WO2015107704A1 - 半球共振型ジャイロ - Google Patents
半球共振型ジャイロ Download PDFInfo
- Publication number
- WO2015107704A1 WO2015107704A1 PCT/JP2014/064260 JP2014064260W WO2015107704A1 WO 2015107704 A1 WO2015107704 A1 WO 2015107704A1 JP 2014064260 W JP2014064260 W JP 2014064260W WO 2015107704 A1 WO2015107704 A1 WO 2015107704A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resonance
- actuator
- hemispherical
- vibration
- hemispherical resonator
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/567—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
- G01C19/5691—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially three-dimensional vibrators, e.g. wine glass-type vibrators
Definitions
- the present invention relates to a hemispherical resonance gyro (HRG), and more particularly, a hemispherical resonator is primarily resonated and a rotation angle is detected from a phase change of the resonance mode, or the resonance mode
- HRG hemispherical resonance gyro
- the present invention relates to a hemispherical resonance type gyro that detects a rotational angular velocity from a control amount for suppressing a phase change.
- a vibration rotation sensor As a conventional hemispherical resonance type gyro, for example, there is a vibration rotation sensor described in Patent Document 1.
- the main mechanical system configuration of the vibration rotation sensor is a hemispherical resonator, a forcer, and a pick-off.
- the rotation angle in the sensor measurement axis direction is detected by exciting the primary resonance mode in the hemispherical resonator by a forcer and detecting the phase change of the resonance mode by pickoff.
- the electrical system and the control system of the vibration rotation sensor are (1) a reference phase generator, (2) primary resonance amplitude control, (3) quadrature phase vibration control, and (4) phase angle detection of the primary resonance mode.
- the four functions are as follows. The functions (1) to (4) will be described below.
- the primary resonance frequency of the hemispherical resonator is locked based on the detection signal output from the pick-off by the phase locked loop PLL mounted on the reference phase generator, and various reference phase signals are generated.
- the detection signal output from the pick-off is demodulated based on the reference phase signal generated by the reference phase generator, and converted into the primary resonance mode excited by the hemispherical resonator and the amplitude of the nodal quadrature oscillation. .
- the primary resonance amplitude control application to the forcer is performed based on the reference phase signal generated by the reference phase generator so that the amplitude of the primary resonance mode excited by the hemispherical resonator becomes a predetermined constant value. Controls square wave voltage.
- the wave is controlled by controlling the DC voltage applied to the forcer so as to add a negative spring stiffness to the orthogonal axis shifted by 22.5 degrees from the antinode phase angle of the primary resonance mode.
- the state in which only the primary resonance mode is excited on the hemispherical resonator is realized by suppressing the amplitude of the nodal quadrature oscillation to zero.
- the antinode phase angle of the primary resonance mode excited by the hemispherical resonator is calculated, and the scale factor specific to the hemispherical resonator is calculated with respect to the change amount of the phase angle.
- the rotation angle in the sensor measurement axis direction is detected.
- the primary resonance mode excited on the resonator is regarded as a combination of two traveling waves that travel clockwise and counterclockwise in the circumferential direction on the resonator.
- the reference phase signal for each traveling wave is generated by the phase locked loop PLL based on the detection signal output from the pickoff.
- the purpose is to maintain the vibration amplitude of each traveling wave at a preset constant value by correcting the attenuation loss of the resonator vibration, and to efficiently excite the primary resonance mode for the resonator.
- the forcer applied voltage is controlled in a state where the phase is advanced 90 degrees with respect to the radial displacement of each traveling wave.
- the antinode phase angle of the primary resonance mode excited on the resonator is calculated from the phase difference of the reference phase signal for each traveling wave generated by the phase-locked loop PLL, and the amount of change in the phase angle Is multiplied by the scale factor specific to the resonator to detect the rotation angle in the sensor measurement axis direction.
- a phase locked loop PLL is applied to lock the primary resonance frequency in the hemispherical resonator and generate various reference phase signals for the primary resonance frequency.
- phase-locked loop PLL has a problem that the stability of the PLL itself is impaired depending on the internal loop filter design.
- an ideal PLL output is required to have high spectral purity that is compatible with low phase noise characteristics and spurious suppression characteristics. In general, these characteristics are in a trade-off relationship and have high spectral purity. There was also a problem that it was difficult to obtain a PLL output.
- phase resolution of the reference phase signal it is essential to improve the phase resolution of the reference phase signal in order to increase the detection resolution by the hemispherical resonance type gyro.
- an equivalent time resolution for realizing a phase resolution of 0.1 degree is 70 ns.
- the PLL has a problem in that the phase resolution of the reference phase signal, in other words, the detection resolution of the hemispherical resonance gyroscope is limited.
- the primary resonance mode is efficiently applied to the resonator on the assumption that the phase characteristic of the forced vibration displacement with respect to the excitation force is ⁇ 90 degrees.
- the phase of the forcer drive voltage command is advanced 90 degrees with respect to the radial displacement of the resonator.
- phase characteristics from the forcer drive voltage command to the resonator displacement include true phase characteristics from the excitation force in the ideal resonance system to the forced vibration displacement phase characteristic of -90 degrees, as well as the true characteristics generated by the forcer from the forcer drive voltage command. Since the phase characteristics from the excitation force to the true resonator and the phase characteristics from the true resonator displacement to the pickoff detection signal are also superimposed, what is efficient excitation of the primary resonance mode for the resonator without considering the latter? There was also the problem of not being.
- the present invention has been made to solve the above-described problems, and by performing angle detection or angular velocity detection without using a conventional phase-locked loop PLL, it always operates stably. Further, by realizing an operation with extremely high spectral purity for the primary resonant frequency lock of the hemispherical resonator and a high phase resolution for the primary resonant frequency, a hemispherical resonant gyro with improved angular or angular velocity detection resolution is obtained. It is an object.
- the present invention provides a hemispherical resonator having a hemispherical shape that is axisymmetric with respect to an angle measuring axis as a measuring axis, and maintaining a resonance pattern in a plane perpendicular to the angle measuring axis, and the hemispherical resonator Are arranged at equal intervals around the angle measurement axis with respect to the upper housing and generate a radial suction force with respect to the hemispherical resonator.
- Reference signal generation means for generating a sine wave signal and a cosine wave signal, and the sine wave signal and the cosine wave signal output from the reference signal generation means, Based on the displacement in the radial direction of the hemispherical resonator output from a plurality of the displacement sensors, the vibration amplitude and antinode azimuth angle of the resonance mode excited in the hemispherical resonator, the AC drive signal of the actuator Resonance phase characteristics and vibration shape extraction means for extracting vibration amplitude of quadrature vibration of nodal quadrature excited by the hemispherical resonator, and the resonance of the actuator with respect to the AC drive signal output from the vibration shape extraction means Based on the phase characteristics, the drive
- Resonance control means for generating the AC drive signals of the plurality of actuators for performing the angle measurement axis of the hemispherical resonator from the antinode azimuth angle of the resonance mode excited by the hemispherical resonator This is a hemispherical resonance type gyro that detects a rotation angle of a direction.
- the present invention it is possible to extract the detailed vibration shape of the primary resonance mode and the nodal quadrature vibration excited in the hemispherical resonator without using the conventional phase-locked loop PLL.
- the operation of the hemispherical resonance type gyro is always stabilized, the operation of the hemispherical resonator is highly spectrally pure with respect to the primary resonance frequency and the lock can be performed with high accuracy, and the high phase resolution is realized with respect to the primary resonance frequency.
- the angle detection resolution can be improved.
- FIG. 5 is a simplified cross-sectional view of a hemispherical resonance gyro along a plane including an angle or angular velocity measurement axis according to the first to fourth embodiments of the present invention.
- FIG. 6 is a simplified diagram showing a spatial arrangement of hemispherical resonators, actuators, and displacement sensors of a hemispherical resonance gyro along a plane perpendicular to an angle or angular velocity measurement axis according to the first to fourth embodiments of the present invention. It is a block diagram which shows the whole structure of the hemisphere resonance type gyro by Embodiment 1 and Embodiment 2 of this invention.
- FIG. 1 It is a block diagram which shows the internal structure of the vibration shape extraction means by Embodiment 1 to Embodiment 4 of this invention.
- the vibration shape extraction means by Embodiment 1 to Embodiment 4 of this invention it is a simplified diagram which shows the outline
- the drive frequency correction means according to the first to fourth embodiments of the present invention the resonance phase with respect to the actuator AC drive signal in the resonance mode extracted by the vibration shape extraction means from the actuator AC drive signal output from the resonance control means.
- FIG. 6 is a simplified diagram showing frequency characteristics of hemispherical resonator displacement with respect to an actuator AC drive signal output from a resonance control unit in the drive frequency correction unit according to Embodiments 1 to 4 of the present invention. It is a block diagram which shows the internal structure of the drive frequency correction
- FIG. 10 is a simplified diagram showing an outline of operation in the nodal quadrature vibration control means according to the first to fourth embodiments of the present invention.
- FIG. 10 is a schematic diagram showing an outline of operation in the resonance control means according to the first to fourth embodiments of the present invention. It is a block diagram which shows the whole structure of the hemispherical resonance type gyro by Embodiment 3 and Embodiment 4 of this invention. It is a block diagram which shows the internal structure of the resonance control means by Embodiment 3 and Embodiment 4 of this invention.
- FIG. 1 is a cross-sectional view taken along a plane including an angle measurement axis for explaining the mechanical system configuration of the hemispherical resonance gyro according to the first embodiment of the present invention.
- FIG. 2 is a simplified diagram showing a spatial arrangement of hemispherical resonators, actuators, and displacement sensors along a plane perpendicular to the angle measurement axis for explaining the mechanical system configuration of the hemispherical resonance type gyro according to the present invention. .
- the mechanical system of the hemispherical resonance type gyro includes a hemispherical resonator 2 having a hemispherical shape that is axisymmetric with respect to the angle measurement axis 1 (Z axis).
- the hemispherical resonator 2 can maintain a resonance pattern in a plane (XY plane) perpendicular to the angle measurement axis 1.
- the X axis is an axis perpendicular to the Z axis.
- the Y axis is omitted, but the Y axis is as shown in FIG. And an axis perpendicular to the X axis and the Z axis.
- the hemispherical resonator 2 is supported by the upper housing 3 and the lower housing 4 via the angle measuring shaft 1.
- the upper housing 3 has a rectangular box shape with an opening at the bottom and has a trapezoidal cross section.
- the lower housing 4 is a plate-like member and has a size that closes the opening of the upper housing 3.
- the hemispherical resonator 2 is accommodated in a casing composed of an upper housing 3 and a lower housing 4.
- a plurality of displacement sensors S k (k 1, 2,...) For detecting the radial displacement of the hemispherical resonator 2 are equally spaced around the angle measuring axis 1.
- This primary resonance mode has an elliptical shape in a plane (XY plane) perpendicular to the angle measurement axis 1, and for example, when the primary resonance mode is excited with reference to the XY orthogonal axis, it is indicated by a broken line in FIG.
- a point on the hemispherical resonator 2 where the vibration amplitude indicated by the point 5 is maximum is called an antinode
- a point on the hemispherical resonator 2 where the vibration amplitude indicated by the point 6 does not occur is called a wave node.
- FIG. 3 is a block diagram showing the overall configuration of the hemispherical resonance gyro according to Embodiment 1 of the present invention.
- the reference signal generation unit 10 generates a sine wave signal sin ( ⁇ r t) and a cosine wave signal cos ( ⁇ r t) corresponding to the actuator driving frequency ⁇ r .
- the vibration amplitude of the nodal quadrature oscillation excited in the hemispherical resonator B is extracted.
- the nodal quadrature vibration control means 13 performs nodal quadrature vibration based on the vibration amplitude B of the nodal quadrature vibration output from the vibration shape extraction means 11 and the antinode azimuth angle ⁇ r of the primary resonance mode.
- the vibration amplitude A of the primary resonance mode excited by the hemispherical resonator 2 is controlled to a predetermined constant value, and free rotation around the angle measurement axis 1 of the primary resonance mode is realized.
- a plurality of actuator DC drive signals f NQj (j 1, 2,..., 16) output from the wave quadrature phase vibration control unit 13 and the resonance control unit 14 output.
- the angle scale factor multiplying unit 15 multiplies the antinode azimuth angle ⁇ r of the primary resonance mode output from the vibration shape extracting unit 11 by the angle scale factor K ⁇ to obtain the angle.
- the rotation angle ⁇ in the direction of the measurement axis 1 can be detected.
- FIG. 4 is a block diagram showing an internal configuration of the vibration shape extraction unit 11 in the hemispherical resonance gyro according to the first embodiment of the present invention
- FIG. 5 shows a vibration shape extraction unit 11 according to the first embodiment of the present invention
- 3 is a simplified diagram showing an outline of a positive direction rotation coordinate system 28 and a negative direction rotation coordinate system 29.
- the vibration shape extracting means 11 of the hemispherical resonance type gyro includes a first synthesizing means 20, a second synthesizing means 21, a positive direction rotation coordinate converting means 22, a negative direction.
- the rotary coordinate conversion means 23, the positive direction low frequency extraction means 24, the negative direction low frequency extraction means 25, the phase characteristic extraction means 26, and the vibration characteristic extraction means 27 are configured.
- the second combining means 21 is arranged in the second orthogonal axis direction orthogonal to the angle measurement axis 1 and having a phase shifted by 45 degrees around the angle measurement axis 1 with respect to the first orthogonal axis.
- the complex expression E Re + jE Im in which the output from the first synthesizing unit 20 is the real part E Re and the output from the second synthesizing unit 21 is the imaginary part E Im is the positive rotational coordinate conversion unit. 22 and the negative direction rotation coordinate conversion means 23.
- the complex expression E Re + jE Im is calculated based on the sine wave signal sin ( ⁇ r t) and the cosine wave signal cos ( ⁇ r t) output from the reference signal generation means 10. As shown in FIG. 5 (a), it is converted into an expression E + by a positive direction rotating coordinate system 28 that rotates in the positive direction at a rotational speed ⁇ r that matches the actuator driving frequency ⁇ r .
- the complex expression E Re + jE Im As shown in FIG. 5B, it is converted into an expression E ⁇ by a negative direction rotating coordinate system 29 that rotates in the negative direction at a rotational speed ⁇ r that matches the actuator driving frequency ⁇ r .
- the positive direction rotational coordinate system expression E + output from the positive direction rotational coordinate conversion means 22 and the negative direction rotational coordinate system expression E ⁇ output from the negative direction rotational coordinate conversion means 23 are respectively extracted in the positive direction low frequency. Input to means 24 and negative direction low frequency extraction means 25.
- the positive direction low frequency extraction means 24 extracts a preset low frequency component E DC + from the positive direction rotation coordinate system expression E + output from the positive direction rotation coordinate conversion means 22.
- the negative direction low frequency extraction means 25 extracts a preset low frequency component E DC ⁇ from the negative direction rotation coordinate system expression E ⁇ output from the negative direction rotation coordinate conversion means 23.
- phase characteristic extraction unit 26 the primary resonance excited in the hemispherical resonator 2 based on the output E DC + from the positive low frequency extraction unit 24 and the output E DC ⁇ from the negative low frequency extraction unit 25.
- the vibration characteristic extraction means 27 the output E DC + from the positive low frequency extraction means 24, the output E DC ⁇ from the negative low frequency extraction means 25, and the resonance phase characteristic output from the phase characteristic extraction means 26. Based on ⁇ r , the vibration amplitude A of the primary resonance mode excited in the hemispherical resonator 2, the antinode azimuth angle ⁇ r , and the vibration amplitude B of the nodal quadrature vibration excited in the hemispherical resonator are calculated. And output.
- 7 is a block diagram showing an outline of a phase relationship up to a resonance phase characteristic ⁇ r extracted by means 11.
- FIG. 8 is a block diagram showing an internal configuration of the drive frequency correction means 12 according to the first embodiment of the present invention.
- phase characteristic from the true radial attractive force to the true radial displacement in the hemispherical resonator 2 changes from 0 degrees to ⁇ 180 degrees in accordance with the actuator driving frequency ⁇ r, and the displacement in the vibration shape extracting means 11
- a resonance peak occurs at the primary resonance frequency 32 of the hemispherical resonator 2.
- the phase characteristic 31 related to the resonant phase characteristics phi r in accordance with the actuator drive frequency omega r changes from ⁇ D + ⁇ S until ⁇ D + ⁇ S -180 degrees, and, at the primary resonant frequency 32 of the hemispherical resonator 2 ⁇ D + ⁇ S ⁇ 90 degrees.
- the driving frequency correction means 12 of the hemispherical resonator gyro includes an integrator 33, the resonance phase characteristics from the resonance phase characteristic phi r outputted from the vibration shape extracting means 11
- the signal obtained by subtracting the command ⁇ r * is integrated by the integrator 33, and the actuator drive frequency ⁇ r is controlled by the addition value of the output of the integrator 33 and the initial value ⁇ r0 of the actuator drive frequency.
- FIG. 9 is a block diagram showing an internal configuration of the nodal quadrature vibration control means 13 in the hemispherical resonance gyro according to the first embodiment of the present invention.
- FIG. 10 is a schematic diagram showing an outline of the operation of the nodal quadrature vibration control unit 13 according to the first embodiment of the present invention.
- the hemispherical resonance type gyro wave node quadrature vibration control means 13 includes an electric stiffness control means 40 and a DC drive voltage distribution means 41.
- the electric stiffness control means 40 receives the sign inversion value of the vibration amplitude B of the wave quadrature vibration output from the vibration shape extraction means 11, and receives an electric stiffness correction command u for suppressing the wave quadrature vibration. Generate NQ .
- the DC drive voltage distribution unit 41 is based on the electrical stiffness correction command u NQ output from the electrical stiffness control unit 40 and the antinode azimuth angle ⁇ r of the primary resonance mode output from the vibration shape extraction unit 11.
- a radial attractive force corresponding to the absolute value of the electrical stiffness correction command u NQ acts on the hemispherical resonator 2 along the electrical stiffness correction axis 42.
- FIG. 11 is a block diagram showing an internal configuration of the resonance control means 14 in the hemispherical resonance gyro according to the first embodiment of the present invention.
- FIG. 12 is a schematic diagram showing an outline of operation in the resonance control means 14 according to the first embodiment of the present invention.
- the resonance control means 14 of the hemispherical resonance type gyro includes a resonance amplitude control means 50 and an AC drive voltage distribution means 51.
- the resonance amplitude control means 50 calculates a control command that makes the vibration amplitude deviation zero, and uses the added value of the control command and the vibration amplitude command A * as the resonance amplitude command u RES to the AC drive voltage distribution means 51. Output.
- the resonance amplitude command u RES the resonance amplitude command u RES , using the antinode azimuth angle ⁇ r of the primary resonance mode excited by the hemispherical resonator 2 output from the vibration shape extraction means 11 as the resonance phase command ⁇ .
- the actuator AC drive signal f for the actuator D j (j 1, 2,..., 16).
- Distribute RESj (j 1, 2,..., 16).
- Phase radial attractive forces u RES [cos ( ⁇ r t) +1], u RES [ ⁇ cos ( ⁇ r t) +1] alternate at 90 degree intervals along the orthogonal axis defined by the resonance phase command ⁇
- Actuator AC drive signal f RESj (j 1, 2,..., 16) for each one actuator arranged on both sides of the orthogonal axis so as to act on the hemispherical resonator 2. Is configured to distribute.
- the hemispherical resonator 2 of the hemispherical resonance type gyro has a hemispherical shape that is axisymmetric with respect to the angle measuring axis 1 (Z axis), and
- the housing 3 and the lower housing 4 support the angle measuring shaft 1.
- the primary resonance mode excited by the hemispherical resonator 2 has an elliptical shape on a plane (XY plane) perpendicular to the angle measurement axis 1.
- XY plane perpendicular to the angle measurement axis 1.
- the hemispherical resonator 2 When a cosine wave drive signal having the same amplitude and opposite phase shown in the equation is applied, the hemispherical resonator 2 has an elliptical shape with the major axis in the X-axis direction indicated by the broken line and the Y-axis direction indicated by the alternate long and short dash line A primary resonance mode that repeats an elliptical shape having a long axis alternately every 1 ⁇ 2 period is excited.
- the primary resonance mode wave node indicated by the point 6 in FIG. Therefore, a nodal quadrature vibration that oscillates with a phase difference of 90 degrees is generated, and this vibration becomes a drift factor of the rotation angle detected by the hemispherical resonance gyro.
- A primary resonance mode / vibration amplitude
- ⁇ r primary resonance mode / antinode azimuth
- ⁇ r Resonance phase characteristics for the primary resonance mode / actuator AC drive signal
- B Wave quadrature vibration / vibration amplitude
- ⁇ r Actuator drive frequency ⁇ primary resonance frequency.
- the vibration amplitude a of the first-order resonance mode excited in a hemispherical resonator 2 antinode azimuth theta r, actuator
- a displacement sensor by a displacement sensor S k (k 1, 3, 5, 7) arranged in the first orthogonal axis (XY orthogonal axis in FIG. 2) direction.
- Output E k (k 1, 3, 5, 7) and a displacement sensor arranged in the second orthogonal axis direction that is 45 degrees out of phase about the angle measuring axis 1 with respect to the first orthogonal axis
- the complex expression E given by the equation (4) is converted into the actuator drive frequency ⁇ r shown in FIG. 5 using the following equation (5).
- the expression is converted into expressions E + and E ⁇ expressed by a positive direction rotating coordinate system 28 that rotates in the positive and negative directions at the same rotational speed and a negative direction rotating coordinate system 29.
- the positive direction rotating coordinate system expression E + and the negative direction rotating coordinate system expression E ⁇ given by Expression (5) are expressed by the following expression (6) by the positive direction low frequency extracting means 24 and the negative direction low frequency extracting means 25, respectively.
- the vibration characteristic extracting means 27 uses Ea and Eb to calculate the antinode azimuth angle ⁇ r of the primary resonance mode excited by the hemispherical resonator 2 by the following equation (10), and the vibration amplitude A by the following equation ( 11), and the vibration amplitude B of the nodal quadrature vibration is calculated by the following equation (12).
- the actuator drive frequency ⁇ r is corrected to coincide with the primary resonance frequency of the hemispherical resonator 2 based on the resonance phase characteristic ⁇ r output from the vibration shape extraction unit 11. To do.
- the drive frequency correction means 12 sets the resonance phase characteristic command ⁇ r * in FIG. 8 to the following equation (13) using the actuator phase characteristic ⁇ D and the displacement sensor phase characteristic ⁇ S at the actuator drive frequency ⁇ r . and integrates the signal obtained by subtracting the resonant phase characteristic command phi r * from the resonant phase characteristics phi r by the integrator 33 calculates the sum of the initial value omega r0 of the output and the actuator drive frequency of the integrator 33, the The actuator drive frequency ⁇ r is controlled by the added value.
- Actuator drive frequency ⁇ r Hemispherical resonator 2 primary resonance frequency 32 ⁇
- Resonance phase characteristic ⁇ r Resonance phase characteristic command ⁇ r *
- the drive frequency correction means 12 is stabilized, and the true primary resonance frequency 32 in the hemispherical resonator 2 is locked with high accuracy.
- the nodal is based on the vibration amplitude B of the nodal quadrature vibration output from the vibration shape extraction means 11 and the antinode azimuth angle ⁇ r of the primary resonance mode.
- the electric stiffness control means constituted by the PI controller in which the continuous transfer function is given by the following equation (14) from the sign inversion value of the vibration amplitude B in the nodal quadrature vibration. 40 generates an electrical stiffness correction command u NQ for suppressing the nodal quadrature oscillation.
- K NQP is the proportional gain
- K NQI Use integral gain
- the electrical stiffness correction command When u NQ is a positive sign, as shown in FIG. 10A, the orthogonal axis direction whose phase is shifted +22.5 degrees with respect to the antinode azimuth angle ⁇ r is shown. As shown in (b), an orthogonal axis direction having a phase shift of ⁇ 22.5 degrees with respect to the antinode azimuth angle ⁇ r is set as the electrical stiffness correction axis 42 for the hemispherical resonator 2.
- the radial attractive force corresponding to the absolute value of the electrical stiffness correction command u NQ acts on the hemispherical resonator 2 along the electrical stiffness correction axis 42.
- the vibration amplitude A and antinode azimuth angle ⁇ r of the primary resonance mode output from the vibration shape extraction means 11 and the cosine wave signal cos (output from the reference signal generation means 10). based on the omega r t) and was controlled to a constant value the vibration amplitude a preset the first resonance mode excited in a hemispherical resonator 2, and the primary resonance mode angle measurement shaft 1 around the freedom of Actuator AC drive signal f RESj (j 1, 2,..., 16) that realizes proper rotation is generated.
- the continuous transfer function is expressed by the following equation (19) from the vibration amplitude command A * set to a preset constant value and the vibration amplitude deviation from the actual vibration amplitude A.
- the control command that makes the vibration amplitude deviation zero is calculated by the resonance amplitude control means 50 constituted by the PI controller given by (1), and the added value of the control command and the vibration amplitude command A * is calculated as the resonance amplitude command u. Let it be RES .
- K AP is the proportional gain
- K AI Use integral gain
- the antinode azimuth angle ⁇ r of the primary resonance mode excited by the hemispherical resonator 2 is used as it is as the resonance phase command ⁇ , and is output from the resonance amplitude command u RES , the resonance phase command ⁇ , and the reference signal generation means 10.
- the cosine wave signal cos ( ⁇ r t) is input to the AC drive voltage distribution means 51.
- the radial attractive forces u RES [cos of opposite phases determined by the resonance amplitude command u RES and the cosine wave signal cos ( ⁇ r t), respectively.
- the angle scale factor multiplication unit 15 multiplies the antinode azimuth angle ⁇ r of the primary resonance mode output from the vibration shape extraction unit 11 by a preset angle scale factor K ⁇ , thereby obtaining an angle.
- a rotation angle ⁇ in the direction of the measurement axis 1 is detected.
- the hemispherical resonance type gyro allows the primary resonant mode excited in the hemispherical resonator 2 without using the conventional phase-locked loop PLL, and the quadrature phase of the wave node. Since the detailed vibration shape of the vibration can be extracted, the operation of the hemispherical resonance gyro can be always stabilized. In addition, since the operation of the hemispherical resonator 2 with respect to the primary resonance frequency 32 and the high phase resolution can be realized, the angle detection resolution of the hemispherical resonance gyro can be improved.
- the hemispherical resonance type gyro can suppress the nodal quadrature oscillation and realize a state in which only the primary resonance mode is excited with respect to the hemispherical resonator 2. It is possible to suppress the drift of the rotation angle detected by the hemispherical resonance gyro.
- the actuator may be configured so that excitation of the primary resonance mode for the hemispherical resonator 2 and suppression of the nodal quadrature vibration can be realized. Any configuration that can detect the displacement in the radial direction of the hemispherical resonator 2 in the orthogonal axis direction of the set may be used.
- ⁇ r t the present invention is not limited to this, and the sine wave signal sin ( ⁇ r t) may be applied by appropriately changing the corresponding mathematical expression.
- the first embodiment has a hemispherical shape that is axisymmetric with respect to the angle measurement axis 1 as a measurement axis, and maintains a resonance pattern in a plane perpendicular to the angle measurement axis 1.
- the hemispherical resonator 2, the upper housing 3 and the lower housing 4 that support the hemispherical resonator 2 through the angle measurement shaft 1, and the upper housing 3 are arranged at equal intervals around the angle measurement axis,
- a plurality of actuators D j that generate a suction force in the radial direction with respect to 2 and a plurality of actuators that are disposed at equal intervals around the angle measurement axis with respect to the lower housing 4 and that detect the radial displacement of the hemispherical resonator 2.
- a displacement sensor S k of the reference signal generator 10 for generating a sine wave signal and a cosine wave signal corresponding to the driving frequency of the actuator D j, sine wave signal and a cosine wave output from the reference signal generating means 10 No. and, hemispherical resonator 2 output from a plurality of displacement sensors S k radial based on the displacement and the vibration amplitude and antinodes azimuth of the excited resonant modes in the hemispherical resonator 2, the actuator D j
- the vibration phase extraction means 11 for extracting the resonance phase characteristic with respect to the AC drive signal and the vibration amplitude of the nodal quadrature vibration excited by the hemispherical resonator 2 and the AC of the actuator D j output from the vibration shape extraction means 11 Based on the resonance phase characteristic with respect to the drive signal, the vibration of the quadrature vibration of the nodal phase output from the drive frequency correction means 12 for matching the drive frequency of the actuator D j with the resonance frequency
- a hemispherical resonance type gyro which includes a control means 14 and detects the rotation angle of the angle measurement axis direction of the hemispherical resonator 2 from the antinode azimuth angle of the resonance mode excited by the hemispherical resonator 2.
- the vibration shape extraction unit 11 combines the output of the displacement sensor Sk arranged in the first orthogonal axis direction orthogonal to the angle measurement axis 1, perpendicular to the angle measuring shaft 1, a second combining means for combining output of the second orthogonal direction to the arrangement displacement sensor S k shifted 45 degrees phase measurement axis with respect to the first orthogonal axis 21 and a complex expression in which the output from the first synthesizing unit 20 is the real part and the output from the second synthesizing unit 21 is the imaginary part are rotated in the positive direction at a rotational speed that matches the driving frequency of the actuator D j.
- a positive-direction rotational coordinate conversion means 22 for converting into an expression by a rotating coordinate system, and a complex expression having an output from the first synthesis means 20 as a real part and an output from the second synthesis means 21 as an imaginary part. times that match the driving frequency of D j Negative direction rotation coordinate conversion means 23 for converting into a representation in a rotation coordinate system rotating in the negative direction at a speed, and positive direction low frequency extraction means for extracting a preset low frequency component from the output of the positive direction rotation coordinate conversion means 22 24, the negative direction low frequency extraction means 25 for extracting a preset low frequency component from the output of the negative direction rotation coordinate conversion means 23, and the output of the positive direction low frequency extraction means 24 and the negative direction low frequency extraction means 25.
- the phase characteristic extraction means 26 for calculating the resonance phase characteristic for the AC drive signal of the resonance mode actuator D j excited by the hemispherical resonator 2, the positive direction low frequency extraction means 24 and the negative direction low frequency extraction means 25.
- a vibration characteristic extraction unit 27 for extracting the vibration amplitude of Namibushi quadrature vibration.
- the angle detection resolution of the hemispherical resonance gyro is realized by constantly stabilizing the operation of the type gyro, further realizing an operation with extremely high spectral purity with respect to the primary resonance frequency of the hemispherical resonator and a high phase resolution with respect to the primary resonance frequency. Can be improved.
- the drive frequency correction unit 12 uses the resonance phase characteristic for the AC drive signal of the actuator D j output from the vibration shape extraction unit 11 as the actuator phase characteristic at the drive frequency of the actuator D j .
- the drive frequency of the actuator D j is controlled so that the displacement sensor phase characteristic at the drive frequency of the actuator D j and the total value of ⁇ 90 degrees are fixed.
- the wave quadrature vibration control unit 13 generates an electrical stiffness correction command for suppressing the wave quadrature vibration based on the vibration amplitude of the wave quadrature vibration output from the vibration shape extraction unit 11.
- the sign of the electrical stiffness control means 40 and the electrical stiffness correction command output from the electrical stiffness control means 40 if the sign is a positive sign, +22 with respect to the antinode azimuth angle of the resonance mode If the sign is negative and the sign is negative, the sign of the axis is ⁇ 22.5 degrees out of phase with respect to the antinode direction of the resonance mode.
- the resonance control means 14 generates the resonance amplitude command 50 for generating the resonance amplitude command for controlling the vibration amplitude of the resonance mode excited by the hemispherical resonator 2 to a constant value, and the hemispherical resonance.
- the resonance amplitude command, the resonance phase command, and the cosine wave signal output from the reference signal generation means 10 with the antinode azimuth angle of the resonance mode excited by the device 2 as the resonance phase command a plurality of actuators D j And AC drive voltage distribution means 51 for distributing an AC drive signal for.
- the AC drive voltage distribution means 51 of the resonance control means 14 includes one actuator arranged on both sides of the orthogonal axis orthogonal to the angle measurement axis 1 defined by the resonance phase command. against D j, based on the cosine-wave signal output from the resonance amplitude command and the reference signal generating means 10 is output from the resonance amplitude control unit 50 distributes the AC drive signal of the actuator D j. With this configuration, it is possible to reduce the amount of control computation necessary for generating the actuator AC drive signal with respect to the desired primary resonance mode excitation for the hemispherical resonator.
- FIG. 1 a cross-sectional view along a plane including an angle measurement axis related to the mechanical system configuration of the hemispherical resonance gyro, and a hemispherical resonance along a plane perpendicular to the angle measurement axis
- the simplified diagram showing the spatial arrangement of the vessel, the actuator, and the displacement sensor is the same as that in FIG. 1 and FIG.
- a block diagram showing the internal configuration of the wave quadrature vibration control means 13, a simplified diagram showing an outline of the operation of the wave quadrature vibration control means 13, and resonance A block diagram showing an internal configuration of the control unit 14 and a simplified diagram showing an outline of the operation of the resonance control unit 14 are the same as those in FIGS. 9, 10, 11, and 12 of the first embodiment.
- FIGS. 1 to 12 of the first embodiment reference is made to FIGS. 1 to 12 of the first embodiment, and the description of the same configuration is omitted here, and the operation different from that of the first embodiment is described below. .
- the phase characteristic 31 related to the resonance phase characteristic ⁇ r shown in FIG. 7 is preset with respect to the resonant frequency 32 of the hemispherical resonator.
- the resonance phase characteristic when the actuator drive frequency ⁇ r is set low by a certain frequency is expressed by the following equation (28):
- Resonance phase characteristics when the actuator drive frequency ⁇ r is set higher by a predetermined frequency than the resonance frequency 32 of the hemispherical resonator are obtained as the following equation (29):
- the resonance phase characteristic command ⁇ r * in FIG. 8 is set in the following equation (30) as an average value of the phase characteristic.
- the Q value of the primary resonance characteristic in the hemispherical resonator 2 is very high, and the phase characteristic 31 changes steeply in the vicinity of the resonance frequency 32. Therefore, the actuator drive frequency ⁇ r is approximately 1 Hz with respect to the resonance frequency 32.
- Expression (28) and Expression (29) can be acquired by changing the degree. With this configuration, even if the actuator phase characteristic ⁇ D and the displacement sensor phase characteristic ⁇ S at the actuator driving frequency ⁇ r are unknown, the hemisphere can be identified by specifying the resonance phase characteristic given by the expressions (28) and (29). It becomes possible to lock the true primary resonance frequency 32 in the resonator 2 with high accuracy.
- each of the two actuators arranged on both sides of the orthogonal axis defined by the resonance phase command ⁇ has a radial suction force u RES [cos (cos ( This corresponds to realizing ⁇ r t) +1] and u RES [ ⁇ cos ( ⁇ r t) +1].
- u RES cos (cos ( This corresponds to realizing ⁇ r t) +1]
- u RES ⁇ cos ( ⁇ r t) +1].
- the generated suction force is applied as the actuator.
- the hemispherical resonance type gyro can suppress the quadrature vibration of the nodule and realize a state in which only the primary resonance mode is excited with respect to the hemispherical resonator 2. It is possible to suppress the drift of the rotation angle detected by the hemispherical resonance gyro.
- a total of 16 actuators and a total of 8 displacement sensors are applied, and the spatial arrangement thereof is shown in FIG. It is not limited to the above, and the actuator may be configured so that excitation of the primary resonance mode for the hemispherical resonator 2 and suppression of the nodal quadrature vibration can be realized. Any configuration that can detect the displacement in the radial direction of the hemispherical resonator 2 in the orthogonal axis direction of the set may be used.
- ⁇ r t the present invention is not limited to this, and the sine wave signal sin ( ⁇ r t) may be applied by appropriately changing the corresponding mathematical expression.
- the drive frequency correction unit 12 has a resonance phase characteristic for the AC drive signal of the actuator D j output from the vibration shape extraction unit 11 in advance with respect to the resonance frequency of the hemispherical resonator 2.
- the drive frequency of the actuator D j is controlled so as to be fixed at an average value with respect to the resonance phase characteristic.
- the AC drive voltage distribution means 51 of the resonance control means 14 is provided with an actuator for each of the two actuators D j disposed on both sides of the orthogonal axis defined by the resonance phase command.
- a cosine wave suction force command is calculated based on the resonance amplitude command output from the resonance amplitude control means 50 and the cosine wave signal output from the reference signal generation means 10 so that the norm of the generated suction force of D j is minimized.
- the square root of the cosine wave attractive force command is distributed as the AC drive signal of the actuator D j .
- Embodiment 3 In the hemispherical resonance gyro according to the third embodiment of the present invention, a cross-sectional view along a plane including an angular velocity measurement axis regarding the mechanical system configuration of the hemispherical resonance gyro, and a hemispherical resonance along a plane perpendicular to the angular velocity measurement axis
- the simplified diagram showing the spatial arrangement of the vessel, the actuator, and the displacement sensor is the same as that in FIG. 1 and FIG.
- a block diagram showing the internal configuration of the wave quadrature vibration control means 13, a simplified diagram showing an outline of the operation of the wave quadrature vibration control means 13, and The simplified diagram showing the outline of the operation in the resonance control means 14 is the same as FIGS. 9, 10 and 12 of the first embodiment.
- FIG. 1 In the third embodiment, reference is made to FIG. 1, FIG. 2, FIG. 4 to FIG. 10, and FIG. 12 of the first embodiment. Configurations and operations different from those of the first embodiment will be described.
- FIG. 13 is a block diagram showing an overall configuration of a hemispherical resonance gyro according to Embodiment 3 of the present invention.
- the reference signal generation means 10 performs a sine wave signal sin ( ⁇ rt ) and a cosine wave signal corresponding to the actuator driving frequency ⁇ r. cos ( ⁇ r t) is generated.
- the vibration amplitude of the nodal quadrature oscillation excited in the hemispherical resonator B is extracted.
- the nodal quadrature vibration control means 13 performs nodal quadrature vibration based on the vibration amplitude B of the nodal quadrature vibration output from the vibration shape extraction means 11 and the antinode azimuth angle ⁇ r of the primary resonance mode.
- the plurality of actuator DC drive signals f NQj (j 1, 2,..., 16) output from the wave quadrature vibration control means 13 and the plurality of actuator AC drive signals output from the resonance control means 14.
- a control command for maintaining the antinodes azimuth theta r constant angle is proportional to the rotational angular velocity of the angular velocity measuring axis 1 direction omega, preset with respect to the control command
- the rotational angular velocity ⁇ in the direction of the angular velocity measuring axis 1 can be detected.
- FIG. 14 is a block diagram showing an internal configuration of the resonance control means 14 in the hemispherical resonance gyro according to the third embodiment of the present invention.
- the resonance control means 14 of the hemispherical resonance gyro according to the third embodiment includes a resonance amplitude control means 50, an AC drive voltage distribution means 51, a resonance phase control means 52, an angular velocity scale factor. Multiplication means 53 is provided.
- the vibration amplitude deviation from the vibration amplitude command A * set in advance to a constant value is input to the resonance amplitude control means 50.
- the resonance amplitude control means 50 calculates a control command that makes the vibration amplitude deviation zero, and uses the added value of the control command and the vibration amplitude command A * as the resonance amplitude command u RES to the AC drive voltage distribution means 51. Output.
- the abdominal azimuth angle deviation is input to the resonance phase control means 52.
- the resonance phase control means 52 calculates a control command that makes the antinode anti-azimuth deviation zero, and uses the added value of the control command and antinode azimuth command ⁇ r * as the resonance phase command ⁇ to distribute the AC drive voltage. Output to the means 51.
- the control command output from the resonance phase control unit 52 is proportional to the rotational angular velocity ⁇ in the direction of the angular velocity measuring axis 1, so that the angular velocity scale factor multiplication unit 53 sets a predetermined angular velocity scale for the control command. by multiplying the factor K omega, it is possible to detect the rotational angular velocity omega of the angular velocity measuring axis 1 direction.
- Anti-phase radial suction forces u RES [cos ( ⁇ r t) +1], u RES [ ⁇ cos ( ⁇ r t) +1] are spaced at 90 ° intervals along the orthogonal axis defined by the resonance phase command ⁇ .
- Actuator AC drive signals f RESj (j 1, 2,..., 16 for each of the two actuators arranged on both sides of the orthogonal axis so as to act alternately on the hemispherical resonator 2. The distribution is made so that the norm of) is minimized.
- the configurations and operations of the reference signal generation means 10, the vibration shape extraction means 11, and the nodal quadrature vibration control means 13 are the same as those of the hemispherical resonance gyro according to the first embodiment, and the drive frequency
- the configuration and operation of the correcting means 12 are the same as those of the hemispherical resonance gyro according to the second embodiment. Therefore, description of these configurations is omitted.
- a continuous transfer function is given by the equation (19) from the vibration amplitude deviation between the vibration amplitude command A * set in advance to a constant value and the actual vibration amplitude A.
- the control command that makes the vibration amplitude deviation zero is calculated by the resonance amplitude control means 50 configured by the PI controller, and the added value of the control command and the vibration amplitude command A * is calculated as the resonance amplitude command u RES . To do.
- a continuous system transfer function is given by the following formula (39).
- a control command for making the antinode anti-azimuth angle deviation zero is calculated by the resonance phase control means 52 constituted by a controller, and the sum of the control command and antinode anti-azimuth command 2 ⁇ r * is calculated as the resonance phase command. Let 2 ⁇ .
- K ⁇ P is the proportional gain
- K ⁇ I integral gain
- the resonance amplitude command u RES , the resonance phase command 2 ⁇ , and the cosine wave signal cos ( ⁇ r t) output from the reference signal generation unit 10 are indicated by thick line arrows in FIG.
- each of the two actuators arranged on both sides of the orthogonal axis defined by the resonance phase command ⁇ has a radial suction force u RES [cos (cos ( This corresponds to realizing ⁇ r t) +1] and u RES [ ⁇ cos ( ⁇ r t) +1], and this configuration controls the primary resonance mode to a predetermined constant shape.
- the primary resonant mode and the nodal quadrature oscillation excited in the hemispherical resonator 2 without using the conventional phase-locked loop PLL. Therefore, it is possible to always stabilize the operation of the hemispherical resonance type gyro. In addition, since the operation of the hemispherical resonator 2 with respect to the primary resonance frequency 32 and the high phase resolution can be realized, the angular velocity detection resolution of the hemispherical resonance gyro can be improved.
- the actuator AC drive signal f RESj (j 1, 2) for controlling both the vibration amplitude A and the antinode azimuth angle ⁇ r to a predetermined constant shape (a constant value and a constant angle) with respect to the primary resonance mode. ,..., 16), the applied voltage level to each actuator can be reduced.
- the hemispherical resonance type gyro can suppress the nodal quadrature oscillation and realize a state in which only the primary resonance mode is excited with respect to the hemispherical resonator 2.
- a total of 16 actuators and a total of 8 displacement sensors are applied, and the spatial arrangement thereof is shown in FIG. It is not limited to the above, and the actuator may be configured so that excitation of the primary resonance mode for the hemispherical resonator 2 and suppression of the nodal quadrature vibration can be realized. Any configuration that can detect the displacement in the radial direction of the hemispherical resonator 2 in the orthogonal axis direction of the set may be used.
- ⁇ r t the present invention is not limited to this, and the sine wave signal sin ( ⁇ r t) may be applied by appropriately changing the corresponding mathematical expression.
- the resonance pattern is maintained in a plane having an axisymmetric shape with respect to the angular velocity measuring axis 1 as a measuring axis and perpendicular to the angular velocity measuring axis 1.
- a hemispherical resonator 2, an upper housing 3 and a lower housing 4 that support the hemispherical resonator 2 via the angular velocity measuring shaft 1, and the upper housing 3 are arranged at equal intervals around the angular velocity measuring axis,
- a plurality of actuators D j that generate a suction force in the radial direction with respect to the resonator 2 and the lower housing 4 are arranged at equal intervals around the angular velocity measurement axis, and detect the radial displacement of the hemispherical resonator 2.
- the vibration shape extraction means 11 for extracting the resonance phase characteristics of the actuator D j with respect to the AC drive signal and the vibration amplitude of the nodal quadrature vibration excited by the hemispherical resonator 2, and the actuator output from the vibration shape extraction means 11 based on the resonance phase characteristics with respect to the AC drive signal D j, the driving frequency of the actuator D j and the driving frequency correction means 12 to match the resonant frequency of the hemispherical resonator
- the resonance control means 14 includes the resonance amplitude control means 50 that generates a resonance amplitude command for controlling the vibration amplitude of the resonance mode excited by the hemispherical resonator 2 to a constant value, and the hemispherical resonance.
- the resonance phase control means 52 for generating a resonance phase command for controlling the antinode azimuth angle of the resonance mode excited by the device 2 to a constant angle, and the resonance amplitude command, the resonance phase command, and the reference signal generation means 10 are output.
- AC drive voltage distribution means 51 for distributing AC drive signals to the plurality of actuators D j based on the cosine wave signal.
- the AC drive voltage distribution means 51 of the resonance control means 14 includes two actuators arranged on both sides of the orthogonal axis orthogonal to the angular velocity measuring axis 1 defined by the resonance phase command. against D j, as the norm of the drive voltage of the actuator D j is minimized, based on the cosine-wave signal output from the resonance amplitude command and the reference signal generating means 10 is output from the resonance amplitude control means 50 actuator Distribute the AC drive signal of D j .
- the applied voltage level of each actuator AC drive signal can be reduced with respect to the desired primary resonance mode excitation for the hemispherical resonator.
- Embodiment 4 In the hemispherical resonance gyro according to the fourth embodiment of the present invention, a cross-sectional view along a plane including an angular velocity measurement axis related to the mechanical system configuration of the hemispherical resonance gyro, and a hemispheric resonance along a plane perpendicular to the angular velocity measurement axis
- the simplified diagram showing the spatial arrangement of the vessel, the actuator, and the displacement sensor is the same as that in FIG. 1 and FIG.
- a block diagram showing the internal configuration of the wave quadrature vibration control means 13 a simplified diagram showing an outline of the operation of the wave quadrature vibration control means 13 and
- the simplified diagram showing the outline of the operation of the resonance control means 14 is the same as that of FIG. 9, FIG. 10, and FIG. 12 of the first embodiment, and the block diagram showing the internal configuration of the resonance control means 14 is shown in the embodiment. 3 is the same as FIG.
- FIG. 1 FIG. 1, FIG. 2, FIG. 4 to FIG. 10 and FIG. 12 of the first embodiment, and FIG. 14 of the third embodiment. Will be omitted, and hereinafter, operations different from those of the first and third embodiments will be described.
- the operation of the hemispherical resonance gyro according to Embodiment 4 of the present invention will be described below.
- the configurations and operations of the reference signal generating means 10, the vibration shape extracting means 11, the drive frequency correcting means 12, and the nodal quadrature vibration control means 13 are the same as those of the hemispherical resonance gyro according to the first embodiment.
- the configuration of the resonance control means 14 is the same as that of the hemispherical resonance gyro according to the third embodiment.
- the actuator AC drive signal f RESj 1, 2,..., 16 is applied to the hemispherical resonator 2 alternately at intervals of 90 degrees. decide.
- the actuator AC drive signal f RESj 1, 2 ,. .., 16
- the hemispherical resonance type gyro according to the fourth embodiment of the present invention can suppress the nodal quadrature oscillation and realize a state in which only the primary resonance mode is excited with respect to the hemispherical resonator 2.
- a total of 16 actuators and a total of 8 displacement sensors are applied, and the spatial arrangement thereof is shown in FIG. It is not limited to the above, and the actuator may be configured so that excitation of the primary resonance mode for the hemispherical resonator 2 and suppression of the nodal quadrature vibration can be realized. Any configuration that can detect the displacement in the radial direction of the hemispherical resonator 2 in the orthogonal axis direction of the set may be used.
- ⁇ r t the present invention is not limited to this, and the sine wave signal sin ( ⁇ r t) may be applied by appropriately changing the corresponding mathematical expression.
- the AC drive voltage distribution unit 51 of the resonance control unit 14 resonates with respect to each one actuator D j disposed on both sides of the orthogonal axis defined by the resonance phase command.
- the square root of the cosine wave attraction force command based on the resonance amplitude command output from the amplitude control means 50 and the cosine wave signal output from the reference signal generation means 10 is distributed as an AC drive signal for the actuator D j .
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
Description
本発明の実施の形態1に係る半球共振型ジャイロの機械系構成を図1および図2に示す。
図1は、本発明の実施の形態1に係る半球共振型ジャイロの機械系構成を説明するための、角度計測軸を含む平面に沿った断面図である。図2は、本発明に係る半球共振型ジャイロの機械系構成を説明するための、角度計測軸に垂直な平面に沿った、半球共振器、アクチュエータ、変位センサの空間配置を示す簡略図である。
図3は、本発明の実施の形態1による半球共振型ジャイロの全体構成を示すブロック図である。図3に示したように、この実施の形態1による半球共振型ジャイロは、半球共振器2、アクチュエータDj(j=1、2、・・・、16)、変位センサSk(k=1、2、・・・、8)、基準信号生成手段10、振動形状抽出手段11、駆動周波数補正手段12、波節直角位相振動制御手段13、共振制御手段14、角度スケールファクタ乗算手段15、および、アクチュエータ駆動信号合成手段16を備えている。
電気的剛性制御手段40は、振動形状抽出手段11から出力される波節直角位相振動の振動振幅Bの符号反転値が入力され、波節直角位相振動を抑制するための電気的剛性補正指令uNQを生成する。
直流駆動電圧分配手段41は、電気的剛性制御手段40から出力される電気的剛性補正指令uNQ、および、振動形状抽出手段11から出力される1次共振モードの波腹方位角θrに基づいて、電気的剛性補正指令uNQが正符号の場合には、図10(a)に示すように、波腹方位角θrに対して+22.5度位相がずれた直交軸方向を、半球共振器2に対する電気的剛性補正軸42とする。一方、電気的剛性補正指令uNQが負符号の場合には、図10(b)に示すように、波腹方位角θrに対して-22.5度位相がずれた直交軸方向を半球共振器2に対する電気的剛性補正軸42とする。更に、図10において、太線矢印で示したように、電気的剛性補正軸42に沿って、電気的剛性補正指令uNQの絶対値に対応する半径方向吸引力が半球共振器2に作用するように、電気的剛性補正軸42の両側に配置された各1個のアクチュエータに対して、アクチュエータ直流駆動信号fNQj(j=1、2、・・・、16)を分配する。
共振振幅制御手段50では、振動振幅偏差を零とするような制御指令を算出し、当該制御指令と振動振幅指令A*との加算値を共振振幅指令uRESとして交流駆動電圧分配手段51に対して出力する。
θr:1次共振モード・波腹方位角、
φr:1次共振モード・アクチュエータ交流駆動信号に対する共振位相特性、
B:波節直角位相振動・振動振幅、
ωr:アクチュエータ駆動周波数≒1次共振周波数。
(a)アクチュエータ駆動周波数ωr<半球共振器2の1次共振周波数32
⇔ 共振位相特性φr>共振位相特性指令φr *の場合は、
アクチュエータ駆動周波数ωrが高周波側へシフトし、
(b)アクチュエータ駆動周波数ωr>半球共振器2の1次共振周波数32
⇔ 共振位相特性φr<共振位相特性指令φr *の場合は、
アクチュエータ駆動周波数ωrが低周波側へシフトする。
アクチュエータ駆動周波数ωr=半球共振器2の1次共振周波数32
⇔ 共振位相特性φr=共振位相特性指令φr *で、
駆動周波数補正手段12が安定化し、半球共振器2における真の1次共振周波数32を高精度にロックする。
KNQI:積分ゲインとする。
ただし、ξ:XY平面第1象限に存在する電気的剛性補正軸42が、X軸となす角度とする。
KAI:積分ゲインとする。
この構成により、従来のフェーズ・ロックド・ループPLLを使用せずに半球共振器に励起された1次共振モード、および波節直角位相振動の詳細な振動形状を抽出することができるため、半球共振型ジャイロの動作を常に安定化し、半球共振器の1次共振周波数に対する極めてスペクトル純度の高い動作と高精度なロックが可能となる。
また、本構成に基づく振動形状抽出により、半球共振器の1次共振周波数に対して高位相分解能を実現することができ、半球共振型ジャイロの角度検出分解能を向上させることが可能となる。
更に、本構成によって半球共振器における真の1次共振周波数を高精度にロックすることが可能となるため、半球共振器に対して効率的な1次共振モードの励起を実現するための、アクチュエータ交流駆動信号の位相特性を生成することができる。
この構成により、従来のフェーズ・ロックド・ループPLLを使用せずに半球共振器に励起された1次共振モード、および波節直角位相振動の詳細な振動形状を抽出することができるため、半球共振型ジャイロの動作を常に安定化し、更に半球共振器の1次共振周波数に対して極めてスペクトル純度の高い動作と、当該1次共振周波数に対する高位相分解能の実現により、半球共振型ジャイロの角度検出分解能を向上させることができる。
この構成により、半球共振器2における真の1次共振周波数を高精度にロックすることが可能となり、更に半球共振器2に対して効率的な1次共振モードの励起を実現するための、アクチュエータ交流駆動信号の位相特性を生成することができる。
この構成により、波節直角位相振動を抑制して、半球共振器に対して1次共振モードのみが励起された状態を実現することができるため、半球共振型ジャイロで検出する角度出力のドリフトを抑制することが可能となる。
この構成により、半球共振器に対する効率的な1次共振モードの励起と、1次共振モードの角度計測軸回りの自由な回転を実現するための、アクチュエータ交流駆動信号を生成することが可能となる。
この構成により、半球共振器に対する所望の1次共振モード励起に関して、アクチュエータ交流駆動信号の生成に必要な制御演算量を低減することが可能となる。
本発明の実施の形態2による半球共振型ジャイロにおいて、半球共振型ジャイロの機械系構成に関する角度計測軸を含む平面に沿った断面図、および、角度計測軸に垂直な平面に沿った、半球共振器、アクチュエータ、変位センサの空間配置を示す簡略図は、実施の形態1の図1および図2と同一である。
この構成により、アクチュエータ駆動周波数におけるアクチュエータ位相特性、および変位センサ位相特性が不明でも、半球共振器における真の1次共振周波数を高精度にロックすることが可能となり、更に半球共振器に対して効率的な1次共振モードの励起を実現するための、アクチュエータ交流駆動信号の位相特性を生成することができる。
この構成により、アクチュエータとして発生吸引力が印加電圧の2乗に比例するような静電容量式アクチュエータを適用した場合において、半球共振器に対する所望の1次共振モード励起に関して、各アクチュエータ交流駆動信号の印加電圧レベルを低減すると共に、より正確なアクチュエータ発生吸引力の制御が可能となる。
本発明の実施の形態3による半球共振型ジャイロにおいて、半球共振型ジャイロの機械系構成に関する角速度計測軸を含む平面に沿った断面図、および、角速度計測軸に垂直な平面に沿った、半球共振器、アクチュエータ、変位センサの空間配置を示す簡略図は、実施の形態1の図1および図2と同一である。
KθI:積分ゲインとする。
この構成により、従来のフェーズ・ロックド・ループPLLを使用せずに半球共振器に励起された1次共振モード、および波節直角位相振動の詳細な振動形状を抽出することができるため、半球共振型ジャイロの動作を常に安定化し、半球共振器の1次共振周波数に対する極めてスペクトル純度の高い動作と高精度なロックが可能となる。
また、本構成に基づく振動形状抽出により、半球共振器の1次共振周波数に対して高位相分解能を実現することができ、半球共振型ジャイロの角速度検出分解能を向上させることが可能となる。
更に、本構成によって半球共振器における真の1次共振周波数を高精度にロックすることが可能となるため、半球共振器に対して効率的な1次共振モードの励起を実現するための、アクチュエータ交流駆動信号の位相特性を生成することができる。
この構成により、半球共振器に対する効率的な1次共振モードの励起と、1次共振モードに関して振動振幅、波腹方位角の双方を予め設定された一定形状に制御するための、アクチュエータ交流駆動信号を生成することが可能となる。
この構成により、半球共振器に対する所望の1次共振モード励起に関して、各アクチュエータ交流駆動信号の印加電圧レベルを低減することが可能となる。
本発明の実施の形態4による半球共振型ジャイロにおいて、半球共振型ジャイロの機械系構成に関する角速度計測軸を含む平面に沿った断面図、および、角速度計測軸に垂直な平面に沿った、半球共振器、アクチュエータ、変位センサの空間配置を示す簡略図は、実施の形態1の図1および図2と同一である。
本発明の実施の形態4による半球共振型ジャイロでは、図1に示す半球共振器2の対称軸(Z軸)が、角速度計測軸1となる。
この構成により、アクチュエータとして発生吸引力が印加電圧の2乗に比例するような静電容量式アクチュエータを適用した場合において、半球共振器に対する所望の1次共振モード励起に関して、アクチュエータ交流駆動信号の生成に必要な制御演算量を低減すると共に、より正確なアクチュエータ発生吸引力の制御が可能となる。
Claims (12)
- 計測軸としての角度計測軸に対して軸対称な半球形状を有し、前記角度計測軸に対して垂直な平面において共振パターンを維持させるための半球共振器と、
前記半球共振器を前記角度計測軸を介して支持する上側ハウジングおよび下側ハウジングと、
前記上側ハウジングに対して前記角度計測軸回りに等間隔で配置され、前記半球共振器に対して半径方向の吸引力を発生させる複数のアクチュエータと、
前記下側ハウジングに対して前記角度計測軸回りに等間隔で配置され、前記半球共振器の半径方向の変位を検出する複数の変位センサと、
前記アクチュエータの駆動周波数に対応する正弦波信号および余弦波信号を生成する基準信号生成手段と、
前記基準信号生成手段から出力される前記正弦波信号および前記余弦波信号と、複数の前記変位センサから出力される前記半球共振器の半径方向の前記変位とに基づいて、前記半球共振器に励起された共振モードの振動振幅及び波腹方位角、前記アクチュエータの交流駆動信号に対する共振位相特性、および、前記半球共振器に励起された波節直角位相振動の振動振幅を抽出する振動形状抽出手段と、
前記振動形状抽出手段から出力される前記アクチュエータの前記交流駆動信号に対する前記共振位相特性に基づいて、前記アクチュエータの前記駆動周波数を前記半球共振器の共振周波数に一致させる駆動周波数補正手段と、
前記振動形状抽出手段から出力される前記波節直角位相振動の前記振動振幅および前記共振モードの前記波腹方位角に基づいて、前記波節直角位相振動を抑制するための複数の前記アクチュエータの直流駆動信号を生成する波節直角位相振動制御手段と、
前記振動形状抽出手段から出力される前記共振モードの前記振動振幅および前記波腹方位角と、前記基準信号生成手段から出力される前記余弦波信号とに基づいて、前記半球共振器に励起された前記共振モードの前記振動振幅を予め設定された一定値に制御し、かつ、前記共振モードの前記角度計測軸回りの自由な回転を実現するための複数の前記アクチュエータの前記交流駆動信号を生成する共振制御手段と
を備え、
前記半球共振器に励起された前記共振モードの前記波腹方位角から、前記半球共振器の前記角度計測軸方向の回転角度を検出する
半球共振型ジャイロ。 - 計測軸としての角速度計測軸に対して軸対称な半球形状を有し、前記角速度計測軸に対して垂直な平面において共振パターンを維持させるための半球共振器と、
前記半球共振器を前記角速度計測軸を介して支持する上側ハウジングおよび下側ハウジングと、
前記上側ハウジングに対して前記角速度計測軸回りに等間隔で配置され、前記半球共振器に対して半径方向の吸引力を発生させる複数のアクチュエータと、
前記下側ハウジングに対して前記角速度計測軸回りに等間隔で配置され、前記半球共振器の半径方向の変位を検出する複数の変位センサと、
前記アクチュエータの駆動周波数に対応する正弦波信号および余弦波信号を生成する基準信号生成手段と、
前記基準信号生成手段から出力される前記正弦波信号および前記余弦波信号と、複数の前記変位センサから出力される前記半球共振器の半径方向の前記変位とに基づいて、前記半球共振器に励起された共振モードの振動振幅及び波腹方位角、前記アクチュエータの交流駆動信号に対する共振位相特性、および、前記半球共振器に励起された波節直角位相振動の振動振幅を抽出する振動形状抽出手段と、
前記振動形状抽出手段から出力される前記アクチュエータの前記交流駆動信号に対する前記共振位相特性に基づいて、前記アクチュエータの前記駆動周波数を前記半球共振器の共振周波数に一致させる駆動周波数補正手段と、
前記振動形状抽出手段から出力される前記波節直角位相振動の前記振動振幅および前記共振モードの前記波腹方位角に基づいて、前記波節直角位相振動を抑制するための複数の前記アクチュエータの直流駆動信号を生成する波節直角位相振動制御手段と、
前記振動形状抽出手段から出力される前記共振モードの前記振動振幅および前記波腹方位角と、前記基準信号生成手段から出力される前記余弦波信号とに基づいて、前記半球共振器に励起された前記共振モードの前記振動振幅及び前記波腹方位角の双方を予め設定された一定値及び一定角度に制御するための複数の前記アクチュエータの前記交流駆動信号を生成する共振制御手段と
を備え、
前記共振制御手段における前記波腹方位角を前記一定角度に維持するための制御指令から、前記半球共振器の前記角速度計測軸方向の回転角速度を検出する
半球共振型ジャイロ。 - 前記振動形状抽出手段は、
前記計測軸に直交する第1の直交軸方向に配置された前記変位センサの出力を合成する第1の合成手段と、
前記計測軸に直交し、前記第1の直交軸に対して計測軸回りに45度位相がずれた第2の直交軸方向に配置された前記変位センサの出力を合成する第2の合成手段と、
前記第1の合成手段からの出力を実数部として前記第2の合成手段からの出力を虚数部とする複素表現を、前記アクチュエータの前記駆動周波数に一致する回転速度で正方向に回転する回転座標系による表現に変換する正方向回転座標変換手段と、
前記第1の合成手段からの出力を実数部として前記第2の合成手段からの出力を虚数部とする複素表現を、前記アクチュエータの前記駆動周波数に一致する回転速度で負方向に回転する回転座標系による表現に変換する負方向回転座標変換手段と、
前記正方向回転座標変換手段の出力から予め設定された低周波成分を抽出する正方向低周波抽出手段と、
前記負方向回転座標変換手段の出力から予め設定された低周波成分を抽出する負方向低周波抽出手段と、
前記正方向低周波抽出手段および前記負方向低周波抽出手段の出力に基づいて、前記半球共振器に励起された前記共振モードの前記アクチュエータの前記交流駆動信号に対する前記共振位相特性を算出する位相特性抽出手段と、
前記正方向低周波抽出手段および前記負方向低周波抽出手段の出力および前記位相特性抽出手段の出力に基づいて、前記半球共振器に励起された前記共振モードの前記振動振幅及び前記波腹方位角、および、前記半球共振器に励起された前記波節直角位相振動の前記振動振幅を抽出する振動特性抽出手段と
を有している請求項1または2に記載の半球共振型ジャイロ。 - 前記駆動周波数補正手段は、
前記振動形状抽出手段から出力される前記アクチュエータの前記交流駆動信号に対する前記共振位相特性を、前記アクチュエータの前記駆動周波数におけるアクチュエータ位相特性と、前記アクチュエータの前記駆動周波数における変位センサ位相特性と、-90度との合計値に固定するように、前記アクチュエータの前記駆動周波数を制御する
請求項1から3までのいずれか1項に記載の半球共振型ジャイロ。 - 前記駆動周波数補正手段は、
前記振動形状抽出手段から出力される前記アクチュエータの前記交流駆動信号に対する前記共振位相特性を、前記半球共振器の前記共振周波数に対して予め設定された周波数だけ前記アクチュエータの前記駆動周波数を低く設定した場合の共振位相特性と、前記半球共振器の前記共振周波数に対して予め設定された周波数だけ前記アクチュエータの前記駆動周波数を高く設定した場合の共振位相特性との平均値に固定するように、前記アクチュエータの前記駆動周波数を制御する
請求項1から3までのいずれか1項に記載の半球共振型ジャイロ。 - 前記波節直角位相振動制御手段は、
前記振動形状抽出手段から出力される前記波節直角位相振動の前記振動振幅に基づいて、前記波節直角位相振動を抑制するための電気的剛性補正指令を生成する電気的剛性制御手段と、
前記電気的剛性制御手段から出力される前記電気的剛性補正指令の符号に応じて、前記符号が正符号の場合には前記共振モードの前記波腹方位角に対して+22.5度位相がずれた直交軸方向を、前記符号が負符号の場合には前記共振モードの前記波腹方位角に対して-22.5度位相がずれた直交軸方向を、前記半球共振器に対する電気的剛性補正軸とし、前記電気的剛性補正軸の両側に配置された各1個の前記アクチュエータに対して、前記電気的剛性補正指令の絶対値に基づいて前記アクチュエータの前記直流駆動信号を分配する直流駆動電圧分配手段と
を有する請求項1から5までのいずれか1項に記載の半球共振型ジャイロ。 - 前記共振制御手段は、
前記半球共振器に励起された前記共振モードの前記振動振幅を前記一定値に制御する共振振幅指令を生成する共振振幅制御手段と、
前記半球共振器に励起された前記共振モードの前記波腹方位角を共振位相指令として、前記共振振幅指令、前記共振位相指令、および、前記基準信号生成手段から出力される前記余弦波信号に基づいて、複数の前記アクチュエータに対する前記交流駆動信号を分配する交流駆動電圧分配手段と
を有する請求項1記載の半球共振型ジャイロ。 - 前記共振制御手段は、
前記半球共振器に励起された前記共振モードの前記振動振幅を前記一定値に制御する共振振幅指令を生成する共振振幅制御手段と、
前記半球共振器に励起された前記共振モードの前記波腹方位角を前記一定角度に制御する共振位相指令を生成する共振位相制御手段と、
前記共振振幅指令、前記共振位相指令、および、前記基準信号生成手段から出力される前記余弦波信号に基づいて、複数の前記アクチュエータに対する前記交流駆動信号を分配する交流駆動電圧分配手段と
を有する請求項2記載の半球共振型ジャイロ。 - 前記共振制御手段の前記交流駆動電圧分配手段は、
前記共振位相指令で規定される前記計測軸に直交する直交軸の両側に配置された各1個の前記アクチュエータに対して、前記共振振幅制御手段から出力される前記共振振幅指令および前記基準信号生成手段から出力される前記余弦波信号に基づいて、前記アクチュエータの前記交流駆動信号を分配する
請求項7または8に記載の半球共振型ジャイロ。 - 前記共振制御手段の前記交流駆動電圧分配手段は、
前記共振位相指令で規定される前記計測軸に直交する直交軸の両側に配置された各2個の前記アクチュエータに対して、前記アクチュエータの駆動電圧のノルムが最小となるように、前記共振振幅制御手段から出力される前記共振振幅指令および前記基準信号生成手段から出力される前記余弦波信号に基づいて前記アクチュエータの前記交流駆動信号を分配する
請求項7または8に記載の半球共振型ジャイロ。 - 前記共振制御手段の前記交流駆動電圧分配手段が、
前記共振位相指令で規定される前記計測軸に直交する直交軸の両側に配置された各1個の前記アクチュエータに対して、前記共振振幅制御手段から出力される前記共振振幅指令および前記基準信号生成手段から出力される前記余弦波信号に基づいた余弦波吸引力指令の平方根を、前記アクチュエータの前記交流駆動信号として分配する
請求項7または8に記載の半球共振型ジャイロ。 - 前記共振制御手段の前記交流駆動電圧分配手段は、
前記共振位相指令で規定される前記計測軸に直交する直交軸の両側に配置された各2個の前記アクチュエータに対して、前記アクチュエータの発生吸引力のノルムが最小となるように、前記共振振幅制御手段から出力される前記共振振幅指令および前記基準信号生成手段から出力される前記余弦波信号に基づいて余弦波吸引力指令を算出し、前記余弦波吸引力指令の平方根を、前記アクチュエータの前記交流駆動信号として分配する
請求項7または8に記載の半球共振型ジャイロ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/109,344 US9989363B2 (en) | 2014-01-14 | 2014-05-29 | Hemispherical resonator gyro |
EP14878525.6A EP3096111B1 (en) | 2014-01-14 | 2014-05-29 | Hemispherical resonator gyro |
JP2015557693A JP6180551B2 (ja) | 2014-01-14 | 2014-05-29 | 半球共振型ジャイロ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014004086 | 2014-01-14 | ||
JP2014-004086 | 2014-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015107704A1 true WO2015107704A1 (ja) | 2015-07-23 |
Family
ID=53542619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/064260 WO2015107704A1 (ja) | 2014-01-14 | 2014-05-29 | 半球共振型ジャイロ |
Country Status (4)
Country | Link |
---|---|
US (1) | US9989363B2 (ja) |
EP (1) | EP3096111B1 (ja) |
JP (1) | JP6180551B2 (ja) |
WO (1) | WO2015107704A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106289217A (zh) * | 2016-09-18 | 2017-01-04 | 北京控制工程研究所 | 一种半球谐振陀螺高可靠起振系统及方法 |
JP2019168244A (ja) * | 2018-03-22 | 2019-10-03 | 国立大学法人東北大学 | 積分型ジャイロ装置および積分型ジャイロ装置の制御方法 |
CN113108812A (zh) * | 2021-04-15 | 2021-07-13 | 东南大学 | 一种基于检测模态驱动频率上下边带功率对称性的mems陀螺仪模态匹配算法 |
JPWO2022003811A1 (ja) * | 2020-06-30 | 2022-01-06 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9989363B2 (en) * | 2014-01-14 | 2018-06-05 | Mitsubishi Electric Corporation | Hemispherical resonator gyro |
US10119820B2 (en) * | 2015-02-10 | 2018-11-06 | Northrop Grumman Systems Corporation | Wide rim vibratory resonant sensors |
US11346668B2 (en) * | 2019-12-12 | 2022-05-31 | Enertia Microsystems Inc. | System and method for micro-scale machining |
CN114076593A (zh) * | 2020-08-19 | 2022-02-22 | 塔莱斯公司 | 改进的惯性传感器 |
CN113670340B (zh) * | 2021-09-13 | 2022-05-27 | 哈尔滨工业大学 | 基于x/y信号相位差辨识的半球谐振陀螺驻波方位角测量方法及系统 |
CN115235444B (zh) * | 2022-07-19 | 2023-02-24 | 青岛哈尔滨工程大学创新发展中心 | 一种用于测量全角半球谐振陀螺的控制回路带宽的方法 |
FR3140161A1 (fr) * | 2022-09-23 | 2024-03-29 | Jxsens | Procede de mesure d’une vitesse angulaire de rotation et/ou d’une position angulaire |
CN115574798B (zh) * | 2022-09-30 | 2024-06-18 | 中国人民解放军火箭军工程大学 | 一种提高半球谐振陀螺综合性能的方法 |
US11874112B1 (en) | 2022-10-04 | 2024-01-16 | Enertia Microsystems Inc. | Vibratory gyroscopes with resonator attachments |
CN115824263B (zh) * | 2023-02-13 | 2023-05-02 | 中国船舶集团有限公司第七〇七研究所 | 基于半球谐振陀螺的阻尼修调方法及系统 |
CN116878477B (zh) * | 2023-09-06 | 2023-11-10 | 湖南二零八先进科技有限公司 | 半球谐振陀螺阻尼不均匀参数辨识方法、设备及存储介质 |
CN117029882B (zh) * | 2023-10-10 | 2023-12-22 | 北京航空航天大学 | 一种全角半球谐振陀螺检测增益不对称误差的标定方法 |
CN117073653B (zh) * | 2023-10-18 | 2023-12-22 | 中国船舶集团有限公司第七〇七研究所 | 一种基于能量系数的谐振陀螺驱动效率修正方法及系统 |
CN117928508A (zh) * | 2024-03-20 | 2024-04-26 | 四川图林科技有限责任公司 | 一种全角控制模式的半球谐振陀螺仪驻波方位角解算方法 |
CN117928605B (zh) * | 2024-03-20 | 2024-06-11 | 四川图林科技有限责任公司 | 一种半球谐振陀螺正交控制的误差分析方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54153970A (en) * | 1978-05-22 | 1979-12-04 | Gen Motors Corp | Vibrative rotation senser |
JPS60166818A (ja) | 1983-10-31 | 1985-08-30 | ゼネラル モ−タ−ズ コ−ポレ−シヨン | 振動回転センサ− |
JPH06241810A (ja) | 1993-02-01 | 1994-09-02 | General Motors Corp <Gm> | 振動式ジャイロスコープの制御回路 |
JP2010096765A (ja) * | 2008-10-14 | 2010-04-30 | Watson Industries Inc | 直角位相制御を備えた振動構造ジャイロスコープ |
JP2011252927A (ja) * | 2006-04-18 | 2011-12-15 | Watson Industries Inc | 分割またはスキュー作動要素を用いる振動慣性速度センサ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4951508A (en) * | 1983-10-31 | 1990-08-28 | General Motors Corporation | Vibratory rotation sensor |
US5712427A (en) * | 1995-08-29 | 1998-01-27 | Litton Systems Inc. | Vibratory rotation sensor with scanning-tunneling-transducer readout |
US5763780A (en) | 1997-02-18 | 1998-06-09 | Litton Systems, Inc. | Vibratory rotation sensor with multiplex electronics |
US7617727B2 (en) | 2006-04-18 | 2009-11-17 | Watson Industries, Inc. | Vibrating inertial rate sensor utilizing split or skewed operational elements |
US8806939B2 (en) * | 2010-12-13 | 2014-08-19 | Custom Sensors & Technologies, Inc. | Distributed mass hemispherical resonator gyroscope |
US9989363B2 (en) * | 2014-01-14 | 2018-06-05 | Mitsubishi Electric Corporation | Hemispherical resonator gyro |
-
2014
- 2014-05-29 US US15/109,344 patent/US9989363B2/en active Active
- 2014-05-29 EP EP14878525.6A patent/EP3096111B1/en active Active
- 2014-05-29 JP JP2015557693A patent/JP6180551B2/ja active Active
- 2014-05-29 WO PCT/JP2014/064260 patent/WO2015107704A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54153970A (en) * | 1978-05-22 | 1979-12-04 | Gen Motors Corp | Vibrative rotation senser |
JPS60166818A (ja) | 1983-10-31 | 1985-08-30 | ゼネラル モ−タ−ズ コ−ポレ−シヨン | 振動回転センサ− |
JPH06241810A (ja) | 1993-02-01 | 1994-09-02 | General Motors Corp <Gm> | 振動式ジャイロスコープの制御回路 |
JP2011252927A (ja) * | 2006-04-18 | 2011-12-15 | Watson Industries Inc | 分割またはスキュー作動要素を用いる振動慣性速度センサ |
JP2010096765A (ja) * | 2008-10-14 | 2010-04-30 | Watson Industries Inc | 直角位相制御を備えた振動構造ジャイロスコープ |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106289217A (zh) * | 2016-09-18 | 2017-01-04 | 北京控制工程研究所 | 一种半球谐振陀螺高可靠起振系统及方法 |
CN106289217B (zh) * | 2016-09-18 | 2019-04-30 | 北京控制工程研究所 | 一种半球谐振陀螺高可靠起振系统及方法 |
JP2019168244A (ja) * | 2018-03-22 | 2019-10-03 | 国立大学法人東北大学 | 積分型ジャイロ装置および積分型ジャイロ装置の制御方法 |
JP7115733B2 (ja) | 2018-03-22 | 2022-08-09 | 国立大学法人東北大学 | 積分型ジャイロ装置および積分型ジャイロ装置の制御方法 |
JPWO2022003811A1 (ja) * | 2020-06-30 | 2022-01-06 | ||
WO2022003811A1 (ja) * | 2020-06-30 | 2022-01-06 | 三菱電機株式会社 | 共振制御装置、振動ジャイロ及び共振制御方法 |
JP7292514B2 (ja) | 2020-06-30 | 2023-06-16 | 三菱電機株式会社 | 共振制御装置、振動ジャイロ及び共振制御方法 |
CN113108812A (zh) * | 2021-04-15 | 2021-07-13 | 东南大学 | 一种基于检测模态驱动频率上下边带功率对称性的mems陀螺仪模态匹配算法 |
CN113108812B (zh) * | 2021-04-15 | 2023-08-18 | 东南大学 | 一种基于边带功率对称性的mems陀螺仪模态匹配方法 |
Also Published As
Publication number | Publication date |
---|---|
US9989363B2 (en) | 2018-06-05 |
EP3096111B1 (en) | 2019-10-30 |
EP3096111A4 (en) | 2017-09-06 |
US20160334214A1 (en) | 2016-11-17 |
JPWO2015107704A1 (ja) | 2017-03-23 |
EP3096111A1 (en) | 2016-11-23 |
JP6180551B2 (ja) | 2017-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6180551B2 (ja) | 半球共振型ジャイロ | |
JP5517553B2 (ja) | 直角位相制御方法及びその方法を備えた振動構造ジャイロスコープ | |
US9869553B2 (en) | Frequency readout gyroscope | |
US20100011857A1 (en) | Arrangement for measuring a rate of rotation using a vibration sensor | |
US10571267B1 (en) | High stability angular sensor | |
JP6600672B2 (ja) | 半球共振型ジャイロスコープ | |
JP5352671B2 (ja) | 振動型ジャイロスコープによるジャイロ測定 | |
TWI724127B (zh) | 陀螺儀裝置及陀螺儀裝置之控制方法 | |
Tsukamoto et al. | MEMS rate integrating gyroscope with temperature corrected virtual rotation | |
Chikovani et al. | Digital rate MEMS vibratory gyroscope modeling, tuning and simulation results | |
EP3213030B1 (en) | Digital controlled vco for vibrating structure gyroscope | |
JP7302129B2 (ja) | ジャイロ装置およびジャイロ装置の制御方法 | |
US7251900B2 (en) | Methods and systems utilizing intermediate frequencies to control multiple coriolis gyroscopes | |
Maslov et al. | Methods to eliminate nonlinearity of electrostatic control sensors of the wave solid-state gyroscope | |
JP2011002295A (ja) | 角速度検出装置 | |
Challoner et al. | Symmetric Piezoelectric CVG with digital control electronics | |
Song et al. | Parametric drive of a micro rate integrating gyroscope using discrete electrodes | |
WO2022003811A1 (ja) | 共振制御装置、振動ジャイロ及び共振制御方法 | |
US20240102803A1 (en) | Method for measuring a rotational angular velocity and/or an angular position | |
RU2279634C2 (ru) | Микромеханический гироскоп | |
US7296468B2 (en) | Digital coriolis gyroscope | |
JP7115733B2 (ja) | 積分型ジャイロ装置および積分型ジャイロ装置の制御方法 | |
WO2023026470A1 (ja) | 磁場センサおよび磁場検出方法 | |
JP2023127142A (ja) | ジャイロ装置およびジャイロ装置の制御方法 | |
JPH10332388A (ja) | 装置の1つまたは2つ以上のパラメータの線形測定を得るための方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14878525 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015557693 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15109344 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014878525 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014878525 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |