置1と異なる。
 従って高照度露光ユニット1-1は、例えば図3及び図7に示すようにウエハW上に形成されたY方向に伸びる帯状の照射領域をX方向に走査する、または図9及び図10に示すように帯状の照射領域をウエハWに対して相対的に回転させるなどの手法により、例えばウエハWの全面に亘って照度が一定となるようにウエハW上の全面が露光される。この場合、例えば同じ露光量で既述の照射領域を一定速度で走査する手法が採用できる。また第3の実施形態のようにショット領域を間欠的に移動させる手法により高照度露光を行ってもよいが、高いスループットを得る観点からは、第1、第2の実施形態の手法の方が得策である。 
 そして低照度露光ユニット1-2においても、先の実施形態にて記載している手法により、例えば第1の実施形態にて詳述しているように、メモリ104内にウエハW上の分割領域の位置と露光量例えば露光量の規格値とを対応付けたデータを記憶しておき、このデータに基づいて露光量が調整されるように構成される  高照度露光と低照度露光との順番については、高照度露光、低照度露光の順番に限られず、図20(c)に示すように、低照度露光、高照度露光の順番であってもよい。 
 また高照度露光は、ウエハWの全面に亘って(パターン露光領域の全面に亘って)照度が一定となるように露光することに限られるものではなく、例えばウエハWの一端側から他端側に亘って照度が増加あるいは減少するように、あるいは局所的に照度を変えるように露光するようにしてもよい。更にはまた、高照度露光は、例えばマスクを用いずに、ウエハWの全面を同時に照射してもよく、この場合にはウエハWの全面において通常照度分布が形成されることになるが、低照度露光において、この照度分布も見込んで各分割領域の露光量を決定するようにすればよい。
 第4の実施形態では、パターン露光の後に行われる、光増感剤に光エネルギーを供給して酸を発生させる一括露光を、高照度露光と低照度露光とに分けている。そして酸を発生させるために必要な露光量の大部分の露光を高照度露光により行い、事前の情報に基づいてパターンの線幅(ホール径なども含む)の不均一性を緩和するためにウエハWの面内の露光量の調整を低照度露光により行っている。このため面内の露光量を調整する低照度露光では、露光量の変化量に対する露光量の調整部の調整幅を大きくすることができる。調整幅とは、例えば第1の実施形態にて使用したLCDシャッタ22の場合にはピクセルのオン、オフパターンの組みあわせに相当し、発光ダイオード211を用いる場合には、駆動電流供給回路のスイッチング素子のオン、オフのデューティー比の可変範囲などが相当する。このため露光量のウエハWの面内の調整が容易であり、信頼性の高い調整を行うことができ、結果として面内におけるパターンの線幅について良好な均一性が得られる。
 ここで図23は、ウエハWに塗布、成膜されるレジストの吸光度と光の波長との関係を示しており、吸光度のピークに相当する波長λ1は、パターン露光されて発生した光増感剤が酸に変わる反応が活発化する波長である。例えば高照度露光及び低照度露光のいずれにおいても、波長λ1で露光を行ってもよいが、高照度露光及び低照度露光の各波長を異ならせてもよい。例えば高照度露光をλ1で行い、低照度露光を、吸光度のピークから少し下がったλ2で行うようにしてもよく、この場合には、低照度露光において露光量に対する光増感剤の反応量が小さく、つまりパターンの線幅の変化が鈍いことから、露光量の変化量に対する露光量の調整部の調整幅をより一層大きくすることができ、露光の調整が更に容易になる利点がある。 
 第4の実施形態では、一例として一括露光の99%程度を高照度露光で行うこととして説明しているが、一括露光の95%、90%あるいはそれ以下の割合の露光を高照度露光で行い、残りの露光を低照度露光で行うようにしてもよい。
 また第4の実施形態では、ウエハWの全面を露光する場合、例えば全面を同じ露光量で露光する場合(第1の露光工程)には高照度、ウエハW上の各領域について露光量を調整して露光する場合(第2の露光工程)には低照度で夫々露光を行っていたが、本発明ではこのような手法に限られず、例えば第1及び第2の露光工程を同程度の照度で行うなどの手法を採用してもよい。
8      塗布、現像装置
1      一括露光装置
1-1    高照度露光装置
1-2    低照度露光装置
11     露光部
13     ステージ
21     光源
22     LCDシャッタ
23     マスク
83     塗布モジュール
84     現像モジュール
100    制御部
C6     パターン露光機
L1、L2、L3     照射領域
W      ウエハ

Claims (30)

  1.  レジスト膜を形成した基板に対して、パターンマスクを用いてパターン露光を行った後に、パターン露光領域を露光する装置であって、
     基板を載置する載置部と、
     前記載置部上の基板を露光する露光部と、
     事前に得られた情報に基づいて、基板上の複数の領域の各々に応じて露光量を調整するための制御信号を出力する制御部と、を備えたことを特徴とする露光装置。
  2.  レジスト膜を形成した基板に対して、パターンマスクを用いてパターン露光を行った後に、パターン露光領域を露光する装置であって、
     基板を載置する第1の載置部と、この第1の載置部上の基板のパターン露光領域の全体を露光する第1の露光部と、を有する第1の露光ユニットと、
     基板を載置する第2の載置部と、この第2の載置部上の基板の複数の領域を露光する第2の露光部と、事前に得られた情報に基づいて、基板上の複数の領域の各々に応じて前記第2の露光部の露光量を調整するための制御信号を出力する制御部と、を有する第2の露光ユニットと、
     を備えたことを特徴とする露光装置。
  3.  前記第2の露光部は、前記第1の露光部の露光時の照度よりも小さな照度で露光するように構成されていることを特徴とする請求項2記載の露光装置。
  4.  前記情報は、露光後に加熱し、次いで現像することにより得られた基板上のレジストパターンを検査装置により検査して取得されたパターンの線幅の情報であることを特徴とする請求項1ないし3のいずれか一項に記載の露光装置。
  5.  前記レジストパターンは、基板上のレジスト膜に対してパターン露光を行い、次いで基板全面に対して露光を行った後に、加熱し、次いで現像することにより得られたものであることを特徴とする請求項4記載の露光装置。
  6.  前記制御部は、前記情報に基づいて作成された、基板上の位置と露光量とを対応させたデータを記憶する記憶部を備えたことを特徴とする請求項1ないし5のいずれか一項に記載の露光装置。
  7.  前記露光部の照射領域は、基板のレジストパターン形成領域の全体よりも小さく設定され、
     前記照射領域を前記載置部上の基板に対して基板の面に沿って相対的に移動させる移動機構を設け、
     前記制御部は、前記基板上における照射領域の位置に応じて露光量を調整するための制御信号を出力するように構成されていることを特徴とする請求項1に記載の露光装置。
  8.  前記第2の露光部の照射領域は、基板のレジストパターン形成領域の全体よりも小さく設定され、
     前記照射領域を前記第2の載置部上の基板に対して基板の面に沿って相対的に移動させる移動機構を設け、
     前記制御部は、前記基板上における照射領域の位置に応じて露光量を調整するための制御信号を出力するように構成されていることを特徴とする請求項2または3に記載の露光装置。
  9.  前記移動機構は、前記照射領域を前記基板に対して相対的にX方向に連続して移動させるように構成され、
     前記照射領域は、Y方向に沿って帯状に伸びることを特徴とする請求項7または8記載の露光装置。
  10.  前記制御部は、前記基板上における前記照射領域のX方向の位置に応じてY方向の照度分布を調整するための制御信号を出力するように構成されている請求項9記載の露光装置。
  11.  前記照射領域の長さ寸法は、基板のレジストパターン形成領域の全体におけるY方向の最大寸法以上に設定されていることを特徴とする請求項9または10記載の露光装置。
  12.  前記照射領域は、基板の中心部側から基板の周縁部に向かって帯状に伸び、
     前記移動機構は、基板の中心部を回転中心として照射領域に対して基板を相対的に回転させる回転機構を含むことを特徴とする請求項7または8記載の露光装置。
  13.  前記制御部は、前記照射領域の位置に応じて照射領域の長さ方向の照度分布を調整するための制御信号を出力するように構成されていることを特徴とする請求項12記載の露光装置。
  14.  前記制御部は、前記基板上における照射領域の位置に応じて照射領域の移動速度を調整するように前記移動機構に制御信号を出力することを特徴とする請求項9または12記載の露光装置。
  15.  前記照射領域は、パターン露光時における1回の露光のマスクサイズよりも大きく設定され、
     前記移動機構は、前記照射領域を基板の径方向に相対的に移動させる機構と、前記照射領域を、基板の中心部を回転中心として前記基板に対して相対的に回転させる機構と、を備え、
    前記制御部は、前記照射領域を基板の径方向に相対的に移動させるステップと、前記照射領域を、基板の中心部を回転中心として前記基板に対して相対的に回転させるステップと、を実行するように前記移動機構に制御信号を出力することを特徴とする請求項7または8に記載の露光装置。
  16.  前記照射領域は、パターン露光時における1回の露光のマスクサイズに対応する大きさの整数倍の大きさに設定され、
     前記移動機構は、前記照射領域をパターン露光時の露光領域に順次停止するように前記基板に対して相対的に間欠的に移動させるように構成され、
     前記制御部は、照射領域が基板に対して静止しているときだけ露光するように制御信号を出力することを特徴とする請求項7または8に記載の露光装置。
  17.  前記制御部は、パターン露光時における露光の順序に対応した順序で、前記照射領域を前記基板に対して相対的に間欠的に移動させるように制御信号を出力する請求項16記載の露光装置。
  18.  前記制御部は、前記基板上における前記照射領域のX方向及びY方向の位置に応じて露光量を調整するための制御信号を出力するように構成されている請求項16または17記載の露光装置。
  19.  前記制御部は、前記基板上における前記照射領域の位置に応じて照射領域内の照度分布を調整するための制御信号を出力するように構成されていることを特徴とする請求項16ないし18のいずれか一項に記載の露光装置。
  20.  前記露光部は、電気信号により光透過状態と遮光状態との一方を選択可能な複数の被制御領域がその面方向に沿って配列された光制御板を備え、
     前記制御信号は、前記被制御領域の状態を制御するための信号、または光透過状態の時間と遮光状態の時間との比率を制御するための信号であることを特徴とする請求項1または2に記載の露光装置。
  21.  前記露光部は、複数の発光ダイオードを備え、
     前記制御信号は、前記発光ダイオードの駆動電流を制御するための信号であることを特徴とする請求項1または2に記載の露光装置。
  22.  レジストを用いて基板上に成膜したレジスト膜に対して、パターンマスクを用いてパターン露光する工程と、
     事前に得られた情報に基づいて、基板上の複数の領域の各々に応じた露光量を決定する工程と、
     その後、前記工程で決定された露光量に基づいて、基板のパターン露光領域を露光する工程と、
     しかる後、基板を加熱する工程と、
     続いて基板を現像する工程と、を含むことを特徴とするレジストパターン形成方法。
  23.  レジストを用いて基板上に成膜したレジスト膜に対して、パターンマスクを用いてパターン露光するパターン露光工程と、
     このパターン露光工程で露光された基板上のパターン露光領域の全体を露光する第1の露光工程と、
     事前に得られた情報に基づいて、前記パターン露光工程で露光された基板上のパターン領域における複数の領域の各々に応じた露光量を決定する工程と、
     この工程で決定された露光量に基づいて、前記基板上の複数の領域を露光する第2の露光工程と、
     しかる後、基板を加熱する工程と、
     続いて基板を現像する工程と、を含むことを特徴とするレジストパターン形成方法。
  24.  前記露光量を決定する工程に基づいて露光する工程は、
     基板上のレジストパターン形成領域の全体よりも小さく設定された露光部の照射領域を、基板に対して基板の面に沿って相対的に移動させる工程と、
     前記基板上における照射領域の位置に応じて露光量を調整する工程と、を含むことを特徴とする請求項22または23に記載のレジストパターン形成方法。
  25.  前記照射領域を、基板に対して基板の面に沿って相対的に移動させる工程は、基板の中心部を回転中心として照射領域に対して基板を相対的に回転させる工程であることを特徴とする請求項24に記載のレジストパターン形成方法。
  26.  前記照射領域を、基板に対して基板の面に沿って相対的に移動させる工程は、更に前記照射領域を基板の径方向に移動させる工程を含むことを特徴とする請求項25に記載のレジストパターン形成方法。
  27.  照射領域の位置に応じた露光量の調整を行うために、照射領域の移動速度を調整する工程を含むことを特徴とする請求項25または26に記載のレジストパターン形成方法。
  28.  前記基板のパターン露光領域を露光する工程は、基板上のレジストパターン形成領域の全体を同時に露光する工程であることを特徴とする請求項22に記載のレジストパターン形成方法。
  29.  露光後に加熱し、次いで現像することにより得られた基板上のレジストパターンを検査装置により検査して取得されたレジストパターンの側壁の角度情報に基づいて、パターン露光領域を露光する工程時における露光波長を選択することを特徴とする請求項22ないし28のいずれか一項に記載のレジストパターン形成方法。
  30.  レジスト膜を形成した基板に対して、パターン露光後に基板を露光する装置に用いられるコンピュータプログラムを記憶した記憶媒体であって、
     前記コンピュータプログラムは、請求項22ないし29のいずれか一項のレジストパターン形成方法を実施するようにステップ群が組まれていることを特徴とする記憶媒体。
PCT/JP2015/050593 2014-01-20 2015-01-13 露光装置、レジストパターン形成方法及び記憶媒体 WO2015108015A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167019174A KR102276749B1 (ko) 2014-01-20 2015-01-13 노광 장치, 레지스트 패턴 형성 방법 및 기억 매체
US15/109,917 US10101669B2 (en) 2014-01-20 2015-01-13 Exposure apparatus, resist pattern forming method, and storage medium
EP15737732.6A EP3098834A4 (en) 2014-01-20 2015-01-13 Exposure device, method for forming resist pattern, and storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-007619 2014-01-20
JP2014007619 2014-01-20
JP2014-245308 2014-12-03
JP2014245308A JP6337757B2 (ja) 2014-01-20 2014-12-03 露光装置、レジストパターン形成方法及び記憶媒体

Publications (1)

Publication Number Publication Date
WO2015108015A1 true WO2015108015A1 (ja) 2015-07-23

Family

ID=53542905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050593 WO2015108015A1 (ja) 2014-01-20 2015-01-13 露光装置、レジストパターン形成方法及び記憶媒体

Country Status (6)

Country Link
US (1) US10101669B2 (ja)
EP (1) EP3098834A4 (ja)
JP (1) JP6337757B2 (ja)
KR (1) KR102276749B1 (ja)
TW (1) TWI603163B (ja)
WO (1) WO2015108015A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160091794A1 (en) * 2014-09-30 2016-03-31 SCREEN Holdings Co., Ltd. Drawing method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10048594B2 (en) * 2016-02-19 2018-08-14 Tokyo Electron Limited Photo-sensitized chemically amplified resist (PS-CAR) model calibration
JP6444909B2 (ja) * 2016-02-22 2018-12-26 東京エレクトロン株式会社 基板処理方法、基板処理装置及びコンピュータ読み取り可能な記録媒体
US10551743B2 (en) * 2016-05-13 2020-02-04 Tokyo Electron Limited Critical dimension control by use of photo-sensitized chemicals or photo-sensitized chemically amplified resist
DE102016211511A1 (de) * 2016-06-27 2017-12-28 Carl Zeiss Smt Gmbh Beleuchtungseinheit für die Mikrolithographie
JP2018060001A (ja) * 2016-10-04 2018-04-12 東京エレクトロン株式会社 補助露光装置及び露光量分布取得方法
DE102016221261A1 (de) * 2016-10-28 2018-05-03 Carl Zeiss Smt Gmbh Verfahren zur mikrolithographischen Herstellung mikrostrukturierter Bauelemente
JP6984228B2 (ja) * 2016-11-17 2021-12-17 東京エレクトロン株式会社 露光装置、露光装置の調整方法及び記憶媒体
US10558125B2 (en) * 2016-11-17 2020-02-11 Tokyo Electron Limited Exposure apparatus, exposure apparatus adjustment method and storage medium
JP6885031B2 (ja) * 2016-11-18 2021-06-09 東京エレクトロン株式会社 露光装置、露光方法及び記憶媒体
CN108121163B (zh) 2016-11-29 2019-10-25 上海微电子装备(集团)股份有限公司 一种光源曝光剂量控制系统及控制方法
JP6809188B2 (ja) * 2016-12-13 2021-01-06 東京エレクトロン株式会社 光照射装置
JP7124277B2 (ja) 2016-12-13 2022-08-24 東京エレクトロン株式会社 光処理装置及び基板処理装置
US10747121B2 (en) * 2016-12-13 2020-08-18 Tokyo Electron Limited Optical processing apparatus and substrate processing apparatus
JP6866631B2 (ja) * 2016-12-20 2021-04-28 東京エレクトロン株式会社 光処理装置、塗布、現像装置、光処理方法及び記憶媒体
JP6969348B2 (ja) 2017-12-15 2021-11-24 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
EP3824349A1 (en) 2018-07-19 2021-05-26 Lintfield Limited Thioxanthone derivatives, composition comprising the same and pattern forming method comprising said composition
JP7232586B2 (ja) * 2018-07-31 2023-03-03 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
US10503076B1 (en) * 2018-08-29 2019-12-10 Applied Materials, Inc. Reserving spatial light modulator sections to address field non-uniformities
KR20220025925A (ko) 2019-07-25 2022-03-03 도쿄엘렉트론가부시키가이샤 기판 처리 방법 및 기판 처리 장치
CN110750036B (zh) * 2019-10-30 2022-05-10 江苏上达电子有限公司 一种控制柔性线路板批次线宽差异的曝光方法
GB202000736D0 (en) 2020-01-17 2020-03-04 Lintfield Ltd Modified thioxanthone photoinitators
CN116500872B (zh) * 2023-06-28 2023-10-27 鹏城实验室 连续旋转曝光系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170237A (ja) * 1984-02-14 1985-09-03 Canon Inc 露光方法
JPH1162844A (ja) 1997-08-20 1999-03-05 Matsushita Electric Ind Co Ltd 溶液ポンプのガスがみ運転防止装置
JP2000267259A (ja) * 1999-03-17 2000-09-29 Toshiba Corp フォトマスク、露光方法および露光装置
JP2000323372A (ja) * 1999-05-07 2000-11-24 Nikon Corp 近接効果補正方法及びそれを用いた半導体素子製造方法
JP2005303312A (ja) * 2004-04-13 2005-10-27 Asml Netherlands Bv リソグラフィ装置、デバイス製造方法及び同方法によって製造されるデバイス
JP2006078744A (ja) 2004-09-09 2006-03-23 Tokyo Ohka Kogyo Co Ltd Euv用レジスト組成物およびレジストパターン形成方法
JP2010251580A (ja) * 2009-04-17 2010-11-04 Toshiba Corp 半導体装置の製造方法及び露光装置
JP2013104934A (ja) * 2011-11-11 2013-05-30 Tokyo Electron Ltd 露光装置及び露光方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2155650B (en) 1984-02-14 1988-11-16 Canon Kk Method and apparatus for exposure
JP3336436B2 (ja) * 1991-04-02 2002-10-21 株式会社ニコン リソグラフィシステム、情報収集装置、露光装置、及び半導体デバイス製造方法
JP2616660B2 (ja) * 1993-06-21 1997-06-04 日本電気株式会社 厚膜配線パターンの露光装置および厚膜の成形方法
JPH11162844A (ja) 1997-09-25 1999-06-18 Toshiba Corp パターン形成方法
JPH11233429A (ja) * 1998-02-13 1999-08-27 Canon Inc 露光方法及び露光装置
JP2000098632A (ja) * 1998-09-18 2000-04-07 Canon Inc 回転露光方法及び装置
US20080085471A1 (en) * 2006-10-10 2008-04-10 Anderson Brent A Photolithographic method using multiple photoexposure apparatus
DE102006053074B4 (de) * 2006-11-10 2012-03-29 Qimonda Ag Strukturierungsverfahren unter Verwendung chemisch verstärkter Fotolacke und Belichtungsvorrichtung
US8896809B2 (en) * 2007-08-15 2014-11-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8124319B2 (en) * 2010-04-12 2012-02-28 Nanya Technology Corp. Semiconductor lithography process
JP5165731B2 (ja) * 2010-06-30 2013-03-21 東京エレクトロン株式会社 局所露光装置及び局所露光方法
JP2014229802A (ja) * 2013-05-23 2014-12-08 キヤノン株式会社 リソグラフィ装置、リソグラフィ方法、リソグラフィシステム、及び物品の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170237A (ja) * 1984-02-14 1985-09-03 Canon Inc 露光方法
JPH1162844A (ja) 1997-08-20 1999-03-05 Matsushita Electric Ind Co Ltd 溶液ポンプのガスがみ運転防止装置
JP2000267259A (ja) * 1999-03-17 2000-09-29 Toshiba Corp フォトマスク、露光方法および露光装置
JP2000323372A (ja) * 1999-05-07 2000-11-24 Nikon Corp 近接効果補正方法及びそれを用いた半導体素子製造方法
JP2005303312A (ja) * 2004-04-13 2005-10-27 Asml Netherlands Bv リソグラフィ装置、デバイス製造方法及び同方法によって製造されるデバイス
JP2006078744A (ja) 2004-09-09 2006-03-23 Tokyo Ohka Kogyo Co Ltd Euv用レジスト組成物およびレジストパターン形成方法
JP2010251580A (ja) * 2009-04-17 2010-11-04 Toshiba Corp 半導体装置の製造方法及び露光装置
JP2013104934A (ja) * 2011-11-11 2013-05-30 Tokyo Electron Ltd 露光装置及び露光方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3098834A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160091794A1 (en) * 2014-09-30 2016-03-31 SCREEN Holdings Co., Ltd. Drawing method

Also Published As

Publication number Publication date
US10101669B2 (en) 2018-10-16
TWI603163B (zh) 2017-10-21
KR102276749B1 (ko) 2021-07-12
TW201531818A (zh) 2015-08-16
EP3098834A1 (en) 2016-11-30
KR20160108351A (ko) 2016-09-19
US20160327869A1 (en) 2016-11-10
JP2015156472A (ja) 2015-08-27
EP3098834A4 (en) 2017-09-06
JP6337757B2 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6337757B2 (ja) 露光装置、レジストパターン形成方法及び記憶媒体
US7573054B2 (en) Edge exposure apparatus, coating and developing apparatus, and edge exposure method
CN1904741B (zh) 无掩膜曝光方法
US9690210B2 (en) Lithographic apparatus and device manufacturing method
KR102576504B1 (ko) 노광 장치, 노광 방법 및 기억 매체
TW200823605A (en) System and method to compensate for critical dimension non-uniformity in a lithography system
JP2002260994A (ja) 基板処理装置
KR102471485B1 (ko) 광처리 장치 및 기판 처리 장치
US8377721B2 (en) Substrate processing system and method
KR102544422B1 (ko) 광학 투영을 이용한 기판 튜닝 시스템 및 방법
JP2007059906A (ja) リソグラフィ装置及びデバイス製造方法
US20190067132A1 (en) Method for lithographic process and lithographic system
US20240142877A1 (en) Exposure apparatus and measurement system
JP2008172086A (ja) 露光装置および露光方法
JP2017167174A (ja) 補助露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737732

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15109917

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167019174

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015737732

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015737732

Country of ref document: EP