WO2015107704A1 - 半球共振型ジャイロ - Google Patents

半球共振型ジャイロ Download PDF

Info

Publication number
WO2015107704A1
WO2015107704A1 PCT/JP2014/064260 JP2014064260W WO2015107704A1 WO 2015107704 A1 WO2015107704 A1 WO 2015107704A1 JP 2014064260 W JP2014064260 W JP 2014064260W WO 2015107704 A1 WO2015107704 A1 WO 2015107704A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
actuator
hemispherical
vibration
hemispherical resonator
Prior art date
Application number
PCT/JP2014/064260
Other languages
English (en)
French (fr)
Inventor
光伯 齊藤
百合夏 金井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/109,344 priority Critical patent/US9989363B2/en
Priority to EP14878525.6A priority patent/EP3096111B1/en
Priority to JP2015557693A priority patent/JP6180551B2/ja
Publication of WO2015107704A1 publication Critical patent/WO2015107704A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5691Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially three-dimensional vibrators, e.g. wine glass-type vibrators

Definitions

  • the present invention relates to a hemispherical resonance gyro (HRG), and more particularly, a hemispherical resonator is primarily resonated and a rotation angle is detected from a phase change of the resonance mode, or the resonance mode
  • HRG hemispherical resonance gyro
  • the present invention relates to a hemispherical resonance type gyro that detects a rotational angular velocity from a control amount for suppressing a phase change.
  • a vibration rotation sensor As a conventional hemispherical resonance type gyro, for example, there is a vibration rotation sensor described in Patent Document 1.
  • the main mechanical system configuration of the vibration rotation sensor is a hemispherical resonator, a forcer, and a pick-off.
  • the rotation angle in the sensor measurement axis direction is detected by exciting the primary resonance mode in the hemispherical resonator by a forcer and detecting the phase change of the resonance mode by pickoff.
  • the electrical system and the control system of the vibration rotation sensor are (1) a reference phase generator, (2) primary resonance amplitude control, (3) quadrature phase vibration control, and (4) phase angle detection of the primary resonance mode.
  • the four functions are as follows. The functions (1) to (4) will be described below.
  • the primary resonance frequency of the hemispherical resonator is locked based on the detection signal output from the pick-off by the phase locked loop PLL mounted on the reference phase generator, and various reference phase signals are generated.
  • the detection signal output from the pick-off is demodulated based on the reference phase signal generated by the reference phase generator, and converted into the primary resonance mode excited by the hemispherical resonator and the amplitude of the nodal quadrature oscillation. .
  • the primary resonance amplitude control application to the forcer is performed based on the reference phase signal generated by the reference phase generator so that the amplitude of the primary resonance mode excited by the hemispherical resonator becomes a predetermined constant value. Controls square wave voltage.
  • the wave is controlled by controlling the DC voltage applied to the forcer so as to add a negative spring stiffness to the orthogonal axis shifted by 22.5 degrees from the antinode phase angle of the primary resonance mode.
  • the state in which only the primary resonance mode is excited on the hemispherical resonator is realized by suppressing the amplitude of the nodal quadrature oscillation to zero.
  • the antinode phase angle of the primary resonance mode excited by the hemispherical resonator is calculated, and the scale factor specific to the hemispherical resonator is calculated with respect to the change amount of the phase angle.
  • the rotation angle in the sensor measurement axis direction is detected.
  • the primary resonance mode excited on the resonator is regarded as a combination of two traveling waves that travel clockwise and counterclockwise in the circumferential direction on the resonator.
  • the reference phase signal for each traveling wave is generated by the phase locked loop PLL based on the detection signal output from the pickoff.
  • the purpose is to maintain the vibration amplitude of each traveling wave at a preset constant value by correcting the attenuation loss of the resonator vibration, and to efficiently excite the primary resonance mode for the resonator.
  • the forcer applied voltage is controlled in a state where the phase is advanced 90 degrees with respect to the radial displacement of each traveling wave.
  • the antinode phase angle of the primary resonance mode excited on the resonator is calculated from the phase difference of the reference phase signal for each traveling wave generated by the phase-locked loop PLL, and the amount of change in the phase angle Is multiplied by the scale factor specific to the resonator to detect the rotation angle in the sensor measurement axis direction.
  • a phase locked loop PLL is applied to lock the primary resonance frequency in the hemispherical resonator and generate various reference phase signals for the primary resonance frequency.
  • phase-locked loop PLL has a problem that the stability of the PLL itself is impaired depending on the internal loop filter design.
  • an ideal PLL output is required to have high spectral purity that is compatible with low phase noise characteristics and spurious suppression characteristics. In general, these characteristics are in a trade-off relationship and have high spectral purity. There was also a problem that it was difficult to obtain a PLL output.
  • phase resolution of the reference phase signal it is essential to improve the phase resolution of the reference phase signal in order to increase the detection resolution by the hemispherical resonance type gyro.
  • an equivalent time resolution for realizing a phase resolution of 0.1 degree is 70 ns.
  • the PLL has a problem in that the phase resolution of the reference phase signal, in other words, the detection resolution of the hemispherical resonance gyroscope is limited.
  • the primary resonance mode is efficiently applied to the resonator on the assumption that the phase characteristic of the forced vibration displacement with respect to the excitation force is ⁇ 90 degrees.
  • the phase of the forcer drive voltage command is advanced 90 degrees with respect to the radial displacement of the resonator.
  • phase characteristics from the forcer drive voltage command to the resonator displacement include true phase characteristics from the excitation force in the ideal resonance system to the forced vibration displacement phase characteristic of -90 degrees, as well as the true characteristics generated by the forcer from the forcer drive voltage command. Since the phase characteristics from the excitation force to the true resonator and the phase characteristics from the true resonator displacement to the pickoff detection signal are also superimposed, what is efficient excitation of the primary resonance mode for the resonator without considering the latter? There was also the problem of not being.
  • the present invention has been made to solve the above-described problems, and by performing angle detection or angular velocity detection without using a conventional phase-locked loop PLL, it always operates stably. Further, by realizing an operation with extremely high spectral purity for the primary resonant frequency lock of the hemispherical resonator and a high phase resolution for the primary resonant frequency, a hemispherical resonant gyro with improved angular or angular velocity detection resolution is obtained. It is an object.
  • the present invention provides a hemispherical resonator having a hemispherical shape that is axisymmetric with respect to an angle measuring axis as a measuring axis, and maintaining a resonance pattern in a plane perpendicular to the angle measuring axis, and the hemispherical resonator Are arranged at equal intervals around the angle measurement axis with respect to the upper housing and generate a radial suction force with respect to the hemispherical resonator.
  • Reference signal generation means for generating a sine wave signal and a cosine wave signal, and the sine wave signal and the cosine wave signal output from the reference signal generation means, Based on the displacement in the radial direction of the hemispherical resonator output from a plurality of the displacement sensors, the vibration amplitude and antinode azimuth angle of the resonance mode excited in the hemispherical resonator, the AC drive signal of the actuator Resonance phase characteristics and vibration shape extraction means for extracting vibration amplitude of quadrature vibration of nodal quadrature excited by the hemispherical resonator, and the resonance of the actuator with respect to the AC drive signal output from the vibration shape extraction means Based on the phase characteristics, the drive
  • Resonance control means for generating the AC drive signals of the plurality of actuators for performing the angle measurement axis of the hemispherical resonator from the antinode azimuth angle of the resonance mode excited by the hemispherical resonator This is a hemispherical resonance type gyro that detects a rotation angle of a direction.
  • the present invention it is possible to extract the detailed vibration shape of the primary resonance mode and the nodal quadrature vibration excited in the hemispherical resonator without using the conventional phase-locked loop PLL.
  • the operation of the hemispherical resonance type gyro is always stabilized, the operation of the hemispherical resonator is highly spectrally pure with respect to the primary resonance frequency and the lock can be performed with high accuracy, and the high phase resolution is realized with respect to the primary resonance frequency.
  • the angle detection resolution can be improved.
  • FIG. 5 is a simplified cross-sectional view of a hemispherical resonance gyro along a plane including an angle or angular velocity measurement axis according to the first to fourth embodiments of the present invention.
  • FIG. 6 is a simplified diagram showing a spatial arrangement of hemispherical resonators, actuators, and displacement sensors of a hemispherical resonance gyro along a plane perpendicular to an angle or angular velocity measurement axis according to the first to fourth embodiments of the present invention. It is a block diagram which shows the whole structure of the hemisphere resonance type gyro by Embodiment 1 and Embodiment 2 of this invention.
  • FIG. 1 It is a block diagram which shows the internal structure of the vibration shape extraction means by Embodiment 1 to Embodiment 4 of this invention.
  • the vibration shape extraction means by Embodiment 1 to Embodiment 4 of this invention it is a simplified diagram which shows the outline
  • the drive frequency correction means according to the first to fourth embodiments of the present invention the resonance phase with respect to the actuator AC drive signal in the resonance mode extracted by the vibration shape extraction means from the actuator AC drive signal output from the resonance control means.
  • FIG. 6 is a simplified diagram showing frequency characteristics of hemispherical resonator displacement with respect to an actuator AC drive signal output from a resonance control unit in the drive frequency correction unit according to Embodiments 1 to 4 of the present invention. It is a block diagram which shows the internal structure of the drive frequency correction
  • FIG. 10 is a simplified diagram showing an outline of operation in the nodal quadrature vibration control means according to the first to fourth embodiments of the present invention.
  • FIG. 10 is a schematic diagram showing an outline of operation in the resonance control means according to the first to fourth embodiments of the present invention. It is a block diagram which shows the whole structure of the hemispherical resonance type gyro by Embodiment 3 and Embodiment 4 of this invention. It is a block diagram which shows the internal structure of the resonance control means by Embodiment 3 and Embodiment 4 of this invention.
  • FIG. 1 is a cross-sectional view taken along a plane including an angle measurement axis for explaining the mechanical system configuration of the hemispherical resonance gyro according to the first embodiment of the present invention.
  • FIG. 2 is a simplified diagram showing a spatial arrangement of hemispherical resonators, actuators, and displacement sensors along a plane perpendicular to the angle measurement axis for explaining the mechanical system configuration of the hemispherical resonance type gyro according to the present invention. .
  • the mechanical system of the hemispherical resonance type gyro includes a hemispherical resonator 2 having a hemispherical shape that is axisymmetric with respect to the angle measurement axis 1 (Z axis).
  • the hemispherical resonator 2 can maintain a resonance pattern in a plane (XY plane) perpendicular to the angle measurement axis 1.
  • the X axis is an axis perpendicular to the Z axis.
  • the Y axis is omitted, but the Y axis is as shown in FIG. And an axis perpendicular to the X axis and the Z axis.
  • the hemispherical resonator 2 is supported by the upper housing 3 and the lower housing 4 via the angle measuring shaft 1.
  • the upper housing 3 has a rectangular box shape with an opening at the bottom and has a trapezoidal cross section.
  • the lower housing 4 is a plate-like member and has a size that closes the opening of the upper housing 3.
  • the hemispherical resonator 2 is accommodated in a casing composed of an upper housing 3 and a lower housing 4.
  • a plurality of displacement sensors S k (k 1, 2,...) For detecting the radial displacement of the hemispherical resonator 2 are equally spaced around the angle measuring axis 1.
  • This primary resonance mode has an elliptical shape in a plane (XY plane) perpendicular to the angle measurement axis 1, and for example, when the primary resonance mode is excited with reference to the XY orthogonal axis, it is indicated by a broken line in FIG.
  • a point on the hemispherical resonator 2 where the vibration amplitude indicated by the point 5 is maximum is called an antinode
  • a point on the hemispherical resonator 2 where the vibration amplitude indicated by the point 6 does not occur is called a wave node.
  • FIG. 3 is a block diagram showing the overall configuration of the hemispherical resonance gyro according to Embodiment 1 of the present invention.
  • the reference signal generation unit 10 generates a sine wave signal sin ( ⁇ r t) and a cosine wave signal cos ( ⁇ r t) corresponding to the actuator driving frequency ⁇ r .
  • the vibration amplitude of the nodal quadrature oscillation excited in the hemispherical resonator B is extracted.
  • the nodal quadrature vibration control means 13 performs nodal quadrature vibration based on the vibration amplitude B of the nodal quadrature vibration output from the vibration shape extraction means 11 and the antinode azimuth angle ⁇ r of the primary resonance mode.
  • the vibration amplitude A of the primary resonance mode excited by the hemispherical resonator 2 is controlled to a predetermined constant value, and free rotation around the angle measurement axis 1 of the primary resonance mode is realized.
  • a plurality of actuator DC drive signals f NQj (j 1, 2,..., 16) output from the wave quadrature phase vibration control unit 13 and the resonance control unit 14 output.
  • the angle scale factor multiplying unit 15 multiplies the antinode azimuth angle ⁇ r of the primary resonance mode output from the vibration shape extracting unit 11 by the angle scale factor K ⁇ to obtain the angle.
  • the rotation angle ⁇ in the direction of the measurement axis 1 can be detected.
  • FIG. 4 is a block diagram showing an internal configuration of the vibration shape extraction unit 11 in the hemispherical resonance gyro according to the first embodiment of the present invention
  • FIG. 5 shows a vibration shape extraction unit 11 according to the first embodiment of the present invention
  • 3 is a simplified diagram showing an outline of a positive direction rotation coordinate system 28 and a negative direction rotation coordinate system 29.
  • the vibration shape extracting means 11 of the hemispherical resonance type gyro includes a first synthesizing means 20, a second synthesizing means 21, a positive direction rotation coordinate converting means 22, a negative direction.
  • the rotary coordinate conversion means 23, the positive direction low frequency extraction means 24, the negative direction low frequency extraction means 25, the phase characteristic extraction means 26, and the vibration characteristic extraction means 27 are configured.
  • the second combining means 21 is arranged in the second orthogonal axis direction orthogonal to the angle measurement axis 1 and having a phase shifted by 45 degrees around the angle measurement axis 1 with respect to the first orthogonal axis.
  • the complex expression E Re + jE Im in which the output from the first synthesizing unit 20 is the real part E Re and the output from the second synthesizing unit 21 is the imaginary part E Im is the positive rotational coordinate conversion unit. 22 and the negative direction rotation coordinate conversion means 23.
  • the complex expression E Re + jE Im is calculated based on the sine wave signal sin ( ⁇ r t) and the cosine wave signal cos ( ⁇ r t) output from the reference signal generation means 10. As shown in FIG. 5 (a), it is converted into an expression E + by a positive direction rotating coordinate system 28 that rotates in the positive direction at a rotational speed ⁇ r that matches the actuator driving frequency ⁇ r .
  • the complex expression E Re + jE Im As shown in FIG. 5B, it is converted into an expression E ⁇ by a negative direction rotating coordinate system 29 that rotates in the negative direction at a rotational speed ⁇ r that matches the actuator driving frequency ⁇ r .
  • the positive direction rotational coordinate system expression E + output from the positive direction rotational coordinate conversion means 22 and the negative direction rotational coordinate system expression E ⁇ output from the negative direction rotational coordinate conversion means 23 are respectively extracted in the positive direction low frequency. Input to means 24 and negative direction low frequency extraction means 25.
  • the positive direction low frequency extraction means 24 extracts a preset low frequency component E DC + from the positive direction rotation coordinate system expression E + output from the positive direction rotation coordinate conversion means 22.
  • the negative direction low frequency extraction means 25 extracts a preset low frequency component E DC ⁇ from the negative direction rotation coordinate system expression E ⁇ output from the negative direction rotation coordinate conversion means 23.
  • phase characteristic extraction unit 26 the primary resonance excited in the hemispherical resonator 2 based on the output E DC + from the positive low frequency extraction unit 24 and the output E DC ⁇ from the negative low frequency extraction unit 25.
  • the vibration characteristic extraction means 27 the output E DC + from the positive low frequency extraction means 24, the output E DC ⁇ from the negative low frequency extraction means 25, and the resonance phase characteristic output from the phase characteristic extraction means 26. Based on ⁇ r , the vibration amplitude A of the primary resonance mode excited in the hemispherical resonator 2, the antinode azimuth angle ⁇ r , and the vibration amplitude B of the nodal quadrature vibration excited in the hemispherical resonator are calculated. And output.
  • 7 is a block diagram showing an outline of a phase relationship up to a resonance phase characteristic ⁇ r extracted by means 11.
  • FIG. 8 is a block diagram showing an internal configuration of the drive frequency correction means 12 according to the first embodiment of the present invention.
  • phase characteristic from the true radial attractive force to the true radial displacement in the hemispherical resonator 2 changes from 0 degrees to ⁇ 180 degrees in accordance with the actuator driving frequency ⁇ r, and the displacement in the vibration shape extracting means 11
  • a resonance peak occurs at the primary resonance frequency 32 of the hemispherical resonator 2.
  • the phase characteristic 31 related to the resonant phase characteristics phi r in accordance with the actuator drive frequency omega r changes from ⁇ D + ⁇ S until ⁇ D + ⁇ S -180 degrees, and, at the primary resonant frequency 32 of the hemispherical resonator 2 ⁇ D + ⁇ S ⁇ 90 degrees.
  • the driving frequency correction means 12 of the hemispherical resonator gyro includes an integrator 33, the resonance phase characteristics from the resonance phase characteristic phi r outputted from the vibration shape extracting means 11
  • the signal obtained by subtracting the command ⁇ r * is integrated by the integrator 33, and the actuator drive frequency ⁇ r is controlled by the addition value of the output of the integrator 33 and the initial value ⁇ r0 of the actuator drive frequency.
  • FIG. 9 is a block diagram showing an internal configuration of the nodal quadrature vibration control means 13 in the hemispherical resonance gyro according to the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing an outline of the operation of the nodal quadrature vibration control unit 13 according to the first embodiment of the present invention.
  • the hemispherical resonance type gyro wave node quadrature vibration control means 13 includes an electric stiffness control means 40 and a DC drive voltage distribution means 41.
  • the electric stiffness control means 40 receives the sign inversion value of the vibration amplitude B of the wave quadrature vibration output from the vibration shape extraction means 11, and receives an electric stiffness correction command u for suppressing the wave quadrature vibration. Generate NQ .
  • the DC drive voltage distribution unit 41 is based on the electrical stiffness correction command u NQ output from the electrical stiffness control unit 40 and the antinode azimuth angle ⁇ r of the primary resonance mode output from the vibration shape extraction unit 11.
  • a radial attractive force corresponding to the absolute value of the electrical stiffness correction command u NQ acts on the hemispherical resonator 2 along the electrical stiffness correction axis 42.
  • FIG. 11 is a block diagram showing an internal configuration of the resonance control means 14 in the hemispherical resonance gyro according to the first embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing an outline of operation in the resonance control means 14 according to the first embodiment of the present invention.
  • the resonance control means 14 of the hemispherical resonance type gyro includes a resonance amplitude control means 50 and an AC drive voltage distribution means 51.
  • the resonance amplitude control means 50 calculates a control command that makes the vibration amplitude deviation zero, and uses the added value of the control command and the vibration amplitude command A * as the resonance amplitude command u RES to the AC drive voltage distribution means 51. Output.
  • the resonance amplitude command u RES the resonance amplitude command u RES , using the antinode azimuth angle ⁇ r of the primary resonance mode excited by the hemispherical resonator 2 output from the vibration shape extraction means 11 as the resonance phase command ⁇ .
  • the actuator AC drive signal f for the actuator D j (j 1, 2,..., 16).
  • Distribute RESj (j 1, 2,..., 16).
  • Phase radial attractive forces u RES [cos ( ⁇ r t) +1], u RES [ ⁇ cos ( ⁇ r t) +1] alternate at 90 degree intervals along the orthogonal axis defined by the resonance phase command ⁇
  • Actuator AC drive signal f RESj (j 1, 2,..., 16) for each one actuator arranged on both sides of the orthogonal axis so as to act on the hemispherical resonator 2. Is configured to distribute.
  • the hemispherical resonator 2 of the hemispherical resonance type gyro has a hemispherical shape that is axisymmetric with respect to the angle measuring axis 1 (Z axis), and
  • the housing 3 and the lower housing 4 support the angle measuring shaft 1.
  • the primary resonance mode excited by the hemispherical resonator 2 has an elliptical shape on a plane (XY plane) perpendicular to the angle measurement axis 1.
  • XY plane perpendicular to the angle measurement axis 1.
  • the hemispherical resonator 2 When a cosine wave drive signal having the same amplitude and opposite phase shown in the equation is applied, the hemispherical resonator 2 has an elliptical shape with the major axis in the X-axis direction indicated by the broken line and the Y-axis direction indicated by the alternate long and short dash line A primary resonance mode that repeats an elliptical shape having a long axis alternately every 1 ⁇ 2 period is excited.
  • the primary resonance mode wave node indicated by the point 6 in FIG. Therefore, a nodal quadrature vibration that oscillates with a phase difference of 90 degrees is generated, and this vibration becomes a drift factor of the rotation angle detected by the hemispherical resonance gyro.
  • A primary resonance mode / vibration amplitude
  • ⁇ r primary resonance mode / antinode azimuth
  • ⁇ r Resonance phase characteristics for the primary resonance mode / actuator AC drive signal
  • B Wave quadrature vibration / vibration amplitude
  • ⁇ r Actuator drive frequency ⁇ primary resonance frequency.
  • the vibration amplitude a of the first-order resonance mode excited in a hemispherical resonator 2 antinode azimuth theta r, actuator
  • a displacement sensor by a displacement sensor S k (k 1, 3, 5, 7) arranged in the first orthogonal axis (XY orthogonal axis in FIG. 2) direction.
  • Output E k (k 1, 3, 5, 7) and a displacement sensor arranged in the second orthogonal axis direction that is 45 degrees out of phase about the angle measuring axis 1 with respect to the first orthogonal axis
  • the complex expression E given by the equation (4) is converted into the actuator drive frequency ⁇ r shown in FIG. 5 using the following equation (5).
  • the expression is converted into expressions E + and E ⁇ expressed by a positive direction rotating coordinate system 28 that rotates in the positive and negative directions at the same rotational speed and a negative direction rotating coordinate system 29.
  • the positive direction rotating coordinate system expression E + and the negative direction rotating coordinate system expression E ⁇ given by Expression (5) are expressed by the following expression (6) by the positive direction low frequency extracting means 24 and the negative direction low frequency extracting means 25, respectively.
  • the vibration characteristic extracting means 27 uses Ea and Eb to calculate the antinode azimuth angle ⁇ r of the primary resonance mode excited by the hemispherical resonator 2 by the following equation (10), and the vibration amplitude A by the following equation ( 11), and the vibration amplitude B of the nodal quadrature vibration is calculated by the following equation (12).
  • the actuator drive frequency ⁇ r is corrected to coincide with the primary resonance frequency of the hemispherical resonator 2 based on the resonance phase characteristic ⁇ r output from the vibration shape extraction unit 11. To do.
  • the drive frequency correction means 12 sets the resonance phase characteristic command ⁇ r * in FIG. 8 to the following equation (13) using the actuator phase characteristic ⁇ D and the displacement sensor phase characteristic ⁇ S at the actuator drive frequency ⁇ r . and integrates the signal obtained by subtracting the resonant phase characteristic command phi r * from the resonant phase characteristics phi r by the integrator 33 calculates the sum of the initial value omega r0 of the output and the actuator drive frequency of the integrator 33, the The actuator drive frequency ⁇ r is controlled by the added value.
  • Actuator drive frequency ⁇ r Hemispherical resonator 2 primary resonance frequency 32 ⁇
  • Resonance phase characteristic ⁇ r Resonance phase characteristic command ⁇ r *
  • the drive frequency correction means 12 is stabilized, and the true primary resonance frequency 32 in the hemispherical resonator 2 is locked with high accuracy.
  • the nodal is based on the vibration amplitude B of the nodal quadrature vibration output from the vibration shape extraction means 11 and the antinode azimuth angle ⁇ r of the primary resonance mode.
  • the electric stiffness control means constituted by the PI controller in which the continuous transfer function is given by the following equation (14) from the sign inversion value of the vibration amplitude B in the nodal quadrature vibration. 40 generates an electrical stiffness correction command u NQ for suppressing the nodal quadrature oscillation.
  • K NQP is the proportional gain
  • K NQI Use integral gain
  • the electrical stiffness correction command When u NQ is a positive sign, as shown in FIG. 10A, the orthogonal axis direction whose phase is shifted +22.5 degrees with respect to the antinode azimuth angle ⁇ r is shown. As shown in (b), an orthogonal axis direction having a phase shift of ⁇ 22.5 degrees with respect to the antinode azimuth angle ⁇ r is set as the electrical stiffness correction axis 42 for the hemispherical resonator 2.
  • the radial attractive force corresponding to the absolute value of the electrical stiffness correction command u NQ acts on the hemispherical resonator 2 along the electrical stiffness correction axis 42.
  • the vibration amplitude A and antinode azimuth angle ⁇ r of the primary resonance mode output from the vibration shape extraction means 11 and the cosine wave signal cos (output from the reference signal generation means 10). based on the omega r t) and was controlled to a constant value the vibration amplitude a preset the first resonance mode excited in a hemispherical resonator 2, and the primary resonance mode angle measurement shaft 1 around the freedom of Actuator AC drive signal f RESj (j 1, 2,..., 16) that realizes proper rotation is generated.
  • the continuous transfer function is expressed by the following equation (19) from the vibration amplitude command A * set to a preset constant value and the vibration amplitude deviation from the actual vibration amplitude A.
  • the control command that makes the vibration amplitude deviation zero is calculated by the resonance amplitude control means 50 constituted by the PI controller given by (1), and the added value of the control command and the vibration amplitude command A * is calculated as the resonance amplitude command u. Let it be RES .
  • K AP is the proportional gain
  • K AI Use integral gain
  • the antinode azimuth angle ⁇ r of the primary resonance mode excited by the hemispherical resonator 2 is used as it is as the resonance phase command ⁇ , and is output from the resonance amplitude command u RES , the resonance phase command ⁇ , and the reference signal generation means 10.
  • the cosine wave signal cos ( ⁇ r t) is input to the AC drive voltage distribution means 51.
  • the radial attractive forces u RES [cos of opposite phases determined by the resonance amplitude command u RES and the cosine wave signal cos ( ⁇ r t), respectively.
  • the angle scale factor multiplication unit 15 multiplies the antinode azimuth angle ⁇ r of the primary resonance mode output from the vibration shape extraction unit 11 by a preset angle scale factor K ⁇ , thereby obtaining an angle.
  • a rotation angle ⁇ in the direction of the measurement axis 1 is detected.
  • the hemispherical resonance type gyro allows the primary resonant mode excited in the hemispherical resonator 2 without using the conventional phase-locked loop PLL, and the quadrature phase of the wave node. Since the detailed vibration shape of the vibration can be extracted, the operation of the hemispherical resonance gyro can be always stabilized. In addition, since the operation of the hemispherical resonator 2 with respect to the primary resonance frequency 32 and the high phase resolution can be realized, the angle detection resolution of the hemispherical resonance gyro can be improved.
  • the hemispherical resonance type gyro can suppress the nodal quadrature oscillation and realize a state in which only the primary resonance mode is excited with respect to the hemispherical resonator 2. It is possible to suppress the drift of the rotation angle detected by the hemispherical resonance gyro.
  • the actuator may be configured so that excitation of the primary resonance mode for the hemispherical resonator 2 and suppression of the nodal quadrature vibration can be realized. Any configuration that can detect the displacement in the radial direction of the hemispherical resonator 2 in the orthogonal axis direction of the set may be used.
  • ⁇ r t the present invention is not limited to this, and the sine wave signal sin ( ⁇ r t) may be applied by appropriately changing the corresponding mathematical expression.
  • the first embodiment has a hemispherical shape that is axisymmetric with respect to the angle measurement axis 1 as a measurement axis, and maintains a resonance pattern in a plane perpendicular to the angle measurement axis 1.
  • the hemispherical resonator 2, the upper housing 3 and the lower housing 4 that support the hemispherical resonator 2 through the angle measurement shaft 1, and the upper housing 3 are arranged at equal intervals around the angle measurement axis,
  • a plurality of actuators D j that generate a suction force in the radial direction with respect to 2 and a plurality of actuators that are disposed at equal intervals around the angle measurement axis with respect to the lower housing 4 and that detect the radial displacement of the hemispherical resonator 2.
  • a displacement sensor S k of the reference signal generator 10 for generating a sine wave signal and a cosine wave signal corresponding to the driving frequency of the actuator D j, sine wave signal and a cosine wave output from the reference signal generating means 10 No. and, hemispherical resonator 2 output from a plurality of displacement sensors S k radial based on the displacement and the vibration amplitude and antinodes azimuth of the excited resonant modes in the hemispherical resonator 2, the actuator D j
  • the vibration phase extraction means 11 for extracting the resonance phase characteristic with respect to the AC drive signal and the vibration amplitude of the nodal quadrature vibration excited by the hemispherical resonator 2 and the AC of the actuator D j output from the vibration shape extraction means 11 Based on the resonance phase characteristic with respect to the drive signal, the vibration of the quadrature vibration of the nodal phase output from the drive frequency correction means 12 for matching the drive frequency of the actuator D j with the resonance frequency
  • a hemispherical resonance type gyro which includes a control means 14 and detects the rotation angle of the angle measurement axis direction of the hemispherical resonator 2 from the antinode azimuth angle of the resonance mode excited by the hemispherical resonator 2.
  • the vibration shape extraction unit 11 combines the output of the displacement sensor Sk arranged in the first orthogonal axis direction orthogonal to the angle measurement axis 1, perpendicular to the angle measuring shaft 1, a second combining means for combining output of the second orthogonal direction to the arrangement displacement sensor S k shifted 45 degrees phase measurement axis with respect to the first orthogonal axis 21 and a complex expression in which the output from the first synthesizing unit 20 is the real part and the output from the second synthesizing unit 21 is the imaginary part are rotated in the positive direction at a rotational speed that matches the driving frequency of the actuator D j.
  • a positive-direction rotational coordinate conversion means 22 for converting into an expression by a rotating coordinate system, and a complex expression having an output from the first synthesis means 20 as a real part and an output from the second synthesis means 21 as an imaginary part. times that match the driving frequency of D j Negative direction rotation coordinate conversion means 23 for converting into a representation in a rotation coordinate system rotating in the negative direction at a speed, and positive direction low frequency extraction means for extracting a preset low frequency component from the output of the positive direction rotation coordinate conversion means 22 24, the negative direction low frequency extraction means 25 for extracting a preset low frequency component from the output of the negative direction rotation coordinate conversion means 23, and the output of the positive direction low frequency extraction means 24 and the negative direction low frequency extraction means 25.
  • the phase characteristic extraction means 26 for calculating the resonance phase characteristic for the AC drive signal of the resonance mode actuator D j excited by the hemispherical resonator 2, the positive direction low frequency extraction means 24 and the negative direction low frequency extraction means 25.
  • a vibration characteristic extraction unit 27 for extracting the vibration amplitude of Namibushi quadrature vibration.
  • the angle detection resolution of the hemispherical resonance gyro is realized by constantly stabilizing the operation of the type gyro, further realizing an operation with extremely high spectral purity with respect to the primary resonance frequency of the hemispherical resonator and a high phase resolution with respect to the primary resonance frequency. Can be improved.
  • the drive frequency correction unit 12 uses the resonance phase characteristic for the AC drive signal of the actuator D j output from the vibration shape extraction unit 11 as the actuator phase characteristic at the drive frequency of the actuator D j .
  • the drive frequency of the actuator D j is controlled so that the displacement sensor phase characteristic at the drive frequency of the actuator D j and the total value of ⁇ 90 degrees are fixed.
  • the wave quadrature vibration control unit 13 generates an electrical stiffness correction command for suppressing the wave quadrature vibration based on the vibration amplitude of the wave quadrature vibration output from the vibration shape extraction unit 11.
  • the sign of the electrical stiffness control means 40 and the electrical stiffness correction command output from the electrical stiffness control means 40 if the sign is a positive sign, +22 with respect to the antinode azimuth angle of the resonance mode If the sign is negative and the sign is negative, the sign of the axis is ⁇ 22.5 degrees out of phase with respect to the antinode direction of the resonance mode.
  • the resonance control means 14 generates the resonance amplitude command 50 for generating the resonance amplitude command for controlling the vibration amplitude of the resonance mode excited by the hemispherical resonator 2 to a constant value, and the hemispherical resonance.
  • the resonance amplitude command, the resonance phase command, and the cosine wave signal output from the reference signal generation means 10 with the antinode azimuth angle of the resonance mode excited by the device 2 as the resonance phase command a plurality of actuators D j And AC drive voltage distribution means 51 for distributing an AC drive signal for.
  • the AC drive voltage distribution means 51 of the resonance control means 14 includes one actuator arranged on both sides of the orthogonal axis orthogonal to the angle measurement axis 1 defined by the resonance phase command. against D j, based on the cosine-wave signal output from the resonance amplitude command and the reference signal generating means 10 is output from the resonance amplitude control unit 50 distributes the AC drive signal of the actuator D j. With this configuration, it is possible to reduce the amount of control computation necessary for generating the actuator AC drive signal with respect to the desired primary resonance mode excitation for the hemispherical resonator.
  • FIG. 1 a cross-sectional view along a plane including an angle measurement axis related to the mechanical system configuration of the hemispherical resonance gyro, and a hemispherical resonance along a plane perpendicular to the angle measurement axis
  • the simplified diagram showing the spatial arrangement of the vessel, the actuator, and the displacement sensor is the same as that in FIG. 1 and FIG.
  • a block diagram showing the internal configuration of the wave quadrature vibration control means 13, a simplified diagram showing an outline of the operation of the wave quadrature vibration control means 13, and resonance A block diagram showing an internal configuration of the control unit 14 and a simplified diagram showing an outline of the operation of the resonance control unit 14 are the same as those in FIGS. 9, 10, 11, and 12 of the first embodiment.
  • FIGS. 1 to 12 of the first embodiment reference is made to FIGS. 1 to 12 of the first embodiment, and the description of the same configuration is omitted here, and the operation different from that of the first embodiment is described below. .
  • the phase characteristic 31 related to the resonance phase characteristic ⁇ r shown in FIG. 7 is preset with respect to the resonant frequency 32 of the hemispherical resonator.
  • the resonance phase characteristic when the actuator drive frequency ⁇ r is set low by a certain frequency is expressed by the following equation (28):
  • Resonance phase characteristics when the actuator drive frequency ⁇ r is set higher by a predetermined frequency than the resonance frequency 32 of the hemispherical resonator are obtained as the following equation (29):
  • the resonance phase characteristic command ⁇ r * in FIG. 8 is set in the following equation (30) as an average value of the phase characteristic.
  • the Q value of the primary resonance characteristic in the hemispherical resonator 2 is very high, and the phase characteristic 31 changes steeply in the vicinity of the resonance frequency 32. Therefore, the actuator drive frequency ⁇ r is approximately 1 Hz with respect to the resonance frequency 32.
  • Expression (28) and Expression (29) can be acquired by changing the degree. With this configuration, even if the actuator phase characteristic ⁇ D and the displacement sensor phase characteristic ⁇ S at the actuator driving frequency ⁇ r are unknown, the hemisphere can be identified by specifying the resonance phase characteristic given by the expressions (28) and (29). It becomes possible to lock the true primary resonance frequency 32 in the resonator 2 with high accuracy.
  • each of the two actuators arranged on both sides of the orthogonal axis defined by the resonance phase command ⁇ has a radial suction force u RES [cos (cos ( This corresponds to realizing ⁇ r t) +1] and u RES [ ⁇ cos ( ⁇ r t) +1].
  • u RES cos (cos ( This corresponds to realizing ⁇ r t) +1]
  • u RES ⁇ cos ( ⁇ r t) +1].
  • the generated suction force is applied as the actuator.
  • the hemispherical resonance type gyro can suppress the quadrature vibration of the nodule and realize a state in which only the primary resonance mode is excited with respect to the hemispherical resonator 2. It is possible to suppress the drift of the rotation angle detected by the hemispherical resonance gyro.
  • a total of 16 actuators and a total of 8 displacement sensors are applied, and the spatial arrangement thereof is shown in FIG. It is not limited to the above, and the actuator may be configured so that excitation of the primary resonance mode for the hemispherical resonator 2 and suppression of the nodal quadrature vibration can be realized. Any configuration that can detect the displacement in the radial direction of the hemispherical resonator 2 in the orthogonal axis direction of the set may be used.
  • ⁇ r t the present invention is not limited to this, and the sine wave signal sin ( ⁇ r t) may be applied by appropriately changing the corresponding mathematical expression.
  • the drive frequency correction unit 12 has a resonance phase characteristic for the AC drive signal of the actuator D j output from the vibration shape extraction unit 11 in advance with respect to the resonance frequency of the hemispherical resonator 2.
  • the drive frequency of the actuator D j is controlled so as to be fixed at an average value with respect to the resonance phase characteristic.
  • the AC drive voltage distribution means 51 of the resonance control means 14 is provided with an actuator for each of the two actuators D j disposed on both sides of the orthogonal axis defined by the resonance phase command.
  • a cosine wave suction force command is calculated based on the resonance amplitude command output from the resonance amplitude control means 50 and the cosine wave signal output from the reference signal generation means 10 so that the norm of the generated suction force of D j is minimized.
  • the square root of the cosine wave attractive force command is distributed as the AC drive signal of the actuator D j .
  • Embodiment 3 In the hemispherical resonance gyro according to the third embodiment of the present invention, a cross-sectional view along a plane including an angular velocity measurement axis regarding the mechanical system configuration of the hemispherical resonance gyro, and a hemispherical resonance along a plane perpendicular to the angular velocity measurement axis
  • the simplified diagram showing the spatial arrangement of the vessel, the actuator, and the displacement sensor is the same as that in FIG. 1 and FIG.
  • a block diagram showing the internal configuration of the wave quadrature vibration control means 13, a simplified diagram showing an outline of the operation of the wave quadrature vibration control means 13, and The simplified diagram showing the outline of the operation in the resonance control means 14 is the same as FIGS. 9, 10 and 12 of the first embodiment.
  • FIG. 1 In the third embodiment, reference is made to FIG. 1, FIG. 2, FIG. 4 to FIG. 10, and FIG. 12 of the first embodiment. Configurations and operations different from those of the first embodiment will be described.
  • FIG. 13 is a block diagram showing an overall configuration of a hemispherical resonance gyro according to Embodiment 3 of the present invention.
  • the reference signal generation means 10 performs a sine wave signal sin ( ⁇ rt ) and a cosine wave signal corresponding to the actuator driving frequency ⁇ r. cos ( ⁇ r t) is generated.
  • the vibration amplitude of the nodal quadrature oscillation excited in the hemispherical resonator B is extracted.
  • the nodal quadrature vibration control means 13 performs nodal quadrature vibration based on the vibration amplitude B of the nodal quadrature vibration output from the vibration shape extraction means 11 and the antinode azimuth angle ⁇ r of the primary resonance mode.
  • the plurality of actuator DC drive signals f NQj (j 1, 2,..., 16) output from the wave quadrature vibration control means 13 and the plurality of actuator AC drive signals output from the resonance control means 14.
  • a control command for maintaining the antinodes azimuth theta r constant angle is proportional to the rotational angular velocity of the angular velocity measuring axis 1 direction omega, preset with respect to the control command
  • the rotational angular velocity ⁇ in the direction of the angular velocity measuring axis 1 can be detected.
  • FIG. 14 is a block diagram showing an internal configuration of the resonance control means 14 in the hemispherical resonance gyro according to the third embodiment of the present invention.
  • the resonance control means 14 of the hemispherical resonance gyro according to the third embodiment includes a resonance amplitude control means 50, an AC drive voltage distribution means 51, a resonance phase control means 52, an angular velocity scale factor. Multiplication means 53 is provided.
  • the vibration amplitude deviation from the vibration amplitude command A * set in advance to a constant value is input to the resonance amplitude control means 50.
  • the resonance amplitude control means 50 calculates a control command that makes the vibration amplitude deviation zero, and uses the added value of the control command and the vibration amplitude command A * as the resonance amplitude command u RES to the AC drive voltage distribution means 51. Output.
  • the abdominal azimuth angle deviation is input to the resonance phase control means 52.
  • the resonance phase control means 52 calculates a control command that makes the antinode anti-azimuth deviation zero, and uses the added value of the control command and antinode azimuth command ⁇ r * as the resonance phase command ⁇ to distribute the AC drive voltage. Output to the means 51.
  • the control command output from the resonance phase control unit 52 is proportional to the rotational angular velocity ⁇ in the direction of the angular velocity measuring axis 1, so that the angular velocity scale factor multiplication unit 53 sets a predetermined angular velocity scale for the control command. by multiplying the factor K omega, it is possible to detect the rotational angular velocity omega of the angular velocity measuring axis 1 direction.
  • Anti-phase radial suction forces u RES [cos ( ⁇ r t) +1], u RES [ ⁇ cos ( ⁇ r t) +1] are spaced at 90 ° intervals along the orthogonal axis defined by the resonance phase command ⁇ .
  • Actuator AC drive signals f RESj (j 1, 2,..., 16 for each of the two actuators arranged on both sides of the orthogonal axis so as to act alternately on the hemispherical resonator 2. The distribution is made so that the norm of) is minimized.
  • the configurations and operations of the reference signal generation means 10, the vibration shape extraction means 11, and the nodal quadrature vibration control means 13 are the same as those of the hemispherical resonance gyro according to the first embodiment, and the drive frequency
  • the configuration and operation of the correcting means 12 are the same as those of the hemispherical resonance gyro according to the second embodiment. Therefore, description of these configurations is omitted.
  • a continuous transfer function is given by the equation (19) from the vibration amplitude deviation between the vibration amplitude command A * set in advance to a constant value and the actual vibration amplitude A.
  • the control command that makes the vibration amplitude deviation zero is calculated by the resonance amplitude control means 50 configured by the PI controller, and the added value of the control command and the vibration amplitude command A * is calculated as the resonance amplitude command u RES . To do.
  • a continuous system transfer function is given by the following formula (39).
  • a control command for making the antinode anti-azimuth angle deviation zero is calculated by the resonance phase control means 52 constituted by a controller, and the sum of the control command and antinode anti-azimuth command 2 ⁇ r * is calculated as the resonance phase command. Let 2 ⁇ .
  • K ⁇ P is the proportional gain
  • K ⁇ I integral gain
  • the resonance amplitude command u RES , the resonance phase command 2 ⁇ , and the cosine wave signal cos ( ⁇ r t) output from the reference signal generation unit 10 are indicated by thick line arrows in FIG.
  • each of the two actuators arranged on both sides of the orthogonal axis defined by the resonance phase command ⁇ has a radial suction force u RES [cos (cos ( This corresponds to realizing ⁇ r t) +1] and u RES [ ⁇ cos ( ⁇ r t) +1], and this configuration controls the primary resonance mode to a predetermined constant shape.
  • the primary resonant mode and the nodal quadrature oscillation excited in the hemispherical resonator 2 without using the conventional phase-locked loop PLL. Therefore, it is possible to always stabilize the operation of the hemispherical resonance type gyro. In addition, since the operation of the hemispherical resonator 2 with respect to the primary resonance frequency 32 and the high phase resolution can be realized, the angular velocity detection resolution of the hemispherical resonance gyro can be improved.
  • the actuator AC drive signal f RESj (j 1, 2) for controlling both the vibration amplitude A and the antinode azimuth angle ⁇ r to a predetermined constant shape (a constant value and a constant angle) with respect to the primary resonance mode. ,..., 16), the applied voltage level to each actuator can be reduced.
  • the hemispherical resonance type gyro can suppress the nodal quadrature oscillation and realize a state in which only the primary resonance mode is excited with respect to the hemispherical resonator 2.
  • a total of 16 actuators and a total of 8 displacement sensors are applied, and the spatial arrangement thereof is shown in FIG. It is not limited to the above, and the actuator may be configured so that excitation of the primary resonance mode for the hemispherical resonator 2 and suppression of the nodal quadrature vibration can be realized. Any configuration that can detect the displacement in the radial direction of the hemispherical resonator 2 in the orthogonal axis direction of the set may be used.
  • ⁇ r t the present invention is not limited to this, and the sine wave signal sin ( ⁇ r t) may be applied by appropriately changing the corresponding mathematical expression.
  • the resonance pattern is maintained in a plane having an axisymmetric shape with respect to the angular velocity measuring axis 1 as a measuring axis and perpendicular to the angular velocity measuring axis 1.
  • a hemispherical resonator 2, an upper housing 3 and a lower housing 4 that support the hemispherical resonator 2 via the angular velocity measuring shaft 1, and the upper housing 3 are arranged at equal intervals around the angular velocity measuring axis,
  • a plurality of actuators D j that generate a suction force in the radial direction with respect to the resonator 2 and the lower housing 4 are arranged at equal intervals around the angular velocity measurement axis, and detect the radial displacement of the hemispherical resonator 2.
  • the vibration shape extraction means 11 for extracting the resonance phase characteristics of the actuator D j with respect to the AC drive signal and the vibration amplitude of the nodal quadrature vibration excited by the hemispherical resonator 2, and the actuator output from the vibration shape extraction means 11 based on the resonance phase characteristics with respect to the AC drive signal D j, the driving frequency of the actuator D j and the driving frequency correction means 12 to match the resonant frequency of the hemispherical resonator
  • the resonance control means 14 includes the resonance amplitude control means 50 that generates a resonance amplitude command for controlling the vibration amplitude of the resonance mode excited by the hemispherical resonator 2 to a constant value, and the hemispherical resonance.
  • the resonance phase control means 52 for generating a resonance phase command for controlling the antinode azimuth angle of the resonance mode excited by the device 2 to a constant angle, and the resonance amplitude command, the resonance phase command, and the reference signal generation means 10 are output.
  • AC drive voltage distribution means 51 for distributing AC drive signals to the plurality of actuators D j based on the cosine wave signal.
  • the AC drive voltage distribution means 51 of the resonance control means 14 includes two actuators arranged on both sides of the orthogonal axis orthogonal to the angular velocity measuring axis 1 defined by the resonance phase command. against D j, as the norm of the drive voltage of the actuator D j is minimized, based on the cosine-wave signal output from the resonance amplitude command and the reference signal generating means 10 is output from the resonance amplitude control means 50 actuator Distribute the AC drive signal of D j .
  • the applied voltage level of each actuator AC drive signal can be reduced with respect to the desired primary resonance mode excitation for the hemispherical resonator.
  • Embodiment 4 In the hemispherical resonance gyro according to the fourth embodiment of the present invention, a cross-sectional view along a plane including an angular velocity measurement axis related to the mechanical system configuration of the hemispherical resonance gyro, and a hemispheric resonance along a plane perpendicular to the angular velocity measurement axis
  • the simplified diagram showing the spatial arrangement of the vessel, the actuator, and the displacement sensor is the same as that in FIG. 1 and FIG.
  • a block diagram showing the internal configuration of the wave quadrature vibration control means 13 a simplified diagram showing an outline of the operation of the wave quadrature vibration control means 13 and
  • the simplified diagram showing the outline of the operation of the resonance control means 14 is the same as that of FIG. 9, FIG. 10, and FIG. 12 of the first embodiment, and the block diagram showing the internal configuration of the resonance control means 14 is shown in the embodiment. 3 is the same as FIG.
  • FIG. 1 FIG. 1, FIG. 2, FIG. 4 to FIG. 10 and FIG. 12 of the first embodiment, and FIG. 14 of the third embodiment. Will be omitted, and hereinafter, operations different from those of the first and third embodiments will be described.
  • the operation of the hemispherical resonance gyro according to Embodiment 4 of the present invention will be described below.
  • the configurations and operations of the reference signal generating means 10, the vibration shape extracting means 11, the drive frequency correcting means 12, and the nodal quadrature vibration control means 13 are the same as those of the hemispherical resonance gyro according to the first embodiment.
  • the configuration of the resonance control means 14 is the same as that of the hemispherical resonance gyro according to the third embodiment.
  • the actuator AC drive signal f RESj 1, 2,..., 16 is applied to the hemispherical resonator 2 alternately at intervals of 90 degrees. decide.
  • the actuator AC drive signal f RESj 1, 2 ,. .., 16
  • the hemispherical resonance type gyro according to the fourth embodiment of the present invention can suppress the nodal quadrature oscillation and realize a state in which only the primary resonance mode is excited with respect to the hemispherical resonator 2.
  • a total of 16 actuators and a total of 8 displacement sensors are applied, and the spatial arrangement thereof is shown in FIG. It is not limited to the above, and the actuator may be configured so that excitation of the primary resonance mode for the hemispherical resonator 2 and suppression of the nodal quadrature vibration can be realized. Any configuration that can detect the displacement in the radial direction of the hemispherical resonator 2 in the orthogonal axis direction of the set may be used.
  • ⁇ r t the present invention is not limited to this, and the sine wave signal sin ( ⁇ r t) may be applied by appropriately changing the corresponding mathematical expression.
  • the AC drive voltage distribution unit 51 of the resonance control unit 14 resonates with respect to each one actuator D j disposed on both sides of the orthogonal axis defined by the resonance phase command.
  • the square root of the cosine wave attraction force command based on the resonance amplitude command output from the amplitude control means 50 and the cosine wave signal output from the reference signal generation means 10 is distributed as an AC drive signal for the actuator D j .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

 半球共振型ジャイロは、アクチュエータ駆動周波数に対応する正弦波及び余弦波信号と半球共振器2の半径方向変位に基づいて半球共振器2に励起された振動形状を抽出する振動形状抽出手段11と、半球共振器2の共振位相特性に基づいてアクチュエータ駆動周波数を半球共振器2の共振周波数に一致させる駆動周波数補正手段12と、波節直角位相振動の振動振幅及び共振モードの波腹方位角に基づいて波節直角位相振動を抑制するアクチュエータ直流駆動信号を生成する波節直角位相振動制御手段13と、半球共振器2に励起された共振モードの振動振幅を一定値に制御するアクチュエータ交流駆動信号を生成する共振制御手段14とを備え、共振モードの波腹方位角から角度計測軸方向の回転角度を検出する。

Description

半球共振型ジャイロ
 本発明は、半球共振型ジャイロ(HRG:Hemispherical Resonator Gyro)に関し、特に、半球状の共振器を1次共振させ、当該共振モードの位相変化から回転角度を検出するか、あるいは、当該共振モードの位相変化を抑制するための制御量から回転角速度を検出する半球共振型ジャイロに関するものである。
 従来の半球共振型ジャイロとして、例えば特許文献1に記載された振動回転センサーがある。この振動回転センサーの主要な機械系構成は、半球共振器、フォーサ、および、ピックオフである。フォーサによって半球共振器に1次共振モードを励起させ、ピックオフによって当該共振モードの位相変化を検出することで、センサ計測軸方向の回転角度を検出している。
 一方、当該振動回転センサーの電気系および制御系は、(1)基準位相発生器、(2)1次共振振幅制御、(3)直角位相振動制御、(4)1次共振モードの位相角検出、の4機能で構成される。これら(1)~(4)の機能について以下に説明する。
 はじめに、基準位相発生器に実装したフェーズ・ロックド・ループPLLによって、ピックオフから出力される検出信号に基づいて半球共振器の1次共振周波数をロックし、更に、各種基準位相信号を生成する。ピックオフから出力される検出信号は、基準位相発生器で生成した基準位相信号に基づいて復調され、半球共振器に励起された1次共振モード、および、波節直角位相振動の振幅に変換される。
 1次共振振幅制御では、半球共振器に励起された1次共振モードの振幅が予め設定された一定値となるように、基準位相発生器で生成した基準位相信号に基づいて、フォーサに印加する方形波電圧を制御する。
 直角位相振動制御では、1次共振モードの波腹位相角から22.5度ずれた直交軸に対して負のばね剛性を付加するように、フォーサに印加する直流電圧を制御することで、波節直角位相振動の振幅を零に抑制して、半球共振器上に1次共振モードのみが励起された状態を実現する。
 最後に、1次共振モードの位相角検出において、半球共振器に励起された1次共振モードの波腹位相角を算出し、当該位相角の変化量に対して半球共振器固有のスケールファクタを乗ずることで、センサ計測軸方向の回転角度を検出している。
 また、従来の半球共振型ジャイロの他の例として、例えば特許文献2に記載された振動式ジャイロスコープの制御回路がある。
 この振動式ジャイロスコープの制御回路では、共振器上に励起された1次共振モードを、当該共振器上を周方向に時計回り、および、反時計回りに進行する2つの進行波の合成として捉え、ピックオフから出力される検出信号に基づいて、フェーズ・ロックド・ループPLLによって各々の進行波に対する基準位相信号を生成する。
 更に、共振器振動の減衰損失を補正して各進行波の振動振幅を予め設定された一定値に維持すること、および、共振器に対して効率的に1次共振モードを励起することを目的として、上記基準位相信号に基づき、各進行波の半径方向変位に対して90度位相を進ませた状態で、フォーサ印加電圧が制御される。
 最後に、フェーズ・ロックド・ループPLLで生成した各進行波に関する基準位相信号の位相差から、共振器上に励起された1次共振モードの波腹位相角を算出し、当該位相角の変化量に対して共振器固有のスケールファクタを乗ずることで、センサ計測軸方向の回転角度を検出している。
特開昭60-166818号公報 特開平6-241810号公報
 このような半球共振型ジャイロでは、半球共振器における1次共振周波数のロック、および、当該1次共振周波数に対する各種基準位相信号の生成に関して、フェーズ・ロックド・ループPLLを適用している。
 しかしながら、フェーズ・ロックド・ループPLLでは、内部のループフィルタ設計によっては、PLL自体の安定性が損なわれるという問題点があった。
 また、理想的なPLL出力としては、低位相雑音特性、および、スプリアス抑圧特性を両立したスペクトル純度の高さが要求されるが、一般にこれらの特性はトレードオフの関係にあり、スペクトル純度の高いPLL出力を得ることが難しいという問題点もあった。
 加えて、半球共振型ジャイロによる検出分解能を高めるためには、基準位相信号の位相分解能を向上させることが不可欠となる。しかしながら、例えば1次共振周波数4kHzの信号に対して、位相分解能0.1度を実現するための等価な時間分解能は70nsとなる。そのため、PLLでは基準位相信号の位相分解能、換言すれば、半球共振型ジャイロの検出分解能に限界があるという問題点もあった。
 更に、従来の半球共振型ジャイロでは、理想的な共振系では、加振力に対する強制振動変位の位相特性が-90度となることを前提として、共振器に対して効率的に1次共振モードを励起するために、共振器の半径方向変位に対してフォーサ駆動電圧指令の位相を90度進ませている。
 しかしながら、フォーサ駆動電圧指令から共振器変位までの位相特性には、理想的な共振系における加振力から強制振動変位の位相特性-90度に加えて、フォーサ駆動電圧指令からフォーサで発生する真の加振力までの位相特性、および、真の共振器変位からピックオフ検出信号までの位相特性も重畳されるため、後者を考慮しなければ共振器に対する効率的な1次共振モードの励起とはならないという問題点もあった。
 本発明は、上記のような問題点を解決するためになされたものであり、従来のフェーズ・ロックド・ループPLLを使用せずに角度検出または角速度検出を行うことで、常に安定に動作し、更に半球共振器の1次共振周波数ロックに対する極めてスペクトル純度の高い動作と、当該1次共振周波数に対する高位相分解能を実現することで、角度または角速度検出分解能を向上させた半球共振型ジャイロを得ることを目的としている。
 本発明は、計測軸としての角度計測軸に対して軸対称な半球形状を有し、前記角度計測軸に対して垂直な平面において共振パターンを維持させるための半球共振器と、前記半球共振器を前記角度計測軸を介して支持する上側ハウジングおよび下側ハウジングと、前記上側ハウジングに対して前記角度計測軸回りに等間隔で配置され、前記半球共振器に対して半径方向の吸引力を発生させる複数のアクチュエータと、前記下側ハウジングに対して前記角度計測軸回りに等間隔で配置され、前記半球共振器の半径方向の変位を検出する複数の変位センサと、前記アクチュエータの駆動周波数に対応する正弦波信号および余弦波信号を生成する基準信号生成手段と、前記基準信号生成手段から出力される前記正弦波信号および前記余弦波信号と、複数の前記変位センサから出力される前記半球共振器の半径方向の前記変位とに基づいて、前記半球共振器に励起された共振モードの振動振幅及び波腹方位角、前記アクチュエータの交流駆動信号に対する共振位相特性、および、前記半球共振器に励起された波節直角位相振動の振動振幅を抽出する振動形状抽出手段と、前記振動形状抽出手段から出力される前記アクチュエータの前記交流駆動信号に対する前記共振位相特性に基づいて、前記アクチュエータの前記駆動周波数を前記半球共振器の共振周波数に一致させる駆動周波数補正手段と、前記振動形状抽出手段から出力される前記波節直角位相振動の前記振動振幅および前記共振モードの前記波腹方位角に基づいて、前記波節直角位相振動を抑制するための複数の前記アクチュエータの直流駆動信号を生成する波節直角位相振動制御手段と、前記振動形状抽出手段から出力される前記共振モードの前記振動振幅および前記波腹方位角と、前記基準信号生成手段から出力される前記余弦波信号とに基づいて、前記半球共振器に励起された前記共振モードの前記振動振幅を予め設定された一定値に制御し、かつ、前記共振モードの前記角度計測軸回りの自由な回転を実現するための複数の前記アクチュエータの前記交流駆動信号を生成する共振制御手段とを備え、前記半球共振器に励起された前記共振モードの前記波腹方位角から、前記半球共振器の前記角度計測軸方向の回転角度を検出する半球共振型ジャイロである。
 本発明によれば、従来のフェーズ・ロックド・ループPLLを使用せずに、半球共振器に励起された1次共振モードおよび波節直角位相振動の詳細な振動形状を抽出することができるため、半球共振型ジャイロの動作を常に安定化し、半球共振器の1次共振周波数に対する極めてスペクトル純度の高い動作と高精度なロックが可能となり、さらに、1次共振周波数に対して高位相分解能を実現することで、角度検出分解能を向上させることができる。
本発明の実施の形態1から実施の形態4による、角度または角速度計測軸を含む平面に沿った、半球共振型ジャイロの簡略断面図である。 本発明の実施の形態1から実施の形態4による、角度または角速度計測軸に垂直な平面に沿った、半球共振型ジャイロの半球共振器、アクチュエータ、変位センサの空間配置を示す簡略図である。 本発明の実施の形態1および実施の形態2による半球共振型ジャイロの全体構成を示すブロック図である。 本発明の実施の形態1から実施の形態4による振動形状抽出手段の内部構成を示すブロック図である。 本発明の実施の形態1から実施の形態4による振動形状抽出手段において、正方向回転座標系、および負方向回転座標系の概要を示す簡略図である。 本発明の実施の形態1から実施の形態4による駆動周波数補正手段において、共振制御手段から出力されるアクチュエータ交流駆動信号から、振動形状抽出手段で抽出される共振モードのアクチュエータ交流駆動信号に対する共振位相特性までの位相関係の概要を示すブロック図である。 本発明の実施の形態1から実施の形態4による駆動周波数補正手段において、共振制御手段から出力されるアクチュエータ交流駆動信号に対する、半球共振器変位の周波数特性を示す簡略図である。 本発明の実施の形態1から実施の形態4による駆動周波数補正手段の内部構成を示すブロック図である。 本発明の実施の形態1から実施の形態4による波節直角位相振動制御手段の内部構成を示すブロック図である。 本発明の実施の形態1から実施の形態4による波節直角位相振動制御手段において、動作の概要を示す簡略図である。 本発明の実施の形態1および実施の形態2による共振制御手段の内部構成を示すブロック図である。 本発明の実施の形態1から実施の形態4による共振制御手段において、動作の概要を示す概略図である。 本発明の実施の形態3および実施の形態4による半球共振型ジャイロの全体構成を示すブロック図である。 本発明の実施の形態3および実施の形態4による共振制御手段の内部構成を示すブロック図である。
 実施の形態1.
 本発明の実施の形態1に係る半球共振型ジャイロの機械系構成を図1および図2に示す。
 図1は、本発明の実施の形態1に係る半球共振型ジャイロの機械系構成を説明するための、角度計測軸を含む平面に沿った断面図である。図2は、本発明に係る半球共振型ジャイロの機械系構成を説明するための、角度計測軸に垂直な平面に沿った、半球共振器、アクチュエータ、変位センサの空間配置を示す簡略図である。
 図1に示したように、本実施の形態1に係る半球共振型ジャイロの機械系は、角度計測軸1(Z軸)に対して軸対称な半球形状を有する半球共振器2を備える。半球共振器2は、角度計測軸1に対して垂直な平面(XY平面)において、共振パターンを維持することができる。なお、図1に示すように、X軸はZ軸に対して垂直な軸であり、また、図1においては、Y軸の図示を省略しているが、Y軸は、図2に示すように、X軸およびZ軸に対して垂直な軸である。半球共振器2は、上側ハウジング3および下側ハウジング4によって角度計測軸1を介して支持されている。上側ハウジング3は、下方が開口した、矩形の箱型で、断面形状は台形となっている。また、下側ハウジング4は、板状部材で、上側ハウジング3の開口を塞ぐ大きさを有している。半球共振器2は、上側ハウジング3および下側ハウジング4から構成された筺体内に収容されている。上側ハウジング3には、半球共振器2に対して半径方向吸引力を発生させるための複数のアクチュエータDj(j=1、2、・・・)が、角度計測軸1の回りに等間隔で配置されている。更に下側ハウジング4には、半球共振器2の半径方向変位を検出するための複数の変位センサSk(k=1、2、・・・)が、角度計測軸1の回りに等間隔で配置されている。
 本発明に係る半球共振型ジャイロの最も一般的な構成としては、図2に示したように、計16個のアクチュエータDj(j=1、2、・・・、16)を角度計測軸1の回りに22.5度間隔で配置した構成のものである。当該構成においては、各アクチュエータDj(j=1、2、・・・、16)が発生する半径方向吸引力を制御することで、半球共振器2に対して1次共振モードを発生させる。この1次共振モードは、角度計測軸1に対して垂直な平面(XY平面)において楕円形状となり、例えばX-Y直交軸を基準に1次共振モードを励起させた場合、図2において破線で示したX軸方向を長軸とする楕円形状と、同じく図2において一点鎖線で示したY軸方向を長軸とする楕円形状を、1/2周期毎に交互に繰り返す振動モードとなる。このとき、例えば点5で示す振動振幅が最大となる半球共振器2上の点を波腹、例えば点6で示す振動振幅が発生しない半球共振器2上の点を波節と呼ぶ。更に、本実施の形態に係る半球共振型ジャイロの最も一般的な構成としては、図2に示したように計8個の変位センサSk(k=1、2、・・・、8)を角度計測軸1の回りに45度間隔で配置して、半球共振器2に励起された振動に起因する半径方向変位を検出する。
 次に、本発明の実施の形態1による半球共振型ジャイロを図3~図12に示す。
 図3は、本発明の実施の形態1による半球共振型ジャイロの全体構成を示すブロック図である。図3に示したように、この実施の形態1による半球共振型ジャイロは、半球共振器2、アクチュエータDj(j=1、2、・・・、16)、変位センサSk(k=1、2、・・・、8)、基準信号生成手段10、振動形状抽出手段11、駆動周波数補正手段12、波節直角位相振動制御手段13、共振制御手段14、角度スケールファクタ乗算手段15、および、アクチュエータ駆動信号合成手段16を備えている。
 図3に示した構成において、基準信号生成手段10は、アクチュエータ駆動周波数ωrに対応する正弦波信号sin(ωrt)、および余弦波信号cos(ωrt)を生成する。
 振動形状抽出手段11では、基準信号生成手段10から出力される正弦波信号sin(ωrt)および余弦波信号cos(ωrt)と、複数の変位センサSk(k=1、2、・・・、8)から出力される変位センサ出力Ek(k=1、2、・・・、8)とに基づいて、半球共振器2に励起された1次共振モードの振動振幅A、波腹方位角θr、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する共振位相特性φr、および、半球共振器に励起された波節直角位相振動の振動振幅Bを抽出する。
 駆動周波数補正手段12では、振動形状抽出手段11から出力されるアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する共振位相特性φrに基づいて、アクチュエータ駆動周波数ωrを半球共振器2の共振周波数に一致させる。
 波節直角位相振動制御手段13では、振動形状抽出手段11から出力される波節直角位相振動の振動振幅Bおよび1次共振モードの波腹方位角θrに基づいて、波節直角位相振動を抑制するための複数のアクチュエータ直流駆動信号fNQj(j=1、2、・・・、16)を生成する。
 共振制御手段14では、振動形状抽出手段11から出力される1次共振モードの振動振幅Aおよび波腹方位角θrと、基準信号生成手段10から出力される余弦波信号cos(ωrt)に基づいて、半球共振器2に励起された1次共振モードの振動振幅Aを予め設定された一定値に制御し、かつ、1次共振モードの角度計測軸1の回りの自由な回転を実現する複数のアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)を生成する。
 アクチュエータ駆動信号合成手段16では、波節直角位相振動制御手段13から出力される複数のアクチュエータ直流駆動信号fNQj(j=1、2、・・・、16)と、共振制御手段14から出力される複数のアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)とを加算し、当該加算結果を加算信号として、アクチュエータDj(j=1、2、・・・、16)に出力する。こうして、この加算信号に基づいて、アクチュエータDj(j=1、2、・・・、16)を制御することで、アクチュエータ直流駆動信号fNQj(j=1、2、・・・、16)によって半球共振器2上に1次共振モードのみが励起された状態を実現し、更に、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)によって1次共振モードの振動振幅Aを予め設定された一定値に制御する。
 このとき、振動形状抽出手段11から出力される1次共振モードの波腹方位角θrに対して、角度スケールファクタ乗算手段15により、予め設定された角度スケールファクタKθを乗ずることで、角度計測軸1方向の回転角度θを検出することができる。
 図4は、本発明の実施の形態1による半球共振型ジャイロにおいて、振動形状抽出手段11の内部構成を示すブロック図、図5は、本発明の実施の形態1による振動形状抽出手段11における、正方向回転座標系28および負方向回転座標系29の概要を示す簡略図である。
 図4に示したように、この実施の形態1による半球共振型ジャイロの振動形状抽出手段11は、第1の合成手段20、第2の合成手段21、正方向回転座標変換手段22、負方向回転座標変換手段23、正方向低周波抽出手段24、負方向低周波抽出手段25、位相特性抽出手段26、および、振動特性抽出手段27から構成されている。
 当該構成において、まず、第1の合成手段20によって、角度計測軸1に直交する第1の直交軸(図2におけるX-Y直交軸)方向に配置された変位センサSk(k=1、3、5、7)から出力される変位センサ出力Ek(k=1、3、5、7)を合成する。
 また、第2の合成手段21によって、角度計測軸1に直交し、かつ、第1の直交軸に対して角度計測軸1の回りに45度位相がずれた第2の直交軸方向に配置された変位センサSk(k=2、4、6、8)から出力される変位センサ出力Ek(k=2、4、6、8)を合成する。
 次に、第1の合成手段20からの出力を実数部EReとし、第2の合成手段21からの出力を虚数部EImとする、複素表現ERe+jEImを、正方向回転座標変換手段22および負方向回転座標変換手段23に入力する。
 正方向回転座標変換手段22では、基準信号生成手段10から出力される正弦波信号sin(ωrt)および余弦波信号cos(ωrt)に基づいて、複素表現ERe+jEImを、図5(a)に示すようにアクチュエータ駆動周波数ωrに一致する回転速度ωrで正方向に回転する正方向回転座標系28による表現E+に変換する。
 同様に、負方向回転座標変換手段23では、基準信号生成手段10から出力される正弦波信号sin(ωrt)および余弦波信号cos(ωrt)に基づいて、複素表現ERe+jEImを、図5(b)に示すようにアクチュエータ駆動周波数ωrに一致する回転速度-ωrで負方向に回転する負方向回転座標系29による表現E-に変換する。
 正方向回転座標変換手段22から出力される正方向回転座標系表現E+、および、負方向回転座標変換手段23から出力される負方向回転座標系表現E-は、それぞれ、正方向低周波抽出手段24および負方向低周波抽出手段25に入力される。
 正方向低周波抽出手段24は、正方向回転座標変換手段22から出力された正方向回転座標系表現E+から、予め設定された低周波成分EDC+を抽出する。
 負方向低周波抽出手段25は、負方向回転座標変換手段23から出力される負方向回転座標系表現E-から、予め設定された低周波成分EDC-を抽出する。
 位相特性抽出手段26では、正方向低周波抽出手段24からの出力EDC+、および、負方向低周波抽出手段25からの出力EDC-に基づいて、半球共振器2に励起された1次共振モードのアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する共振位相特性φrを算出して出力する。
 また、振動特性抽出手段27では、正方向低周波抽出手段24からの出力EDC+、負方向低周波抽出手段25からの出力EDC-、および、位相特性抽出手段26から出力される共振位相特性φrに基づいて、半球共振器2に励起された1次共振モードの振動振幅A、波腹方位角θr、および、半球共振器に励起された波節直角位相振動の振動振幅Bを算出して出力する。
 図6は、本発明の実施の形態1による半球共振型ジャイロにおいて、共振制御手段14から出力されるアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)から、振動形状抽出手段11で抽出される共振位相特性φrまでの位相関係の概要を示すブロック図である。図7は、本発明の実施の形態1による駆動周波数補正手段12において、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する半球共振器変位の周波数特性を示す簡略図である。図8は、本発明の実施の形態1による駆動周波数補正手段12の内部構成を示すブロック図である。
 本発明に係る半球共振型ジャイロでは、図6に示すように、アクチュエータDj(j=1、2、・・・、16)において、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)から半球共振器2に対して作用する真の半径方向吸引力までの特性として、アクチュエータ駆動周波数ωrにおいて位相特性ΨDが存在する。また、変位センサSk(k=1、2、・・・、8)においても、半球共振器2における真の半径方向変位から変位センサ出力Ek(k=1、2、・・・、8)までの特性として、アクチュエータ駆動周波数ωrにおいて位相特性ΨSが存在する。一方、半球共振器2における真の半径方向吸引力から真の半径方向変位までの位相特性は、アクチュエータ駆動周波数ωrに応じて0度から-180度まで変化し、振動形状抽出手段11における変位センサ出力Ek(k=1、2、・・・、8)から共振位相特性φrまでの位相特性は、アクチュエータ駆動周波数ωrによらずほぼ0度となる。
 図6に示す位相関係を踏まえると、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する半球共振器変位の周波数特性は、図7に示す通りとなり、ゲイン特性30は半球共振器2の1次共振周波数32において共振ピークを生ずる。一方、共振位相特性φrに関する位相特性31は、アクチュエータ駆動周波数ωrに応じてΨD+ΨSからΨD+ΨS-180度まで変化し、かつ、半球共振器2の1次共振周波数32においてΨD+ΨS-90度となる。
 図8に示したように、この実施の形態1による半球共振型ジャイロの駆動周波数補正手段12は、積分器33を備え、振動形状抽出手段11から出力される共振位相特性φrから共振位相特性指令φr *を減じた信号を積分器33によって積分し、積分器33の出力とアクチュエータ駆動周波数の初期値ωr0との加算値によって、アクチュエータ駆動周波数ωrを制御している。
 図9は、本発明の実施の形態1による半球共振型ジャイロにおいて、波節直角位相振動制御手段13の内部構成を示すブロック図である。図10は、本発明の実施の形態1による波節直角位相振動制御手段13において、動作の概要を示す概略図である。
 図9に示したように、この実施の形態1による半球共振型ジャイロの波節直角位相振動制御手段13は、電気的剛性制御手段40と直流駆動電圧分配手段41とを備えている。
 電気的剛性制御手段40は、振動形状抽出手段11から出力される波節直角位相振動の振動振幅Bの符号反転値が入力され、波節直角位相振動を抑制するための電気的剛性補正指令uNQを生成する。
 直流駆動電圧分配手段41は、電気的剛性制御手段40から出力される電気的剛性補正指令uNQ、および、振動形状抽出手段11から出力される1次共振モードの波腹方位角θrに基づいて、電気的剛性補正指令uNQが正符号の場合には、図10(a)に示すように、波腹方位角θrに対して+22.5度位相がずれた直交軸方向を、半球共振器2に対する電気的剛性補正軸42とする。一方、電気的剛性補正指令uNQが負符号の場合には、図10(b)に示すように、波腹方位角θrに対して-22.5度位相がずれた直交軸方向を半球共振器2に対する電気的剛性補正軸42とする。更に、図10において、太線矢印で示したように、電気的剛性補正軸42に沿って、電気的剛性補正指令uNQの絶対値に対応する半径方向吸引力が半球共振器2に作用するように、電気的剛性補正軸42の両側に配置された各1個のアクチュエータに対して、アクチュエータ直流駆動信号fNQj(j=1、2、・・・、16)を分配する。
 図11は、本発明の実施の形態1による半球共振型ジャイロにおいて、共振制御手段14の内部構成を示すブロック図である。図12は、本発明の実施の形態1による共振制御手段14において、動作の概要を示す概略図である。
 図11に示したように、この実施の形態1による半球共振型ジャイロの共振制御手段14は、共振振幅制御手段50と、交流駆動電圧分配手段51とを備えている。
 当該構成において、まず、振動形状抽出手段11から出力される半球共振器2に励起された1次共振モードの振動振幅Aと、予め一定値に設定された振動振幅指令A*との振動振幅偏差が、共振振幅制御手段50に入力される。
 共振振幅制御手段50では、振動振幅偏差を零とするような制御指令を算出し、当該制御指令と振動振幅指令A*との加算値を共振振幅指令uRESとして交流駆動電圧分配手段51に対して出力する。
 交流駆動電圧分配手段51では、振動形状抽出手段11から出力される半球共振器2に励起された1次共振モードの波腹方位角θrを共振位相指令χとして、共振振幅指令uRES、共振位相指令χ、および、基準信号生成手段10から出力される余弦波信号cos(ωrt)に基づいて、アクチュエータDj(j=1、2、・・・、16)に対するアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)を分配する。
 特に、本発明の実施の形態1による交流駆動電圧分配手段51では、図12において太線矢印で示したように、共振振幅指令uRESと余弦波信号cos(ωrt)で決定されるそれぞれ逆位相の半径方向吸引力uRES[cos(ωrt)+1]、uRES[-cos(ωrt)+1]が、共振位相指令χで規定される直交軸に沿って90度間隔で交互に半球共振器2に対して作用するように、当該直交軸の両側に配置された各1個のアクチュエータに対して、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)を分配する構成としている。
 次に、本発明の実施の形態1による半球共振型ジャイロの動作について説明する。
 図1および図2に示したように、本発明の実施の形態1による半球共振型ジャイロの半球共振器2は、角度計測軸1(Z軸)に対して軸対称な半球形状であり、上側ハウジング3、および下側ハウジング4によって角度計測軸1で支持されている。上側ハウジング3には、計16個のアクチュエータDj(j=1、2、・・・、16)を角度計測軸1の回りに22.5度間隔で配置しており、半球共振器2に対して各アクチュエータDj(j=1、2、・・・、16)で発生する半径方向吸引力を制御することで、1次共振モードを発生させる。更に、下側ハウジング4には、計8個の変位センサSk(k=1、2、・・・、8)を角度計測軸1の回りに45度間隔で配置しており、半球共振器2に励起された振動の半径方向変位を検出する。
 半球共振器2に励起される1次共振モードは、角度計測軸1に対して垂直な平面(XY平面)において楕円形状となる。例えば、図2に示すアクチュエータD1、D9の組、および、D5、D13の組に対するアクチュエータ交流駆動信号fRES1、fRES9、およびfRES5、fRES13として、それぞれ、下記の(1)式に示す、同一振幅で逆位相の余弦波駆動信号を作用させた場合、半球共振器2には破線で示したX軸方向を長軸とする楕円形状と、一点鎖線で示したY軸方向を長軸とする楕円形状を、1/2周期毎に交互に繰り返す1次共振モードが励起される。
Figure JPOXMLDOC01-appb-M000001
 半球部分の密度および剛性が完全に均一となる理想的な半球共振器2では、アクチュエータDj(j=1、2、・・・、16)による上記のような強制加振によって、半球共振器2上に1次共振モードのみが励起される。しかしながら、密度および剛性に不均一性を有する現実の半球共振器2では、例えば、図2の点6で示す1次共振モードの波節を新たな波腹とし、かつ、1次共振モードに対して90度位相差で振動する波節直角位相振動が発生し、当該振動が半球共振型ジャイロで検出する回転角度のドリフト要因となる。
 半球共振器2に励起された1次共振モード、および、波節直角位相振動による半径方向変位は、図3に示したように変位センサSk(k=1、2、・・・、8)によって検出され、このときの変位センサ出力Ek(k=1、2、・・・、8)は、一般に次式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 ただし、A:1次共振モード・振動振幅、
     θr:1次共振モード・波腹方位角、
     φr:1次共振モード・アクチュエータ交流駆動信号に対する共振位相特性、
     B:波節直角位相振動・振動振幅、
     ωr:アクチュエータ駆動周波数≒1次共振周波数。
 振動形状抽出手段11では、式(2)で与えられる変位センサ出力Ek(k=1、2、・・・、8)、および、基準信号生成手段10で生成されるアクチュエータ駆動周波数ωrに対応する正弦波信号sin(ωrt)および余弦波信号cos(ωrt)を入力として、半球共振器2に励起された1次共振モードの振動振幅A、波腹方位角θr、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する共振位相特性φr、および、半球共振器に励起された波節直角位相振動の振動振幅Bを抽出する。
 具体的には、図4に示すように、第1の直交軸(図2におけるX-Y直交軸)方向に配置された変位センサSk(k=1、3、5、7)による変位センサ出力Ek(k=1、3、5、7)、および、第1の直交軸に対して角度計測軸1の回りに45度位相がずれた第2の直交軸方向に配置された変位センサSk(k=2、4、6、8)による変位センサ出力Ek(k=2、4、6、8)を、それぞれ第1の合成手段20、および、第2の合成手段21によって次式(3)で合成する。
Figure JPOXMLDOC01-appb-M000003
 次に、第1の合成手段20からの出力EReを実数部とし、第2の合成手段21からの出力EImを虚数部とする下記の式(4)で示す複素表現を求め、正弦波信号sin(ωrt)および余弦波信号cos(ωrt)と共に正方向回転座標変換手段22、および、負方向回転座標変換手段23に入力する。
Figure JPOXMLDOC01-appb-M000004
 正方向回転座標変換手段22、および負方向回転座標変換手段23では、式(4)で与えられる複素表現Eを、次式(5)を用いて、図5に示したアクチュエータ駆動周波数ωrに一致する回転速度で正負方向に回転する正方向回転座標系28、および、負方向回転座標系29による表現E+、E-に変換する。
Figure JPOXMLDOC01-appb-M000005
 式(5)で与えられる正方向回転座標系表現E+、および負方向回転座標系表現E-は、それぞれ正方向低周波抽出手段24、および負方向低周波抽出手段25によって、下式(6)で示される低周波成分EDC+,EDC-が抽出される。
Figure JPOXMLDOC01-appb-M000006
 また、位相特性抽出手段26によって、低周波成分EDC+,EDC-から、下式(7)を用いて、半球共振器2に励起された1次共振モードのアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する共振位相特性φrが算出される。
Figure JPOXMLDOC01-appb-M000007
 ただし、ここでは、実際の1次共振モードおよび波節直角位相振動の振動振幅が、下式(8)の関係となることを用いている。
Figure JPOXMLDOC01-appb-M000008
 更に、振動特性抽出手段27において、正方向低周波抽出手段24および負方向低周波抽出手段25からの出力EDC+,EDC-(式(6)参照)、および、位相特性抽出手段26から出力される共振位相特性φr(式(7)参照)に基づいて、下式(9)で示されるEa,Ebを算出する。
Figure JPOXMLDOC01-appb-M000009
 振動特性抽出手段27は、Ea,Ebを用いて、半球共振器2に励起された1次共振モードの波腹方位角θrを下式(10)で算出し、振動振幅Aを下式(11)で算出し、波節直角位相振動の振動振幅Bを下式(12)で算出する。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 図3に示す駆動周波数補正手段12では、振動形状抽出手段11から出力される共振位相特性φrに基づいて、アクチュエータ駆動周波数ωrが半球共振器2の1次共振周波数に一致するように補正する。
 一般に、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)から、振動形状抽出手段11で抽出される共振位相特性φrまでの位相関係は図6に示す通りである。すなわち、共振位相特性φrには、半球共振器2における真の半径方向吸引力から真の半径方向変位までの、アクチュエータ駆動周波数ωrに応じて0度から-180度まで変化する位相特性に加えて、アクチュエータDj(j=1、2、・・・、16)における、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)から半球共振器2に対して作用する真の半径方向吸引力までの位相特性ΨD、および、変位センサSk(k=1、2、・・・、8)における、半球共振器2における真の半径方向変位から変位センサ出力Ek(k=1、2、・・・、8)までの位相特性ΨSが存在する。
 したがって、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する半球共振器変位の周波数特性は、図7に示す通りとなる。すなわち、共振位相特性φrに関する位相特性31は、アクチュエータ駆動周波数ωrに応じてΨD+ΨSからΨD+ΨS-180度まで変化し、かつ、半球共振器2の1次共振周波数32においてΨD+ΨS-90度となる。
 そこで、駆動周波数補正手段12では、アクチュエータ駆動周波数ωrおけるアクチュエータ位相特性ΨD、および変位センサ位相特性ΨSを用いて、図8における共振位相特性指令φr *を下式(13)に設定し、共振位相特性φrから共振位相特性指令φr *を減じた信号を積分器33によって積分して、積分器33の出力とアクチュエータ駆動周波数の初期値ωr0との加算値を求め、当該加算値によって、アクチュエータ駆動周波数ωrを制御している。
Figure JPOXMLDOC01-appb-M000013
 これにより、
(a)アクチュエータ駆動周波数ωr<半球共振器2の1次共振周波数32
      ⇔  共振位相特性φr>共振位相特性指令φr *の場合は、
 アクチュエータ駆動周波数ωrが高周波側へシフトし、
(b)アクチュエータ駆動周波数ωr>半球共振器2の1次共振周波数32
      ⇔  共振位相特性φr<共振位相特性指令φr *の場合は、
 アクチュエータ駆動周波数ωrが低周波側へシフトする。
 そのため、
 アクチュエータ駆動周波数ωr=半球共振器2の1次共振周波数32
      ⇔  共振位相特性φr=共振位相特性指令φr *で、
駆動周波数補正手段12が安定化し、半球共振器2における真の1次共振周波数32を高精度にロックする。
 図3に示す波節直角位相振動制御手段13では、振動形状抽出手段11から出力される波節直角位相振動の振動振幅Bおよび1次共振モードの波腹方位角θrに基づいて、波節直角位相振動を抑制するための複数のアクチュエータ直流駆動信号fNQj(j=1、2、・・・、16)を生成する。
 具体的には、図9に示すように波節直角位相振動における振動振幅Bの符号反転値から、連続系伝達関数が下式(14)で与えられるPI制御器で構成した電気的剛性制御手段40によって、波節直角位相振動を抑制するための電気的剛性補正指令uNQを生成する。
Figure JPOXMLDOC01-appb-M000014
 ただし、KNQP:比例ゲイン、
     KNQI:積分ゲインとする。
 直流駆動電圧分配手段41では、はじめに、電気的剛性補正指令uNQの符号、および振動形状抽出手段11から出力される1次共振モードの波腹方位角θrに基づいて、電気的剛性補正指令uNQが正符号の場合には、図10(a)に示すように波腹方位角θrに対して+22.5度位相がずれた直交軸方向を、負符号の場合には、図10(b)に示すように波腹方位角θrに対して-22.5度位相がずれた直交軸方向を、半球共振器2に対する電気的剛性補正軸42として設定する。次に、図10の太線矢印で示したように、電気的剛性補正軸42に沿って電気的剛性補正指令uNQの絶対値に対応する半径方向吸引力が半球共振器2に作用するように、下式(15)~(18)に基づいてアクチュエータ直流駆動信号fNQj(j=1、2、・・・、16)を決定する。
 ただし、ξ:XY平面第1象限に存在する電気的剛性補正軸42が、X軸となす角度とする。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 これは、電気的剛性補正軸42の両側に配置された各1個のアクチュエータによって、電気的剛性補正指令uNQを実現することに対応しており、本構成によって現実の半球共振器2における不均一性を電気的に補正し、波節直角位相振動を抑制する。
 図3に示す共振制御手段14では、振動形状抽出手段11から出力される1次共振モードの振動振幅Aおよび波腹方位角θrと、基準信号生成手段10から出力される余弦波信号cos(ωrt)とに基づいて、半球共振器2に励起された1次共振モードの振動振幅Aを予め設定した一定値に制御し、かつ、1次共振モードの角度計測軸1の回りの自由な回転を実現するアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)を生成する。
 具体的には、図11に示すように、予め設定された一定値に設定した振動振幅指令A*と、実際の振動振幅Aとの振動振幅偏差とから、連続系伝達関数が下式(19)で与えられるPI制御器で構成した共振振幅制御手段50によって振動振幅偏差を零とするような制御指令を算出し、当該制御指令と振動振幅指令A*との加算値を、共振振幅指令uRESとする。
Figure JPOXMLDOC01-appb-M000019
 ただし、KAP:比例ゲイン、
     KAI:積分ゲインとする。
 更に、半球共振器2に励起された1次共振モードの波腹方位角θrをそのまま共振位相指令χとして、共振振幅指令uRES、共振位相指令χ、および、基準信号生成手段10から出力される余弦波信号cos(ωrt)を、交流駆動電圧分配手段51に入力する。交流駆動電圧分配手段51では、図12の太線矢印で示したように、共振振幅指令uRESと余弦波信号cos(ωrt)で決定されるそれぞれ逆位相の半径方向吸引力uRES[cos(ωrt)+1]、および、uRES[-cos(ωrt)+1]が、共振位相指令χで規定される直交軸に沿って90度間隔で交互に半球共振器2に対して作用するように、下式(20)~(27)に基づいてアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)を決定する。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 これは、共振位相指令χで規定される直交軸の両側に配置された各1個のアクチュエータによって、半径方向吸引力uRES[cos(ωrt)+1]、および、uRES[-cos(ωrt)+1]を実現することに対応しており、本構成によって1次共振モードの振動振幅Aを予め設定された一定値に制御し、かつ角度計測軸1の回りの自由な回転を実現する。
 図3に示すアクチュエータ直流駆動信号fNQj(j=1、2、・・・、16)、および、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)は、アクチュエータ駆動信号合成手段16によって加算され、当該加算信号に基づいてアクチュエータDj(j=1、2、・・・、16)を制御する。このとき、振動形状抽出手段11から出力される1次共振モードの波腹方位角θrに対して、角度スケールファクタ乗算手段15で、予め設定された角度スケールファクタKθを乗ずることで、角度計測軸1方向の回転角度θが検出される。
 このように、本発明の実施の形態1による半球共振型ジャイロにより、従来のフェーズ・ロックド・ループPLLを使用せずに半球共振器2に励起された1次共振モード、および、波節直角位相振動の詳細な振動形状を抽出することができるため、半球共振型ジャイロの動作を常に安定化することが可能となる。また、半球共振器2の1次共振周波数32に対する極めてスペクトル純度の高い動作と高位相分解能を実現することができるため、半球共振型ジャイロの角度検出分解能を向上させることが可能となる。
 更に、本発明の実施の形態1による半球共振型ジャイロによって、半球共振器2における真の1次共振周波数32を高精度にロックすることが可能となるため、半球共振器2に対して効率的な1次共振モードの励起を実現するための、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)の位相特性を生成することが可能となる。また、1次共振モードの角度計測軸1の回りの自由な回転を実現するためのアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に関して、その生成に必要な制御演算量を低減することが可能となる。
 加えて、本発明の実施の形態1による半球共振型ジャイロによって、波節直角位相振動を抑制し、半球共振器2に対して1次共振モードのみが励起された状態を実現することができるため、半球共振型ジャイロで検出する回転角度のドリフトを抑制することが可能となる。
 なお、本発明の実施の形態1による半球共振型ジャイロでは、計16個のアクチュエータ、および計8個の変位センサを適用し、その空間配置を図2に示す構成としたが、本発明はこれに限定するものではなく、アクチュエータに関しては半球共振器2に対する1次共振モードの励起と波節直角位相振動の抑制が実現できる構成であればよく、変位センサに関しては互いに45度位相がずれた2組の直交軸方向について、半球共振器2の半径方向変位が検出できる構成であればよい。
 また、本発明の実施の形態1による半球共振型ジャイロでは、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)の生成に関して、アクチュエータ駆動周波数ωrの余弦波信号cos(ωrt)を適用したが、本発明はこれに限定するものではなく、対応する数式を適宜変更することにより、正弦波信号sin(ωrt)を適用してもよい。
 以上のように、本実施の形態1は、計測軸としての角度計測軸1に対して軸対称な半球形状を有し、角度計測軸1に対して垂直な平面において共振パターンを維持させるための半球共振器2と、半球共振器2を角度計測軸1を介して支持する上側ハウジング3および下側ハウジング4と、上側ハウジング3に対して角度計測軸回りに等間隔で配置され、半球共振器2に対して半径方向の吸引力を発生させる複数のアクチュエータDjと、下側ハウジング4に対して角度計測軸回りに等間隔で配置され、半球共振器2の半径方向の変位を検出する複数の変位センサSkと、アクチュエータDjの駆動周波数に対応する正弦波信号および余弦波信号を生成する基準信号生成手段10と、基準信号生成手段10から出力される正弦波信号および余弦波信号と、複数の変位センサSkから出力される半球共振器2の半径方向の変位とに基づいて、半球共振器2に励起された共振モードの振動振幅及び波腹方位角、アクチュエータDjの交流駆動信号に対する共振位相特性、および、半球共振器2に励起された波節直角位相振動の振動振幅を抽出する振動形状抽出手段11と、振動形状抽出手段11から出力されるアクチュエータDjの交流駆動信号に対する共振位相特性に基づいて、アクチュエータDjの駆動周波数を半球共振器2の共振周波数に一致させる駆動周波数補正手段12と、振動形状抽出手段11から出力される波節直角位相振動の振動振幅および共振モードの波腹方位角に基づいて、波節直角位相振動を抑制するための複数のアクチュエータDjの直流駆動信号を生成する波節直角位相振動制御手段13と、振動形状抽出手段11から出力される共振モードの振動振幅および波腹方位角と、基準信号生成手段10から出力される余弦波信号とに基づいて、半球共振器2に励起された共振モードの振動振幅を予め設定された一定値に制御し、かつ、共振モードの角度計測軸回りの自由な回転を実現するための複数のアクチュエータDjの交流駆動信号を生成する共振制御手段14とを備え、半球共振器2に励起された共振モードの波腹方位角から、半球共振器2の角度計測軸方向の回転角度を検出する半球共振型ジャイロである。
 この構成により、従来のフェーズ・ロックド・ループPLLを使用せずに半球共振器に励起された1次共振モード、および波節直角位相振動の詳細な振動形状を抽出することができるため、半球共振型ジャイロの動作を常に安定化し、半球共振器の1次共振周波数に対する極めてスペクトル純度の高い動作と高精度なロックが可能となる。
 また、本構成に基づく振動形状抽出により、半球共振器の1次共振周波数に対して高位相分解能を実現することができ、半球共振型ジャイロの角度検出分解能を向上させることが可能となる。
 更に、本構成によって半球共振器における真の1次共振周波数を高精度にロックすることが可能となるため、半球共振器に対して効率的な1次共振モードの励起を実現するための、アクチュエータ交流駆動信号の位相特性を生成することができる。
 また、本実施の形態においては、振動形状抽出手段11が、角度計測軸1に直交する第1の直交軸方向に配置された変位センサSkの出力を合成する第1の合成手段20と、角度計測軸1に直交し、第1の直交軸に対して計測軸回りに45度位相がずれた第2の直交軸方向に配置された変位センサSkの出力を合成する第2の合成手段21と、第1の合成手段20からの出力を実数部として第2の合成手段21からの出力を虚数部とする複素表現を、アクチュエータDjの駆動周波数に一致する回転速度で正方向に回転する回転座標系による表現に変換する正方向回転座標変換手段22と、第1の合成手段20からの出力を実数部として第2の合成手段21からの出力を虚数部とする複素表現を、アクチュエータDjの駆動周波数に一致する回転速度で負方向に回転する回転座標系による表現に変換する負方向回転座標変換手段23と、正方向回転座標変換手段22の出力から予め設定された低周波成分を抽出する正方向低周波抽出手段24と、負方向回転座標変換手段23の出力から予め設定された低周波成分を抽出する負方向低周波抽出手段25と、正方向低周波抽出手段24および負方向低周波抽出手段25の出力に基づいて、半球共振器2に励起された共振モードのアクチュエータDjの交流駆動信号に対する共振位相特性を算出する位相特性抽出手段26と、正方向低周波抽出手段24および負方向低周波抽出手段25の出力および位相特性抽出手段26の出力に基づいて、半球共振器2に励起された共振モードの振動振幅及び波腹方位角、および、半球共振器2に励起された波節直角位相振動の振動振幅を抽出する振動特性抽出手段27とを有している。
 この構成により、従来のフェーズ・ロックド・ループPLLを使用せずに半球共振器に励起された1次共振モード、および波節直角位相振動の詳細な振動形状を抽出することができるため、半球共振型ジャイロの動作を常に安定化し、更に半球共振器の1次共振周波数に対して極めてスペクトル純度の高い動作と、当該1次共振周波数に対する高位相分解能の実現により、半球共振型ジャイロの角度検出分解能を向上させることができる。
 また、本実施の形態においては、駆動周波数補正手段12が、振動形状抽出手段11から出力されるアクチュエータDjの交流駆動信号に対する共振位相特性を、アクチュエータDjの駆動周波数におけるアクチュエータ位相特性と、アクチュエータDjの駆動周波数における変位センサ位相特性と、-90度との合計値に固定するように、アクチュエータDjの駆動周波数を制御する。
 この構成により、半球共振器2における真の1次共振周波数を高精度にロックすることが可能となり、更に半球共振器2に対して効率的な1次共振モードの励起を実現するための、アクチュエータ交流駆動信号の位相特性を生成することができる。
 また、波節直角位相振動制御手段13が、振動形状抽出手段11から出力される波節直角位相振動の振動振幅に基づいて、波節直角位相振動を抑制するための電気的剛性補正指令を生成する電気的剛性制御手段40と、電気的剛性制御手段40から出力される電気的剛性補正指令の符号に応じて、前記符号が正符号の場合には共振モードの波腹方位角に対して+22.5度位相がずれた直交軸方向を、符号が負符号の場合には共振モードの波腹方位角に対して-22.5度位相がずれた直交軸方向を、半球共振器2に対する電気的剛性補正軸とし、電気的剛性補正軸の両側に配置された各1個のアクチュエータDjに対して、電気的剛性補正指令の絶対値に基づいてアクチュエータDjの直流駆動信号を分配する直流駆動電圧分配手段41とを有する。
 この構成により、波節直角位相振動を抑制して、半球共振器に対して1次共振モードのみが励起された状態を実現することができるため、半球共振型ジャイロで検出する角度出力のドリフトを抑制することが可能となる。
 また、本実施の形態によれば、共振制御手段14が、半球共振器2に励起された共振モードの振動振幅を一定値に制御する共振振幅指令を生成する共振振幅制御手段50と、半球共振器2に励起された共振モードの波腹方位角を共振位相指令として、共振振幅指令、共振位相指令、および、基準信号生成手段10から出力される余弦波信号に基づいて、複数のアクチュエータDjに対する交流駆動信号を分配する交流駆動電圧分配手段51とを有する。
 この構成により、半球共振器に対する効率的な1次共振モードの励起と、1次共振モードの角度計測軸回りの自由な回転を実現するための、アクチュエータ交流駆動信号を生成することが可能となる。
 また、本実施の形態によれば、共振制御手段14の交流駆動電圧分配手段51は、共振位相指令で規定される角度計測軸1に直交する直交軸の両側に配置された各1個のアクチュエータDjに対して、共振振幅制御手段50から出力される共振振幅指令および基準信号生成手段10から出力される余弦波信号に基づいて、アクチュエータDjの交流駆動信号を分配する。
 この構成により、半球共振器に対する所望の1次共振モード励起に関して、アクチュエータ交流駆動信号の生成に必要な制御演算量を低減することが可能となる。
 実施の形態2.
 本発明の実施の形態2による半球共振型ジャイロにおいて、半球共振型ジャイロの機械系構成に関する角度計測軸を含む平面に沿った断面図、および、角度計測軸に垂直な平面に沿った、半球共振器、アクチュエータ、変位センサの空間配置を示す簡略図は、実施の形態1の図1および図2と同一である。
 また、本発明の実施の形態2による半球共振型ジャイロにおいて、全体構成を示すブロック図、振動形状抽出手段11の内部構成を示すブロック図、振動形状抽出手段11において適用する正方向回転座標系28、および、負方向回転座標系29の概要を示す簡略図、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)から共振位相特性φrまでの位相関係の概要を示すブロック図、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する半球共振器変位の周波数特性を示す簡略図、および、駆動周波数補正手段12の内部構成を示すブロック図は、実施の形態1の図3、図4、図5、図6、図7、および図8と同一である。
 更に、本発明の実施の形態2による半球共振型ジャイロにおいて、波節直角位相振動制御手段13の内部構成を示すブロック図、波節直角位相振動制御手段13における動作の概要を示す簡略図、共振制御手段14の内部構成を示すブロック図、および、共振制御手段14における動作の概要を示す簡略図は、実施の形態1の図9、図10、図11、および図12と同一である。
 従って、本実施の形態2においては、実施の形態1の図1~図12を参照し、ここでは、同一の構成については説明を省略し、以下では、実施の形態1と異なる動作について説明する。
 以下、本発明の実施の形態2に係る半球共振型ジャイロの動作について説明する。
 本発明の実施の形態2による半球共振型ジャイロの駆動周波数補正手段12では、図7に示した共振位相特性φrに関する位相特性31について、半球共振器の共振周波数32に対して予め設定された一定の周波数だけアクチュエータ駆動周波数ωrを低く設定した場合の共振位相特性を、下式(28)とし、
Figure JPOXMLDOC01-appb-M000028
 半球共振器の共振周波数32に対して予め設定された一定の周波数だけアクチュエータ駆動周波数ωrを高く設定した場合の共振位相特性を、下式(29)として取得し、
Figure JPOXMLDOC01-appb-M000029
 図8における共振位相特性指令φr *を、当該位相特性の平均値として、下式(30)に設定する。
Figure JPOXMLDOC01-appb-M000030
 一般に、半球共振器2における1次共振特性のQ値は非常に高く、位相特性31は共振周波数32の近傍で急峻に変化するため、アクチュエータ駆動周波数ωrを共振周波数32に対して概略ア1Hz程度変化させることで、式(28)および式(29)を取得することができる。本構成により、アクチュエータ駆動周波数ωrにおけるアクチュエータ位相特性ΨD、および、変位センサ位相特性ΨSが不明でも、式(28)および式(29)で与えられる共振位相特性を特定することで、半球共振器2における真の1次共振周波数32を高精度にロックすることが可能となる。
 次に、本発明の実施の形態2による半球共振型ジャイロの交流駆動電圧分配手段51では、図12の太線矢印で示したように、共振振幅指令uRESと余弦波信号cos(ωrt)で決定されるそれぞれ逆位相の半径方向吸引力uRES[cos(ωrt)+1]およびuRES[-cos(ωrt)+1]が、共振位相指令χで規定される直交軸に沿って90度間隔で交互に半球共振器2に対して作用するように、下式(31)~(38)に基づいてアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)を決定する。
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
 これは、各アクチュエータにおける発生吸引力のノルムが最小となるように、共振位相指令χで規定される直交軸の両側に配置された各2個のアクチュエータによって、半径方向吸引力uRES[cos(ωrt)+1]およびuRES[-cos(ωrt)+1]を実現することに対応している。また、余弦波吸引力指令の平方根をアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)とすることで、アクチュエータとして発生吸引力が印加電圧の2乗に比例するような静電容量式アクチュエータを適用した場合において、より正確なアクチュエータ発生吸引力の制御を可能とする。
 このように、本発明の実施の形態2による半球共振型ジャイロにより、従来のフェーズ・ロックド・ループPLLを使用せずに、半球共振器2に励起された1次共振モードおよび波節直角位相振動の詳細な振動形状を抽出することができるため、半球共振型ジャイロの動作を常に安定化することが可能となる。また、半球共振器2の1次共振周波数32に対する極めてスペクトル純度の高い動作と高位相分解能を実現することができるため、半球共振型ジャイロの角度検出分解能を向上させることが可能となる。
 更に、本発明の実施の形態2による半球共振型ジャイロによって、アクチュエータ駆動周波数ωrにおけるアクチュエータ位相特性ΨD、および変位センサ位相特性ΨSが不明でも、半球共振器2における真の1次共振周波数32を高精度にロックすることが可能となるため、半球共振器2に対して効率的な1次共振モードの励起を実現するための、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)の位相特性を生成することが可能となる。また、1次共振モードの角度計測軸1の回りの自由な回転を実現するためのアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に関して、アクチュエータとして発生吸引力が印加電圧の2乗に比例するような静電容量式アクチュエータを適用した場合において、各アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)の印加電圧レベルを低減すると共に、より正確なアクチュエータ発生吸引力の制御が可能となる。
 加えて、本発明の実施の形態2による半球共振型ジャイロによって、波節直角位相振動を抑制し、半球共振器2に対して1次共振モードのみが励起された状態を実現することができるため、半球共振型ジャイロで検出する回転角度のドリフトを抑制することが可能となる。
 なお、本発明の実施の形態2による半球共振型ジャイロでは、計16個のアクチュエータ、および計8個の変位センサを適用し、その空間配置を図2に示す構成としたが、本発明はこれに限定するものではなく、アクチュエータに関しては半球共振器2に対する1次共振モードの励起と波節直角位相振動の抑制が実現できる構成であればよく、変位センサに関しては互いに45度位相がずれた2組の直交軸方向について、半球共振器2の半径方向変位が検出できる構成であればよい。
 また、本発明の実施の形態2による半球共振型ジャイロでは、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)の生成に関して、アクチュエータ駆動周波数ωrの余弦波信号cos(ωrt)を適用したが、本発明はこれに限定するものではなく、対応する数式を適宜変更することにより、正弦波信号sin(ωrt)を適用してもよい。
 以上のように、本実施の形態2によれば、上記の実施の形態1と同様の効果が得られる。
 さらに、本実施の形態によれば、駆動周波数補正手段12は、振動形状抽出手段11から出力されるアクチュエータDjの交流駆動信号に対する共振位相特性を、半球共振器2の共振周波数に対して予め設定された周波数だけアクチュエータDjの駆動周波数を低く設定した場合の共振位相特性と、半球共振器2の共振周波数に対して予め設定された周波数だけアクチュエータDjの駆動周波数を高く設定した場合の共振位相特性との平均値に固定するように、アクチュエータDjの駆動周波数を制御する。
 この構成により、アクチュエータ駆動周波数におけるアクチュエータ位相特性、および変位センサ位相特性が不明でも、半球共振器における真の1次共振周波数を高精度にロックすることが可能となり、更に半球共振器に対して効率的な1次共振モードの励起を実現するための、アクチュエータ交流駆動信号の位相特性を生成することができる。
 また、本実施の形態によれば、共振制御手段14の交流駆動電圧分配手段51は、共振位相指令で規定される直交軸の両側に配置された各2個のアクチュエータDjに対して、アクチュエータDjの発生吸引力のノルムが最小となるように、共振振幅制御手段50から出力される共振振幅指令および基準信号生成手段10から出力される余弦波信号に基づいて余弦波吸引力指令を算出し、余弦波吸引力指令の平方根を、アクチュエータDjの交流駆動信号として分配する。
 この構成により、アクチュエータとして発生吸引力が印加電圧の2乗に比例するような静電容量式アクチュエータを適用した場合において、半球共振器に対する所望の1次共振モード励起に関して、各アクチュエータ交流駆動信号の印加電圧レベルを低減すると共に、より正確なアクチュエータ発生吸引力の制御が可能となる。
 実施の形態3.
 本発明の実施の形態3による半球共振型ジャイロにおいて、半球共振型ジャイロの機械系構成に関する角速度計測軸を含む平面に沿った断面図、および、角速度計測軸に垂直な平面に沿った、半球共振器、アクチュエータ、変位センサの空間配置を示す簡略図は、実施の形態1の図1および図2と同一である。
 また、本発明の実施の形態3による半球共振型ジャイロにおいて、振動形状抽出手段11の内部構成を示すブロック図、振動形状抽出手段11において適用する正方向回転座標系28、および負方向回転座標系29の概要を示す簡略図、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)から共振位相特性φrまでの位相関係の概要を示すブロック図、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する半球共振器変位の周波数特性を示す簡略図、および、駆動周波数補正手段12の内部構成を示すブロック図は、実施の形態1の図4、図5、図6、図7、および図8と同一である。
 更に、本発明の実施の形態3による半球共振型ジャイロにおいて、波節直角位相振動制御手段13の内部構成を示すブロック図、波節直角位相振動制御手段13における動作の概要を示す簡略図、および、共振制御手段14における動作の概要を示す簡略図は、実施の形態1の図9、図10、および、図12と同一である。
 従って、本実施の形態3においては、実施の形態1の図1、図2、図4~図10、および、図12を参照し、ここでは、同一の構成については説明を省略し、以下では、実施の形態1と異なる構成および動作について説明する。
 以下、本発明の実施の形態3に係る半球共振型ジャイロについて説明する。
 図13は、本発明の実施の形態3による半球共振型ジャイロの全体構成を示すブロック図である。図13の構成と実施の形態1で示した図3の構成との大きな違いは、図13においては、角度スケールファクタ乗算手段15が設けられていない点である。従って、実施の形態3による半球共振型ジャイロは、図13に示したように、半球共振器2、アクチュエータDj(j=1、2、・・・、16)、変位センサSk(k=1、2、・・・、8)、基準信号生成手段10、振動形状抽出手段11、駆動周波数補正手段12、波節直角位相振動制御手段13、共振制御手段14、および、アクチュエータ駆動信号合成手段16を備えている。
 図13に示したように、本実施の形態3による半球共振型ジャイロでは、まず、基準信号生成手段10によって、アクチュエータ駆動周波数ωrに対応する正弦波信号sin(ωrt)および余弦波信号cos(ωrt)を生成する。
 振動形状抽出手段11では、基準信号生成手段10から出力される正弦波信号sin(ωrt)および余弦波信号cos(ωrt)と、複数の変位センサSk(k=1、2、・・・、8)から出力される変位センサ出力Ek(k=1、2、・・・、8)とに基づいて、半球共振器2に励起された1次共振モードの振動振幅A、波腹方位角θr、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する共振位相特性φr、および、半球共振器に励起された波節直角位相振動の振動振幅Bを抽出する。
 駆動周波数補正手段12では、振動形状抽出手段11から出力されるアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する共振位相特性φrに基づいて、アクチュエータ駆動周波数ωrを半球共振器2の共振周波数に一致させる。
 波節直角位相振動制御手段13では、振動形状抽出手段11から出力される波節直角位相振動の振動振幅Bおよび1次共振モードの波腹方位角θrに基づいて、波節直角位相振動を抑制するための複数のアクチュエータ直流駆動信号fNQj(j=1、2、・・・、16)を生成する。
 共振制御手段14では、振動形状抽出手段11から出力される1次共振モードの振動振幅Aおよび波腹方位角θrと、基準信号生成手段10から出力される余弦波信号cos(ωrt)とに基づいて、半球共振器2に励起された1次共振モードに関して振動振幅Aおよび波腹方位角θrの双方を、予め設定された一定形状に制御するための複数のアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)を生成する。
 こうして波節直角位相振動制御手段13から出力される複数のアクチュエータ直流駆動信号fNQj(j=1、2、・・・、16)と、共振制御手段14から出力される複数のアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)とは、アクチュエータ駆動信号合成手段16によって加算され、加算信号として出力される。当該加算信号に基づいてアクチュエータDj(j=1、2、・・・、16)を制御することで、アクチュエータ直流駆動信号fNQj(j=1、2、・・・、16)によって半球共振器2上に1次共振モードのみが励起された状態を実現し、更にアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)によって1次共振モードを予め設定された一定形状に制御する。
 このとき、共振制御手段14において、波腹方位角θrを一定角度に維持するための制御指令は、角速度計測軸1方向の回転角速度ωに比例するため、当該制御指令に対して予め設定された角速度スケールファクタを乗ずることで、角速度計測軸1方向の回転角速度ωを検出することができる。
 図14は、本発明の実施の形態3による半球共振型ジャイロにおいて、共振制御手段14の内部構成を示すブロック図である。図14に示したように、この実施の形態3による半球共振型ジャイロの共振制御手段14は、共振振幅制御手段50と、交流駆動電圧分配手段51と、共振位相制御手段52と、角速度スケールファクタ乗算手段53とを備えている。
 図14に示すように、本実施の形態3による半球共振型ジャイロの共振制御手段14では、振動形状抽出手段11から出力される半球共振器2に励起された1次共振モードの振動振幅Aと、予め一定値に設定された振動振幅指令A*との振動振幅偏差が、共振振幅制御手段50に入力される。
 共振振幅制御手段50では、振動振幅偏差を零とするような制御指令を算出し、当該制御指令と振動振幅指令A*との加算値を共振振幅指令uRESとして交流駆動電圧分配手段51に対して出力する。
 一方、振動形状抽出手段11から出力される半球共振器2に励起された1次共振モードの波腹方位角θrと、予め一定角度に設定された波腹方位角指令θr *との波腹方位角偏差が、共振位相制御手段52に入力される。
 共振位相制御手段52では、波腹方位角偏差を零とするような制御指令を算出し、当該制御指令と波腹方位角指令θr *との加算値を共振位相指令χとして交流駆動電圧分配手段51に対して出力する。
 交流駆動電圧分配手段51では、共振振幅指令uRES、共振位相指令χ、および、基準信号生成手段10から出力される余弦波信号cos(ωrt)に基づいて、アクチュエータDj(j=1、2、・・・、16)に対するアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)を分配する。このとき、共振位相制御手段52から出力される制御指令は、角速度計測軸1方向の回転角速度ωに比例するため、当該制御指令に対して角速度スケールファクタ乗算手段53により、予め設定された角速度スケールファクタKωを乗ずることで、角速度計測軸1方向の回転角速度ωを検出することができる。
 特に、本発明の実施の形態3による交流駆動電圧分配手段51では、図12において太線矢印で示したように、共振振幅指令uRESと余弦波信号cos(ωrt)とで決定されるそれぞれ逆位相の半径方向吸引力uRES[cos(ωrt)+1]、uRES[-cos(ωrt)+1]が、共振位相指令χで規定される直交軸に沿って90度間隔で交互に半球共振器2に対して作用するように、当該直交軸の両側に配置された各2個のアクチュエータに対して、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)のノルムが最小となるように分配する構成としている。
 次に、本発明の実施の形態3による半球共振型ジャイロの動作について説明する。
 本発明の実施の形態3による半球共振型ジャイロでは、図1に示す半球共振器2の対称軸(Z軸)が、角速度計測軸1となる。
 半球共振器2に励起された1次共振モードおよび波節直角位相振動による半径方向変位は、図13に示すように変位センサSk(k=1、2、・・・、8)によって検出され、このときの変位センサ出力Ek(k=1、2、・・・、8)は、式(2)で与えられる。
 図13において、基準信号生成手段10、振動形状抽出手段11、および、波節直角位相振動制御手段13の構成および動作は、実施の形態1による半球共振型ジャイロのものと同一であり、駆動周波数補正手段12の構成および動作は、実施の形態2による半球共振型ジャイロのものと同一である。従って、これらの構成については、説明を省略する。
 図13に示す共振制御手段14では、振動形状抽出手段11から出力される1次共振モードの振動振幅Aおよび波腹方位角θrと、基準信号生成手段10から出力される余弦波信号cos(ωrt)とに基づいて、半球共振器2に励起された1次共振モードに関して振動振幅A及び波腹方位角θrの双方を、予め設定された一定形状に制御するためのアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)を生成する。
 具体的には、図14に示すように、まず、予め一定値に設定した振動振幅指令A*と、実際の振動振幅Aとの振動振幅偏差から、連続系伝達関数が式(19)で与えられるPI制御器で構成した共振振幅制御手段50によって、振動振幅偏差を零とするような制御指令を算出し、当該制御指令と振動振幅指令A*との加算値を、共振振幅指令uRESとする。
 また、予め一定角度に設定した波腹方位角指令2θr *と、実際の波腹方位角2θrとの波腹方位角偏差から、連続系伝達関数が、下式(39)で与えられるPI制御器で構成した共振位相制御手段52によって、波腹方位角偏差を零とするような制御指令を算出し、当該制御指令と波腹方位角指令2θr *との加算値を、共振位相指令2χとする。
Figure JPOXMLDOC01-appb-M000039
 ただし、KθP:比例ゲイン、
     KθI:積分ゲインとする。
 交流駆動電圧分配手段51では、共振振幅指令uRES、共振位相指令2χ、および、基準信号生成手段10から出力される余弦波信号cos(ωrt)に基づいて、図12の太線矢印で示したように、共振振幅指令uRESと余弦波信号cos(ωrt)で決定されるそれぞれ逆位相の半径方向吸引力uRES[cos(ωrt)+1]およびuRES[-cos(ωrt)+1]が、共振位相指令χで規定される直交軸に沿って90度間隔で交互に半球共振器2に対して作用するように、下式(40)~(47)に基づいてアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)を決定する。
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000047
 これは、各アクチュエータにおける発生吸引力のノルムが最小となるように、共振位相指令χで規定される直交軸の両側に配置された各2個のアクチュエータによって、半径方向吸引力uRES[cos(ωrt)+1]およびuRES[-cos(ωrt)+1]を実現することに対応しており、本構成によって1次共振モードを予め設定した一定形状に制御する。
 図13に示すアクチュエータ直流駆動信号fNQj(j=1、2、・・・、16)およびアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)は、アクチュエータ駆動信号合成手段16によって加算され、当該加算信号に基づいてアクチュエータDj(j=1、2、・・・、16)を制御する。このとき、共振位相制御手段52から出力される制御指令に対して、角速度スケールファクタ乗算手段53により、予め設定された角速度スケールファクタKωを乗ずることで、角速度計測軸1方向の回転角速度ωが検出される。
 このように、本発明の実施の形態3による半球共振型ジャイロにより、従来のフェーズ・ロックド・ループPLLを使用せずに、半球共振器2に励起された1次共振モードおよび波節直角位相振動の詳細な振動形状を抽出することができるため、半球共振型ジャイロの動作を常に安定化することが可能となる。また、半球共振器2の1次共振周波数32に対する極めてスペクトル純度の高い動作と高位相分解能を実現することができるため、半球共振型ジャイロの角速度検出分解能を向上させることが可能となる。
 更に、本発明の実施の形態3による半球共振型ジャイロによって、アクチュエータ駆動周波数ωrにおけるアクチュエータ位相特性ΨD、および変位センサ位相特性ΨSが不明でも、半球共振器2における真の1次共振周波数32を高精度にロックすることが可能となるため、半球共振器2に対して効率的な1次共振モードの励起を実現するための、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)の位相特性を生成することが可能となる。また、1次共振モードに関して振動振幅A、波腹方位角θrの双方を予め設定された一定形状(一定値および一定角度)に制御するためのアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)について、各アクチュエータに対する印加電圧レベルを低減することが可能となる。
 加えて、本発明の実施の形態3による半球共振型ジャイロによって、波節直角位相振動を抑制し、半球共振器2に対して1次共振モードのみが励起された状態を実現することができるため、半球共振型ジャイロで検出する回転角速度のドリフトを抑制することが可能となる。
 なお、本発明の実施の形態3による半球共振型ジャイロでは、計16個のアクチュエータ、および計8個の変位センサを適用し、その空間配置を図2に示す構成としたが、本発明はこれに限定するものではなく、アクチュエータに関しては半球共振器2に対する1次共振モードの励起と波節直角位相振動の抑制が実現できる構成であればよく、変位センサに関しては互いに45度位相がずれた2組の直交軸方向について、半球共振器2の半径方向変位が検出できる構成であればよい。
 また、本発明の実施の形態3による半球共振型ジャイロでは、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)の生成に関して、アクチュエータ駆動周波数ωrの余弦波信号cos(ωrt)を適用したが、本発明はこれに限定するものではなく、対応する数式を適宜変更することにより、正弦波信号sin(ωrt)を適用してもよい。
 以上のように、本実施の形態3によれば、計測軸としての角速度計測軸1に対して軸対称な半球形状を有し、角速度計測軸1に対して垂直な平面において共振パターンを維持させるための半球共振器2と、半球共振器2を角速度計測軸1を介して支持する上側ハウジング3および下側ハウジング4と、上側ハウジング3に対して角速度計測軸回りに等間隔で配置され、半球共振器2に対して半径方向の吸引力を発生させる複数のアクチュエータDjと、下側ハウジング4に対して角速度計測軸回りに等間隔で配置され、半球共振器2の半径方向の変位を検出する複数の変位センサSkと、アクチュエータDjの駆動周波数に対応する正弦波信号および余弦波信号を生成する基準信号生成手段10と、基準信号生成手段10から出力される正弦波信号および余弦波信号と、複数の変位センサSkから出力される半球共振器2の半径方向の変位とに基づいて、半球共振器2に励起された共振モードの振動振幅及び波腹方位角、アクチュエータDjの交流駆動信号に対する共振位相特性、および、半球共振器2に励起された波節直角位相振動の振動振幅を抽出する振動形状抽出手段11と、振動形状抽出手段11から出力されるアクチュエータDjの交流駆動信号に対する共振位相特性に基づいて、アクチュエータDjの駆動周波数を半球共振器2の共振周波数に一致させる駆動周波数補正手段12と、振動形状抽出手段11から出力される波節直角位相振動の振動振幅および共振モードの波腹方位角に基づいて、波節直角位相振動を抑制するための複数のアクチュエータDjの直流駆動信号を生成する波節直角位相振動制御手段13と、振動形状抽出手段11から出力される共振モードの振動振幅および波腹方位角と、基準信号生成手段10から出力される余弦波信号とに基づいて、半球共振器2に励起された共振モードの振動振幅及び波腹方位角の双方を予め設定された一定値及び一定角度に制御するための複数のアクチュエータDjの交流駆動信号を生成する共振制御手段14とを備え、共振制御手段14における波腹方位角を一定角度に維持するための制御指令から、半球共振器2の角速度計測軸方向の回転角速度を検出する。
 この構成により、従来のフェーズ・ロックド・ループPLLを使用せずに半球共振器に励起された1次共振モード、および波節直角位相振動の詳細な振動形状を抽出することができるため、半球共振型ジャイロの動作を常に安定化し、半球共振器の1次共振周波数に対する極めてスペクトル純度の高い動作と高精度なロックが可能となる。
 また、本構成に基づく振動形状抽出により、半球共振器の1次共振周波数に対して高位相分解能を実現することができ、半球共振型ジャイロの角速度検出分解能を向上させることが可能となる。
 更に、本構成によって半球共振器における真の1次共振周波数を高精度にロックすることが可能となるため、半球共振器に対して効率的な1次共振モードの励起を実現するための、アクチュエータ交流駆動信号の位相特性を生成することができる。
 また、本実施の形態によれば、共振制御手段14は、半球共振器2に励起された共振モードの振動振幅を一定値に制御する共振振幅指令を生成する共振振幅制御手段50と、半球共振器2に励起された共振モードの波腹方位角を一定角度に制御する共振位相指令を生成する共振位相制御手段52と、共振振幅指令、共振位相指令、および、基準信号生成手段10から出力される余弦波信号に基づいて、複数のアクチュエータDjに対する交流駆動信号を分配する交流駆動電圧分配手段51とを有する。
 この構成により、半球共振器に対する効率的な1次共振モードの励起と、1次共振モードに関して振動振幅、波腹方位角の双方を予め設定された一定形状に制御するための、アクチュエータ交流駆動信号を生成することが可能となる。
 また、本実施の形態によれば、共振制御手段14の交流駆動電圧分配手段51は、共振位相指令で規定される角速度計測軸1に直交する直交軸の両側に配置された各2個のアクチュエータDjに対して、アクチュエータDjの駆動電圧のノルムが最小となるように、共振振幅制御手段50から出力される共振振幅指令および基準信号生成手段10から出力される余弦波信号に基づいてアクチュエータDjの交流駆動信号を分配する。
 この構成により、半球共振器に対する所望の1次共振モード励起に関して、各アクチュエータ交流駆動信号の印加電圧レベルを低減することが可能となる。
 また、上記の実施の形態1、2と同じ構成については、実施の形態1、2で上述した効果が得られることは言うまでもない。
 実施の形態4.
 本発明の実施の形態4による半球共振型ジャイロにおいて、半球共振型ジャイロの機械系構成に関する角速度計測軸を含む平面に沿った断面図、および、角速度計測軸に垂直な平面に沿った、半球共振器、アクチュエータ、変位センサの空間配置を示す簡略図は、実施の形態1の図1および図2と同一である。
 また、本発明の実施の形態4による半球共振型ジャイロにおいて、全体構成を示すブロック図は実施の形態3の図13と同一であり、振動形状抽出手段11の内部構成を示すブロック図、振動形状抽出手段11において適用する正方向回転座標系28、および負方向回転座標系29の概要を示す簡略図、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)から共振位相特性φrまでの位相関係の概要を示すブロック図、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)に対する半球共振器変位の周波数特性を示す簡略図、および駆動周波数補正手段12の内部構成を示すブロック図は、実施の形態1の図4、図5、図6、図7、および、図8と同一である。
 更に、本発明の実施の形態4による半球共振型ジャイロにおいて、波節直角位相振動制御手段13の内部構成を示すブロック図、波節直角位相振動制御手段13における動作の概要を示す簡略図、および共振制御手段14における動作の概要を示す簡略図は、実施の形態1の図9、図10、および、図12と同一であり、共振制御手段14の内部構成を示すブロック図は、実施の形態3の図14と同一である。
 従って、本実施の形態4においては、実施の形態1の図1、図2、図4~図10および図12、並びに、実施の形態3の図14を参照し、ここでは、同一の構成については説明を省略し、以下では、実施の形態1および3と異なる動作について説明する。
 以下、本発明の実施の形態4に係る半球共振型ジャイロの動作について説明する。
 本発明の実施の形態4による半球共振型ジャイロでは、図1に示す半球共振器2の対称軸(Z軸)が、角速度計測軸1となる。
 図13において、基準信号生成手段10、振動形状抽出手段11、駆動周波数補正手段12、および波節直角位相振動制御手段13の構成および動作は、実施の形態1による半球共振型ジャイロのものと同一であり、共振制御手段14の構成は、実施の形態3による半球共振型ジャイロのものと同一である。
 本発明の実施の形態4による半球共振型ジャイロの交流駆動電圧分配手段51では、図12の太線矢印で示したように、共振振幅指令uRESと余弦波信号cos(ωrt)で決定されるそれぞれ逆位相の半径方向吸引力uRES[cos(ωrt)+1]、および、uRES[-cos(ωrt)+1]が、共振位相指令χで規定される直交軸に沿って90度間隔で交互に半球共振器2に対して作用するように、下式(48)~(55)に基づいてアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)を決定する。
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000053
Figure JPOXMLDOC01-appb-M000054
Figure JPOXMLDOC01-appb-M000055
 これは、共振位相指令χで規定される直交軸の両側に配置された各1個のアクチュエータによって、半径方向吸引力uRES[cos(ωrt)+1]およびuRES[-cos(ωrt)+1]を実現することに対応している。また、余弦波吸引力指令の平方根をアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)とすることで、アクチュエータとして発生吸引力が印加電圧の2乗に比例するような静電容量式アクチュエータを適用した場合において、より正確なアクチュエータ発生吸引力の制御を可能とする。
 このように、本発明の実施の形態4による半球共振型ジャイロにより、従来のフェーズ・ロックド・ループPLLを使用せずに、半球共振器2に励起された1次共振モードおよび波節直角位相振動の詳細な振動形状を抽出することができるため、半球共振型ジャイロの動作を常に安定化することが可能となる。また、半球共振器2の1次共振周波数32に対する極めてスペクトル純度の高い動作と高位相分解能を実現することができるため、半球共振型ジャイロの角速度検出分解能を向上させることが可能となる。
 更に、本発明の実施の形態4による半球共振型ジャイロによって、半球共振器2における真の1次共振周波数32を高精度にロックすることが可能となるため、半球共振器2に対して効率的な1次共振モードの励起を実現するための、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)の位相特性を生成することが可能となる。また、1次共振モードに関して振動振幅A、波腹方位角θrの双方を予め設定された一定形状(一定値および一定角度)に制御するためのアクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)について、アクチュエータとして発生吸引力が印加電圧の2乗に比例するような静電容量式アクチュエータを適用した場合において、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)の生成に必要な制御演算量を低減すると共に、より正確なアクチュエータ発生吸引力の制御が可能となる。
 加えて、本発明の実施の形態4による半球共振型ジャイロによって、波節直角位相振動を抑制し、半球共振器2に対して1次共振モードのみが励起された状態を実現することができるため、半球共振型ジャイロで検出する回転角速度のドリフトを抑制することが可能となる。
 なお、本発明の実施の形態4による半球共振型ジャイロでは、計16個のアクチュエータ、および計8個の変位センサを適用し、その空間配置を図2に示す構成としたが、本発明はこれに限定するものではなく、アクチュエータに関しては半球共振器2に対する1次共振モードの励起と波節直角位相振動の抑制が実現できる構成であればよく、変位センサに関しては互いに45度位相がずれた2組の直交軸方向について、半球共振器2の半径方向変位が検出できる構成であればよい。
 また、本発明の実施の形態4による半球共振型ジャイロでは、アクチュエータ交流駆動信号fRESj(j=1、2、・・・、16)の生成に関して、アクチュエータ駆動周波数ωrの余弦波信号cos(ωrt)を適用したが、本発明はこれに限定するものではなく、対応する数式を適宜変更することにより、正弦波信号sin(ωrt)を適用してもよい。
 以上のように、本実施の形態4によれば、上記の実施の形態3と同様の効果を得ることができる。
 さらに、本実施の形態によれば、共振制御手段14の交流駆動電圧分配手段51が、共振位相指令で規定される直交軸の両側に配置された各1個のアクチュエータDjに対して、共振振幅制御手段50から出力される共振振幅指令および基準信号生成手段10から出力される余弦波信号に基づいた余弦波吸引力指令の平方根を、アクチュエータDjの交流駆動信号として分配する。
 この構成により、アクチュエータとして発生吸引力が印加電圧の2乗に比例するような静電容量式アクチュエータを適用した場合において、半球共振器に対する所望の1次共振モード励起に関して、アクチュエータ交流駆動信号の生成に必要な制御演算量を低減すると共に、より正確なアクチュエータ発生吸引力の制御が可能となる。
 また、上記の実施の形態1,2と同じ構成については、実施の形態1,2で上述した効果と同じ効果が得られることは言うまでもない。

Claims (12)

  1.  計測軸としての角度計測軸に対して軸対称な半球形状を有し、前記角度計測軸に対して垂直な平面において共振パターンを維持させるための半球共振器と、
     前記半球共振器を前記角度計測軸を介して支持する上側ハウジングおよび下側ハウジングと、
     前記上側ハウジングに対して前記角度計測軸回りに等間隔で配置され、前記半球共振器に対して半径方向の吸引力を発生させる複数のアクチュエータと、
     前記下側ハウジングに対して前記角度計測軸回りに等間隔で配置され、前記半球共振器の半径方向の変位を検出する複数の変位センサと、
     前記アクチュエータの駆動周波数に対応する正弦波信号および余弦波信号を生成する基準信号生成手段と、
     前記基準信号生成手段から出力される前記正弦波信号および前記余弦波信号と、複数の前記変位センサから出力される前記半球共振器の半径方向の前記変位とに基づいて、前記半球共振器に励起された共振モードの振動振幅及び波腹方位角、前記アクチュエータの交流駆動信号に対する共振位相特性、および、前記半球共振器に励起された波節直角位相振動の振動振幅を抽出する振動形状抽出手段と、
     前記振動形状抽出手段から出力される前記アクチュエータの前記交流駆動信号に対する前記共振位相特性に基づいて、前記アクチュエータの前記駆動周波数を前記半球共振器の共振周波数に一致させる駆動周波数補正手段と、
     前記振動形状抽出手段から出力される前記波節直角位相振動の前記振動振幅および前記共振モードの前記波腹方位角に基づいて、前記波節直角位相振動を抑制するための複数の前記アクチュエータの直流駆動信号を生成する波節直角位相振動制御手段と、
     前記振動形状抽出手段から出力される前記共振モードの前記振動振幅および前記波腹方位角と、前記基準信号生成手段から出力される前記余弦波信号とに基づいて、前記半球共振器に励起された前記共振モードの前記振動振幅を予め設定された一定値に制御し、かつ、前記共振モードの前記角度計測軸回りの自由な回転を実現するための複数の前記アクチュエータの前記交流駆動信号を生成する共振制御手段と
     を備え、
     前記半球共振器に励起された前記共振モードの前記波腹方位角から、前記半球共振器の前記角度計測軸方向の回転角度を検出する
     半球共振型ジャイロ。
  2.  計測軸としての角速度計測軸に対して軸対称な半球形状を有し、前記角速度計測軸に対して垂直な平面において共振パターンを維持させるための半球共振器と、
     前記半球共振器を前記角速度計測軸を介して支持する上側ハウジングおよび下側ハウジングと、
     前記上側ハウジングに対して前記角速度計測軸回りに等間隔で配置され、前記半球共振器に対して半径方向の吸引力を発生させる複数のアクチュエータと、
     前記下側ハウジングに対して前記角速度計測軸回りに等間隔で配置され、前記半球共振器の半径方向の変位を検出する複数の変位センサと、
     前記アクチュエータの駆動周波数に対応する正弦波信号および余弦波信号を生成する基準信号生成手段と、
     前記基準信号生成手段から出力される前記正弦波信号および前記余弦波信号と、複数の前記変位センサから出力される前記半球共振器の半径方向の前記変位とに基づいて、前記半球共振器に励起された共振モードの振動振幅及び波腹方位角、前記アクチュエータの交流駆動信号に対する共振位相特性、および、前記半球共振器に励起された波節直角位相振動の振動振幅を抽出する振動形状抽出手段と、
     前記振動形状抽出手段から出力される前記アクチュエータの前記交流駆動信号に対する前記共振位相特性に基づいて、前記アクチュエータの前記駆動周波数を前記半球共振器の共振周波数に一致させる駆動周波数補正手段と、
     前記振動形状抽出手段から出力される前記波節直角位相振動の前記振動振幅および前記共振モードの前記波腹方位角に基づいて、前記波節直角位相振動を抑制するための複数の前記アクチュエータの直流駆動信号を生成する波節直角位相振動制御手段と、
     前記振動形状抽出手段から出力される前記共振モードの前記振動振幅および前記波腹方位角と、前記基準信号生成手段から出力される前記余弦波信号とに基づいて、前記半球共振器に励起された前記共振モードの前記振動振幅及び前記波腹方位角の双方を予め設定された一定値及び一定角度に制御するための複数の前記アクチュエータの前記交流駆動信号を生成する共振制御手段と
     を備え、
     前記共振制御手段における前記波腹方位角を前記一定角度に維持するための制御指令から、前記半球共振器の前記角速度計測軸方向の回転角速度を検出する
     半球共振型ジャイロ。
  3.  前記振動形状抽出手段は、
     前記計測軸に直交する第1の直交軸方向に配置された前記変位センサの出力を合成する第1の合成手段と、
     前記計測軸に直交し、前記第1の直交軸に対して計測軸回りに45度位相がずれた第2の直交軸方向に配置された前記変位センサの出力を合成する第2の合成手段と、
     前記第1の合成手段からの出力を実数部として前記第2の合成手段からの出力を虚数部とする複素表現を、前記アクチュエータの前記駆動周波数に一致する回転速度で正方向に回転する回転座標系による表現に変換する正方向回転座標変換手段と、
     前記第1の合成手段からの出力を実数部として前記第2の合成手段からの出力を虚数部とする複素表現を、前記アクチュエータの前記駆動周波数に一致する回転速度で負方向に回転する回転座標系による表現に変換する負方向回転座標変換手段と、
     前記正方向回転座標変換手段の出力から予め設定された低周波成分を抽出する正方向低周波抽出手段と、
     前記負方向回転座標変換手段の出力から予め設定された低周波成分を抽出する負方向低周波抽出手段と、
     前記正方向低周波抽出手段および前記負方向低周波抽出手段の出力に基づいて、前記半球共振器に励起された前記共振モードの前記アクチュエータの前記交流駆動信号に対する前記共振位相特性を算出する位相特性抽出手段と、
     前記正方向低周波抽出手段および前記負方向低周波抽出手段の出力および前記位相特性抽出手段の出力に基づいて、前記半球共振器に励起された前記共振モードの前記振動振幅及び前記波腹方位角、および、前記半球共振器に励起された前記波節直角位相振動の前記振動振幅を抽出する振動特性抽出手段と
     を有している請求項1または2に記載の半球共振型ジャイロ。
  4.  前記駆動周波数補正手段は、
     前記振動形状抽出手段から出力される前記アクチュエータの前記交流駆動信号に対する前記共振位相特性を、前記アクチュエータの前記駆動周波数におけるアクチュエータ位相特性と、前記アクチュエータの前記駆動周波数における変位センサ位相特性と、-90度との合計値に固定するように、前記アクチュエータの前記駆動周波数を制御する
     請求項1から3までのいずれか1項に記載の半球共振型ジャイロ。
  5.  前記駆動周波数補正手段は、
     前記振動形状抽出手段から出力される前記アクチュエータの前記交流駆動信号に対する前記共振位相特性を、前記半球共振器の前記共振周波数に対して予め設定された周波数だけ前記アクチュエータの前記駆動周波数を低く設定した場合の共振位相特性と、前記半球共振器の前記共振周波数に対して予め設定された周波数だけ前記アクチュエータの前記駆動周波数を高く設定した場合の共振位相特性との平均値に固定するように、前記アクチュエータの前記駆動周波数を制御する
     請求項1から3までのいずれか1項に記載の半球共振型ジャイロ。
  6.  前記波節直角位相振動制御手段は、
     前記振動形状抽出手段から出力される前記波節直角位相振動の前記振動振幅に基づいて、前記波節直角位相振動を抑制するための電気的剛性補正指令を生成する電気的剛性制御手段と、
     前記電気的剛性制御手段から出力される前記電気的剛性補正指令の符号に応じて、前記符号が正符号の場合には前記共振モードの前記波腹方位角に対して+22.5度位相がずれた直交軸方向を、前記符号が負符号の場合には前記共振モードの前記波腹方位角に対して-22.5度位相がずれた直交軸方向を、前記半球共振器に対する電気的剛性補正軸とし、前記電気的剛性補正軸の両側に配置された各1個の前記アクチュエータに対して、前記電気的剛性補正指令の絶対値に基づいて前記アクチュエータの前記直流駆動信号を分配する直流駆動電圧分配手段と
     を有する請求項1から5までのいずれか1項に記載の半球共振型ジャイロ。
  7.  前記共振制御手段は、
     前記半球共振器に励起された前記共振モードの前記振動振幅を前記一定値に制御する共振振幅指令を生成する共振振幅制御手段と、
     前記半球共振器に励起された前記共振モードの前記波腹方位角を共振位相指令として、前記共振振幅指令、前記共振位相指令、および、前記基準信号生成手段から出力される前記余弦波信号に基づいて、複数の前記アクチュエータに対する前記交流駆動信号を分配する交流駆動電圧分配手段と
     を有する請求項1記載の半球共振型ジャイロ。
  8.  前記共振制御手段は、
     前記半球共振器に励起された前記共振モードの前記振動振幅を前記一定値に制御する共振振幅指令を生成する共振振幅制御手段と、
     前記半球共振器に励起された前記共振モードの前記波腹方位角を前記一定角度に制御する共振位相指令を生成する共振位相制御手段と、
     前記共振振幅指令、前記共振位相指令、および、前記基準信号生成手段から出力される前記余弦波信号に基づいて、複数の前記アクチュエータに対する前記交流駆動信号を分配する交流駆動電圧分配手段と
     を有する請求項2記載の半球共振型ジャイロ。
  9.  前記共振制御手段の前記交流駆動電圧分配手段は、
     前記共振位相指令で規定される前記計測軸に直交する直交軸の両側に配置された各1個の前記アクチュエータに対して、前記共振振幅制御手段から出力される前記共振振幅指令および前記基準信号生成手段から出力される前記余弦波信号に基づいて、前記アクチュエータの前記交流駆動信号を分配する
     請求項7または8に記載の半球共振型ジャイロ。
  10.  前記共振制御手段の前記交流駆動電圧分配手段は、
     前記共振位相指令で規定される前記計測軸に直交する直交軸の両側に配置された各2個の前記アクチュエータに対して、前記アクチュエータの駆動電圧のノルムが最小となるように、前記共振振幅制御手段から出力される前記共振振幅指令および前記基準信号生成手段から出力される前記余弦波信号に基づいて前記アクチュエータの前記交流駆動信号を分配する
     請求項7または8に記載の半球共振型ジャイロ。
  11.  前記共振制御手段の前記交流駆動電圧分配手段が、
     前記共振位相指令で規定される前記計測軸に直交する直交軸の両側に配置された各1個の前記アクチュエータに対して、前記共振振幅制御手段から出力される前記共振振幅指令および前記基準信号生成手段から出力される前記余弦波信号に基づいた余弦波吸引力指令の平方根を、前記アクチュエータの前記交流駆動信号として分配する
     請求項7または8に記載の半球共振型ジャイロ。
  12.  前記共振制御手段の前記交流駆動電圧分配手段は、
     前記共振位相指令で規定される前記計測軸に直交する直交軸の両側に配置された各2個の前記アクチュエータに対して、前記アクチュエータの発生吸引力のノルムが最小となるように、前記共振振幅制御手段から出力される前記共振振幅指令および前記基準信号生成手段から出力される前記余弦波信号に基づいて余弦波吸引力指令を算出し、前記余弦波吸引力指令の平方根を、前記アクチュエータの前記交流駆動信号として分配する
     請求項7または8に記載の半球共振型ジャイロ。
PCT/JP2014/064260 2014-01-14 2014-05-29 半球共振型ジャイロ WO2015107704A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/109,344 US9989363B2 (en) 2014-01-14 2014-05-29 Hemispherical resonator gyro
EP14878525.6A EP3096111B1 (en) 2014-01-14 2014-05-29 Hemispherical resonator gyro
JP2015557693A JP6180551B2 (ja) 2014-01-14 2014-05-29 半球共振型ジャイロ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014004086 2014-01-14
JP2014-004086 2014-01-14

Publications (1)

Publication Number Publication Date
WO2015107704A1 true WO2015107704A1 (ja) 2015-07-23

Family

ID=53542619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064260 WO2015107704A1 (ja) 2014-01-14 2014-05-29 半球共振型ジャイロ

Country Status (4)

Country Link
US (1) US9989363B2 (ja)
EP (1) EP3096111B1 (ja)
JP (1) JP6180551B2 (ja)
WO (1) WO2015107704A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289217A (zh) * 2016-09-18 2017-01-04 北京控制工程研究所 一种半球谐振陀螺高可靠起振系统及方法
JP2019168244A (ja) * 2018-03-22 2019-10-03 国立大学法人東北大学 積分型ジャイロ装置および積分型ジャイロ装置の制御方法
CN113108812A (zh) * 2021-04-15 2021-07-13 东南大学 一种基于检测模态驱动频率上下边带功率对称性的mems陀螺仪模态匹配算法
JPWO2022003811A1 (ja) * 2020-06-30 2022-01-06

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9989363B2 (en) * 2014-01-14 2018-06-05 Mitsubishi Electric Corporation Hemispherical resonator gyro
US10119820B2 (en) * 2015-02-10 2018-11-06 Northrop Grumman Systems Corporation Wide rim vibratory resonant sensors
US11346668B2 (en) * 2019-12-12 2022-05-31 Enertia Microsystems Inc. System and method for micro-scale machining
CN114076593A (zh) * 2020-08-19 2022-02-22 塔莱斯公司 改进的惯性传感器
CN113670340B (zh) * 2021-09-13 2022-05-27 哈尔滨工业大学 基于x/y信号相位差辨识的半球谐振陀螺驻波方位角测量方法及系统
CN115235444B (zh) * 2022-07-19 2023-02-24 青岛哈尔滨工程大学创新发展中心 一种用于测量全角半球谐振陀螺的控制回路带宽的方法
FR3140161A1 (fr) * 2022-09-23 2024-03-29 Jxsens Procede de mesure d’une vitesse angulaire de rotation et/ou d’une position angulaire
CN115574798B (zh) * 2022-09-30 2024-06-18 中国人民解放军火箭军工程大学 一种提高半球谐振陀螺综合性能的方法
US11874112B1 (en) 2022-10-04 2024-01-16 Enertia Microsystems Inc. Vibratory gyroscopes with resonator attachments
CN115824263B (zh) * 2023-02-13 2023-05-02 中国船舶集团有限公司第七〇七研究所 基于半球谐振陀螺的阻尼修调方法及系统
CN116878477B (zh) * 2023-09-06 2023-11-10 湖南二零八先进科技有限公司 半球谐振陀螺阻尼不均匀参数辨识方法、设备及存储介质
CN117029882B (zh) * 2023-10-10 2023-12-22 北京航空航天大学 一种全角半球谐振陀螺检测增益不对称误差的标定方法
CN117073653B (zh) * 2023-10-18 2023-12-22 中国船舶集团有限公司第七〇七研究所 一种基于能量系数的谐振陀螺驱动效率修正方法及系统
CN117928508A (zh) * 2024-03-20 2024-04-26 四川图林科技有限责任公司 一种全角控制模式的半球谐振陀螺仪驻波方位角解算方法
CN117928605B (zh) * 2024-03-20 2024-06-11 四川图林科技有限责任公司 一种半球谐振陀螺正交控制的误差分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153970A (en) * 1978-05-22 1979-12-04 Gen Motors Corp Vibrative rotation senser
JPS60166818A (ja) 1983-10-31 1985-08-30 ゼネラル モ−タ−ズ コ−ポレ−シヨン 振動回転センサ−
JPH06241810A (ja) 1993-02-01 1994-09-02 General Motors Corp <Gm> 振動式ジャイロスコープの制御回路
JP2010096765A (ja) * 2008-10-14 2010-04-30 Watson Industries Inc 直角位相制御を備えた振動構造ジャイロスコープ
JP2011252927A (ja) * 2006-04-18 2011-12-15 Watson Industries Inc 分割またはスキュー作動要素を用いる振動慣性速度センサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951508A (en) * 1983-10-31 1990-08-28 General Motors Corporation Vibratory rotation sensor
US5712427A (en) * 1995-08-29 1998-01-27 Litton Systems Inc. Vibratory rotation sensor with scanning-tunneling-transducer readout
US5763780A (en) 1997-02-18 1998-06-09 Litton Systems, Inc. Vibratory rotation sensor with multiplex electronics
US7617727B2 (en) 2006-04-18 2009-11-17 Watson Industries, Inc. Vibrating inertial rate sensor utilizing split or skewed operational elements
US8806939B2 (en) * 2010-12-13 2014-08-19 Custom Sensors & Technologies, Inc. Distributed mass hemispherical resonator gyroscope
US9989363B2 (en) * 2014-01-14 2018-06-05 Mitsubishi Electric Corporation Hemispherical resonator gyro

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153970A (en) * 1978-05-22 1979-12-04 Gen Motors Corp Vibrative rotation senser
JPS60166818A (ja) 1983-10-31 1985-08-30 ゼネラル モ−タ−ズ コ−ポレ−シヨン 振動回転センサ−
JPH06241810A (ja) 1993-02-01 1994-09-02 General Motors Corp <Gm> 振動式ジャイロスコープの制御回路
JP2011252927A (ja) * 2006-04-18 2011-12-15 Watson Industries Inc 分割またはスキュー作動要素を用いる振動慣性速度センサ
JP2010096765A (ja) * 2008-10-14 2010-04-30 Watson Industries Inc 直角位相制御を備えた振動構造ジャイロスコープ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289217A (zh) * 2016-09-18 2017-01-04 北京控制工程研究所 一种半球谐振陀螺高可靠起振系统及方法
CN106289217B (zh) * 2016-09-18 2019-04-30 北京控制工程研究所 一种半球谐振陀螺高可靠起振系统及方法
JP2019168244A (ja) * 2018-03-22 2019-10-03 国立大学法人東北大学 積分型ジャイロ装置および積分型ジャイロ装置の制御方法
JP7115733B2 (ja) 2018-03-22 2022-08-09 国立大学法人東北大学 積分型ジャイロ装置および積分型ジャイロ装置の制御方法
JPWO2022003811A1 (ja) * 2020-06-30 2022-01-06
WO2022003811A1 (ja) * 2020-06-30 2022-01-06 三菱電機株式会社 共振制御装置、振動ジャイロ及び共振制御方法
JP7292514B2 (ja) 2020-06-30 2023-06-16 三菱電機株式会社 共振制御装置、振動ジャイロ及び共振制御方法
CN113108812A (zh) * 2021-04-15 2021-07-13 东南大学 一种基于检测模态驱动频率上下边带功率对称性的mems陀螺仪模态匹配算法
CN113108812B (zh) * 2021-04-15 2023-08-18 东南大学 一种基于边带功率对称性的mems陀螺仪模态匹配方法

Also Published As

Publication number Publication date
US9989363B2 (en) 2018-06-05
EP3096111B1 (en) 2019-10-30
EP3096111A4 (en) 2017-09-06
US20160334214A1 (en) 2016-11-17
JPWO2015107704A1 (ja) 2017-03-23
EP3096111A1 (en) 2016-11-23
JP6180551B2 (ja) 2017-08-16

Similar Documents

Publication Publication Date Title
JP6180551B2 (ja) 半球共振型ジャイロ
JP5517553B2 (ja) 直角位相制御方法及びその方法を備えた振動構造ジャイロスコープ
US9869553B2 (en) Frequency readout gyroscope
US20100011857A1 (en) Arrangement for measuring a rate of rotation using a vibration sensor
US10571267B1 (en) High stability angular sensor
JP6600672B2 (ja) 半球共振型ジャイロスコープ
JP5352671B2 (ja) 振動型ジャイロスコープによるジャイロ測定
TWI724127B (zh) 陀螺儀裝置及陀螺儀裝置之控制方法
Tsukamoto et al. MEMS rate integrating gyroscope with temperature corrected virtual rotation
Chikovani et al. Digital rate MEMS vibratory gyroscope modeling, tuning and simulation results
EP3213030B1 (en) Digital controlled vco for vibrating structure gyroscope
JP7302129B2 (ja) ジャイロ装置およびジャイロ装置の制御方法
US7251900B2 (en) Methods and systems utilizing intermediate frequencies to control multiple coriolis gyroscopes
Maslov et al. Methods to eliminate nonlinearity of electrostatic control sensors of the wave solid-state gyroscope
JP2011002295A (ja) 角速度検出装置
Challoner et al. Symmetric Piezoelectric CVG with digital control electronics
Song et al. Parametric drive of a micro rate integrating gyroscope using discrete electrodes
WO2022003811A1 (ja) 共振制御装置、振動ジャイロ及び共振制御方法
US20240102803A1 (en) Method for measuring a rotational angular velocity and/or an angular position
RU2279634C2 (ru) Микромеханический гироскоп
US7296468B2 (en) Digital coriolis gyroscope
JP7115733B2 (ja) 積分型ジャイロ装置および積分型ジャイロ装置の制御方法
WO2023026470A1 (ja) 磁場センサおよび磁場検出方法
JP2023127142A (ja) ジャイロ装置およびジャイロ装置の制御方法
JPH10332388A (ja) 装置の1つまたは2つ以上のパラメータの線形測定を得るための方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557693

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15109344

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014878525

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014878525

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE