WO2015107996A1 - 複合導電性粒子、それを含む導電性樹脂組成物および導電性塗布物 - Google Patents

複合導電性粒子、それを含む導電性樹脂組成物および導電性塗布物 Download PDF

Info

Publication number
WO2015107996A1
WO2015107996A1 PCT/JP2015/050521 JP2015050521W WO2015107996A1 WO 2015107996 A1 WO2015107996 A1 WO 2015107996A1 JP 2015050521 W JP2015050521 W JP 2015050521W WO 2015107996 A1 WO2015107996 A1 WO 2015107996A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
particles
particle
conductive particles
composite
Prior art date
Application number
PCT/JP2015/050521
Other languages
English (en)
French (fr)
Inventor
和哉 南
偉明 南山
和徳 小池
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to JP2015557820A priority Critical patent/JP6579958B2/ja
Priority to CN201580004027.0A priority patent/CN105917420B/zh
Priority to EP15737430.7A priority patent/EP3096330B1/en
Priority to US15/110,378 priority patent/US10227496B2/en
Priority to KR1020167020293A priority patent/KR101985581B1/ko
Publication of WO2015107996A1 publication Critical patent/WO2015107996A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to composite conductive particles, a conductive resin composition containing the same, and a conductive coating.
  • conductive resin compositions such as conductive pastes, conductive paints, and conductive adhesives have been used in various applications such as electronic parts and electronic circuits.
  • Known conductive particles used in such a conductive resin composition include spherical or flaky silver (Ag) particles, copper (Cu) particles, and the like.
  • Ag has very good conductivity, there is a problem that it is expensive, and Cu is easily oxidized, and its corrosion resistance is low, so that the conductivity cannot be maintained for a long time. is there.
  • JP 2008-11175 A Patent Document 1
  • JP 2004-52044 A Patent Document 2
  • JP 2006-161081 A Patent Document 3
  • the conductive particles are characterized by excellent conductivity, corrosion resistance, moisture resistance, and the like.
  • Cu has a large specific gravity, when Cu particles are used as the core particles, the conductive particles tend to settle in the conductive resin composition, and the fundamental problem that the operability (ease of handling) is low. There is.
  • conductive particles in which the surface of silica particles having a low specific gravity is coated with Ag and conductive particles in which the surface of a resin having a low specific gravity is coated with Ag have been developed.
  • JP 2001-23435 (Patent Document 4), JP 61-257479 A (Patent Document 5) and JP 62-297471 (Patent Document 6) disclose reducing silicon.
  • a technique for precipitating a metal particle on the surface of a silica particle by using an electroless plating method after previously treating the surface of the silica particle with a polymer polymer compound or using a silane coupling agent is disclosed. .
  • Patent Document 7 conductive particles in which the surface of a resin is coated with a conductive film made of a metal, which is 70 to 90% of the surface area of the conductive film. Have disclosed composite conductive particles forming raised protrusions.
  • the present invention has been made in view of the current situation as described above, and its object is to provide composite conductive particles having high conductivity and high filling property, a conductive resin composition containing the same, and conductive It is to provide an adhesive coating.
  • the composite conductive particle of the present invention includes a first conductive particle having a particle size of 0.1 ⁇ m or more and 50 ⁇ m or less, and a second conductive particle having a particle size of 50 nm or more and 1000 nm or less attached to the surface of the first conductive particle.
  • the first conductive particles include first particles and a first metal film that covers the surface of the first particles, and the second conductive particles include the second particles and the second particles.
  • a second metal film covering the surface of the particles, wherein the particle diameter of the first conductive particles is larger than the particle diameter of the second conductive particles, and the adhesion rate of the second conductive particles to the first conductive particles Is 2% or more and 40% or less.
  • the first particles and the second particles are each made of silica.
  • the first metal film and the second metal film are made of at least one selected from the group consisting of silver, gold, copper, nickel, platinum, tin, and alloys thereof.
  • the composite conductive particle preferably includes a protective layer containing an organic acid.
  • the present invention also relates to a conductive resin composition containing the composite conductive particles as a conductive material, and a conductive coating material having a coating film formed from the conductive resin composition on a substrate.
  • the composite conductive particles of the present invention have high conductivity and high filling properties. Moreover, the conductive resin composition and conductive coating material containing the composite conductive particles can have high conductivity.
  • composite conductive particle 1 adheres to first conductive particle 10 having a particle diameter d 1 of 0.1 ⁇ m or more and 50 ⁇ m or less, and to the surface of first conductive particle 10.
  • Second conductive particles 20 having a particle diameter d 2 of 50 nm or more and 1000 nm or less.
  • the first conductive particle 10 includes a first particle 11 and a first metal coating 12 that covers the surface of the first particle 11.
  • the second conductive particle 20 includes a second particle 21 and a second particle 21. And a second metal film 22 covering the surface of the film.
  • the particle diameter d 1 of the first conductive particles 10 are larger than the particle diameter d 2 of the second conductive particles 20, deposition rate with respect to the first conductive particles 10 of the second conductive particles 20 is more than 2% 40% or less.
  • the electroconductive particle of this invention may contain the unavoidable impurity, and may contain the other arbitrary components, as long as the effect of this invention is exhibited.
  • attachment means a state where they are physically connected to each other, and is different from a state where they are simply in contact with each other. Further, this state can withstand a physical impact (for example, stirring work, coating work, etc.) applied to the conductive particles at least when the conductive particles are used.
  • a physical impact for example, stirring work, coating work, etc.
  • the adhesion rate of the composite conductive particles 1 (the adhesion rate of the second conductive particles 20 to the first conductive particles 10) can be calculated by the following method. That is, an electronic image of the composite conductive particle 1 is obtained using a scanning electron microscope (SEM). In the electronic image, the one surface of the particles (first conductive particles 10) having a particle diameter d 1, the particle diameter d 2 (however, d 1> d 2) a plurality of particles having a (second conductive particles 20 ) Is a composite conductive particle 1.
  • SEM scanning electron microscope
  • FIG. 2 is a view showing an SEM photograph of the composite conductive particles.
  • the particles having the largest particle size are the first conductive particles 10
  • the plurality of particles having a small particle size attached to the surface are the second conductive particles 20. That is, FIG. 2 is an SEM photograph showing one composite conductive particle 1 in the observation field.
  • whether the particles are “attached” or “aggregated” can be distinguished by the relationship between the particle state and the particle diameter. For example, when a large lump formed by adhering a large number of particles (regardless of their particle size) is observed, each particle constituting this lump is distinguished as “aggregated” can do. On the other hand, as described above, a plurality of particles having the particle diameter d 2 (where d 1 > d 2 ) overlap or are connected to the surface of one particle having the particle diameter d 1. When observed, it can be distinguished into “attached state”. In addition, there are cases where particles are three-dimensionally overlapped in an electronic image. Such a state cannot be observed with an electronic image on the back surface or front surface of particles overlapping each other. The image is excluded from the observation target.
  • the region occupied by the second conductive particles 20 attached to the surface of the first conductive particles 10 in the composite conductive particles 1 is the region occupied by the first conductive particles 10. It tends to show higher brightness.
  • the area occupied by the first conductive particles 10 (area A in FIG. 3) in the area occupied by one composite conductive particle 1 )
  • Area S1 and the area S2 of the region occupied by the second conductive particles 20 (region B in FIG. 3) can be calculated.
  • the area B is all areas hatched with diagonal lines.
  • the adhesion rate is computable by applying each numerical value of this area S1 and S2 to following formula (1).
  • the adhesion rate of the first conductive particles 10 by the second conductive particles 20 is 2% or more and 40% or less.
  • the composite conductive particle 1 can achieve both high conductivity and high filling property.
  • the adhesion rate is less than 2%, the conductivity is insufficient, and when the adhesion rate exceeds 40%, the filling property is insufficient.
  • the coverage is more preferably 4% or more and 35% or less.
  • the shapes of the first conductive particles 10 and the second conductive particles 20 are not particularly limited, and are spherical, granular, disc-like, columnar, cubic, rectangular parallelepiped, plate-like, needle-like, fibrous, and filler-like. Each shape can have a dendritic shape.
  • each shape of the first particle 11 and the second particle 21 is inherited by each shape of the first conductive particle 10 and the second conductive particle 20.
  • the spherical shape does not mean a mathematical spherical shape, but refers to a spherical shape that can be judged as a spherical shape at first glance.
  • the first conductive particles 10 have a particle diameter d 1 of 0.1 ⁇ m or more and 50 ⁇ m or less
  • the second conductive particles 20 have a particle diameter d 2 of 50 nm or more and 1000 nm or less
  • the diameter d 1 is larger than the particle diameter d 2
  • each particle diameter of the 1st electroconductive particle 10 and the 2nd electroconductive particle 20 can be measured by analyzing a SEM photograph. Since each of the first conductive particles 10 and the second conductive particles 20 has such a particle diameter, the composite conductive particles 1 can have high filling properties while having high conductivity.
  • the particle diameter d 1 is more preferably from 1 ⁇ m to 20 ⁇ m, further preferably from 1 ⁇ m to 5 ⁇ m, and the particle diameter d 2 is more preferably from 100 nm to 950 nm, further preferably from 100 nm to 700 nm.
  • the particle diameter d 1 is an average value of the particle diameters of any 50 or more first conductive particles 10 observed in the SEM photograph.
  • the particle diameter d 2 is the SEM photograph. This is the average value of the particle diameters of any 50 or more second conductive particles 20 observed.
  • the diameters of the first conductive particle 10 and the second conductive particle 20 are defined as the particle diameter d 1 and the particle diameter d 2 , respectively. To do.
  • the shape of the 1st electroconductive particle 10 or the 2nd electroconductive particle 20 has the edge
  • the distance between the long sides is defined as a particle diameter d 1 and a particle diameter d 2 .
  • the material of the first particles 11 constituting the core of the first conductive particles 10 and the second particles 21 constituting the core of the second conductive particles 20 is not particularly limited, and is a metal such as aluminum, copper, nickel, or tin. Various inorganic materials such as silica, glass, alumina, and ceramics, and organic materials such as resins can be used. However, the material of the first particles 11 and the second particles 21 are made of the same material. This is due to the manufacturing method described later.
  • the first particles 11 and the second particles 21 are preferably made of a material having a low specific gravity.
  • resin, silica, alumina, aluminum, glass, zirconia It is preferably made of any one of silicon carbide, boron nitride and diamond.
  • the resin is not particularly limited.
  • Polymer resins divinylbenzene-styrene copolymers, divinylbenzene-acrylate copolymers, divinylbenzene-based copolymer resins such as divinylbenzene-methacrylate copolymers, polyalkylene terephthalates, polysulfones, polyamides, polycarbonates , Melamine formaldehyde resin, phenol formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, etc. Door can be.
  • the silica fused silica or nonporous material obtained by surface treatment thereof can be suitably used.
  • the glass is not particularly limited and can be appropriately selected according to the purpose. However, lead-free glass is preferable from the viewpoint of reducing environmental load.
  • the metal may be contained as a component which comprises glass.
  • the first particles 11 and the second particles 21 are preferably made of silica. Since silica has higher wettability than a resin, a metal film can be uniformly formed on the surface of silica particles in the production method described later. Therefore, the composite conductive particle 1 having the first particles 11 and the second particles 21 made of silica can have the homogeneous first metal coating 12 and the second metal coating 22. In addition, since silica has less change due to heat shrinkage and less swelling due to a solvent than resin, by using the first particles 11 and the second particles 21 as silica particles, the composite conductive particles 1 with more stable quality can be obtained. Can be provided.
  • the shapes of the first particles 11 and the second particles 21 are not particularly limited, and each shape such as a spherical shape, a granular shape, a plate shape, a needle shape, a fiber shape, a disk shape, a columnar shape, a cube shape, a rectangular parallelepiped shape, a filler shape, a dendritic shape, etc. Can have.
  • grains 21 is spherical from the height of the dispersibility in the plating process liquid in the manufacturing method mentioned later. In this case, the quality of the composite conductive particle 1 can be made more uniform.
  • the materials of the first metal film 12 that covers the first conductive particles 10 and the second metal film 22 that covers the second conductive particles 20 are not particularly limited, and known metals can be used. However, the material of the first metal coating 12 and the material of the second metal coating 22 are the same. This is due to the manufacturing method described later. Among these, since silver (Ag), gold (Au), copper (Cu), nickel (Ni), platinum (Pt), tin (Sn), and their alloys have particularly high conductivity, the first metal coating 12
  • the second metal coating 22 is preferably made of at least one selected from the group consisting of silver, gold, copper, nickel, platinum, tin, and alloys thereof.
  • each of the first metal film 12 and the second metal film 22 may be composed of one metal layer, or may be composed of a plurality of layers made of the same kind of metal or different kinds of metals.
  • the first metal film and the second metal film include phosphorus (P), boron (B), carbon (C), and sulfur (S Nonmetals such as) may be included.
  • the first metal coating 12 preferably covers the entire surface of the first particle 11, but is not limited thereto, and may cover a part of the surface of the first particle 11. However, it is preferable to cover at least 70% of the surface of the first particle 11 from the viewpoint of sufficiently exhibiting the effect.
  • the second metal coating 22 also preferably covers the entire surface of the second particle 21, but is not limited thereto, and may cover a part of the surface of the second particle 21. However, it is preferable that at least 70% of the surface of the second particle 21 is covered from the viewpoint of sufficiently exhibiting the effect.
  • the average film thickness of the first metal film 12 and the second metal film 22 is preferably 0.1 nm or more. When the thickness is less than 0.1 nm, it is difficult to coat each composite conductive particle 1, which tends to cause a decrease in conductivity.
  • the film thickness is more preferably 1 nm or more.
  • the film thickness is more preferably 100 nm or less. When the film thickness exceeds 100 nm, the variation in the film thickness tends to increase, and the film tends to aggregate easily. Furthermore, since it is necessary to increase the amount of metal to be used in order to increase the film thickness, the manufacturing cost tends to increase. For this reason, it is preferable to consider the trade-off between required conductivity and manufacturing cost.
  • the film thicknesses of the first metal film 12 and the second metal film 22 can be evaluated by observing the cross section of the composite conductive particle 1 using an electron microscope such as SEM.
  • the uniformity of the coating of the first particles 11 (second particles 21) with the first metal coating 12 (second metal coating 22), the degree of coating, and the like can also be evaluated by the same cross-sectional observation.
  • the composite conductive particle 1 may include a protective layer that covers the surface (not shown).
  • the protective layer can be formed of a surface treatment agent such as a fatty acid or a fatty acid salt.
  • the composite conductive particles 1 are provided with a protective layer on the surface, whereby heat resistance is improved, and thus conductivity is maintained.
  • the protective layer preferably covers the entire surface of the composite conductive particle 1, but is not limited thereto, and may be configured to cover a part of the composite conductive particle 1. This protective layer also functions as a dispersant or a lubricant for the composite conductive particles when the composite conductive particles are blended into the conductive resin composition.
  • the surface treatment agent is not particularly limited and can be appropriately selected according to the purpose.
  • examples thereof include fatty acids, fatty acid salts, surfactants, chelating agents, and organometallic compounds. Of these, fatty acids and fatty acid salts are preferable, and benzotriazoles are preferable in addition to these.
  • fatty acids include propionic acid, caprylic acid, lauric acid, palmitic acid, oleic acid, acrylic acid, myristic acid, stearic acid, behenic acid, linoleic acid, arachidonic acid and the like.
  • a surface treating agent may be used individually by 1 type, and may use 2 or more types together.
  • grains 21 is prepared.
  • the powder include powder made of inorganic particles such as metal powder, resin powder, and silica powder.
  • the shape of the powder to be used is not particularly limited, and each shape such as a spherical shape, a granular shape, a plate shape, a needle shape, a fiber shape, a filler shape, and a dendritic shape can be used. In view of the high nature, it is preferably spherical.
  • the 1st conductive particle 10 and the 2nd conductive particle 20 which comprise the composite conductive particle 1 manufactured also become spherical. .
  • the powder is a material of the first particles 11 and second particles 21 to be used, the said powder, at least, the small particles having a particle size smaller than the particle diameter d 2 of the second conductive particles 20, larger than the small particles, and the particle size d 1 of the first conductive particles 10 (wherein, d 1> d 2) is necessary and large particles are mixed with a particle size smaller than.
  • the D50 of the powder is preferably 1 ⁇ m to 50 ⁇ m
  • the D10 is preferably 0.1 ⁇ m to 10 ⁇ m
  • more preferably the D10 is 0.1 ⁇ m to 1 ⁇ m.
  • D50 and D10 mean particle diameters of 50% and 10% cumulative degree, respectively, in the volume cumulative particle size distribution measured by the laser diffraction method.
  • the powder having the particle size distribution as described above may be used as the whole powder, or the small particles and the large particles as described above are prepared separately. And you may prepare the powder which mixed these beforehand. Furthermore, in mixing, the mixing ratio may be adjusted in consideration of the coverage of the composite conductive particles 1.
  • the prepared powder is put into a stirring tank of a stirring device, and this is slurried.
  • the stirring device for example, the stirring device shown in FIG. 4 can be used.
  • the agitation device 30 includes an agitation tank 31 and an agitation blade 32 capable of agitating the slurry and the like accommodated in the agitation tank 31.
  • the stirring blade 32 includes a support shaft portion 32a and a blade portion 32b, and can be rotated at a predetermined blade peripheral speed in a direction indicated by an arrow in the drawing by a driving unit (not shown).
  • a slurry made of powder is put into the stirring tank 31.
  • a catalyst for covering the surfaces of the first particles 11 and the second particles 21 with the first metal film 12 and the second metal film 22 is put into the stirring tank 31.
  • the first metal film 12 and the second metal film 22 can also be formed by directly contacting the surface of the first particle 11 and the second particle 21 with the plating solution without applying a catalyst.
  • a metal coating is more efficiently formed by attaching a catalyst for electroless plating to each particle before the electroless plating treatment, it is preferable to input the catalyst.
  • Examples of the method of attaching the catalyst include a method of treating the surfaces of the first particles 11 and the second particles 21 with a hydrochloric acid solution containing stannous chloride and then treating with a solution containing palladium chloride, palladium chloride and chloride chloride.
  • a plating solution containing a metal salt, a reducing agent, and a complexing agent is put into the stirring tank 31.
  • the metal salt those that can be stably dissolved in a mixed solvent including an organic solvent and an aqueous solvent are preferable. Nitrate, sulfate, nitrite, oxalate, carbonate, chloride, acetate, lactate, sulfamine Acid salts, fluorides, iodides, cyanides and the like can be used.
  • the metal constituting the metal salt is a metal constituting the first metal film 12 and the second metal film 22.
  • reducing agent known ones used in the electroless plating method can be used. Specifically, sugars such as glucose and saccharose, polysaccharides such as cellulose, starch and glycogen, polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin, hypophosphorous acid, formaldehyde, boron borohydride, dimethylamine borane , Trimethylamine borane, hydrazine tartaric acid, and salts thereof can be used.
  • the hydrazine arsenate is preferably an alkali metal salt.
  • the complexing agent known ones used in the electroless plating method can be used. Specifically, carboxylic acids such as succinic acid, oxycarboxylic acids such as citric acid and arsenic acid, glycine, ethylenediaminetetraacetic acid (EDTA), aminoacetic acid, and salts thereof such as alkali metal salts and ammonium salts Etc. can be used.
  • carboxylic acids such as succinic acid
  • oxycarboxylic acids such as citric acid and arsenic acid
  • glycine ethylenediaminetetraacetic acid (EDTA), aminoacetic acid
  • salts thereof such as alkali metal salts and ammonium salts Etc.
  • the pH of the plating treatment solution is preferably adjusted as appropriate depending on the type of metal constituting the metal salt.
  • the pH can be adjusted to alkaline (pH 8-12), and by adding sulfuric acid, nitric acid, citric acid, etc.
  • the pH can be neutral (pH 6 to 8) by combining these.
  • the temperature of the plating treatment solution is preferably adjusted to 1 to 99 ° C. In this case, the plating reaction can proceed efficiently.
  • the electroless plating process is performed by rotating the stirring blade 32 and stirring the plating solution.
  • the peripheral speed of the stirring blade 32 is controlled to 1.5 m / sec or more and 10 m / sec or less.
  • the relationship (D1: D2) between the inner diameter D1 of the stirring tank 31 and the outer diameter D2 of the stirring blade 32 is preferably 7: 3 to 5: 5, and 7: 3 to 6: 4 is more preferable.
  • the control of the blade peripheral speed can be reflected uniformly.
  • the relationship (H1: H2) between the height H1 of the plating solution in the stirring tank 31 and the height H2 of the stirring blade 32 is 9.9: 0.1 to 7: 3. It is preferably 9.9: 0.1 to 9: 1.
  • the height H1 corresponds to the distance between the upper surface of the bottom of the stirring tank 31 and the surface of the plating solution
  • the height H2 corresponds to the distance between the upper surface of the bottom and the lower surface of the blade 32b.
  • a baffle (baffle) may be installed on the inner wall of the stirring tank 31 in order to improve the dispersibility in the vertical direction in the stirring tank 31.
  • the composite electroconductive particle 1 is produced in the plating solution by the electroless plating process. Therefore, the slurry of the composite conductive particles 1 can be obtained by solid-liquid separation of the stirred slurry (plating solution), and the composite conductive particles 1 can be obtained by drying the slurry.
  • the forming method is not particularly limited.
  • the composite conductive particles 1 are taken out from the processing liquid after the electroless plating process by solid-liquid separation or the like, and this is used as the protective layer. It is possible to adopt a method of charging into a solution containing a fatty acid or an organic acid as the material. By this treatment, composite conductive particles 1 having a protective layer can be produced.
  • the composite conductive particle 1 can be efficiently manufactured by performing an electroless plating process under specific conditions.
  • conductive particles in which the surface of each particle is coated with a metal are produced by the simple treatment as described above, and among the conductive particles, “large-diameter conductive particles having a particle diameter d 1 ”.
  • the second conductive particles 20 that are a plurality of “small-diameter conductive particles” having a particle diameter d 2 (where d 1 > d 2 ) can adhere to the surface of the first conductive particles 10. .
  • a metal salt-derived metal is deposited on the surface of various large and small particles.
  • conductive particles having various particle diameters are produced.
  • the blade peripheral speed at this time is less than 1.5 m / sec, the dispersibility of the slurry is lowered, and therefore all the conductive materials including “large-diameter conductive particles” and “small-diameter conductive particles” are included. Particles coagulate. In this case, not only “small-diameter conductive particles” are attached to one “large-diameter conductive particle”, but also other “large-diameter conductive particles” are attached.
  • the electroconductive particle 1 cannot be manufactured. This state corresponds to the “aggregated state” described above.
  • the dispersibility of the slurry becomes high, so that the “large-diameter conductive particles” and the “small-diameter conductive particles” are each coated with a metal after being coated with each other. It becomes difficult to contact. For this reason, the “small-diameter conductive particles” cannot be attached to the surface of the “large-diameter conductive particles”, and the respective conductive particles remain dispersed. In general, it is desirable that each particle is dispersed in performing the plating process.
  • the blade peripheral speed is 1.5 m / sec or more and 10 m / sec or less
  • the dispersibility of the slurry does not cause aggregation as described above, and “large-diameter conductive particles” and “small-diameter conductive”. It becomes a state suitable for contacting after each of the “particles” is coated. For this reason, a plurality of “small-diameter conductive particles” can adhere to one “large-diameter conductive particle”, and as a result, the composite conductive particle 1 is manufactured.
  • the composite conductive particle 1 according to the present embodiment can have high conductivity and high filling properties.
  • the reason why the composite conductive particles 1 can have both the high conductivity and the high filling property is considered as follows.
  • the conventional conductive particles have a configuration in which a metal film is formed on the surface of one core particle.
  • the composite conductive particle 1 has a configuration in which a plurality of second conductive particles 20 having a relatively small particle size are attached to the surface of the first conductive particle 10 having a relatively large particle size.
  • each of the first conductive particle 10 and the second conductive particle 20 has a configuration of being individually coated with a metal coating as shown in FIG. That is, the first particles 11 and the second particles 21 are not in direct contact with each other.
  • the structure of the composite conductive particle 1 is different from, for example, a configuration in which the surfaces of a plurality of particles that are in direct contact with each other are integrally covered with metal. Since the composite conductive particles 1 are attached to each other in a state where the first particles 11 and the second particles 21 are respectively coated as compared with a structure in which the composite conductive particles 1 are integrally covered with metal, Conduction is also possible at the contact point between the particle 10 and the second conductive particle 20, and thus higher conductivity can be achieved.
  • the coverage of the first conductive particles 10 by the second conductive particles 20 is too high, or the particle diameter of the second conductive particles 20 is too large, the structure of the composite conductive particles 1 becomes bulky. It is considered that the filling property is lowered.
  • the coverage is 2% or more and 40% or less, and the particle diameter d 1 of the first conductive particle 10 and the particle diameter of the second conductive particle 20.
  • the conductive resin composition according to the present embodiment includes the above-described composite conductive particle 1 as a conductive material.
  • the composite conductive particle 1 has high conductivity and high filling property as described above, and the conductive resin composition containing this as a conductive material takes over the effect of the composite conductive particle 1 described above. Can do. That is, according to the conductive composition of the present invention, the composite conductive particles 1 having high conductivity can be contained, and the composite conductive particles 1 can be filled at a high density in the conductive resin composition. Therefore, a highly conductive conductive resin composition can be provided.
  • the conductive resin composition is obtained by dispersing the composite conductive particles 1 in a resin.
  • a conductive paste, a conductive paint, a conductive adhesive, a conductive ink, a conductive film examples thereof include conductive moldings and conductive coating films.
  • Such a conductive resin composition can be produced, for example, by kneading the composite conductive particles 1 into a resin or dispersing the composite conductive particles 1 in a resin solution.
  • thermosetting acrylic resin / melamine resin thermosetting acrylic resin / cellulose acetate butyrate (CAB) / melamine resin.
  • thermosetting polyester (alkyd) resin / melamine resin thermosetting polyester (alkyd) / CAB / melamine resin
  • isocyanate curable urethane resin / room temperature curable acrylic resin water diluted acrylic emulsion / melamine resin, etc.
  • content of the electroconductive particle in an electroconductive resin composition changes with uses, it is not specifically limited, For example, it is preferable to set it as 10 to 100 mass parts with respect to 100 mass parts of resin. When the amount is less than 10 parts by mass, the conductivity of the conductive resin composition may be insufficient. When the amount exceeds 100 parts by mass, the amount of the conductive particles in the conductive resin composition is too large. May decrease.
  • the conductive resin composition may contain any component other than the resin and the composite conductive particles 1. Examples of the optional component include glass frit, metal alkoxide, viscosity adjusting agent, surface adjusting agent and the like.
  • the conductive coating according to the present embodiment is a coating having a coating formed on the substrate with the conductive resin composition. Therefore, this conductive coating material has high conductivity.
  • the conductive coating material include electrodes, wirings, circuits, conductive bonding structures, and conductive adhesive tapes.
  • the shape and thickness of the coating film are not particularly limited, and a desired thickness can be adopted depending on the application.
  • the materials thereof are not particularly limited, such as organic materials such as metals and plastics, inorganic materials such as ceramics and glass, paper and wood.
  • substrate can be employ
  • Example 1 The conductive powder (composite conductive particles) according to Example 1 was produced as follows. First, silica powder (trade name: “Admafine SO-C6”, manufactured by Admatechs Co., Ltd.) was prepared as a material for the first particles and the second particles. The characteristics of this powder were as follows. Specific surface area: 35922 cm 2 / cm 3 D10: 0.69 ⁇ m D50: 1.83 ⁇ m.
  • a stirrer having a configuration as shown in FIG. 4 was prepared.
  • the maximum capacity of the stirring tank is 2.0 L
  • the relationship (D1: D2) between the inner diameter D1 of the stirring tank and the outer diameter D2 of the stirring blade is within the range of 7: 3 to 6: 4 Met.
  • the relationship between the height H1 of the plating solution in the stirring tank and the height H2 of the stirring blade (H1: H2) is within the range of 9.9: 0.1 to 9: 1. It was.
  • Aqueous solution 1 An aqueous solution in which 6.75 g of silver nitrate and 30 mL of 25% ammonia water are dissolved in 300 mL of ion-exchanged water
  • Aqueous solution 2 An aqueous solution in which 2.7 g of sodium hydroxide is dissolved in 300 mL of ion-exchanged water
  • Aqueous solution 3 40.5 g of glucose An aqueous solution dissolved in 300 mL of ion exchange water.
  • the treatment liquid after the above plating treatment was subjected to solid-liquid separation, and the obtained solid component B was washed with ion exchange water.
  • the composite electroconductive particle which concerns on this invention which has the structure shown by FIG. 1 will be contained.
  • the obtained solid component B after washing is added to an oleic acid-containing alcohol solution charged into another stirring tank and stirred for 10 minutes, so that the surface of the composite conductive particles is coated with oleic acid. A protective layer was formed.
  • the oleic acid-containing alcohol solution a solution in which 2 g of oleic acid was dissolved in 100 mL of isopropyl alcohol was used.
  • the obtained slurry was subjected to solid-liquid separation, and the obtained solid component C was washed with ion-exchanged water.
  • the solid component obtained here contains composite conductive particles having a protective layer. Then, the obtained solid component C after washing was dried at 110 ° C. in a vacuum environment to obtain a conductive powder according to Example 1.
  • the conductive powder had a brown color tone.
  • Example 2 The conductive powder (composite conductive particles) according to Example 2 was produced as follows. First, silica powder (trade name: “Admafine SO-C6”, manufactured by Admatechs Co., Ltd.) was prepared as a material for the first particles and the second particles.
  • silica powder trade name: “Admafine SO-C6”, manufactured by Admatechs Co., Ltd.
  • Aqueous solution 1 An aqueous solution in which 1.75 g of silver nitrate and 8 mL of 25% aqueous ammonia are dissolved in 50 mL of ion-exchanged water
  • Aqueous solution 2 An aqueous solution in which 0.7 g of sodium hydroxide is dissolved in 50 mL of ion-exchanged water
  • Aqueous solution 3 10.5 g of glucose An aqueous solution dissolved in 50 mL of ion exchange water.
  • the treatment liquid after the above plating treatment was subjected to solid-liquid separation, and the obtained solid component B was washed with ion exchange water.
  • the composite electroconductive particle which concerns on this invention which has the structure shown by FIG. 1 will be contained.
  • the obtained solid component B after washing is added to an oleic acid-containing alcohol solution charged into another stirring tank and stirred for 10 minutes, so that the surface of the composite conductive particles is coated with oleic acid. A protective layer was formed.
  • the oleic acid-containing alcohol solution a solution in which 1.5 g of oleic acid was dissolved in 0.3 L of isopropyl alcohol was used.
  • the obtained slurry was subjected to solid-liquid separation, and the obtained solid component C was washed with ion-exchanged water.
  • the solid component C obtained here contains composite conductive particles having a protective layer.
  • the obtained solid component C after washing was dried at 110 ° C. in a vacuum environment to obtain a conductive powder according to Example 2.
  • the color tone of the conductive powder was black brown.
  • Example 3 A conductive powder (composite conductive particles) according to Example 3 was produced as follows. First, silica powder (trade name: “Admafine SO-C6”, manufactured by Admatechs Co., Ltd.) was prepared as a material for the first particles and the second particles.
  • silica powder trade name: “Admafine SO-C6”, manufactured by Admatechs Co., Ltd.
  • Aqueous solution 1 An aqueous solution in which 3.9 g of silver nitrate and 18 mL of 25% ammonia water are dissolved in 110 mL of ion-exchanged water
  • Aqueous solution 2 An aqueous solution in which 1.5 g of sodium hydroxide is dissolved in 110 mL of ion-exchanged water
  • Aqueous solution 3 23.6 g of glucose An aqueous solution dissolved in 110 mL of ion exchange water.
  • the treatment liquid after the above plating treatment was subjected to solid-liquid separation, and the obtained solid component B was washed with ion exchange water.
  • the composite conductive particles according to the present invention having the configuration shown in FIG. 1 are included.
  • the obtained solid component B after washing is added to an oleic acid-containing alcohol solution charged into another stirring tank and stirred for 10 minutes, so that the surface of the composite conductive particles is coated with oleic acid. A protective layer was formed.
  • the oleic acid-containing alcohol solution a solution in which 1.5 g of oleic acid was dissolved in 0.3 L of isopropyl alcohol was used.
  • the obtained slurry was subjected to solid-liquid separation, and the obtained solid component C was washed with ion-exchanged water.
  • the solid component C obtained here contains composite conductive particles having a protective layer. Then, the obtained solid component C after washing was dried at 110 ° C. in a vacuum environment to obtain a conductive powder according to Example 3.
  • the conductive powder had a grayish brown color tone.
  • Example 4 A conductive powder (composite conductive particles) according to Example 4 was produced as follows. First, silica powder (trade name: “Admafine SO-C6”, manufactured by Admatechs Co., Ltd.) was prepared as a material for the first particles and the second particles.
  • silica powder trade name: “Admafine SO-C6”, manufactured by Admatechs Co., Ltd.
  • Aqueous solution 1 An aqueous solution in which 10.5 g of silver nitrate and 47 mL of 25% ammonia water are dissolved in 300 mL of ion-exchanged water
  • Aqueous solution 2 An aqueous solution in which 4.2 g of sodium hydroxide is dissolved in 300 mL of ion-exchanged water
  • Aqueous solution 3 63 g of glucose is ion-exchanged An aqueous solution dissolved in 300 mL of water.
  • the treatment liquid after the above plating treatment was subjected to solid-liquid separation, and the obtained solid component B was washed with ion exchange water.
  • the composite conductive particles according to the present invention having the configuration shown in FIG. 1 are included.
  • the obtained solid component B after washing is added to an oleic acid-containing alcohol solution charged into another stirring tank and stirred for 10 minutes, so that the surface of the composite conductive particles is coated with oleic acid. A protective layer was formed.
  • the oleic acid-containing alcohol solution a solution in which 1.5 g of oleic acid was dissolved in 0.3 L of isopropyl alcohol was used.
  • the obtained slurry was subjected to solid-liquid separation, and the obtained solid component C was washed with ion-exchanged water.
  • the solid component C obtained here contains composite conductive particles having a protective layer. Then, the obtained solid component C after washing was dried at 110 ° C. in a vacuum environment to obtain a conductive powder according to Example 4. The color tone of the conductive powder was yellowish white.
  • Example 5 A conductive powder (composite conductive particles) according to Example 5 was produced as follows. First, as a material for the first particles and the second particles, silica powder manufactured by Admatechs Inc. was prepared. The characteristics of this powder were as follows. Specific surface area: 7577 cm 2 / cm 3 D10: 8.55 ⁇ m D50: 16.24 ⁇ m.
  • a stirrer having a configuration as shown in FIG. 4 was prepared.
  • the maximum capacity of the stirring tank was 5.0 L
  • the ratios of D1: D2 and H1: H2 were the same as those in Example 1.
  • Aqueous solution 1 An aqueous solution in which 14 g of nickel sulfate is dissolved in 30 ml of ion-exchanged water
  • Aqueous solution 2 An aqueous solution in which 3.1 g of sodium hypophosphite is dissolved in 30 ml of ion-exchanged water
  • Aqueous solution 3 3.0 g of sodium succinate in ion-exchanged water
  • the treatment liquid after the plating treatment was subjected to solid-liquid separation, and the obtained solid component C was washed with ion-exchanged water.
  • the composite electroconductive particle which concerns on this invention which has the structure shown by FIG. 1 will be contained.
  • the obtained solid component C after washing was dried at 110 ° C. in a vacuum environment to obtain a conductive powder according to Example 5.
  • the color tone of this conductive powder was black.
  • Example 1 The same method as in Example 1 was carried out except that the blade peripheral speed in the plating treatment was 20 m / sec. Thereby, the electroconductive powder which concerns on the comparative example 1 was produced. In addition, the color tone of this electroconductive powder was gray.
  • Example 1 For each conductive powder of Examples 1 to 5 and Comparative Example 1, the particle diameter of each particle was obtained by analyzing each SEM photograph obtained by performing SEM observation as shown in FIGS. It was. In Example 1, composite conductive particles in which a plurality of particles having a smaller particle size (second conductive particles) are attached to the surface of one particle (first conductive particle) having a large particle size. Therefore, the particle diameters of the first conductive particles and the second conductive particles were determined. The results are shown in “Particle size ( ⁇ m)” in Table 1. Each particle diameter is an average value of the diameters of 50 particles arbitrarily selected from SEM photographs obtained by SEM observation in a plurality of fields of view.
  • ⁇ Adhesion rate> For the conductive powders of Examples 1 to 5, the SEM photographs as shown in FIG. 5 were analyzed to determine the adhesion rate of the second conductive particles to the first conductive particles. In addition, regarding the calculation of the adhesion rate, the above calculation method was followed using image processing software (product name: “WinROOF”, Mitani Corporation). The results are shown in the column “attachment rate (%)” in Table 1. The adhesion rate is an average value of 50 arbitrarily selected composite conductive particles.
  • ⁇ Metal coverage> For each of the conductive powders of Examples 1 to 5 and Comparative Example 1, the metal coverage was calculated. Specifically, the calculation was performed according to the following procedure. First, the weight of each conductive powder before determination of the amount of metal by an atomic absorption photometer (weight of the conductive powder before dissolution with an acid solution) was measured. Next, each sample in which each conductive powder whose weight was measured was dissolved in an acid solution was prepared.
  • each of the above samples is obtained by collecting a suitable amount of conductive particles, dissolving the mixture with nitric acid and hydrofluoric acid over 30 minutes at room temperature, and diluting to a concentration suitable for measurement.
  • the measurement wavelengths were 328.1 nm (silver) and 232.0 nm (nickel), and the gas conditions were air-acetylene.
  • Metal coating amount (% by weight) W1 / W2 ⁇ 100 (2) (In Formula (2), W1 shows the weight of the metal which comprises a metal film, and W2 shows the weight of the electroconductive powder before melt
  • each conductive powder and resin (trade name: “Nippe Acrylic Auto Clear Super”, manufactured by Nippon Paint Co., Ltd.) are kneaded so that the blending ratio (conductive powder: resin) is 60 vol%: 40 vol%. And the resin composition containing each electroconductive powder was produced.
  • each resin composition was apply
  • the thickness of the coating film was confirmed by measuring with a digimatic standard outer micrometer (trade name: “IP65 COOLANT PROOF Micrometer”, manufactured by Mitutoyo Corporation).
  • the tap density of each conductive powder of Examples 1 to 5 and Comparative Example 1 was measured to evaluate the filling property of each conductive powder.
  • the tap density can be measured by a method based on JIS Z2512: 2012.
  • the tapping density was measured by using a tapping powder reduction measuring instrument (model: “TPM-1”, manufactured by Tsutsui Riken Kikai Co., Ltd.).
  • TPM-1 tapping powder reduction measuring instrument
  • the results are shown in “Tap Density (g / cm 3 )” in Table 2. The larger the tap density, the better the filling property.
  • Example 1 When comparing Example 1 and Comparative Example 1 with reference to Table 1 and Table 2, the conductive powder of Example 1 has the conductivity of Comparative Example 1 even though the coverage of the metal film is equivalent. A coating film having a specific resistance lower than that of the powder could be formed.
  • the conductive powders of Examples 1 to 5 showed higher tap density than the conductive powder of Comparative Example 1. Thereby, it was confirmed that the composite conductive powder can exhibit both characteristics of high conductivity and high filling property.
  • the cross section of the conductive powder of Example 1 was observed. First, an epoxy resin and conductive powder were mixed and cured, and a sample for cross-sectional observation of the conductive powder was prepared using an ion milling device. Using a scanning electron microscope (trade name: “SU8020”, manufactured by Hitachi High-Technology Co., Ltd.), the cross section of the conductive powder in the sample was observed under the conditions of an acceleration voltage of 50 kV and a measurement magnification of 30000 times. An image (electronic image) was taken.
  • FIG. 8 shows an SEM photograph of a cross section of the conductive powder of Example 1. From FIG. 8, in the conductive powder of Example 1, the surface of the silica particles as the first particles is coated with the silver coating as the first metal film in the first conductive particles, The surface of the silica particles as two particles is covered with a silver coating as a second metal coating, the first conductive particles are larger than the second conductive particles, and the second conductive property is formed on the surface of the first conductive particles. It was confirmed that the particles adhered.
  • each cross section was observed by the same method as in Example 1.
  • the surface of the silica particles as the first particles was the first.
  • a metal film that is a metal film (a silver film in Examples 2 to 4 and a nickel-phosphorus film in Example 5) is coated, and in the second conductive particles, the surface of the silica particles that are the second particles is the second metal film.
  • Is coated with a metal coating (a silver coating in Examples 2 to 4, a nickel-phosphorus coating in Example 5), and the first conductive particles are larger than the second conductive particles. It was confirmed that the second conductive particles adhered to the surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の複合導電性粒子は、0.1μm以上50μm以下の粒子径を有する第1導電性粒子と、第1導電性粒子の表面に付着する、50nm以上1000nm以下の粒子径を有する第2導電性粒子と、を備え、第1導電性粒子は、第1粒子と、第1粒子の表面を被覆する第1金属被膜とからなり、第2導電性粒子は、第2粒子と、第2粒子の表面を被覆する第2金属被膜とからなり、第1導電性粒子の粒子径は第2導電性粒子の粒子径よりも大きく、第2導電性粒子による第1導電性粒子の付着率は2%以上40%以下である。これにより、高い導電性と高い充填性を有する複合導電性粒子を提供することができる。

Description

複合導電性粒子、それを含む導電性樹脂組成物および導電性塗布物
 本発明は、複合導電性粒子、それを含む導電性樹脂組成物および導電性塗布物に関する。
 従来より、導電性ペースト、導電性塗料、導電性接着剤などの導電性樹脂組成物は、電子部品、電子回路などの種々の用途に使用されている。このような導電性樹脂組成物に用いられる導電性粒子としては、球状またはフレーク状の銀(Ag)粒子、銅(Cu)粒子などが知られている。しかしながら、Agは非常に優れた導電性を有しているものの高価であるという問題があり、また、Cuは酸化され易く、その耐食性が低いために、導電性を長く保つことができないという問題がある。
 これに対し、特開2008-111175号公報(特許文献1)、特開2004-52044号公報(特許文献2)、および特開2006-161081号公報(特許文献3)には、Cu粒子の表面がAgで被覆された導電性粒子が提案されている。この導電性粒子は、導電性、耐食性、耐湿性などに優れるという特徴を有している。しかし、Cuは比重が大きいため、コア粒子としてCu粒子を用いた場合、導電性粒子が導電性樹脂組成物中で沈降しやすく、その操作性(取扱いの容易性)が低いという根本的な問題がある。
 上記比重の問題を解消する技術として、比重の小さなシリカ粒子の表面にAgを被覆した導電性粒子や、比重の小さな樹脂の表面にAgを被覆した導電性粒子が開発されている。たとえば、特開2001-23435号公報(特許文献4)、特開昭61-257479号公報(特許文献5)および特開昭62-297471号公報(特許文献6)には、還元性を有するケイ素系高分子化合物を用いて、あるいは、シランカップリング剤を用いてシリカ粒子を予め表面処理した上で、無電解めっき法を用いて、金属をシリカ粒子の表面に析出させる技術が開示されている。また、たとえば、特開2006-228474号公報(特許文献7)には、樹脂の表面が金属からなる導電性被膜で被覆された導電性粒子であって、導電性被膜の表面積の70~90%が隆起した突起を形成している複合導電性粒子が開示されている。
特開2008-111175号公報 特開2004-52044号公報 特開2006-161081号公報 特開2001-23435号公報 特開昭61-257479号公報 特開昭62-297471号公報 特開2006-228474号公報
 しかしながら、樹脂やシリカそのものには導電性がないため、これらをコア粒子とする導電性粒子において高い導電性を発揮させるためには、Agの使用量を増やす必要があり、結果的に製造コストが増大する傾向にある。特に、特許文献4~6に開示される技術においては、ケイ素系高分子化合物やシランカップリング剤を用いてシリカ粒子の表面を予め表面処理する必要があり、さらなる製造コストの増大に繋がる。また、特許文献7に開示される技術においては、複合導電性粒子の表面の大部分に突起が形成されているために、たとえば、これを用いた導電性樹脂組成物を調製した場合に、導電性粒子の充填性が低くなり、結果的に、導電性樹脂組成物に求められる導電性を付与できないという問題が生じる。
 本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、高い導電性と高い充填性とを有する複合導電性粒子、それを含む導電性樹脂組成物および導電性塗布物を提供することにある。
 本発明の複合導電性粒子は、0.1μm以上50μm以下の粒子径を有する第1導電性粒子と、第1導電性粒子の表面に付着する、50nm以上1000nm以下の粒子径を有する第2導電性粒子と、を備え、第1導電性粒子は、第1粒子と、第1粒子の表面を被覆しする第1金属被膜とからなり、第2導電性粒子は、第2粒子と、第2粒子の表面を被覆しする第2金属被膜とからなり、第1導電性粒子の粒子径は第2導電性粒子の粒子径よりも大きく、第2導電性粒子の第1導電性粒子に対する付着率は2%以上40%以下である。
 上記複合導電性粒子において好ましくは、第1粒子および第2粒子は、それぞれシリカからなる。
 上記複合導電性粒子において好ましくは、第1金属被膜および第2金属被膜はそれぞれ銀、金、銅、ニッケル、白金、錫およびこれらの合金からなる群より選ばれる少なくとも1種からなる。
 上記複合導電性粒子において好ましくは、有機酸を含む保護層を備える。
 また、本発明は、上記の複合導電性粒子を導電材として含む導電性樹脂組成物、および該導電性樹脂組成物により形成された塗膜を基体上に有する導電性塗布物にも係わる。
 本発明の複合導電性粒子は高い導電性と高い充填性とを有する。また、該複合導電性粒子を含む導電性樹脂組成物および導電性塗布物は、高い導電性を有することができる。
実施の形態に係る複合導電性粒子の構造を模式的に示す断面図である。 複合導電性粒子のSEM写真を示す図である。 図2のSEM写真を二値化処理した後の画像を示す図である。 実施の形態に係る複合導電性粒子の製造に用いる撹拌装置の一例を示す模式的な断面図である。 実施例1の導電性粉末のSEM写真を示す図である。 比較例2の導電性粉末のSEM写真を示す図である。 シリカ粉末のSEM写真を示す図である。 実施例1の導電性粉末の断面のSEM写真を示す図である。
 以下、本発明の複合導電性粒子、それを含む導電性樹脂組成物および導電性塗布物について、図を用いながら詳細に説明する。
 <複合導電性粒子>
 図1を参照し、本実施の形態に係る複合導電性粒子1は、0.1μm以上50μm以下の粒子径d1を有する第1導電性粒子10と、第1導電性粒子10の表面に付着する、50nm以上1000nm以下の粒子径d2を有する第2導電性粒子20とを備える。第1導電性粒子10は、第1粒子11と、第1粒子11の表面を被覆する第1金属被膜12とからなり、第2導電性粒子20は、第2粒子21と、第2粒子21の表面を被覆する第2金属被膜22とからなる。また、第1導電性粒子10の粒子径d1は、第2導電性粒子20の粒子径d2よりも大きく、第2導電性粒子20の第1導電性粒子10に対する付着率は2%以上40%以下である。なお、本発明の導電性粒子は、不可避不純物を含んでいてもよく、また、本発明の効果を発揮する限り、他の任意の成分を含んでいてもよい。
 本明細書において「付着」とは、物理的に相互に結合している状態をいい、単に接している状態とは異なる。また、この状態は、少なくとも、導電性粒子を利用するにあたって、導電性粒子に加えられる物理的衝撃(たとえば、撹拌作業、塗布作業等)に耐えうるものである。
 (付着率)
 まず、付着率について説明する。複合導電性粒子1の付着率(第2導電性粒子20の第1導電性粒子10に対する付着率)は次の方法により算出することができる。すなわち、走査型電子顕微鏡(SEM;Scanning Electron Microscope)を用いて、複合導電性粒子1の電子画像を得る。電子画像において、粒子径d1を有する1つの粒子(第1導電性粒子10)の表面に、粒子径d2(ただし、d1>d2)を有する複数の粒子(第2導電性粒子20)が付着している構造を示すものが、複合導電性粒子1に該当する。
 図2は、複合導電性粒子のSEM写真を示す図である。図2において、粒子径の最も大きい粒子が第1導電性粒子10であり、その表面に付着している粒子径の小さい複数の粒子が第2導電性粒子20である。すなわち、図2は、観察視野に1つの複合導電性粒子1を示すSEM写真である。
 なお、電子画像において、粒子同士が「付着している状態」であるのか、「凝集している状態」であるのかは、粒子の状態および粒子径の関係によって区別することができる。たとえば、多数(それらの粒子径は問わない)の粒子同士が密着することによって形成される大きな塊が観察される場合には、この塊を構成する各粒子は「凝集している状態」に区別することができる。これに対し、上述のように、粒子径d1を有する1つの粒子の表面に、粒子径d2(ただし、d1>d2)を有する複数の粒子が重なって、または繋がっているように観察される場合には、「付着している状態」に区別することができる。また、電子画像において粒子同士が3次元的に重なる状態となる場合があるが、このような状態は、互いに重なる粒子の背面、または前面を電子画像で観察することができないため、このような電子画像は観察対象から除く。
 図2に示されるように、SEM写真において、複合導電性粒子1中の第1導電性粒子10の表面に付着する第2導電性粒子20が占める領域は、第1導電性粒子10が占める領域よりも高い明度を示す傾向にある。このため、図3に示すように、電子画像を二値化処理することにより、1つの複合導電性粒子1が占める領域において、第1導電性粒子10が占める領域(図3中のAの領域)の面積S1と、第2導電性粒子20が占める領域(図3中のBの領域)の面積S2とを算出することができる。なお、図3において、Bの領域は斜線でハッチングされる全ての領域である。
 そして、該面積S1、S2の各数値を下記式(1)に当てはめることにより、上記付着率を算出することができる。なお、本明細書において、付着率は、1つのSEM写真で観察される複合導電性粒子50個以上について測定した結果の平均値とする。
   付着率(%)=S2/(S1+S2)×100・・・(1)。
 本実施の形態に係る複合導電性粒子1において、第2導電性粒子20による第1導電性粒子10の付着率は、2%以上40%以下である。この場合に、複合導電性粒子1は、高い導電性と高い充填性とを両立することができる。一方、付着率が2%未満の場合には、導電性が不十分となり、付着率が40%を超える場合には、充填性が不十分となる。上記被覆率は、4%以上35%以下がより好ましい。
 (第1導電性粒子および第2導電性粒子)
 図1に戻り、第1導電性粒子10および第2導電性粒子20の形状は特に制限されず、球状、粒状、円盤状、柱状、立方体、直方体、板状、針状、繊維状、フィラー状、樹枝状などの各形状を有することができる。製造方法上、第1粒子11および第2粒子21の各形状は、第1導電性粒子10および第2導電性粒子20の各形状に引き継がれる。なお、本明細書において、球状とは、数学的な球形を意図するものではなく、一見して球形と判断できる程度のものをいう。
 また、上述のように、第1導電性粒子10は0.1μm以上50μm以下の粒子径d1を有し、第2導電性粒子20は50nm以上1000nm以下の粒子径d2を有し、粒子径d1は粒子径d2よりも大きい。なお、第1導電性粒子10および第2導電性粒子20の各粒子径は、SEM写真を分析することによって測定することができる。第1導電性粒子10および第2導電性粒子20のそれぞれがこのような粒子径を有することにより、複合導電性粒子1は高い導電性を有しつつ、高い充填性を有することができる。粒子径d1は1μm以上20μm以下がより好ましく、1μm以上5μm以下がさらに好ましく、粒子径d2は100nm以上950nm以下がより好ましく、100nm以上700nm以下がさらに好ましい。
 ここで、上記粒子径d1は、SEM写真にて観察される任意の50個以上の第1導電性粒子10の粒子径の平均値であり、同様に、粒子径d2は、SEM写真にて観察される任意の50個以上の第2導電性粒子20の粒子径の平均値である。第1導電性粒子10または第2導電性粒子20の形状が球状の場合には、第1導電性粒子10および第2導電性粒子20のそれぞれの直径を粒子径d1および粒子径d2とする。また、第1導電性粒子10または第2導電性粒子20の形状が板状、針状などの長さの異なる辺を有する場合には、第1導電性粒子10および第2導電性粒子20の各長辺の距離を粒子径d1および粒子径d2とする。
 (第1粒子および第2粒子)
 第1導電性粒子10のコアを構成する第1粒子11、および第2導電性粒子20のコアを構成する第2粒子21の材料は特に制限されず、アルミニウム、銅、ニッケル、錫などの金属、シリカ、ガラス、アルミナ、セラミックスなどの種々の無機物、樹脂などの有機物を用いることができる。ただし、第1粒子11の材料と第2粒子21とは同じ材料からなる。これは、後述する製造方法に起因する。
 上記複合導電性粒子1の比重を小さくする観点からは、第1粒子11および第2粒子21は、比重の小さい材料からなることが好ましく、たとえば、樹脂、シリカ、アルミナ、アルミニウム、ガラス、ジルコニア、シリコンカーバイド、窒化ホウ素、ダイヤモンドのいずれかからなることが好ましい。
 樹脂は特に制限されず、たとえば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリイソブチレン、ポリブタジエンなどのポリオレフィン、ポリメチルメタクリレート、ポリメチルアクリレートなどのアクリル樹脂、ジビニルベンゼン重合樹脂、ジビニルベンゼン-スチレン共重合体、ジビニルベンゼン-アクリル酸エステル共重合体、ジビニルベンゼン-メタクリル酸エステル共重合体などのジビニルベンゼン系共重合体樹脂、ポリアルキレンテレフタラート、ポリスルホン、ポリアミド、ポリカーボネート、メラミンホルムアルデヒド樹脂、フェノールホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂などを挙げることができる。
 シリカとしては、溶融シリカや、これを表面処理した無孔質のものを好適に用いることができる。また、ガラスも特に制限されず、目的に応じて適宜選択することができるが、環境への負荷を低減する観点から無鉛ガラスが好ましい。なお、ガラスを構成する成分として金属が含まれていてもよい。
 特に、第1粒子11および第2粒子21は、シリカからなることが好ましい。シリカは樹脂と比して濡れ性が高いため、後述する製造方法において、シリカ粒子の表面に均一に金属被膜を形成させることができる。このため、シリカからなる第1粒子11および第2粒子21を有する複合導電性粒子1は、均質な第1金属被膜12および第2金属被膜22を有することができる。また、シリカは、樹脂と比して熱収縮による変化や溶剤による膨潤が少ないため、第1粒子11および第2粒子21をシリカ粒子とすることにより、より品質の安定した複合導電性粒子1を提供することができる。
 また、第1粒子11および第2粒子21の形状は特に制限されず、球状、粒状、板状、針状、繊維状、円盤状、柱状、立方体、直方体、フィラー状、樹枝状などの各形状を有することができる。ただし、後述する製造方法におけるめっき処理液中での分散性の高さから、第1粒子11および第2粒子21の形状は球状であることが好ましい。この場合、複合導電性粒子1の品質をより均質にすることができる。
 (第1金属被膜および第2金属被膜)
 第1導電性粒子10を被覆する第1金属被膜12、および第2導電性粒子20を被覆する第2金属被膜22の材料は特に制限されず、公知の金属を用いることができる。ただし、第1金属被膜12の材料と第2金属被膜22の材料とは同じである。これは、後述する製造方法に起因する。なかでも、銀(Ag)、金(Au)、銅(Cu)、ニッケル(Ni)、白金(Pt)、錫(Sn)およびこれらの合金は特に高い導電性を有するため、第1金属被膜12および第2金属被膜22は、銀、金、銅、ニッケル、白金、錫およびこれらの合金からなる群より選ばれる少なくとも1種からなることが好ましい。また、第1金属被膜12および第2金属被膜22は、各々1層の金属層で構成されてもよく、同種の金属または異種の金属からなる複数層で構成されてもよい。また、金属の導電性を大きく阻害せず、本発明の効果を奏する限り、第1金属被膜および第2金属被膜には、リン(P)、ホウ素(B)、炭素(C)および硫黄(S)等の非金属が含まれていてもよい。
 第1金属被膜12は、第1粒子11の表面の全体を被覆していることが好ましいが、これに限られず、第1粒子11の表面の一部を被覆していてもよい。ただし、効果を十分に発揮する観点から、少なくも第1粒子11の表面の70%以上を被覆していることが好ましい。また、第2金属被膜22もまた、第2粒子21の表面の全体を被覆していることが好ましいが、これに限られず、第2粒子21の表面の一部を被覆していいてもよい。ただし、効果を十分に発揮する観点から、少なくとも第2粒子21の表面の70%以上を被覆していることが好ましい。
 また、第1金属被膜12および第2金属被膜22の平均膜厚は0.1nm以上であることが好ましい。0.1nm未満の場合、各複合導電性粒子1を被覆することが困難となり、導電性の低下を引き起こす傾向がある。また、上記膜厚は、1nm以上であることがより好ましい。また、膜厚は100nm以下であることがさらに好ましい。膜厚が100nmを超えると、膜厚のばらつきが大きくなる傾向にあり、また凝集し易くなる傾向にある。さらに、膜厚を大きくするためには使用する金属量を増やす必要があるため、製造コストの増加に繋がる傾向がある。このため、必要とされる導電性と製造コストとの兼ね合いを考慮することが好ましい。
 第1金属被膜12および第2金属被膜22の膜厚は、SEM等の電子顕微鏡を用いて複合導電性粒子1の断面観察を行うことにより評価することができる。なお、第1粒子11(第2粒子21)の第1金属被膜12(第2金属被膜22)による被覆の均一性や被覆の程度等についても、同様の断面観察によって評価することができる。
 (保護層)
 複合導電性粒子1は、その表面を被覆する保護層を備えていてもよい(不図示)。当該保護層は脂肪酸または脂肪酸塩などの表面処理剤により形成することができる。複合導電性粒子1がその表面に保護層を備えることによって耐熱性が向上し、これにより導電性が維持される。なお、保護層は、複合導電性粒子1の表面の全体を被覆していることが好ましいが、これに限られず、複合導電性粒子1の一部を被覆している構成であってもよい。この保護層は、複合導電性粒子を導電性樹脂組成物に配合した際に、複合導電性粒子の分散剤や潤滑剤としての機能も果たす。
 表面処理剤は特に制限されず、目的に応じて適宜選択することができる。たとえば、脂肪酸、脂肪酸塩、界面活性剤、キレート剤、有機金属化合物などを挙げることができる。なかでも、脂肪酸、脂肪酸塩が好ましく、これら以外としては、ベンゾトリアゾール類が好ましい。脂肪酸としては、プロピオン酸、カプリル酸、ラウリン酸、パルミチン酸、オレイン酸、アクリル酸、ミリスチン酸、ステアリン酸、ベヘン酸、リノール酸、アラキドン酸などを挙げることができる。特に、第1金属被膜12および第2金属被膜22に対する高い保護効果を有する観点から、ステアリン酸、オレイン酸、ラウリン酸の少なくとも1種を用いることが好ましい。なお、表面処理剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
 (製造方法)
 複合導電性粒子1の製造方法について説明する。まず、第1粒子11および第2粒子21の材料となる粉末を準備する。粉末としては、金属粉末、樹脂粉末、およびシリカ粉末などの無機物の粒子からなる粉末などが挙げられる。用いられる粉末の形状は特に制限されず、球状、粒状、板状、針状、繊維状、フィラー状、樹枝状などの各形状のものを用いることができるが、後述するめっき処理液中における分散性の高さから、球状であることが好ましい。なお、第1粒子11および第2粒子21の材料の形状が球状である場合、製造される複合導電性粒子1を構成する第1導電性粒子10および第2導電性粒子20もまた球状となる。
 ここで、用いる粉末は第1粒子11および第2粒子21の材料であるため、当該粉末には、少なくとも、第2導電性粒子20の粒子径d2よりも小さい粒子径を有する小粒子と、該小粒子よりも大きく、かつ第1導電性粒子10の粒子径d1(ただし、d1>d2)よりも小さい粒子径を有する大粒子とが混在している必要がある。
 たとえば、市販の粉末を用いる場合には、レーザー回折法などの公知の粒度分布測定法により測定された粒度分布に基づいて、必要とする小粒子と大粒子とが混在しているかどうかを確認することができる。特に、粉末のD50が1μm~50μmであることが好ましく、D10が0.1μm~10μmであることが好ましく、さらには、D10が0.1μm~1μmであることがより好ましい。この場合、高い歩留まりでの製造が可能となる。なお、D50、D10とは、レーザー回折法により測定された体積累積粒度分布において、それぞれ累積度50%、10%の粒子径を意味する。
 本製造方法においては、複合導電性粒子1を製造するために、粉末全体として上記のような粒度分布を有する粉末を用いてもよいし、上記のような小粒子と大粒子とを別々に準備してこれらを予め混合させた粉末を準備してもよい。さらに、混合させるにあたって、複合導電性粒子1の被覆率を考慮して、この混合割合を調整してもよい。
 次に、撹拌装置の撹拌槽内に準備した粉末を投入し、これをスラリー化する。撹拌装置としては、たとえば、図4に示す撹拌装置を用いることができる。図4において、撹拌装置30は、撹拌槽31と、撹拌槽31内に収容されたスラリー等を撹拌可能な撹拌羽根32とを備える。撹拌羽根32は、支軸部32aと羽根部32bとからなり、不図示の駆動部により、図中矢印方向に、所定の翼周速度で回転することができる。本実施の形態では、撹拌槽31内に粉末からなるスラリーが投入される。
 次に、撹拌槽31内に、必要であれば、第1粒子11と第2粒子21との表面に第1金属被膜12および第2金属被膜22を被覆させるための触媒を投入する。第1粒子11および第2粒子21の表面に触媒付与を行わずに直接めっき処理液に接触させることで、第1金属被膜12および第2金属被膜22とを形成させることもできる。しかし、無電解めっき処理の前に無電解めっき用の触媒を各粒子に付着させておくことにより、金属被膜の形成がより効率的になるため、触媒の投入を行うことが好ましい。
 触媒を付着させる方法としては、たとえば、塩化第一スズを含む塩酸溶液によって第1粒子11および第2粒子21の表面を処理した後、塩化パラジウムを含む溶液で処理する方法、塩化パラジウムおよび塩化第一スズを含む溶液で処理する方法、塩化第一スズおよび塩化パラジウムを含む溶液にて第1粒子11および第2粒子21の表面を処理した後、塩酸水溶液、硫酸水溶液などを用いて活性化する方法などが例示される。これらの方法は、センシタイジング-アクチベーティング法またはキャタリスト法として知られる公知の方法である。本製造方法においては、このような公知の触媒付与方法を適宜使用することができる。
 次に、撹拌槽31内に、金属塩、還元剤、および錯化剤を含むめっき処理液を投入する。金属塩としては、有機溶媒および水溶媒を含む混合溶媒中で安定的に溶解できるものが好ましく、硝酸塩、硫酸塩、亜硝酸塩、シュウ酸塩、炭酸塩、塩化物、酢酸塩、乳酸塩、スルファミン酸塩、フッ化物、ヨウ化物、シアン化物等を用いることができる。なお、金属塩を構成する金属は、第1金属被膜12および第2金属被膜22を構成する金属である。
 還元剤としては、無電解めっき処理法に用いられる公知のものを用いることができる。具体的には、グルコース、サッカロースなどの糖類、セルロース、デンプン、グリコーゲンなどの多糖類、エチレングリコール、プロピレングリコール、グリセリンなどの多価アルコール類、次亜リン酸、ホルムアルデヒド、水素化ボロン、ジメチルアミンボラン、トリメチルアミンボラン、ヒドラジン酒石酸、およびこれらの塩などを用いることができる。なお、ヒドラジン洒石酸塩は、アルカリ金属塩であることが好ましい。
 錯化剤としては、無電解めっき処理法に用いられる公知のものを用いることができる。具体的には、コハク酸などのカルボン酸、クエン酸および洒石酸などのオキシカルボン酸、グリシン、エチレンジアミン四酢酸(EDTA)、アミノ酢酸、およびこれらの塩など、たとえば、アルカリ金属塩、アンモニウム塩などを用いることができる。無電解めっき処理法において、このような錯化剤を用いることによって、金属の再析出を抑制することができるため、安定的に金属被膜を成長させることができる。
 また、めっき処理液のpHは、金属塩を構成する金属の種類によって適宜調整することが好ましい。めっき処理液に、水酸化ナトリウム、水酸化カリウム、アンモニア水等を添加することにより、そのpHをアルカリ性(pH8~12)に調整することができ、硫酸、硝酸、クエン酸等を添加することにより、そのpHを酸性(pH3~6)にすることがで、これらの組み合わせにより、そのpHを中性(pH6~8)にすることができる。さらに、めっき処理液の温度は1~99℃に調整することが好ましい。この場合、めっき反応を効率的に進めることができる。
 そして、撹拌羽根32を回転させてめっき処理液を撹拌させることにより、無電解めっき処理を行う。このとき、撹拌羽根32の翼周速度を1.5m/sec以上10m/sec以下に制御する。
 また、撹拌装置30において、撹拌槽31の内径D1と撹拌羽根32の外径D2との関係(D1:D2)は、7:3~5:5であることが好ましく、7:3~6:4であることがより好ましい。この場合、撹拌槽31内のめっき処理液中における第1粒子11および第2粒子21の分散をより均一にできるため、翼周速度の制御を均一に反映させることができる。また、同様の理由により、撹拌槽31内のめっき処理液の高さH1と撹拌羽根32の高さH2との関係(H1:H2)は、9.9:0.1~7:3であることが好ましく、9.9:0.1~9:1であることがより好ましい。なお、高さH1は、撹拌槽31の底部上面とめっき処理液の液面との距離に相当し、高さH2は、底部上面と羽根部32bの下面との距離に相当する。必要に応じて、撹拌槽31内の上下方向における分散性を向上させるために、撹拌槽31の内部壁に邪魔板(バッフル)を設置してもよい。
 上記無電解めっき処理により、めっき処理液中に複合導電性粒子1が作製される。したがって、撹拌後のスラリー(めっき処理液)を固液分離することにより、複合導電性粒子1のスラリーを得ることができ、これを乾燥させることにより、複合導電性粒子1を得ることができる。
 なお、上述の保護層を形成する場合には、その形成方法は特に制限されないが、たとえば、無電解めっき処理後の処理液から固液分離等によって複合導電性粒子1を取り出し、これを保護層の材料となる脂肪酸または有機酸を含む溶液中に投入する、という方法を採用することができる。この処理によって、保護層を有する複合導電性粒子1を作製することができる。
 以上のように、複合導電性粒子1は特定の条件下で無電解めっき処理を行うことによって効率的に製造することができる。換言すれば、上述のような簡易な処理により、各粒子の表面が金属によって被覆された導電性粒子が作製されるとともに、導電性粒子のうち、粒子径d1を有する「大径導電性粒子」である第1導電性粒子10の表面に、粒子径d2(ただし、d1>d2)を有する複数の「小径導電性粒子」である第2導電性粒子20が付着することができる。この理由は明確ではないが、本発明者らは以下のように考察している。
 めっき処理液中において、大小様々な粒子の表面に金属塩由来の金属が析出する。これにより、様々な粒子径を有する導電性粒子が作製される。そして、このときの翼周速度が1.5m/sec未満の場合には、スラリーの分散性が低くなるために、「大径導電性粒子」と「小径導電性粒子」とを含む全ての導電性粒子が凝集する。この場合には、1つの「大径導電性粒子」に対して「小径導電性粒子」が付着するだけでなく、他の「大径導電性粒子」までもが付着してしまうために、複合導電性粒子1を製造することができない。なお、この状態は上述の「凝集している状態」に相当する。
 また、翼周速度が10m/secを超える場合、スラリーの分散性が高くなるために、「大径導電性粒子」と「小径導電性粒子」とがそれぞれ金属によって被覆された後に各粒子同士が接触することが困難となる。このため、「小径導電性粒子」を「大径導電性粒子」の表面に付着させることができず、それぞれの導電性粒子は分散されたままとなる。なお、通常、粒子のめっき処理を行うにあたっては、各粒子が分散されることが所望される。
 これに対し、翼周速度が1.5m/sec以上10m/sec以下の場合には、スラリーの分散性が、上述のような凝集を起こさずに、「大径導電性粒子」と「小径導電性粒子」とがそれぞれ被覆された後に接触するのに適切な状態となる。このため、1つの「大径導電性粒子」に対して複数の「小径導電性粒子」が付着することができ、結果的に、複合導電性粒子1が製造される。
 (効果)
 本実施の形態に係る複合導電性粒子1によれば、高い導電性と高い充填性とを有することができる。複合導電性粒子1が高い導電性と高い充填性との両特性を有することのできる理由は次のように考えられる。
 すなわち、従来の導電性粒子は、1つのコア粒子の表面に金属被膜が形成された構成を有していた。これに対し、複合導電性粒子1は、粒子径の比較的大きい第1導電性粒子10の表面に粒子径の比較的小さい第2導電性粒子20が複数付着した構成を有する。このような構成を有することにより、粒子同士の接点が増し、かつ粒子の充填性も高まるため、結果的に、高い導電性と高い充填性との両特性を有することができる。
 なお、複合導電性粒子1において、第1導電性粒子10および第2導電性粒子20のそれぞれは、図1に示されるように金属被膜によって個々に被覆された構成を有する。すなわち、第1粒子11および第2粒子21は互いに直接は接触していない。このため、複合導電性粒子1の構造は、たとえば、互いに直接接触する複数の粒子の表面が一体的に金属によって被覆されるような構成とは異なる。複合導電性粒子1は、一体的に金属によって被覆されるような構成に比して第1粒子11と第2粒子21とがそれぞれ被覆された状態で互いに付着しているため、第1導電性粒子10と第2導電性粒子20との接点においても導通することができ、もってより高い導電性を有することができる。
 ここで、第2導電性粒子20による第1導電性粒子10の被覆率が高過ぎたり、第2導電性粒子20の粒子径が大き過ぎたりすると、複合導電性粒子1の構造が嵩高くなり、その充填性が低下すると考えられる。しかし、本実施の形態に係る複合導電性粒子1において、上記被覆率は2%以上40%以下であり、さらに第1導電性粒子10の粒子径d1と第2導電性粒子20の粒子径d2とが上述の数値を満たすことにより、十分に高い充填性を発揮することができる。
 <導電性樹脂組成物>
 本実施の形態に係る導電性樹脂組成物は、上述の複合導電性粒子1を導電材として含むことを特徴とする。複合導電性粒子1は、上述のように、高い導電性と高い充填性を有するものであり、これを導電材として含む導電性樹脂組成物は、上述の複合導電性粒子1の効果を引き継ぐことができる。すなわち、本発明の導電性組成物によれば、高い導電性を有する複合導電性粒子1を含むとともに、導電性樹脂組成物中において、複合導電性粒子1を高密度で充填させることができる。したがって、導電性の高い導電性樹脂組成物を提供することができる。
 上記導電性樹脂組成物は、具体的には、樹脂に上記複合導電性粒子1を分散させたものであり、導電性ペースト、導電性塗料、導電性接着剤、導電性インキ、導電性フィルム、導電性成形物、導電性塗膜などを挙げることができる。このような導電性樹脂組成物は、たとえば、上記複合導電性粒子1を樹脂に練り込んだり、樹脂溶液に分散させることにより、製造することができる。
 上記樹脂は、この種の用途に使用される従来公知の樹脂を使用することができ、たとえば、熱硬化型アクリル樹脂/メラミン樹脂、熱硬化型アクリル樹脂/セルロースアセテートブチレート(CAB)/メラミン樹脂、熱硬化型ポリエステル(アルキド)樹脂/メラミン樹脂、熱硬化型ポリエステル(アルキド)/CAB/メラミン樹脂、イソシアネート硬化型ウレタン樹脂/常温硬化型アクリル樹脂、水希釈型アクリルエマルジョン/メラミン樹脂などを挙げることができる。
 なお、導電性樹脂組成物における導電性粒子の含有量は、用途により異なるため特に限定されないが、たとえば、樹脂100質量部に対して10質量部以上100質量部以下とすることが好ましい。10質量部未満の場合、導電性樹脂組成物の導電性が不十分となる場合があり、100質量部を超える場合、導電性樹脂組成物中の導電性粒子の量が多過ぎるために、取扱い性が低下する場合がある。また、上記導電性樹脂組成物は、樹脂および複合導電性粒子1以外の任意の成分を含んでいてもよい。任意の成分としては、たとえば、ガラスフリット、金属アルコキシド、粘度調製剤、表面調製剤などを挙げることができる。
 <導電性塗布物>
 本実施の形態に係る導電性塗布物は、上記導電性樹脂組成物により形成された塗膜を基体上に有する塗布物である。したがって、この導電性塗布物は、高い導電性を備えたものとなる。
 上記導電性塗布物は、具体的には、電極、配線、回路、導電性接合構造、導電性粘着テープ等を挙げることができる。塗膜の形状および厚さも特に制限されず、その用途によって所望の厚さを採用することができる。
 上記基体に関し、金属、プラスチックなどの有機物、セラミックス、ガラスなどの無機物、紙および木材など、その素材は特に限定されない。
 なお、上記導電性樹脂組成物を基体上に塗布する方法は、従来公知の塗布方法を特に限定することなく採用することができ、いかなる方法も採用することができる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 <実施例1>
 以下のようにして、実施例1に係る導電性粉末(複合導導電性粒子)を作製した。まず、第1粒子および第2粒子の材料として、シリカ粉末(商品名:「アドマファインSO-C6」、株式会社アドマテックス製)を準備した。なお、この粉末の特性は以下の通りであった。
 比表面積:35922cm2/cm3
 D10:0.69μm
 D50:1.83μm。
 次に、図4に示すような構成を有する撹拌装置を準備した。準備した撹拌装置に関し、撹拌槽の最大容量は2.0Lであり、撹拌槽の内径D1と撹拌羽根の外径D2との関係(D1:D2)は、7:3~6:4の範囲内であった。また、後述するめっき処理において、撹拌槽内のめっき処理液の高さH1と撹拌羽根の高さH2との関係(H1:H2)は、9.9:0.1~9:1の範囲内とした。
 準備した撹拌装置の撹拌槽内に、上記シリカ粉末10g、イオン交換水0.05Lを投入して撹拌羽根を回転させてスラリーを形成した。そして、該スラリーに塩化第一スズ0.2gをイオン交換水0.05Lに溶解させた溶液を添加し、5分間撹拌した。なお、このときの翼周速度は5m/secであり、槽内温度は30℃とした。これにより、シリカ粉末を構成するシリカ粒子の表面にスズイオンが担持された。そして、上記処理後のスラリーを固液分離し、得られた固体成分Aをイオン交換水で洗浄した。なお、以降記載する遠心分離の条件は、本条件と同様とした。
 次に、撹拌槽内にイオン交換水0.45Lを投入し、さらに、上記洗浄後の固体成分Aを添加した。そして、翼周速度2.7m/secで1分撹拌した後、下記の水溶液1~3を添加して同翼周速度で30分間撹拌した。これにより、シリカ粒子の表面に、該表面を被覆する第1金属被膜および第2金属被膜としての銀被膜を形成するための無電解めっき処理を行った。なお、このときの槽内温度は30℃とした。
 水溶液1:硝酸銀6.75gと25%アンモニア水30mLをイオン交換水300mLに溶解させた水溶液
 水溶液2:水酸化ナトリウム2.7gをイオン交換水300mLに溶解させた水溶液
 水溶液3:ぶどう糖40.5gをイオン交換水300mLに溶解させた水溶液。
 上記めっき処理後の処理液を固液分離し、得られた固体成分Bをイオン交換水で洗浄した。なお、ここで得られた固体成分B中には、図1に示される構成を有する本発明に係る複合導電性粒子が含まれることになる。そして、得られた洗浄後の固体成分Bを、別の撹拌槽内に投入されたオレイン酸含有アルコール溶液中に添加して、10分撹拌することにより、複合導電性粒子の表面にオレイン酸からなる保護層を形成させた。なお、オレイン酸含有アルコール溶液としては、2gのオレイン酸が100mLのイソプロピルアルコールに溶解された溶液を用いた。
 上記保護層を形成させた後、得られたスラリーを固液分離し、得られた固体成分Cをイオン交換水で洗浄した。なお、ここで得られた固体成分中には、保護層を有する複合導電性粒子が含まれることになる。そして、得られた洗浄後の固体成分Cに対して、110℃、真空環境下で乾燥処理を行い、実施例1に係る導電性粉末を得た。なお、この導電性粉末の色調は褐色であった。
 <実施例2>
 以下のようにして、実施例2に係る導電性粉末(複合導電性粒子)を作製した。まず、第1粒子および第2粒子の材料として、シリカ粉末(商品名:「アドマファインSO-C6」、株式会社アドマテックス製)を準備した。
 次に、図4に示すような構成を有する撹拌装置を準備した。準備した撹拌装置に関し、撹拌槽の最大容量は0.5Lであり、D1:D2およびH1:H2の各比は実施例1と同様とした。
 次に、準備した撹拌槽の撹拌槽内に、上記シリカ粉末10g、イオン交換水0.05Lを投入して撹拌羽根を回転させてスラリーを形成した。そして、該スラリーにフッ化スズ0.2gをイオン交換水0.05Lに溶解させた溶液を添加し、5分間撹拌した。なお、このときの翼周速度は5m/secであり、槽内温度は50℃とした。これにより、シリカ粉末を構成するシリカ粒子の表面にスズイオンが担持された。そして、上記処理後のスラリーを固液分離し、得られた固体成分Aをイオン交換水で洗浄した。
 次に、撹拌槽内にイオン交換水0.2Lを投入し、さらに、上記洗浄後の固体成分Aを添加した。そして、翼周速度2.7m/secで1分撹拌した後、下記の水溶液1~3を添加して同翼周速度で30分間撹拌した。これにより、シリカ粒子の表面に、該表面を被覆する第1金属被膜および第2金属被膜としての銀被膜を形成するための無電解めっき処理を行った。なお、このときの槽内温度は30℃とした。
 水溶液1:硝酸銀1.75gと25%アンモニア水8mLをイオン交換水50mLに溶解させた水溶液
 水溶液2:水酸化ナトリウム0.7gをイオン交換水50mLに溶解させた水溶液
 水溶液3:ぶどう糖10.5gをイオン交換水50mLに溶解させた水溶液。
 上記めっき処理後の処理液を固液分離し、得られた固体成分Bをイオン交換水で洗浄した。なお、ここで得られた固体成分B中には、図1に示される構成を有する本発明に係る複合導電性粒子が含まれることになる。そして、得られた洗浄後の固体成分Bを、別の撹拌槽内に投入されたオレイン酸含有アルコール溶液中に添加して、10分撹拌することにより、複合導電性粒子の表面にオレイン酸からなる保護層を形成させた。なお、オレイン酸含有アルコール溶液としては、1.5gのオレイン酸が0.3Lのイソプロピルアルコールに溶解された溶液を用いた。
 上記保護層を形成させた後、得られたスラリーを固液分離し、得られた固体成分Cをイオン交換水で洗浄した。なお、ここで得られた固体成分C中には、保護層を有する複合導電性粒子が含まれることになる。そして、得られた洗浄後の固体成分Cに対し、110℃、真空環境下で乾燥処理を行い、実施例2に係る導電性粉末を得た。なお、この導電性粉末の色調は黒褐色であった。
 <実施例3>
 以下のようにして実施例3に係る導電性粉末(複合導電性粒子)を作製した。まず、第1粒子および第2粒子の材料として、シリカ粉末(商品名:「アドマファインSO-C6」、株式会社アドマテックス製)を準備した。
 次に、図4に示すような構成を有する撹拌装置を準備した。準備した撹拌装置に関し、撹拌槽の最大容量は1Lであり、D1:D2およびH1:H2の各比は実施例1と同様とした。そして、実施例2と同様の方法により、洗浄後の固体成分Aを得た。
 次に、撹拌槽内にイオン交換水0.5Lを投入し、さらに、上記洗浄後の固体成分Aを添加した。そして、翼周速度2.7m/secで1分撹拌した後、下記の水溶液1~3を添加して同翼周速度で30分間撹拌した。これにより、シリカ粒子の表面に、該表面を被覆する第1金属被膜および第2金属被膜としての銀被膜を形成するための無電解めっき処理を行った。なお、このときの槽内温度は30℃とした。
 水溶液1:硝酸銀3.9gと25%アンモニア水18mLをイオン交換水110mLに溶解させた水溶液
 水溶液2:水酸化ナトリウム1.5gをイオン交換水110mLに溶解させた水溶液
 水溶液3:ぶどう糖23.6gをイオン交換水110mLに溶解させた水溶液。
 上記めっき処理後の処理液を固液分離し、得られた固体成分Bをイオン交換水で洗浄した。なお、ここで得られた固体成分中Bには、図1に示される構成を有する本発明に係る複合導電性粒子が含まれることになる。そして、得られた洗浄後の固体成分Bを、別の撹拌槽内に投入されたオレイン酸含有アルコール溶液中に添加して、10分撹拌することにより、複合導電性粒子の表面にオレイン酸からなる保護層を形成させた。なお、オレイン酸含有アルコール溶液としては、1.5gのオレイン酸が0.3Lのイソプロピルアルコールに溶解された溶液を用いた。
 上記保護層を形成させた後、得られたスラリーを固液分離し、得られた固体成分Cをイオン交換水で洗浄した。なお、ここで得られた固体成分C中には、保護層を有する複合導電性粒子が含まれることになる。そして、得られた洗浄後の固体成分Cに対し、110℃、真空環境下で乾燥処理を行い、実施例3に係る導電性粉末を得た。なお、この導電性粉末の色調は灰褐色であった。
 <実施例4>
 以下のようにして実施例4に係る導電性粉末(複合導電性粒子)を作製した。まず、第1粒子および第2粒子の材料として、シリカ粉末(商品名:「アドマファインSO-C6」、株式会社アドマテックス製)を準備した。
 次に、図4に示すような構成を有する撹拌装置を準備した。準備した撹拌装置に関し、撹拌槽の最大容量は3Lであり、D1:D2およびH1:H2の各比は実施例1と同様とした。そして、実施例2と同様の方法により、洗浄後の固体成分Aを得た。
 次に、撹拌槽内にイオン交換水1.2Lを投入し、さらに、上記洗浄後の固体成分Aを添加した。そして、翼周速度2.7m/secで1分撹拌した後、下記の水溶液1~3を添加して同翼周速度で30分間撹拌した。これにより、シリカ粒子の表面に、該表面を被覆する第1金属被膜および第2金属被膜としての銀被膜を形成するための無電解めっき処理を行った。なお、このときの槽内温度は30℃とした。
 水溶液1:硝酸銀10.5gと25%アンモニア水47mLをイオン交換水300mLに溶解させた水溶液
 水溶液2:水酸化ナトリウム4.2gをイオン交換水300mLに溶解させた水溶液
 水溶液3:ぶどう糖63gをイオン交換水300mLに溶解させた水溶液。
 上記めっき処理後の処理液を固液分離し、得られた固体成分Bをイオン交換水で洗浄した。なお、ここで得られた固体成分中Bには、図1に示される構成を有する本発明に係る複合導電性粒子が含まれることになる。そして、得られた洗浄後の固体成分Bを、別の撹拌槽内に投入されたオレイン酸含有アルコール溶液中に添加して、10分撹拌することにより、複合導電性粒子の表面にオレイン酸からなる保護層を形成させた。なお、オレイン酸含有アルコール溶液としては、1.5gのオレイン酸が0.3Lのイソプロピルアルコールに溶解された溶液を用いた。
 上記保護層を形成させた後、得られたスラリーを固液分離し、得られた固体成分Cをイオン交換水で洗浄した。なお、ここで得られた固体成分C中には、保護層を有する複合導電性粒子が含まれることになる。そして、得られた洗浄後の固体成分Cに対し、110℃、真空環境下で乾燥処理を行い、実施例4に係る導電性粉末を得た。なお、この導電性粉末の色調は黄白色であった。
 <実施例5>
 以下のようにして実施例5に係る導電性粉末(複合導電性粒子)を作製した。まず、第1粒子および第2粒子の材料として、株式会社アドマテックス製シリカ粉末を準備した。なお、この粉末の特性は以下の通りであった。
 比表面積:7577cm2/cm3
 D10:8.55μm
 D50:16.24μm。
 次に、図4に示すような構成を有する撹拌装置を準備した。準備した撹拌装置に関し、撹拌槽の最大容量は5.0Lであり、D1:D2およびH1:H2の各比は実施例1と同様とした。
 準備した撹拌装置の撹拌槽内に、上記シリカ粉末10g、イオン交換水0.02Lを投入して撹拌羽根を回転させてスラリーを形成した。そして、該スラリーに塩化パラジウムおよび塩化第一スズを含む溶液10mlを添加し、10分間撹拌した。なお、このときの翼周速度は1.7m/secであり、槽内温度は50℃とした。これにより、シリカ粉末を構成するシリカ粒子の表面にスズ-パラジウムコロイド粒子が吸着された。そして、上記処理後のスラリーを固液分離し、得られた固体成分Aをイオン交換水で洗浄した。
 次に、撹拌槽内にイオン交換水0.1Lを投入し、さらに、上記洗浄後の固体成分Aを添加した。そして翼周速度は1.7m/secで1分撹拌した後、10%硫酸を0.1L添加し、5分間撹拌した。なお、このときの翼周速度は1.7m/secであり、槽内温度は25℃とした。これにより、スズが除去され、パラジウムが金属化された。そして、上記処理後のスラリーを固液分離し、得られた固体成分Bをイオン交換水で洗浄した。
 次に、撹拌槽内にイオン交換水0.25Lを投入し、さらに上記洗浄後の固体成分Bを添加した。そして、翼周速度5.3m/secで1分撹拌した後、下記の水溶液1~3を添加して同翼周速度で20分間撹拌した。これにより、シリカ粒子の表面に、該表面を被覆する第1金属被膜および第2金属被膜としてのニッケル-リン被膜を形成するための無電解処理を行った。なお、このときの槽内温度は50℃とした。
 水溶液1:硫酸ニッケル14gをイオン交換水30mlに溶解させた水溶液
 水溶液2:次亜リン酸ナトリウム3.1gをイオン交換水30mlに溶解させた水溶液
 水溶液3:コハク酸ナトリウム3.0gをイオン交換水100mlに溶解させた水溶液。
 上記めっき処理後の処理液を固液分離し、得られた固体成分Cをイオン交換水で洗浄した。なお、ここで得られた固体成分C中には、図1で示される構成を有する本発明に係る複合導電性粒子が含まれることになる。そして、得られた洗浄後の固体成分Cに対して、110℃、真空環境下で乾燥処理を行い、実施例5に係る導電性粉末を得た。なお、この導電性粉末の色調は黒色であった。
 <比較例1>
 めっき処理における翼周速度を20m/secとした以外は、実施例1と同様の方法を実施した。これにより、比較例1に係る導電性粉末を作製した。なお、この導電性粉末の色調は灰色であった。
 <SEM観察>
 実施例1および比較例1の各導電性粉末に関し、SEM観察を行った。具体的には、まず、カーボンテープ上に各導電性粉末を分散させた各試料を準備した。次に、走査型電子顕微鏡(製品名:「VE-7800」、株式会社キーエンス製)を用いて、加速電圧20kV、測定倍率5000倍の条件下で、各試料の反射電子像(電子画像)を撮影した。実施例1の導電性粉末のSEM写真を図5に、比較例1の導電性粉末のSEM写真を図6に示す。また、参考として、原料として用いたシリカ粉末のSEM写真を図7に示す。
 図5~図7を参照し、図5に示される実施例1の導電性粉末においては、粒子径の大きい導電性粒子の表面に粒子径の小さい導電性粒子が付着している形態の導電性粒子、すなわち複合導電性粒子が観察された。これに対し、図6に示される比較例1の導電性粉末においては、複合導電性粒子は観察されなかった。また、図6と図7と比較し、比較例1の導電性粉末は、各シリカ粒子の表面がAgで被覆されたものであることが理解された。
 また、実施例2~5の各導電性粉末に関しても同様のSEM観察を行ったところ、表1に示すように、粒子径の大きい導電性粒子の表面に粒子径の小さい導電性粒子が付着している形態の導電性粒子、すなわち複合導電性粒子が観察された。
 <粒子径>
 実施例1~5および比較例1の各導電性粉末について、図5および図6に示すようなSEM観察を複数視野にて行った各SEM写真を解析することにより、各粒子の粒子径を求めた。実施例1においては、大きい粒子径を有する1つの粒子(第1導電性粒子)の表面に、これよりも小さい粒子径(第2導電性粒子)を有する複数の粒子が付着した複合導電性粒子が観察されたため、第1導電性粒子および第2導電性粒子のそれぞれの粒子径を求めることとした。その結果を表1の「粒子径(μm)」に示す。なお、各粒子径は、複数視野でのSEM観察により得られたSEM写真から任意に選択した50個の粒子の直径の平均値である。
 <付着率>
 実施例1~5の導電性粉末について、図5に示すようなSEM写真を解析することにより、第1導電性粒子に対する第2導電性粒子の付着率を求めた。なお、付着率の算出に関し、画像処理ソフトウェア(製品名:「WinROOF」、三谷商事株式会社)を用いて上述の算出方法に従った。その結果を表1の「付着率(%)」の欄に示す。なお、付着率は、任意に選択した50個の複合導電性粒子の平均値である。
 <金属被覆率>
 実施例1~5および比較例1の各導電性粉末に関し、金属被覆率を算出した。具体的には、以下の手順で算出した。まず、原子吸光光度計による金属量の定量前の各導電性粉末の重量(酸溶液による溶解前の導電性粉末の重量)を測定した。次に、重量を測定した各導電性粉末を酸溶液に溶解させた各試料を準備した。次に、準備した各試料に関し、原子吸光光度計(製品名:「A-2000」、株式会社日立ハイテクフィールディング製)を用いて、各導電性粉末に含まれる金属量(各導電性粒子を構成するシリカ粒子の表面を被覆する金属量の総量に相当する)を測定した。そして、得られた金属の定量結果をもとに、下記式(2)により、各導電性粒子の金属被覆率(重量%)を算出した。この結果を表1の「被覆率(%)」の欄に示す。
 なお、上記各試料は、導電性粒子を適量採取後、硝酸およびフッ化水素酸からなる混酸を用いて室温にて30分程度の時間をかけて溶解させ、測定に適した濃度に希釈したものを用いた。また、測定波長は328.1nm(銀)、232.0nm(ニッケル)、ガス条件は空気-アセチレンとした。
 金属被覆量(重量%)=W1/W2×100・・・(2)
(式(2)中、W1は金属被膜を構成する金属の重量を示し、W2は酸溶液による溶解前の導電性粉末の重量を示す)。
Figure JPOXMLDOC01-appb-T000001
 <導電性>
 実施例1~5および比較例1の各導電性粉末の比抵抗を算出して、各導電性粉末の導電性を評価した。具体的には、各導電性粉末と樹脂(商品名:「ニッペアクリルオートクリヤースーパー」、日本ペイント社製)との配合率(導電性粉末:樹脂)が60vol%:40vol%になるように混練して、それぞれの導電性粉末を含有する樹脂組成物を作製した。
 そして、乾燥後の塗膜厚さが30μmとなるようにPETフィルム上に各樹脂組成物を塗布し、80℃にて1時間乾燥することにより、PETフィルム上に塗膜を形成した。なお、塗膜の厚みは、デジマチック標準外側マイクロメータ(商品名:「IP65 COOLANT PROOF Micrometer」、株式会社ミツトヨ社製)で測定することによって確認した。
 各塗膜について、四探針式表面抵抗測定器(商品名:「ロレスタGP」、株式会社三菱アナリテック製)を用いて任意の3点を測定し、その平均値を比抵抗値(Ω・cm)とした。その結果を表2の「比抵抗(Ω・cm)」に示す。比抵抗値が小さい程導電性に優れていることを示す。
 <充填性>
 実施例1~5および比較例1の各導電性粉末のタップ密度を測定して、各導電性粉末の充填性を評価した。タップ密度はJIS Z2512:2012に準拠した方法で測定することができる。なお、タップ密度の測定には、タッピング式粉体減少度測定器(型式:「TPM-1」、筒井理化学器械株式会社製)を用いた。その結果を表2の「タップ密度(g/cm3)」に示す。タップ密度が大きいほど充填性に優れていることを示す。
Figure JPOXMLDOC01-appb-T000002
 表1および表2を参照し、実施例1と比較例1とを比較すると、金属被膜の被覆率が同等であるにも関わらず、実施例1の導電性粉末は、比較例1の導電性粉末よりも低い比抵抗の塗膜を形成することができた。また、実施例1~5の導電性粉末は、比較例1の導電性粉末と比較して、高いタップ密度を示した。これにより、複合導電性粉末が高い導電性と高い充填性との両特性を発揮できることが確認された。
 <断面観察>
 実施例1の導電性粉末の断面を観察した。まず、エポキシ樹脂と導電性粉末を混合して硬化後、イオンミリング装置を用いて導電性粉末の断面観察用の試料を作製した。走査型電子顕微鏡(商品名:「SU8020」、株式会社日立ハイテクノロジー社製)を用いて、加速電圧50kV、測定倍率30000倍の条件下で、試料中の導電性粉末の断面を観察し反射電子像(電子画像)を撮影した。
 図8に実施例1の導電性粉末の断面のSEM写真を示す。図8から、実施例1の導電性粉末は、第1導電性粒子において、第1粒子であるシリカ粒子の表面が第1金属被膜である銀被膜により被覆され、第2導電性粒子において、第2粒子であるシリカ粒子の表面が第2金属被膜である銀被膜により被覆されており、第1導電性粒子が第2導電性粒子よりも大きく、第1導電性粒子の表面に第2導電性粒子が付着していることが確認された。
 また、実施例2~5についても実施例1と同様の方法により各断面を観察したところ、実施例1と同様に、第1導電性粒子において、第1粒子であるシリカ粒子の表面が第1金属被膜である金属被膜(実施例2~4では銀被膜、実施例5ではニッケル-リン被膜)により被覆され、第2導電性粒子において、第2粒子であるシリカ粒子の表面が第2金属被膜である金属被膜(実施例2~4では銀被膜、実施例5ではニッケル-リン被膜)により被覆されており、第1導電性粒子が第2導電性粒子よりも大きく、第1導電性粒子の表面に第2導電性粒子が付着していることが確認された。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 複合導電性粒子、10 第1導電性粒子、11 第1粒子、 12 第1金属被膜、20 第2導電性粒子、21 第2粒子、22 第2金属被膜、30 撹拌装置、31撹拌槽、32 撹拌羽根、32a 支軸部、32b 羽根部。

Claims (6)

  1.  0.1μm以上50μm以下の粒子径を有する第1導電性粒子と、
     前記第1導電性粒子の表面に付着する、50nm以上1000nm以下の粒子径を有する第2導電性粒子と、を備え、
     前記第1導電性粒子は、第1粒子と、前記第1粒子の表面を被覆する第1金属被膜とからなり、
     前記第2導電性粒子は、第2粒子と、前記第2粒子の表面を被覆する第2金属被膜とからなり、
     前記第1導電性粒子の粒子径は前記第2導電性粒子の粒子径よりも大きく、
     前記第2導電性粒子の前記第1導電性粒子に対する付着率は2%以上40%以下である、複合導電性粒子。
  2.  前記第1粒子および前記第2粒子は、それぞれシリカからなる、請求項1に記載の複合導電性粒子。
  3.  前記第1金属被膜および前記第2金属被膜は、それぞれ銀、金、銅、ニッケル、白金、錫およびこれらの合金からなる群より選ばれる少なくとも1種からなる、請求項1または請求項2に記載の複合導電性粒子。
  4.  前記第1導電性粒子は、有機酸を含む保護層を備える、請求項1から請求項3のいずれか1項に記載の複合導電性粒子。
  5.  請求項1から請求項4のいずれか1項に記載の複合導電性粒子を導電材として含む、導電性樹脂組成物。
  6.  請求項5に記載の導電性樹脂組成物により形成された塗膜を基体上に有する、導電性塗布物。
PCT/JP2015/050521 2014-01-14 2015-01-09 複合導電性粒子、それを含む導電性樹脂組成物および導電性塗布物 WO2015107996A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015557820A JP6579958B2 (ja) 2014-01-14 2015-01-09 複合導電性粒子、それを含む導電性樹脂組成物および導電性塗布物
CN201580004027.0A CN105917420B (zh) 2014-01-14 2015-01-09 复合导电性粒子、包含其的导电性树脂组合物及导电性涂布物
EP15737430.7A EP3096330B1 (en) 2014-01-14 2015-01-09 Composite conductive particle, conductive resin composition containing same and conductive coated article
US15/110,378 US10227496B2 (en) 2014-01-14 2015-01-09 Composite conductive particle, conductive resin composition containing same and conductive coated article
KR1020167020293A KR101985581B1 (ko) 2014-01-14 2015-01-09 복합 도전성 입자, 그것을 함유하는 도전성 수지 조성물 및 도전성 도포물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-004223 2014-01-14
JP2014004223 2014-01-14

Publications (1)

Publication Number Publication Date
WO2015107996A1 true WO2015107996A1 (ja) 2015-07-23

Family

ID=53542886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050521 WO2015107996A1 (ja) 2014-01-14 2015-01-09 複合導電性粒子、それを含む導電性樹脂組成物および導電性塗布物

Country Status (7)

Country Link
US (1) US10227496B2 (ja)
EP (1) EP3096330B1 (ja)
JP (1) JP6579958B2 (ja)
KR (1) KR101985581B1 (ja)
CN (1) CN105917420B (ja)
TW (1) TWI643211B (ja)
WO (1) WO2015107996A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056088A (ja) * 2018-10-04 2020-04-09 三菱マテリアル電子化成株式会社 銀被覆樹脂粒子及びその製造方法
WO2022049937A1 (ja) * 2020-09-03 2022-03-10 東洋アルミニウム株式会社 導電性接着剤、それを使用した電子回路およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018118880A1 (en) * 2016-12-21 2018-06-28 3M Innovative Properties Company Conductive particles, articles, and methods
CN106782758B (zh) * 2017-01-05 2018-09-25 京东方科技集团股份有限公司 导电粒子及其制造方法和各向异性导电胶
JP6646643B2 (ja) * 2017-12-14 2020-02-14 株式会社ノリタケカンパニーリミテド 感光性組成物とその利用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257479A (ja) 1985-05-10 1986-11-14 Agency Of Ind Science & Technol 無機粉体の無電解めつき方法
JPS62297471A (ja) 1986-06-16 1987-12-24 Seiko Epson Corp 無機微粉の無電解ニツケルメツキ方法
JPH04277406A (ja) * 1991-03-04 1992-10-02 Sumitomo Metal Ind Ltd 銅導体ペースト
JP2001023435A (ja) 1999-07-07 2001-01-26 Shin Etsu Chem Co Ltd 導電性シリカ及びその製造方法
JP2003013103A (ja) * 2001-06-26 2003-01-15 Murata Mfg Co Ltd 導電粉末の製造方法、導電粉末、導電性ペーストおよび積層セラミック電子部品
JP2004052044A (ja) 2002-07-19 2004-02-19 Mitsui Mining & Smelting Co Ltd 銀コート銅粉及びその製造方法
JP2006161081A (ja) 2004-12-03 2006-06-22 Dowa Mining Co Ltd 銀被覆銅粉およびその製造方法並びに導電ペースト
JP2006228474A (ja) 2005-02-15 2006-08-31 Sekisui Chem Co Ltd 導電性微粒子及び異方性導電材料
JP2007234588A (ja) * 2006-02-03 2007-09-13 Tdk Corp 導電性ペースト、電子部品、積層セラミックコンデンサおよびその製造方法
JP2008111175A (ja) 2006-10-31 2008-05-15 Fujikura Kasei Co Ltd 複合金属粉とその製造方法および導電性ペースト

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW554348B (en) 1999-05-13 2003-09-21 Shinetsu Chemical Co Conductive powder and making process
JP2006216343A (ja) * 2005-02-03 2006-08-17 Alps Electric Co Ltd 導電材
JP2006269296A (ja) * 2005-03-24 2006-10-05 Sekisui Chem Co Ltd 突起粒子の製造方法、突起粒子、導電性突起粒子及び異方性導電材料
KR20110048079A (ko) 2005-11-18 2011-05-09 히다치 가세고교 가부시끼가이샤 접착제 조성물
WO2008150011A1 (ja) * 2007-06-08 2008-12-11 Nippon Sheet Glass Company, Limited 黒色光輝性顔料、およびこれを含む化粧料、塗料、インク、または樹脂組成物
KR101502995B1 (ko) 2007-10-23 2015-03-16 우베 에쿠시모 가부시키가이샤 금속 피막 형성 방법 및 도전성 입자
WO2009063827A1 (ja) * 2007-11-12 2009-05-22 Hitachi Chemical Company, Ltd. 回路接続材料、及び回路部材の接続構造
WO2011001910A1 (ja) 2009-06-30 2011-01-06 東海ゴム工業株式会社 柔軟導電材料およびトランスデューサ
WO2011030715A1 (ja) * 2009-09-08 2011-03-17 積水化学工業株式会社 絶縁粒子付き導電性粒子、絶縁粒子付き導電性粒子の製造方法、異方性導電材料及び接続構造体
JP2012182111A (ja) * 2011-02-28 2012-09-20 Samsung Electro-Mechanics Co Ltd 導電性金属ペースト組成物及びその製造方法
KR101310479B1 (ko) 2011-02-28 2013-09-24 삼성전기주식회사 도전성 금속 페이스트 조성물 및 이의 제조방법
JP6044195B2 (ja) 2011-09-06 2016-12-14 日立化成株式会社 絶縁被覆用粒子、絶縁被覆導電粒子、異方導電材料及び接続構造体
CN103030728B (zh) * 2011-09-06 2017-09-26 日立化成株式会社 绝缘包覆用粒子、绝缘包覆导电粒子、各向异性导电材料及连接结构体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257479A (ja) 1985-05-10 1986-11-14 Agency Of Ind Science & Technol 無機粉体の無電解めつき方法
JPS62297471A (ja) 1986-06-16 1987-12-24 Seiko Epson Corp 無機微粉の無電解ニツケルメツキ方法
JPH04277406A (ja) * 1991-03-04 1992-10-02 Sumitomo Metal Ind Ltd 銅導体ペースト
JP2001023435A (ja) 1999-07-07 2001-01-26 Shin Etsu Chem Co Ltd 導電性シリカ及びその製造方法
JP2003013103A (ja) * 2001-06-26 2003-01-15 Murata Mfg Co Ltd 導電粉末の製造方法、導電粉末、導電性ペーストおよび積層セラミック電子部品
JP2004052044A (ja) 2002-07-19 2004-02-19 Mitsui Mining & Smelting Co Ltd 銀コート銅粉及びその製造方法
JP2006161081A (ja) 2004-12-03 2006-06-22 Dowa Mining Co Ltd 銀被覆銅粉およびその製造方法並びに導電ペースト
JP2006228474A (ja) 2005-02-15 2006-08-31 Sekisui Chem Co Ltd 導電性微粒子及び異方性導電材料
JP2007234588A (ja) * 2006-02-03 2007-09-13 Tdk Corp 導電性ペースト、電子部品、積層セラミックコンデンサおよびその製造方法
JP2008111175A (ja) 2006-10-31 2008-05-15 Fujikura Kasei Co Ltd 複合金属粉とその製造方法および導電性ペースト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3096330A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056088A (ja) * 2018-10-04 2020-04-09 三菱マテリアル電子化成株式会社 銀被覆樹脂粒子及びその製造方法
JP7125319B2 (ja) 2018-10-04 2022-08-24 三菱マテリアル電子化成株式会社 銀被覆樹脂粒子及びその製造方法
WO2022049937A1 (ja) * 2020-09-03 2022-03-10 東洋アルミニウム株式会社 導電性接着剤、それを使用した電子回路およびその製造方法

Also Published As

Publication number Publication date
US20160333195A1 (en) 2016-11-17
KR20160102547A (ko) 2016-08-30
TWI643211B (zh) 2018-12-01
CN105917420A (zh) 2016-08-31
EP3096330A4 (en) 2017-06-28
CN105917420B (zh) 2019-09-03
US10227496B2 (en) 2019-03-12
EP3096330B1 (en) 2019-04-10
JP6579958B2 (ja) 2019-09-25
KR101985581B1 (ko) 2019-06-03
JPWO2015107996A1 (ja) 2017-03-23
EP3096330A1 (en) 2016-11-23
TW201546827A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
JP6579958B2 (ja) 複合導電性粒子、それを含む導電性樹脂組成物および導電性塗布物
JP5497183B2 (ja) 銀被覆球状樹脂、及びその製造方法、並びに銀被覆球状樹脂を含有する異方性導電接着剤、異方性導電フィルム、及び導電スペーサー
JP6813519B2 (ja) 導電性粒子、それを含む導電性樹脂組成物および塗布物
CN103909260B (zh) 金属银包覆石膏晶须的制备方法
KR20170108017A (ko) 은 피복 입자 및 그 제조 방법
JP5406544B2 (ja) 導電性微粒子の製造方法、及び、導電性微粒子
JP4881013B2 (ja) 導電性粉末、導電性ペーストおよび電気回路
JP6367014B2 (ja) 金属被覆粒子、それを含む樹脂組成物および塗布物、ならびに金属被覆粒子の製造方法
JP4583147B2 (ja) 導電性複合粉末及びその製造方法
JPH09171714A (ja) 導電性粉体
JP2020020000A (ja) 金属被覆粒子、それを含む樹脂組成物および塗布物
JP5408462B2 (ja) 無電解めっき方法及び活性化前処理方法
KR100905644B1 (ko) 전도성 복합 미립자, 이의 제조방법 및 이를 함유하는전도성막용 코팅액
JP2009263746A (ja) 無電解めっき方法及び活性化前処理方法
JP2007254888A (ja) 導電性微粒子の製造方法、及び、導電性微粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557820

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15110378

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167020293

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015737430

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015737430

Country of ref document: EP