WO2015105071A1 - 反射防止構造体及びその設計方法 - Google Patents

反射防止構造体及びその設計方法 Download PDF

Info

Publication number
WO2015105071A1
WO2015105071A1 PCT/JP2015/050049 JP2015050049W WO2015105071A1 WO 2015105071 A1 WO2015105071 A1 WO 2015105071A1 JP 2015050049 W JP2015050049 W JP 2015050049W WO 2015105071 A1 WO2015105071 A1 WO 2015105071A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanostructure
nanostructures
antireflection structure
saturation
filling rate
Prior art date
Application number
PCT/JP2015/050049
Other languages
English (en)
French (fr)
Inventor
和田 豊
有馬 光雄
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to EP15735604.9A priority Critical patent/EP3093692A4/en
Priority to US15/104,456 priority patent/US10139524B2/en
Publication of WO2015105071A1 publication Critical patent/WO2015105071A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing

Definitions

  • the present invention relates to a method for designing an antireflection structure having a moth-eye structure and an antireflection structure obtained by the method.
  • the so-called moth-eye film with surface irregularities ie, nanostructures
  • a pitch equal to or smaller than the visible light wavelength so as to improve visibility by reducing external light reflection when observing an object such as a display or printed matter. It is performed on the surface of an object. In addition to the observation object, it is also used on the surface of a light emitting element or the surface of an optical element such as a lens.
  • Patent Document 1 in order to improve the antireflection characteristics in such a moth-eye film, it is described that the filling rate of the nanostructures is set to 65% or more with the upper limit being 100%. ing.
  • the filling rate is the area of the bottom surface of the nanostructure relative to the area of the unit cell of the array of nanostructures forming the moth-eye film.
  • Patent Document 2 discloses a transparent conductive element composed of an optical element having a moth-eye structure and a transparent conductive layer provided on the optical element, with reduced wavelength dependence and improved visibility.
  • the ratio of the area of the flat portion is preferably 0 to 30%.
  • the area ratio of the flat portion is the ratio of the remaining area obtained by subtracting the bottom area of the nanostructure from the unit cell area of the moth-eye structure to the unit cell area.
  • the reflectance on the long wavelength side and the short wavelength side in the visible light wavelength region increases depending on the shape and arrangement of individual nanostructures constituting the moth-eye structure.
  • the filling rate of the nanostructures or the area ratio of the flat part affects the color of the moth-eye film, but detailed examination has not been made.
  • the viscosity of the resin strongly affects the reproducibility of the shape of the convex portion of the nanostructure to be transferred. That is, when the viscosity is high, the resulting nanostructures are less than the nanostructures designed on the master due to insufficient filling and followability of the unevenness provided on the master. And the tip is rounder than intended.
  • the original fabric of the moth-eye film produced by transferring the nanostructures from the master will be transported in a roll state or cut into a single sheet. Problems such as missing nanostructures due to unnecessary friction or the like arise. Similarly, the same kind of problem is caused by the work for attaching the moth-eye film to the object to be subjected to antireflection. In response to this, when the moth-eye film is provided on the surface of a substrate that is frequently contacted or worn, it may be possible to construct the moth-eye film with a resin having a low elastic modulus, but to eliminate the lack of nanostructures. Is not done.
  • the height of the nanostructure may vary or be lost during each process of manufacturing, transporting, pasting, and using the moth-eye film. If the height of the nanostructure varies or lacks, the spectral reflectance changes, resulting in variations in color. For this reason, a design method for keeping the color variation within a certain range is required.
  • An object of the present invention is to provide an antireflection structure having a moth-eye structure by finding a design condition for making the saturation ⁇ (a * 2 + b * 2 ) of reflected light with respect to a white light source as close to zero as possible.
  • the object is to suppress or control the change of the color of the object provided on the surface with respect to the original color of the object.
  • the present inventor has a saturation ⁇ (a * 2 of reflected light with respect to white light when the height of each nanostructure constituting the moth-eye structure is in a specific range. It was found that + b * 2 ) varies depending on the filling rate of the nanostructures and takes a minimum value at a specific filling rate, and the present invention has been conceived.
  • the present invention relates to a method for designing an antireflection structure in which a plurality of nanostructures formed by convex portions on the surface of a substrate are provided at intervals equal to or smaller than the visible light wavelength.
  • the average height from the portion is 180 nm or more and 290 nm or less
  • the filling rate of the nanostructure which is the ratio of the area of the bottom surface of the nanostructure to the area of the substrate surface in plan view of the antireflection structure,
  • the saturation ⁇ (a * 2 + b * 2 ) of the reflected light with respect to the white light of the prevention structure it is ⁇ 5% of the filling rate at which the saturation takes a minimum value, more preferably 0 to ⁇ 5%.
  • the present invention provides an antireflection structure in which a large number of nanostructures formed by convex portions on the surface of a substrate are provided at intervals equal to or less than a visible light wavelength,
  • the average height is 180 nm or more and 290 nm or less
  • the filling ratio of the nanostructures which is the ratio of the area of the bottom surface of the nanostructures to the area of the substrate surface in plan view of the antireflection structure, is 85% or more and less than 100%
  • An antireflective structure is provided.
  • the average height of the nanostructures is preferably 5 on the surface unevenness of the antireflection structure by an atomic force microscope (AFM) along any same direction in the plane of the antireflection structure. Measured more than once and calculated from the average. In addition, the variation of each measured value is obtained from the ratio of the average of the difference between each measured value and the average ([(each measured value ⁇ average of each measured value) / average of each measured value] ⁇ 100 mm (% )). In addition, this measurement is preferably performed in the short direction when the antireflection structure is formed into a long film by a transfer method using a roll-shaped transfer master.
  • “average height of nanostructures” is abbreviated as “height of nanostructures”.
  • the saturation ⁇ (a * 2 + b * 2 ) of the reflected light with respect to white light is as close to zero as possible in relation to the filling rate of the nanostructure.
  • the antireflection structure of the present invention the saturation of the reflected light with respect to white light ⁇ (a * 2 + b * 2 ) even if the height of the nanostructure varies due to the manufacturing method. Therefore, it is possible to suppress the observation object with the antireflection structure of the present invention from appearing colored.
  • FIG. 1A is a perspective view of an antireflection structure 1A of the embodiment.
  • FIG. 1B is a top view of the antireflection structure 1A of the embodiment.
  • FIG. 1C is a cross-sectional view of the antireflection structure 1A of the embodiment.
  • FIG. 2A is a graph showing the relationship between the filling rate of the nanostructure (height H 180 nm) and the saturation ⁇ (a * 2 + b * 2 ).
  • FIG. 2B is a relationship diagram between the filling rate of the nanostructure (height H 200 nm) and the saturation ⁇ (a * 2 + b * 2 ).
  • FIG. 1A is a perspective view of an antireflection structure 1A of the embodiment.
  • FIG. 1B is a top view of the antireflection structure 1A of the embodiment.
  • FIG. 1C is a cross-sectional view of the antireflection structure 1A of the embodiment.
  • FIG. 2A is a graph showing the relationship between
  • FIG. 2C is a relationship diagram between the filling rate of the nanostructure (height H230 nm) and the saturation ⁇ (a * 2 + b * 2 ).
  • FIG. 2D is a relationship diagram between the filling rate of the nanostructure (height H 290 nm) and the saturation ⁇ (a * 2 + b * 2 ).
  • FIG. 2E is a graph showing the relationship between the filling rate of the nanostructure (height H 150 nm) and the saturation ⁇ (a * 2 + b * 2 ).
  • FIG. 3A is a top view of an antireflection structure 1B in which conical nanostructures are arranged in a four-way lattice.
  • FIG. 3B is a relationship diagram between the filling rate of the nanostructures and the saturation ⁇ (a * 2 + b * 2 ) in the antireflection structure 1B.
  • FIG. 4A is a top view of the antireflection structure 1C in which elliptical cone-shaped nanostructures are arranged in a hexagonal lattice.
  • FIG. 4B is a relationship diagram between the filling rate of the nanostructures and the saturation ⁇ (a * 2 + b * 2 ) in the antireflection structure 1C.
  • FIG. 5A is a top view of an antireflection structure 1D in which elliptical cone-shaped nanostructures are arranged in a four-way lattice.
  • FIG. 5B is a relationship diagram between the filling rate of the nanostructures and the saturation ⁇ (a * 2 + b * 2 ) in the antireflection structure 1D.
  • FIG. 6 is a relationship diagram between the filling rate of the nanostructure and the saturation ⁇ (a * 2 + b * 2 ) when the refractive index is 1.1 in the antireflection structure 1A.
  • FIG. 7 is a graph showing the relationship between the filling rate of the nanostructure and the saturation ⁇ (a * 2 + b * 2 ) when the refractive index is 3.0 in the antireflection structure 1A.
  • FIG. 1A is a perspective view of an antireflection structure 1A according to an embodiment of the present invention
  • FIG. 1B is a top view
  • FIG. 1C is an xx sectional view thereof.
  • This antireflection structure 1A has a moth-eye structure in which a large number of nanostructures 3 formed by convex portions on the surface of a transparent substrate 2 are arranged vertically and horizontally at a pitch of a visible light wavelength or less. More specifically, a large number of tracks T1, T2, and T3 in which a large number of nanostructures 3 are arranged at a predetermined arrangement pitch Dp are arranged at a predetermined track pitch Tp, and the center of the nanostructure 3 is a hexagonal lattice. Are arranged.
  • the arrangement pitch Dp is usually 150 nm or more and 270 nm or less
  • the track pitch Tp is usually 130 nm or more and 190 nm or less.
  • Each nanostructure 3 has a conical shape with a rounded top, and can be seen as a bell shape.
  • the aspect ratio (height H of the nanostructure / track pitch Tp) is 0.95. It is 2.2 or less.
  • the shape of the nanostructure 3 is not limited to such a conical shape or a bell-shaped shape, but various shapes such as an elliptical cone shape, a hemispherical shape, a semi-elliptical shape, a columnar shape, a needle shape, and the like. Can take shape.
  • the arrangement of the nanostructures can also be a hexagonal lattice, a tetragonal lattice, a quasi-tetragonal lattice or a quasi-hexagonal lattice similar to these.
  • the hexagonal lattice is an array in which the center of the nanostructure is located at each corner and center of a regular hexagon.
  • the tetragonal lattice is an array in which the center of the nanostructure is located at each corner of a square.
  • the quasi-tetragonal or quasi-hexagonal lattice is a lattice in which a tetragonal or hexagonal lattice is distorted by extending it in the track direction.
  • the invention is applied by setting the filling rate to the ratio of the area of the bottom surface of the nanostructure to the area of the substrate surface in plan view of the antireflection structure. Can do. That is, regardless of the regularity of the filling structure of the nanostructure, in the relationship between the filling ratio of the nanostructure and the saturation ⁇ (a * 2 + b * 2 ) of the reflected light with respect to the white light of the antireflection structure, As long as the saturation takes a minimum value at a specific filling rate, the present invention can be applied.
  • the height H of the nanostructure from the flat surface of the substrate surface is not less than 180 nm and not more than 290 nm, and the area of the bottom surface of the nanostructure 3 with respect to the area of the unit cell of the array of nanostructures 3
  • the filling ratio of the nanostructures as a ratio is 85% or more and less than 100%.
  • the saturation ⁇ (a * 2 + b * 2 ) of the reflected light with respect to the white light of the antireflection structure 1A is as close to zero as possible in relation to the filling rate of the nanostructure 3, and the antireflection structure
  • the refractive index of the substrate 2 is at least in the range of 1.1 to 3.0
  • the height H of the nanostructure 3 from the surface flat portion of the substrate 2 is in the range of 180 to 290 nm.
  • the filling rate of the nanostructure 3 is in the range of 85% to less than 100%. This is based on the finding of the present inventor that the saturation ⁇ (a * 2 + b * 2 ) takes a minimum value.
  • FIG. 2A shows the antireflective structure 1A in which the conical or bell-shaped nanostructures 3 shown in FIG. 1A are arranged in a six-direction lattice, the height H of the nanostructure 3 is 180 nm, and the refraction of the base 2
  • FIG. 6 is a relationship diagram between the filling rate of the nanostructures 3 and the saturation ⁇ (a * 2 + b * 2 ) when the rate is 1.50.
  • the filling rate is the ratio of the area of the bottom surface of the nanostructure 3 to the area of the unit cell, and the sector area S2 of the four nanostructures included in the rhombus with respect to the area S1 of the rhombus shown in FIG. 1B.
  • the saturation ⁇ (a * 2 + b * 2 ) is calculated by a method based on JISZ8729. That is, the chromaticities a * and b * in the L * a * b * color system are calculated and obtained from the reflection spectrum having a wavelength of 380 nm to 780 nm.
  • FIG. 2B is a relationship diagram when the height H of the nanostructure is 200 nm in the same antireflection structure
  • FIG. 2C is the height H of the nanostructure in the same antireflection structure
  • FIG. 2D is a relationship diagram when the height H of the nanostructure 3 is 290 nm in a similar antireflection structure
  • FIG. 2E is a similar antireflection structure
  • FIG. 3 is a relationship diagram when the height H of the nanostructure 3 is 150 nm. From these relationship diagrams, when the height H of the nanostructure is in the range of 180 nm or more and 290 nm or less, the saturation ⁇ (a * 2 + b * 2 ) has a minimum value at a filling rate of 95 to 99%. I understand that. Therefore, the antireflection film which shows the stable color can be obtained now by setting the filling rate and height of the nanostructure which shows this minimum value.
  • the saturation ⁇ (a * 2 + b * 2 ) does not take the minimum value but is almost horizontal at the minimum value.
  • the inflection point having the minimum value is regarded as a minimum value for convenience.
  • the antireflection structure is colored by densely filling the nanostructure within a range in which the nanostructures are not too close to each other and the substantial height H of the nanostructure does not decrease. It can be said that it is suppressing.
  • the minimum value becomes a filling rate of 95%, and the antireflection characteristics are improved by improving the filling rate, and the saturation is reduced. Can be achieved.
  • the height H of the nanostructure 3 is set higher than 290 nm, the aspect ratio of the nanostructure 3 is increased. Therefore, when the antireflection structure is manufactured by the transfer method using the master, it is favorable from the master. It becomes difficult to transfer the shape to the surface.
  • the variation in the height H of the nano-structures 3 is preferably within 10%.
  • the height H of the nanostructure 3 is 180 nm or more and 290 nm or less, preferably 200 nm or more and 270 or less, particularly preferably 200 nm or more and 250 nm or less.
  • the variation in the height H of the body 3 is preferably 10% or less, more preferably 8.7% or less
  • the height H of the nanostructure 3 the filling rate, and the saturation ⁇ (a * 2 + b * 2 )
  • the saturation ⁇ (a * 2 + b * 2 ) is set to a minimum value and a filling rate in the vicinity thereof.
  • the saturation ⁇ (a * 2 + b * 2 ) of the antireflection structure 1A can be as close to zero as possible, and the adherend of the antireflection structure can be prevented from being colored as much as possible. .
  • the saturation ⁇ (a (a * 2 + b * 2 ) takes a minimum value.
  • * 2 + b * 2 ) and the filling factor at that time vary depending on the arrangement of the nanostructures 3, the shape of the nanostructures 3, the refractive index of the substrate 2 forming the nanostructures 3, and the like.
  • the refractive index is in the range of 1.1 to 3.3, it can be in the vicinity of the minimum value of saturation ⁇ (a * 2 + b * 2 ) regardless of the material.
  • a conical (bell shaped) nanostructure similar to the nanostructure 3 of the antireflection structure 1A shown in FIG. 1A is formed into a four-way lattice as shown in FIG. 3A.
  • the relationship between the filling factor and the saturation ⁇ (a * 2 + b * 2 ) when the height H of the nanostructure 3 is 250 nm is as shown in FIG. 3B. The minimum value is shown around 93%.
  • the nanostructure 3 is formed into an elliptical cone shape (bell shape) by making the bottom surface shape of the nanostructure 3 into an ellipse as shown in FIG. 4A.
  • the filling rate and the saturation ⁇ (a * 2 + b) when the height H of the nanostructures 3 is 250 nm.
  • * 2 the relationship with * 2
  • the antireflection structure 1D in which the nanostructure 3 has an elliptical cone shape (bell shape) and is arranged in a hexagonal lattice as shown in FIG.
  • the relationship between the filling rate and the saturation ⁇ (a * 2 + b * 2 ) when the height H of the body 3 is 250 nm shows a minimum value near the filling rate of 95% as shown in FIG. 5B.
  • the saturation ⁇ (a * 2 + b * 2 ) indicates a minimum value at a filling rate of 85% or more and less than 100%.
  • the refractive index is changed when the height H of the nanostructure 3 is 250 nm.
  • the slope near the minimum value of saturation ⁇ (a * 2 + b * 2 ) is not as great as when the refractive index is 1.5, but the saturation ⁇ The value of (a * 2 + b * 2 ) is low.
  • the refractive index is 3.0 when the height H of the nanostructure 3 is 250 nm, as shown in FIG.
  • the refractive index of the substrate is 1.1 or more and 3.0 or less.
  • the saturation ⁇ (a * 2 + b * 2 ) is preferably closer to zero, but if it is 2 or less, the antireflection structure is provided.
  • the saturation ⁇ (a * 2 + b * 2 ) may be 2 or less. From the viewpoint of antireflection performance, it is preferable that a clear minimum value appears in the saturation ⁇ (a * 2 + b * 2 ) in the relationship between the filling rate and the saturation ⁇ (a * 2 + b * 2 ). .
  • the refractive index of the nanostructure is 1.5 or more and 3.0 or less, and the filling rate of the nanostructure is 85% or more and less than 99%. It is preferable that The still image display material includes a printed material that requires high resolution.
  • the antireflection structure is a light refractive index material such as an optical lens
  • the refractive index is preferably 1.7 or more.
  • the antireflection structure when used by being bonded to a still image display object, etc., in view of the recent demand for high-resolution images, it is uniformly and densely packed as in the manufacturing method of the present invention.
  • An anti-reflection structure is desirable.
  • the refractive index of the structure is preferably less than 1.5, and the filling rate of the nanostructure is preferably 95% or more and 99%.
  • a roll glass master is irradiated with laser light. It can be obtained by patterning using a photolithographic technique to form a fine concavo-convex pattern on the surface, and transferring the concavo-convex pattern to a resin forming the antireflection structure.
  • the base of the nanostructure 3 of the antireflection structure of the present invention may be provided with a substrate formed separately from the nanostructure 3 as necessary.
  • the antireflection structure thus obtained is generally formed in a film, and may be a roll or a sheet.
  • the sheet-formed film includes a film that is coded by a method of filling a nanostructure and the like and can be discriminated.
  • the antireflection structure of the present invention is particularly preferably used for a medium for displaying a still image such as a printed material or a liquid crystal display device, but there is no particular problem even if it is used for various displays used for moving images.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

 基体表面2の凸部により形成されたナノ構造体3が、可視光波長以下の間隔で複数設けられている反射防止構造体1Aの設計方法において、白色光に対する反射光の彩度 √(a*2+b*2) をできる限りゼロに近づけるために、ナノ構造体の基体表面平坦部からの高さの平均を180nm以上290nm以下とし、反射防止構造体の平面視において基体表面積に対するナノ構造体の底面の面積の比率であるナノ構造体の充填率を、該充填率と反射防止構造体の白色光に対する反射光の彩度√(a*2+b*2) の関係において、該彩度が極小値をとる充填率の±5%の範囲とする。

Description

反射防止構造体及びその設計方法
 本発明は、モスアイ構造を有する反射防止構造体の設計方法及びその方法により得られる反射防止構造体に関する。
 ディスプレイ、印刷物等の観察物を観察するときに外光反射を低減させて視認性が改善するように、可視光波長以下のピッチの表面凹凸(即ち、ナノ構造体)を有する所謂モスアイフィルムを観察物の表面に設けることが行われている。
また観察物とは別に、発光素子の表面やレンズなどの光学素子の表面に設ける使われ方も行われている。
 WO2012/133943号公報(特許文献1)には、このようなモスアイフィルムにおいて反射防止特性を向上させるため、ナノ構造体の充填率を、100%を上限として、65%以上とすることが記載されている。ここで、充填率とは、モスアイフィルムを形成しているナノ構造体の配列の単位格子の面積に対するナノ構造体の底面の面積である。
 また、特開2012-151012号公報(特許文献2)には、モスアイ構造を有する光学素子とその上に設けた透明導電層からなる透明導電性素子において、波長依存性を少なくして視認性を向上させるために、平坦部の面積の比率を好ましくは0~30%にすることが記載されている。ここで、平坦部の面積の比率は、モスアイ構造の単位格子面積からナノ構造体の底面積を差し引いた残りの面積の、単位格子面積に対する比率である。
WO2012/133943号公報 特開2012-151012号公報
 従来のモスアイフィルムでは、モスアイ構造を構成する個々のナノ構造体の形状や配列によっては可視光波長領域の長波長側、短波長側の反射率が上昇してしまう。上述の特許文献には、ナノ構造体の充填率あるいは平坦部の面積比率がモスアイフィルムの色味に影響することが記載されているが、詳細な検討はなされていない。
 一方、樹脂を用いてナノ構造体を原盤からの転写によって作製する場合、その樹脂の粘度が転写されるナノ構造体の凸状部の形状の再現性に強く影響する。即ち、粘度が高い場合は原盤に設けられた凹凸への充填性や追随性が不足するなどにより、結果として製造されるナノ構造体は、原盤で設計されたナノ構造体よりも高さが低くなり、形状は意図したものよりも先端が丸くなる。
 さらに原盤による転写を連続で行う場合、樹脂そのものが原盤の凹部に埋まることなどにより、転写の開始から終了にかけて微小ではあるがナノ構造体の高さが低くなっていくことが懸念される。この問題は、原盤を連続的に用いてモスアイフィルムの原反が製造される場合に一つの原反に止まらず、引き続いて製造される他の原反でも継続されていくこととなる。
 ナノ構造体が原盤から転写されることによって作製されたモスアイフィルムの原反は、ロール状態で、もしくは裁断され枚葉化された状態で運搬されることになるが、このような取り扱い時においても、不用な摩擦などでナノ構造体が欠落するなどの問題が生じる。同様に、モスアイフィルムを反射防止の実施対象に貼り付ける際の作業によっても同種の問題が生じる。これに対しては、モスアイフィルムを接触や磨耗の頻度の高い基体の表面に設ける場合に、モスアイフィルムを弾性率の低い樹脂で構成することが考えられるが、ナノ構造体の欠落を解消することはできていない。
 このようにモスアイフィルムの製造、運搬、貼り付け作業、使用の各過程でナノ構造体の高さにばらつきが生じたり、欠落が生じたりすることが懸念される。ナノ構造体の高さにばらつきが生じたり欠落が生じたりすると分光反射率が変わってしまい、色味のばらつきが生じる。そのため、色味のばらつきを一定の範囲内に収める設計方法が求められている。
 本発明の課題は、モスアイ構造を有する反射防止構造体において、白色光源に対する反射光の彩度√(a*2+b*2) をできる限りゼロに近づける設計条件を見出すことで、反射防止構造体を表面に設けた対象物の色味が、対象物本来の色味に対して変わることを抑制ないしは制御することにある。
 本発明者は、モスアイ構造を有する反射防止構造体において、モスアイ構造を構成する個々のナノ構造体の高さが特定の範囲にある場合に、白色光に対する反射光の彩度√(a*2+b*2) が、ナノ構造体の充填率によって変化し、特定の充填率で極小値をとることを見出し、本発明を想到した。
 即ち、本発明は、基体表面の凸部により形成されたナノ構造体が、可視光波長以下の間隔で複数設けられている反射防止構造体の設計方法であって、ナノ構造体の基体表面平坦部からの高さの平均を180nm以上290nm以下、反射防止構造体の平面視における基体表面の面積に対するナノ構造体の底面の面積の比率であるナノ構造体の充填率を、該充填率と反射防止構造体の白色光に対する反射光の彩度√(a*2+b*2)との関係において、該彩度が極小値をとる充填率の±5%、より好ましくは0~-5%の範囲とする方法を提供する。
 また、本発明は、基体表面の凸部により形成されたナノ構造体が、可視光波長以下の間隔で多数設けられている反射防止構造体であって、ナノ構造体の基体表面平坦部からの高さの平均が180nm以上290nm以下であり、反射防止構造体の平面視における基体表面の面積に対するナノ構造体の底面の面積の比率であるナノ構造体の充填率が85%以上100%未満である反射防止構造体を提供する。
 ここで、上記ナノ構造体の高さの平均は、反射防止構造体の表面凹凸を、該反射防止構造体の平面内の任意の同一方向に沿って原子間力顕微鏡(AFM)で好ましくは5回以上測定し、その平均から求められる。また、個々の測定値のばらつきは、各測定値とその平均との差の平均に対する割合から求められる([(各測定値-各測定値の平均)/各測定値の平均]×100 (%))。また、この測定は、反射防止構造体が、ロール状の転写原盤を用いて転写法により長尺のフィルム状に形成される場合、その短手方向に行うことが好ましい。以下、「ナノ構造体の高さの平均」を、「ナノ構造体の高さ」と略する。
 本発明の反射防止構造体の設計方法によれば、白色光に対する反射光の彩度 √(a*2+b*2) が、ナノ構造体の充填率との関係において、可能な限りゼロに近づいたものとなるので、反射防止構造体の被着物が不用に色づいて観察されることを顕著に抑制することができる。
 また、本発明の反射防止構造体によれば、製造方法に起因してナノ構造体の高さにばらつきが存在しても、白色光に対する反射光の彩度 √(a*2+b*2) が抑制されているので、本発明の反射防止構造体を貼着した観察物が色づいて見えることを抑制することができる。
図1Aは、実施例の反射防止構造体1Aの斜視図である。 図1Bは、実施例の反射防止構造体1Aの上面図である。 図1Cは、実施例の反射防止構造体1Aの断面図である。 図2Aは、ナノ構造体(高さH180nm)の充填率と彩度 √(a*2+b*2)との関係図である。 図2Bは、ナノ構造体(高さH200nm)の充填率と彩度 √(a*2+b*2)との関係図である。 図2Cは、ナノ構造体(高さH230nm)の充填率と彩度 √(a*2+b*2)との関係図である。 図2Dは、ナノ構造体(高さH290nm)の充填率と彩度 √(a*2+b*2)との関係図である。 図2Eは、ナノ構造体(高さH150nm)の充填率と彩度 √(a*2+b*2)との関係図である。 図3Aは、円錐形のナノ構造体が4方格子に配列した反射防止構造体1Bの上面図である。 図3Bは、反射防止構造体1Bにおけるナノ構造体の充填率と彩度 √(a*2+b*2)との関係図である。 図4Aは、楕円錐形のナノ構造体が6方格子に配列した反射防止構造体1Cの上面図である。 図4Bは、反射防止構造体1Cにおけるナノ構造体の充填率と彩度 √(a*2+b*2)との関係図である。 図5Aは、楕円錐形のナノ構造体が4方格子に配列した反射防止構造体1Dの上面図である。 図5Bは、反射防止構造体1Dにおけるナノ構造体の充填率と彩度 √(a*2+b*2)との関係図である。 図6は、反射防止構造体1Aにおいて、屈折率を1.1とした場合のナノ構造体の充填率と彩度 √(a*2+b*2)との関係図である。 図7は、反射防止構造体1Aにおいて、屈折率を3.0とした場合のナノ構造体の充填率と彩度 √(a*2+b*2)との関係図である。
 以下、図面を参照し、本発明を詳細に説明する。なお、各図中、同一符号は、同一又は同等の構成要素を表している。
 図1Aは、本発明の一実施例の反射防止構造体1Aの斜視図であり、図1Bは上面図、図1Cはそのx-x断面図である。
 この反射防止構造体1Aは、透明な基体2の表面の凸部により形成されたナノ構造体3が可視光波長以下のピッチで縦横に多数配列したモスアイ構造を備えている。より具体的には、ナノ構造体3が所定の配置ピッチDpで多数配列したトラックT1、T2、T3が、所定のトラックピッチTpで多数配列しており、ナノ構造体3の中心が6方格子に配列している。ここで、配置ピッチDpは、通常は150nm以上270nm以下とされ、トラックピッチTpは、通常、130nm以上190nm以下とされる。
 また、個々のナノ構造体3は、頂部を丸めた円錐形であり、釣鐘型とも見える形状をしており、そのアスペクト比(ナノ構造体の高さH/トラックピッチTp )は、0.95以上2.2以下である。
 なお、本発明において、ナノ構造体3の形状はこのような円錐形や釣鐘型に類されるものに限られず、楕円錐形、半球体状、半楕体状、柱状、針状等種々の形状をとることができる。
 また、ナノ構造体の配列も、6方格子の他、4方格子、これらに準ずる準4方格子ないしは準6方格子等とすることができる。ここで、6方格子とは、正6角形の各角と中心にナノ構造体の中心が位置する配列である。また、4方格子とは正方形の各角にナノ構造体の中心が位置する配列である。準4方格子ないしは準6方格子とは、4方格子ないしは6方格子をトラック方向に引き延ばす等により歪ませた格子である。4方格子もしくは6方格子の中間に類するものとなる。さらに、ナノ構造体の配置をランダムとする場合でも、充填率を、反射防止構造体の平面視における基体表面の面積に対するナノ構造体の底面の面積の比率とすることにより、発明を適用することができる。即ち、ナノ構造体の充填構造の規則性によらず、ナノ構造体の充填率と、反射防止構造体の白色光に対する反射光の彩度√(a*2+b*2) との関係において、該彩度が特定の充填率で極小値をとる限り、本発明を適用することができる。
 この反射防止構造体1Aは、ナノ構造体の基体表面平坦部からの高さHが180nm以上290nm以下であり、ナノ構造体3の配列の単位格子の面積に対するナノ構造体3の底面の面積の比率であるナノ構造体の充填率が、85%以上100%未満であることを特徴としている。これにより、反射防止構造体1Aの白色光に対する反射光の彩度√(a*2+b*2) が、ナノ構造体3の充填率との関係において、可能な限りゼロに近づき、反射防止構造体1Aを被着体の表面に設けて被着体を観察した場合に、被着体が不用に色づいて観察されることを防止することができる。このことは、基体2の屈折率が、少なくとも1.1以上3.0以下の範囲にあり、ナノ構造体3の基体2の表面平坦部からの高さHが180nm以上290nm以下の範囲にある場合に、ナノ構造体3の充填率と反射防止構造体1Aの彩度 √(a*2+b*2)との関係において、ナノ構造体3の充填率が85%以上100%未満の範囲で彩度√(a*2+b*2)が極小値をとることを本発明者が見出したことに基づいている。
 即ち、図2Aは、図1Aに示した円錐形ないしは釣鐘型のナノ構造体3が6方向格子に配列した反射防止構造体1Aにおいて、ナノ構造体3の高さHを180nm、基体2の屈折率を1.50とした場合のナノ構造体3の充填率と彩度 √(a*2+b*2)との関係図である。
 ここで、充填率は、単位格子の面積に対するナノ構造体3の底面の面積の比率であり、図1Bに示す菱形の面積S1に対する、この菱形に含まれる4つのナノ構造体の扇形の面積S2の比率(%)として次式により算出することができる。
 充填率(%)=(S2/S1)×100
 また、彩度√(a*2+b*2)は、JISZ8729に準拠する方法で計算して求める。即ち、波長380nm~780nmの反射スペクトルからL***表色系における色度a*、b*を算出し、求める。
 図2Bは、同様の反射防止構造体において、ナノ構造体の高さHを200nmとした場合の関係図であり、図2Cは、同様の反射防止構造体において、ナノ構造体の高さHを230nmとした場合の関係図であり、図2Dは同様の反射防止構造体において、ナノ構造体3の高さHを290nmとした場合の関係図であり、図2Eは、同様の反射防止構造体において、ナノ構造体3の高さHを150nmとした場合の関係図である。これらの関係図から、ナノ構造体の高さHが180nm以上290nm以下の範囲にある場合に、充填率95~99%で彩度√(a*2+b*2)が極小値をとっていることがわかる。したがって、この極小値を示すナノ構造体の充填率と高さを設定することで、安定した色味を示す反射防止フィルムを得ることができるようになる。
 なお、ナノ構造体の高さHを180~290nmとした場合において、図2Aに示したように、彩度√(a*2+b*2)が極小値をとらず最小値でほぼ水平となるときには、最小値をとる変曲点(ボトムの終点近傍)を便宜的に極小値と見なす。
 これに対し、同様の反射防止構造体1Aにおいて、ナノ構造体3の高さHが180nmよりも低いと、図2Eに示すように、充填率75~100%の間で彩度√(a*2+b*2)に極小値は見られず、反対に極大値が現れる。
 なお、ナノ構造体の高さHが180nm以上であっても、充填率が100%近傍からそれよりも高くなるのに伴い、彩度√(a*2+b*2)が急激に大きくなっているのは、充填率が100%を超えることにより、隣り合うナノ構造体の下端部同士が重なり合い、ナノ構造体の実質的な高さHが小さくなるためと推測される。
 つまり、本発明においてナノ構造体同士が接近しすぎてナノ構造体の実質的な高さHが減少しない範囲でナノ構造体を密に充填することにより、反射防止構造体に色味がつくことを抑制しているといえる。
 一方、図2Dに示すように、ナノ構造体3の高さHを290nmとすると極小値は充填率95%になり、充填率を向上させることによる反射防止特性の向上と、彩度の低減とを両立できる状態が得られる。しかしながら、ナノ構造体3の高さHを290nmより高くすることは、ナノ構造体3のアスペクト比が高くなることから、原盤を用いた転写法により反射防止構造体を製造するにあたり、原盤から良好に形状を転写することが困難となる。
 また、ナノ構造体3の高さHにばらつきが大きいと、上述のナノ構造体の充填率と彩度√(a*2+b*2)との関係において、彩度√(a*2+b*2)に明確な極小値が出にくい。そこで、ナノ構造体の高さHのばらつきは、10%以内とすることが好ましい。
 以上により、本発明の反射防止構造体の設計方法においては、ナノ構造体3の高さHを180nm以上290nm以下、好ましくは200nm以上270以下、特に好ましくは200nm以上250nm以下とし、また、ナノ構造体3の高さHのばらつきを好ましくは10%以下、より好ましくは8.7%以下とする場合において、ナノ構造体3の高さHと、充填率と彩度√(a*2+b*2)との関係において、彩度√(a*2+b*2)が極小値及びその近傍となる充填率に設定する。これにより、反射防止構造体1Aの彩度√(a*2+b*2)を可能な限りゼロに近づけ、反射防止構造体の被着体が色づいて見えることを可能な限り防止することができる。
 なお、ナノ構造体3の充填率と彩度√(a*2+b*2)との関係図において、彩度√(a*2+b*2)が極小値をとるときの彩度√(a*2+b*2)の数値や、そのときの充填率の数値は、ナノ構造体3の配列、ナノ構造体3の形状、ナノ構造体3を形成する基体2の屈折率等によって変化するが、屈折率が1.1~3.3の範囲内においては、材質によらず彩度√(a*2+b*2)の極小値の近傍とすることができる。
 例えば、図1Aに示した反射防止構造体1Aのナノ構造体3と同様の円錐形(釣鐘型)のナノ構造体(屈折率:1.5)を、図3Aに示すように4方格子に配列した反射防止構造体1Bの場合、ナノ構造体3の高さHが250nmのときの充填率と彩度 √(a*2+b*2)との関係は、図3Bに示すように充填率93%付近で極小値を示す。
 また、図1Aに示した反射防止構造体1Aにおいて、ナノ構造体3の底面形状を、図4Aに示すように楕円にすることによりナノ構造体3を楕円錐形(釣鐘型)とし、その楕円錐形(釣鐘型)のナノ構造体3を6方格子に配列した反射防止構造体1Cの場合、ナノ構造体3の高さHが250nmのときの充填率と彩度√(a*2+b*2)との関係は、図4Bに示すように充填率99%付近で極小値を示す。楕円錐形(釣鐘型)の底面形状の長軸Lと短軸Sとの比(L/S)を1~2の間で変化させると、彩度√(a*2+b*2)は、充填率85%以上100%未満で極小値を示す。
 また、上述の反射防止構造体1Cと同様にナノ構造体3を楕円錐形(釣鐘型)とし、それを図5Aに示すように6方格子に配列した反射防止構造体1Dの場合、ナノ構造体3の高さHが250nmのときの充填率と彩度 √(a*2+b*2)との関係は、図5Bに示すように充填率95%付近で極小値を示す。この場合にも、楕円錐形(釣鐘型)の底面形状の長軸Lと短軸Sとの比(L/S)を1~2の間で変化させると、彩度 √(a*2+b*2)は、充填率85%以上100%未満で極小値を示す。
 また、屈折率と彩度√(a*2+b*2)との関係については、図1Aに示した反射防止構造体1Aにおいて、ナノ構造体3の高さHが250nmのときに屈折率を1.1とした場合、図6に示すように、彩度√(a*2+b*2)の極小値付近の傾きは、屈折率が1.5の場合ほど大きくはないが、彩度√(a*2+b*2)の数値は低い。これに対し、図1Aに示した反射防止構造体1Aにおいて、ナノ構造体3の高さHが250nmのときに屈折率を3.0にした場合には、図7に示すように、充填率90%付近の極小値における彩度√(a*2+b*2)自体の数値は、屈折率が1.5の場合の極小値よりも大きいが、極小値付近の傾きは大きく、明瞭な極小値となる。したがって、本発明において、基体の屈折率は1.1以上3.0以下とする。
 ところで、反射防止構造体を静止画像表示物に使用する場合には、彩度√(a*2+b*2)は、ゼロに近いほど好ましいものの、2以下であれば反射防止構造体が設けられた表面を観察した場合に、不用に色づいて感じられることはなく、静止画像表示物に使用する場合には、彩度 √(a*2+b*2)は2以下であればよい。また、反射防止性能の点からは、充填率と彩度√(a*2+b*2)との関係において、彩度√(a*2+b*2)に明瞭な極小値が現れる方が好ましい。このような点から、静止画像表示物に使用する反射防止構造体では、ナノ構造体の屈折率を1.5以上、3.0以下とし、ナノ構造体の充填率を85%以上99%未満とすることが好ましい。静止画像表示物とは、高い解像度が求められる印刷物などがある。
 また、反射防止構造体が光学レンズ等の光屈折率材料である場合には、基板の屈折率に近似させることが好ましい。例えば、サファイア基盤等に設ける場合には、屈折率を1.7以上とすることが好ましい。
 これに対し、反射防止構造体を静止画像表示物等に貼り合せて使用する場合には、近年の高解像度画像の要請に鑑みて、本発明の製法にあるような均一に高密度充填された反射防止構造体であることが望ましい。さらに反射防止構造体の反射防止性能を高めるためにはナノ構造体の屈折率を周囲の媒体の屈折率(空気の屈折率=1)に近づけるほど好ましく、空気中で使用する場合には、ナノ構造体の屈折率を1.5未満とし、ナノ構造体の充填率を95%以上99%とすることが好ましい。
 なお、本発明の反射防止構造体の製造方法としては、ロール原盤を使用して転写法により製造する場合、例えば、WO2012/133943号公報に記載のように、まず、ロールガラス原盤をレーザ光を用いてフォトリソグラフの手法によりパターニングしてその表面に微細な凹凸パターンを形成し、その凹凸パターンを、反射防止構造体を形成する樹脂に転写することにより得ることができる。この場合、本発明の反射防止構造体のナノ構造体3の基部には、必要に応じてナノ構造体3とは別個に形成した基材を設けてもよい。
 こうして得られる反射防止構造体はフィルムに形成されているのが一般的であり、ロール体もしくは枚葉化されたフィルムであってもよい。枚葉化フィルムには、ナノ構造体の充填の仕方などでコーディングされており、識別化が可能になっているものも含まれる。
 本発明の反射防止構造体は、印刷物、液晶表示装置などの静止画像を表示する媒体に特に好ましく使用されるが、動画に用いる各種ディスプレイに使用しても特に問題は無い。
 1A、1B、1C、1D 反射防止構造体
 2  基体
 3  ナノ構造体
 Dp  配置ピッチ
 H  高さ
 Tp  トラックピッチ
 T1、T2、T3 トラック

Claims (8)

  1.  基体表面の凸部により形成されたナノ構造体が、可視光波長以下の間隔で複数設けられている反射防止構造体の設計方法であって、ナノ構造体の基体表面平坦部からの高さの平均を180nm以上290nm以下、反射防止構造体の平面視における基体表面の面積に対するナノ構造体の底面の面積の比率であるナノ構造体の充填率を、該充填率と反射防止構造体の白色光に対する反射光の彩度√(a*2+b*2) の関係において、該彩度が極小値をとる充填率の±5%の範囲とする方法。
  2.  ナノ構造体が可視光波長以下のピッチで配列しており、ナノ構造体の充填率が、ナノ構造体の配列の単位格子における、該単位格子の面積に対するナノ構造体の底面の面積の比率で算出される請求項1記載の方法。
  3.  ナノ構造体の充填率を、該充填率と反射防止構造体の白色光に対する反射光の彩度√(a*2+b*2)の関係において、白色光に対する反射光の彩度√(a*2+b*2)が2以下となる値とする請求項1又は2記載の方法。
  4.  基体表面の凸部により形成されたナノ構造体が、可視光波長以下の間隔で複数設けられている反射防止構造体であって、ナノ構造体の基体表面平坦部からの高さの平均が180nm以上290nm以下であり、反射防止構造体の平面視における基体表面の面積に対するナノ構造体の底面の面積の比率であるナノ構造体の充填率が、85%以上100%未満である反射防止構造体。
  5.  ナノ構造体が可視光波長以下のピッチで配列しており、ナノ構造体の充填率が、ナノ構造体の配列の単位格子における、該単位格子の面積に対するナノ構造体の底面の面積の比率で算出される請求項4記載の反射防止構造体。
  6.  ナノ構造体の基体表面平坦部からの高さのばらつきが10%以内である請求項4又は5記載の反射防止構造体。
  7.  請求項4~6のいずれかに記載された反射防止構造体であって、フィルム状に成形されており、ナノ構造体の高さのばらつきが10%以内である反射防止構造体。
  8.  枚葉化されたフィルム状に成形されている請求項7記載の反射防止構造体。
PCT/JP2015/050049 2014-01-10 2015-01-05 反射防止構造体及びその設計方法 WO2015105071A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15735604.9A EP3093692A4 (en) 2014-01-10 2015-01-05 Anti-reflective structure and method for designing same
US15/104,456 US10139524B2 (en) 2014-01-10 2015-01-05 Anti-reflective structure and method for designing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-003483 2014-01-10
JP2014003483A JP6343937B2 (ja) 2014-01-10 2014-01-10 反射防止構造体及びその設計方法

Publications (1)

Publication Number Publication Date
WO2015105071A1 true WO2015105071A1 (ja) 2015-07-16

Family

ID=53523898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050049 WO2015105071A1 (ja) 2014-01-10 2015-01-05 反射防止構造体及びその設計方法

Country Status (4)

Country Link
US (1) US10139524B2 (ja)
EP (1) EP3093692A4 (ja)
JP (1) JP6343937B2 (ja)
WO (1) WO2015105071A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343937B2 (ja) * 2014-01-10 2018-06-20 デクセリアルズ株式会社 反射防止構造体及びその設計方法
JP6953109B2 (ja) * 2015-09-24 2021-10-27 ウシオ電機株式会社 基板上構造体の製造方法
TWI694133B (zh) * 2016-02-12 2020-05-21 美商萬騰榮公司 藉由使用表面奈米結構來強化光泵磷光體的輸出
WO2018151097A1 (ja) * 2017-02-15 2018-08-23 ナルックス株式会社 拡散素子
CN107976728A (zh) * 2017-12-28 2018-05-01 武汉华星光电技术有限公司 微结构、显示装置及其显示面板
US20220216352A1 (en) * 2021-01-04 2022-07-07 Saudi Arabian Oil Company Nanostructures to reduce optical losses

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139796A (ja) * 2007-12-10 2009-06-25 Toyota Central R&D Labs Inc 反射防止膜、反射防止膜の製造方法、反射防止膜用鋳型、反射防止膜用鋳型を用いて得られた反射防止膜及びレプリカ膜を用いて得られた反射防止膜
JP2011053496A (ja) * 2009-09-02 2011-03-17 Sony Corp 光学素子およびその製造方法、ならびに原盤の製造方法
WO2011065429A1 (ja) * 2009-11-27 2011-06-03 シャープ株式会社 モスアイ用型、ならびに、モスアイ用型およびモスアイ構造の作製方法
JP2012151012A (ja) 2011-01-19 2012-08-09 Sony Corp 透明導電性素子、入力装置、および表示装置
WO2012133943A1 (ja) 2011-03-31 2012-10-04 ソニー株式会社 印刷物および印画物
JP2013142821A (ja) * 2012-01-11 2013-07-22 Dainippon Printing Co Ltd 反射防止フィルム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3070942B2 (ja) * 1990-10-18 2000-07-31 サカタインクス株式会社 着色剤の調整方法
TWI230002B (en) * 2000-10-17 2005-03-21 Nissha Printing Antireflective molded product and its manufacture method, mold for antireflective molded product
JP5075234B2 (ja) 2009-09-02 2012-11-21 ソニー株式会社 光学素子、および表示装置
JP4626721B1 (ja) * 2009-09-02 2011-02-09 ソニー株式会社 透明導電性電極、タッチパネル、情報入力装置、および表示装置
JP2011053495A (ja) * 2009-09-02 2011-03-17 Sony Corp 光学素子、およびその製造方法
RU2012118394A (ru) * 2009-10-09 2013-11-20 Шарп Кабусики Кайся Форма и способ ее изготовления, и просветляющая пленка
US20120070572A1 (en) * 2010-09-08 2012-03-22 Molecular Imprints, Inc. Vapor Delivery System For Use in Imprint Lithography
JO3415B1 (ar) 2011-03-30 2019-10-20 Crystal Lagoons Tech Inc نظام لمعالجة الماء المستخدم لأغراض صناعية
JP6265125B2 (ja) * 2013-08-14 2018-01-24 三菱ケミカル株式会社 ナノインプリント用モールドの製造方法、および反射防止物品の製造方法
JP6343937B2 (ja) * 2014-01-10 2018-06-20 デクセリアルズ株式会社 反射防止構造体及びその設計方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139796A (ja) * 2007-12-10 2009-06-25 Toyota Central R&D Labs Inc 反射防止膜、反射防止膜の製造方法、反射防止膜用鋳型、反射防止膜用鋳型を用いて得られた反射防止膜及びレプリカ膜を用いて得られた反射防止膜
JP2011053496A (ja) * 2009-09-02 2011-03-17 Sony Corp 光学素子およびその製造方法、ならびに原盤の製造方法
WO2011065429A1 (ja) * 2009-11-27 2011-06-03 シャープ株式会社 モスアイ用型、ならびに、モスアイ用型およびモスアイ構造の作製方法
JP2012151012A (ja) 2011-01-19 2012-08-09 Sony Corp 透明導電性素子、入力装置、および表示装置
WO2012133943A1 (ja) 2011-03-31 2012-10-04 ソニー株式会社 印刷物および印画物
JP2013142821A (ja) * 2012-01-11 2013-07-22 Dainippon Printing Co Ltd 反射防止フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3093692A4 *

Also Published As

Publication number Publication date
US20160313474A1 (en) 2016-10-27
EP3093692A1 (en) 2016-11-16
JP2015132689A (ja) 2015-07-23
JP6343937B2 (ja) 2018-06-20
EP3093692A4 (en) 2017-09-13
US10139524B2 (en) 2018-11-27

Similar Documents

Publication Publication Date Title
WO2015105071A1 (ja) 反射防止構造体及びその設計方法
JP6105577B2 (ja) 反射防止構造体及び表示装置
JP2020184088A (ja) スパークル低減面を備えた多色画素化ディスプレイ
WO2014021376A1 (ja) 反射防止物品、画像表示装置、反射防止物品の製造用金型及び反射防止物品の製造用金型の製造方法
EP2207050A3 (en) Optical element and method for making the same, master and method for making the same, and display apparatus
TWI457589B (zh) 蛾眼用模與蛾眼用模及蛾眼構造之製作方法
CN104035243A (zh) 一种隔垫物、液晶显示面板及显示装置
US20190341581A1 (en) Microlens for an oled display device
JP2011169961A (ja) 親水性反射防止構造及びその製造方法
CN110446948A (zh) 防污性膜
CN210743986U (zh) 一种显示屏
KR20150009515A (ko) 반사 방지 필름
CN103247733A (zh) 发光半导体的图案化基材及其制造方法与发光半导体装置
CN102855817B (zh) 显示装置、抗反射基板及其制造方法
KR20170074883A (ko) 광학 소자, 광학 복합 소자 및 보호 필름이 부착된 광학 복합 소자
JP6683214B2 (ja) 反射防止構造体
JPWO2016047059A1 (ja) 反射防止部材
US20200132891A1 (en) Micro structure, display apparatus and display panel thereof
TWI490831B (zh) 顯示裝置、抗反射基板及其製造方法
JP2015187637A (ja) 反射防止物品、画像表示装置、反射防止物品の製造方法、反射防止物品の賦型用金型、及び賦型用金型の製造方法
JP2009175481A (ja) 反射防止光学部材および光モジュール
WO2012099373A3 (en) Optical film with partially coated structure array and manufacturing method thereof
CN110048029A (zh) 显示面板制造方法及其显示面板
KR101492503B1 (ko) 가시광 영역에서 낮은 반사율을 갖는 양면 나노 구조체
TWI695190B (zh) 光學膜、顯示裝置及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735604

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15104456

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015735604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015735604

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE